
CIS 511
Formal Languages And Automata

Models of Computation, Computability
Basics of Recursive Function Theory

Jean Gallier
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu

c⃝ Jean Gallier
Please, do not reproduce without permission of the author

June 8, 2015

2

Contents

1 Introduction 5

2 Regular Languages, Minimization of DFA’s 7

2.1 Morphisms, F -Maps, B-Maps and Homomorphisms of DFA’s 7
2.2 The Closure Definition of the Regular Languages 12
2.3 Right-Invariant Equivalence Relations on Σ∗ 14
2.4 Finding minimal DFA’s . 23
2.5 State Equivalence and Minimal DFA’s . 24
2.6 A Fast Algorithm for Checking State Equivalence 33

3 Context-Free Grammars And Languages 45

3.1 Context-Free Grammars . 45
3.2 Derivations and Context-Free Languages . 46
3.3 Normal Forms for Context-Free Grammars 52
3.4 Regular Languages are Context-Free . 60
3.5 Useless Productions in Context-Free Grammars 61
3.6 The Greibach Normal Form . 62
3.7 Least Fixed-Points . 63
3.8 Context-Free Languages as Least Fixed-Points 66
3.9 Least Fixed-Points and the Greibach Normal Form 70
3.10 Tree Domains and Gorn Trees . 75
3.11 Derivations Trees . 78
3.12 Ogden’s Lemma . 80

4 RAM Programs, Turing Machines 87

5 Universal RAM Programs and the Halting Problem 89

5.1 Pairing Functions . 89
5.2 Equivalence of Alphabets . 91
5.3 Coding of RAM Programs . 95
5.4 Kleene’s T -Predicate . 101

3

4 CONTENTS

6 Elementary Recursive Function Theory 105

6.1 Acceptable Indexings . 105
6.2 Undecidable Problems . 108
6.3 Recursively Enumerable Sets . 113
6.4 Reducibility and Complete Sets . 118
6.5 The Recursion Theorem . 121
6.6 Extended Rice Theorem . 125
6.7 Creative and Productive Sets . 128

Chapter 1

Introduction

The theory of computation is concerned with algorithms and algorithmic systems: their
design and representation, their completeness, and their complexity.

The purpose of these notes is to introduce some of the basic notions of the theory of com-
putation, including concepts from formal languages and automata theory, and the theory of
computability and some basics of recursive function theory. Other topics such as correctness
of programs and computational complexity will not be treated here (there just isn’t enough
time!).

The notes are divided into two parts. The first part is devoted to formal languages
and automata. The second part deals with models of computation, recursive functions, and
undecidability.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Regular Languages and Equivalence

Relations, The Myhill-Nerode

Characterization, State Equivalence

2.1 Morphisms, F -Maps, B-Maps and

Homomorphisms of DFA’s

It is natural to wonder whether there is a reasonable notion of a mapping between DFA’s.
It turns out that this is indeed the case and there is a notion of a map between DFA’s
which is very useful in the theory of DFA minimization (given a DFA, find an equivalent
DFA of minimal size). Obviously, a map between DFA’s should be a certain kind of graph
homomorphism, which means that given two DFA’s D1 = (Q1,Σ, δ1, q0,1, F1) and D2 =
(Q2,Σ, δ2, q0,2, F2), we have a function, h : Q1 → Q2, mapping every state, p ∈ Q1, of D1,
to some state, q = h(p) ∈ Q2, of D2 in such a way that for every input symbol, a ∈ Σ, the
transition on a from p to δ1(p, a) is mapped to the transition on a from h(p) to h(δ1(p, a)),
so that

h(δ1(p, a)) = δ2(h(p), a),

which can be expressed by the commutativity of the following diagram:

p h
!!

a

""

h(p)

a

""

δ1(p, a)
h

!! δ2(h(p), a)

In order to be useful, a map of DFA’s, h : D1 → D2, should induce a relationship between
the languages, L(D1) and L(D2), such as L(D1) ⊆ L(D2), L(D2) ⊆ L(D1) or L(D1) = L(D2).
This can indeed be achieved by requiring some simple condition on the way final states are
related by h.

7

8 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

For any function, h : X → Y , and for any two subsets, A ⊆ X and B ⊆ Y , recall that

h(A) = {h(a) ∈ Y | a ∈ A}

is the (direct) image of A by h and

h−1(B) = {x ∈ X | h(x) ∈ B}

is the inverse image of B by h, and h−1(B) makes sense even if h is not invertible. The
following Definition is adapted from Eilenberg [1] (Automata, Languages and Machines, Vol
A, Academic Press, 1974; see Chapter III, Section 4).

Definition 2.1.1 Given two DFA’s, D1 = (Q1,Σ, δ1, q0,1, F1) and D2 = (Q2,Σ, δ2, q0,2, F2),
a morphism, h : D1 → D2, of DFA’s is a function, h : Q1 → Q2, satisfying the following
conditions:

(1)
h(δ1(p, a)) = δ2(h(p), a), for all p ∈ Q1 and all a ∈ Σ,

which can be expressed by the commutativity of the following diagram:

p h !!

a

""

h(p)

a

""

δ1(p, a)
h

!! δ2(h(p), a).

(2) h(q0,1) = q0,2.

An F -map of DFA’s, for short, a map, is a morphism of DFA’s, h : D1 → D2, that
satisfies the condition

(3a) h(F1) ⊆ F2.

A B-map of DFA’s is a morphism of DFA’s, h : D1 → D2, that satisfies the condition

(3b) h−1(F2) ⊆ F1.

A proper homomorphism of DFA’s , for short, a homomorphism, is an F -map of DFA’s
that is also a B-map of DFA’s namely, a homomorphism satisfies (3a) & (3b).

Now, for any function f : X → Y and any two subsets A ⊆ X and B ⊆ Y , recall that

f(A) ⊆ B iff A ⊆ f−1(B).

Thus, (3a) & (3b) is equivalent to the condition (3c) below, that is, a homomorphism of
DFA’s is a morphism satisfying the condition

(3c) h−1(F2) = F1.

2.1. MORPHISMS, F -MAPS, B-MAPS AND HOMOMORPHISMS OF DFA’S 9

Note that the condition for being a proper homomorphism of DFA’s (condition (3c)) is
not equivalent to

h(F1) = F2.

Condition (3c) forces h(F1) = F2 ∩ h(Q1), and furthermore, for every p ∈ Q1, whenever
h(p) ∈ F2, then p ∈ F1.

Figure 2.1 shows a map, h, of DFA’s, with

h(A) = h(C) = 0

h(B) = 1

h(D) = 2

h(E) = 3.

It is easy to check that h is actually a (proper) homomorphism.

A

B

C

D E

a

b

a

b

a b

b

a

b

a

0 1 2 3
a b

a

b

b a

b

a

A −→ 0; B −→ 1; C −→ 0; D −→ 2; E −→ 3

Figure 2.1: A map of DFA’s

The reader should check that if f : D1 → D2 and g : D2 → D3 are morphisms (resp.
F -maps, resp. B-maps), then g ◦ f : D1 → D3 is also a morphism (resp. an F -map, resp. a
B-map).

10 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

Remark: In previous versions of these notes, an F -map was called simply a map and a
B-map was called an F−1-map. Over the years, the old terminology proved to be confusing.
We hope the new one is less confusing!

Note that an F -map or a B-map is a special case of the concept of simulation of automata.
A proper homomorphism is a special case of a bisimulation. Bisimulations play an important
role in real-time systems and in concurrency theory.

The main motivation behind these definitions is that when there is an F -map h : D1 →
D2, somehow, D2 simulates D1, and it turns out that L(D1) ⊆ L(D2).

When there is a B-map h : D1 → D2, somehow, D1 simulates D2, and it turns out that
L(D2) ⊆ L(D1).

When there is a proper homomorphism h : D1 → D2, somehow, D1 bisimulates D2, and
it turns out that L(D2) = L(D1).

A DFA morphism f : D1 → D2, is an isomorphism iff there is a DFA morphism,
g : D2 → D1, so that

g ◦ f = idD1 and f ◦ g = idD2 .

Similarly an F -map f : D1 → D2, is an isomorphism iff there is an F -map, g : D2 → D1, so
that

g ◦ f = idD1 and f ◦ g = idD2 .

Finally, a B-map f : D1 → D2, is an isomorphism iff there is a B-map, g : D2 → D1, so that

g ◦ f = idD1 and f ◦ g = idD2 .

The map g is unique and it is denoted f−1. The reader should prove that if a DFA F -
map is an isomorphism, then it is also a proper homomorphism and if a DFA B-map is an
isomorphism, then it is also a proper homomorphism.

If h : D1 → D2 is a morphism of DFA’s, it is easily shown by induction on the length of
w that

h(δ∗1(p, w)) = δ∗2(h(p), w),

for all p ∈ Q1 and all w ∈ Σ∗, which corresponds to the commutativity of the following
diagram:

p h
!!

w

""

h(p)

w

""

δ∗1(p, w)
h

!! δ∗2(h(p), w).

This is the generalization of the commutativity of the diagram in condition (1) of Definition
2.1.1, where any arbitrary string w ∈ Σ∗ is allowed instead of just a single symbol a ∈ Σ.

This is the crucial property of DFA morphisms. It says that for every string, w ∈ Σ∗, if
we pick any state, p ∈ Q1, as starting point in D1, then the image of the path from p on

2.1. MORPHISMS, F -MAPS, B-MAPS AND HOMOMORPHISMS OF DFA’S 11

input w in D1 is the path in D2 from the image, h(p) ∈ Q2, of p on the same input, w. In
particular, the image, h(δ∗1(p, w)) of the state reached from p on input w in D1 is the state,
δ∗2(h(p), w), in D2 reached from h(p) on input w. For example, going back to the DFA map
shown in Figure 2.1, the image of the path

C
a
−→ B

b
−→ D

a
−→ B

b
−→ D

b
−→ E

from C on input w = ababb in D1 is the path

0
a
−→ 1

b
−→ 2

a
−→ 1

b
−→ 2

b
−→ 3

from 0 on input w = ababb in D2.

As a consequence, we have the following Lemma:

Lemma 2.1.2 If h : D1 → D2 is an F -map of DFA’s, then L(D1) ⊆ L(D2).
If h : D1 → D2 is a B-map of DFA’s, then L(D2) ⊆ L(D1). Finally, if h : D1 → D2 is a
proper homomorphism of DFA’s, then L(D1) = L(D2).

One might think that there may be many DFA morphisms between two DFA’s D1 and
D2, but this is not the case. In fact, if every state of D1 is reachable from the start state,
then there is at most one morphism from D1 to D2.

Given a DFA D = (Q,Σ, δ, q0, F), the set Qr of accessible or reachable states is the subset
of Q defined as

Qr = {p ∈ Q | ∃w ∈ Σ∗, δ∗(q0, w) = p}.

The set Qr can be easily computed by stages. A DFA is accessible, or trim if Q = Qr; that
is, if every state is reachable from the start state.

A morphism (resp. F -map, B-map) h : D1 → D2 is surjective if h(Q1) = Q2.

The following lemma is easy to show:

Lemma 2.1.3 If D1 is trim, then there is at most one morphism h : D1 → D2 (resp. F -
map, resp. B-map). If D2 is also trim and we have a morphism, h : D1 → D2, then h is
surjective.

It can also be shown that a minimal DFA DL for L is characterized by the property
that there is unique surjective proper homomorphism h : D → DL from any trim DFA D
accepting L to DL.

Another useful notion is the notion of a congruence on a DFA.

Definition 2.1.4 Given any DFA, D = (Q,Σ, δ, q0, F), a congruence ≡ on D is an equiva-
lence relation ≡ on Q satisfying the following conditions: For all p, q ∈ Q and all a ∈ Σ,

12 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

(1) If p ≡ q, then δ(p, a) ≡ δ(q, a).

(2) If p ≡ q and p ∈ F , then q ∈ F .

It can be shown that a proper homomorphism of DFA’s h : D1 → D2 induces a congruence
≡h on D1 defined as follows:

p ≡h q iff h(p) = h(q).

Given a congruence ≡ on a DFA D, we can define the quotient DFA D/ ≡, and there is
a surjective proper homomorphism π : D → D/ ≡.

We will come back to this point when we study minimal DFA’s.

2.2 The Closure Definition of the Regular Languages

Let Σ = {a1, . . . , am} be some alphabet. We would like to define a family of languages, R(Σ),
by singling out some very basic (atomic) languages, namely the languages {a1}, . . . , {am},
the empty language, and the trivial language, {ϵ}, and then forming more complicated
languages by repeatedly forming union, concatenation and Kleene ∗ of previously constructed
languages. By doing so, we hope to get a family of languages (R(Σ)) that is closed under
union, concatenation, and Kleene ∗. This means that for any two languages, L1, L2 ∈ R(Σ),
we also have L1 ∪ L2 ∈ R(Σ) and L1L2 ∈ R(Σ), and for any language L ∈ R(Σ), we have
L∗ ∈ R(Σ). Furthermore, we would like R(Σ) to be the smallest family with these properties.
How do we achieve this rigorously?

First, let us look more closely at what we mean by a family of languages. Recall that a
language (over Σ) is any subset, L, of Σ∗. Thus, the set of all languages is 2Σ

∗

, the power
set of Σ∗. If Σ is nonempty, this is an uncountable set. Next, we define a family , L, of
languages to be any subset of 2Σ

∗

. This time, the set of families of languages is 22
Σ∗

. This
is a huge set. We can use the inclusion relation on 22

Σ∗

to define a partial order on families
of languages. So, L1 ⊆ L2 iff for every language, L, if L ∈ L1 then L ∈ L2.

We can now state more precisely what we are trying to do. Consider the following
properties for a family of languages, L:

(1) We have {a1}, . . . , {am}, ∅, {ϵ} ∈ L, i.e., L contains the “atomic” languages.

(2a) For all L1, L2 ∈ L, we also have L1 ∪ L2 ∈ L.

(2b) For all L1, L2 ∈ L, we also have L1L2 ∈ L.

(2c) For all L ∈ L, we also have L∗ ∈ L.

2.2. THE CLOSURE DEFINITION OF THE REGULAR LANGUAGES 13

In other words, L is closed under union, concatenation and Kleene ∗.

Now, what we want is the smallest (w.r.t. inclusion) family of languages that satisfies
properties (1) and (2)(a)(b)(c). We can construct such a family using an inductive definition.
This inductive definition constructs a sequence of families of languages, (R(Σ)n)n≥0, called
the stages of the inductive definition, as follows:

R(Σ)0 = {{a1}, . . . , {am}, ∅, {ϵ}},

R(Σ)n+1 = R(Σ)n ∪ {L1 ∪ L2, L1L2, L
∗ | L1, L2, L ∈ R(Σ)n}.

Then, we define R(Σ) by

R(Σ) =
⋃

n≥0

R(Σ)n.

Thus, a language L belongs to R(Σ) iff it belongs Ln, for some n ≥ 0. Observe that

R(Σ)0 ⊆ R(Σ)1 ⊆ R(Σ)2 ⊆ · · ·R(Σ)n ⊆ R(Σ)n+1 ⊆ · · · ⊆ R(Σ),

so that if L ∈ R(Σ)n, then L ∈ R(Σ)p, for all p ≥ n. Also, there is some smallest n for
which L ∈ R(Σ)n (the birthdate of L!). In fact, all these inclusions are strict. Note that
each R(Σ)n only contains a finite number of languages (but some of the languages in R(Σ)n
are infinite, because of Kleene ∗). Then we define the Regular languages, Version 2 , as the
family R(Σ).

Of course, it is far from obvious that R(Σ) coincides with the family of languages accepted
by DFA’s (or NFA’s), what we call the regular languages, version 1. However, this is the case,
and this can be demonstrated by giving two algorithms. Actually, it will be slightly more
convenient to define a notation system, the regular expressions , to denote the languages
in R(Σ). Then, we will give an algorithm that converts a regular expression, R, into an
NFA, NR, so that LR = L(NR), where LR is the language (in R(Σ)) denoted by R. We
will also give an algorithm that converts an NFA, N , into a regular expression, RN , so that
L(RN) = L(N).

But before doing all this, we should make sure that R(Σ) is indeed the family that we
are seeking. This is the content of

Lemma 2.2.1 The family, R(Σ), is the smallest family of languages which contains the
atomic languages {a1}, . . . , {am}, ∅, {ϵ}, and is closed under union, concatenation, and
Kleene ∗.

Proof . There are two things to prove.

(i) We need to prove that R(Σ) has properties (1) and (2)(a)(b)(c).

(ii) We need to prove that R(Σ) is the smallest family having properties (1) and
(2)(a)(b)(c).

14 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

(i) Since

R(Σ)0 = {{a1}, . . . , {am}, ∅, {ϵ}},

it is obvious that (1) holds. Next, assume that L1, L2 ∈ R(Σ). This means that there are
some integers n1, n2 ≥ 0, so that L1 ∈ R(Σ)n1 and L2 ∈ R(Σ)n2 . Now, it is possible that
n1 ̸= n2, but if we let n = max{n1, n2}, as we observed that R(Σ)p ⊆ R(Σ)q whenever
p ≤ q, we are guaranteed that both L1, L2 ∈ R(Σ)n. However, by the definition of R(Σ)n+1

(that’s why we defined it this way!), we have L1 ∪ L2 ∈ R(Σ)n+1 ⊆ R(Σ). The same
argument proves that L1L2 ∈ R(Σ)n+1 ⊆ R(Σ). Also, if L ∈ R(Σ)n, we immediately have
L∗ ∈ R(Σ)n+1 ⊆ R(Σ). Therefore, R(Σ) has properties (1) and (2)(a)(b)(c).

(ii) Let L be any family of languages having properties (1) and (2)(a)(b)(c). We need to
prove that R(Σ) ⊆ L. If we can prove that R(Σ)n ⊆ L, for all n ≥ 0, we are done (since
then, R(Σ) =

⋃
n≥0R(Σ)n ⊆ L). We prove by induction on n that R(Σ)n ⊆ L, for all n ≥ 0.

The base case n = 0 is trivial, since L has (1), which says that R(Σ)0 ⊆ L. Assume
inductively that R(Σ)n ⊆ L. We need to prove that R(Σ)n+1 ⊆ L. Pick any L ∈ R(Σ)n+1.
Recall that

R(Σ)n+1 = R(Σ)n ∪ {L1 ∪ L2, L1L2, L
∗ | L1, L2, L ∈ R(Σ)n}.

If L ∈ R(Σ)n, then L ∈ L, since R(Σ)n ⊆ L, by the induction hypothesis. Otherwise, there
are three cases:

(a) L = L1 ∪ L2, where L1, L2 ∈ R(Σ)n. By the induction hypothesis, R(Σ)n ⊆ L, so, we
get L1, L2 ∈ L; since L has 2(a), we have L1 ∪ L2 ∈ L.

(b) L = L1L2, where L1, L2 ∈ R(Σ)n. By the induction hypothesis, R(Σ)n ⊆ L, so, we get
L1, L2 ∈ L; since L has 2(b), we have L1L2 ∈ L.

(c) L = L∗
1, where L1 ∈ R(Σ)n. By the induction hypothesis, R(Σ)n ⊆ L, so, we get

L1 ∈ L; since L has 2(c), we have L∗
1 ∈ L.

Thus, in all cases, we showed that L ∈ L, and so, R(Σ)n+1 ⊆ L, which proves the induction
step.

Students should study carefully the above proof. Although simple, it is the prototype of
many proofs appearing in the theory of computation.

2.3 Right-Invariant Equivalence Relations on Σ∗

The purpose of this section is to give one more characterization of the regular languages in
terms of certain kinds of equivalence relations on strings. Pushing this characterization a bit
further, we will be able to show how minimal DFA’s can be found.

2.3. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 15

Let D = (Q,Σ, δ, q0, F) be a DFA. The DFA D may be redundant, for example, if there
are states that are not accessible from the start state. As explained in Section 2.1, the set
Qr of accessible or reachable states is the subset of Q defined as

Qr = {p ∈ Q | ∃w ∈ Σ∗, δ∗(q0, w) = p}.

If Q ̸= Qr, we can “clean up” D by deleting the states in Q−Qr and restricting the transition
function δ to Qr. This way, we get an equivalent DFA Dr such that L(D) = L(Dr), where
all the states of Dr are reachable. From now on, we assume that we are dealing with DFA’s
such that D = Dr, called trim, or reachable.

Recall that an equivalence relation ≃ on a set A is a relation which is reflexive, symmetric,
and transitive. Given any a ∈ A, the set

{b ∈ A | a ≃ b}

is called the equivalence class of a, and it is denoted as [a]≃, or even as [a]. Recall that
for any two elements a, b ∈ A, [a] ∩ [b] = ∅ iff a ̸≃ b, and [a] = [b] iff a ≃ b. The set of
equivalence classes associated with the equivalence relation ≃ is a partition Π of A (also
denoted as A/ ≃). This means that it is a family of nonempty pairwise disjoint sets whose
union is equal to A itself. The equivalence classes are also called the blocks of the partition
Π. The number of blocks in the partition Π is called the index of ≃ (and Π).

Given any two equivalence relations ≃1 and ≃2 with associated partitions Π1 and Π2,

≃1 ⊆≃2

iff every block of the partition Π1 is contained in some block of the partition Π2. Then, every
block of the partition Π2 is the union of blocks of the partition Π1, and we say that ≃1 is
a refinement of ≃2 (and similarly, Π1 is a refinement of Π2). Note that Π2 has at most as
many blocks as Π1 does.

We now define an equivalence relation on strings induced by a DFA. This equivalence is
a kind of “observational” equivalence, in the sense that we decide that two strings u, v are
equivalent iff, when feeding first u and then v to the DFA, u and v drive the DFA to the
same state. From the point of view of the observer, u and v have the same effect (reaching
the same state).

Definition 2.3.1 Given a DFA D = (Q,Σ, δ, q0, F), we define the relation ≃D on Σ∗ as
follows: for any two strings u, v ∈ Σ∗,

u ≃D v iff δ∗(q0, u) = δ∗(q0, v).

We can figure out what the equivalence classes of ≃D are for the following DFA:

16 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

a b
0 1 0
1 2 1
2 0 2

with 0 both start state and (unique) final state. For example

abbabbb ≃D aa

ababab ≃D ϵ

bba ≃D a.

There are three equivalences classes:

[ϵ]≃, [a]≃, [aa]≃.

Observe that L(D) = [ϵ]≃. Also, the equivalence classes are in one–to–one correspondence
with the states of D.

The relation ≃D turns out to have some interesting properties. In particular, it is right-
invariant , which means that for all u, v, w ∈ Σ∗, if u ≃ v, then uw ≃ vw.

Lemma 2.3.2 Given any (accessible) DFA D = (Q,Σ, δ, q0, F), the relation ≃D is an equiv-
alence relation which is right-invariant and has finite index. Furthermore, if Q has n states,
then the index of ≃D is n, and every equivalence class of ≃D is a regular language. Finally,
L(D) is the union of some of the equivalence classes of ≃D.

Proof . The fact that ≃D is an equivalence relation is a trivial verification. To prove that
≃D is right-invariant, we first prove by induction on the length of v that for all u, v ∈ Σ∗,
for all p ∈ Q,

δ∗(p, uv) = δ∗(δ∗(p, u), v).

Then, if u ≃D v, which means that δ∗(q0, u) = δ∗(q0, v), we have

δ∗(q0, uw) = δ∗(δ∗(q0, u), w) = δ∗(δ∗(q0, v), w) = δ∗(q0, vw),

which means that uw ≃D vw. Thus, ≃D is right-invariant. We still have to prove that ≃D

has index n. Define the function f : Σ∗ → Q such that

f(u) = δ∗(q0, u).

Note that if u ≃D v, which means that δ∗(q0, u) = δ∗(q0, v), then f(u) = f(v). Thus, the
function f : Σ∗ → Q induces a function f̂ : Π→ Q defined such that

f̂([u]) = f(u),

2.3. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 17

for every equivalence class [u] ∈ Π, where Π = Σ∗/ ≃ is the partition associated with ≃D.
However, the function f̂ : Π → Q is injective (one-to-one), since f̂([u]) = f̂([v]) means that
δ∗(q0, u) = δ∗(q0, v), which means precisely that u ≃D v, i.e., [u] = [v]. Since Q has n states,
Π has at most n blocks. Moreover, since every state is accessible, for every q ∈ Q, there is
some w ∈ Σ∗ so that δ∗(q0, w) = q, which shows that f̂([w]) = f(w) = q. Consequently, f̂ is
also surjective. But then, being injective and surjective, f̂ is bijective and Π has exactly n
blocks.

Every equivalence class of Π is a set of strings of the form

{w ∈ Σ∗ | δ∗(q0, w) = p},

for some p ∈ Q, which is accepted by the DFA

Dp = (Q,Σ, δ, q0, {p})

obtained from D by changing F to {p}. Thus, every equivalence class is a regular language.
Finally, since

L(D) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}

=
⋃

f∈F

{w ∈ Σ∗ | δ∗(q0, w) = f}

=
⋃

f∈F

L(Df),

we see that L(D) is the union of the equivalence classes corresponding to the final states in
F .

The remarkable fact due to Myhill and Nerode, is that Lemma 2.3.2 has a converse.

Lemma 2.3.3 Given any equivalence relation ≃ on Σ∗, if ≃ is right-invariant and has finite
index n, then every equivalence class (block) in the partition Π associated with ≃ is a regular
language.

Proof . Let C1, . . . , Cn be the blocks of Π, and assume that C1 = [ϵ] is the equivalence class
of the empty string.

First, we claim that for every block Ci and every w ∈ Σ∗, there is a unique block Cj such
that Ciw ⊆ Cj, where Ciw = {uw | u ∈ Ci}.

For every u ∈ Ci, the string uw belongs to one and only one of the blocks of Π, say Cj.
For any other string v ∈ Ci, since (by definition) u ≃ v, by right invariance, we get uw ≃ vw,
but since uw ∈ Cj and Cj is an equivalence class, we also have vw ∈ Cj. This proves the
first claim.

We also claim that for every w ∈ Σ∗, for every block Ci,

C1w ⊆ Ci iff w ∈ Ci.

18 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

If C1w ⊆ Ci, since C1 = [ϵ], we have ϵw = w ∈ Ci. Conversely, if w ∈ Ci, for any
v ∈ C1 = [ϵ], since ϵ ≃ v, by right invariance we have w ≃ vw, and thus vw ∈ Ci, which
shows that C1w ⊆ Ci.

For every class Ck, let
Dk = ({1, . . . , n},Σ, δ, 1, {k}),

where δ(i, a) = j iff Cia ⊆ Cj. We will prove the following equivalence:

δ∗(i, w) = j iff Ciw ⊆ Cj.

For this, we prove the following two implications by induction on |w|:

(a) If δ∗(i, w) = j, then Ciw ⊆ Cj , and

(b) If Ciw ⊆ Cj, then δ∗(i, w) = j.

The base case (w = ϵ) is trivial for both (a) and (b). We leave the proof of the induction
step for (a) as an exercise and give the proof of the induction step for (b) because it is more
subtle. Let w = ua, with a ∈ Σ and u ∈ Σ∗. If Ciua ⊆ Cj, then by the first claim, we know
that there is a unique block, Ck, such that Ciu ⊆ Ck. Furthermore, there is a unique block,
Ch, such that Cka ⊆ Ch, but Ciu ⊆ Ck implies Ciua ⊆ Cka so we get Ciua ⊆ Ch. However,
by the uniqueness of the block, Cj, such that Ciua ⊆ Cj, we must have Ch = Cj . By the
induction hypothesis, as Ciu ⊆ Ck, we have

δ∗(i, u) = k

and, by definition of δ, as Cka ⊆ Cj (= Ch), we have δ(k, a) = j, so we deduce that

δ∗(i, ua) = δ(δ∗(i, u), a) = δ(k, a) = j,

as desired. Then, using the equivalence just proved and the second claim, we have

L(Dk) = {w ∈ Σ∗ | δ∗(1, w) ∈ {k}}

= {w ∈ Σ∗ | δ∗(1, w) = k}

= {w ∈ Σ∗ | C1w ⊆ Ck}

= {w ∈ Σ∗ | w ∈ Ck} = Ck,

proving that every block, Ck, is a regular language.

! In general it is false that Cia = Cj for some block Cj, and we can only claim that
Cia ⊆ Cj.

We can combine Lemma 2.3.2 and Lemma 2.3.3 to get the following characterization of
a regular language due to Myhill and Nerode:

2.3. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 19

Theorem 2.3.4 (Myhill-Nerode) A language L (over an alphabet Σ) is a regular language
iff it is the union of some of the equivalence classes of an equivalence relation ≃ on Σ∗, which
is right-invariant and has finite index.

Given two DFA’s D1 and D2, whether or not there is a morphism h : D1 → D2 depends
on the relationship between ≃D1 and ≃D2 . More specifically, we have the following lemma:

Lemma 2.3.5 Given two DFA’s D1 and D2, with D1 trim, the following properties hold:

(1) There is a DFA morphism h : D1 → D2 iff

≃D1 ⊆≃D2 .

(2) There is a DFA F -map h : D1 → D2 iff

≃D1 ⊆≃D2 and L(D1) ⊆ L(D2);

(3) There is a DFA B-map h : D1 → D2 iff

≃D1 ⊆≃D2 and L(D2) ⊆ L(D1).

Furthermore, h is surjective iff D2 is trim.

Theorem 2.3.4 can also be used to prove that certain languages are not regular. A general
scheme (not the only one) goes as follows: If L is not regular, then it must be infinite. Now,
we argue by contradiction. If L was regular, then by Myhill-Nerode, there would be some
equivalence relation, ≃, which is right-invariant and of finite index and such that L is the
union of some of the classes of ≃. Because Σ∗ is infinite and ≃ has only finitely many
equivalence classes, there are strings x, y ∈ Σ∗ with x ̸= y so that

x ≃ y.

If we can find a third string, z ∈ Σ∗, such that

xz ∈ L and yz /∈ L,

then we reach a contradiction. Indeed, by right invariance, from x ≃ y, we get xz ≃ yz. But,
L is the union of equivalence classes of ≃, so if xz ∈ L, then we should also have yz ∈ L,
contradicting yz /∈ L. Therefore, L is not regular.

For example, we prove that L = {anbn | n ≥ 1} is not regular.

Assuming for the sake of contradiction that L is regular, there is some equivalence relation
≃ which is right-invariant and of finite index and such that L is the union of some of the
classes of ≃. Since the set

{a, aa, aaa, . . . , ai, . . .}

20 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

is infinite and ≃ has a finite number of classes, two of these strings must belong to the
same class, which means that ai ≃ aj for some i ̸= j. But since ≃ is right invariant, by
concatenating with bi on the right, we see that aibi ≃ ajbi for some i ̸= j. However aibi ∈ L,
and since L is the union of classes of ≃, we also have ajbi ∈ L for i ̸= j, which is absurd,
given the definition of L. Thus, in fact, L is not regular.

Here is another illustration of the use of the Myhill-Nerode Theorem to prove that a
language is not regular. We claim that the language,

L = {an! | n ≥ 1},

is not regular, where n! (n factorial) is given by 0! = 1 and (n+ 1)! = (n + 1)n!.

Assume L is regular. Then, there is some equivalence relation ≃ which is right-invariant
and of finite index and such that L is the union of some of the classes of ≃. Since the
sequence

a, a2, . . . , an, . . .

is infinite, two of these strings must belong to the same class, which means that ap ≃ aq for
some p, q with 1 ≤ p < q. As q! ≥ q for all q ≥ 0 and q > p, we can concatenate on the right
with aq!−p and we get

apaq!−p ≃ aqaq!−p,

that is,
aq! ≃ aq!+q−p.

If we can show that
q! + q − p < (q + 1)!

we will obtain a contradiction because then aq!+q−p /∈ L, yet aq!+q−p ≃ aq! and aq! ∈ L,
contradicting Myhill-Nerode. Now, as 1 ≤ p < q, we have q − p ≤ q − 1, so if we can prove
that

q! + q − p ≤ q! + q − 1 < (q + 1)!

we will be done. However, q! + q − 1 < (q + 1)! is equivalent to

q − 1 < (q + 1)!− q!,

and since (q + 1)!− q! = (q + 1)q!− q! = qq!, we simply need to prove that

q − 1 < q ≤ qq!,

which holds for q ≥ 1.

There is another version of the Myhill-Nerode Theorem involving congruences which is
also quite useful. An equivalence relation, ≃, on Σ∗ is left and right-invariant iff for all
x, y, u, v ∈ Σ∗,

if x ≃ y then uxv ≃ uyv.

2.3. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 21

An equivalence relation, ≃, on Σ∗ is a congruence iff for all u1, u2, v1, v2 ∈ Σ∗,

if u1 ≃ v1 and u2 ≃ v2 then u1u2 ≃ v1v2.

It is easy to prove that an equivalence relation is a congruence iff it is left and right-invariant,
the proof is left as an exercise.

There is a version of Lemma 2.3.2 that applies to congruences and for this we define the
relation ∼D as follows: For any (trim) DFA, D = (Q,Σ, δ, q0, F), for all x, y ∈ Σ∗,

x ∼D y iff (∀q ∈ Q)(δ∗(q, x) = δ∗(q, y)).

Lemma 2.3.6 Given any (trim) DFA, D = (Q,Σ, δ, q0, F), the relation ∼D is an equiva-
lence relation which is left and right-invariant and has finite index. Furthermore, if Q has
n states, then the index of ∼D is at most nn and every equivalence class of ∼D is a regular
language. Finally, L(D) is the union of some of the equivalence classes of ∼D.

Proof . We leave the proof of Lemma 2.3.6 as an exercise. We just make the following remark:
Observe that

∼D ⊆≃D,

since the condition δ∗(q, x) = δ∗(q, y) holds for every q ∈ Q, so in particular for q = q0. But
then, every equivalence class of ≃D is the union of equivalence classes of ∼D and since, by
Lemma 2.3.2, L is the union of equivalence classes of ≃D, we conclude that L is also the
union of equivalence classes of ∼D.

Using Lemma 2.3.6 and Lemma 2.3.3, we obtain another version of the Myhill-Nerode
Theorem.

Theorem 2.3.7 (Myhill-Nerode, Conguence Version) A language L (over an alphabet Σ)
is a regular language iff it is the union of some of the equivalence classes of an equivalence
relation ≃ on Σ∗, which is a congruence and has finite index.

Another useful tool for proving that languages are not regular is the so-called pumping
lemma.

Lemma 2.3.8 Given any DFA D = (Q,Σ, δ, q0, F), there is some m ≥ 1 such that for every
w ∈ Σ∗, if w ∈ L(D) and |w| ≥ m, then there exists a decomposition of w as w = uxv,
where

(1) x ̸= ϵ,

(2) uxiv ∈ L(D), for all i ≥ 0, and

(3) |ux| ≤ m.

Moreover, m can be chosen to be the number of states of the DFA D.

22 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

Proof . Let m be the number of states in Q, and let w = w1 . . . wn. Since Q contains the
start state q0, m ≥ 1. Since |w| ≥ m, we have n ≥ m. Since w ∈ L(D), let (q0, q1, . . . , qn),
be the sequence of states in the accepting computation of w (where qn ∈ F). Consider the
subsequence

(q0, q1, . . . , qm).

This sequence contains m + 1 states, but there are only m states in Q, and thus, we have
qi = qj, for some i, j such that 0 ≤ i < j ≤ m. Then, letting u = w1 . . . wi, x = wi+1 . . . wj,
and v = wj+1 . . . wn, it is clear that the conditions of the lemma hold.

Typically, the pumping lemma is used to prove that a language is not regular. The
method is to proceed by contradiction, i.e., to assume (contrary to what we wish to prove)
that a language L is indeed regular, and derive a contradiction of the pumping lemma. Thus,
it would be helpful to see what the negation of the pumping lemma is, and for this, we first
state the pumping lemma as a logical formula. We will use the following abbreviations:

nat = {0, 1, 2, . . .},

pos = {1, 2, . . .},

A ≡ w = uxv,

B ≡ x ̸= ϵ,

C ≡ |ux| ≤ m,

P ≡ ∀i : nat (uxiv ∈ L(D)).

The pumping lemma can be stated as

∀D : DFA ∃m : pos ∀w : Σ∗

(
(w ∈ L(D) ∧ |w| ≥ m) ⊃ (∃u, x, v : Σ∗ A ∧B ∧ C ∧ P)

)
.

Recalling that

¬(A ∧ B ∧ C ∧ P) ≡ ¬(A ∧ B ∧ C) ∨ ¬P ≡ (A ∧ B ∧ C) ⊃ ¬P

and
¬(R ⊃ S) ≡ R ∧ ¬S,

the negation of the pumping lemma can be stated as

∃D : DFA ∀m : pos ∃w : Σ∗

(
(w ∈ L(D) ∧ |w| ≥ m) ∧ (∀u, x, v : Σ∗ (A ∧ B ∧ C) ⊃ ¬P)

)
.

Since
¬P ≡ ∃i : nat (uxiv /∈ L(D)),

in order to show that the pumping lemma is contradicted, one needs to show that for some
DFA D, for every m ≥ 1, there is some string w ∈ L(D) of length at least m, such that
for every possible decomposition w = uxv satisfying the constraints x ̸= ϵ and |ux| ≤ m,

2.4. FINDING MINIMAL DFA’S 23

there is some i ≥ 0 such that uxiv /∈ L(D). When proceeding by contradiction, we have
a language L that we are (wrongly) assuming to be regular, and we can use any DFA D
accepting L. The creative part of the argument is to pick the right w ∈ L (not making any
assumption on m ≤ |w|).

As an illustration, let us use the pumping lemma to prove that L = {anbn | n ≥ 1} is
not regular. The usefulness of the condition |ux| ≤ m lies in the fact that it reduces the
number of legal decomposition uxv of w. We proceed by contradiction. Thus, let us assume
that L = {anbn | n ≥ 1} is regular. If so, it is accepted by some DFA D. Now, we wish to
contradict the pumping lemma. For every m ≥ 1, let w = ambm. Clearly, w = ambm ∈ L
and |w| ≥ m. Then, every legal decomposition u, x, v of w is such that

w = a . . . a︸ ︷︷ ︸
u

a . . . a︸ ︷︷ ︸
x

a . . . ab . . . b︸ ︷︷ ︸
v

where x ̸= ϵ and x ends within the a’s, since |ux| ≤ m. Since x ̸= ϵ, the string uxxv is of
the form anbm where n > m, and thus uxxv /∈ L, contradicting the pumping lemma.

We now consider an equivalence relation associated with a language L.

2.4 Finding minimal DFA’s

Given any language L (not necessarily regular), we can define an equivalence relation ρL
which is right-invariant, but not necessarily of finite index. However, when L is regular, the
relation ρL has finite index. In fact, this index is the size of a smallest DFA accepting L.
This will lead us to a construction of minimal DFA’s.

Definition 2.4.1 Given any language L (over Σ), we define the relation ρL on Σ∗ as follows:
for any two strings u, v ∈ Σ∗,

uρLv iff ∀w ∈ Σ∗(uw ∈ L iff vw ∈ L).

It is clear that the relation ρL is an equivalence relation, and it is right-invariant. To
show right-invariance, argue as follows: if uρLv, then for any w ∈ Σ∗, since uρLv means that

uz ∈ L iff vz ∈ L

for all z ∈ Σ∗, in particular the above equivalence holds for all z of the form z = wy for any
arbitary y ∈ Σ∗, so we have

uwy ∈ L iff vwy ∈ L

for all y ∈ Σ∗, which means that uwρLvw.

It is also clear that L is the union of the equivalence classes of strings in L. This is
because if u ∈ L and uρLv, by letting w = ϵ in the definition of ρL, we get

u ∈ L iff v ∈ L,

24 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

and since u ∈ L, we also have v ∈ L. This implies that if u ∈ L then [u]ρL ⊆ L and so,

L =
⋃

u∈L

[u]ρL.

When L is also regular, we have the following remarkable result:

Lemma 2.4.2 Given any regular language L, for any (accessible) DFA D = (Q,Σ, δ, q0, F)
such that L = L(D), ρL is a right-invariant equivalence relation, and we have ≃D ⊆ ρL.
Furthermore, if ρL has m classes and Q has n states, then m ≤ n.

Proof . By definition, u ≃D v iff δ∗(q0, u) = δ∗(q0, v). Since w ∈ L(D) iff δ∗(q0, w) ∈ F , the
fact that uρLv can be expressed as

∀w ∈ Σ∗(uw ∈ L iff vw ∈ L), iff,

∀w ∈ Σ∗(δ∗(q0, uw) ∈ F iff δ∗(q0, vw) ∈ F), iff

∀w ∈ Σ∗(δ∗(δ∗(q0, u), w) ∈ F iff δ∗(δ∗(q0, v), w) ∈ F),

and if δ∗(q0, u) = δ∗(q0, v), this shows that uρLv. Since the number of classes of ≃D is n and
≃D ⊆ ρL, the equivalence relation ρL has fewer classes than ≃D, and m ≤ n.

Lemma 2.4.2 shows that when L is regular, the index m of ρL is finite, and it is a lower
bound on the size of all DFA’s accepting L. It remains to show that a DFA with m states
accepting L exists. However, going back to the proof of Lemma 2.3.3 starting with the right-
invariant equivalence relation ρL of finite index m, if L is the union of the classes Ci1, . . . , Cik ,
the DFA

DρL = ({1, . . . , m},Σ, δ, 1, {i1, . . . , ik}),

where δ(i, a) = j iff Cia ⊆ Cj , is such that L = L(DρL). Thus, DρL is a minimal DFA
accepting L.

In the next section, we give an algorithm which allows us to find DρL, given any DFA D
accepting L. This algorithms finds which states of D are equivalent.

2.5 State Equivalence and Minimal DFA’s

The proof of Lemma 2.4.2 suggests the following definition of an equivalence between states:

Definition 2.5.1 Given any DFA D = (Q,Σ, δ, q0, F), the relation ≡ on Q, called state
equivalence, is defined as follows: for all p, q ∈ Q,

p ≡ q iff ∀w ∈ Σ∗(δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F).

When p ≡ q, we say that p and q are indistinguishable.

2.5. STATE EQUIVALENCE AND MINIMAL DFA’S 25

It is trivial to verify that ≡ is an equivalence relation, and that it satisfies the following
property:

if p ≡ q then δ(p, a) ≡ δ(q, a),

for all a ∈ Σ.

The reader should check that states A and C in the DFA below are equivalent and that
no other distinct states are equivalent.

A

B

C

D E

a

b

a

b

a b

b

a

b

a

Figure 2.2: A non-minimal DFA for {a, b}∗{abb}

It might be illuminating to express state equivalence as the equality of two languages.
Given the DFA D = (Q,Σ, δ, q0, F), let Dp = (Q,Σ, δ, p, F) be the DFA obtained from D by
redefining the start state to be p. Then, it is clear that

p ≡ q iff L(Dp) = L(Dq).

This simple observation implies that there is an algorithm to test state equivalence.
Indeed, we simply have to test whether the DFA’s Dp and Dq accept the same language
and this can be done using the cross-product construction. Indeed, L(Dp) = L(Dq) iff
L(Dp)−L(Dq) = ∅ and L(Dq)−L(Dp) = ∅. Now, if (Dp×Dq)1−2 denotes the cross-product
DFA with starting state (p, q) and with final states F × (Q− F) and (Dp ×Dq)2−1 denotes
the cross-product DFA also with starting state (p, q) and with final states (Q− F)× F , we
know that

L((Dp ×Dq)1−2) = L(Dp)− L(Dq) and L((Dp ×Dq)2−1) = L(Dq)− L(Dp),

so all we need to do if to test whether (Dp × Dq)1−2 and (Dp × Dq)2−1 accept the empty
language. However, we know that this is the case iff the set of states reachable from (p, q)
in (Dp ×Dq)1−2 contains no state in F × (Q− F) and the set of states reachable from (p, q)
in (Dp ×Dq)2−1 contains no state in (Q− F)× F .

26 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

Actually, the graphs of (Dp ×Dq)1−2 and (Dp ×Dq)2−1 are identical, so we only need to
check that no state in (F × (Q−F))∪ ((Q−F)×F) is reachable from (p, q) in that graph.
This algorithm to test state equivalence is not the most efficient but it is quite reasonable
(it runs in polynomial time).

If L = L(D), the lemma below shows the relationship between ρL and ≡ and, more
generally, between the DFA, DρL , and the DFA, D/ ≡, obtained as the quotient of the DFA
D modulo the equivalence relation ≡ on Q and defined as follows:

D/ ≡= (Q/ ≡,Σ, δ/ ≡, [q0]≡, F/ ≡),

where
δ/ ≡ ([p]≡, a) = [δ(p, a)]≡.

The DFA D/ ≡ is obtained by merging the states in each block of the partition Π
associated with ≡, forming states corresponding to the blocks of Π, and drawing a transition
on input a from a block Ci to a block Cj of Π iff there is a transition q = δ(p, a) from any
state p ∈ Ci to any state q ∈ Cj on input a. The start state is the block containing q0, and
the final states are the blocks consisting of final states.

Lemma 2.5.2 For any (accessible) DFA D = (Q,Σ, δ, q0, F) accepting the regular language
L = L(D), the function ϕ : Σ∗ → Q defined such that

ϕ(u) = δ∗(q0, u)

induces a bijection ϕ̂ : Σ∗/ρL → Q/ ≡, defined such that

ϕ̂([u]ρL) = [δ∗(q0, u)]≡.

Furthermore, we have
[u]ρLa ⊆ [v]ρL iff δ(ϕ(u), a) ≡ ϕ(v).

Consequently, ϕ̂ induces an isomorphism of DFA’s, ϕ̂ : DρL → D/ ≡ (i.e., an invertible F -
map whose inverse is also an F -map; we know from a homework problem that such a map,
ϕ̂, must be a proper homomorphism whose inverse is also a proper homomorphism).

Proof . Since ϕ(u) = δ∗(q0, u) and ϕ(v) = δ∗(q0, v), the fact that ϕ(u) ≡ ϕ(v) can be
expressed as

∀w ∈ Σ∗(δ∗(δ∗(q0, u), w) ∈ F iff δ∗(δ∗(q0, v), w) ∈ F), iff

∀w ∈ Σ∗(δ∗(q0, uw) ∈ F iff δ∗(q0, vw) ∈ F),

which is exactly uρLv. Therefore,

uρLv iff ϕ(u) ≡ ϕ(v).

2.5. STATE EQUIVALENCE AND MINIMAL DFA’S 27

From the above, we see that the function ϕ : Σ∗ → Q maps each equivalence class [u] modulo
ρL to the equivalence class [ϕ(u)] modulo ≡ and so, the function ϕ̂ : Σ∗/ρL → Q/ ≡ given
by

ϕ̂([u]ρL) = [δ∗(q0, u)]≡

is well-defined. Moreover, ϕ̂ is injective, since ϕ̂([u]) = ϕ̂([v]) iff ϕ(u) = ϕ(v) iff (from above)
uρvv iff [u] = [v]. Since every state in Q is accessible, for every q ∈ Q, there is some u ∈ Σ∗

so that ϕ(u) = δ∗(q0, u) = q, so ϕ̂([u]) = [q]≡ and ϕ̂ is surjective. Therefore, we have a
bijection ϕ̂ : Σ∗/ρL → Q/ ≡.

Since ϕ(u) = δ∗(q0, u), we have

δ(ϕ(u), a) = δ(δ∗(q0, u), a) = δ∗(q0, ua) = ϕ(ua),

and thus, δ(ϕ(u), a) ≡ ϕ(v) can be expressed as ϕ(ua) ≡ ϕ(v). By the previous part, this is
equivalent to uaρLv, and we claim that this is equivalent to

[u]ρLa ⊆ [v]ρL.

First, if [u]ρLa ⊆ [v]ρL , then ua ∈ [v]ρL, that is, uaρLv. Conversely, if uaρLv, then for every
u′ ∈ [u]ρL, we have u′ρLu, so by right-invariance we get u′aρLua, and since uaρLv, we get
u′aρLv, that is, u′a ∈ [v]ρL . Since u′ ∈ [u]ρL is arbitrary, we conclude that [u]ρLa ⊆ [v]ρL .
Therefore, we proved that

δ(ϕ(u), a) ≡ ϕ(v) iff [u]ρLa ⊆ [v]ρL.

It is then easy to check (do it!) that ϕ̂ induces an F -map of DFA’s which is an isomorphism
(i.e., an invertible F -map whose inverse is also an F -map), ϕ̂ : DρL → D/ ≡.

Lemma 2.5.2 shows that the DFA DρL is isomorphic to the DFA D/ ≡ obtained as the
quotient of the DFA D modulo the equivalence relation ≡ on Q. Since DρL is a minimal
DFA accepting L, so is D/ ≡.

There are other characterizations of the regular languages. Among those, the character-
ization in terms of right derivatives is of particular interest because it yields an alternative
construction of minimal DFA’s.

Definition 2.5.3 Given any language, L ⊆ Σ∗, for any string, u ∈ Σ∗, the right derivative
of L by u, denoted L/u, is the language

L/u = {w ∈ Σ∗ | uw ∈ L}.

Theorem 2.5.4 If L ⊆ Σ∗ is any language, then L is regular iff it has finitely many right
derivatives. Furthermore, if L is regular, then all its right derivatives are regular and their
number is equal to the number of states of the minimal DFA’s for L.

28 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

Proof . It is easy to check that

L/u = L/v iff uρLv.

The above shows that ρL has a finite number of classes, say m, iff there is a finite number of
right derivatives, say n, and if so, m = n. If L is regular, then we know that the number of
equivalence classes of ρL is the number of states of the minimal DFA’s for L, so the number
of right derivatives of L is equal to the size of the minimal DFA’s for L.

Conversely, if the number of derivatives is finite, say m, then ρL has m classes and by
Myhill-Nerode, L is regular. It remains to show that if L is regular then every right derivative
is regular.

Let D = (Q,Σ, δ, q0, F) be a DFA accepting L. If p = δ∗(q0, u), then let

Dp = (Q,Σ, δ, p, F),

that is, D with with p as start state. It is clear that

L/u = L(Dp),

so L/u is regular for every u ∈ Σ∗. Also observe that if |Q| = n, then there are at most n
DFA’s Dp, so there is at most n right derivatives, which is another proof of the fact that a
regular language has a finite number of right derivatives.

If L is regular then the construction of a minimal DFA for L can be recast in terms of
right derivatives. Let L/u1, L/u2, . . . , L/um be the set of all the right derivatives of L. Of
course, we may assume that u1 = ϵ. We form a DFA whose states are the right derivatives,
L/ui. For every state, L/ui, for every a ∈ Σ, there is a transition on input a from L/ui to
L/uj = L/(uia). The start state is L = L/u1 and the final states are the right derivatives,
L/ui, for which ϵ ∈ L/ui.

We leave it as an exercise to check that the above DFA accepts L. One way to do this
is to recall that L/u = L/v iff uρLv and to observe that the above construction mimics the
construction of DρL as in the Myhill-Nerode lemma (Lemma 2.3.3). This DFA is minimal
since the number of right derivatives is equal to the size of the minimal DFA’s for L.

We now return to state equivalence. Note that if F = ∅, then ≡ has a single block (Q),
and if F = Q, then ≡ has a single block (F). In the first case, the minimal DFA is the
one state DFA rejecting all strings. In the second case, the minimal DFA is the one state
DFA accepting all strings. When F ̸= ∅ and F ̸= Q, there are at least two states in Q, and
≡ also has at least two blocks, as we shall see shortly. It remains to compute ≡ explicitly.
This is done using a sequence of approximations. In view of the previous discussion, we are
assuming that F ̸= ∅ and F ̸= Q, which means that n ≥ 2, where n is the number of states
in Q.

2.5. STATE EQUIVALENCE AND MINIMAL DFA’S 29

Definition 2.5.5 Given any DFA D = (Q,Σ, δ, q0, F), for every i ≥ 0, the relation ≡i on
Q, called i-state equivalence, is defined as follows: for all p, q ∈ Q,

p ≡i q iff ∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F).

When p ≡i q, we say that p and q are i-indistinguishable.

Since state equivalence ≡ is defined such that

p ≡ q iff ∀w ∈ Σ∗(δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F),

we note that testing the condition

δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F

for all strings in Σ∗ is equivalent to testing the above condition for all strings of length at
most i for all i ≥ 0, i.e.

p ≡ q iff ∀i ≥ 0 ∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F).

Since ≡i is defined such that

p ≡i q iff ∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F),

we conclude that
p ≡ q iff ∀i ≥ 0 (p ≡i q).

This identity can also be expressed as

≡=
⋂

i≥0

≡i .

If we assume that F ̸= ∅ and F ̸= Q, observe that ≡0 has exactly two equivalence classes
F and Q− F , since ϵ is the only string of length 0, and since the condition

δ∗(p, ϵ) ∈ F iff δ∗(q, ϵ) ∈ F

is equivalent to the condition
p ∈ F iff q ∈ F.

It is also obvious from the definition of ≡i that

≡⊆ · · · ⊆≡i+1 ⊆≡i ⊆ · · · ⊆≡1 ⊆≡0 .

If this sequence was strictly decreasing for all i ≥ 0, the partition associated with ≡i+1 would
contain at least one more block than the partition associated with ≡i and since we start with
a partition with two blocks, the partition associated with ≡i would have at least i+2 blocks.

30 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

But then, for i = n− 1, the partition associated with ≡n−1 would have at least n+1 blocks,
which is absurd since Q has only n states. Therefore, there is a smallest integer, i0 ≤ n− 2,
such that

≡i0+1 =≡i0 .

Thus, it remains to compute ≡i+1 from ≡i, which can be done using the following lemma:
The lemma also shows that

≡=≡i0 .

Lemma 2.5.6 For any (accessible) DFA D = (Q,Σ, δ, q0, F), for all p, q ∈ Q, p ≡i+1 q iff
p ≡i q and δ(p, a) ≡i δ(q, a), for every a ∈ Σ. Furthermore, if F ̸= ∅ and F ̸= Q, there is a
smallest integer i0 ≤ n− 2, such that

≡i0+1 =≡i0 =≡ .

Proof . By the definition of the relation ≡i,

p ≡i+1 q iff ∀w ∈ Σ∗, |w| ≤ i+ 1 (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F).

The trick is to observe that the condition

δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F

holds for all strings of length at most i+ 1 iff it holds for all strings of length at most i and
for all strings of length between 1 and i+ 1. This is expressed as

p ≡i+1 q iff

∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F) and

∀w ∈ Σ∗, 1 ≤ |w| ≤ i+ 1 (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F).

Obviously, the first condition in the conjunction is p ≡i q, and since every string w such
that 1 ≤ |w| ≤ i+1 can be written as au where a ∈ Σ and 0 ≤ |u| ≤ i, the second condition
in the conjunction can be written as

∀a ∈ Σ∀u ∈ Σ∗, |u| ≤ i (δ∗(p, au) ∈ F iff δ∗(q, au) ∈ F).

However, δ∗(p, au) = δ∗(δ(p, a), u) and δ∗(q, au) = δ∗(δ(q, a), u), so that the above condition
is really

∀a ∈ Σ (δ(p, a) ≡i δ(q, a)).

Thus, we showed that

p ≡i+1 q iff p ≡i q and ∀a ∈ Σ (δ(p, a) ≡i δ(q, a)).

2.5. STATE EQUIVALENCE AND MINIMAL DFA’S 31

Thus, if ≡i+1 = ≡i for some i ≥ 0, using induction, we also have ≡i+j = ≡i for all j ≥ 1.
Since

≡=
⋂

i≥0

≡i, ≡i+1 ⊆≡i,

and since we know that there is a smallest index say i0, such that ≡j =≡i0 , for all j ≥ i0+1,
we have ≡=≡i0 .

Using Lemma 2.5.6, we can compute ≡ inductively, starting from ≡0 = (F,Q− F), and
computing ≡i+1 from ≡i, until the sequence of partitions associated with the ≡i stabilizes.

Note that if F = Q or F = ∅, then ≡=≡0, and the inductive characterization of Lemma
2.5.6 holds trivially.

There are a number of algorithms for computing ≡, or to determine whether p ≡ q for
some given p, q ∈ Q.

A simple method to compute ≡ is described in Hopcroft and Ullman. It consists in
forming a triangular array corresponding to all unordered pairs (p, q), with p ̸= q (the rows
and the columns of this triangular array are indexed by the states in Q, where the entries
are below the descending diagonal). Initially, the entry (p, q) is marked iff p and q are not

0-equivalent, which means that p and q are not both in F or not both in Q − F . Then,
we process every unmarked entry on every row as follows: for any unmarked pair (p, q), we
consider pairs (δ(p, a), δ(q, a)), for all a ∈ Σ. If any pair (δ(p, a), δ(q, a)) is already marked,
this means that δ(p, a) and δ(q, a) are inequivalent, and thus p and q are inequivalent, and
we mark the pair (p, q). We continue in this fashion, until at the end of a round during which
all the rows are processed, nothing has changed. When the algorithm stops, all marked pairs
are inequivalent, and all unmarked pairs correspond to equivalent states.

Let us illustrates the above method. Consider the following DFA accepting {a, b}∗{abb}:

a b
A B C
B B D
C B C
D B E
E B C

The start state is A, and the set of final states is F = {E}. (This is the DFA displayed
in Figure 2.2.)

The initial (half) array is as follows, using × to indicate that the corresponding pair (say,
(E,A)) consists of inequivalent states, and to indicate that nothing is known yet.

B
C
D
E × × × ×

A B C D

32 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

After the first round, we have

B
C
D × × ×
E × × × ×

A B C D

After the second round, we have

B ×
C ×
D × × ×
E × × × ×

A B C D

Finally, nothing changes during the third round, and thus, only A and C are equivalent,
and we get the four equivalence classes

({A,C}, {B}, {D}, {E}).

We obtain the minimal DFA showed in Figure 2.3.

0 1 2 3
a b

a

b

b a

b

a

Figure 2.3: A minimal DFA accepting {a, b}∗{abb}

There are ways of improving the efficiency of this algorithm, see Hopcroft and Ullman for
such improvements. Fast algorithms for testing whether p ≡ q for some given p, q ∈ Q also
exist. One of these algorithms is based on “forward closures,” following an idea of Knuth.
Such an algorithm is related to a fast unification algorithm.

2.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 33

2.6 A Fast Algorithm for Checking State Equivalence

Using a “Forward-Closure”

Given two states p, q ∈ Q, if p ≡ q, then we know that δ(p, a) ≡ δ(q, a), for all a ∈ Σ.
This suggests a method for testing whether two distinct states p, q are equivalent. Starting
with the relation R = {(p, q)}, construct the smallest equivalence relation R† containing R
with the property that whenever (r, s) ∈ R†, then (δ(r, a), δ(s, a)) ∈ R†, for all a ∈ Σ. If we
ever encounter a pair (r, s) such that r ∈ F and s ∈ F , or r ∈ F and s ∈ F , then r and
s are inequivalent, and so are p and q. Otherwise, it can be shown that p and q are indeed
equivalent. Thus, testing for the equivalence of two states reduces to finding an efficient
method for computing the “forward closure” of a relation defined on the set of states of a
DFA.

Such a method was worked out by John Hopcroft and Richard Karp and published in
a 1971 Cornell technical report. This method is based on an idea of Donald Knuth for
solving Exercise 11, in Section 2.3.5 of The Art of Computer Programming, Vol. 1, second
edition, 1973. A sketch of the solution for this exercise is given on page 594. As far as I
know, Hopcroft and Karp’s method was never published in a journal, but a simple recursive
algorithm does appear on page 144 of Aho, Hopcroft and Ullman’s The Design and Analysis
of Computer Algorithms, first edition, 1974. Essentially the same idea was used by Paterson
and Wegman to design a fast unification algorithm (in 1978). We make a few definitions.

A relation S ⊆ Q×Q is a forward closure iff it is an equivalence relation and whenever
(r, s) ∈ S, then (δ(r, a), δ(s, a)) ∈ S, for all a ∈ Σ. The forward closure of a relation
R ⊆ Q×Q is the smallest equivalence relation R† containing R which is forward closed.

We say that a forward closure S is good iff whenever (r, s) ∈ S, then good(r, s), where
good(r, s) holds iff either both r, s ∈ F , or both r, s /∈ F . Obviously, bad(r, s) iff ¬good(r, s).

Given any relation R ⊆ Q×Q, recall that the smallest equivalence relation R≈ containing
R is the relation (R∪R−1)∗ (where R−1 = {(q, p) | (p, q) ∈ R}, and (R∪R−1)∗ is the reflexive
and transitive closure of (R∪R−1)). The forward closure of R can be computed inductively
by defining the sequence of relations Ri ⊆ Q×Q as follows:

R0 = R≈

Ri+1 = (Ri ∪ {(δ(r, a), δ(s, a)) | (r, s) ∈ Ri, a ∈ Σ})≈.

It is not hard to prove that Ri0+1 = Ri0 for some least i0, and that R† = Ri0 is the
smallest forward closure containing R. The following two facts can also been established.

(a) if R† is good, then
R† ⊆≡ . (2.1)

34 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

(b) if p ≡ q, then
R† ⊆≡,

that is, equation (2.1) holds. This implies that R† is good.

As a consequence, we obtain the correctness of our procedure: p ≡ q iff the forward
closure R† of the relation R = {(p, q)} is good.

In practice, we maintain a partition Π representing the equivalence relation that we are
closing under forward closure. We add each new pair (δ(r, a), δ(s, a)) one at a time, and
immediately form the smallest equivalence relation containing the new relation. If δ(r, a)
and δ(s, a) already belong to the same block of Π, we consider another pair, else we merge
the blocks corresponding to δ(r, a) and δ(s, a), and then consider another pair.

The algorithm is recursive, but it can easily be implemented using a stack. To manipulate
partitions efficiently, we represent them as lists of trees (forests). Each equivalence class C
in the partition Π is represented by a tree structure consisting of nodes and parent pointers,
with the pointers from the sons of a node to the node itself. The root has a null pointer.
Each node also maintains a counter keeping track of the number of nodes in the subtree
rooted at that node.

Note that pointers can be avoided. We can represent a forest of n nodes as a list of n
pairs of the form (father , count). If (father , count) is the ith pair in the list, then father = 0
iff node i is a root node, otherwise, father is the index of the node in the list which is the
parent of node i. The number count is the total number of nodes in the tree rooted at the
ith node.

For example, the following list of nine nodes

((0, 3), (0, 2), (1, 1), (0, 2), (0, 2), (1, 1), (2, 1), (4, 1), (5, 1))

represents a forest consisting of the following four trees:

1

3 6

2

7

4

8

5

9

Figure 2.4: A forest of four trees

Two functions union and find are defined as follows. Given a state p, find(p,Π) finds the
root of the tree containing p as a node (not necessarily a leaf). Given two root nodes p, q,
union(p, q,Π) forms a new partition by merging the two trees with roots p and q as follows:
if the counter of p is smaller than that of q, then let the root of p point to q, else let the root
of q point to p.

2.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 35

For example, given the two trees shown on the left in Figure 2.5, find(6,Π) returns 3 and
find(8,Π) returns 4. Then union(3, 4,Π) yields the tree shown on the right in Figure 2.5.

3

2 6 7

4

8

3

2 4 6 7

8

Figure 2.5: Applying the function union to the trees rooted at 3 and 4

In order to speed up the algorithm, using an idea due to Tarjan, we can modify find
as follows: during a call find(p,Π), as we follow the path from p to the root r of the tree
containing p, we redirect the parent pointer of every node q on the path from p (including
p itself) to r (we perform path compression). For example, applying find(8,Π) to the tree
shown on the right in Figure 2.5 yields the tree shown in Figure 2.6

3

2 4 6 7 8

Figure 2.6: The result of applying find with path compression

Then, the algorithm is as follows:

36 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

function unif [p, q,Π, dd]: flag ;

begin

trans := left(dd); ff := right(dd); pq := (p, q); st := (pq); flag := 1;

k := Length(first(trans));

while st ̸= () ∧ flag ̸= 0 do

uv := top(st); uu := left(uv); vv := right(uv);

pop(st);

if bad(ff , uv) = 1 then flag := 0

else

u := find(uu,Π); v := find(vv,Π);

if u ̸= v then

union(u, v,Π);

for i = 1 to k do

u1 := delta(trans, uu, k − i+ 1); v1 := delta(trans, vv, k − i+ 1);

uv := (u1, v1); push(st, uv)

endfor

endif

endif

endwhile

end

The initial partition Π is the identity relation on Q, i.e., it consists of blocks {q} for all
states q ∈ Q. The algorithm uses a stack st. We are assuming that the DFA dd is specified
by a list of two sublists, the first list, denoted left(dd) in the pseudo-code above, being a
representation of the transition function, and the second one, denoted right(dd), the set
of final states. The transition function itself is a list of lists, where the i-th list represents
the i-th row of the transition table for dd. The function delta is such that delta(trans, i, j)
returns the j-th state in the i-th row of the transition table of dd. For example, we have the
DFA

dd = (((2, 3), (2, 4), (2, 3), (2, 5), (2, 3), (7, 6), (7, 8), (7, 9), (7, 6)), (5, 9))

consisting of 9 states labeled 1, . . . , 9, and two final states 5 and 9 shown in Figure 2.7. Also,
the alphabet has two letters, since every row in the transition table consists of two entries.
For example, the two transitions from state 3 are given by the pair (2, 3), which indicates
that δ(3, a) = 2 and δ(3, b) = 3.

The sequence of steps performed by the algorithm starting with p = 1 and q = 6 is shown
below. At every step, we show the current pair of states, the partition, and the stack.

2.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 37

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 2.7: Testing state equivalence in a DFA

p = 1, q = 6, Π = {{1, 6}, {2}, {3}, {4}, {5}, {7}, {8}, {9}}, st = {{1, 6}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 2.8: Testing state equivalence in a DFA

p = 2, q = 7, Π = {{1, 6}, {2, 7}, {3}, {4}, {5}, {8}, {9}}, st = {{3, 6}, {2, 7}}

38 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 2.9: Testing state equivalence in a DFA

p = 4, q = 8, Π = {{1, 6}, {2, 7}, {3}, {4, 8}, {5}, {9}}, st = {{3, 6}, {4, 8}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 2.10: Testing state equivalence in a DFA

p = 5, q = 9, Π = {{1, 6}, {2, 7}, {3}, {4, 8}, {5, 9}}, st = {{3, 6}, {5, 9}}

2.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 39

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 2.11: Testing state equivalence in a DFA

p = 3, q = 6, Π = {{1, 3, 6}, {2, 7}, {4, 8}, {5, 9}}, st = {{3, 6}, {3, 6}}

Since states 3 and 6 belong to the first block of the partition, the algorithm terminates.
Since no block of the partition contains a bad pair, the states p = 1 and q = 6 are equivalent.

Let us now test whether the states p = 3 and q = 7 are equivalent.

1

2

3

4 5

a

b

a

b

a b

a

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 2.12: Testing state equivalence in a DFA

40 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

p = 3, q = 7, Π = {{1}, {2}, {3, 7}, {4}, {5}, {6}, {8}, {9}}, st = {{3, 7}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 2.13: Testing state equivalence in a DFA

p = 2, q = 7, Π = {{1}, {2, 3, 7}, {4}, {5}, {6}, {8}, {9}}, st = {{3, 8}, {2, 7}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 2.14: Testing state equivalence in a DFA

2.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 41

p = 4, q = 8, Π = {{1}, {2, 3, 7}, {4, 8}, {5}, {6}, {9}}, st = {{3, 8}, {4, 8}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 2.15: Testing state equivalence in a DFA

p = 5, q = 9, Π = {{1}, {2, 3, 7}, {4, 8}, {5, 9}, {6}}, st = {{3, 8}, {5, 9}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 2.16: Testing state equivalence in a DFA

42 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

p = 3, q = 6, Π = {{1}, {2, 3, 6, 7}, {4, 8}, {5, 9}}, st = {{3, 8}, {3, 6}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 2.17: Testing state equivalence in a DFA

p = 3, q = 8, Π = {{1}, {2, 3, 4, 6, 7, 8}, {5, 9}}, st = {{3, 8}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 2.18: Testing state equivalence in a DFA

2.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 43

p = 3, q = 9, Π = {{1}, {2, 3, 4, 6, 7, 8}, {5, 9}}, st = {{3, 9}}

Since the pair (3, 9) is a bad pair, the algorithm stops, and the states p = 3 and q = 7
are inequivalent.

44 CHAPTER 2. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

