114 CHAPTER 2. REGULAR LANGUAGES

2.17 Right-Invariant Equivalence Relations on »*

Let D = (Q, %, 6, qo, F') be a DFA. The DFA D may be
redundant, for example, if there are states that are not
accessible from the start state.

The set (), of accessible or reachable states is the subset

of () defined as

The set @), can be easily computed by stages.

If Q) # Q,, we can “clean up” D by deleting the states in
) — @), and restricting the transition function 9 to @),.

This way, we get an equivalent DFA D,. such that L(D) =
L(D,), where all the states of D, are reachable. From

now on, we assume that we are dealing with DFA’s such
that D = D, (called reachable, or trim).

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON X* 115

Recall that an equivalence relation ~ on a set A is a
relation which is reflexive, symmetric, and transitive.

Given any a € A, the set
{be A|a~b}

is called the equivalence class of a, and it is denoted as
[a]~, or even as [a].

Recall that for any two elements a,b € A, [a] N [b] = 0
iff a 2 b, and [a] = |b] iff @ >~ b. The set of equivalence
classes associated with the equivalence relation ~ is a
partition 11 of A (also denoted as A/ ~). This means
that it is a family of nonempty pairwise disjoint sets whose
union is equal to A itself.

The equivalence classes are also called the blocks of the
partition II. The number of blocks in the partition II is
called the index of ~ (and II).

116 CHAPTER 2. REGULAR LANGUAGES

Given any two equivalence relations ~; and ~y with as-
sociated partitions II; and Ils,

~) C

iff every block of the partition II; is contained in some
block of the partition Il;. Then, every block of the parti-
tion Il5 is the union of blocks of the partition 11y, and we
say that ~ is a refinement of ~9 (and similarly, I1; is
a refinement of Il). Note that Iy has at most as many
blocks as II; does.

We now define an equivalence relation on strings induced
by a DFA. This equivalence is a kind of “observational”
equivalence, in the sense that we decide that two strings
u, v are equivalent iff, when feeding first w and then v to
the DFA, v and v drive the DFA to the same state. From
the point of view of the observer, u and v have the same
effect (reaching the same state).

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON X* 117

Definition 2.17.1 Given a DFA D = (Q, %, 6, qo, F),
we define the relation ~p (Myhill-Nerode equivalence)
on X* as follows: for any two strings u, v € X*,

u~pov iff 6 (qo,u) =6 (qo,v).

We can figure out what the equivalence classes of ~p are
for the following DFA:

NO—O
OoDO—Q
N, O

with 0 both start state and (unique) final state. For ex-
ample

abbabbb ~p aa

ababab ~p €
bba ~p a.

118 CHAPTER 2. REGULAR LANGUAGES

There are three equivalences classes:
e~ lal~, eal~.

Observe that L(D) = [e]~. Also, the equivalence classes
are in one—-to—one correspondence with the states of D.

The relation ~p turns out to have some interesting prop-
erties. In particular, it is right-tnvariant, which means
that for all u, v, w € X*, if u ~ v, then vw ~ vw.

Lemma 2.17.2 Given any trim (accessible) DFA

D =(Q,%,0,q, F), the relation ~p is an equivalence
relation which is right-invariant and has finite indez.
Furthermore, if () has n states, then the index of ~p
is n, and every equivalence class of ~p is a reqular
language. Finally, L(D) is the union of some of the
equivalence classes of ~p.

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON X* 119

The remarkable fact due to Myhill and Nerode, is that
lemma 2.17.2 has a converse.

Lemma 2.17.3 Gwen any equivalence relation >~ on
2%, if ~ 1s right-invariant and has finite index n, then
every equivalence class (block) in the partition 11 as-
sociated with ~ 1s a reqular language.

Proof. Let C4,...,C, be the blocks of II, and assume
that C7 = [¢] is the equivalence class of the empty string.

First, we claim that for every block C; and every w € »*,
there is a unique block C; such that Cyw C €, where
Ciw = {uw | u € C;}.

We also claim that for every w € X*, for every block Cj,
Ciw CC;, it wed,.

120 CHAPTER 2. REGULAR LANGUAGES

For every class C}, let
Di.={1,...,n},%,6,1,{k}),
where 0(¢,a) = 7 iff Cia C C}.

Using induction, we have
0 (1,w) =7 i Cyw C)},

and using claim 2, it is immediately verified that
L(Dy) = Cy, proving that every block Cj is a regular
language. o

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON X* 121

We can combine lemma 2.17.2 and lemma 2.17.3 to get

the following characterization of a regular language due
to Myhill and Nerode:

Theorem 2.17.4 (Myhill-Nerode) A language L (over
an alphabet Y2) is a reqular language iff it is the union
of some of the equivalence classes of an equivalence
relation ~ on X%, which s right-invariant and has fi-
nite indez.

Given two DFA’s Dy and Dy, whether or not there is
a morphism h: Dy — Dy depends on the relationship
between ~p, and ~p,. More specifically, we have the
following lemma:

122 CHAPTER 2. REGULAR LANGUAGES

Lemma 2.17.5 Given two DFA’s Dy and Dy, with
Dy trim, the following properties hold.

(1) There is a DFA morphism h: Dy — Dy iff

~p, & ~p, .

(2) There is a DFA F-map h: D1 — Dy iff
~p, C~p, and L(D;) C L(Dy);

(3) There is a DFA B-map h: D1 — Do iff
ng g :DQ and L(DQ) Q L(Dl)

Furthermore, h is surjective iff Do is trim.

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON X* 123

Theorem 2.17.4 can also be used to prove that certain

languages are not regular. For example, we prove that
L ={a™" | n > 1} and Ly = {a™ | n > 1} are not
regular.

The general method is to find three strings
T,y,z € X"
such that

and

rze L and yz ¢ L.

124 CHAPTER 2. REGULAR LANGUAGES

There is another version of the Myhill-Nerode Theorem
involving congruences which is also quite useful.

An equivalence relation, ~, on X* is left and right-invariant
iff for all z,y, u,v € X%,

if x~wy then wuxrv~uyv.

An equivalence relation, ~, on X* is a congruence ift for
all uy, ug, v1,v9 € 20°,

1f U =~ and U9 =~ V9 then U1U9 =2 V1V9.

It is easy to prove that an equivalence relation is a con-
oruence iff it is left and right-invariant, the proof is left
as an exercise.

There is a version of Lemma 2.17.2 that applies to con-

oruences and for this we define the relation ~p as fol-
lows: For any (trim) DFA, D = (Q,, 9, qv, F'), for all
T,y €17,

z~py iff (Vg€ Q)("(¢g,x)=0"(q,v))

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON X* 125

Lemma 2.17.6 Given any (trim) DFA

D =(Q,%,0,q,F), the relation ~p is an equivalence
relation which s left and right-invariant and has finite
index. Furthermore, if () has n states, then the index
of ~p is at most n" and every equivalence class of ~p
is a reqular language. Finally, L(D) is the union of
some of the equivalence classes of ~p.

Using Lemma 2.17.6 and Lemma 2.17.3, we obtain an-
other version of the Myhill-Nerode Theorem.

Theorem 2.17.7 (Myhill-Nerode, Conguence Version)
A language L (over an alphabet X2) is a reqular lan-
quage iff it is the union of some of the equivalence
classes of an equivalence relation ~ on X*, which is a
congruence and has finite index.

126 CHAPTER 2. REGULAR LANGUAGES

Another useful tool for proving that languages are not
regular is the so-called pumping lemma.

Lemma 2.17.8 Given any DFA D = (Q, X, 9, qv, F)
there 1s some m > 1 such that for everyw € X%, ifw €
L(D) and |w| > m, then there exists a decomposition
of w as w = uxv, where

(1) x # €,
(2) uz'v € L(D), for alli >0, and

Moreover, m can be chosen to be the number of states
of the DFA D.

Typically, the pumping lemma is used to prove that a
language is not regular. The method is to proceed by
contradiction, i.e., to assume (contrary to what we wish
to prove) that a language L is indeed regular, and derive
a contradiction of the pumping lemma.

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON X* 127

Thus, it would be helpful to see what the negation of
the pumping lemma is, and for this, we first state the
pumping lemma as a logical formula.

We will use the following abbreviations:

nat ={0,1,2,...},

pos ={1,2,...},
A= w = uxv,
B=x+#e,

P = Vi:nat (uz'v € L(D)).
The pumping lemma can be stated as

VD:DFA dm: pos Vw: 2*
(w e LID)AN|lw| >m) D (Fu,z,v: X" ANBANCAP)).

128 CHAPTER 2. REGULAR LANGUAGES

Recalling that
—~(AANBACAP) = =(AANBAC)V-P = (AANBAC) D =P

and

—(RD>S)=RA=S,

the negation of the pumping lemma can be stated as

3D: DFA Vm: pos Jw: X*
((w € L(D)A|lw| > m)A(Vu, z,v: X2 (AANBAC) D —P)).

Since

—P = Ji:nat (uz'v ¢ L(D)),
in order to show that the pumping lemma is contradicted,
one needs to show that for some DFA D, for every m > 1,
there is some string w € L(D) of length at least m, such
that for every possible decomposition w = uxv satisfying

the constraints x # € and |ux| < m, there is some ¢ > 0
such that uz'v ¢ L(D).

We now consider an equivalence relation associated with
a language L.

2.18. MINIMAL DFA’S 129

2.18 Minimal DFA’s

Given any language L (not necessarily regular), we can
define an equivalence relation p;, which is right-invariant,
but not necessarily of finite index. However, when L is
regular, the relation py, has finite index. In fact, this index
is the size of a smallest DFA accepting L. This will lead
us to a construction of minimal DFA’s.

Definition 2.18.1 Given any language L (over %), we
define the relation py, on X* as follows: for any two strings
u,v € XF,

uprv it Yw € X(uw € L iff vw € L).

We leave as an easy exercise to prove that pr is an equiv-
alence relation which is right-invariant. It is also clear

that L is the union of the equivalence classes of strings in
L.

130 CHAPTER 2. REGULAR LANGUAGES

When L is also regular, we have the following remarkable
result:

Lemma 2.18.2 Gwen any reqular language L, for
any (accessible) DFA D = (Q, >, 6, qo, F) such that
L = L(D), p; is a right-invariant equivalence rela-
tion, and we have ~p C pr. Furthermore, if p;, has
m classes and () has n states, then m < n.

Lemma 2.18.2 shows that when L is regular, the index m
of pr, is finite, and it is a lower bound on the size of all
DFA’s accepting L.

2.18. MINIMAL DFA’S 131

[t remains to show that a DFA with m states accepting L
exists. However, going back to the prootf of lemma 2.17.3
starting with the right-invariant equivalence relation py, of

finite index m, if L is the union of the classes C,, ..., Cj,
the DFA

DPL: ({17"‘7m}7275717{i17“'7ik})7

where 6(¢,a) = j iff Cja C C}, is such that L = L(D,,).
Thus, D,, is a minimal DFA accepting L.

In the next section, we give an algorithm which allows
us to find D,,, given any DFA D accepting L. This
algorithms finds which states of D are equivalent.

132 CHAPTER 2. REGULAR LANGUAGES

2.19 State Equivalence and Minimal DFA’s

The proot of lemma 2.18.2 suggests the following defini-
tion of an equivalence between states.

Definition 2.19.1 Given any DFA D = (Q, X, 9, qo, F),
the relation = on @), called state equivalence, is defined
as follows: for all p,q € Q,

p=q iff Ywe X' (' (pw)e F iff 6(q,w) e F).
When p = ¢q, we say that p and g are indistinguishable.

It is trivial to verify that = is an equivalence relation, and
that it satisfies the following property:

if p = q then d(p,a) = d(q, a),

for all a € Y.

2.19. STATE EQUIVALENCE AND MINIMAL DFA’S 133

In the DFA of Figure 2.19, states A and C' are equivalent.
No other two states are equivalent.

T
N
\)

a (: —————(F
/

b
Figure 2.19: A non-minimal DFA for {a, b}*{abb}

If L = L(D), the following lemma shows the relationship
between pr and = and, more generally, between the DFA
D, and the DFA, D/ =, obtained as the quotient of
the DFA D modulo the equivalence relation = on () and
defined such that

134 CHAPTER 2. REGULAR LANGUAGES

D/ ==(Q/ =%,/ =, |ql=, F/ =),
where

0/ = (lpl=,a) = 10(p, a)]=

The minimal DFA D/ = is obtained by merging the
states in each block of the partition II associated with
=, forming states corresponding to the blocks of II, and
drawing a transition on input a from a block C; to a block
C'; of I iff there is a transition ¢ = d(p, a) from any state
p € C; to any state ¢ € C; on input a.

The start state is the block containing gy, and the final
states are the blocks consisting of final states.

2.19. STATE EQUIVALENCE AND MINIMAL DFA’S 135

Lemma 2.19.2 For any (accessible) DFA
D =(Q,%,0,q, F) accepting the reqular language
L = L(D), the function ¢:3* — Q defined such that

plu) = 0"(qo, u)

induces a bijection ©:3*/pp, — Q) =, defined such
that

Plulp,) = 10"(q0, u)l=.
Furthermore, we have

[ulpa C o], diff 0(p(u),a) = p(v).

Consequently, o, induces an isomorphism of DFA’s,
p:D, — D/ = (an invertible F-map whose inverse
1s also an F-map; from a homework problem, such
a map must be an invertible proper homomorphism
whose inverse is also a proper homomorphism,).

The DFA D/ = is isomorphic to the minimal DFA D,
accepting L, and thus, it is a minimal DFA accepting L.

136 CHAPTER 2. REGULAR LANGUAGES

There are other characterizations of the regular languages.

Among those, the characterization in terms of right deriva-
tives is of particular interest because it yields an alterna-
tive construction of minimal DFA’s.

Definition 2.19.3 Given any language, L C >* for
any string, u € X*, the right deriwative of L by u, de-
noted L /u, is the language

L/u={weX" |uwe L}.

Theorem 2.19.4 If L. C X* is any language, then
L 1s reqular ioff it has finitely many right derivatives.
Furthermore, if L is reqular, then all its right deriva-

tives are reqular and their number 1s equal to the num-
ber of states of the minimal DFA’s for L.

2.19. STATE EQUIVALENCE AND MINIMAL DFA’S 137

Note that if F' = (), then = has a single block (@), and
if /' = @, then = has a single block (F'). In the first
case, the minimal DFA is the one state DFA rejecting all
strings. In the second case, the minimal DFA is the one
state DFA accepting all strings.

When F # () and I’ # @, there are at least two states
in (), and = also has at least two blocks, as we shall see
shortly.

138 CHAPTER 2. REGULAR LANGUAGES

[t remains to compute = explicitly. This is done using
a sequence of approximations. In view of the previous
discussion, we are assuming that F # () and F # Q,
which means that n > 2, where n is the number of states

in Q.
Definition 2.19.5 Given any DFA D = (Q, X, 9, qo, F),

for every ¢ > 0, the relation =; on @), called 7-state equiv-
alence, is defined as follows: for all p,q € @,

p=;q iff YweX |w| <i
(0% (p,w) € F it §*(q,w) € F).

When p =; ¢, we say that
p and q are 1-indistinguishable.

2.19. STATE EQUIVALENCE AND MINIMAL DFA’S 139

[t remains to compute =;,1 from =;, which can be done
using the following lemma. The lemma also shows that

_Eio .

Lemma 2.19.6 For any (accessible) DFA
D = <Q72757QO7F>7 fOT Gllp,q S Q;

P =i q iff p = q and d(p,a) =; d(q,a), for every
a € ..

Furthermore, if ' # 0 and F # @, there is a smallest
integer 19 < n — 2, such that

=igt+1 = =ig —

Note that if /' = @Q or F' = (), then = = =, and the in-
ductive characterization of Lemma 2.19.6 holds trivially.

Using lemma 2.19.6, we can compute = inductively, start-
ing from == (F, Q — F'), and computing =;. from =;,
until the sequence of partitions associated with the =;
stabilizes.

140 CHAPTER 2. REGULAR LANGUAGES

There are a number of algorithms for computing =, or to
determine whether p = ¢ for some given p,q € Q.

A simple method to compute = is described in Hopcroft
and Ullman. It consists in forming a triangular array
corresponding to all unordered pairs (p, q), with p # ¢
(the rows and the columns of this triangular array are
indexed by the states in (), where the entries are below
the descending diagonal).

[nitially, the entry (p, q) is marked iff p and ¢ are not 0-
equivalent, which means that p and ¢ are not both in F
or not both in () — F'. Then, we process every unmarked
entry on every row as follows: for any unmarked pair
(p, q), we consider pairs (6(p,a),d(q,a)), for all a € X.
If any pair (0(p, a), d(q, a)) is already marked, this means
that d(p, a) and d(q, a) are inequivalent, and thus p and
q are inequivalent, and we mark the pair (p, q).

2.19. STATE EQUIVALENCE AND MINIMAL DFA’S 141

We continue in this fashion, until at the end of a round
during which all the rows are processed, nothing has
changed. When the algorithm stops, all marked pairs
are inequivalent, and all unmarked pairs correspond to
equivalent states.

Let us illustrates the above method. Consider the follow-
ing DFA accepting {a, b}*{abb}.

O
Sulvvluvieviovis
QAEHTAs

The start state is A, and the set of final states is
F ={F}.

142 CHAPTER 2. REGULAR LANGUAGES

The initial (half) array is as follows, using x to indicate
that the corresponding pair (say, (E, A)) consists of in-
equivalent states, and o to indicate that nothing is known
yet.

HOAX
X OO0
oX OO

O
X X
C D

After the first round, we have

SlwiS ey
X X OO
Sgx X O
QX X
X

After the second round, we have

Slwile
X X O X
TUX X X
QX X
O X

2.19. STATE EQUIVALENCE AND MINIMAL DFA’S 143

Finally, nothing changes during the third round, and thus,
only A and C' are equivalent, and we get the four equiv-
alence classes

({4, CHLABY D) LEY).

We obtain the minimal DFA showed in Figure 2.20.

Figure 2.20: A minimal DFA accepting {a,b}*{abb}

There are ways of improving the efficiency of this algo-
rithm, see Hopcroft and Ullman for such improvements.

Fast algorithms for testing whether p = ¢ for some given
p,q € @ also exist. One of these algorithms is based
on “forward closures,” an idea due to Knuth. Such an
algorithm is related to a fast unification algorithm.

144 CHAPTER 2. REGULAR LANGUAGES

2.20 A Fast Algorithm for Checking State Equivalence
Using a “Forward-Closure”

Given two states p,q € @, if p = ¢, then we know that
d(p,a) =d(q,a), for all a € X.

This suggests a method for testing whether two distinct
states p, ¢ are equivalent.

Starting with the relation R = {(p,q)}, construct the
smallest equivalence relation R' containing R with the
property that whenever (r, s) € R, then (§(r,a), 8(s,a)) €
R foralaeX.

If we ever encounter a pair (r,s) such that » € F' and
s € F.orr € Fands € F', then r and s are inequivalent,
and so are p and gq.

Otherwise, it can be shown that p and ¢ are indeed equiv-
alent.

2.20. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 145

Thus, testing for the equivalence of two states reduces to
finding an efficient method for computing the “forward
closure” of a relation defined on the set of states of a

DFA.

Such a method was worked out by John Hopcroft and
Richard Karp and published in a 1971 Cornell technical
report.

This method is based on an idea of Donald Knuth for
solving Exercise 11, in Section 2.3.5 of The Art of Com-
puter Programming, Vol. 1, second edition, 1973. A

sketch of the solution for this exercise is given on page
H94.

As far as I know, Hopcroft and Karp’s method was never
published in a journal, but a simple recursive algorithm
does appear on page 144 of Aho, Hopcroft and Ullman’s
The Design and Analysis of Computer Algorithms,
first edition, 1974.

146 CHAPTER 2. REGULAR LANGUAGES

Essentially the same idea was used by Paterson and Weg-
man to design a fast unification algorithm (in 1978).

A relation S C @ x @Q is a forward closure iff it is

an equivalence relation and whenever (r,s) € S, then
(0(r,a),0(s,a)) € S, for all a € X.

The forward closure of a relation R C) X () is the
smallest equivalence relation R' containing R which is
forward closed.

We say that a forward closure S is good iftf whenever
(r,s) € S, then good(r, s), where good(r, s) holds iff ei-
ther both r, s € F', or both r, s € F. Obviously, bad(r, s)
iff —good(r, s).

Given any relation R C @) x @, recall that the smallest
equivalence relation R~ containing R is the relation
(RURY)* (where R™' = {(¢,p) | (p,q) € R}, and
(RU R™)* is the reflexive and transitive closure of

(RUR™)).

2.20. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 147

The forward closure of R can be computed inductively by
defining the sequence of relations R; C () x @) as follows:

Ry = R~
R4 (Rz U {(5(7“, CL),5(S, CL)) ‘ (7”, S) c R, ac Z})%

It is not hard to prove that R;,y1 = R;, for some least
ig, and that RT = R;, is the smallest forward closure
containing R.

10

The following two facts can also been established.
(a) if RTis good, then

R C=. (2.1)
(b) if p = q, then

R C =

that is, equation (2.1) holds. This implies that RT is
good.

148 CHAPTER 2. REGULAR LANGUAGES

As a consequence, we obtain the correctness of our pro-
cedure: p = q iff the forward closure R' of the relation

R ={(p.q)} is good.

In practice, we maintain a partition II representing the
equivalence relation that we are closing under forward
closure.

We add each new pair (0(r,a),d(s,a)) one at a time,
and immediately form the smallest equivalence relation
containing the new relation.

If &(r,a) and (s, a) already belong to the same block
of II, we consider another pair, else we merge the blocks
corresponding to d(r,a) and d(s,a), and then consider
another pair.

The algorithm is recursive, but it can easily be imple-
mented using a stack.

2.20. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 149

To manipulate partitions efficiently, we represent them as
lists of trees (forests).

Each equivalence class C' in the partition II is represented
by a tree structure consisting of nodes and parent point-
ers, with the pointers from the sons of a node to the node
itself.

The root has a null pointer. Each node also maintains
a counter keeping track of the number of nodes in the
subtree rooted at that node.

Note that pointers can be avoided. We can represent a
forest of n nodes as a list of n pairs of the form

(father, count). If (father, count) is the ith pair in the
list, then father = 0 iff node ¢ is a root node, otherwise,
father is the index of the node in the list which is the
parent of node 1.

The number count is the total number of nodes in the
tree rooted at the 7th node.

150 CHAPTER 2. REGULAR LANGUAGES

For example, the following list of nine nodes

((0,3),(0,2),(1,1),(0,2),(0,2), (1,1),(2,1), (4,1), (5, 1))

represents a forest consisting of the following four trees:

/% |

Figure 2.21: A forest of four trees

Two functions unzon and find are defined as follows.

Given a state p, find(p, I1) finds the root of the tree con-
taining p as a node (not necessarily a leaf).

Given two root nodes p,q, union(p, q,Il) forms a new
partition by merging the two trees with roots p and ¢ as
follows: if the counter of p is smaller than that of g, then
let the root of p point to g, else let the root of ¢ point to

p.

2.20. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 151

For example, given the two trees shown on the left in

Figure 2.22, find(6,I1) returns 3 and find(8, IT) returns
4. Then union(3, 4, IT) yields the tree shown on the right
in Figure 2.22.

I (3)

@ ©® @O © @ @ ©®© O
®

Figure 2.22: Applying the function union to the trees rooted at 3 and 4

In order to speed up the algorithm, using an idea due to
Tarjan, we can modify find as follows:

during a call find(p,I1), as we follow the path from p to
the root r of the tree containing p, we redirect the parent
pointer of every node ¢ on the path from p (including p
itself) to r (we perform path compression).

152 CHAPTER 2. REGULAR LANGUAGES

For example, applying find(8,1II) to the tree shown on
the right in Figure 2.22 yields the tree shown in Figure

2 . 2 3

Figure 2.23: The result of applying find with path compression

Then, the algorithm is as follows:

2.20. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 153

function unif|p, q, 11, dd|: flag;
begin
trans := left(dd); ff = right(dd); pq = (p, q);
st = (pq); flag == 1;
k .= Length(first(trans));
while st # () A flag # 0 do
uv = top(st); uu = left(uv); vv := right(uv);

pop(st);
if bad(ff,uv) =1 then flag := 0
else
u = find(uu,I1); v := find(vv, I1);
if u # v then

union(u, v, I1);
for i =1to £k do
ul = delta(trans, uu, k — i+ 1);
vl = delta(trans,vv, k — i+ 1);
uv = (ul,vl); push(st, uv)
endfor
endif
endif
endwhile
end

154 CHAPTER 2. REGULAR LANGUAGES

The initial partition II is the identity relation on @), i.e.,
it consists of blocks {q} for all states ¢ € Q.

The algorithm uses a stack st. We are assuming that
the DFA dd is specified by a list of two sublists, the first
list, denoted left(dd) in the pseudo-code above, being a
representation of the transition function, and the second
one, denoted right(dd), the set of final states.

The transition function itself is a list of lists, where the
-th list represents the ¢-th row of the transition table for

dd.

The function delta is such that delta(trans, i, j) returns
the j-th state in the ¢-th row of the transition table of dd.

For example, we have the DFA

dd = (((27 3)7 (27 4)7 (27 3)7 (27 5)7 (27 3)7
(7,6),(7,8),(7,9),(7,6)), (5,9))

consisting of 9 states labeled 1, ...,9, and two final states
5 and 9 shown in Figure 2.24.

2.20. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 155

Also, the alphabet has two letters, since every row in the
transition table consists of two entries.

For example, the two transitions from state 3 are given
by the pair (2,3), which indicates that d(3,a) = 2 and
6(3,b) = 3.

The sequence of steps performed by the algorithm start-
ing with p = 1 and ¢ = 6 is shown below.

At every step, we show the current pair of states, the
partition, and the stack.

156 CHAPTER 2. REGULAR LANGUAGES
a

L @\b
@<é/

Figure 2.24: Testing state equivalence in a DFA

p=1,¢=06,1= {{L 6}7 {2}a {3}7 {4}a {5}7 {7}a {8}a {9}}’ st = {{17 6}}

a

@<é/

Figure 2.25: Testing state equivalence in a DFA

p=2,q="7, 1= {{L 6}7 {2a 7}7 {3}a {4}7 {5}a {8}7 {9}}7 st = {{3a 6}7 {2a 7}}

2.20. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 157

Figure 2.26: Testing state equivalence in a DFA

p=4,9q=38,11= {{1’ 6}> {2’ 7}> {3}’ {4> 8}, {5}> {9}}> st = {{3’ 6}> {4’ 8}}

~l

Figure 2.27: Testing state equivalence in a DFA

p=5,q9=9 1= {{1’ 6}> {2’ 7}> {3}’ {4> 8}, {5> 9}, st = {{3> 6}, {5> 9}}

158 CHAPTER 2. REGULAR LANGUAGES

Figure 2.28: Testing state equivalence in a DFA

p=3,q="6,11={{1,3,6},{2,7},{4,8},{5,9}}, st = {{3,6},{3,6}}
Since states 3 and 6 belong to the first block of the partition, the algorithm terminates.
Since no block of the partition contains a bad pair, the states p = 1 and ¢ = 6 are equivalent.

Let us now test whether the states p = 3 and ¢ = 7 are equivalent.

Figure 2.29: Testing state equivalence in a DFA

2.20. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 159

p=3,q="7, 1= {{1}’ {2}7 {3a 7}7 {4}a {5}7 {6}a {8}a {9}}’ st = {{37 7}}

a

a @\1
<@/

b

Figure 2.30: Testing state equivalence in a DFA

p=2,q="7, 1= {{1}’ {27 3, 7}7 {4}a {5}7 {6}a {8}7 {9}}7 st = {{3a 8}7 {2a 7}}

a

P

Figure 2.31: Testing state equivalence in a DFA

160 CHAPTER 2. REGULAR LANGUAGES

p=4,¢=38 1= {{1}a {2> 3, 7}> {4’ 8}> {5}’ {6}> {9}}> st = {{3’ 8}> {4’ 8}}

Figure 2.32: Testing state equivalence in a DFA

p=254q¢=9 1= {{1}a {2> 3, 7}> {4’ 8}> {5’ 9}> {6}}> st = {{3> 8}’ {5> 9}}

Figure 2.33: Testing state equivalence in a DFA

2.20. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 161

p=3,9=06,11= {{1}a {2> 3,6, 7}’ {4> 8}’ {5> 9}}’ st = {{3> 8}’ {3> 6}}

Figure 2.34: Testing state equivalence in a DFA

p=3,q=38, II1={{1},{2,3,4,6,7,8},{5,9}}, st = {{3,8}}

Figure 2.35: Testing state equivalence in a DFA

162 CHAPTER 2. REGULAR LANGUAGES

p=3,q=09, I1={{1},{2,3,4,6,7,8},{5,9}}, st ={{3,9}}

Since the pair (3,9) is a bad pair, the algorithm stops, and the states p = 3 and ¢ = 7 are
inequivalent.

