Chapter 6

Elementary Recursive Function
Theory

6.1 Acceptable Indexings

In a previous Section, we have exhibited a specific indexing of the partial
recursive functions by encoding the RAM programs.

Using this indexing, we showed the existence of a universal function ¢,
and of a recursive function ¢, with the property that for all x,y € N,

Pe(z,y) — Pz © Py-
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It is natural to wonder whether the same results hold if a different coding
scheme is used or if a different model of computation is used, for example,
Turing machines.

What we are aiming at is to find some simple properties of “nice” coding
schemes that allow one to proceed without using explicit coding schemes, as
long as the above properties hold.

Remarkably, such properties exist.

Furthermore, any two coding schemes having these properties are equivalent
in a strong sense (effectively equivalent), and so, one can pick any such coding
scheme without any risk of losing anything else because the wrong coding
scheme was chosen.

Such coding schemes, also called indexings, or Godel numberings, or even
programming systems, are called acceptable indexings.
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Definition 6.1.1 An indexing of the partial recursive functions is an infinite
sequence ¢y, 1, - . . , of partial recursive functions that includes all the partial
recursive functions of one argument (there might be repetitions, this is why we
are not using the term enumeration). An indexing is universal if it contains
the partial recursive function ¢,,,;, such that

for all 7,2 € N. An indexing is acceptable if it is universal and if there is a
total recursive function ¢ for composition, such that

Pe(ig) = Pi O Pj

for all 2,7 € N.

A very useful property of acceptable indexings is the so-called “s-m-n Theo-

2

rem .
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Using the slightly loose notation ¢(xy,...,z,) for
o({(z1,...,2,)), the s-m-n theorem says the following.

Given a function ¢ considered as having m+n arguments, if we fix the values
of the first m arguments and we let the other n arguments vary, we obtain
a function v of n arguments. Then, the index of ¢ depends in a recursive
fashion upon the index of ¢ and the first m arguments x1,..., z,,.

We can “pull” the first m arguments of ¢ into the index of 1.

Theorem 6.1.2 (The “s-m-n Theorem™) For any acceptable indexing ¢, @1, - - -
there is a total recursive function s, such that, for all i,m,n > 1, for all
X1, ..., Ty and all yi,...,y,, we have

Sps(i,m,xl,...,xm) (y17 <. 7yn) = 902'(:171; ey Tmy Yty - - 7yn)
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As a first application of the s-m-n Theorem, we show that any two acceptable
indexings are effectively inter-translatable.

Theorem 6.1.3 Let g, @1, ..., be a universal indexing, and let ¥y, Y1, . . .,
be any indexing with a total recursive s-1-1 function, that is, a function s
such that

¢s(i,1,x)(y) = wz (377 y)

for all i,x,y € N. Then, there is a total recursive function t such that p; =

Vi(i)-

Using Theorem 6.1.3, if we have two acceptable indexings ¢y, ¢1, ..., and
Yo, Y1, . . ., there exist total recursive functions ¢ and u such that

;i = Yy) and Y = oy
for all 7 € N.
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Also note that if the composition function c is primitive recursive, then any s-
m-n function is primitive recursive, and the translation functions are primitive
recursive.

Actually, a stronger result can be shown. It can be shown that for any
two acceptable indexings, there exist total recursive injective and surjective
translation functions.

In other words, any two acceptable indexings are recursively isomorphic
(Roger’s isomorphism theorem). Next, we turn to algorithmically unsolv-
able, or undecidable, problems.
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6.2 Undecidable Problems

We saw in Section 5.2 that the halting problem for RAM programs is unde-
cidable. In this section, we take a slightly more general approach to study
the undecidability of problems, and give some tools for resolving decidability
questions.

First, we prove again the undecidability of the halting problem, but this time,
for any indexing of the partial recursive functions.

Theorem 6.2.1 (Halting Problem, Abstract Version) Let 1,11, ..., be any
indexing of the partial recursive functions. Then, the function f defined such

that 1 if ¥.(y) is defined
B i YY) 1S aefinea,
flz,y) = {0 if V. (y) is undefined,

18 not recursive.
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Proof. Assume that f is recursive, and let g be the function defined such
that

g([C) - f(xax)

for all z € N. Then ¢ is also recursive.

Let 6 be the function defined such that

_JO if g(x) =0,
Ola) = {undeﬁned if g(z) = 1.

We claim that 6 is not even partial recursive. Observe that 6 is such that

{ 0 if 1, (z) is undefined,

bla) = undefined if 1, (z) is defined.
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If 0 was partial recursive, it would occur in the list as some 1;, and we would

have
0(i) =i(i) =0 iff 1;(7) is undefined,

a contradiction. Therefore, f and g can’t be recursive. O

The function g defined in the proof of Theorem 6.2.1 is the characteristic
function of a set denoted as K, where

K ={z | ¥,(x) is defined}.

The set K is an example of a set which is not recursive. Since this fact is
quite important, we give the following definition.
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Definition 6.2.2 A subset of ¥* (or a subset of N) is recursive iff its char-
acteristic function is a total recursive function.

Using Definition 6.2.2, Theorem 6.2.1 can be restated as follows.

Lemma 6.2.3 For any indexing g, @1, ... of the partial recursive functions
(over 3* or N), the set K = {x | p,(x) is defined} is not recursive.

Recursive sets allow us to define the concept of a decidable (or undecidable)
problem.

The idea is to generalize the situation described in Section 5.2 and Section
5.3, where a set of objects, the RAM programs, is encoded into a set of
natural numbers, using a coding scheme.
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Definition 6.2.4 Let C' be a countable set of objects, and let P be a property
of objects in C'. We view P as the set

{a € C | P(a)}.

A coding-scheme is an injective function #:C' — N that assigns a unique
code to each object in C.

The property P is decidable (relative to # ) iff the set
{#(a) | a € C and P(a)}

1S recursive.

The property P is undecidable (relative to #) iff the set

{#(a) | a € C and P(a)}

1S not recursive.
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Observe that the decidability of a property P of objects in C' depends upon
the coding scheme #.

Thus, if we are cheating in using a non-effective coding scheme, we may
declare that a property is decidabe even though it is not decidable in some
reasonable coding scheme.

Consequently, we require a coding scheme # to be effective in the following
sense.

Given any object a € C, we can effectively (i.e.. algorithmically) determine

its code #(a).

Conversely, given any integer n € N, we should be able to tell effectively if n
is the code of some object in C, and if so, to find this object.
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In practice, it is always possible to describe the objects in C' as strings over
some (possibly complex) alphabet ¥ (sets of trees, graphs, etc).

For example, the equality of the partial functions ¢, and ¢, can be coded as
the set

{<$,y> | xay € N7 9036 = Spy}

We now show that most properties about programs (except the trivial ones)
are undecidable.

First, we show that it is undecidable whether a RAM program halts for every
input. In other words, it is undecidable whether a procedure is an algorithm.
We actually prove a more general fact.
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Lemma 6.2.5 For any acceptable indexing pg, ©1, ... of the partial recursive
functions, the set

TOTAL = {z | ¢, is a total function}

18 not recursive.

Proof. The proof uses a technique known as reducibility.

We try to reduce a set A known to be nonrecursive to TOTAL via a recursive
function f: A — TOTAL, so that

re A iff f(x) € TOTAL.
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If TOTAL were recursive, its characteristic function g would be recursive,
and thus, the function g o f would be recursive, a contradiction, since A is
assumed to be nonrecursive.

In the present case, we pick A = K.
To find the recursive function f: K — TOTAL, we use the s-m-n Theorem.

Let 6 be the function defined below: for all z,y € N,

0 _ J wul(x) ifre K,
() {undeﬁned ifr ¢ K.

Note that 6 does not depend on y.
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The function € is partial recursive. Indeed, we have

9($,y) = QD:U(SU) - qum'v(xvx)'

Thus, 0 has some index j, so that 6 = ¢;, and by the s-m-n Theorem, we
have

Sps(j,l,zzz)(y) - 30]('7:7 y) - 9(.%’, y)
Let f be the recursive function defined such that
flx) =s(j,1,2)
for all x € N. Then, we have

Pt (Y) {undeﬁned ifr ¢ K

for all y € N.
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Thus, observe that oy, is a total function iff x € K, that is,
re K iff f(x) e TOTAL,

where f is recursive. As we explained earlier, this shows that TOTAL is not
recursive.

The above argument can be generalized to yield a result known as Rice’s
Theorem.

Let g, 1, ... be any indexing of the partial recursive functions, and let C
be any set of partial recursive functions.

We define the set Pg as
Po={reN|y, eC}.
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We can view C' as a property of some of the partial recursive functions. For
example
C' = {all total recursive functions}.

We say that C' is nontrivial if C' is neither empty nor the set of all partial
recursive functions.

Equivalently C' is nontrivial iff Po # () and Pz # N.

Theorem 6.2.6 (Rice’s Theorem) For any acceptable indexing vy, p1, ... of
the partial recursive functions, for any set C of partial recursive functions,
the set

PC:{$€N|SOJJEO}

18 nonrecursive unless C' is trivial.
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Proof. Assume that C is nontrivial. A set is recursive iff its complement is
recursive (the proof is trivial).

Hence, we may assume that the totally undefined function is not in C', and
since C' # (), let ¥ be some other function in C.

We produce a recursive function f such that

Pra)(y) = { undefined if x ¢ K,

for all y € N.

We get f by using the s-m-n Theorem. Let ¢ = ;, and define 6 as follows:

O(z,y) = Puniv(t,Y) + (Luniv(T, T) — Puniv(z, T)),

where — is the primitive recursive function for truncated subtraction.

Clearly, 6 is partial recursive, and let 0 = ;.
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By the s-m-n Theorem, we have

P12 () = @j(z,y) = 0(x,y)

for all x,y € N. Letting f be the recursive function such that

by definition of 6, we get

) — o _ [y if v € K,
i) (y) = 0(z,y) {undeﬁned if v ¢ K.

Thus, f is the desired reduction function.
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Now, we have

re K iff f(x)€ Pe,

and thus, the characteristic function C'x of K is equal to Cp o f, where Cp
is the characteristic function of FPg.

Therefore, Py is not recursive, since otherwise, X would be recursive, a con-
tradiction. O

Rice’s Theorem shows that all nontrivial properties of the input/output be-
havior of programs are undecidable! In particular, the following properties
are undecidable.
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Lemma 6.2.7 The following properties of partial recursive functions are un-
decidable.

(a) A partial recursive function is a constant function.

(b) Given any integer y € N, is y in the range of some partial recursive
function.

(¢) Two partial recursive functions g, and p, are identical.

(d) A partial recursive function p, is equal to a given partial recursive func-
tion @,.

(e) A partial recursive function yields output z on input y, for any given
Y,z € N.

(f) A partial recursive function diverges for some input.

(9) A partial recursive function diverges for all input.
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A property may be undecidable although it is partially decidable. By partially
decidable, we mean that there exists a recursive function g that enumerates
the set Po = {z | ¢, € C}.

This means that there is a recursive function g whose range is Pp.

We say that Po is recursively enumerable. Indeed, g provides a recursive
enumeration of Px, with possible repetitions.



