
Chapter 4

RAM Programs, Turing Machines,
and the Partial Recursive Functions

4.1 Partial Functions and RAM Programs

We define an abstract machine model for computing functions

f :Σ∗ × · · ·× Σ∗︸ ︷︷ ︸
n

→ Σ∗,

where Σ = {a1, . . . , ak} is some input alphabet. Numerical functions f :Nn →
N can be viewed as functions defined over the one-letter alphabet {a1}, using
the bijection m $→ am1 .

Let us recall the definition of a partial function.

279



280 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

A binary relation R ⊆ A×B between two sets A and B is functional iff, for
all x ∈ A, and y, z ∈ B,

(x, y) ∈ R and (x, z) ∈ R implies that y = z.

A partial function is a triple f = 〈A,G,B〉, where A and B are arbitrary sets
(possibly empty) and G is a functional relation (possibly empty) between A
and B, called the graph of f .

Hence, a partial function is a functional relation such that every argument
has at most one image under f .

The graph of a function f is denoted as graph(f). When no confusion can
arise, a function f and its graph are usually identified.

A partial function f = 〈A,G,B〉 is often denoted as f :A→ B.



4.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 281

The domain dom(f) of a partial function f = 〈A,G,B〉 is the set

dom(f) = {x ∈ A | ∃y ∈ B, (x, y) ∈ G}.

For every element x ∈ dom(f), the unique element y ∈ B such that (x, y) ∈
graph(f) is denoted as f(x). We say that f(x) converges , also denoted as
f(x) ↓.

If x ∈ A and x /∈ dom(f), we say that f(x) diverges , also denoted as f(x) ↑.

Intuitively, if a function is partial, it does not return any output for any input
not in its domain. This corresponds to an infinite computation.

A partial function f :A→ B is a total function iff dom(f) = A. It is custom-
ary to call a total function simply a function.



282 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

We now define a model of computation know as the RAM programs , or Post
machines . RAM programs are written in a sort of assembly language involv-
ing simple instructions manipulating strings stored into registers.

Every RAM program uses a fixed and finite number of registers denoted as
R1, . . . , Rp, with no limitation on the size of strings held in the registers.

RAM programs can be defined either in flowchart form or in linear form.
Since the linear form is more convenient for coding purposes, we present
RAM programs in linear form.

A RAM program P (in linear form) consists of a finite sequence of instructions
using a finite number of registers R1, . . . , Rp.



4.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 283

Instructions may optionally be labeled with line numbers denoted asN1, . . . , Nq.

It is neither mandatory to label all instructions, nor to use distinct line num-
bers!

Thus, the same line number can be used in more than one line. As we will see
later on, this makes it easier to concatenate two different programs without
performing a renumbering of line numbers.

Every instruction has four fields, not necessarily all used. The main field is
the op-code.



284 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

Definition 4.1.1 RAM programs are constructed from seven types of in-
structions shown below:

(1j) N addj Y
(2) N tail Y
(3) N clr Y
(4) N Y ← X
(5a) N jmp N1a
(5b) N jmp N1b
(6ja) N Y jmpj N1a
(6jb) N Y jmpj N1b
(7) N continue



4.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 285

An instruction of type (1j) concatenates the letter aj to the right of the string
held by register Y (1 ≤ j ≤ k). The effect is the assignment

Y := Y aj

An instruction of type (2) deletes the leftmost letter of the string held by the
register Y . This corresponds to the function tail, defined such that

tail(ε) = ε,

tail(aju) = u.

The effect is the assignment

Y := tail(Y )



286 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

An instruction of type (3) clears register Y , i.e., sets its value to the empty
string ε. The effect is the assignment

Y := ε

An instruction of type (4) assigns the value of register X to register Y . The
effect is the assignment

Y := X

An instruction of type (5a) or (5b) is an unconditional jump.

The effect of (5a) is to jump to the closest line number N1 occurring above
the instruction being executed, and the effect of (5b) is to jump to the closest
line number N1 occurring below the instruction being executed.



288 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

An instruction of type (7) is a no-op, i.e., the registers are unaffected. If
there is a next instruction, then it is executed, else, the program stops.

Obviously, a program is syntactically correct only if certain conditions hold.

Definition 4.1.2 A RAM program P is a finite sequence of instructions as
in Definition 4.1.1, and satisfying the following conditions:

(1) For every jump instruction (conditional or not), the line number to be
jumped to must exist in P .

(2) The last instruction of a RAM program is a continue.

The reason for allowing multiple occurences of line numbers is to make it
easier to concatenate programs without having to perform a renaming of line
numbers. The technical choice of jumping to the closest address N1 above or
below comes from the fact that it is easy to search up or down using primitive
recursion, as we will see later on.



4.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 287

An instruction of type (6ja) or (6jb) is a conditional jump. Let head be the
function defined as follows:

head(ε) = ε,

head(aju) = aj .

The effect of (6ja) is to jump to the closest line number N1 occurring above
the instruction being executed iff head(Y ) = aj , else to execute the next
instruction (the one immediately following the instruction being executed).

The effect of (6jb) is to jump to the closest line number N1 occurring below
the instruction being executed iff head(Y ) = aj , else to execute the next
instruction.

When computing over N, instructions of type (6jb) jump to the closest N1
above or below iff Y is nonnull.



4.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 289

It is fairly obvious that linear RAM programs can be represented in flowchart
form, and that the two models are equivalent. We will not worry about this
in this Chapter.

For the purpose of computing a function
f :Σ∗ × · · ·× Σ∗︸ ︷︷ ︸

n

→ Σ∗ using a RAM program P , we assume that P has at

least n registers called input registers , and that these registers R1, . . . , Rn
are initialized with the input values of the function f . We also assume that
the output is returned in register R1.



290 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

The following RAM program concatenates two strings x1 and x2 held in
registers R1 and R2.

R3 ← R1
R4 ← R2

N0 R4 jmpa N1b
R4 jmpb N2b

jmp N3b
N1 adda R3

tail R4
jmp N0a

N2 addb R3
tail R4
jmp N0a

N3 R1 ← R3
continue

Since Σ = {a, b}, for more clarity, we wrote jmpa instead of jmp1, jmpb instead
of jmp2, adda instead of add1, and addb instead of add2.



4.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 291

Definition 4.1.3 A RAM program P computes the partial function ϕ: (Σ∗)n →
Σ∗ if the following conditions hold: For every input (x1, . . . , xn) ∈ (Σ∗)n,
having initialized the input registers R1, . . . , Rn with x1, . . . , xn, the program
eventually halts iff ϕ(x1, . . . , xn) converges, and if and when P halts, the value
of R1 is equal to ϕ(x1, . . . , xn). A partial function ϕ is RAM-computable iff
it is computed by some RAM program.

For example, the following program computes the erase function E defined
such that

E(u) = ε

for all u ∈ Σ∗:

clr R1
continue



292 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

The following program computes the jth successor function Sj defined such
that

Sj(u) = uaj

for all u ∈ Σ∗:

addj R1
continue

The following program (with n input variables) computes the projection func-
tion P n

i defined such that

P n
i (u1, . . . , un) = ui,

where n ≥ 1, and 1 ≤ i ≤ n:

R1 ← Ri
continue

Note that P 1
1 is the identity function.



4.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 293

Having a programming language, we would like to know how powerful it is,
that is, we would like to know what kind of functions are RAM-computable.

At first glance, RAM programs don’t do much, but this is not so. Indeed, we
will see shortly that the class of RAM-computable functions is quite extensive.

One way of getting new programs from previous ones is via composition.
Another one is by primitive recursion. We will investigate these constructions
after introducing another model of computation, Turing machines .

Remarkably, the classes of (partial) functions computed by RAM programs
and by Turing machines are identical. This is the class of partial recursive
function. This class can be given several other definitions. We will present
the definition of the so-called µ-recursive functions (due to Kleene).



294 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

The following Lemma will be needed to simplify the encoding of RAM pro-
grams as numbers.

Lemma 4.1.4 Every RAM program can be converted to an equivalent pro-
gram only using the following type of instructions:
(1j) N addj Y
(2) N tail Y
(6ja) N Y jmpj N1a
(6jb) N Y jmpj N1b
(7) N continue

The proof is fairly simple. For example, instructions of the form

Ri← Rj

can be eliminated by tranferring the contents of Rj into an auxiliary register
Rk, and then by transferring the contents of Rk into Ri and Rj.



4.2. DEFINITION OF A TURING MACHINE 295

4.2 Definition of a Turing Machine

We define a Turing machine model for computing functions

f :Σ∗ × · · ·× Σ∗︸ ︷︷ ︸
n

→ Σ∗,

where Σ = {a1, . . . , aN} is some input alphabet. We only consider determin-
istic Turing machines.

A Turing machine also uses a tape alphabet Γ such that Σ ⊆ Γ. The tape
alphabet contains some special symbol B /∈ Σ, the blank .

In this model, a Turing machine uses a single tape. This tape can be viewed
as a string over Γ. The tape is both an input tape and a storage mechanism.

Symbols on the tape can be overwritten, and the tape can grow either on the
left or on the right. There is a read/write head pointing to some symbol on
the tape.



296 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

Unlike Pushdown automata or NFA’s, the read/write head can move left or
right.

Definition 4.2.1 A (deterministic)Turing machine (or TM )M is a sextuple
M = (K,Σ,Γ, {L,R}, δ, q0), where

• K is a finite set of states ;

• Σ is a finite input alphabet ;

• Γ is a finite tape alphabet , s.t. Σ ⊆ Γ, K∩Γ = ∅, and with blank B /∈ Σ;

• q0 ∈ K is the start state (or initial state);

• δ is the transition function, a (finite) set of quintuples

δ ⊆ K × Γ× Γ× {L,R}×K,

such that for all (p, a) ∈ K × Γ, there is at most one triple (b,m, q) ∈
Γ× {L,R}×K such that (p, a, b,m, q) ∈ δ.



4.2. DEFINITION OF A TURING MACHINE 297

A quintuple (p, a, b,m, q) ∈ δ is called an instruction. It is also denoted as

p, a→ b,m, q.

The effect of an instruction is to switch from state p to state q, overwrite the
symbol currently scanned a with b, and move the read/write head either left
or right, according to m.



298 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

4.3 Computations of Turing Machines

To explain how a Turing machine works, we describe its action on Instanta-
neous descriptions . We take advantage of the fact that K ∩ Γ = ∅ to define
instantaneous descriptions.

Definition 4.3.1 Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

an instantaneous description (for short an ID) is a (nonempty) string in
Γ∗KΓ+, that is, a string of the form

upav,

where u, v ∈ Γ∗, p ∈ K, and a ∈ Γ.

The intuition is that an ID upav describes a snapshot of a TM in the current
state p, whose tape contains the string uav, and with the read/write head
pointing to the symbol a.



4.3. COMPUTATIONS OF TURING MACHINES 299

Thus, in upav, the state p is just to the left of the symbol presently scanned
by the read/write head.

We explain how a TM works by showing how it acts on ID’s.

Definition 4.3.2 Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

the yield relation (or compute relation) 1 is a binary relation defined on the
set of ID’s as follows. For any two ID’s ID1 and ID2, we have ID1 1 ID2 iff
either

(1) (p, a, b, R, q) ∈ δ, and either

(a) ID1 = upacv, c ∈ Γ, and ID2 = ubqcv, or

(b) ID1 = upa and ID2 = ubqB;

or

(2) (p, a, b, L, q) ∈ δ, and either

(a) ID1 = ucpav, c ∈ Γ, and ID2 = uqcbv, or

(b) ID1 = pav and ID2 = qBbv.



300 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

Note how the tape is extended by one blank after the rightmost symbol in
case (1)(b), and by one blank before the leftmost symbol in case (2)(b).

As usual, we let 1+ denote the transitive closure of 1, and we let 1∗ denote
the reflexive and transitive closure of 1.

We can now explain how a Turing function computes a partial function

f :Σ∗ × · · ·× Σ∗︸ ︷︷ ︸
n

→ Σ∗.

Since we allow functions taking n ≥ 1 input strings, we assume that Γ con-
tains the special delimiter , not in Σ, used to separate the various input
strings.

It is convenient to assume that a Turing machine “cleans up” its tape when
it halts, before returning its output. For this, we will define proper ID’s.



4.3. COMPUTATIONS OF TURING MACHINES 301

Definition 4.3.3 Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

where Γ contains some delimiter , not in Σ in addition to the blank B, a
starting ID is of the form

q0w1,w2, . . . ,wn

where w1, . . . , wn ∈ Σ∗ and n ≥ 2, or q0w with w ∈ Σ+, or q0B.

A blocking (or halting) ID is an ID upav such that there are no instructions
(p, a, b,m, q) ∈ δ for any (b,m, q) ∈ Γ× {L,R}×K.

A proper ID is a halting ID of the form

BkpwBl,

where w ∈ Σ∗, and k, l ≥ 0 (with l ≥ 1 when w = ε).



302 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

Computation sequences are defined as follows.

Definition 4.3.4 Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

a computation sequence (or computation) is a finite or infinite sequence of
ID’s

ID0, ID1, . . . , IDi, IDi+1, . . . ,

such that IDi 1 IDi+1 for all i ≥ 0.

A computation sequence halts iff it is a finite sequence of ID’s, so that

ID0 1
∗ IDn,

and IDn is a halting ID.

A computation sequence diverges if it is an infinite sequence of ID’s.

We now explain how a Turing machine computes a partial function.



4.3. COMPUTATIONS OF TURING MACHINES 303

Definition 4.3.5 A Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0)

computes the partial function

f :Σ∗ × · · ·× Σ∗︸ ︷︷ ︸
n

→ Σ∗

iff the following conditions hold:

(1) For every w1, . . . , wn ∈ Σ∗, given the starting ID

ID0 = q0w1,w2, . . . ,wn

or q0w with w ∈ Σ+, or q0B, the computation sequence of M from ID0

halts in a proper ID
iff f(w1, . . . , wn) is defined.

(2) If f(w1, . . . , wn) is defined, then M halts in a proper ID of the form

IDn = Bkpf(w1, . . . , wn)B
h,

which means that it computes the right value.



304 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

A function f (over Σ∗) is Turing computable iff it is computed by some Turing
machine M .

Note that by (1), the TM M may halt in an improper ID, in which case
f(w1, . . . , wn) must be undefined. This corresponds to the fact that we only
accept to retrieve the output of a computation if the TM has cleaned up its
tape, i.e., produced a proper ID. In particular, intermediate calculations have
to be erased before halting.



4.3. COMPUTATIONS OF TURING MACHINES 305

Example.

K = {q0, q1, q2, q3};

Σ = {a, b};

Γ = {a, b, B};

The instructions in δ are:

q0, B → B,R, q3,

q0, a→ b, R, q1,

q0, b→ a, R, q1,

q1, a→ b, R, q1,

q1, b→ a, R, q1,

q1, B → B,L, q2,

q2, a→ a, L, q2,

q2, b→ b, L, q2,

q2, B → B,R, q3.

The reader can easily verify that this machine exchanges the a’s and b’s in a
string. For example, on input w = aaababb, the output is bbbabaa.



306 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

4.4 RAM-computable functions are Turing-computable

Turing machines can simulate RAM programs, and as a result, we have the
following Theorem.

Theorem 4.4.1 Every RAM-computable function is Turing-computable. Fur-
thermore, given a RAM program P , we can effectively construct a Turing
machine M computing the same function.

The idea of the proof is to represent the contents of the registers R1, . . .Rp
on the Turing machine tape by the string

#r1#r2# · · ·#rp#,

Where # is a special marker and ri represents the string held by Ri, We also
use Lemma 4.1.4 to reduce the number of instructions to be dealt with.



4.5. TURING-COMPUTABLE FUNCTIONS ARE RAM-COMPUTABLE 307

The Turing machine M is built of blocks, each block simulating the effect of
some instruction of the program P . The details are a bit tedious, and can be
found in the notes or in Machtey and Young.

4.5 Turing-computable functions are RAM-computable

RAM programs can also simulate Turing machines.

Theorem 4.5.1 Every Turing-computable function is RAM-computable. Fur-
thermore, given a Turing machine M , one can effectively construct a RAM
program P computing the same function.



308 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

The idea of the proof is to design a RAM program containing an encoding
of the current ID of the Turing machine M in register R1, and to use other
registers R2, R3 to simulate the effect of executing an instruction of M by
updating the ID of M in R1.

The details are tedious and can be found in the notes.

Another proof can be obtained by proving that the class of Turing computable
functions coincides with the class of partial recursive functions . Indeed, it
turns out that both RAM programs and Turing machines compute precisely
the class of partial recursive functions.

First, we define the primitive recursive functions .


