
3.17. LR(0)-CHARACTERISTIC AUTOMATA 259

3.17 LR(0)-Characteristic Automata

The purpose of LR-parsing , invented by D. Knuth in
the mid sixties, is the following: Given a context-free
grammar G, for any terminal string w ∈ Σ∗, find out
whether w belongs to the language L(G) generated by
G, and if so, construct a rightmost derivation of w, in a
deterministic fashion.

Of course, this is not possible for all context-free gram-
mars, but only for those that correspond to languages that
can be recognized by a deterministic PDA (DPDA).

Knuth’s major discovery was that for a certain type of
grammars, the LR(k)-grammars, a certain kind of DPDA
could be constructed from the grammar (shift/reduce
parsers).

The k in LR(k) refers to the amount of lookahead that
is necessary in order to proceed deterministically.

260 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

It turns out that k = 1 is sufficient, but even in this case,
Knuth construction produces very large DPDA’s, and his
original LR(1) method is not practical.

Fortunately, around 1969, Frank DeRemer, in his MIT
Ph.D. thesis, investigated a practical restriction of Knuth’s
method, known as SLR(k), and soon after, the LALR(k)
method was discovered.

The SLR(k) and the LALR(k) methods are both based
on the construction of the LR(0)-characteristic automa-
ton from a grammar G, and we begin by explaining this
construction.

The additional ingredient needed to obtain an SLR(k)
or an LALR(k) parser from an LR(0) parser is the com-
putation of lookahead sets.

3.17. LR(0)-CHARACTERISTIC AUTOMATA 261

In the SLR case, the FOLLOW sets are needed, and
in the LALR case, a more sophisticated version of the
FOLLOW sets is needed.

For simplicity of exposition, we first assume that gram-
mars have no ε-rules.

Given a reduced context-free grammar G = (V, Σ, P, S ′)
augmented with start production S ′ → S, where S ′ does
not appear in any other productions, the set CG of char-
acteristic strings of G is the following subset of V ∗

(watch out, not Σ∗):

CG = {αβ ∈ V ∗ | S ′ ∗
=⇒
rm

αBv =⇒
rm

αβv,

α, β ∈ V ∗, v ∈ Σ∗, B → β ∈ P}.

In words, CG is a certain set of prefixes of sentential forms
obtained in rightmost derivations.

262 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

The fundamental property of LR-parsing, due to D. Knuth,
is that CG is a regular language. Furthermore, a DFA,
DCG, accepting CG, can be constructed from G.

Conceptually, it is simpler to construct the DFA accepting
CG in two steps:

(1) First, construct a nondeterministic automaton with
ε-rules, NCG, accepting CG.

(2) Apply the subset construction (Rabin and Scott’s
method) to NCG to obtain the DFA DCG.

In fact, careful inspection of the two steps of this construc-
tion reveals that it is possible to construct DCG directly
in a single step, and this is the construction usually found
in most textbooks on parsing.

3.17. LR(0)-CHARACTERISTIC AUTOMATA 263

The nondeterministic automaton NCG accepting CG is
defined as follows:

The states of NCG
are “marked productions”, where a

marked production is a string of the form A → α“.”β,
where A → αβ is a production, and “.” is a symbol not
in V called the “dot” and which can appear anywhere
within αβ.

The start state is S ′ → “.”S, and the transitions are
defined as follows:

(a) For every terminal a ∈ Σ, if A → α“.”aβ is a marked
production, with α, β ∈ V ∗, then there is a tran-
sition on input a from state A → α“.”aβ to state
A → αa“.”β obtained by “shifting the dot.” Such a
transition is shown in Figure 3.1.

264 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

A → α“.”aβ

A → αa“.”β

a

Figure 3.1: Transition on terminal input a

(b) For every nonterminal B ∈ N , if A → α“.”Bβ is
a marked production, with α, β ∈ V ∗, then there is
a transition on input B from state A → α“.”Bβ to
state A → αB“.”β (obtained by “shifting the dot”),
and transitions on input ε (the empty string) to all
states B → “.”γi, for all productions B → γi with
left-hand side B. Such transitions are shown in Figure
3.2.

(c) A state is final if and only if it is of the form A → β“.”
(that is, the dot is in the rightmost position).

3.17. LR(0)-CHARACTERISTIC AUTOMATA 265

A → α“.”Bβ

B → “.”γ1A → αB“.”β B → “.”γm

B ε ε

Figure 3.2: Transitions from a state A → α“.”Bβ

The above construction is illustrated by the following ex-
ample:

Example 1. Consider the grammar G1 given by:

S −→ E

E −→ aEb

E −→ ab

The NFA for CG1 is shown in Figure 3.3.

The result of making the NFA for CG1 deterministic is
shown in Figure 3.4 (where transitions to the “dead state”
have been omitted). The internal structure of the states
1, . . . , 6 is shown below:

266 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

S → .E

E → .aEb

E → a.Eb

E → aE.b

E → aEb.

S → E. E → .ab

E → a.b

E → ab.

E
ε

ε

E

b

a

b

εa ε

Figure 3.3: NFA for CG1

3.17. LR(0)-CHARACTERISTIC AUTOMATA 267

1 2 3

4 5 6

a E

E b b
a

Figure 3.4: DFA for CG1

1 : S −→ .E

E −→ .aEb

E −→ .ab

2 : E −→ a.Eb

E −→ a.b

E −→ .aEb

E −→ .ab

3 : E −→ aE.b

4 : S −→ E.

5 : E −→ ab.

6 : E −→ aEb.

The next example is slightly more complicated.

268 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Example 2. Consider the grammar G2 given by:

S −→ E

E −→ E + T

E −→ T

T −→ T ∗ a

T −→ a

The result of making the NFA for CG2 deterministic is
shown in Figure 3.5 (where transitions to the “dead state”
have been omitted). The internal structure of the states
1, . . . , 8 is shown below:

1 : S −→ .E

E −→ .E + T

E −→ .T

T −→ .T ∗ a

T −→ .a

2 : E −→ E. + T

S −→ E.

3 : E −→ T.

T −→ T. ∗ a

4 : T −→ a.

3.17. LR(0)-CHARACTERISTIC AUTOMATA 269

1 2 5 7

3 6 8

4

E + T

∗ a

T
∗

a a

Figure 3.5: DFA for CG2

5 : E −→ E + .T

T −→ .T ∗ a

T −→ .a

6 : T −→ T ∗ .a

7 : E −→ E + T.

T −→ T. ∗ a

8 : T −→ T ∗ a.

Note that some of the marked productions are more im-
portant than others.

For example, in state 5, the marked production
E −→ E + .T determines the state.

270 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

The other two items T −→ .T ∗ a and T −→ .a are
obtained by ε-closure.

We call a marked production of the form A −→ α.β,
where α �= ε, a core item.

If we also call S ′ −→ .S a core item, we observe that
every state is completely determined by its subset of core
items.

The other items in the state are obtained via ε-closure.

We can take advantage of this fact to write a more effi-
cient algorithm to construct in a single pass the LR(0)-
automaton.

Also observe the so-called spelling property : All the tran-
sitions entering any given state have the same label.

3.17. LR(0)-CHARACTERISTIC AUTOMATA 271

Given a state s, if s contains both a reduce item A −→ γ.
and a shift item B −→ α.aβ, where a ∈ Σ, we say that
there is a shift/reduce conflict in state s on input a.

If s contains two (distinct) reduce items A1 −→ γ1. and
A2 −→ γ2., we say that there is a reduce/reduce conflict
in state s.

A grammar is said to be LR(0) if the DFA DCG has no
conflicts. This is the case for the grammar G1.

However, it should be emphasized that this is extremely
rare in practice. The grammar G1 is just very nice, and
a toy example.

In fact, G2 is not LR(0).

272 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

To eliminate conflicts, one can either compute SLR(1)-
lookahead sets, using FOLLOW sets, or sharper looka-
head sets, the LALR(1) sets.

For example, the computation of SLR(1)-lookahead sets
for G2 will eliminate the conflicts.

3.18. SHIFT/REDUCE PARSERS 273

3.18 Shift/Reduce Parsers

A shift/reduce parser is a modified kind of DPDA.

Firstly, push moves, called shift moves , are restricted so
that exactly one symbol is pushed on top of the stack.

Secondly, more powerful kinds of pop moves, called re-
duce moves , are allowed. During a reduce move, a finite
number of stack symbols may be popped off the stack,
and the last step of a reduce move, called a goto move,
consists of pushing one symbol on top of new topmost
symbol in the stack.

Shift/reduce parsers use parsing tables constructed from
the LR(0)-characteristic automaton DCG associated with
the grammar.

274 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

The shift and goto moves come directly from the transi-
tion table of DCG, but the determination of the reduce
moves requires the computation of lookahead sets .

The SLR(1) lookahead sets are obtained from some sets
called the FOLLOW sets, and the LALR(1) lookahead
sets LA(s, A −→ γ) require fancier FOLLOW sets.

The construction of shift/reduce parsers is made simpler
by assuming that the end of input strings w ∈ Σ∗ is indi-
cated by the presence of an endmarker , usually denoted
$, and assumed not to belong to Σ.

Consider the grammar G1 of Example 1, where we have
numbered the productions 0, 1, 2:

0 : S −→ E

1 : E −→ aEb

2 : E −→ ab

3.18. SHIFT/REDUCE PARSERS 275

The parsing tables associated with the grammar G1 are
shown below:

a b $ E
1 s2 4
2 s2 s5 3
3 s6
4 acc
5 r2 r2 r2
6 r1 r1 r1

Entries of the form si are shift actions , where i denotes
one of the states, and entries of the form rn are reduce
actions , where n denotes a production number (not a
state).

The special action acc means accept, and signals the suc-
cessful completion of the parse.

Entries of the form i, in the rightmost column, are goto
actions .

All blank entries are error entries, and mean that the
parse should be aborted.

276 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

We will use the notation action(s, a) for the entry cor-
responding to state s and terminal a ∈ Σ ∪ {$}, and
goto(s, A) for the entry corresponding to state s and non-
terminal A ∈ N − {S ′}.

Assuming that the input is w$, we now describe in more
detail how a shift/reduce parser proceeds.

The parser uses a stack in which states are pushed and
popped. Initially, the stack contains state 1 and the cur-
sor pointing to the input is positioned on the leftmost
symbol.

There are four possibilities:

(1) If action(s, a) = sj, then push state j on top of the
stack, and advance to the next input symbol in w$.
This is a shift move.

3.18. SHIFT/REDUCE PARSERS 277

(2) If action(s, a) = rn, then do the following: First,
determine the length k = |γ| of the righthand side of
the production n: A −→ γ. Then, pop the topmost
k symbols off the stack (if k = 0, no symbols are
popped). If p is the new top state on the stack (after
the k pop moves), push the state goto(p, A) on top of
the stack, where A is the lefthand side of the “reducing
production” A −→ γ. Do not advance the cursor in
the current input. This is a reduce move.

(3) If action(s, $) = acc, then accept. The input string w
belongs to L(G).

(4) In all other cases, error, abort the parse. The input
string w does not belong to L(G).

Observe that no explicit state control is needed. The
current state is always the current topmost state in the
stack.

278 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

We illustrate below a parse of the input aaabbb$.

stack remaining input action

1 aaabbb$ s2

12 aabbb$ s2

122 abbb$ s2

1222 bbb$ s5

12225 bb$ r2

1223 bb$ s6

12236 b$ r1

123 b$ s6

1236 $ r1

14 $ acc

Observe that the sequence of reductions read from bottom-
up yields a rightmost derivation of aaabbb from E (or
from S, if we view the action acc as the reduction by the
production S −→ E).

This is a general property of LR-parsers.

