
Chapter 7

Computational Complexity

7.1 The Class P

In the previous two chapters, we clarified what it means for a
problem to be decidable or undecidable.

In principle, if a problem is decidable, then there is an algorithm
(i.e., a procedure that halts for every input) that decides every
instance of the problem.

However, from a practical point of view, knowing that a prob-
lem is decidable may be useless, if the number of steps (time
complexity) required by the algorithm is excessive, for example,
exponential in the size of the input, or worse.

For instance, consider the traveling salesman problem, which can
be formulated as follows:

421

422 CHAPTER 7. COMPUTATIONAL COMPLEXITY

We have a set {c1, . . . , cn} of cities, and an n × n matrix (dij)
of nonnegative integers, the distance matrix , where dij denotes
the distance between ci and cj, which means that dii = 0 and
dij = dji for all i 6= j.

The problem is to find a shortest tour of the cities, that is, a
permutation π of {1, . . . , n} so that the cost

C(π) = dπ(1)π(2) + dπ(2)π(3) + · · ·+ dπ(n−1)π(n) + dπ(n)π(1)

is as small as possible (minimal).

One way to solve the problem is to consider all possible tours,
i.e., n! permutations. Actually, since the starting point is irrel-
evant, we need only consider (n− 1)! tours, but this still grows
very fast. For example, when n = 40, it turns out that 39!
exceeds 1045, a huge number.

7.1. THE CLASS P 423

Thus, to capture the essence of practically feasible algorithms,
we must limit our computational devices to run only for a num-
ber of steps that is bounded by a polynomial in the length of
the input.

We are led to the definition of polynomially bounded computa-
tional models.

Definition 7.1.1 A deterministic Turing machine M is said to
be polynomially bounded if there is a polynomial p(X) so that
the following holds: For every input x ∈ Σ∗, there is no ID IDn

so that
ID0 `∗ IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

A language L ⊆ Σ∗ is polynomially decidable if there is a poly-
nomially bounded Turing machine that accepts L. The family
of all polynomially decidable languages is denoted by P .

424 CHAPTER 7. COMPUTATIONAL COMPLEXITY

Remark: Even though Definition 7.1.1 is formulated for Turing
machines, it can also be formulated for other models, such as
RAM programs.

The reason is that the conversion of a Turing machine into a
RAM program (and vice versa) produces a program (or a ma-
chine) whose size is polynomial in the original device.

The following lemma, although trivial, is useful:

Lemma 7.1.2 The class P is closed under complementation.

Of course, many languages do not belong to P . One way to
obtain such languages is to use a diagonal argument. But there
are also many natural languages that are not in P , although this
may be very hard to prove for some of these languages.

7.2. MORE PROBLEMS 425

7.2 More Problems

Let us consider a few more problems in order to get a better
feeling for the family P .

Recall that a directed graph, G, is a pair G = (V,E), where
E ⊆ V × V . A pair (u, v) ∈ E is called an edge of G (note that
u = v is allowed).

Given any two nodes u, v ∈ V , a path from u to v is any sequence
of n+ 1 edges (n ≥ 0)

(u, v1), (v1, v2), . . . , (vn, v).

(If n = 1, a path from u to v is simply a single edge, (u, v).) A
graph G is strongly connected if for every pair (u, v) ∈ V × V ,
there is a path from u to v. A closed path, or cycle, is a path
from some node u to itself.

We will restrict out attention to finite graphs, i.e. graphs (V,E)
where V is a finite set.

426 CHAPTER 7. COMPUTATIONAL COMPLEXITY

Definition 7.2.1 Given a graph G, an Eulerian cycle is a cycle
in G that passes through all the nodes (possibly more than once)
and every edge of G exactly once. A Hamiltonian cycle is a cycle
that passes through all the nodes exactly once (note, some edges
may not be traversed at all).

Eulerian Cycle Problem: Given a graph G, is there an Eulerian
cycle in G?

Hamiltonian Cycle Problem: Given a graphG, is there an Hamil-
tonian cycle in G?

It may come as a surprise that the Eulerian Cycle Problem does
have a polynomial time algorithm, but that so far, not such
algorithm is known for the Hamiltonian Cycle Problem.

7.2. MORE PROBLEMS 427

The reason why the Eulerian Cycle Problem is decidable in poly-
nomial time is the following theorem due to Euler:

Theorem 7.2.2 A graph G = (V,E) has an Eulerian cycle iff
the following properties hold:

(1) The graph G is strongly connected.

(2) Every node has the same number of incoming and outgoing
edges.

Proving that properties (1) and (2) hold if G has an Eulerian
cycle is fairly easy. The converse is harder, but not that bad
(try!).

Theorem 7.2.2 shows that it is necessary to check whether a
graph is strongly connected. This can be done by computing
the transitive closure of E, which can be done in polynomial
time (in fact, O(n3)).

428 CHAPTER 7. COMPUTATIONAL COMPLEXITY

Checking property (2) can clearly be done in polynomial time.
Thus, the Eulerian cycle problem is in P .

Unfortunately, no theorem analogous to Theorem 7.2.2 is know
for Hamiltonian cycles.

Remark: We talked about problems being decidable in polyno-
mial time. Obviously, this is equivalent to deciding some prop-
erty of a certain class of objects, for example, finite graphs.

Our framework requires that we first encode these classes of
objects as strings (or numbers), since P consists of languages.

Thus, when we say that a property is decidable in polynomial
time, we are really talking about the encoding of this property as
a language. Thus, we have to be careful about these encodings,
but it is rare that encodings cause problems.

7.3. PROPOSITIONAL LOGIC AND SATISFIABILITY 429

7.3 Propositional Logic and Satisfiability

We define the syntax and the semantics of propositions in con-
junctive normal form (CNF).

The syntax has to do with the legal form of propositions in
CNF. Such propositions are interpreted as truth functions, by
assigning truth values to their variables.

We begin by defining propositions in CNF. Such propositions
are constructed from a countable set, PV, of propositional (or
boolean) variables , say

PV = {x1, x2, . . . , },

using the connectives ∧ (and), ∨ (or) and ¬ (negation).

430 CHAPTER 7. COMPUTATIONAL COMPLEXITY

We define a literal (or atomic proposition), L, as L = x or
L = ¬x, also denoted by x, where x ∈ PV.

A clause, C, is a disjunction of pairwise distinct literals,

C = (L1 ∨ L2 ∨ · · · ∨ Lm).

Thus, a clause may also be viewed as a nonempty set

C = {L1, L2, . . . , Lm}.

We also have a special clause, the empty clause, denoted ⊥ or
(or {}). It corresponds to the truth value false.

A proposition in CNF, or boolean formula, P , is a conjunction
of pairwise distinct clauses

P = C1 ∧ C2 ∧ · · · ∧ Cn.

7.3. PROPOSITIONAL LOGIC AND SATISFIABILITY 431

Thus, a boolean formula may also be viewed as a nonempty set

P = {C1, . . . , Cn},

but this time, the comma is interpreted as conjunction. We
also allow the proposition ⊥, and sometimes the proposition >
(corresponding to the truth value true).

For example, here is a boolean formula:

P = {(x1∨x2∨x3), (x1∨x2), (x2∨x3), (x3∨x1), (x1∨x2∨x3)}.

In order to interpret boolean formulae, we use truth assignments.

We let BOOL = {F,T}, the set of truth values, where F stands
for false and T stands for true.

432 CHAPTER 7. COMPUTATIONAL COMPLEXITY

A truth assignment (or valuation), v, is any function
v: PV→ BOOL.

Given a truth assignment, v: PV→ BOOL, we define the truth
value, v̂(X), of a literal, clause, and boolean formula, X, using
the following recursive definition:

(1) v̂(⊥) = F, v̂(>) = T.

(2) v̂(x) = v(x), if x ∈ PV.

(3) v̂(x) = v(x), if x ∈ PV, where v(x) = F if v(x) = T and
v(x) = T if v(x) = F.

(4) v̂(C) = F if C is a clause and iff v̂(Li) = F for all literals
Li in C, otherwise T.

(5) v̂(P) = T if P is a boolean formula and iff v̂(Cj) = T for
all clauses Cj in P , otherwise F.

7.3. PROPOSITIONAL LOGIC AND SATISFIABILITY 433

Definition 7.3.1 We say that a truth assignment, v, satisfies
a boolean formula, P , if v̂(P) = T. In this case, we also write

v |= P.

A boolean formula, P , is satisfiable if v |= P for some truth
assignment v, otherwise, it is unsatisfiable. A boolean formula,
P , is valid (or a tautology) if v |= P for all truth assignments v,
in which case we write

|= P.

One should check that the boolean formula

P = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)}

is unsatisfiable.

434 CHAPTER 7. COMPUTATIONAL COMPLEXITY

One may think that it is easy to test whether a proposition is
satisfiable or not. Try it, it is not that easy!

As a matter of fact, the satisfiability problem, testing whether a
boolean formula is satisfiable, also denoted SAT, is not known to
be in P . Moreover, it is an NP-complete problem. Most people
believe that the satisfiability problem is not in P , but a proof
still eludes us!

Before we explain what is the class NP , let us remark that the
satisfiability problem for clauses containing at most two literals
(2-satisfiability , or 2-SAT) is solvable in polynomial time.

7.3. PROPOSITIONAL LOGIC AND SATISFIABILITY 435

The first step consists in observing that if every clause in P
contains at most two literals, then we can reduce the problem to
testing satisfiability when every clause has exactly two literals.

Indeed, if P contains some clause (x), then any valuation satis-
fying P must make x true. Then, all clauses containing x will
be true, and we can delete them, whereas we can delete x from
every clause containing it, since x is false.

Similarly, if P contains some clause (x), then any valuation sat-
isfying P must make x false.

Thus, in a finite number of steps, either we get the empty clause,
and P is unsatisfiable, or we get a set of clauses with exactly
two literals.

436 CHAPTER 7. COMPUTATIONAL COMPLEXITY

The number of steps is clearly linear in the number of literals in
P .

For the second step, we construct a directed graph from P . The
nodes of this graph are the literals in P , and edges are defined
as follows:

(1) For every clause (x ∨ y), there is an edge from x to y and
an edge from y to x.

(2) For every clause (x ∨ y), there is an edge from x to y and
an edge from y to x

(3) For every clause (x ∨ y), there is an edge from x to y and
an edge from y to x.

Then, it can be shown that P is unsatisfiable iff there is some x
so that there is a cycle containing x and x.

As a consequence, 2-satisfiability is in P .

7.4. THE CLASS NP , NP-COMPLETENESS 437

7.4 The Class NP, Polynomial Reducibility,

NP-Completeness

One will observe that the hard part in trying to solve either the
Hamiltonian cycle problem or the satisfiability problem, SAT, is
to find a solution, but that checking that a candidate solution
is indeed a solution can be done easily in polynomial time.

This is the essence of problems that can be solved nondeter-
mistically in polynomial time: A solution can be guessed and
then checked in polynomial time.

438 CHAPTER 7. COMPUTATIONAL COMPLEXITY

Definition 7.4.1 A nondeterministic Turing machine M is said
to be polynomially bounded if there is a polynomial p(X) so that
the following holds: For every input x ∈ Σ∗, there is no ID IDn

so that
ID0 `∗ IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

A language L ⊆ Σ∗ is nondeterministic polynomially decidable
if there is a polynomially bounded nondeterministic Turing ma-
chine that accepts L. The family of all nondeterministic poly-
nomially decidable languages is denoted by NP .

7.4. THE CLASS NP , NP-COMPLETENESS 439

Of course, we have the inclusion

P ⊆ NP ,

but whether or not we have equality is one of the most famous
open problems of theoretical computer science and mathematics.

In fact, the question P 6= NP is one of the open problems listed
by the CLAY Institute, together with the Poincaré conjecture
and the Riemann hypothesis, among other problems, and for
which one million dollar is offered as a reward!

It is easy to check that SAT is in NP , and so is the Hamiltonian
cycle problem.

440 CHAPTER 7. COMPUTATIONAL COMPLEXITY

As we saw in recursion theory, where we introduced the notion
of many-one reducibility, in order to compare the “degree of
difficulty” of problems, it is useful to introduce the notion of
reducibility and the notion of a complete set.

Definition 7.4.2 A function f : Σ∗ → Σ∗ is polynomial-time
computable if there is a polynomial p(X) so that the following
holds: There is a deterministic Turing machine M computing it
so that for every input x ∈ Σ∗, there is no ID IDn so that

ID0 `∗ IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

Given two languages L1, L2 ⊆ Σ∗, a polynomial reduction from
L1 to L2 is a polynomial-time computable function f : Σ∗ → Σ∗

so that for all u ∈ Σ∗,

u ∈ L1 iff f(u) ∈ L2.

7.4. THE CLASS NP , NP-COMPLETENESS 441

For example, one can construct a polynomial reduction from the
Hamiltonian cycle problem to SAT.

Remarkably, every language in NP can be reduced to SAT.

Intuitively, if L1 is a hard problem and L1 can be reduced to L2,
then L2 is also a hard problem.

Thus, SAT is a hardest problem in NP (Since it is in NP).

Definition 7.4.3 A language L isNP-hard if there is a polyno-
mial reduction from every language L1 ∈ NP to L. A language
L is NP-complete if L ∈ NP and L is NP-hard.

442 CHAPTER 7. COMPUTATIONAL COMPLEXITY

Thus, anNP-hard language is as hard to decide as any language
in NP .

The importance of NP-complete problems stems from the fol-
lowing theorem:

Theorem 7.4.4 Let L be an NP-complete language. Then,
P = NP iff L ∈ P.

Next, we prove a famous theorem of Steve Cook and Leonid
Levin (proved independently): SAT is NP-complete.

7.5. THE COOK-LEVIN THEOREM 443

7.5 The Cook–Levin Theorem: SAT is NP-

Complete

Instead of showing directly that SAT is NP-complete, which is
rather complicated, we proceed in two steps, as suggested by
Lewis and Papadimitriou.

(1) First, we define a tiling problem adapted from H. Wang
(1961) by Harry Lewis, and we prove that it isNP-complete.

(2) We show that the tiling problem can be reduced to SAT.

We are given a finite set T = {t1, . . . , tp} of tile patterns , for
short, tiles . Copies of these tile patterns may be used to tile a
rectangle of predetermined size 2s× s (s > 1).

However, there are constraints on the way that these tiles may
be adjacent horizontally and vertically.

444 CHAPTER 7. COMPUTATIONAL COMPLEXITY

The horizontal constraints are given by a relation H ⊆ T × T ,
and the vertical constraints are given by a relation V ⊆ T × T .

Thus, a tiling system is a triple T = (T , V,H), as above.

The problem is then as follows: Given any tiling system (T , V,H),
any integer s > 1, and any initial row of tiles, σ0 (of length 2s),

σ0: {1, 2, . . . , s, s+ 1, . . . , 2s} → T ,

find a 2s× s-tiling, σ, extending σ0, i.e., a function

σ: {1, 2, . . . , s, s+ 1, . . . , 2s} × {1, . . . , s} → T ,

so that

(1) σ(m, 1) = σ0(m), for all m with 1 ≤ m ≤ 2s.

(2) (σ(m,n), σ(m+ 1, n)) ∈ H, for all m with
1 ≤ m ≤ 2s− 1, and all n, with 1 ≤ n ≤ s.

(3) (σ(m,n), σ(m,n+ 1)) ∈ V , for all m with
1 ≤ m ≤ 2s, and all n, with 1 ≤ n ≤ s− 1.

7.5. THE COOK-LEVIN THEOREM 445

For example, consider the following tile patterns:

a
c ,

a
c

a
, c

a
,

d
e e ,

e
e

b
c d ,

b
c d

b
,

c
d e

c
,

d
e e

d
,

e
e

e

c
d e , c d

b
, d e

c
, e e

d
, e

e

The horizontal and the vertical constraints are that the letters
on adjacent edges match (blank edges do not match).

446 CHAPTER 7. COMPUTATIONAL COMPLEXITY

For s = 3, given the bottom row

a
c

b
c d

c
d e

d
e e

d
e e

e
e

we have the tiling shown below:

c
a

c d
b

d e
c

e e
d

e e
d

e
e

a
c

a

b
c d

b

c
d e

c

d
e e

d

d
e e

d

e
e

e

a
c

b
c d

c
d e

d
e e

d
e e

e
e

7.5. THE COOK-LEVIN THEOREM 447

Formally, an instance of the tiling problem is a triple,
((T , V,H), ŝ, σ0), where (T , V,H) is a tiling system, ŝ is the
string representation of the number s ≥ 2, in binary and σ0 is
an initial row of tiles (the bottom row).

For example, if s = 1025 (as a decimal number), then its binary
representation is ŝ = 10000000001. The length of ŝ is log2 s.

Recall that the input must be a string. This is why the number
s is represented by a string in binary.

If we only included a single tile σ0 in position (s + 1, 1), then
the length of the input ((T , V,H), ŝ, σ0) would be log2 s+C + 1
for some constant C corresponding to the length of the string
encoding (T , V,H).

448 CHAPTER 7. COMPUTATIONAL COMPLEXITY

However, the rectangular grid has size 2s2, which is exponential
in the length log2 s+C+ 1 of the input ((T , V,H), ŝ, σ0). Thus,
it is impossible to check in polynomial time that a proposed
solution is a tiling.

However, if we include in the input the bottom row σ0 of length
2s, then the size of the grid is indeed polynomial in the size of
the input.

Theorem 7.5.1 The tiling problem defined earlier is
NP-complete.

Proof . Let L ⊆ Σ∗ be any language in NP and let u be any
string in Σ∗. Assume that L is accepted in polynomial time
bounded by p(|u|).

7.5. THE COOK-LEVIN THEOREM 449

We show how to construct an instance of the tiling problem,
((T , V,H)L, ŝ, σ0), where s = max{2, p(| u |)}, and where the
bottom row encodes the starting ID, so that u ∈ L iff the tiling
problem ((T , V,H)L, ŝ, σ0) has a solution.

First, note that the problem is indeed in NP , since we have to
guess a rectangle of size 2s2, and that checking that a tiling is
legal can indeed be done in O(s2), where s is bounded by the the
size of the input ((T , V,H), ŝ, σ0), since the input contains the
bottom row of 2s symbols (this is the reason for including the
bottom row of 2s tiles in the input!).

450 CHAPTER 7. COMPUTATIONAL COMPLEXITY

The idea behind the definition of the tiles is that, in a solution
of the tiling problem, the labels on the horizontal edges between
two adjacent rows represent a legal ID, upav.

In a given row, the labels on vertical edges of adjacent tiles keep
track of the change of state and direction.

Let Γ be the tape alphabet of the TM, M . As before, we assume
that M signals that it accepts u by halting with the output 1
(true).

From M , we create the following tiles:

(1) For every a ∈ Γ, tiles

a

a

7.5. THE COOK-LEVIN THEOREM 451

(2) For every a ∈ Γ, the bottom row uses tiles

a
,

q0, a

where q0 is the start state.

(3) For every instruction (p, a, b, R, q) ∈ δ, for every c ∈ Γ, tiles

b
q, R

p, a

,
q, c

q, R

c

452 CHAPTER 7. COMPUTATIONAL COMPLEXITY

(4) For every instruction (p, a, b, L, q) ∈ δ, for every c ∈ Γ, tiles

q, c
q, L

c
,

b
q, L

p, a

(5) For every halting state, p, tiles

p, 1

p, 1

The purpose of tiles of type (5) is to fill the 2s × s rectangle if
and when M accepts u in strictly less than s steps.

The vertical and the horizontal constraints are that adjacent
edges have the same label (or no label).

7.5. THE COOK-LEVIN THEOREM 453

If u = u1 · · ·uk, the initial bottom row σ0, of length 2s, is:

B
· · ·

q0, u1
· · ·

uk
· · ·

B

where the tile labeled q0, u1 is in position s+ 1.

The example below illustrates the construction:

B

B
. . .

B
f,R

q, c

f, 1
f,R

1
. . .

B

B

B

B
. . .

q, c
q, L

c

1
q, L

p, a
. . .

B

B

B

B

. . .
c

p, R

r, b

p, a
p, R

a

. . .
B

B

454 CHAPTER 7. COMPUTATIONAL COMPLEXITY

It is not hard to check that u = u1 · · ·uk is accepted by M iff
the tiling problem just constructed has a solution.

Remarks.

(1) The problem becomes harder if we only specify a single tile
σ0 as input, instead of a row of length 2s. If s is specified in
binary (or any other base, but not in tally notation), then
the 2s2 grid has size exponential in the length log2 s+C+1
of the input ((T , V,H), ŝ, σ0), and this tiling problem is
actually NEXP-complete!

(2) If we relax the finiteness condition and require that the
entire upper half-plane be tiled, i.e., for every s > 1, there
is a solution to the 2s× s-tiling problem, then the problem
is undecidable.

In 1972, Richard Karp published a list of 21 NP-complete prob-
lems.

We finally prove the Cook-Levin theorem.

7.5. THE COOK-LEVIN THEOREM 455

Theorem 7.5.2 (Cook, 1971, Levin, 1973) The satisfiability
problem SAT is NP-complete.

Proof . We reduce the tiling problem to SAT. Given a tiling
problem, ((T , V,H), ŝ, σ0), we introduce boolean variables

xmnt,

for all m with 1 ≤ m ≤ 2s, all n with 1 ≤ n ≤ s, and all tiles
t ∈ T .

The intuition is that xmnt = T iff tile t occurs in some tiling σ
so that σ(m,n) = t.

We define the following clauses:

456 CHAPTER 7. COMPUTATIONAL COMPLEXITY

(1) For all m,n in the correct range, as above,

(xmnt1 ∨ xmnt2 ∨ · · · ∨ xmntp),

for all p tiles in T .

This clause states that every position in σ is tiled.

(2) For any two distinct tiles t 6= t′ ∈ T , for all m,n in the
correct range, as above,

(xmnt ∨ xmnt′).

This clause states that a position may not be occupied by
more than one tile.

7.5. THE COOK-LEVIN THEOREM 457

(3) For every pair of tiles (t, t′) ∈ T × T − H, for all m with
1 ≤ m ≤ 2s− 1, and all n, with 1 ≤ n ≤ s,

(xmnt ∨ xm+1nt′).

This clause enforces the horizontal adjacency constraints.

(4) For every pair of tiles (t, t′) ∈ T × T − V , for all m with
1 ≤ m ≤ 2s, and all n, with 1 ≤ n ≤ s− 1,

(xmnt ∨ xmn+1 t′).

This clause enforces the vertical adjacency constraints.

(5) For all m with 1 ≤ m ≤ 2s,

(xm1σ0(m)).

This clause states that the bottom row is correctly tiled
with σ0.

458 CHAPTER 7. COMPUTATIONAL COMPLEXITY

It is easily checked that the tiling problem has a solution iff the
conjunction of the clauses just defined is satisfiable. Thus, SAT
is NP-complete.

We sharpen Theorem 7.5.2 to prove that 3-SAT is also NP-
complete. This is the satisfiability problem for clauses contain-
ing at most three literals.

We know that we can’t go further and retainNP-completeteness,
since 2-SAT is in P .

Theorem 7.5.3 (Cook, 1971) The satisfiability problem 3-SAT
is NP-complete.

7.5. THE COOK-LEVIN THEOREM 459

Proof . We have to break “long clauses”

C = (L1 ∨ · · · ∨ Lk),

i.e., clauses containing k ≥ 4 literals, into clauses with at most
three literals, in such a way that satisfiability is preserved.

For every long clause, create k−3 new boolean variables y1, . . . yk−3,
and the k − 2 clauses

(L1 ∨ L2 ∨ y1), (y1 ∨ L3 ∨ y2), (y2 ∨ L4 ∨ y3), · · · ,
(yk−4 ∨ Lk−2 ∨ yk−3), (yk−3 ∨ Lk−1 ∨ Lk).

Let C ′ be the conjunction of these clauses. We claim that C is
satisfiable iff C ′ is.

460 CHAPTER 7. COMPUTATIONAL COMPLEXITY

Assume that C ′ is satisfiable, but that C is not. Then, for every
truth assignment v, we have v(Li) = F, for i = 1, . . . , k.

However, C ′ is satisfied by some v, and the only way this can
happen is that v(y1) = T, to satisfy the first clause. Then,
v(y1) = F, and we must have v(y2) = T, to satisfy the second
clause.

By induction, we must have v(yk−3) = T, to satisfy the next to
the last clause. However, the last clause is now false, a contra-
diction.

Thus, if C ′ is satisfiable, then so is C.

7.5. THE COOK-LEVIN THEOREM 461

Conversely, assume that C is satisfiable. If so, there is some
truth assignment, v, so that v(C) = T, and thus, there is a
smallest index i, with 1 ≤ i ≤ k, so that v(Li) = T (and so,
v(Lj) = F for all j < i).

Let v′ be the assignment extending v defined so that

v′(yj) = F if max{1, i− 1} ≤ j ≤ k − 3,

and v′(yj) = T, otherwise.

It is easily checked that v′(C ′) = T.

Another version of 3-SAT can be considered, in which every
clause has exactly three literals. We will call this the problem
exact 3-SAT.

462 CHAPTER 7. COMPUTATIONAL COMPLEXITY

Theorem 7.5.4 (Cook, 1971) The satisfiability problem for ex-
act 3-SAT is NP-complete.

Proof . A clause of the form (L) is satisfiable iff the following
four clauses are satisfiable:

(L ∨ u ∨ v), (L ∨ u ∨ v), (L ∨ u ∨ v), (L ∨ u ∨ v).

A clause of the form (L1 ∨L2) is satisfiable iff the following two
clauses are satisfiable:

(L1 ∨ L2 ∨ u), (L1 ∨ L2 ∨ u).

Thus, we have a reduction of 3-SAT to exact 3-SAT.

We now make some remarks on the conversion of propositions
to CNF.

7.5. THE COOK-LEVIN THEOREM 463

Recall that the set of propositions (over the connectives ∨, ∧,
and ¬) is defined inductively as follows:

(1) Every propositional letter, x ∈ PV, is a proposition (an
atomic proposition).

(2) If A is a proposition, then ¬A is a proposition.

(3) If A and B are propositions, then (A∨B) is a proposition.

(4) If A and B are propositions, then (A∧B) is a proposition.

Two propositions A and B are equivalent , denoted A ≡ B, if

v |= A iff v |= B

for all truth assignments, v.

464 CHAPTER 7. COMPUTATIONAL COMPLEXITY

It is easy to show that A ≡ B iff the proposition

(¬A ∨B) ∧ (¬B ∨ A)

is valid.

Every proposition, A, is equivalent to a proposition, A′, in CNF.

There are several ways of proving this fact. One method is
algebraic, and consists in using the algebraic laws of boolean
algebra.

First, one may convert a proposition to negation normal form,
or nnf . A proposition is in nnf if occurrences of ¬ only appear
in front of propositional variables, but not in front of compound
propositions.

7.5. THE COOK-LEVIN THEOREM 465

Any proposition can be converted to an equivalent one in nnf
by using the de Morgan laws:

¬(A ∨B) ≡ (¬A ∧ ¬B)

¬(A ∧B) ≡ (¬A ∨ ¬B)

¬¬A ≡ A.

Then, a proposition in nnf can be converted to CNF, but the
question of uniqueness of the CNF is a bit tricky.

For example, the proposition

A = (u ∧ (x ∨ y)) ∨ (¬u ∧ (x ∨ y))

has

A1 = (u ∨ x ∨ y) ∧ (¬u ∨ x ∨ y)

A2 = (u ∨ ¬u) ∧ (x ∨ y)

A3 = x ∨ y,

as equivalent propositions in CNF!

466 CHAPTER 7. COMPUTATIONAL COMPLEXITY

We can get a unique CNF equivalent to a given proposition if
we do the following:

(1) Let Var(A) = {x1, . . . , xm} be the set of variables occurring
in A.

(2) Define a maxterm w.r.t. Var(A) as any disjunction of m
pairwise distinct literals formed from Var(A), and not con-
taining both some variable xi and its negation ¬xi.

(3) Then, it can be shown that for any proposition A that
is not a tautology, there is a unique proposition in CNF
equivalent to A, whose clauses consist of maxterms formed
from Var(A).

The above definition can yield strange results. For instance, the
CNF of any unsatisfiable proposition with m distinct variables
is the conjunction of all of its 2m maxterms!

The above notion does not cope well with minimality.

7.5. THE COOK-LEVIN THEOREM 467

For example, according to the above, the CNF of

A = (u ∧ (x ∨ y)) ∨ (¬u ∧ (x ∨ y))

should be
A1 = (u ∨ x ∨ y) ∧ (¬u ∨ x ∨ y).

There are also propositions such that any equivalent proposition
in CNF has size exponential in terms of the original proposition.

Here is such an example:

A = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ · · · ∨ (x2n−1 ∧ x2n).

Observe that it is in DNF.

We will prove a little later that any CNF for A contains 2n

occurrences of variables.

468 CHAPTER 7. COMPUTATIONAL COMPLEXITY

A nice method to convert a proposition in nnf to CNF is to
construct a tree whose nodes are labeled with sets of propositions
using the following (Gentzen-style) rules :

P,∆ Q,∆

(P ∧Q),∆

and
P,Q,∆

(P ∨Q),∆

where ∆ stands for any set of propositions (even empty), and
the comma stands for union. Thus, it is assumed that
(P ∧ Q) /∈ ∆ in the first case, and that (P ∨ Q) /∈ ∆ in the
second case.

Since we interpret a set, Γ, of propositions as a disjunction, a
valuation, v, satisfies Γ iff it satisfies some proposition in Γ.

7.5. THE COOK-LEVIN THEOREM 469

Observe that a valuation v satisfies the conclusion of a rule iff it
satisfies both premises in the first case, and the single premise
in the second case.

Using these rules, we can build a finite tree whose leaves are
labeled with sets of literals.

By the above observation, a valuation v satisfies the proposition
labeling the root of the tree iff it satisfies all the propositions
labeling the leaves of the tree.

But then, a CNF for the original proposition A (in nnf, at the
root of the tree) is the conjunction of the clauses appearing as
the leaves of the tree.

We may exclude the clauses that are tautologies, and we may
discover in the process that A is a tautology (when all leaves are
tautologies).

470 CHAPTER 7. COMPUTATIONAL COMPLEXITY

Going back to our “bad” proposition, A, by induction, we see
that any tree for A has 2n leaves.

However, it should be noted that for any proposition, A, we can
construct in polynomial time a formula, A′, in CNF, so that A
is satisfiable iff A′ is satisfiable, by creating new variables.

We proceed recursively. The trick is that we replace

(C1 ∧ · · · ∧ Cm) ∨ (D1 ∧ · · · ∧Dn)

by

(C1 ∨ y) ∧ · · · ∧ (Cm ∨ y) ∧ (D1 ∨ y) ∧ · · · ∧ (Dn ∨ y),

where the Ci’s and the Dj’s are clauses, and y is a new variable.

It can be shown that the number of new variables required is at
most quadratic in the size of A.

7.5. THE COOK-LEVIN THEOREM 471

Warning: In general, the proposition A′ is not equivalent to the
proposition A.

Rules for dealing for ¬ can also be created. In this case, we work
with pairs of sets of propositions,

Γ→ ∆,

where, the propositions in Γ are interpreted conjunctively, and
the propositions in ∆ are interpreted disjunctively.

We obtain a sound and complete proof system for propositional
logic (a “Gentzen-style” proof system, see Gallier’s Logic for
Computer Science).

	Computational Complexity
	The Class P
	More Problems
	Propositional Logic and Satisfiability
	The Class NP, NP-Completeness
	The Cook-Levin Theorem

