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6.3. Recursively Enumerable Sets

Consider the set

A = {x ∈ N | ϕx(a) is defined},

where a ∈ N is any fixed natural number.

By Rice’s Theorem, A is not recursive (check this).

We claim that A is the range of a recursive function g. For
this, we use the T -predicate.

We produce a function which is actually primitive recursive.

First, note that A is nonempty (why?), and let x0 be any index
in A.

We define g by primitive recursion as follows:
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g(0) = x0,

g(x + 1) =

�
Π1(x) if T (Π1(x), a, Π2(x)),
x0 otherwise.

Since this type of argument is new, it is helpful to explain
informally what g does.

For every input x, the function g tries finitely many steps of
a computation on input a of some partial recursive function.

The computation is given by Π2(x), and the partial function
is given by Π1(x).

Since Π1 and Π2 are projection functions, when x ranges over
N, both Π1(x) and Π2(x) also range over N.

Such a process is called a dovetailing computation.
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Therefore all computations on input a for all partial recursive
functions will be tried, and the indices of the partial recursive
functions converging on input a will be selected.

Definition 6.3.1 A subset X of N is recursively enumerable
iff either X = ∅, or X is the range of some total recursive
function. Similarly, a subset X of Σ∗ is recursively enumerable
iff either X = ∅, or X is the range of some total recursive
function.

Remark: It should be noted that the definition of an r.e set
given in Definition 6.3.1 is different from the earlier Definition
4.8.1 given in terms of acceptance by a Turing machine. The
equivalence of these two definitions will be proved in Lemma
6.3.3.

For short, a recursively enumerable set is also called an r.e.
set .
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The following Lemma relates recursive sets and recursively
enumerable sets:

Lemma 6.3.2 A set A is recursive iff both A and its comple-
ment A are recursively enumerable.

Proof . Assume that A is recursive. Then, it is trivial that its
complement is also recursive.

Hence, we only have to show that a recursive set is recursively
enumerable.

The empty set is recursively enumerable by definition. Other-
wise, let y ∈ A be any element. Then, the function f defined
such that

f(x) =

�
x iff CA(x) = 1,
y iff CA(x) = 0,

for all x ∈ N is recursive and has range A.
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Conversely, assume that both A and A are recursively enu-
merable.

If either A or A is empty, then A is recursive.

Otherwise, let A = f(N) and A = g(N), for some recursive
functions f and g.

We define the function CA as follows:

CA(x) =

�
1 if f(min y[f(y) = x ∨ g(y) = x]) = x,
0 otherwise.

The function CA lists A and A in parallel, waiting to see
whether x turns up in A or in A.

Note that x must eventually turn up either in A or in A, so
that CA is a total recursive function.
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Our next goal is to show that the recursively enumerable sets
can be given several equivalent definitions.

Lemma 6.3.3 For any subset A of N, the following properties
are equivalent:

(1) A is empty or A is the range of a primitive recursive
function (Rosser, 1936).

(2) A is recursively enumerable.

(3) A is the range of a partial recursive function.

(4) A is the domain of a partial recursive function.

Note that (4) is equivalent to Definition 4.8.1 (in terms of
Turing machines).

More intuitive proofs of the implications (3) ⇒ (4) and (4) ⇒
(1) can be given.
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Assume that A �= ∅ and that A = range(g), where g is a
partial recursive function.

Assume that g is computed by a RAM program P .

To compute f(x), we start computing the sequence

g(0), g(1), . . .

looking for x. If x turns up as say g(n), then we output n.

Otherwise the computation diverges. Hence, the domain of f
is the range of g.

Assume now that A is the domain of some partial recursive
function g, and that g is computed by some Turing machine
M .
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We construct another Turing machine performing the follow-
ing steps:

(0) Do one step of the computation of g(0)

. . .

(n) Do n + 1 steps of the computation of g(0)

Do n steps of the computation of g(1)

. . .

Do 2 steps of the computation of g(n− 1)

Do 1 step of the computation of g(n)

During this process, whenever the computation of some g(m)
halts, we output m.
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In this fashion, we will enumerate the domain of g, and since
we have constructed a Turing machine that halts for every
input, we have a total recursive function.

The following Lemma can easily be shown using the proof
technique of Lemma 6.3.3:

Lemma 6.3.4 The following properties hold:

(1) There is a recursive function h such that

range(ϕx) = dom(ϕh(x))

for all x ∈ N.

(2) There is a recursive function k such that

dom(ϕx) = range(ϕk(x))

and ϕk(x) is total recursive, for all x ∈ N such that
dom(ϕx) �= ∅.
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Using Lemma 6.3.3, we can prove that K is an r.e. set. Indeed,
we have K = dom(f), where

f(x) = ϕuniv(x, x)

for all x ∈ N.

The set
K0 = {�x, y� | ϕx(y) converges}

is also an r.e. set, since K0 = dom(g), where

g(z) = ϕuniv(Π1(z), Π2(z)),

which is partial recursive.

The sets K and K0 are examples of r.e. sets that are not
recursive.
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We can now prove that there are sets that are not r.e.

Lemma 6.3.5 For any indexing of the partial recursive func-
tions, the complement K of the set

K = {x ∈ N | ϕx(x) converges}

is not recursively enumerable.

Proof . If K was recursively enumerable, since K is also re-
cursively enumerable, by Lemma 6.3.2, the set K would be
recursive, a contradiction.

The sets K and K0 are examples of sets that are not r.e.

This shows that the r.e. sets are not closed under complemen-
tation. However, we leave it as an exercise to prove that the
r.e. sets are closed under union and intersection.
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We will prove later on that TOTAL is not r.e.

This is rather unpleasant. Indeed, this means that there is
no way of effectively listing all algorithms (all total recursive
functions).

Hence, in a certain sense, the concept of partial recursive func-
tion (procedure) is more natural than the concept of a (total)
recursive function (algorithm).

The next two Lemmas give other characterizations of the r.e.
sets and of the recursive sets.
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Lemma 6.3.6 The following properties hold:

(1) A set A is r.e. iff either it is finite or it is the range of
an injective recursive function.

(2) A set A is r.e. if either it is empty or it is the range of a
monotonic partial recursive function.

(3) A set A is r.e. iff there is a Turing machine M such that,
for all x ∈ N, M halts on x iff x ∈ A.

Lemma 6.3.7 A set A is recursive iff either it is finite or it
is the range of a strictly increasing recursive function.
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Another important result relating the concept of partial re-
cursive function and that of an r.e set is given below.

Theorem 6.3.8 For every unary partial function f , the fol-
lowing properties are equivalent:

(1) f is partial recursive.

(2) The set
{�x, f(x)� | x ∈ dom(f)}

is r.e.

Using our indexing of the partial recursive functions and Lemma
6.3.3, we obtain an indexing of the r.e sets.
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Definition 6.3.9 For any acceptable indexing ϕ0, ϕ1, . . . of
the partial recursive functions, we define the enumeration
W0, W1, . . . of the r.e. sets by setting

Wx = dom(ϕx).

We now describe a technique for showing that certain sets are
r.e but not recursive, or complements of r.e. sets that are not
recursive, or not r.e, or neither r.e. nor the complement of an
r.e. set. This technique is known as reducibility .
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6.4. Reducibility and Complete Sets

We already used the notion of reducibility in the proof of
Lemma 6.2.5 to show that TOTAL is not recursive.

Definition 6.4.1 A set A is many-one reducible to a set B if
there is a total recursive function f such that

x ∈ A iff f(x) ∈ B

for all x ∈ A. We write A ≤ B, and for short, we say that A
is reducible to B.
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Lemma 6.4.2 Let A, B, C be subsets of N (or Σ∗). The fol-
lowing properties hold:

(1) If A ≤ B and B ≤ C, then A ≤ C.

(2) If A ≤ B then A ≤ B.

(3) If A ≤ B and B is r.e., then A is r.e.

(4) If A ≤ B and A is not r.e., then B is not r.e.

(5) If A ≤ B and B is recursive, then A is recursive.

(6) If A ≤ B and A is not recursive, then B is not recursive.

Another important concept is the concept of a complete set.
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Definition 6.4.3 An r.e. set A is complete w.r.t. many-one
reducibility iff every r.e. set B is reducible to A, i.e., B ≤ A.

For simplicity, we will often say complete for complete w.r.t.
many-one reducibility .

Theorem 6.4.4 The following properties hold:

(1) If A is complete, B is r.e., and A ≤ B, then B is com-
plete.

(2) K0 is complete.

(3) K0 is reducible to K.

As a corollary of Theorem 6.4.4, the set K is also complete.
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Definition 6.4.5 Two sets A and B have the same degree of
unsolvability or are equivalent iff A ≤ B and B ≤ A.

Since K and K0 are both complete, they have the same degree
of unsolvability.

We will now investigate the reducibility and equivalence of
various sets. Recall that

TOTAL = {x ∈ N | ϕx is total}.

We define EMPTY and FINITE, as follows:

EMPTY = {x ∈ N | ϕx is undefined for all input},
FINITE = {x ∈ N | ϕx has a finite domain}.
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Then,

FINITE = {x ∈ N | ϕx has an infinite domain},

so that,

EMPTY ⊂ FINITE and TOTAL ⊂ FINITE.

Lemma 6.4.6 We have K0 ≤ EMPTY.

Lemma 6.4.7 The following properties hold:

(1) EMPTY is not r.e.

(2) EMPTY is r.e.

(3) K and EMPTY are equivalent.

(4) EMPTY is complete.
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Lemma 6.4.8 The following properties hold:

(1) TOTAL and TOTAL are not r.e.

(2) FINITE and FINITE are not r.e.

From Lemma 6.4.8, we have TOTAL ≤ FINITE. It turns
out that FINITE ≤ TOTAL, and TOTAL and FINITE are
equivalent.

Lemma 6.4.9 The sets TOTAL and FINITE are equivalent.

We now turn to the recursion Theorem.
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