
Chapter 1

Introduction

Logic is concerned mainly with two concepts: truth and provability . These
concepts have been investigated extensively for centuries, by philosophers,
linguists, and mathematicians. The purpose of this book is by no means to
give a general account of such studies. Instead, the purpose of this book
is to focus on a mathematically well defined logical system known as first-
order logic (and, to some extent, many-sorted logic), and prove some basic
properties of this system. In particular, we will focus on algorithmic methods
for proving theorems (often referred to as automatic theorem proving).

Every logical system consists of a language used to write statements also
called propositions or formulae. Normally, when one writes a formula, one has
some intended interpretation of this formula in mind. For example, a formula
may assert a true property about the natural numbers, or some property that
must be true in a data base. This implies that a formula has a well-defined
meaning or semantics. But how do we define this meaning precisely? In logic,
we usually define the meaning of a formula as its truth value. A formula can
be either true (or valid) or false.

Defining rigorously the notion of truth is actually not as obvious as it
appears. We shall present a concept of truth due to Tarski. Roughly speaking,
a formula is true if it is satisfied in all possible interpretations. So far, we have
used the intuitive meaning of such words as truth, interpretation, etc. One of
the objectives of this book is to define these terms rigorously, for the language
of first-order logic (and many-sorted first-order logic). The branch of logic
in which abstract structures and the properties true in these structures are
studied is known as model theory .

Once the concept of truth has been defined rigorously, the next question

1

2 1/Introduction

is to investigate whether it is possible to find methods for deciding in a finite
number of steps whether a formula is true (or valid). This is a very difficult
task. In fact, by a theorem due to Church, there is no such general method
for first-order logic.

However, there is another familiar method for testing whether a formula
is true: to give a proof of this formula.

Of course, to be of any value, a proof system should be sound , which
means that every provable formula is true.

We will also define rigorously the notion of proof, and proof system
for first-order logic (and many-sorted first-order logic). The branch of logic
concerned with the study of proof is known as proof theory .

Now, if we have a sound proof system, we know that every provable
formula is true. Is the proof system strong enough that it is also possible to
prove every true formula (of first-order logic)?

A major theorem of Gödel shows that there are logical proof systems in
which every true formula is provable. This is referred to as the completeness
of the proof system.

To summarize the situation, if one is interested in algorithmic meth-
ods for testing whether a formula of first-order logic is valid, there are two
logical results of central importance: one positive (Gödel’s completeness the-
orem), the other one negative (Church’s undecidability of validity). Roughly
speaking, Gödel’s completeness theorem asserts that there are logical calculi
in which every true formula is provable, and Church’s theorem asserts that
there is no decision procedure (procedure which always terminates) for decid-
ing whether a formula is true (valid). Hence, any algorithmic procedure for
testing whether a formula is true (or equivalently, by Gödel’s completeness
theorem, provable in a complete system) must run forever when given certain
non-true formulae as input.

This book focuses on Gödel’s positive result and its applications to
automatic theorem proving. We have attempted to present a coherent ap-
proach to automatic theorem proving, following a main thread: Gentzen-like
sequent calculi. The restriction to the positive result was dictated mostly by
the lack of space. Indeed, it should be stressed that Church’s negative result
is also important, as well as other fundamental negative results due to Gödel.
However, the omission of such topics should not be a severe inconvenience to
the reader, since there are many texts covering such material (see the notes
at the end of Chapter 5).

In spite of the theoretical limitation imposed by Church’s result, the goal
of automatic theorem proving (for short, atp) is to find efficient algorithmic
methods for finding proofs of those formulae that are true.

A fairly intuitive method for finding such algorithms is the completeness
proof for Gentzen-like sequent calculi. This approach yields a complete pro-
cedure (the search procedure) for proving valid formulae of first-order logic.

1 Introduction 3

However, the search procedure usually requires an enormous amount of space
and time and it is not practical. Hence, we will try improve it or find more
efficient proof procedures.

For this, we will analyze the structure of proofs carefully. Fundamental
results of Gentzen and Herbrand show that if a formula is provable, then it
has a proof having a certain form, called a normal form.

The existence of such normal forms can be exploited to reduce the size
of the search space that needs to be explored in trying to find a proof. Indeed,
it is sufficient to look for proofs in normal form.

The existence of normal forms is also fundamental because it reduces the
problem of finding a proof of a first-order formula to the problem of finding a
proof of a simpler type of formula, called a proposition. Propositions are much
simpler than first-order formulae. Indeed, there are algorithms for deciding
truth. One of the methods based on this reduction technique is the resolution
method , which will be investigated in Chapters 4 and 8.

Besides looking for general methods applying to the class of all true (first-
order) formulae, it is interesting to consider subclasses for which simpler or
more efficient proof procedures exist. Indeed, for certain subclasses there may
be decision procedures. This is the case for propositions, and for quantifier-
free formulae. Such cases are investigated in Chapters 3 and 10 respectively.

Unfortunately, even in cases in which algorithms exist, another difficulty
emerges. A decision procedure may take too much time and space to be
practical. For example, even testing whether a proposition is true may be
very costly. This will be discussed in Chapter 3.

Automatic theorem proving techniques can be used by computer sci-
entists to axiomatize structures and prove properties of programs working
on these structures. Another recent and important role that logic plays in
computer science, is its use as a programming language and as a model of
computation. For example, in the programming language PROLOG, pro-
grams are specified by sets of assertions. In such a programming language, a
computation is in fact a proof, and the output of a program is extracted from
the proof. Promoters of such languages claim that since such programs are
essentially logical formulae, establishing their correctness is trivial. This is not
quite so, because the concept of correctness is relative, and the semantics of a
PROLOG program needs to be expressed in a language other than PROLOG.
However, using logic as a vehicle for programming is a very interesting idea
and should be a selling point for skeptics. This use of logic will be investigated
in Chapter 9.

Chapter 2

Mathematical
Preliminaries

This chapter is devoted to mathematical preliminaries. This fairly lengthy
chapter has been included in order to make this book as self-contained as
possible. Readers with a firm mathematical background may skim or even
skip this chapter entirely. Classroom experience shows that anyone who is
not acquainted with the material included in Section 2.3 should probably
spend some time reading Sections 2.1 to 2.3. In any case, this chapter can be
used as a library of useful facts and may be consulted whenever necessary.

Since trees, inductive definitions and the definition of functions by re-
cursion play an important role in logic, they will be defined carefully. First,
we review some basic concepts and establish the terminology and notation
used in this book. It is assumed that the reader is familiar with the basic
properties of sets. For more details, the reader may consult Enderton, 1972;
Enderton, 1977; Lewis and Papadimitriou, 1981; or Suppes, 1972.

2.1 Relations, Functions, Partial Orders, Induction

First, we review the concepts of Cartesian product, tuple and relation.

2.1.1 Relations

Given two sets A and B (possibly empty), their Cartesian product denoted
by A×B is the set of ordered pairs

{< a, b > | a ∈ A, b ∈ B}.

4

2.1 Relations, Functions, Partial Orders, Induction 5

Given any finite number of sets A1,...,An, the Cartesian product
A1 × ...×An is the set of ordered n-tuples

{< a1, ..., an > | ai ∈ Ai, 1 ≤ i ≤ n}

(An ordered n-tuple < a1, ..., an > is also denoted by (a1, ..., an).)

A binary relation between A and B is any subset R (possibly empty) of
A×B.

Given a relation R between A and B, the set

{x ∈ A | ∃y ∈ B < x, y >∈ R},

is called the domain of R and denoted by dom(R). The set

{y ∈ B | ∃x ∈ A < x, y >∈ R}

is called the range of R and is denoted by range(R).

When A = B, a relation R beween A and A is also called a relation on
(or over) A. We will also use the notation xRy as an alternate to (x, y) ∈ R.

2.1.2 Partial Functions, Total Functions

A relation R between two sets A and B is functional iff, for all x ∈ A, and
y, z ∈ B, (x, y) ∈ R and (x, z) ∈ R implies that y = z.

A partial function is a triple f =< A,G, B >, where A and B are
arbitrary sets (possibly empty) and G is a functional relation (possibly empty)
between A and B, called the graph of f .

Hence, a partial function is a functional relation such that every argu-
ment has at most one image under f . The graph of a function f is denoted
as graph(f). When no confusion can arise, a function f and its graph are
usually identified.

A partial function f =< A, G,B > is often denoted as f : A → B. For
every element x in the domain of a partial function f , the unique element y
in the range of f such that (x, y) ∈ graph(f) is denoted by f(x). A partial
function f : A→ B is a total function iff dom(f) = A. It is customary to call
a total function simply a function.

2.1.3 Composition of Relations and Functions

Given two binary relations R between A and B, and S between B and C,
their composition denoted by R ◦ S is a relation between A and C defined by
the following set of ordered pairs:

{(a, c) | ∃b ∈ B, (a, b) ∈ R and (b, c) ∈ S}.

6 2/Mathematical Preliminaries

Given a set A, the identity relation of A is denoted by IA and is the
relation {(x, x) | x ∈ A}. Note that IA is also a total function.

Given a relation R between A and B, its converse is the relation between
B and A denoted by R−1 defined by the set

{(b, a) ∈ B ×A | (a, b) ∈ R}.

Given two partial or total functions f : A → B and g : B → C, with
f =< A, G1, B > and g =< B,G2, C >, their composition denoted by f ◦ g
(or f.g, or fg), is the partial or total function defined by < A, G1 ◦G2, C >.
Notice that according to our notation, f ◦g(x) = g(f(x)), that is, f is applied
first. Note also that composition is associative.

2.1.4 Injections, Surjections, Bijections

A function f : A → B is injective (or one to one) iff, for all x, y ∈ A,
f(x) = f(y) implies that x = y.

A function f : A → B is surjective (or onto) iff, for all y ∈ B, there is
some x ∈ A such that f(x) = y. Equivalently, the range of f is the set B.

A function is bijective iff it is both injective and surjective.

It can be shown that a function f is surjective if and only if there exists a
function g : B → A such that g ◦ f = IB . If there exists a function g : B → A
such that f ◦ g = IA, then f : A → B is injective. If f : A → B is injective
and A 6= ∅, then there exists a function g : B → A such that f ◦ g = IA. As
a consequence, it can be shown that a function f : A → B is bijective if and
only if there is a unique function f−1 called its inverse such that f ◦f−1 = IA

and f−1 ◦ f = IB .

2.1.5 Direct Image, Inverse Image

Given a (partial) function f : A → B, for every subset X of A, the direct
image (or for short, image) of X under f is the set

{y ∈ B | ∃x ∈ X, f(x) = y}

and is denoted by f(X). For every subset Y of B, the inverse image of Y
under f is the set

{x ∈ A | ∃y ∈ Y, f(x) = y}

and is denoted by f−1(Y).

Warning : The function f may not have an inverse. Hence, f−1(Y)
should not be confused with f−1(y) for y ∈ B, which is only defined when f
is a bijection.

2.1 Relations, Functions, Partial Orders, Induction 7

2.1.6 Sequences

Given two sets I and X, an I-indexed sequence (or sequence) is any function
A : I → X, usually denoted by (Ai)i∈I . The set I is called the index set . If
X is a set of sets, (Ai)i∈I is called a family of sets.

2.1.7 Natural Numbers and Countability

The set of natural numbers (or nonnegative integers) is denoted by N and is
the set {0, 1, 2, 3, ...}. A set A is countable (or denumerable) iff either A = ∅ or
there is a surjection h : N→ A from N onto A, countably infinite iff there is a
bijection h : N→ A. Otherwise, A is said to be uncountable. The cardinality
of a countably infinite set is denoted by ω. The set of positive integers is
denoted by N+. For every positive integer n ∈ N+, the set {1, ..., n} is
denoted as [n], and [0] denotes the empty set. A set A is finite iff there is a
bijection h : [n] → A for some natural number n ∈ N. The natural number
n is called the cardinality of the set A, which is also denoted by |A|. When
I is the set N of natural numbers, a sequence (Ai)i∈I is called a countable
sequence, and when I is some set [n] with n ∈ N, (Ai)i∈I is a finite sequence.

2.1.8 Equivalence Relations

A binary relation R ⊂ A×A is reflexive iff for all x ∈ A, (x, x) ∈ R.

The relation R is symmetric iff for all x, y ∈ A, (x, y) ∈ R implies that
(y, x) ∈ R.

The relation R is transitive iff for all x, y, z ∈ A, (x, y) ∈ R and (y, z) ∈ R
implies that (x, z) ∈ R.

The relation R is an equivalence relation if it is reflexive, symmetric and
transitive. Given an equivalence relation R on a set A, for every x ∈ A, the
set {y ∈ A | (x, y) ∈ R} is the equivalence class of x modulo R and is denoted
by [x]R, or xR, or simply [x] or x. The set of equivalence classes modulo R
is the quotient of A by R and is denoted by A/R. The set A/R is also called
a partition of A, since any two distinct equivalence classes are nonempty and
disjoint, and their union is A itself. The surjective function hR : A → A/R
such that hR(x) = [x]R is called the canonical function associated with R.

Given any relation R on a set A, we define the powers of R as follows:
For every integer n ≥ 0,

R0 = IA, R1 = R, and Rn+1 = Rn ◦R.

The union

R+ =
⋃
n≥1

Rn

8 2/Mathematical Preliminaries

called the transitive closure of R is the smallest transitive relation on A con-
taining R, and

R∗ =
⋃
n≥0

Rn

is called the reflexive and transitive closure of R and is the smallest reflexive
and transitive relation on A containing R. It is obvious that R+ = R ◦R∗ =
R∗ ◦ R, and that R∗ = IA ∪ R+. Thus, it can also be shown that for any
relation R on a set A, (R ∪R−1)∗ is the least equivalence relation containing
R.

2.1.9 Partial and Total Orders

A relation R on a set A is antisymmetric iff for all x, y ∈ A, (x, y) ∈ R and
(y, x) ∈ R implies that x = y.

A relation R on a set A is a partial order iff R is reflexive, transitive and
antisymmetric.

Given a partial order R on a set A, the pair < A, R > is called a partially
ordered set (or poset). A partial order is often denoted by the symbol ≤.

Given a partial order ≤ on a set A, given any subset X of A, X is a
chain iff for all x, y ∈ X, either x ≤ y, or y ≤ x.

A partial order ≤ on a set A is a total order (or a linear order) iff A is
a chain.

Given a partial order ≤ on a set A, given any subset X of A, an element
b ∈ A is a lower bound of X iff for all x ∈ X, b ≤ x. An element m ∈ A is an
upper bound of X iff for all x ∈ X, x ≤ m. Note that b or m may or may not
belong to X. It can be easily shown that a lower bound (resp. upper bound)
of X in X is unique. Hence the following definition is legitimate.

An element b ∈ X is the least element of X iff for all x ∈ X, b ≤ x.
An element m ∈ X is the greatest element of X iff for all x ∈ X, x ≤ m. In
view of the above remark, least and greatest elements are unique (when they
exist).

Given a subset X of A, an element b ∈ X is minimal in X iff for all
x ∈ X, x ≤ b implies that x = b. An element m ∈ X is maximal in X if for all
x ∈ X, m ≤ x implies that m = x. Contrary to least and greatest elements,
minimal or maximal elements are not necessarily unique.

An element m ∈ A is the least upper bound of a subset X, iff the set of
upper bounds of X is nonempty, and m is the least element of this set. An
element b ∈ A is the greatest lower bound of X if the set of lower bounds of
X is nonempty, and b is the greatest element of this set.

Although the following fundamental result known as Zorn’s lemma will
not be used in the main text, it will be used in some of the problems. Hence,

2.1 Relations, Functions, Partial Orders, Induction 9

this result is stated without proof. For details and the proof, the reader is
referred to Suppes, 1972; Levy, 1979; or Kuratowski and Mostowski, 1976.

Theorem 2.1.1 (Zorn’s lemma) Given a partially ordered set < A,≤>, if
every (nonempty) chain in A has an upper bound, then A has some maximal
element.

2.1.10 Well-Founded Sets and Complete Induction

A very general induction principle holds for the class of partially ordered sets
having a well-founded ordering. Given a partial order ≤ on a set A, the strict
order < associated with ≤ is defined as follows:

x < y if and only if x ≤ y and x 6= y.

A partially ordered set < A,≤> is well-founded iff it has no infinite
decreasing sequence (xi)i∈N, that is, sequence such that xi+1 < xi for all
i ≥ 0.

The following property of well-founded sets is fundamental.

Lemma 2.1.1 Given a partially ordered set < A,≤>, < A,≤> is a well-
founded set if and only if every nonempty subset of A has a minimal element.

Proof : First, assume that < A,≤> is well-founded. We proceed by
contradiction. Let X be any nonempty subset of A, and assume that X does
not have a minimal element. This means that for any x ∈ X, there is some
y ∈ X such that y < x, since otherwise there would be some minimal x ∈ X.
Since X is nonempty, there is some x0 in X. By the above remark, there is
some x1 ∈ X such that x1 < x0. By repeating this argument (using induction
on N), an infinite decreasing sequence (xi) can be defined in X, contradicting
the fact that A is well-founded. Hence, X must have some minimal element.

Conversely, assume that every nonempty subset has a minimal element.
If an infinite decreasing sequence (xi) exists in A, (xi) has some minimal
element xk. But this contradicts the fact that xk+1 < xk.

The principle of complete induction (or structural induction) is now de-
fined. Let (A,≤) be a well-founded poset, and let P be a property of the
set A, that is, a function P : A → {false, true}. We say that P (x) holds if
P (x) = true.

Principle of Complete Induction

To prove that a property P holds for all z ∈ A, it suffices to show that,
for every x ∈ A,

(∗) if x is minimal, or P (y) holds for all y < x,

(∗∗) then P (x) holds.

The statement (∗) is called the induction hypothesis, and the implication

10 2/Mathematical Preliminaries

for all x, (∗) implies (∗∗)

is called the induction step. Formally, the induction principle can be
stated as:

(CI) (∀x ∈ A)[(∀y ∈ A)(y < x ⊃ P (y)) ⊃ P (x)] ⊃ (∀z ∈ A)P (z)

Note that if x is minimal, then there is no y ∈ A such that y < x, and
(∀y ∈ A)(y < x ⊃ P (y)) is true. Hence, P (x) has to be shown to be true
for every minimal element x. These cases are called the base cases. Complete
induction is not valid for arbitrary posets (see the problems) but holds for
well-founded sets as shown in the following lemma.

Lemma 2.1.2 The principle of complete induction holds for every well-
founded set.

Proof : We proceed by contradiction. Assume that (CI) is false. Then,

(1) (∀x ∈ A)[(∀y ∈ A)(y < x ⊃ P (y)) ⊃ P (x)]

is true and

(2) (∀z ∈ A)P (z)

is false, that is,
(∃z ∈ A)(P (z) = false)

is true.

Hence, the subset X of A defined by

X = {x ∈ A | P (x) = false}

is nonempty. Since A is well founded, by lemma 2.1.1, X has some minimal
element b. Since (1) is true for all x ∈ A, letting x = b,

(3) [(∀y ∈ A)(y < b ⊃ P (y)) ⊃ P (b)]

is true. If b is also minimal in A, there is no y ∈ A such that y < b and so,

(∀y ∈ A)(y < b ⊃ P (y))

holds trivially and (3) implies that P (b) = true, which contradicts the fact
that b ∈ X. Otherwise, for every y ∈ A such that y < b, P (y) = true, since
otherwise y would belong to X and b would not be minimal. But then,

(∀y ∈ A)(y < b ⊃ P (y))

also holds and (3) implies that P (b) = true, contradicting the fact that b ∈ X.
Hence, complete induction is valid for well-founded sets.

2.1 Relations, Functions, Partial Orders, Induction 11

As an illustration of well-founded sets, we define the lexicographic or-
dering . Given a partially ordered set (A,≤), the lexicographic ordering <<
on A×A induced by ≤ is defined a follows: For all x, y, x′, y′ ∈ A,

(x, y) << (x′, y′) if and only if either
x = x′ and y = y′, or

x < x′ or
x = x′ and y < y′.

We leave as an exercise the check that << is indeed a partial order on A×A.
The following lemma will be useful.

Lemma 2.1.3 If < A,≤> is a well-founded partially ordered set, the lexi-
cographic ordering << on A×A is also well founded.

Proof : We proceed by contradiction. Assume that there is an infinite
decreasing sequence (< xi, yi >)i∈N in A×A. Then, either,

(1) There is an infinite number of distinct xi, or

(2) There is only a finite number of distinct xi.

In case (1), the subsequence consisting of these distinct elements forms
a decreasing sequence in A, contradicting the fact that ≤ is well founded. In
case (2), there is some k such that for all i ≥ k, xi = xi+1. By definition of
<<, the sequence (yi)i≥k is a decreasing sequence in A, contradicting the fact
that ≤ is well founded. Hence, << is well founded on A×A.

As an illustration of the principle of complete induction, consider the
following example in which it is shown that a function defined recursively is
a total function.

EXAMPLE 2.1.1

(Ackermann’s function) The following function A : N×N→ N known
as Ackermann’s function is well known in recursive function theory for
its extraordinary rate of growth. It is defined recursively as follows:

A(x, y) = if x = 0 then y + 1

else if y = 0 then A(x− 1, 1)

else A(x− 1, A(x, y − 1))

It is actually not obvious that such a recursive definition defines a partial
function, but this can be shown. The reader is referred to Machtey and
Young, 1978; or Rogers, 1967, for more details.

We wish to prove that A is a total function. We proceed by com-
plete induction over the lexicographic ordering on N×N.

12 2/Mathematical Preliminaries

The base case is x = 0, y = 0. In this case, since A(0, y) = y + 1,
A(0, 0) is defined and equal to 1.

The induction hypothesis is that for any (m,n), A(m′, n′) is defined
for all (m′, n′) << (m,n), with (m,n) 6= (m′, n′).

For the induction step, we have three cases:

(1) If m = 0, since A(0, y) = y + 1, A(0, n) is defined and equal to
n + 1.

(2) If m 6= 0 and n = 0, since (m − 1, 1) << (m, 0) and (m − 1, 1) 6=
(m, 0), by the induction hypothesis, A(m− 1, 1) is defined, and so
A(m, 0) is defined since it is equal to A(m− 1, 1).

(3) If m 6= 0 and n 6= 0, since (m,n− 1) << (m,n) and (m,n− 1) 6=
(m,n), by the induction hypothesis, A(m,n− 1) is defined. Since
(m−1, y) << (m, z) and (m−1, y) 6= (m, z) no matter what y and
z are, (m− 1, A(m,n− 1)) << (m,n) and (m− 1, A(m,n− 1)) 6=
(m,n), and by the induction hypothesis, A(m− 1, A(m,n− 1)) is
defined. But this is precisely A(m,n), and so A(m,n) is defined.
This concludes the induction step. Hence, A(x, y) is defined for all
x, y ≥ 0.

2.1.11 Restrictions and Extensions

We define a partial ordering ⊆ on partial functions as follows: f ⊆ g if and
only if graph(f) is a subset of graph(g). We say that g is an extension of f
and that f is a restriction of g. The following lemma will be needed later.

Lemma 2.1.4 Let (fn)n≥0 be a sequence of partial functions fn : A → B
such that fn ⊆ fn+1 for all n ≥ 0. Then, g = (A,

⋃
graph(fn), B) is a partial

function. Furthermore, g is the least upper bound of the sequence (fn).

Proof : First, we show that G =
⋃

graph(fn) is functional. Note that for
every (x, y) ∈ G, there is some n such that (x, y) ∈ graph(fn). If (x, y) ∈ G
and (x, z) ∈ G, then there is some m such that (x, y) ∈ graph(fm) and some
n such that (x, z) ∈ graph(fn). Letting k = max(m,n), since (fn) is a chain,
we have (x, y) ∈ graph(fk) and (x, z) ∈ graph(fk). But since graph(fk) is
functional, we must have y = z. Next, the fact that each relation graph(fn) is
contained in G is obvious since G =

⋃
graph(fn). If h is any partial function

such that graph(fn) is a subset of graph(h) for all n ≥ 0, by definition of a
union, G =

⋃
graph(fn) is a subset of h. Hence, g is indeed the least upper

bound of the chain (fn).

2.1.12 Strings

Given any set A (even infinite), a string over A is any finite sequence u : [n]→
A, where n is a natural number. It is customary to call the set A an alphabet .

2.2 Tree Domains and Trees 13

Given a string u : [n]→ A, the natural number n is called the length of u and
is denoted by |u|. For n = 0, we have the string corresponding to the unique
function from the empty set to A, called the null string (or empty string), and
denoted by eA, or for simplicity by e when the set A is understood. Given
any set A (even infinite), the set of all strings over A is denoted by A∗. If
u : [n]→ A is a string and n > 0, for every i ∈ [n], u(i) is some element of A
also denoted by ui, and the string u is also denoted by u1...un.

Strings can be concatenated as follows. Given any two strings u : [m]→
A and v : [n] → A, (m,n ≥ 0), their concatenation denoted by u.v or uv is
the string w : [m + n]→ A such that:

w(i) =
{

u(i) if 1 ≤ i ≤ m;
v(i−m) if m + 1 ≤ i ≤ m + n.

One verifies immediately that for every string u, u.e = e.u = u. In
other words, viewing concatenation as an algebraic operation on the set A∗

of all strings, e is an identity element. It is also obvious that concatenation is
associative, but not commutative in general.

Given a string u, a string v is a prefix (or head) of u if there is a string
w such that u = vw. A string v is a suffix (or tail) of u if there is a string
w such that u = wv. A string v is a substring of u if there are strings x and
y such that u = xvy. A prefix v (suffix, substring) of a string u is proper if
v 6= u.

2.2 Tree Domains and Trees

In order to define finite or infinite trees, we use the concept of a tree domain
due to Gorn (Gorn, 1965).

2.2.1 Tree Domains

A tree domain D is a nonempty subset of strings in N∗
+ satisfying the condi-

tions:

(1) For each u ∈ D, every prefix of u is also in D.

(2) For each u ∈ D, for every i ∈ N+, if ui ∈ D then, for every j,
1 ≤ j ≤ i, uj is also in D.

EXAMPLE 2.2.1
The tree domain

D = {e, 1, 2, 11, 21, 22, 221, 222, 2211}

is represented as follows:

14 2/Mathematical Preliminaries

e
↙ ↘

1 2
↙ ↙ ↘

11 21 22
↙ ↘

221 222
↓

2211

2.2.2 Trees

Given a set Σ of labels, a Σ-tree (for short, a tree) is a total function t : D → Σ,
where D is a tree domain.

The domain of a tree t is denoted by dom(t). Every string u in dom(t)
is called a tree address or a node.

EXAMPLE 2.2.2

Let Σ = {f, g, h, a, b}. The tree t : D → Σ, where D is the tree domain
of example 2.2.1 and t is the function whose graph is

{(e, f), (1, h), (2, g), (11, a), (21, a), (22, f), (221, h), (222, b), (2211, a)}

is represented as follows:

f
↙ ↘

h g
↙ ↙ ↘

a a f
↙ ↘

h b
↓
a

The outdegree (sometimes called ramification) d(u) of a node u is the
cardinality of the set {i | ui ∈ dom(t)}. Note that the outdegree of a node can
be infinite. Most of the trees that we shall consider will be finite-branching ,
that is, for every node u, d(u) will be an integer, and hence finite. A node
of outdegree 0 is called a leaf . The node whose address is e is called the root
of the tree. A tree is finite if its domain dom(t) is finite. Given a node u in
dom(t), every node of the form ui in dom(t) with i ∈ N+ is called a son (or
immediate successor) of u.

2.2 Tree Domains and Trees 15

Tree addresses are totally ordered lexicographically as follows: u ≤ v if
either u is a prefix of v or, there exist strings x, y, z ∈ N∗

+ and i, j ∈ N+, with
i < j, such that u = xiy and v = xjz. In the first case, we say that u is an
ancestor (or predecessor) of v (or u dominates v) and in the second case, that
u is to the left of v. If y = e and z = e, we say that xi is a left brother (or left
sibling) of xj, (i < j). Two tree addresses u and v are independent if u is not
a prefix of v and v is not a prefix of u.

2.2.3 Paths

A finite path with source u and target v is a finite sequence of nodes u0,u1,...,un

such that u0 = u, un = v, and for all j, 1 ≤ j ≤ n, uj = uj−1ij for some
ij ∈ N+. The length of a path u0, u1, ..., un is n (n ≥ 0). When n = 0, we
have the null path from u to u (of length 0). A branch (or chain) is a path
from the root to a leaf. An infinite path with source u is an infinite sequence
of nodes u0,u1,...,un,..., such that u0 = u and, for all j ≥ 1, uj = uj−1ij for
some ij ∈ N+.

Given a finite tree t, the height of a node u in dom(t) is equal to
max({length(p) | p is a path from u to a leaf}). The depth of a finite tree
is the height of its root (the length of a longest path from the root to a leaf).

2.2.4 Subtrees

Given a tree t and a node u in dom(t), the subtree rooted at u (also called
scope) is the tree t/u whose domain is the set {v | uv ∈ dom(t)} and such
that t/u(v) = t(uv) for all v in dom(t/u).

Another important operation is the operation of tree replacement (or
tree substitution).

2.2.5 Tree Replacement

Given two trees t1 and t2 and a tree address u in t1, the result of replacing
t2 at u in t1, denoted by t1[u← t2], is the function whose graph is the set of
pairs

{(v, t1(v)) | u is not a prefix of v} ∪ {(uv, t2(v)}.

EXAMPLE 2.2.3

Let t1 and t2 be the trees defined by the following diagrams:

16 2/Mathematical Preliminaries

Tree t1

f
↙ ↘

h g
↙ ↙ ↘

a a f
↙ ↘

h b
↓
a

Tree t2

g
↙ ↘

a b

The tree t1[22← t2] is defined by the following diagram:

f
↙ ↘

h g
↙ ↙ ↘

a a g
↙ ↘

a b

2.2.6 Ranked Alphabets and Σ-Trees

In many situations, it is desirable to have a standard set of symbols to name
operations taking a specified number of arguments. Such a set is called a
ranked alphabet (or simply stratified alphabet , or signature).

A ranked alphabet is a set Σ together with a rank function r : Σ → N.
Every symbol f ∈ Σ has a rank (or arity) r(f) indicating the fixed number of
arguments of f . Symbols of arity 0 are also called constants. For every n ≥ 0,
Σn denotes the subset of Σ consisting of the function symbols of rank n.

If the set Σ of labels is a ranked alphabet, a Σ-tree is a function t :
dom(t)→ Σ as before, with the additional requirement that for every node u
in dom(t), d(u) = r(t(u)). In other words, the outdegree of a node is equal to
the rank of its label.

2.3 Inductive Definitions 17

EXAMPLE 2.2.4

Let Σ = {a, b, +, ∗}, where a, b have rank 0, and +, ∗ have rank 2. The
following is a Σ-tree:

+
↙ ↘

a ∗
↙ ↘

a b

The set of all Σ-trees is denoted by CTΣ and the set of all finite trees
by TΣ. Every one-node tree labeled with a constant a is also denoted by a.

2.3 Inductive Definitions

Most objects used in logic or computer science are defined inductively . By
this we mean that we frequently define a set S of objects as:

The smallest set of objects containing a given set X of atoms, and closed
under a given set F of constructors.

The purpose of this section is to define rigorously what the above sen-
tence means.

2.3.1 Inductive Closures

Let us begin with an example.

EXAMPLE 2.3.1

Let V = {x0, x1, ...} be a countable set of variables, let X = V ∪{0, 1}, let
+ and ∗ two binary function symbols, let “(” denote the left parenthesis
and “)” the right parenthesis. We wish to define the set EXPR of
arithmetic expressions defined using the variables in V , the constants
0,1, and the operators + and ∗. The following definition is often given:

An arithmetic expression E is one of the following expressions:

(1) A variable in V , or 0, or 1;

(2) If E1 and E2 are arithmetic expressions, then so are (E1 +E2) and
(E1 ∗ E2);

(3) An expression is an arithmetic expression only if it is obtained by
applications of clauses (1) and (2).

In such a definition called an inductive definition, clause (1) defines the
atoms, clause (2) asserts some closure conditions, and clause (3) is supposed
to assert that the set EXPR of arithmetic expressions is the smallest set of

18 2/Mathematical Preliminaries

expressions containing the atoms and closed under the operations described
in (2). However, it is by no means clear that (1),(2),(3) really define a set,
and that this set is the smallest set having properties defined by clauses (1)
and (2).

The problem with the above definition is that the universe of all possible
expressions is not defined, and that the operations defined by (2) are not
clearly defined either. This can be remedied as follows. Let Σ be the alphabet
V ∪ {0, 1, (,),+, ∗}, and A = Σ∗ be the set of all strings over Σ. The set A
is the universe of all possible expressions. Note that A contains a lot of
expressions that are not arithmetic expressions, and the purpose of the above
inductive definition is to define the subset EXPR of Σ∗ describing exactly all
arithmetic expressions. We define the functions H+ and H∗ from A×A to A
as follows: For all strings u, v ∈ A,

H+(u, v) = (u + v)

H∗(u, v) = (u ∗ v)

The string (u + v) is the string obtained by concatenating the symbol
“(”, the string u, the symbol +, the string v, and the symbol “)”, and similarly
for the string (u ∗ v). Also, note that H+ and H∗ are defined for all strings
in A, and not just legal arithmetic expressions. For example, if u = 0 and
v = ∗), H+(u, v) = (0 + ∗)), which is not a legal arithmetic expression.

We say that a subset Y of A is closed under H+ and H∗ if for all u, v ∈ Y ,
H+(u, v) ∈ Y and H∗(u, v) ∈ Y . We are now in a position to give a precise
definition of the set EXPR of arithmetic expressions. We define EXPR as
the least subset of A containing X and closed under H+ and H∗. The only
remaining problem is that we have not shown that such a set actually exists.
This can be shown in two ways that turn out to be equivalent as we will prove
shortly. The first method which might be called a top-down method, is to
observe that:

(1) The family C of all subsets Y of A that contain X and are closed
under H+ and H∗ is nonempty, since A satisfies these properties;

(2) Given any family of subsets of A containing X and closed under H+

and H∗, the intersection of this family also contains X and is closed under
H+ and H∗.

Hence, the least subset X+ of A containing X and closed under H+ and
H∗ is the intersection of the family C.

The bottom-up method is to define a sequence EXPRi of subsets of A
by induction as follows:

EXPR0 = V ∪ {0, 1};

EXPRi+1 = EXPRi ∪ {H+(u, v),H∗(u, v)|u, v ∈ EXPRi}, for i ≥ 0.

We let X+ =
⋃

EXPRi. We shall show below that X+ = X+ and
therefore, EXPR is equal to X+.

2.3 Inductive Definitions 19

Generalizing the method described in example 2.3.1, we give the follow-
ing general definition.

Let A be a set, X ⊂ A a subset of A, and F a set of functions f : An → A,
each having some arity n > 0. We say that a set Y is inductive on X, iff X
is a subset of Y and Y is closed under the functions in F , that is: For every
function f : An → A in F , for every y1, ..., yn ∈ Y , f(y1, ..., yn) is also in Y .
Clearly, A itself is inductive on X. The intersection of all inductive sets on
X is also closed under F and it is called the inductive closure of X under F .
Let us denote the inductive closure of X by X+.

If X is nonempty, since every inductive set on X contains X and there is
at least one inductive set on X (namely A), X+ is nonempty. Note that X+

is the least inductive set containing X. The above definition is what we might
call a top-down definition. Frequently, X+ is called the least set containing
X and closed under F . There is also a bottom-up and more constructive way
of characterizing X+. The sequence of sets (Xi)i≥0 is defined by induction as
follows:

X0 = X and

Xi+1 = Xi ∪ {f(x1, ..., xn) | f ∈ F, x1, ..., xn ∈ Xi, n = r(f)}.

It is clear that Xi ⊆ Xi+1 for all i ≥ 0. Let

X+ =
⋃
i≥0

Xi.

Lemma 2.3.1 X+ = X+.

Proof : First we show that X+ is inductive on X. Since X0 = X, X+

contains X. Next, we show that X+ is closed under F . For every f in F of
arity n > 0 and for all x1, ..., xn ∈ X+, by definition of X+ there is some i
such that x1, ..., xn are all in Xi, and since f(x1, ..., xn) ∈ Xi+1 (by definition),
f(x1, ..., xn) ∈ X+. Since X+ is inductive on X and X+ is the least inductive
set containing X, X+ is a subset of X+.

To prove that X+ is a subset of X+, we prove by induction that Xi is
a subset of X+ for every i ≥ 0. But this is obvious since X+ is closed under
F . Hence, we have shown that X+ = X+.

The following induction principle for inductive sets is very useful:

Induction Principle for Inductive Sets

If X+ is the inductive closure of X under F , for every subset Y of X+,
if Y contains X and is closed under F , then Y = X+.

Lemma 2.3.2 The induction principle for inductive sets holds.

20 2/Mathematical Preliminaries

Proof : By hypothesis, Y is inductive on X. By lemma 2.3.1, X+ = X+

which is the least inductive set containing X. Hence, X+ is a subset of Y .
But Y is contained in X+, so Y = X+.

As an illustration of the induction principle, we prove that every arith-
metic expression in EXPR has the same number of left and right parentheses.
Let Y be the subset of EXPR consisting of all expressions having an equal
number of left and right parentheses. Note that Y contains X since neither
the variables nor 0 nor 1 contain parentheses. Y is closed under H+ and H∗
since these function introduce matching parentheses. Hence, by the induction
principle, Y = EXPR.

2.3.2 Freely Generated Sets

One frequently needs to define functions recursively over an inductive closure.
For example, one may want to define the process of evaluating arithmetic
expressions.

EXAMPLE 2.3.2
Let E be the arithmetic expression ((x0 + 1) ∗ x1). Assume that we
want to evaluate the value of the expression E for the assignment to the
variables given by x0 = 2, x1 = 3. Naturally, one will first compute the
value of (x0+1), which is (2+1) = 3, and then the value of ((x0+1)∗x1)
which is (3 ∗ 3) = 9. Suppose that we now make the problem slightly
more complicated. We want a method which, given any assignment
v : V ∪{0, 1} → N of natural numbers to the variables such that v(0) = 0
and v(1) = 1, allows us to evaluate any expression E. The method is to
evaluate expressions recursively . This means that we define the function
v̂ : EXPR→ N such that:

(0) v̂(E) = v(xi), if E is the variable xi; v̂(0) = 0, v̂(1) = 1;

(1) v̂(E) = v̂(E1) + v̂(E2), if E is (E1 + E2);

(2) v̂(E) = v̂(E1) ∗ v̂(E2), if E is (E1 ∗ E2).

Note that v̂ is an extension of v, and in fact, it can be shown that
it is the unique extension of v satisfying (1) and (2). However, it is
not obvious that there is a function v̂ satisfying (0),(1),(2), and if such
a function exists, it is not clear that it is unique. The existence and
uniqueness of the function v̂ is a consequence of special properties of
the inductive closure EXPR. In fact, given an inductive closure X+

defined by a set X and a set F of functions, it is not always possible
to define recursively a function extending a given function v : X → B
(for some set B). We refer the reader to the problems of this chapter
for a counter example. It turns out that functions are properly defined
by recursion on an inductive closure exactly when this inductive closure
is freely generated. The set EXPR of expressions happens to be freely
generated, and this is the reason functions are well defined by recursion.

2.3 Inductive Definitions 21

To give an intuitive explanation of what freely generated means, observe
that the bottom-up definition of X+ suggests that each element of X+ can
be represented by a set of trees. Indeed, each atom, that is, each element
x of X, is represented by the one-node tree labeled with that element, and
each element a = f(x1, ..., xn) ∈ Xk+1 is represented by all trees of the form
f(t1, ..., tn), where each subtree ti is any of the trees representing xi. Each
element of X+ is usually represented by many different trees.

Roughly speaking, an inductive closure X+ is freely generated by X and
F if every element a of X+ is represented by a unique tree.

EXAMPLE 2.3.3
Let A = {a, b, c} and ∗ : A × A → A be the function defined by the
following multiplication table:

∗ a b c
a a b c
b b c a
c c a b

Since c = ∗(b, b) and a = ∗(∗(b, b), b), the inductive closure of X = {b}
is A. The element a is represented by the trees ∗(b, c), ∗(∗(b, b), b),
∗(∗(a, b), c), ∗(∗(a, b), ∗(b, b)), and in fact by infinitely many trees. As a
consequence, A is not freely generated by X.

Technically, the definition of free generation is as follows.

Let A be a set, X a subset of A, F a set of functions on A, and X+ the
inductive closure of X under F . We say that X+ is freely generated by X and
F if the following conditions hold:

(1) The restriction of every function f : Am → A in F to Xm
+ is injective.

(2) For every f : Am → A, g : An → A in F , f(Xm
+) is disjoint from

g(Xn
+) whenever f 6= g.

(3) For every f : Am → A in F and every (x1, ..., xm) ∈ Xm
+ ,

f(x1, ..., xm) /∈ X.

Let X−1 = ∅. We now show the following lemma.

Lemma 2.3.3 If X+ is freely generated by X and F , then for every i ≥ 0,
Xi−1 6= Xi and f(x1, ..., xn) /∈ Xi, for every f in F of arity n and every
(x1, ..., xn) ∈ Xn

i −Xn
i−1.

Proof : We proceed by induction on i ≥ 0. This is obvious for i = 0 since
X−1 = ∅, X0 = X and by condition (3). For i > 0, we prove by induction on k,
0 ≤ k ≤ i, that if (x1, ..., xn) ∈ Xn

i −Xn
i−1, then f(x1, ..., xn) /∈ Xk. For k = 0,

this follows from condition (3). Now, assume that if (x1, ..., xn) ∈ Xn
i −Xn

i−1,
then f(x1, ..., xn) /∈ Xk, for 0 ≤ k ≤ i − 1. If f(x1, ..., xn) ∈ Xk+1, then

22 2/Mathematical Preliminaries

f(x1, ..., xn) ∈ Xk+1 − Xk. By condition (2) and the definition of Xk+1,
there is some (y1, ..., yn) in Xn

k such that f(x1, ..., xn) = f(y1, ..., yn). Since
f is injective on Xn

+, we have xm = ym for 1 ≤ m ≤ n. Hence, we have
(x1, ..., xn) ∈ Xn

k for k < i, contradicting the hypothesis that (x1, ..., xn) ∈
Xn

i −Xn
i−1. Therefore, f(x1, ..., xn) /∈ Xk+1, establishing the induction step

on k. But this also shows that Xi 6= Xi+1, concluding the induction step on
i.

It should be noted that conditions (1),(2),(3) apply to the restrictions
of the functions in F to X+. Indeed, there are cases in which the functions
in F are not injective on A, and f(Am) ∩ g(An) 6= ∅ for distinct functions
f , g, but conditions (1),(2),(3) hold and X+ is freely generated. See problem
3.2.5. Lemma 2.3.3 can be used to formalize the statement that X+ is freely
generated by X and F iff every element has a unique tree representation.
However, in order to define precisely what representation by trees means, it is
necessary to show that trees are freely generated, and to define a function from
trees to X+ using theorem 2.3.1 proved next. For details of this representation,
the reader is referred to the problems.

In logic, terms, formulae, and proofs are given by inductive definitions.
Another important concept is that of a function defined recursively over an
inductive set freely generated.

2.3.3 Functions Defined Recursively over Freely Gener-
ated Inductive Sets

Let A be a nonempty set, X a subset of A, F a set of functions on A, and X+

the inductive closure of X under F . Let B be any nonempty set, and let G be
a set of functions over the set B, such that there is a function d : F → G that
associates with each function f of arity n in F , the function d(f) : Bn → B
in G (d need not be a bijection).

Theorem 2.3.1 (Unique homomorphic extension theorem) If X+ is freely
generated by X and F , for every function h : X → B, there is a unique
function ĥ : X+ → B such that:

(1) For all x ∈ X, ĥ(x) = h(x);

For every function f of arity n > 0 in F , for every x1, ..., xn ∈ Xn
+,

(2) ĥ(f(x1, ..., xn)) = g(ĥ(x1), ..., ĥ(xn)), where g = d(f).

The diagram below illustrates the fact that ĥ extends h. The function
η is the inclusion function of X into X+.

X
η−→ X+

h↘
y

ĥ

B

2.3 Inductive Definitions 23

The identities (1) and (2) mean that ĥ is a homomorphism, which is often
called the unique homomorphic extension of h. Clause (2) can be described
by the following commutative diagram:

Xn
+

f−→ X+

ĥn

y y
ĥ

Bn −→
d(f)

B

In the above diagram, the function ĥn is defined by ĥn(x1, ..., xn) =
(ĥ(x1), ..., ĥ(xn)). We say that this diagram is commutative if the composition
f ◦ ĥ is equal to the composition ĥn ◦ g.

Proof : We define by induction a sequence of functions hi : Xi → B
satisfying conditions (1) and (2) restricted to Xi. We set h0 = h. Given hi,
let hi+1 have the graph:

{(f(x1, ..., xn), g(hi(x1), ..., hi(xn))) | (x1, ..., xn) ∈ Xn
i −Xn

i−1, f ∈ F}∪
graph(hi)

(with g=d(f).)

We have to check that this graph is indeed functional. Since X+ is freely
generated, by lemma 2.3.3, f(x1, ..., xn) ∈ Xi+1 −Xi whenever (x1, ..., xn) ∈
Xn

i − Xn
i−1, (i ≥ 0), and we only have to check functionality for the first

part of the union. Since the elements of G are functions, by lemma 2.3.3,
the only possibility for having (x, y) ∈ graph(hi) and (x, z) ∈ graph(hi) for
some x ∈ Xi+1 − Xi, is to have x = f(x1, ..., xm) = f ′(y1, ..., yn) for some
(x1, ..., xm) ∈ Xm

i −Xm
i−1, (y1, ..., yn) ∈ Xn

i −Xn
i−1 and for some constructors

f and f ′ in F . Since f(Xm
+) and f ′(Xn

+) are disjoint whenever f 6= f ′,
f(x1, ..., xm) = f ′(y1, ..., yn) implies that f = f ′ and m = n. Since every
f ∈ F is injective on Xn

+, we must also have xj = yj for every j, 1 ≤ j ≤ n.
But then, y = z = g(x1, ..., xn), with g = d(f), showing functionality. Using
lemma 2.1.4, ĥ =

⋃
i≥0 hi is a partial function. Since dom(ĥ) =

⋃
dom(hi) =⋃

Xi = X+, ĥ is total on X+. Furthermore, it is clear by definition of the hi

that ĥ satisfies (1) and (2). To prove that ĥ is unique, for any other function
h′ satisfying (1) and (2), it can be easily shown by induction that ĥ and h′

agree on Xi for all i ≥ 0. This proves the theorem.

EXAMPLE 2.3.4
Going back to example 2.3.2, the set A is Σ∗, the set F of functions is
{H+,H∗}, the set B is N, the set G consists of addition and multipli-
cation on the natural numbers, and the function d : F → G is given by
d(H+) = addition and d(H∗) = multiplication. It can be shown that
EXPR is freely generated by V ∪ {0, 1} and {H+,H∗}, but this is not
obvious. Indeed, one has to prove rigorously conditions (1),(2),(3), for
the functions H+ and H∗, and this requires some work. A proof can

24 2/Mathematical Preliminaries

be given by adapting the method used in theorem 3.2.1, and we leave
it as an exercise. Since EXPR is freely generated, for any function
v : V ∪ {0, 1} → N such that v(0) = 0 and v(1) = 1, by theorem 2.3.1,
there is a unique function v̂ extending v which is a homomorphism.

Later on when we define satisfaction in first-order logic, we will need to
define the concept of a structure, and we will have to reformulate slightly the
notion of an inductive closure. This can be done conveniently by introducing
the concept of an algebra. Since this material is only used in Chapter 5 and
Chapter 10, it has been included in an appendix.

PROBLEMS

2.1.1. Show the following properties:

(a) If there exists a function g : B → A such that f ◦ g = IA, then
f : A → B is injective. If f : A → B is injective and A 6= ∅, then
there exists a function g : B → A such that f ◦ g = IA.

(b) A function f is surjective if and only if there exists a function
g : B → A such that g ◦ f = IB .

(c) A function f : A→ B is bijective if and only if there is a function
f−1 called its inverse such that f ◦ f−1 = IA and f−1 ◦ f = IB .

2.1.2. Prove that a function f : A → B is injective if and only if, for all
functions g, h : C → A, g ◦ f = h ◦ f implies that g = h. A function
f : A → B is surjective if and only if for all functions g, h : B → C,
f ◦ g = f ◦ h implies that g = h.

2.1.3. Given a relation R on a set A, prove that R is transitive if and only
if R ◦R is a subset of R.

2.1.4. Given two equivalence relations R and S on a set A, prove that if
R ◦ S = S ◦R, then R ◦ S is the least equivalence relation containing
R and S.

2.1.5. Prove that R+ =
⋃

n≥1 Rn is the smallest transitive relation on A
containing R, and R∗ =

⋃
n≥0 Rn is the smallest reflexive and tran-

sitive relation on A containing R. Prove that for any relation R on a
set A, (R ∪R−1)∗ is the least equivalence relation containing R.

2.1.6. Show that complete induction is not valid for posets that are not
well-founded by giving a counter example.

2.1.7. Let (A,≤) and (B,≤′) be two partially ordered sets. A function
f : A→ B is monotonic if, for all a, b ∈ A, a ≤ b implies f(a) ≤′ f(b).

(a) Show that the composition of monotonic functions is monotonic.

PROBLEMS 25

(b) Show that if f is monotonic and m is the least element of a subset
S of A, then f(m) is the least element of f(S).

(c) Give a counter example showing that if f is monotonic and m is
the least element of A, then f(m) is not necessarily the least element
of B. Give a counter example showing that if m is a minimal element
of S, then f(m) is not necessarily a minimal element of f(S), even if
f is surjective.

∗ 2.1.8. Given a set A, a multiset over A is an unordered collection of ele-
ments of A that may have multiple occurrences of identical elements.
Formally, a multiset over A may be defined as a function M : A→ N,
where N denotes the set of nonnegative integers. An element a in A
has exactly n occurrences in M iff M(a) = n. In particular, a does
not belong to M iff M(a) = 0. Let M(A) denote the set of finite
multisets over A, that is, the set of functions M : A → N such that
M(a) 6= 0 only for finitely many a ∈ A. Two (finite) multisets M and
M ′ are equal iff every element occurring exactly n times in A also
occurs exactly n times in B.

Multiset union and multiset difference is defined as follows: Given two
multisets M1 : A → N and M2 : A → N, their union is the multiset
M : A → N, such that for all x ∈ A, M(x) = M1(x) + M2(x). The
union of M1 and M2 is also denoted as M1 ∪M2. The difference
of M1 and M2 is the multiset M : A → N such that for all x ∈ A,
M(x) = M1(x)−M2(x) if M1(x) ≥M2(x), M(x) = 0 otherwise. The
difference of M1 and M2 is also denoted as M1 −M2. A multiset M1

is a submultiset of a multiset M2 if for all x ∈ A, M1(x) ≤M2(x).

If A is partially ordered by �, the relation << on the set M(A) of
finite multisets is defined as follows:

M << M ′ iff M is obtained from M ′ by removing zero or more
elements from M ′, and replacing each such element x by zero or any
finite number of elements from A, each strictly less than x (in the
ordering �).

Formally, M << M ′ iff M = M ′, or there exist some finite multisets
X, Y with X a nonempty submultiset of M ′ such that, M = (M ′ −
X) ∪ Y , and for all y ∈ Y , there is some x ∈ X such that y ≺ x.

(a) If A = N = {0, 1, 2, ...} and � is the natural ordering on N, give
examples of pairs of multisets related by the relation <<.

(b) Prove that << is a partial ordering.

(c) Assume that � is well founded. To prove that << is also well
founded, we shall proceed by contradiction as follows. Assume that

26 2/Mathematical Preliminaries

there is an infinite decreasing sequence M0 >> M1 >> ... >>
Mn >> Mn+1 >> ..., and Mn 6= Mn+1 for all n ≥ 0 (M >> N
holds iff N << M holds). We build a tree in the following fashion:

Begin with a root node whose immediate descendants are labeled with
the elements of M0. Since M0 >> M1 (and M0 6= M1), there exist
multisets X and Y with X a nonempty multiset of M0, such that
M1 = (M0 −X) ∪ Y , and for every y ∈ Y , there is some x ∈ X and
y ≺ x. For each y in Y , choose some x in X such that y ≺ x, and add
a successor node labeled y to the node corresponding to that x. For
every remaining x in X (element that is dropped and replaced by no
elements at all), add a successor labeled with the special symbol ⊥.
This last step guarantees that at least one new node is added to the
tree for every multiset Mn in the sequence. This is necessary in case
Y is empty. Repeat the process for M1 >> M2,M2 >> M3, and so
on. Let T be the resulting tree.

Note that by construction, the elements on any path form a strictly
decreasing sequence in A (we can assume that ⊥ is less than any
element in A).

(i) Prove that the tree T is infinite and that each node has a finite
number of successors. Then, by König’s lemma (if a tree is finite
branching and infinite then it contains an infinite path), there must
be an infinite path in T .

(ii) Prove that there is a path in T corresponding to an infinite de-
creasing sequence of elements in A. Conclude that the partial ordering
<< is well founded.

2.2.1. Let t be a tree and let u and v be two independent tree addresses
in dom(t) (that is, u is not a prefix of v and v is not a prefix of u).
Prove that for any trees t1 and t2,

t[u← t1][v ← t2] = t[v ← t2][u← t1].

2.3.1. Let A = {a, b, c} and ∗ : A × A → A be the function defined by the
following table:

∗ a b c
a a b c
b b c a
c c a b

(a) Show that the inductive closure of X = {b} is A.

PROBLEMS 27

(b) If N denotes the set of nonnegative integers and + is addition
(of integers), show that there is some function h : X → N which
does not have any homomorphic extension to A (a function g is a
homomorphic extension of h if, g(b) = h(b) and g(x∗y) = g(x)+g(y),
for all x, y ∈ A).

Find an infinite set that is the inductive closure of a finite set, but is
not freely generated.

2.3.2. Show that if X+ is freely generated by X and F , then Xn
i −Xn

i−1 6=
(Xi − Xi−1)n. Show that if X+ is not freely generated, then Xn

i −
Xn

i−1 = (Xi −Xi−1)n is possible.

∗ 2.3.3. Recall from Subsection 2.2.6 that TΣ denotes the set of all finite
Σ-trees over the ranked alphabet Σ. Every function symbol f of
rank n > 0 defines the function f : Tn

Σ → TΣ as follows: For every
t1, t2, ..., tn ∈ TΣ, f(t1, t2, ..., tn) is the tree denoted by ft1t2...tn and
whose graph is the set of pairs

{(e, f)} ∪
i=n⋃
i=1

{(iu, ti(u)) | u ∈ dom(ti)}.

The tree ft1...tn is the tree with f at the root and ti as the subtree
at address i.

(a) Prove that TΣ is freely generated by the set Σ0 of constant symbols
in Σ and the functions f defined above.

Hint: See the proof of lemma 2.4.2 in the Appendix.

Let A be a set, X a subset of A, F a set of functions on A, and X+

the inductive closure of X under F . We define the ranked alphabet
Σ as follows:

Σ0 = X,

Σn = {f | f ∈ F of rank n}.

(b) Prove that the unique homomorphic extension h : TΣ → X+ of
the inclusion function J : X → X+ is surjective. We say that a tree
t ∈ TΣ represents an element x ∈ X+ iff h(t) = x.

(c) Prove that X+ is freely generated by X and F iff h is a bijection.

∗ 2.3.4. Prove that EXPR is freely generated by V ∪ {0, 1} and {H+,H∗}.

Hint: Use the proof technique of theorem 3.2.1.

