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6.3 Recursively Enumerable Sets

Consider the set
A={x €N | p,(a) is defined},
where a € N is any fixed natural number.

By Rice’s Theorem, A is not recursive (check this).

We claim that A is the range of a recursive function g. For this, we use the
T-predicate.

We produce a function which is actually primitive recursive.
First, note that A is nonempty (why?), and let 2y be any index in A.

We define g by primitive recursion as follows:
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g(O) = 2o,

Since this type of argument is new, it is helpful to explain informally what ¢
does.

For every input z, the function g tries finitely many steps of a computation
on input a of some partial recursive function.

The computation is given by Ils(x), and the partial function is given by IT; ().

Since II; and II, are projection functions, when x ranges over N, both I1; ()
and IIs(x) also range over N.

Such a process is called a dovetailing computation.
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Therefore all computations on input a for all partial recursive functions will
be tried, and the indices of the partial recursive functions converging on input
a will be selected.

Definition 6.3.1 A subset X of N is recursively enumerable iff either X = (),
or X is the range of some total recursive function. Similarly, a subset X of
¥* is recursively enumerable iff either X = (), or X is the range of some total
recursive function.

For short, a recursively enumerable set is also called an r.e. set. The following
Lemma relates recursive sets and recursively enumerable sets.
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Lemma 6.3.2 A set A is recursive iff both A and its complement A are
recursively enumerable.

Proof. Assume that A is recursive. Then, it is trivial that its complement is
also recursive.

Hence, we only have to show that a recursive set is recursively enumerable.

The empty set is recursively enumerable by definition. Otherwise, let y € A
be any element. Then, the function f defined such that

Jx it Cy(x) =1,
f(”“’)_{y iff(]j(:c):(),

for all x € N is recursive and has range A.

Conversely, assume that both A and A are recursively enumerable.
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If either A or A is empty, then A is recursive.

Otherwise, let A = f(N) and A = g(N), for some recursive functions f and
g.

We define the function C'4 as follows:

) = {1 if f(miny[f(y) =z V g(y) =a]) = .

0 otherwise.

The function C4 lists A and A in parallel, waiting to see whether z turns up
in A or in A.

Note that 2 must eventually turn up either in A or in A, so that C}4 is a total
recursive function. O

Our next goal is to show that the recursively enumerable sets can be given
several equivalent definitions. We will often abbreviate recursively enumer-
able as r.e.
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Lemma 6.3.3 For any subset A of N, the following properties are equivalent:
(1) A is empty or A is the range of a primitive recursive function.
(2) A is recursively enumerable.
(3) A is the range of a partial recursive function.

(4) A is the domain of a partial recursive function.

More intuitive proofs of the implications (3) = (4) and (4) = (1) can be
given.
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Assume that A # () and that A = range(g), where g is a partial recursive
function.

Assume that g is computed by a RAM program P.

To compute f(x), we start computing the sequence

9(0),9(1), ..

looking for z. If z turns up as say g(n), then we output n.

Otherwise the computation diverges. Hence, the domain of f is the range of
g.

Assume now that A is the domain of some partial recursive function ¢, and
that g is computed by some Turing machine M.
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We construct another Turing machine performing the following steps:

(0) Do one step of the computation of ¢(0)

(n) Do n + 1 steps of the computation of ¢(0)

Do n steps of the computation of g(1)

Do 2 steps of the computation of g(n — 1)
Do 1 step of the computation of g(n)

During this process, whenever the computation of some g(m) halts, we output
m.
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In this fashion, we will enumerate the domain of ¢, and since we have con-
structed a Turing machine that halts for every input, we have a total recursive
function.

The following Lemma can easily be shown using the proof technique of
Lemma 6.3.3.
Lemma 6.3.4 The following properties hold.
(1) There is a recursive function h such that
range(z) = dom(pn())
for all x € N.
(2) There is a recursive function k such that
dom(p,) = range(pp())

and iy is total recursive, for all x € N such that dom(p,) # 0.
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Using Lemma 6.3.3, we can prove that K is an r.e. set. Indeed, we have
K = dom(f), where

f(7) = ouniv(z, )
for all x € N.

The set
Ko = {(2,9) | v.(y) converges}

is also an r.e. set, since Ky = dom(g), where

g(z) = Spum'v(Hl (2)7 HQ(Z))7

which is partial recursive.

The sets K and K, are examples of r.e. sets that are not recursive.
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We can now prove that there are sets that are not r.e.

Lemma 6.3.5 For any indexing of the partial recursive functions, the com-
plement K of the set

K ={x e N | p,(x) converges}

18 not recursively enumerable.

Proof. If K was recursively enumerable, since K is also recusively enumer-
able, by Lemma 6.3.2, the set K would be recursive, a contradiction. O

The sets K and K, are examples of sets that are not r.e.

This shows that the r.e. sets are not closed under complementation. However,
we leave it as an exercise to prove that the r.e. sets are closed under union
and intersection.
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We will prove later on that TOTAL is not r.e.

This is rather unpleasant. Indeed, this means that there is no way of effec-
tively listing all algorithms (all total recursive functions).

Hence, in a certain sense, the concept of partial recursive function (procedure)
is more natural than the concept of a (total) recursive function (algorithm).

The next two Lemmas give other characterizations of the r.e. sets and of the
recursive sets.
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Lemma 6.3.6 The following properties hold.

(1) A set A is r.e. iff either it is finite or it is the range of an injective
recursive function.

(2) A set A is r.e. if either it is empty or it is the range of a monotonic
partial recursive function.

(3) A set A is r.e. iff there is a Turing machine M such that, for all v € N,
M halts on x iff v € A.

Lemma 6.3.7 A set A is recusive iff either it is finite or it is the range of a
strictly increasing recursive function.
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Another important result relating the concept of partial recursive function
and that of an r.e set is given below.

Theorem 6.3.8 For every unary partial function f, the following properties
are equivalent:

(1) f is partial recursive.

(2) The set
{(z, f(2)) | © € dom(f)}

18 T.€.

Using our indexing of the partial recursive functions and Lemma 6.3.3, we
obtain an indexing of the r.e sets.
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Definition 6.3.9 For any acceptable indexing g, ¢1,... of the partial re-
cursive functions, we define the enumeration Wy, W7, ... of the r.e. sets by

setting
W, = dom(p,).

We now describe a technique for showing that certain sets are r.e but not
recursive, or complements of r.e. sets that are not recursive, or not r.e, or
neither r.e. nor the complement of an r.e. set. This technique is known as
reducibility.
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6.4 Reducibility and Complete Sets

We already used the notion of reducibility in the proof of Lemma 6.2.5 to
show that TOTAL is not recursive.

Definition 6.4.1 A set A is many-one reducible to a set B if there is a total
recursive function f such that

reA iff f(x)eB

for all x € A. We write A < B, and for short, we say that A is reducible to
B.
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Lemma 6.4.2 Let A, B, C be subsets of N (or ¥*). The following properties
hold:

(1) If A< B and B < C, then A < C.

(2) If A< B then A < B.

(3) If A< B and B is r.e., then A is r.e.

(4) If A< B and A is not r.e., then B is not r.e.
(5) If A < B and B s recursive, then A is recursive.

(6) If A < B and A is not recursive, then B is not recursive.

Another important concept is the concept of a complete set.
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Definition 6.4.3 An r.e. set A is complete w.r.t. many-one reducibility iff
every r.e. set B is reducible to A, i.e., B < A.

For simplicity, we will often say complete for complete w.r.t. many-one re-
ducibility.

Theorem 6.4.4 The following properties hold:

(1) If A is complete, B is r.e., and A < B, then B is complete.
(2) Ky is complete.

(3) Ky is reducible to K.

As a corollary of Theorem 6.4.4, the set K is also complete.
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Definition 6.4.5 Two sets A and B have the same degree of unsolvability
or are equivalent iff A< B and B < A.

Since K and K are both complete, they have the same degree of unsolvability.

We will now investigate the reducibility and equivalence of various sets. Re-
call that
TOTAL = {z € N | ¢, is total}.

We define EMPTY and FINITE, as follows:

EMPTY = {z € N | ¢, is undefined for all input},
FINITE = {z € N | ¢, has a finite domain}.



6.4. REDUCIBILITY AND COMPLETE SETS 415

Then,
FINITE = {z € N | ¢, has an infinite domain},

so that,

EMPTY C FINITE and TOTAL C FINITE.

Lemma 6.4.6 We have Ky < EMPTY.

Lemma 6.4.7 The following properties hold:
(1) EMPTY is not r.e.
(2) EMPTY is r.e.
(3) K and EMPTY are equivalent.
(4) EMPTY is complete.
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Lemma 6.4.8 The following properties hold:
(1) TOTAL and TOTAL are not r.e.
(2) FINITE and FINITE are not r.e.

From Lemma 6.4.8, we have TOTAL < FINITE. It turns out that FINITE <
TOTAL, and TOTAL and FINITE are equivalent.

Lemma 6.4.9 The sets TOTAL and FINITE are equivalent.

We now turn to the recursion Theorem.



