
4.6. THE PRIMITIVE RECURSIVE FUNCTIONS 309

4.6 The Primitive Recursive Functions

The class of primitive recursive functions is defined in terms of base functions
and closure operations.

Definition 4.6.1 Let Σ = {a1, . . . , aN}. The base functions over Σ are the
following functions:

(1) The erase function E, defined such that E(w) = ε, for all w ∈ Σ∗;

(2) For every j, 1 ≤ j ≤ N , the j-successor function Sj, defined such that
Sj(w) = waj, for all w ∈ Σ∗;

(3) The projection functions P n
i , defined such that

P n
i (w1, . . . , wn) = wi,

for every n ≥ 1, every i, 1 ≤ i ≤ n, and for all w1, . . . , wn ∈ Σ∗.

Note that P 1
1 is the identity function on Σ∗. Projection functions can be used

to permute the arguments of another function.

310 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

A crucial closure operation is (extended) composition.

Definition 4.6.2 Let Σ = {a1, . . . , aN}. For any function

g: Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m

→ Σ∗,

and any m functions
hi: Σ

∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗,

the composition of g and the hi is the function

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗,

denoted as g ◦ (h1, . . . , hm), such that

f(w1, . . . , wn) = g(h1(w1, . . . , wn), . . . , hm(w1, . . . , wn)),

for all w1, . . . , wn ∈ Σ∗.

As an example, f = g ◦ (P 2
2 , P 2

1) is such that

f(w1, w2) = g(w2, w1).

4.6. THE PRIMITIVE RECURSIVE FUNCTIONS 311

Another crucial closure operation is primitive recursion.

Definition 4.6.3 Let Σ = {a1, . . . , aN}. For any function

g: Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m−1

→ Σ∗,

where m ≥ 2, and any N functions

hi: Σ
∗ × · · · × Σ∗︸ ︷︷ ︸

m+1

→ Σ∗,

the function
f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸

m

→ Σ∗,

is defined by primitive recursion from g and h1, . . . , hN , if

f(ε, w2, . . . , wm) = g(w2, . . . , wm),

f(ua1, w2, . . . , wm) = h1(u, f(u, w2, . . . , wm), w2, . . . , wm),

. . . = . . .

f(uaN , w2, . . . , wm) = hN(u, f(u, w2, . . . , wm), w2, . . . , wm),

for all u, w2, . . . , wm ∈ Σ∗.

312 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

When m = 1, for some fixed w ∈ Σ∗, we have

f(ε) = w,

f(ua1) = h1(u, f(u)),

. . . = . . .

f(uaN) = hN(u, f(u)),

for all u ∈ Σ∗.

For numerical functions (i.e., when Σ = {a1}), the scheme of primitive recur-
sion is simpler:

f(0, x2, . . . , xm) = g(x2, . . . , xm),

f(x + 1, x2, . . . , xm) = h1(x, f(x, x2, . . . , xm), x2, . . . , xm),

for all x, x2, . . . , xm ∈ N.

4.6. THE PRIMITIVE RECURSIVE FUNCTIONS 313

The successor function S is the function

S(x) = x + 1.

Addition, multiplication, exponentiation, and
super-exponentiation can, be defined by primitive recursion as follows (being
a bit loose, we should use some projections ...):

add(0, n) = n,

add(m + 1, n) = S(add(m, n)),

mult(0, n) = 0,

mult(m + 1, n) = add(mult(m, n), n),

rexp(0, m) = 1,

rexp(m + 1, n) = mult(rexp(m, n), n),

exp(m, n) = rexp ◦ (P 2
2 , P 2

1),

supexp(0, n) = 1,

supexp(m + 1, n) = exp(n, supexp(m, n)).

314 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

As an example over {a, b}∗, the following function
g: Σ∗ × Σ∗ → Σ∗, is defined by primitive recursion:

g(ε, v) = P 1
1 (v),

g(uai, v) = Si ◦ P 3
2 (u, g(u, v), v),

where 1 ≤ i ≤ N . It is easily verified that g(u, v) = vu. Then,

f = g ◦ (P 2
2 , P 2

1)

computes the concatenation function, i.e. f(u, v) = uv.

4.6. THE PRIMITIVE RECURSIVE FUNCTIONS 315

Definition 4.6.4 Let Σ = {a1, . . . , aN}. The class of primitive recursive
functions is the smallest class of functions (over Σ∗) which contains the base
functions and is closed under composition and primitive recursion.

We leave as an exercise to show that every primitive recursive function is
a total function. The class of primitive recursive functions may not seem
very big, but it contains all the total functions that we would ever want to
compute.

Although it is rather tedious to prove, the following theorem can be shown.

316 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

Theorem 4.6.5 For an alphabet Σ = {a1, . . . , aN}, every primitive recursive
function is Turing computable.

The best way to prove the above theorem is to use the computation model
of RAM programs. Indeed, it was shown in Theorem 4.4.1 that every Turing
machine can simulate a RAM program.

It is also rather easy to show that the primitive recursive functions are RAM-
computable.

4.6. THE PRIMITIVE RECURSIVE FUNCTIONS 317

In order to define new functions it is also useful to use predicates.

Definition 4.6.6 An n-ary predicate P (over Σ∗) is any subset of (Σ∗)n.
We write that a tuple (x1, . . . , xn) satisfies P as (x1, . . . , xn) ∈ P or as
P (x1, . . . , xn). The characteristic function of a predicate P is the function
CP : (Σ∗)n → {a1}∗ defined by

Cp(x1, . . . , xn) =

{
a1 iff P (x1, . . . , xn)
ε iff not P (x1, . . . , xn).

A predicate P is primitive recursive iff its characteristic function CP is prim-
itive recursive.

We leave to the reader the obvious adaptation of the the notion of primitive
recursive predicate to functions defined over N. In this case, 0 plays the role
of ε and 1 plays the role of a1.

318 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

It is easily shown that if P and Q are primitive recursive predicates (over
(Σ∗)n), then P ∨ Q, P ∧ Q and ¬P are also primitive recursive.

As an exercise, the reader may want to prove that the predicate (defined over
N):
prime(n) iff n is a prime number, is a primitive recursive predicate.

For any fixed k ≥ 1, the function:
ord(k, n) = exponent of the kth prime in the prime factorization of n, is a
primitive recursive function.

We can also define functions by cases.

4.6. THE PRIMITIVE RECURSIVE FUNCTIONS 319

Lemma 4.6.7 If P1, . . . , Pn are pairwise disjoint primitive recursive pred-
icates (which means that Pi ∩ Pj = ∅ for all i �= j) and f1, . . . , fn+1 are
primitive recursive functions, the function g defined below is also primitive
recursive:

g(x) =

f1(x) iff P1(x)
...
fn(x) iff Pn(x)
fn+1(x) otherwise.

(writing x for (x1, . . . , xn).)

It is also useful to have bounded quantification and bounded minimization.

320 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

Definition 4.6.8 If P is an (n+1)-ary predicate, then the bounded existential
predicate ∃y/xP (y, z) holds iff some prefix y of x makes P (y, z) true.

The bounded universal predicate ∀y/xP (y, z) holds iff every prefix y of x
makes P (y, z) true.

Lemma 4.6.9 If P is an (n + 1)-ary primitive recursive predicate, then
∃y/xP (y, z) and ∀y/xP (y, z) are also primitive recursive predicates.

As an application, we can show that the equality predicate, u = v?, is prim-
itive recursive.

4.6. THE PRIMITIVE RECURSIVE FUNCTIONS 321

Definition 4.6.10 If P is an (n + 1)-ary predicate, then the bounded mini-
mization of P , min y/x P (y, z), is the function defined such that min y/x P (y, z)
is the shortest prefix of x such that P (y, z) if such a y exists, xa1 otherwise.

The bounded maximization of P , max y/x P (y, z), is the function defined such
that max y/x P (y, z) is the longest prefix of x such that P (y, z) if such a y
exists, xa1 otherwise.

Lemma 4.6.11 If P is an (n + 1)-ary primitive recursive predicate, then
min y/x P (y, z) and max y/x P (y, z) are primitive recursive functions.

So far, the primitive recursive functions do not yield all the Turing-computable
functions. In order to get a larger class of functions, we need the closure op-
eration known as minimization.

322 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

4.7 The Partial Recursive Functions

The operation of minimization (sometimes called minimalization) is defined
as follows.

Definition 4.7.1 Let Σ = {a1, . . . , aN}. For any function

g: Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m+1

→ Σ∗,

where m ≥ 0, for every j, 1 ≤ j ≤ N , the function

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m

→ Σ∗,

is defined by minimization over {aj}∗ from g, if the following conditions hold
for all w1, . . . , wm ∈ Σ∗:

(1) f(w1, . . . , wm) is defined iff there is some n ≥ 0 such that
g(ap

j , w1, . . . , wm) is defined for all p, 0 ≤ p ≤ n, and

g(an
j , w1, . . . , wm) = ε.

4.7. THE PARTIAL RECURSIVE FUNCTIONS 323

(2) When f(w1, . . . , wm) is defined,

f(w1, . . . , wm) = an
j ,

where n is such that
g(an

j , w1, . . . , wm) = ε

and
g(ap

j , w1, . . . , wm) �= ε

for every p, 0 ≤ p ≤ n − 1.

We also write

f(w1, . . . , wm) = minju[g(u, w1, . . . , wm) = ε].

324 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

Note: When f(w1, . . . , wm) is defined,

f(w1, . . . , wm) = an
j ,

where n is the smallest integer such that condition (1) holds. It is very
important to require that all the values g(ap

j , w1, . . . , wm) be defined for all
p, 0 ≤ p ≤ n, when defining f(w1, . . . , wm). Failure to do so allows non-
computable functions.

Minimization can be viewed as an abstract version of a while loop:

4.7. THE PARTIAL RECURSIVE FUNCTIONS 325

u := ε;
while g(u, w1, . . . , wm) �= ε do
u := uaj;
endwhile
let f(w1, . . . , wm) = u

Remark : Kleene used the µ-notation:

f(w1, . . . , wm) = µju[g(u, w1, . . . , wm) = ε],

actually, its numerical form:

f(x1, . . . , xm) = µx[g(x, x1, . . . , xm) = 0],

326 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

The class of partial computable functions is defined as follows.

Definition 4.7.2 Let Σ = {a1, . . . , aN}. The class of partial recursive func-
tions is the smallest class of functions (over Σ∗) which contains the base
functions and is closed under composition, primitive recursion, and mini-
mization. The class of recursive functions is the subset of the class of partial
recursive functions consisting of functions defined for every input.

4.7. THE PARTIAL RECURSIVE FUNCTIONS 327

One of the major results of computability theory is the following theorem.

Theorem 4.7.3 For an alphabet Σ = {a1, . . . , aN}, every partial recursive
function is Turing-computable. Conversely, every Turing-computable func-
tion is a partial recursive function. Similarly, the class of recursive functions
is equal to the class of Turing-computable functions that halt in a proper ID
for every input.

To prove that every partial recursive function is indeed Turing-computable,
since by Theorem 4.4.1, every Turing machine can simulate a RAM program,
the simplest thing to do is to show that every partial recursive function is
RAM-computable.

328 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

For the converse, one can show that given a Turing machine, there is a prim-
itive recursive function describing how to go from one ID to the next. Then,
minimization is used to guess whether a computation halts. The proof shows
that every partial recursive function needs minimization at most once. The
characterization of the recursive functions in terms of TM’s follows easily.

There are recursive functions that are not primitive recursive. Such an ex-
ample is given by Ackermann’s function.

4.7. THE PARTIAL RECURSIVE FUNCTIONS 329

Ackermann’s function: A recursive function which is not primitive recursive:

A(0, y) = y + 1,

A(x + 1, 0) = A(x, 1),

A(x + 1, y + 1) = A(x, A(x + 1, y)).

It can be shown that:

A(0, x) = x + 1,

A(1, x) = x + 2,

A(2, x) = 2x + 3,

A(3, x) = 2x+3 − 3,

and

A(4, x) = 22·
··2

16

}x − 3,

with A(4, 0) = 16 − 3 = 13.

330 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

For example
A(4, 1) = 216 − 3, A(4, 2) = 2216 − 3.

Actually, it is not so obvious that A is a total function. This can be shown
by induction, using the lexicographic ordering � on N×N, which is defined
as follows:

(m, n) � (m′, n′) iff either

m = m′ and n = n′, or

m < m′, or

m = m′ and n < n′.

We write (m, n) ≺ (m′, n′) when (m, n) � (m′, n′) and (m, n) �= (m′, n′).

We prove that A(m, n) is defined for all (m, n) ∈ N×N by complete induction
over the lexicographic ordering on N × N.

4.7. THE PARTIAL RECURSIVE FUNCTIONS 331

In the base case, (m, n) = (0, 0), and since A(0, n) = n+1, we have A(0, 0) =
1, and A(0, 0) is defined.

For (m, n) �= (0, 0), the induction hypothesis is that A(m′, n′) is defined for
all (m′, n′) ≺ (m, n). We need to conclude that A(m, n) is defined.

If m = 0, since A(0, n) = n + 1, A(0, n) is defined.

If m �= 0 and n = 0, since

(m − 1, 1) ≺ (m, 0),

by the induction hypothesis, A(m−1, 1) is defined, but A(m, 0) = A(m−1, 1),
and thus A(m, 0) is defined.

332 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

If m �= 0 and n �= 0, since

(m, n − 1) ≺ (m, n),

by the induction hypothesis, A(m, n − 1) is defined. Since

(m − 1, A(m, n − 1)) ≺ (m, n),

by the induction hypothesis, A(m−1, A(m, n−1)) is defined. But A(m, n) =
A(m − 1, A(m, n − 1)), and thus A(m, n) is defined.

Thus, A(m, n) is defined for all (m, n) ∈ N × N. It is possible to show that
A is a recursive function, although the quickest way to prove it requires some
fancy machinery (the recursion theorem).

Proving that A is not primitive recursive is harder.

We can also deal with languages.

4.8. RECURSIVELY ENUMERABLE AND RECURSIVE LANGUAGES 333

4.8 Recursively Enumerable Languages and Recursive

Languages

We define the recursively enumerable languages and the recursive languages.
We assume that the TM’s under consideration have a tape alphabet contain-
ing the special symbols 0 and 1.

Definition 4.8.1 Let Σ = {a1, . . . , aN}. A language L ⊆ Σ∗ is recursively
enumerable (for short, an r.e. set) iff there is some TM M such that for every
w ∈ L, M halts in a proper ID with the output 1, and for every w /∈ L, either
M halts in a proper ID with the output 0, or it runs forever. A language
L ⊆ Σ∗ is recursive iff there is some TM M such that for every w ∈ L, M
halts in a proper ID with the output 1, and for every w /∈ L, M halts in a
proper ID with the output 0.

334 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

Thus, given a recursively enumerable language L, for some w /∈ L, it is
possible that a TM accepting L runs forever on input w. On the other hand,
for a recursive language L, a TM accepting L always halts in a proper ID.

When dealing with languages, it is often useful to consider nondeterministic
Turing machines . Such machines are defined just like deterministic Turing
machines, except that their transition function δ is just a (finite) set of quin-
tuples

δ ⊆ K × Γ × Γ × {L, R} × K,

with no particular extra condition.

4.8. RECURSIVELY ENUMERABLE AND RECURSIVE LANGUAGES 335

It can be shown that every nondeterministic Turing machine can be simu-
lated by a deterministic Turing machine, and thus, nondeterministic Turing
machines also accept the class of r.e. sets.

It can be shown that a recursively enumerable language is the range of some
recursive function. It can also be shown that a language L is recursive iff
both L and its complement are recursively enumerable. There are recursively
enumerable languages that are not recursive.

336 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

Turing machines were invented by Turing around 1935. The primitive re-
cursive functions were known to Hilbert circa 1890. Gödel formalized their
definition in 1929. The partial recursive functions were defined by Kleene
around 1934. Church also introduced the λ-calculus as a model of com-
putation around 1934. Other models: Post systems, Markov systems. The
equivalence of the various models of computation was shown around 1935/36.
RAM programs were only defined around 1963.

A further study of the partial recursive functions requires the notions of
pairing functions and of universal functions (or universal Turing machines).

First, we prove the following lemma showing that restricting ourselves to
total functions is too limiting.

4.8. RECURSIVELY ENUMERABLE AND RECURSIVE LANGUAGES 337

Let F be any set of total functions that contains the base functions and is
closed under composition and primitive recursion (and thus, F contains all
the primitive recursive functions).

We say that a function f : Σ∗ × Σ∗ → Σ∗ is universal for the one-argument
functions in F iff for every function g: Σ∗ → Σ∗ in F , there is some n ∈ N

such that
f(an

1 , u) = g(u)

for all u ∈ Σ∗.

Lemma 4.8.2 For any countable set F of total functions containing the base
functions and closed under composition and primitive recursion, if f is a
universal function for the functions g: Σ∗ → Σ∗ in F , then f /∈ F .

338 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

Proof . Assume that the universal function f is in F . Let g be the function
such that

g(u) = f(a
|u|
1 , u)a1

for all u ∈ Σ∗. We claim that g ∈ F .

It it enough to prove that the function h such that

h(u) = a
|u|
1

is primitive recursive, which is easily shown.

Then, because f is universal, there is some m such that

g(u) = f(am
1 , u)

for all u ∈ Σ∗. Letting u = am
1 , we get

g(am
1) = f(am

1 , am
1) = f(am

1 , am
1)a1,

a contradiction.

Thus, either a universal function for F is partial, or it is not in F .

