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Chapter 2
Groups, Rings, and Fields

In the following four chapters, the basic algebraic structures (groups, rings, fields, vector
spaces) are reviewed, with a major emphasis on vector spaces. Basic notions of linear alge-
bra such as vector spaces, subspaces, linear combinations, linear independence, bases, quo-
tient spaces, linear maps, matrices, change of bases, direct sums, linear forms, dual spaces,
hyperplanes, transpose of a linear maps, are reviewed.

2.1 Groups, Subgroups, Cosets

The set R of real numbers has two operations +: R x R — R (addition) and *: R x R —
R (multiplication) satisfying properties that make R into an abelian group under +, and
R — {0} = R* into an abelian group under *. Recall the definition of a group.

Definition 2.1. A group is a set G equipped with a binary operation -: G x G — G that
associates an element a - b € G to every pair of elements a,b € G, and having the following
properties: - is associative, has an identity element e € GG, and every element in G is invertible
(w.r.t. -). More explicitly, this means that the following equations hold for all a, b, c € G:

(Gl) a-(b-¢c)=(a-b)-c (associativity);
(G2) a-e=e€-a=a. (identity);
(G3) For every a € G, there is some a™! € G such that a-a™ ' =a"!-a=e. (inverse).

A group G is abelian (or commutative) if

a-b=>b-a forallabed.

A set M together with an operation -: M x M — M and an element e satisfying only
Conditions (G1) and (G2) is called a monoid. For example, the set N ={0,1,...,n,...} of
natural numbers is a (commutative) monoid under addition. However, it is not a group.

Some examples of groups are given below.

21
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Example 2.1.

1.

The set Z = {...,—n,...,—1,0,1,...,n,...} of integers is an abelian group under
addition, with identity element 0. However, Z* = Z — {0} is not a group under
multiplication.

The set Q of rational numbers (fractions p/q with p,q € Z and ¢ # 0) is an abelian
group under addition, with identity element 0. The set Q* = Q — {0} is also an abelian
group under multiplication, with identity element 1.

. Given any nonempty set S, the set of bijections f: .S — S, also called permutations

of S, is a group under function composition (i.e., the multiplication of f and g is the
composition g o f), with identity element the identity function idg. This group is not
abelian as soon as S has more than two elements. The permutation group of the set
S ={1,...,n} is often denoted &,, and called the symmetric group on n elements.

For any positive integer p € N, define a relation on Z, denoted m = n (mod p), as
follows:
m=n (modp) iff m-—n==kp forsomek € Z.

The reader will easily check that this is an equivalence relation, and, moreover, it is
compatible with respect to addition and multiplication, which means that if m; = n,
(mod p) and my = ny (mod p), then my + my = ny + ne (mod p) and mymy = nyngy
(mod p). Consequently, we can define an addition operation and a multiplication
operation of the set of equivalence classes (mod p):

[m] + [n] = [m + n]
and
[m] - [n] = [mn].

The reader will easily check that addition of residue classes (mod p) induces an abelian
group structure with [0] as zero. This group is denoted Z/pZ.

The set of n x n invertible matrices with real (or complex) coefficients is a group under
matrix multiplication, with identity element the identity matrix [I,,. This group is
called the general linear group and is usually denoted by GL(n,R) (or GL(n,C)).

The set of n x n invertible matrices A with real (or complex) coefficients such that
det(A) =1 is a group under matrix multiplication, with identity element the identity

matrix [,. This group is called the special linear group and is usually denoted by
SL(n,R) (or SL(n,C)).

The set of n x n matrices () with real coefficients such that

Q' =Q'Q=1,
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is a group under matrix multiplication, with identity element the identity matrix I,,;
we have Q' = Q. This group is called the orthogonal group and is usually denoted
by O(n).

8. The set of n x n invertible matrices () with real coefficients such that

QR'=Q'Q=1, and det(Q)=1

is a group under matrix multiplication, with identity element the identity matrix I,,;
as in (6), we have Q7' = Q". This group is called the special orthogonal group or
rotation group and is usually denoted by SO(n).

The groups in (5)—(8) are nonabelian for n > 2, except for SO(2) which is abelian (but O(2)
is not abelian).

It is customary to denote the operation of an abelian group G by +, in which case the
inverse a~! of an element a € G is denoted by —a.

The identity element of a group is unique. In fact, we can prove a more general fact:

Proposition 2.1. For any binary operation -: M x M — M, if ¢ € M is a left identity and
if €' € M is a right identity, which means that

¢-a=a forall ae M (G21)

and
a-¢"'=a foral a€ M, (G2r)

then ¢ =¢".
Proof. If we let a = €’ in equation (G21), we get
/ " "

e€-e=e",

and if we let a = €’ in equation (G2r), we get

and thus

as claimed. n

Proposition 2.1 implies that the identity element of a monoid is unique, and since every
group is a monoid, the identity element of a group is unique. Furthermore, every element in
a group has a unique inverse. This is a consequence of a slightly more general fact:
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Proposition 2.2. In a monoid M with identity element e, if some element a € M has some
left inverse a’ € M and some right inverse a” € M, which means that

d-a=e (G3])

and
a-d’ =e, (G3r)

then a' = a”.

Proof. Using (G3l) and the fact that e is an identity element, we have

(@' a)-d"=e-d"=d".

Similarly, Using (G3r) and the fact that e is an identity element, we have

a-(a-d"y=d -e=d.

However, since M is monoid, the operation - is associative, so

a/:a/_(a.a//):(a/_a).a//:a//7

as claimed. O

Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only (G2r) (the exis-
tence of a right identity) and (G3r) (the existence of a right inverse for every element) (or
(G21) and (G3l)). It is a good exercise to prove that the group axioms (G2) and (G3) follow
from (G2r) and (G3r).

Another important property about inverse elements in monoids is stated below.

Proposition 2.3. In a monoid M with identity element e, if a and b are invertible elements
of M, where a™*' is the inverse of a and b~! is the inverse of b, then ab is invertible and its
inverse is given by (ab)™t = b~la"L.

Proof. Using associativity and the fact that e is the identity element we have

(ab)(b~ta™h) = a(b(b~ta™h)) associativity
=a((bb~")a™") associativity
=alea™) b~! is the inverse of b
=aa! e is the identity element

=e. a~! is the inverse of a.
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We also have

Therefore b='a~! is the inverse of ab.

25
associativity
associativity
a~! is the inverse of a
e is the identity element
b1 is the inverse of b.
O

Observe that the inverse of ba is a='b~!. Proposition 2.3 implies that the set of invertible
elements of a monoid M is a group, also with identity element e.

Definition 2.2. If a group G has a finite number n of elements, we say that G is a group
of order n. If G is infinite, we say that G has infinite order. The order of a group is usually

denoted by |G| (if G is finite).

Given a group G, for any two subsets R, S C G, we let

RS ={r-s|reR,seS}.

In particular, for any g € G, if R = {g}, we write

gS:{g'S|S€S}7

and similarly, if S = {g}, we write

Rg={r-g|reR}.

From now on, we will drop the multiplication sign and write g;g- for g; - go.

Definition 2.3. Let G be a group. For any g € G, define Ly, the left translation by g, by
Ly(a) = ga, for all a € G, and R, the right translation by g, by Ry(a) = ag, for all a € G.

The following simple fact is often used.

Proposition 2.4. Given a group G, the translations L, and R, are bijections.

Proof. We show this for L,, the proof for R, being similar.

If Ly(a) = Ly(b), then ga = gb, and multiplying on the left by ¢!, we get a = b, so L,
injective. For any b € G, we have L,(g'b) = g9~ 'b = b, so L, is surjective. Therefore, L,

is bijective.

]

Definition 2.4. Given a group G, a subset H of G is a subgroup of G ift

(1) The identity element e of G also belongs to H (e € H);
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(2) For all hy, hy € H, we have hihy € H;

(3) For all h € H, we have h™! € H.

The proof of the following proposition is left as an exercise.

Proposition 2.5. Given a group G, a subset H C G is a subgroup of G iff H is nonempty
and whenever hi, hy € H, then h1h2_1 cH.

If the group G is finite, then the following criterion can be used.
Proposition 2.6. Given a finite group G, a subset H C G is a subgroup of G iff
(1) e € H;
(2) H is closed under multiplication.
Proof. We just have to prove that Condition (3) of Definition 2.4 holds. For any a € H,
since the left translation L, is bijective, its restriction to H is injective, and since H is finite,
it is also bijective. Since e € H, there is a unique b € H such that L,(b) = ab = e. However,
if a=! is the inverse of a in G, we also have L,(a™!) = aa™! = e, and by injectivity of L,, we
have a™! = b € H. O
Example 2.2.
1. For any integer n € Z, the set
nZ ={nk | k € Z}
is a subgroup of the group Z.
2. The set of matrices
GL"(n,R) = {A € GL(n,R) | det(A) > 0}
is a subgroup of the group GL(n,R).
3. The group SL(n,R) is a subgroup of the group GL(n,R).
4. The group O(n) is a subgroup of the group GL(n, R).

5. The group SO(n) is a subgroup of the group O(n), and a subgroup of the group
SL(n,R).
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6. It is not hard to show that every 2 x 2 rotation matrix R € SO(2) can be written as

(COS § —sind

sin 0 COSG)’ with 0 <6 < 27.

Then SO(2) can be considered as a subgroup of SO(3) by viewing the matrix
cost) —sind
= <sin9 cos )

cos@ —sinf 0
Q= |sinf cosf O
0 0 1

as the matrix

7. The set of 2 x 2 upper-triangular matrices of the form

a b
(O c) a,b,c eR, a,c#0

is a subgroup of the group GL(2,R).

8. The set V consisting of the four matrices

+1 0
0 =1
is a subgroup of the group GL(2,R) called the Klein four-group.

Definition 2.5. If H is a subgroup of G and g € G is any element, the sets of the form
gH are called left cosets of H in G and the sets of the form Hg are called right cosets of H
in G. The left cosets (resp. right cosets) of H induce an equivalence relation ~ defined as
follows: For all g1, g2 € G,

g1 ~ge Ul g1H=gH

(resp. g1 ~ g2 iff Hgy = Hgs). Obviously, ~ is an equivalence relation.

Now, we claim the following fact:

Proposition 2.7. Given a group G and any subgroup H of G, we have g1H = g, H iff
9:'91H = H iff g;' g1 € H, for all g1, 92 € G.

Proof. If we apply the bijection ngl to both g1 H and goH we get L951(91H) = g, g H
and ngl(ng) = H,so g H = goH iff g;'qH = H. If g;'g:H = H, since 1 € H, we get
gy g1 € H. Conversely, if g, g1 € H, since H is a group, the left translation ngl g 18 a

bijection of H, so g5 g1H = H. Thus, g, 'g1H = H iff g;'g, € H. O
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It follows that the equivalence class of an element g € G is the coset gH (resp. Hg).
Since L, is a bijection between H and gH, the cosets gH all have the same cardinality. The
map L,-1 o Ry is a bijection between the left coset gH and the right coset Hg, so they also
have the same cardinality. Since the distinct cosets gH form a partition of GG, we obtain the
following fact:

Proposition 2.8. (Lagrange) For any finite group G and any subgroup H of G, the order
h of H divides the order n of G.

Definition 2.6. Given a finite group G and a subgroup H of G, if n = |G| and h = |H|,
then the ratio n/h is denoted by (G : H) and is called the index of H in G.

The index (G : H) is the number of left (and right) cosets of H in G. Proposition 2.8
can be stated as
G| = (G- H)|H].

The set of left cosets of H in G (which, in general, is not a group) is denoted G/H.
The “points” of G/H are obtained by “collapsing” all the elements in a coset into a single
element.

Example 2.3.

1. Let n be any positive integer, and consider the subgroup nZ of Z (under addition).
The coset of 0 is the set {0}, and the coset of any nonzero integer m € Z is

m+nZ={m+nk|keZ}

By dividing m by n, we have m = nq + r for some unique r such that 0 <r <n — 1.
But then we see that r is the smallest positive element of the coset m + nZ. This
implies that there is a bijection betwen the cosets of the subgroup nZ of Z and the set
of residues {0, 1,...,n — 1} modulo n, or equivalently a bijection with Z/nZ.

2. The cosets of SL(n,R) in GL(n,R) are the sets of matrices
ASL(n,R) ={AB | B € SL(n,R)}, A € GL(n,R).
Since A is invertible, det(A4) # 0, and we can write A = (det(A))/"((det(A))~/"A)
if det(A) > 0 and A = (—det(A))Y"((—det(A4))~"Y/"A) if det(A) < 0. But we have
(det(A))~Y/"A € SL(n,R) if det(A) > 0 and —(—det(A))~Y/"A € SL(n, R) if det(A) <
0, so the coset A SL(n,R) contains the matrix
(det(ANY"IL, if det(A) >0, —(—det(A)Y"I, if det(A) <D0.

It follows that there is a bijection between the cosets of SL(n,R) in GL(n,R) and R.
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3. The cosets of SO(n) in GL*(n,R) are the sets of matrices
ASO(n) = {AQ | Q € SO(n)}, A€ GL"(n,R).

It can be shown (using the polar form for matrices) that there is a bijection between
the cosets of SO(n) in GL™(n,R) and the set of n X n symmetric, positive, definite
matrices; these are the symmetric matrices whose eigenvalues are strictly positive.

4. The cosets of SO(2) in SO(3) are the sets of matrices
QSO(2) = {QR | R € SO(2)}, Q € SO(3).
The group SO(3) moves the points on the sphere S? in R3, namely for any x € S,
x+— Qr for any rotation @ € SO(3).

Here,

S? ={(z,y,2) eR® | 2® + >+ 2* =1}
Let N = (0,0, 1) be the north pole on the sphere S?. Then it is not hard to show that
SO(2) is precisely the subgroup of SO(3) that leaves N fixed. As a consequence, all
rotations QR in the coset Q SO(2) map N to the same point QN € S?, and it can be
shown that there is a bijection between the cosets of SO(2) in SO(3) and the points
on S?. The surjectivity of this map has to do with the fact that the action of SO(3)

on S? is transitive, which means that for any point z € S?, there is some rotation
@ € SO(3) such that QN = .

It is tempting to define a multiplication operation on left cosets (or right cosets) by
setting

(1 H)(92H) = (9192)H,
but this operation is not well defined in general, unless the subgroup H possesses a special

property. In Example 2.3, it is possible to define multiplication of cosets in (1), but it is not
possible in (2) and (3).

The property of the subgroup H that allows defining a multiplication operation on left
cosets is typical of the kernels of group homomorphisms, so we are led to the following
definition.

Definition 2.7. Given any two groups G and G’, a function ¢: G — G’ is a homomorphism
iff
p(9192) = (91)0(g2), forall g1, 9, € G.

Taking g1 = g2 = e (in G), we see that

1 we see that

plg™") = (e(g) "

and taking g, = g and ¢g» = g~
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Example 2.4.
1. The map ¢: Z — Z/nZ given by ¢(m) = m mod n for all m € Z is a homomorphism.

2. The map det: GL(n,R) — R is a homomorphism because det(AB) = det(A) det(B)
for any two matrices A, B. Similarly, the map det: O(n) — R is a homomorphism.

If o: G — G" and ¢: G' — G” are group homomorphisms, then ¢ o p: G — G” is also
a homomorphism. If ¢: G — G’ is a homomorphism of groups, and if H C G, H' C G’ are
two subgroups, then it is easily checked that

Im p=p(H)={p(g) |ge H}

is a subgroup of G’ and
p H(H)={9€G|p(g) € H}
is a subgroup of G. In particular, when H' = {¢’}, we obtain the kernel, Ker ¢, of .

Definition 2.8. If ¢: G — G’ is a homomorphism of groups, and if H C G is a subgroup
of G, then the subgroup of G’,

Im o= o(H)={p(9) | g€ H},

is called the image of H by ¢, and the subgroup of G,

Ker o ={g € G| ¢(g) =€},
is called the kernel of .
Example 2.5.
1. The kernel of the homomorphism ¢: Z — Z/nZ is nZ.

2. The kernel of the homomorphism det: GL(n,R) — R is SL(n, R). Similarly, the kernel
of the homomorphism det: O(n) — R is SO(n).

The following characterization of the injectivity of a group homomorphism is used all the
time.

Proposition 2.9. If p: G — G’ is a homomorphism of groups, then ¢: G — G’ is injective
iff Ker ¢ = {e}. (We also write Ker ¢ = (0).)

Proof. Assume ¢ is injective. Since p(e) = €, if ¢(g) = €/, then p(g9) = ¢(e), and by
injectivity of ¢ we must have g = e, so Ker ¢ = {e}.

Conversely, assume that Ker ¢ = {e}. If p(g1) = ©(g2), then by multiplication on the
left by (p(g1))~ ! we get

¢ = (0(91))"olgr) = ((g1)) " 0(g2),
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and since ¢ is a homomorphism (¢(g1))™" = ¢(g7 '), s0

¢ = (p(g1) " olg2) = (g ")e(g2) = (91 ' 92).

This shows that g; 'g, € Ker ¢, but since Ker ¢ = {e} we have g;'go = ¢, and thus gy = g1,
proving that ¢ is injective. O]

Definition 2.9. We say that a group homomorphism ¢: G — G’ is an isomorphism if there
is a homomorphism v : G' — G, so that

lﬂo@:idg and gOO@/}:idgl. (T)

If ¢ is an isomorphism we say that the groups G and G’ are isomorphic. When G’ = G, a
group isomorphism is called an automorphism.

The reasoning used in the proof of Proposition 2.2 shows that if a a group homomorphism
¢: G — G’ is an isomorphism, then the homomorphism ¢: G’ — G satisfying Condition (7)
is unique. This homomorphism is denoted 1.

The left translations L, and the right translations R, are automorphisms of G.

Suppose ¢: G — G’ is a bijective homomorphism, and let ¢! be the inverse of ¢ (as a
function). Then for all a,b € G, we have

e~ (@)™ (b)) = p(¢~(a))p(p~ ! (b)) = ab,

and so
P~ (ab) = ¢~ (a)p (D),

which proves that ¢! is a homomorphism. Therefore, we proved the following fact.

Proposition 2.10. A bijective group homomorphism p: G — G’ is an isomorphism.
Observe that the property
gH = Hg, forall geG. (%)
is equivalent by multiplication on the right by ¢=! to
gHg ' =H, forallgeQg,
and the above is equivalent to
gHg ' C H, forallgeg. (%)
This is because gHg~! C H implies H C ¢~ 'Hg, and this for all g € G.

Proposition 2.11. Let ¢: G — G’ be a group homomorphism. Then H = Ker o satisfies
Property (xx), and thus Property (x).
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Proof. We have

p(ghg™) = w(g)e(h)e(g™") = e(g9)e'v(g) ™ = e(g)elg) " = ¢,

for all h € H = Ker ¢ and all g € G. Thus, by definition of H = Ker ¢, we have gHg™* C
H. O

Definition 2.10. For any group G, a subgroup N of G is a normal subgroup of G iff
gNg ' =N, forall geQq.

This is denoted by N <1 G.

Proposition 2.11 shows that the kernel Ker ¢ of a homomorphism ¢: G — G’ is a normal
subgroup of G.

Observe that if GG is abelian, then every subgroup of G is normal.

Consider Example 2.2. Let R € SO(2) and A € SL(2,R) be the matrices

r=(V ) 4= 1)

Then

and we have

(1 1\ [0 =1\ (1 -1\ /1 -1\ /1 -1\ (1 -2
=)o) 6 D=6 )6 =005
and clearly ARA™' ¢ SO(2). Therefore SO(2) is not a normal subgroup of SL(2,R). The
same counter-example shows that O(2) is not a normal subgroup of GL(2,R).

Let R € SO(2) and @ € SO(3) be the matrices

Then
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and we have

10 0\ /0 =10\ /1 0 0 0 -1 0\ /1 0 0
QrQ'=(0 0 —1|[1 o ofllo o 1]=(0 0o —-1]]0 o0 1
01 0/ \o o 1/\o -1 0 1 0o o/\o -10
00 —1
—lo1 o
10 0

Observe that QRQ™ ¢ SO(2), so SO(2) is not a normal subgroup of SO(3).
Let 7" and A € GL(2,R) be the following matrices

=) 2= 0o)
Alz((l) é):A,
=6 DE)-CDC =01

The matrix T is upper triangular, but AT A~! is not, so the group of 2 x 2 upper triangular
matrices is not a normal subgroup of GL(2,R).

Let @ € V and A € GL(2,R) be the following matrices

(%) 1)

We have

We have

4 (1 1\ (1 O 1 -1\ (1 =1\ /1 -1\ (1 =2
s = (1) (6 )6 3) =0 2) 6 )= 2)
Clearly AQA™! ¢ V, which shows that the Klein four group is not a normal subgroup of

GL(2,R).

The reader should check that the subgroups nZ, GL*(n,R), SL(n,R), and SO(n,R) as
a subgroup of O(n,R), are normal subgroups.

and

If N is a normal subgroup of G, the equivalence relation ~ induced by left cosets (see
Definition 2.5) is the same as the equivalence induced by right cosets. Furthermore, this
equivalence relation is a congruence, which means that: For all gy, g2, 9}, g5 € G,
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(1) If ¢ N = g|N and go N = g4 N, then g1go N = ¢} g5 N, and
(2) If 4N = goN, then g;'N = g; ' N.

As a consequence, we can define a group structure on the set GG/ ~ of equivalence classes
modulo ~, by setting

(91N)(g2N) = (g192) V.

Definition 2.11. Let G be a group and N be a normal subgroup of G. The group obtained
by defining the multiplication of (left) cosets by

(91N)(92N) = (9192)N, 91,92 € G
is denoted G/N, and called the quotient of G by N. The equivalence class gN of an element
g € G is also denoted g (or [g]). The map 7: G — G/N given by
m(g) =9 =9gN
is a group homomorphism called the canonical projection.

Since the kernel of a homomorphism is a normal subgroup, we obtain the following very
useful result.

Proposition 2.12. Given a homomorphism of groups ¢: G — G', the groups G /Ker ¢ and
Im ¢ = p(G) are isomorphic.

Proof. Since ¢ is surjective onto its image, we may assume that ¢ is surjective, so that
G’ =TIm . We define a map @: G/Ker p — G’ as follows:

?(g) =v(9), ge€q.

We need to check that the definition of this map does not depend on the representative
chosen in the coset § = g Ker ¢, and that it is a homomorphism. If ¢’ is another element in
the coset g Ker ¢, which means that ¢ = gh for some h € Ker ¢, then

p(9') = lgh) = w(g)p(h) = plg)e’ = ¢(g),
since ¢(h) = ¢’ as h € Ker . This shows that
?(g) = v(g) = »l9) = 2(9),

so the map @ is well defined. It is a homomorphism because

©(g9’) = 2(99')

= ¢(99)

= ¢(9)p(g')

=2(9)%(d)
The map P is injective because $(g) = €’ iff p(g) = €' iff g € Ker ¢, iff g = €. The map @
is surjective because ¢ is surjective. Therefore P is a bijective homomorphism, and thus an

isomorphism, as claimed. O]
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Proposition 2.12 is called the first isomorphism theorem.

A useful way to construct groups is the direct product construction.

Definition 2.12. Given two groups G an H, we let G X H be the Cartestian product of the
sets G and H with the multiplication operation - given by

(91, hl) : (92, h2) = (9192, h1h2)~

It is immediately verified that G x H is a group called the direct product of G and H.

Similarly, given any n groups Gf1, ..., G,, we can define the direct product Gy x - - - x G,
is a similar way.

If G is an abelian group and Hy, ..., H, are subgroups of GG, the situation is simpler.
Consider the map
a: Hyx---xH,—G

given by
a(hl,...,hn):hl—i-"'—i-hn,
using + for the operation of the group G. It is easy to verify that a is a group homomorphism,

so its image is a subgroup of G denoted by H; + - - -+ H,,, and called the sum of the groups
H;. The following proposition will be needed.

Proposition 2.13. Given an abelian group G, if Hy and Hs are any subgroups of G such
that Hy N Hy = {0}, then the map a is an isomorphism

CLZH1XH2—>H1+H2.

Proof. The map is surjective by definition, so we just have to check that it is injective. For
this, we show that Kera = {(0,0)}. We have a(ay,as) = 0 iff a; + ay = 0 iff a3 = —as. Since
a; € Hy and ay € Hy, we see that a1, as € Hy N Hy = {0}, so a1 = as = 0, which proves that
Kera = {(0,0)}. O

Under the conditions of Proposition 2.13, namely H; N Hy = {0}, the group H; + H, is
called the direct sum of H; and Hs; it is denoted by H; @& H,, and we have an isomorphism
H1 XHQ ng@HQ.

2.2 Cyclic Groups

Given a group GG with unit element 1, for any element ¢ € G and for any natural number
n € N, we define ¢g" as follows:
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For any integer n € Z, we define g™ by

n 9" ifn>0
9= (gHE™ ifn <.

The following properties are easily verified:

gi . gj — gz‘+j
()" =g"

)

9-9d=q"d
for all 4,5 € Z.
Define the subset (g) of G by
(9) ={g" [ n € Z}.
The following proposition is left as an exercise.

Proposition 2.14. Given a group G, for any element g € G, the set (g) is the smallest
abelian subgroup of G containing g.

Definition 2.13. A group G is cyclic iff there is some element g € G such that G = (g).
An element g € G with this property is called a generator of G.

The Klein four group V' of Example 2.2 is abelian, but not cyclic. This is because V' has
four elements, but all the elements different from the identity have order 2.

Cyclic groups are quotients of Z. For this, we use a basic property of Z. Recall that for
any n € Z, we let nZ denote the set of multiples of n,

nZ = {nk | k € Z}.
Proposition 2.15. Fvery subgroup H of Z is of the form H = nZ for some n € N.

Proof. 1f H is the trivial group {0}, then let n = 0. If H is nontrivial, for any nonzero element
m € H, we also have —m € H and either m or —m is positive, so let n be the smallest
positive integer in H. By Proposition 2.14, nZ is the smallest subgroup of H containing n.
For any m € H with m # 0, we can write

m=nqg+r, with 0<r<n.

Now, since nZ C H, we have ng € H, and since m € H, we get r = m — nq € H. However,
0 < r < n, contradicting the minimality of n, so r =0, and H = nZ. O



2.2. CYCLIC GROUPS 37

Given any cyclic group G, for any generator g of G, we can define a mapping ¢: Z — G
by ¢(m) = g™. Since g generates GG, this mapping is surjective. The mapping ¢ is clearly a
group homomorphism, so let H = Ker ¢ be its kernel. By a previous observation, H = nZ
for some n € Z, so by the first homomorphism theorem, we obtain an isomorphism

p:Z/nZ — G

from the quotient group Z/nZ onto G. Obviously, if G has finite order, then |G| = n. In
summary, we have the following result.

Proposition 2.16. Every cyclic group G is either isomorphic to Z, or to Z/nZ, for some
natural number n > 0. In the first case, we say that G is an infinite cyclic group, and in the
second case, we say that G is a cyclic group of order n.

The quotient group Z/nZ consists of the cosets m+nZ = {m+nk | k € Z}, with m € Z,
that is, of the equivalence classes of Z under the equivalence relation = defined such that

r=y iff z—yenZ iff z=y (modn).

We also denote the equivalence class x + nZ of x by , or if we want to be more precise by
[z],,. The group operation is given by

T+y=x1y.

For every « € Z, there is a unique representative, z mod n (the nonnegative remainder of
the division of x by n) in the class T of x, such that 0 < zmodn < n — 1. For this
reason, we often identity Z/nZ with the set {0,...,n—1}. To be more rigorous, we can give
{0,...,n — 1} a group structure by defining +,, such that

z+,y = (z+y) mod n.

Then, it is easy to see that {0,...,n — 1} with the operation +, is a group with identity
element 0 isomorphic to Z/nZ.

We can also define a multiplication operation - on Z/nZ as follows:

Then, it is easy to check that - is abelian, associative, that 1 is an identity element for -, and
that - is distributive on the left and on the right with respect to addition. This makes Z/nZ
into a commutative ring. We usually suppress the dot and write @b instead of @ - b.

Proposition 2.17. Given any integer n > 1, for any a € Z, the residue class a € Z/nZ is
invertible with respect to multiplication iff ged(a,n) = 1.
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Proof. If @ has inverse b in Z/nZ, then @b = 1, which means that
ab=1 (mod n),
that is ab = 1 4+ nk for some k € Z, which is the Bezout identity
ab—nk =1

and implies that ged(a,n) = 1. Conversely, if ged(a,n) = 1, then by Bezout’s identity there
exist u,v € Z such that
au+nv =1,

so au = 1 — nw, that is,
au=1 (mod n),

which means that @u = 1, so a is invertible in Z/nZ. O

Definition 2.14. The group (under multiplication) of invertible elements of the ring Z/nZ
is denoted by (Z/nZ)*. Note that this group is abelian and only defined if n > 2.

The Euler p-function plays an important role in the theory of the groups (Z/nZ)*.

Definition 2.15. Given any positive integer n > 1, the Euler ¢-function (or Euler totient
function) is defined such that ¢(n) is the number of integers a, with 1 < a < n, which are
relatively prime to n; that is, with ged(a,n) = 1.1

Then, by Proposition 2.17, we see that the group (Z/nZ)* has order ¢(n).

For n = 2, (Z/2Z)* = {1}, the trivial group. For n = 3, (Z/3Z)* = {1,2}, and for
n = 4, we have (Z/4Z)* = {1,3}. Both groups are isomorphic to the group {—1,1}. Since
ged(a,n) = 1 for every a € {1,...,n — 1} iff n is prime, by Proposition 2.17 we see that
(Z/nZ)* = Z/nZ — {0} iff n is prime.

2.3 Rings and Fields

The groups Z,Q,R, C, Z/nZ, and M,(R) are more than abelian groups, they are also
commutative rings. Furthermore, Q, R, and C are fields. We now introduce rings and fields.

Definition 2.16. A ring is a set A equipped with two operations +: A x A — A (called
addition) and x: A x A — A (called multiplication) having the following properties:

(R1) Ais an abelian group w.r.t. +;

(R2) * is associative and has an identity element 1 € A;

'We allow @ = n to accomodate the special case n = 1.
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(R3) * is distributive w.r.t. +.

The identity element for addition is denoted 0, and the additive inverse of a € A is
denoted by —a. More explicitly, the axioms of a ring are the following equations which hold
for all a,b,c € A:

a+(b+c)=(a+0b)+c (associativity of +) (2.1)
a+b=b+a (commutativity of +) (2.2)
a+0=0+a=a (zero) (2.3)
a+(—a)=(—a)+a=0 (additive inverse) (2.4)
ax(bxc)=(axb)xc (associativity of ) (2.5)
axl=1xa=a (identity for x) (2.6)
(a+b)xc=(a*xc)+ (bxc) (distributivity) (2.7)
ax(b+c)=(axb)+ (ax*c) (distributivity) (2.8)

The ring A is commutative if

axb=bxa forallabeA.

From (2.7) and (2.8), we easily obtain

ax0 = 0%xa=0 (2.9)
ax(=b) = (—a)xb=—(axb). (2.10)

Note that (2.9) implies that if 1 = 0, then a = 0 for all a € A, and thus, A = {0}. The
ring A = {0} is called the trivial ring. A ring for which 1 # 0 is called nontrivial. The
multiplication a % b of two elements a,b € A is often denoted by ab.

Example 2.6.
1. The additive groups Z,Q, R, C, are commutative rings.

2. For any positive integer n € N, the group Z/nZ is a group under addition. We can
also define a multiplication operation by

@-b=ab=abmod n,

for all a,b € Z. The reader will easily check that the ring axioms are satisfied, with 0
as zero and 1 as multiplicative unit. The resulting ring is denoted by Z/nZ.>

3. The group R[X] of polynomials in one variable with real coefficients is a ring under
multiplication of polynomials. It is a commutative ring.

2The notation Z, is sometimes used instead of Z/nZ but it clashes with the notation for the n-adic
integers so we prefer not to use it.



40

CHAPTER 2. GROUPS, RINGS, AND FIELDS

4. Let d be any positive integer. If d is not divisible by any integer of the form m?, with

m € N and m > 2, then we say that d is square-free. For example, d =1,2,3,5,6,7,10
are square-free, but 4, 8,9, 12 are not square-free. If d is any square-free integer and if
d > 2, then the set of real numbers

ZIVd = {a+bdeR|abeZ}

is a commutative a ring. If z = a + bV/d € Z[Vd], we write Z = a — bv/d. Note that
2z = a* — db*.

. Similarly, if d > 1 is a positive square-free integer, then the set of complex numbers

Z|v—d| = {a+ibVd e C | a,b e Z}

is a commutative ring. If z = a + ibv/d € Z[/—d|, we write Z = a — ibv/d. Note that
2Z = a® + db*. The case where d = 1 is a famous example that was investigated by
Gauss, and Z[v/—1], also denoted Z[i], is called the ring of Gaussian integers.

. The group of n x n matrices M,,(R) is a ring under matrix multiplication. However, it

is not a commutative ring.

. The group C(a,b) of continuous functions f: (a,b) — R is a ring under the operation

f - g defined such that
(f-9)(x) = f(x)g(z)

for all x € (a,b).

Definition 2.17. Given a ring A, for any element a € A, if there is some element b € A
such that b # 0 and ab = 0, then we say that a is a zero divisor. A ring A is an integral
domain (or an entire ring) if 0 # 1, A is commutative, and ab = 0 implies that a = 0 or
b =0, for all a,b € A. In other words, an integral domain is a nontrivial commutative ring
with no zero divisors besides 0.

Example 2.7.

1. The rings Z,Q, R, C, are integral domains.
2. The ring R[X] of polynomials in one variable with real coefficients is an integral domain.

3. For any positive integer, n € N, we have the ring Z/nZ. Observe that if n is composite,

then this ring has zero-divisors. For example, if n = 4, then we have
2-2=0 (mod 4).

The reader should prove that Z/nZ is an integral domain iff n is prime (use Proposition
2.17).
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4. If d is a square-free positive integer and if d > 2, the ring Z[v/d] is an integral domain.
Similarly, if d > 1 is a square-free positive integer, the ring Z[v/—d] is an integral
domain. Finding the invertible elements of these rings is a very interesting problem.

5. The ring of n x n matrices M,,(R) has zero divisors.

A homomorphism between rings is a mapping preserving addition and multiplication
(and 0 and 1).

Definition 2.18. Given two rings A and B, a homomorphism between A and B is a function
h: A — B satistying the following conditions for all x,y € A:

h(z +y) = h(z) + h(y)
h(zy) = h(z)h(y)
h(0) =0
h(1) = 1.

Actually, because B is a group under addition, h(0) = 0 follows from
h(z +vy) = h(x) + h(y).
Example 2.8.

1. If Ais a ring, for any integer n € Z, for any a € A, we define n - a by

n-a=a-+---+a
N——

if n >0 (with 0-a =0) and
n-a=—(-n)-a
if n < 0. Then, the map h: Z — A given by
h(n)=mn-14
is a ring homomorphism (where 14 is the multiplicative identity of A).

2. Given any real A € R, the evaluation map 7,: R[X] — R defined by

m(f(X)) = f(N)
for every polynomial f(X) € R[X] is a ring homomorphism.

Definition 2.19. A ring homomorphism h: A — B is an isomorphism iff there is a ring

homomorphism g: B — A such that go f = idy and f o g = idg. An isomorphism from a
ring to itself is called an automorphism.
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As in the case of a group isomorphism, the homomorphism ¢ is unique and denoted by
h~1, and it is easy to show that a bijective ring homomorphism h: A — B is an isomorphism.

Definition 2.20. Given a ring A, a subset A’ of A is a subring of A if A’ is a subgroup of
A (under addition), is closed under multiplication, and contains 1.

For example, we have the following sequence in which every ring on the left of an inlcusion
sign is a subring of the ring on the right of the inclusion sign:

ZCQCRCC.

The ring Z is a subring of both Z[/d] and Z[v/—d|, the ring Z[v/d] is a subring of R and the
ring Z[v/—d] is a subring of C.

If h: A — B is a homomorphism of rings, then it is easy to show for any subring A’, the
image h(A’) is a subring of B, and for any subring B’ of B, the inverse image h™!(B’) is a
subring of A.

As for groups, the kernel of a ring homomorphism h: A — B is defined by
Ker h={a € A|h(a) =0}.

Just as in the case of groups, we have the following criterion for the injectivity of a ring
homomorphism. The proof is identical to the proof for groups.

Proposition 2.18. If h: A — B is a homomorphism of rings, then h: A — B is injective
iff Ker h = {0}. (We also write Ker h = (0).)

The kernel of a ring homomorphism is an abelian subgroup of the additive group A, but
in general it is not a subring of A, because it may not contain the multiplicative identity
element 1. However, it satisfies the following closure property under multiplication:

ab € Ker h and ba € Ker h for all a € Ker h and all b € A.
This is because if h(a) = 0, then for all b € A we have
h(ab) = h(a)h(b) = 0h(b) =0 and h(ba) = h(b)h(a) = h(b)0 = 0.
Definition 2.21. Given a ring A, an additive subgroup J of A satisfying the property below
abeJ and baeTJ forallaecTJandallbe A (*ideal)

is called a two-sided ideal. If A is a commutative ring, we simply say an ideal.

It turns out that for any ring A and any two-sided ideal J, the set A/J of additive cosets
a+7J (with a € A) is a ring called a quotient ring. Then we have the following analog of
Proposition 2.12, also called the first isomorphism theorem.
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Proposition 2.19. Given a homomorphism of rings h: A — B, the rings A/Ker h and
Im h = h(A) are isomorphic.

A field is a commutative ring K for which K — {0} is a group under multiplication.
Definition 2.22. A set K is a field if it is a ring and the following properties hold:
(F1) 0#1;

(F2) For every a € K, if a # 0, then a has an inverse w.r.t. x;
(F3) * is commutative.

Let K* = K — {0}. Observe that (F1) and (F2) are equivalent to the fact that K* is a
group w.r.t. * with identity element 1. If % is not commutative but (F1) and (F2) hold, we
say that we have a skew field (or noncommutative field).

Note that we are assuming that the operation * of a field is commutative. This convention
is not universally adopted, but since * will be commutative for most fields we will encounter,
we may as well include this condition in the definition.

Example 2.9.
1. The rings Q, R, and C are fields.

2. The set of (formal) fractions f(X)/g(X) of polynomials f(X), g(X) € R[X], where
g(X) is not the null polynomial, is a field.

3. The ring C(a,b) of continuous functions f: (a,b) — R such that f(z) # 0 for all
x € (a,b) is a field.

4. Using Proposition 2.17, it is easy to see that the ring Z/pZ is a field iff p is prime.
5. If d is a square-free positive integer and if d > 2, the set
Q(Wd)={a+bdeR|abeQ}

is a field. If z = a4+ bv/d € Q(v/d) and Z = a — bv/d, then it is easy to check that if
z # 0, then 27! =7/(2%).

6. Similarly, If d > 1 is a square-free positive integer, the set of complex numbers
Q(vV—d) ={a+ibVde C |a,be Q}

is a field. If 2 = a + ibv/d € Q(v/—d) and Z = a — ib\/d, then it is easy to check that
if z # 0, then 271 =%/(22).
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Definition 2.23. A homomorphism h: K; — K5 between two fields K; and K, is just a
homomorphism between the rings K, and K.

However, because K} and K are groups under multiplication, a homomorphism of fields
must be injective.

Proof. First, observe that for any x # 0,

and
1=nh(1) = h(z'z) = h(z")h(z),

so h(z) # 0 and
h(z™') = h(x)™".

But then, if h(z) = 0, we must have x = 0. Consequently, / is injective. ]

Definition 2.24. A field homomorphism h: K; — K, is an isomorphism iff there is a
homomorphism ¢g: Ky — K; such that go f =idg, and fog =idg,. An isomorphism from
a field to itself is called an automorphism.

Then, just as in the case of rings, g is unique and denoted by h~!, and a bijective field
homomorphism h: K; — K5 is an isomorphism.

Definition 2.25. Since every homomorphism h: K; — K5 between two fields is injective,
the image f(K;) of K; is a subfield of Ky. We say that K is an extension of Kj.

For example, R is an extension of Q and C is an extension of R. The fields Q(v/d) and
Q(v/—d) are extensions of @, the field R is an extension of Q(v/d) and the field C is an
extension of Q(v/—d).

Definition 2.26. A field K is said to be algebraically closed if every polynomial p(X) with
coefficients in K has some root in K; that is, there is some a € K such that p(a) = 0.

It can be shown that every field K has some minimal extension {2 which is algebraically
closed, called an algebraic closure of K. For example, C is the algebraic closure of R. The
algebraic closure of Q is called the field of algebraic numbers. This field consists of all
complex numbers that are zeros of a polynomial with coefficients in Q.

Definition 2.27. Given a field K and an automorphism h: K — K of K, it is easy to check
that the set
Fix(h) = {a € K | h(a) = a}

of elements of K fixed by A is a subfield of K called the field fixed by h.
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For example, if d > 2 is square-free, then the map ¢: Q(v/d) — Q(v/d) given by
c(a+bVd) =a—bVd

is an automorphism of Q(v/d), and Fix(c) = Q.

If K is a field, we have the ring homomorphism h: Z — K given by h(n) =n-1. If h
is injective, then K contains a copy of Z, and since it is a field, it contains a copy of Q. In
this case, we say that K has characteristic 0. If h is not injective, then h(Z) is a subring of
K, and thus an integral domain, the kernel of h is a subgroup of Z, which by Proposition
2.15 must be of the form pZ for some p > 1. By the first isomorphism theorem, h(Z) is
isomorphic to Z/pZ for some p > 1. But then, p must be prime since Z/pZ is an integral
domain iff it is a field iff p is prime. The prime p is called the characteristic of K, and we
also says that K is of finite characteristic.

Definition 2.28. If K is a field, then either
(1) n-1#0 for all integer n > 1, in which case we say that K has characteristic 0, or

(2) There is some smallest prime number p such that p-1 = 0 called the characteristic of
K, and we say K is of finite characteristic.

A field K of characteristic 0 contains a copy of Q, thus is infinite. As we will see in
Section 8.10, a finite field has nonzero characteristic p. However, there are infinite fields of
nonzero characteristic.
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Part 1

Linear Algebra
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Chapter 3

Vector Spaces, Bases, Linear Maps

3.1 Motivations: Linear Combinations, Linear Inde-
pendence and Rank

In linear optimization problems, we often encounter systems of linear equations. For example,
consider the problem of solving the following system of three linear equations in the three
variables x1, xo, x3 € R:

$1+2$2—1‘3:1
21’1+ZL’2+J]3:2
1'1—2.1'2—2333:3.

4

One way to approach this problem is introduce the “vectors” u,v,w, and b, given by

1 2 -1 1
u= |2 v=| 1 w=|[1 b= 12
1 -2 -2 3

and to write our linear system as
U + Tov + x3W = b.

In the above equation, we used implicitly the fact that a vector z can be multiplied by a
scalar A € R, where

21 )\Zl
XM=A|lzn]| =],
z3 )\23

and two vectors y and and z can be added, where

Y1 Z1 Y1+ 21
Yy+z=1y| + 22| =1|y2+ 2
Ys 23 Yz + 23

49
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Also, given a vector
x1
r = i) s
T3

we define the additive inverse —z of x (pronounced minus x) as

—r = —X9

Observe that —x = (—1)z, the scalar multiplication of z by —1.

The set of all vectors with three components is denoted by R3*!. The reason for using
the notation R3*! rather than the more conventional notation R? is that the elements of
R3*! are column vectors; they consist of three rows and a single column, which explains the
superscript 3 x 1. On the other hand, R?> = R x R x R consists of all triples of the form
(21, T2, x3), With x1, 29,23 € R, and these are row vectors. However, there is an obvious
bijection between R3*! and R? and they are usually identified. For the sake of clarity, in
this introduction, we will denote the set of column vectors with n components by R"*!.

An expression such as
T1U + T2V + T3W

where u, v, w are vectors and the z;s are scalars (in R) is called a linear combination. Using
this notion, the problem of solving our linear system

T1U + Tov + x3W = b.

is equivalent to determining whether b can be expressed as a linear combination of u,v,w.
Now if the vectors u,v,w are linearly independent, which means that there is no triple
(21, x2,23) # (0,0,0) such that

T1U + Tov + 3w = 03,

it can be shown that every vector in R3*! can be written as a linear combination of u, v, w.
Here, 03 is the zero vector

0

It is customary to abuse notation and to write 0 instead of 03. This rarely causes a problem
because in most cases, whether 0 denotes the scalar zero or the zero vector can be inferred
from the context.

In fact, every vector z € R3*! can be written in a unique way as a linear combination

Z = T1U + T2V + T3W.
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This is because if
Z = Z1U + TV + T3W = Y1U + Y2U + Y3W,

then by using our (linear!) operations on vectors, we get
(y1 —z1)u+ (y2 — z2)v + (y3 — z3)w = 0,

which implies that
Y1 — Ty =Y — Ty = Y3 — x3 = 0,

by linear independence. Thus,

Y1 =21, Y2 = T2, Y3= T3,

which shows that z has a unique expression as a linear combination, as claimed. Then our
equation
T1U + TV + 23w = b

has a unique solution, and indeed, we can check that

T = 1.4
Tog = —-0.4
T3 = —-0.4

is the solution.
But then, how do we determine that some vectors are linearly independent?

One answer is to compute a numerical quantity det(u,v,w), called the determinant of
(u,v,w), and to check that it is nonzero. In our case, it turns out that

1 2 -1
det(u,v,w)=12 1 1 |=15,
1 -2 =2

which confirms that u, v, w are linearly independent.

Other methods, which are much better for systems with a large number of variables,
consist of computing an LU-decomposition or a QR-decomposition, or an SVD of the matriz
consisting of the three columns wu, v, w,

1 2 -1
A:(u v w): 2 1 1
1 -2 =2

If we form the vector of unknowns
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then our linear combination xiu + x3v + 3w can be written in matrix form as

1 2 -1 I
U+ T t+araw=[2 1 1 9 |,
1 -2 =2 T3

so our linear system is expressed by

1 2 -1\ (= 1
2 1 1 | =12].
1 -2 -2/ \a; 3

or more concisely as

Ax =b.

Now what if the vectors u, v, w are linearly dependent? For example, if we consider the
vectors

1 2 -1
u= |2 v=| 1 w= |11,
1 -1 2
we see that
u—v=w,

a nontrivial linear dependence. It can be verified that v and v are still linearly independent.
Now for our problem
T1U + T + 23w = b

it must be the case that b can be expressed as linear combination of u and v. However,
it turns out that w,v,b are linearly independent (one way to see this is to compute the
determinant det(u,v,b) = —6), so b cannot be expressed as a linear combination of u and v
and thus, our system has no solution.

If we change the vector b to

then
b=u+w,

and so the system
T1U + TV + 23w = b

has the solution
1'1:1, [I§'2:1, 1'3:0.
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Actually, since w = u — v, the above system is equivalent to
(x1 + x3)u + (29 — x3)V = b,
and because u and v are linearly independent, the unique solution in z; + x3 and x5 — x3 is

r1+x3=1

L9 — T3 = 1,
which yields an infinite number of solutions parameterized by x3, namely

$1:1—[L'3

ZE2:1+I3.

In summary, a 3 x 3 linear system may have a unique solution, no solution, or an infinite
number of solutions, depending on the linear independence (and dependence) or the vectors
u,v,w,b. This situation can be generalized to any n x n system, and even to any n x m
system (n equations in m variables), as we will see later.

The point of view where our linear system is expressed in matrix form as Az = b stresses
the fact that the map = — Ax is a linear transformation. This means that

A(Ax) = A(Ax)
for all x € R3*! and all A € R and that
A(u+v) = Au + Awv,

for all u,v € R3*!. We can view the matrix A as a way of expressing a linear map from R3*!
to R**! and solving the system Az = b amounts to determining whether b belongs to the
image of this linear map.

Given a 3 X 3 matrix
apx a1z a3
A= |axn ax axs|,
gy Qg2 a33
whose columns are three vectors denoted A', A%, A3, and given any vector z = (zy, o, x3),
we defined the product Ax as the linear combination

1171 + A12T2 + Q1373

1 2 3
Az = ZL'lA + [L’QA + $3A = A91T1 + Q22T + 9233
3171 + a32T2 + A33T3

The common pattern is that the ith coordinate of Az is given by a certain kind of product
called an inner product, of a row vector, the ith row of A, times the column vector x:

I
(ail @2 ai3) | T2 )] = an®i + Qs + a3T3.
T3
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More generally, given any two vectors © = (x1,...,x,) and y = (y1,...,¥y,) € R, their
inner product denoted z -y, or (z,y), is the number

W

y n
x-y:(ml Ty - fn) :2 :szyz

: i=1

Yn

Inner products play a very important role. First, we quantity
lzll, = v~z = (af + - +a})"/?

is a generalization of the length of a vector, called the Euclidean norm, or £>-norm. Second,
it can be shown that we have the inequality

-yl < =yl

so if x,y # 0, the ratio (z - y)/(||z] ||y|]|]) can be viewed as the cosine of an angle, the angle
between = and y. In particular, if z -y = 0 then the vectors  and y make the angle 7/2,
that is, they are orthogonal. The (square) matrices ) that preserve the inner product, in
the sense that (Qz, Qy) = (z,y) for all x,y € R", also play a very important role. They can
be thought of as generalized rotations.

Returning to matrices, if A is an m X n matrix consisting of n columns A',... A" (in
R™), and B is a n X p matrix consisting of p columns B!, ..., B? (in R") we can form the p
vectors (in R™)

AB', ... ABP’.

These p vectors constitute the m x p matrix denoted AB, whose jth column is AB’/. But
we know that the ith coordinate of AB’ is the inner product of the ith row of A by the jth
column of B,

blj
n
b2j .
(ail Qi2 " am)' . 72 ikbj.
’ k=1
by

Thus we have defined a multiplication operation on matrices, namely if A = (a;) isam xn
matrix and if B = (bj;) if n x p matrix, then their product AB is the m x n matrix whose
entry on the ith row and the jth column is given by the inner product of the 7th row of A
by the jth column of B,

n

(AB)Z] = Z aikbkj.

k=1
Beware that unlike the multiplication of real (or complex) numbers, if A and B are two n xn
matrices, in general, AB # BA.
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Suppose that A is an n x n matrix and that we are trying to solve the linear system
Ax =b,
with b € R". Suppose we can find an n X n matrix B such that
BA'=e¢;, i=1,...,n,

with e; = (0,...,0,1,0...,0), where the only nonzero entry is 1 in the ith slot. If we form
the n x n matrix

10 0 - 0 0
010 - 0 0
001 - 0 0
[n: . . .. )
00O0-- 10
000 -+ 01

called the identity matriz, whose ith column is e;, then the above is equivalent to
BA=1,.
If Ax = b, then multiplying both sides on the left by B, we get
B(Az) = Bb.
But is is easy to see that B(Ax) = (BA)x = [,z = z, so we must have
x = Bb.
We can verify that x = Bb is indeed a solution, because it can be shown that
A(Bb) = (AB)b = I1,,b =b.

What is not obvious is that BA = I,, implies AB = I,,, but this is indeed provable. The
matrix B is usually denoted A~! and called the inverse of A. It can be shown that it is the
unique matrix such that

AATT=ATTA=1,.

If a square matrix A has an inverse, then we say that it is invertible or nonsingular, otherwise
we say that it is singular. We will show later that a square matrix is invertible iff its columns
are linearly independent iff its determinant is nonzero.

In summary, if A is a square invertible matrix, then the linear system Az = b has the
unique solution x = A~'b. In practice, this is not a good way to solve a linear system because
computing A~ is too expensive. A practical method for solving a linear system is Gaussian
elimination, discussed in Chapter 8. Other practical methods for solving a linear system
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Az = b make use of a factorization of A (QR decomposition, SVD decomposition), using
orthogonal matrices defined next.

Given an m x n matrix A = (ay), the n X m matrix AT = (a;;) whose ith row is the
ith column of A, which means that aiTj =aj fort=1,...,nand j =1,...,m, is called the
transpose of A. An n x n matrix () such that

QR =Q'Q =1,

is called an orthogonal matriz. Equivalently, the inverse Q! of an orthogonal matrix @ is
equal to its transpose Q. Orthogonal matrices play an important role. Geometrically, they
correspond to linear transformation that preserve length. A major result of linear algebra
states that every m x n matrix A can be written as

A=VXUT,

where V' is an m x m orthogonal matrix, U is an n X n orthogonal matrix, and X is an m xXn
matrix whose only nonzero entries are nonnegative diagonal entries oy > o9 > -+ > 0,
where p = min(m, n), called the singular values of A. The factorization A = VXU is called
a singular decomposition of A, or SVD.

The SVD can be used to “solve” a linear system Ax = b where A is an m X n matrix,
even when this system has no solution. This may happen when there are more equations
that variables (m > n) , in which case the system is overdetermined.

Of course, there is no miracle, an unsolvable system has no solution. But we can look
for a good approximate solution, namely a vector x that minimizes some measure of the
error Az — b. Legendre and Gauss used [|Az — b||3, which is the squared Euclidean norm
of the error. This quantity is differentiable, and it turns out that there is a unique vector
2 of minimum Euclidean norm that minimizes || Az — b||5. Furthermore, z* is given by the
expression T = A*b, where A" is the pseudo-inverse of A, and A* can be computed from
an SVD A = VXU of A. Indeed, AT = UXTV", where 7 is the matrix obtained from X
by replacing every positive singular value o; by its inverse o; !, leaving all zero entries intact,
and transposing.

Instead of searching for the vector of least Euclidean norm minimizing || Az — b||5, we
can add the penalty term K ||z||> (for some positive K > 0) to ||Az — b||> and minimize the
quantity ||Az — b||> + K ||z||5. This approach is called ridge regression. It turns out that
there is a unique minimizer x* given by 2+ = (ATA + KI,) ' ATb, as shown in the second
volume.

Another approach is to replace the penalty term K ||z by K ||z||,, where ||z||, = || +
.-+ + |z, (the £-norm of z). The remarkable fact is that the minimizers z of ||Az — b||5 +
K ||z||, tend to be sparse, which means that many components of = are equal to zero. This
approach known as lasso is popular in machine learning and will be discussed in the second
volume.
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Another important application of the SVD is principal component analysis (or PCA), an
important tool in data analysis.

Yet another fruitful way of interpreting the resolution of the system Ax = b is to view
this problem as an intersection problem. Indeed, each of the equations

:1:1+2x2—x3:1
21’1+ZL‘2—|—1’3:2

m1—2x2—2x3:3
defines a subset of R® which is actually a plane. The first equation
T+ 2%2 — X3 = 1

defines the plane H; passing through the three points (1,0,0),(0,1/2,0), (0,0, —1), on the
coordinate axes, the second equation

2.T1+$2+Z3:2

defines the plane Hj passing through the three points (1,0, 0), (0,2,0), (0,0, 2), on the coor-
dinate axes, and the third equation

$1—2I2—2I‘3:3

defines the plane Hj passing through the three points (3,0,0), (0,—3/2,0), (0,0, —3/2), on
the coordinate axes. See Figure 3.1.

= =20
2 10

x2,2x=3 [ 5

Figure 3.1: The planes defined by the preceding linear equations.
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Figure 3.2: The solution of the system is the point in common with each of the three planes.

The intersection H;NH; of any two distinct planes H; and Hj is a line, and the intersection
Hy N Hy N Hj of the three planes consists of the single point (1.4, —0.4, —0.4), as illustrated
in Figure 3.2.

The planes corresponding to the system

x1+2x2—x3=1
2$1+l‘2—|—$3:2

1‘1—$2+2$3:3,

are illustrated in Figure 3.3.

)
-0
o] a3

Figure 3.3: The planes defined by the equations x; + 2x9 — x3 = 1, 221 + 29 + 3 = 2, and
1'1—1'2+2I'3:3.
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This system has no solution since there is no point simultaneously contained in all three
planes; see Figure 3.4.

Figure 3.4: The linear system xy + 229 — x3 = 1, 221 + 29 + 23 = 2, 1 — x5 + 223 = 3 has
no solution.

Finally, the planes corresponding to the system

ZL'1+2£L‘2—{L'3:3
2I1+l’2+$3:3

1’1—$2+2$3:0,

are illustrated in Figure 3.5.

Figure 3.5: The planes defined by the equations x; + 2x9 — x3 = 3, 221 + 29 + x3 = 3, and
1'1—1'2+25(33:O.
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This system has infinitely many solutions, given parametrically by (1 — 3,1 + w3, x3).
Geometrically, this is a line common to all three planes; see Figure 3.6.

Figure 3.6: The linear system x; + 229 — 23 = 3, 221 + 29 + 23 = 3, 1 — 3 + 223 = 0 has
the red line common to all three planes.

Under the above interpretation, observe that we are focusing on the rows of the matrix
A, rather than on its columns, as in the previous interpretations.

Another great example of a real-world problem where linear algebra proves to be very
effective is the problem of data compression, that is, of representing a very large data set
using a much smaller amount of storage.

Typically the data set is represented as an m x n matrix A where each row corresponds
to an n-dimensional data point and typically, m > n. In most applications, the data are not
independent so the rank of A is a lot smaller than min{m,n}, and the the goal of low-rank
decomposition is to factor A as the product of two matrices B and C, where B is a m X k
matrix and C is a k x n matrix, with £ < min{m,n} (here, < means “much smaller than”):

mXn m X k kxn

Now it is generally too costly to find an exact factorization as above, so we look for a
low-rank matrix A’ which is a “good” approzimation of A. In order to make this statement
precise, we need to define a mechanism to determine how close two matrices are. This can
be done using matriz norms, a notion discussed in Chapter 9. The norm of a matrix A is a
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nonnegative real number || A|| which behaves a lot like the absolute value |z| of a real number
x. Then our goal is to find some low-rank matrix A’ that minimizes the norm

14— A7,
over all matrices A’ of rank at most k, for some given k < min{m,n}.
Some advantages of a low-rank approximation are:

1. Fewer elements are required to represent A; namely, k(m + n) instead of mn. Thus
less storage and fewer operations are needed to reconstruct A.

2. Often, the process for obtaining the decomposition exposes the underlying structure of
the data. Thus, it may turn out that “most” of the significant data are concentrated
along some directions called principal directions.

Low-rank decompositions of a set of data have a multitude of applications in engineering,
including computer science (especially computer vision), statistics, and machine learning.
As we will see later in Chapter 23, the singular value decomposition (SVD) provides a very
satisfactory solution to the low-rank approximation problem. Still, in many cases, the data
sets are so large that another ingredient is needed: randomization. However, as a first step,
linear algebra often yields a good initial solution.

We will now be more precise as to what kinds of operations are allowed on vectors. In
the early 1900, the notion of a vector space emerged as a convenient and unifying framework
for working with “linear” objects and we will discuss this notion in the next few sections.

3.2 Vector Spaces

For every n > 1, let R™ be the set of n-tuples = (1, ..., z,). Addition can be extended to
R™ as follows:

(X1, o)+ Wy Yn) = (1 + Y1y ooy T+ Yn)-

We can also define an operation -: R x R™ — R" as follows:

A (1, xn) = (Ax, .o Axy,).

The resulting algebraic structure has some interesting properties, those of a vector space.

However, keep in mind that vector spaces are not just algebraic
objects; they are also geometric objects.

Vector spaces are defined as follows.
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Definition 3.1. Given a field K (with addition + and multiplication %), a vector space over
K (or K-vector space) is a set E (of vectors) together with two operations +: £ X F — E
(called wvector addition),! and -: K x E — E (called scalar multiplication) satisfying the
following conditions for all a, 8 € K and all u,v € F;

(V0) E is an abelian group w.r.t. +, with identity element 0;?
(V1) a- (u+v)=(a-u)+ (a-v);

(V2) (@ +f)-u=(a-u)+(B-u);

(V3) (axf)-u=a- (8- u)

(V4) 1-u=u.

In (V3), * denotes multiplication in the field K.

Given o € K and v € F, the element « - v is also denoted by av. The field K is often
called the field of scalars.

Unless specified otherwise or unless we are dealing with several different fields, in the rest
of this chapter, we assume that all K-vector spaces are defined with respect to a fixed field
K. Thus, we will refer to a K-vector space simply as a vector space. In most cases, the field
K will be the field R of reals.

From (V0), a vector space always contains the null vector 0, and thus is nonempty.
From (V1), we get -0 = 0, and o - (—v) = —(« - v). From (V2), we get 0-v = 0, and
(—a)-v=—(a-v).

Another important consequence of the axioms is the following fact:
Proposition 3.1. For anyu € E and any A € K, if \ 40 and X\ - u =0, then u = 0.
Proof. Indeed, since X # 0, it has a multiplicative inverse A™!, so from X - u = 0, we get
A (Nu) =210
However, we just observed that A= -0 = 0, and from (V3) and (V4), we have
A Au) =AM ru=1u=u,

and we deduce that v = 0. O

IThe symbol + is overloaded, since it denotes both addition in the field X and addition of vectors in E.
It is usually clear from the context which + is intended.

2The symbol 0 is also overloaded, since it represents both the zero in K (a scalar) and the identity element
of E (the zero vector). Confusion rarely arises, but one may prefer using 0 for the zero vector.
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Remark: One may wonder whether axiom (V4) is really needed. Could it be derived from
the other axioms? The answer is no. For example, one can take £ = R" and define
- RxR" — R" by

A (z,. . 2,) =(0,...,0)

for all (xy,...,2,) € R" and all A € R. Axioms (V0)—(V3) are all satisfied, but (V4) fails.
Less trivial examples can be given using the notion of a basis, which has not been defined
yet.

The field K itself can be viewed as a vector space over itself, addition of vectors being
addition in the field, and multiplication by a scalar being multiplication in the field.

Example 3.1.
1. The fields R and C are vector spaces over R.
2. The groups R and C" are vector spaces over R, with scalar multiplication given by
AMNzy,.oxn) = Az, o0, Axy),

for any A € R and with (z1,...,2,) € R" or (z1,...,2,) € C", and C" is a vector
space over C with scalar multiplication as above, but with A € C.

3. The ring R[X],, of polynomials of degree at most n with real coefficients is a vector
space over R, and the ring C[X], of polynomials of degree at most n with complex
coefficients is a vector space over C, with scalar multiplication A+ P(X) of a polynomial

P(X) = CLme + am_lX’”_l 4+ -+ (ZlX “+ ag
(with a; € R or a; € C) by the scalar A (in R or C), with m < n, given by

A P(X) = A X™ + Aty 1 X™ 4 Aag X+ Aag.

4. The ring R[X] of all polynomials with real coefficients is a vector space over R, and the
ring C[X] of all polynomials with complex coefficients is a vector space over C, with
the same scalar multiplication as above.

5. The ring of n x n matrices M,,(R) is a vector space over R.
6. The ring of m x n matrices M,, ,(R) is a vector space over R.

7. The ring C(a, b) of continuous functions f: (a,b) — R is a vector space over R, with
the scalar multiplication Af of a function f: (a,b) — R by a scalar A € R given by

Af)(z) = Af(x), for all z € (a,b).
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8. A very important example of vector space is the set of linear maps between two vector
spaces to be defined in Section 11.1. Here is an example that will prepare us for the
vector space of linear maps. Let X be any nonempty set and let E be a vector space.
The set of all functions f: X — E can be made into a vector space as follows: Given
any two functions f: X — E and g: X — F, let (f+g): X — E be defined such that

(f +9)(x) = f(z) + g(z)

for all x € X, and for every A € R, let A\f: X — F be defined such that

(AS)() = Af(x)

for all x € X. The axioms of a vector space are easily verified.

Let E be a vector space. We would like to define the important notions of linear combi-
nation and linear independence.

Before defining these notions, we need to discuss a strategic choice which, depending
how it is settled, may reduce or increase headaches in dealing with notions such as linear
combinations and linear dependence (or independence). The issue has to do with using sets
of vectors versus sequences of vectors.

3.3 Indexed Families; the Sum Notation ) ._;a;

Our experience tells us that it is preferable to use sequences of vectors; even better, indexed
families of vectors. (We are not alone in having opted for sequences over sets, and we are in
good company; for example, Artin [7], Axler [10], and Lang [109] use sequences. Nevertheless,
some prominent authors such as Lax [113] use sets. We leave it to the reader to conduct a
survey on this issue.)

Given a set A, recall that a sequence is an ordered n-tuple (a4, ..., a,) € A" of elements
from A, for some natural number n. The elements of a sequence need not be distinct and
the order is important. For example, (a;,as,aq) and (ag,aq,a;) are two distinct sequences
in A3. Their underlying set is {a1, as}.

What we just defined are finite sequences, which can also be viewed as functions from
{1,2,...,n} to the set A; the ith element of the sequence (a4, ..., a,) is the image of ¢ under
the function. This viewpoint is fruitful, because it allows us to define (countably) infinite
sequences as functions s: N — A. But then, why limit ourselves to ordered sets such as
{1,...,n} or N as index sets?

The main role of the index set is to tag each element uniquely, and the order of the tags
is not crucial, although convenient. Thus, it is natural to define the notion of indexed family.
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Definition 3.2. Given a set A, an [-indexed family of elements of A, for short a family,
is a function a: I — A where [ is any set viewed as an index set. Since the function a is

determined by its graph
{(i,a(d)) | i € I},

the family a can be viewed as the set of pairs a = {(4,a(i)) | ¢ € I'}. For notational simplicity,
we write a; instead of a(i), and denote the family a = {(¢,a(i)) | i € I} by (ai)icr-

For example, if I = {r,g,b,y} and A = N, the set of pairs

a= {<T7 2)7 (973)7 (b’ 2)7 (ya 11)}

is an indexed family. The element 2 appears twice in the family with the two distinct tags
r and b.

When the indexed set [ is totally ordered, a family (a;);e; is often called an I-sequence.
Interestingly, sets can be viewed as special cases of families. Indeed, a set A can be viewed
as the A-indexed family {(a,a) | a € I'} corresponding to the identity function.

Remark: An indexed family should not be confused with a multiset. Given any set A, a
multiset is a similar to a set, except that elements of A may occur more than once. For
example, if A = {a,b,c,d}, then {a,a,a,b,c,c,d,d} is a multiset. Each element appears
with a certain multiplicity, but the order of the elements does not matter. For example, a
has multiplicity 3. Formally, a multiset is a function s: A — N, or equivalently a set of pairs
{(a,i) | a € A}. Thus, a multiset is an A-indexed family of elements from N, but not a
N-indexed family, since distinct elements may have the same multiplicity (such as ¢ an d in
the example above). An indezed family is a generalization of a sequence, but a multiset is a
generalization of a set.

We also need to take care of an annoying technicality, which is to define sums of the
form .., a;, where I is any finite index set and (a;);es is a family of elements in some set
A equiped with a binary operation +: A x A — A which is associative (Axiom (G1)) and
commutative. This will come up when we define linear combinations.

The issue is that the binary operation + only tells us how to compute a; + as for two
elements of A, but it does not tell us what is the sum of three of more elements. For example,
how should a; + as + as be defined?

What we have to do is to define a; +ay+a3 by using a sequence of steps each involving two
elements, and there are two possible ways to do this: a; + (as + a3) and (a1 + as) +as. If our
operation + is not associative, these are different values. If it associative, then a;+(as+a3) =
(a1 + a2) + ag, but then there are still six possible permutations of the indices 1,2, 3, and if
+ is not commutative, these values are generally different. If our operation is commutative,
then all six permutations have the same value. Thus, if + is associative and commutative,
it seems intuitively clear that a sum of the form Y ._, a; does not depend on the order of the
operations used to compute it.

i€l
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This is indeed the case, but a rigorous proof requires induction, and such a proof is
surprisingly involved. Readers may accept without proof the fact that sums of the form
> ics @; are indeed well defined, and jump directly to Definition 3.3. For those who want to
see the gory details, here we go.

First, we define sums . ; a;, where I is a finite sequence of distinct natural numbers,
say I = (i1,...,im). If I = (i1,...,4,) with m > 2, we denote the sequence (is,...,%,) by
I — {i1}. We proceed by induction on the size m of I. Let

E a; =a;,, iftm=1,

il
Zai:ail—l—( Z ai), if m > 1.
iel iel—{i1}

For example, if I = (1,2,3,4), we have
Zai =a; + (CLQ + (a3 + CL4)).
icl

If the operation + is not associative, the grouping of the terms matters. For instance, in
general
a1 + (az + (a3 + as)) # (a1 + az) + (a3 + as).

However, if the operation + is associative, the sum } . _; a; should not depend on the grouping
of the elements in I, as long as their order is preserved. For example, if I = (1,2,3,4,5),
J1 = (1,2), and Jy = (3,4,5), we expect that

Sa=(Ta)+(Tu)

icl JEI J€J2
This indeed the case, as we have the following proposition.

Proposition 3.2. Given any nonempty set A equipped with an associative binary operation
+: Ax A — A, for any nonempty finite sequence I of distinct natural numbers and for
any partition of I into p nonempty sequences Iy, ..., Iy, for some nonempty sequence K =
(k1,...,kp) of distinct natural numbers such that k; < k; implies that o < B for all o € I,
and all B € Iy, for every sequence (a;)icr of elements in A, we have

Proof. We proceed by induction on the size n of I.

If n =1, then we must have p =1 and I, = I, so the proposition holds trivially.
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Next, assume n > 1. If p = 1, then [, = [ and the formula is trivial, so assume that
p > 2 and write J = (kq, ..., k,). There are two cases.

Case 1. The sequence [, has a single element, say [, which is the first element of I.
In this case, write C' for the sequence obtained from I by deleting its first element 5. By

definition,
Zaa =ag+ (Zaa),

acl aceC
and

(%)= (S(E)

keK “a€ly jeJ “a€l;
Since |C| = n — 1, by the induction hypothesis, we have
(Te) =2 (X ).
aeC jeJ Nael;

which yields our identity.

Case 2. The sequence [i, has at least two elements. In this case, let 3 be the first element
of I (and thus of Iy, ), let I’ be the sequence obtained from I by deleting its first element [,
let I}, be the sequence obtained from I, by deleting its first element 3, and let I} = I, for
i=2,...,p. Recall that J = (kq,...,k,) and K = (ky,...,k,). The sequence I’ has n — 1
elements, so by the induction hypothesis applied to I" and the I} , we get

Yo=Y (Tw) - (T )+ (S(Tw))
ael’ keK Na€ly, aely jeJ tacl;
If we add the lefthand side to ag, by definition we get
o
aecl

If we add the righthand side to ag, using associativity and the definition of an indexed sum,
we get

ot (2 o)+ (Z(Z)) - (5 (2 )+ (E(x )

aEI,’Cl jeJ “a€l; ae]z'cl

(X ) (E(E))
-3 (Taw).

kCK Nacly,

as claimed. n
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If I =(1,...,n), we also write )" | a; instead of >, , a;. Since + is associative, Propo-
sition 3.2 shows that the sum Y " | a; is independent of the grouping of its elements, which
justifies the use the notation a; + - - - + a, (without any parentheses).

If we also assume that our associative binary operation on A is commutative, then we

can show that the sum ) ,_; a; does not depend on the ordering of the index set I.

Proposition 3.3. Given any nonempty set A equipped with an associative and commutative
binary operation +: A X A — A, for any two nonempty finite sequences I and J of distinct
natural numbers such that J is a permutation of I (in other words, the underlying sets of I
and J are identical), for every sequence (a;)icr of elements in A, we have

S0 =3

ael acJ

Proof. We proceed by induction on the number p of elements in I. If p =1, we have [ = J
and the proposition holds trivially.

If p > 1, to simplify notation, assume that I = (1,...,p) and that J is a permutation
(i1,...,14,) of I. First, assume that 2 <4, < p—1, let J' be the sequence obtained from .J by
deleting i1, I’ be the sequence obtained from I by deleting iy, and let P = (1,2,...,7;—1) and
Q= (i1+1,...,p—1,p). Observe that the sequence I’ is the concatenation of the sequences
P and ). By the induction hypothesis applied to J' and I’; and then by Proposition 3.2
applied to I’ and its partition (P, Q), we have

i1—1 p
E aa:E aa:<§ ai)—k(g ai).
acJ’ acl’ i=1 1=11+1

If we add the lefthand side to a;,, by definition we get

S

aeJ

If we add the righthand side to a;,, we get

e (Z) (2 )

Using associativity, we get

() (£ () ()
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then using associativity and commutativity several times (more rigorously, using induction
on iy — 1), we get

(v (o)) + (£,2) = (B) o (£,2)

p

§ g,

=1

as claimed.

The cases where iy = 1 or iy = p are treated similarly, but in a simpler manner since
either P = () or @ = () (where () denotes the empty sequence). O

Having done all this, we can now make sense of sums of the form ). ; a;, for any finite
indexed set I and any family a = (a;);c; of elements in A, where A is a set equipped with a
binary operation + which is associative and commutative.

Indeed, since I is finite, it is in bijection with the set {1,...,n} for some n € N, and any
total ordering < on I corresponds to a permutation /< of {1,...,n} (where we identify a
permutation with its image). For any total ordering < on I, we define ) .., _ a; as

S 0= a

iel,=< jel

Then for any other total ordering <’ on I, we have

Se-Ya

iel, =/ j€l
and since I« and I are different permutations of {1,...,n}, by Proposition 3.3, we have
E a; = E Qj.
jEIj jEIj/

Therefore, the sum ) .., _ a; does not depend on the total ordering on /. We define the sum
> icr @i as the common value » 7, ; _ a; for all total orderings =< of I.

Here are some examples with A = R:
L IfI={1,2,3}, a={(1,2),(2,-3),(3,v2)}, then 3", ;a;, =2 =3+ V2= -1+ V2.
2. If I =1{2,5,7}, a={(2,2),(5,-3),(7,v2)}, then >, ,a; =2 -3+ V2 = -1+ V2.

3. I I = {T,g,b}, a= {(7’, 2)a (ga _3)7 <b> 1)}7 then Zie[ a; = 2-3+1=0.
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3.4 Linear Independence, Subspaces

One of the most useful properties of vector spaces is that they possess bases. What this
means is that in every vector space E, there is some set of vectors, {ey,...,e,}, such that
every vector v € E/ can be written as a linear combination,

v=Ater + -+ Apep,

of the e;, for some scalars, Aq,...,\, € R. Furthermore, the n-tuple, (Ay,...,\,), as above
is unique.
This description is fine when E has a finite basis, {e1, ..., e,}, but this is not always the

case! For example, the vector space of real polynomials, R[X], does not have a finite basis
but instead it has an infinite basis, namely

1LX, X2, ..., X" ...

One might wonder if it is possible for a vector space to have bases of different sizes, or even
to have a finite basis as well as an infinite basis. We will see later on that this is not possible;
all bases of a vector space have the same number of elements (cardinality), which is called
the dimension of the space. However, we have the following problem: If a vector space has
an infinite basis, {ej,es,..., }, how do we define linear combinations? Do we allow linear
combinations

)\161 + /\262 —+ .-

with infinitely many nonzero coefficients?

If we allow linear combinations with infinitely many nonzero coefficients, then we have
to make sense of these sums and this can only be done reasonably if we define such a sum
as the limit of the sequence of vectors, s1,59,...,5,,..., with s; = Aje; and

Sp+1 = Sp + )\n—&-len—i—l'

But then, how do we define such limits? Well, we have to define some topology on our space,
by means of a norm, a metric or some other mechanism. This can indeed be done and this
is what Banach spaces and Hilbert spaces are all about but this seems to require a lot of
machinery.

A way to avoid limits is to restrict our attention to linear combinations involving only
finitely many vectors. We may have an infinite supply of vectors but we only form linear
combinations involving finitely many nonzero coefficients. Technically, this can be done by
introducing families of finite support. This gives us the ability to manipulate families of
scalars indexed by some fixed infinite set and yet to be treat these families as if they were
finite.

With these motivations in mind, given a set A, recall that an I-indexed family (a;)icr
of elements of A (for short, a family) is a function a: I — A, or equivalently a set of pairs
{(i,a;) | i € I}. We agree that when I =0, (a;);e; = 0. A family (a;)es is finite if T is finite.
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Remark: When considering a family (a;);c;, there is no reason to assume that I is ordered.
The crucial point is that every element of the family is uniquely indexed by an element of
I. Thus, unless specified otherwise, we do not assume that the elements of an index set are
ordered.

If A is an abelian group with identity 0, we say that a family (a;);c; has finite support if
a; = 0 for all i € I — J, where J is a finite subset of I (the support of the family).

Given two disjoint sets I and .J, the union of two families (u;);e; and (v;);es, denoted as
(t)icr U (v))je, is the family (wg)re(ruy) defined such that wy = uy if k € I, and wy, = vy,
if £ € J. Given a family (u;);e; and any element v, we denote by (u;);er Ug (v) the family
(wi)ielu{k} defined such that, w; = u; if © € I, and w, = v, where k is any index such that
k ¢ 1. Given a family (u;);er, a subfamily of (u;);cr is a family (u;);e; where J is any subset
of I.

In this chapter, unless specified otherwise, is assumed that all families of scalars have
finite support.

Definition 3.3. Let E be a vector space. A vector v € E is a linear combination of a family
(u;)ier of elements of E iff there is a family (\;);e; of scalars in K such that

When I = (), we stipulate that v = 0. (By Proposition 3.3, sums of the form ), , A\ju; are
well defined.) We say that a family (u;);e; is linearly independent iff for every family (\;)ier
of scalars in K,
> Nu; =0 implies that ;=0 for all i € 1.
il
Equivalently, a family (u;);er is linearly dependent iff there is some family (\;);e; of scalars
in K such that
Z)‘iu" =0 and \; #0 for some j € I.
iel

We agree that when I = (), the family () is linearly independent.

Observe that defining linear combinations for families of vectors rather than for sets of
vectors has the advantage that the vectors being combined need not be distinct. For example,
for I = {1,2,3} and the families (u,v,u) and (A1, Ag, A1), the linear combination

Z )\ZUZ = >\1U + )\2U + /\1U

el

makes sense. Using sets of vectors in the definition of a linear combination does not allow
such linear combinations; this is too restrictive.
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Unravelling Definition 3.3, a family (u;);c; is linearly dependent iff either I consists of a
single element, say 4, and u; = 0, or |I| > 2 and some u; in the family can be expressed as
a linear combination of the other vectors in the family. Indeed, in the second case, there is
some family (\;);e; of scalars in K such that

Z)\iui:() and \; # 0 for some j € I,

el

and since |I| > 2, the set I — {j} is nonempty and we get

i€(I—{j})

Observe that one of the reasons for defining linear dependence for families of vectors
rather than for sets of vectors is that our definition allows multiple occurrences of a vector.
This is important because a matrix may contain identical columns, and we would like to say
that these columns are linearly dependent. The definition of linear dependence for sets does
not allow us to do that.

The above also shows that a family (u;);c; is linearly independent iff either I = (), or [
consists of a single element ¢ and u; # 0, or |I| > 2 and no vector u; in the family can be
expressed as a linear combination of the other vectors in the family.

When I is nonempty, if the family (u;);cs is linearly independent, note that u; # 0 for
all © € I. Otherwise, if u; = 0 for some i € I, then we get a nontrivial linear dependence
> icr Mty = 0 by picking any nonzero \; and letting Ay = 0 for all £ € I with k # 14, since
A0 = 0. If |I]| > 2, we must also have u; # u; for all 4, j € I with ¢ # j, since otherwise we
get a nontrivial linear dependence by picking A; = A and \; = —A for any nonzero A, and
letting Ay, = 0 for all k € I with k # 4, 7.

Thus, the definition of linear independence implies that a nontrivial linearly independent
family is actually a set. This explains why certain authors choose to define linear indepen-
dence for sets of vectors. The problem with this approach is that linear dependence, which
is the logical negation of linear independence, is then only defined for sets of vectors. How-
ever, as we pointed out earlier, it is really desirable to define linear dependence for families
allowing multiple occurrences of the same vector.

Example 3.2.
1. Any two distinct scalars A\, u # 0 in K are linearly dependent.

2. In R3, the vectors (1,0,0), (0,1,0), and (0,0,1) are linearly independent. See Figure
3.7.

3. In R%, the vectors (1,1,1,1), (0,1,1,1), (0,0,1,1), and (0,0, 0, 1) are linearly indepen-
dent.
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0
0.2
0.4
0% os

Figure 3.7: A visual (arrow) depiction of the red vector (1,0,0), the green vector (0,1,0),
and the blue vector (0,0,1) in R3.
4. In R?, the vectors u = (1,1), v = (0,1) and w = (2, 3) are linearly dependent, since
w = 2u+v.

See Figure 3.8.

Figure 3.8: A visual (arrow) depiction of the pink vector v = (1, 1), the dark purple vector
v =(0,1), and the vector sum w = 2u + v.

When [ is finite, we often assume that it is the set I = {1,2,...,n}. In this case, we
denote the family (u;)ier as (uq, ..., uy).

The notion of a subspace of a vector space is defined as follows.

Definition 3.4. Given a vector space F, a subset F' of E is a linear subspace (or subspace)
of £ iff F'is nonempty and A\u + pv € F for all u,v € F, and all \,p € K.
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It is easy to see that a subspace F' of F is indeed a vector space, since the restriction
of +: Ex E — E to F x F is indeed a function +: F x F' — F, and the restriction of
-+ K x E— F to K x F is indeed a function -: K x F' — F.

Since a subspace F' is nonempty, if we pick any vector v € F' and if we let A = u = 0,
then Au + pu = O0u 4 Ou = 0, so every subspace contains the vector 0.

The following facts also hold. The proof is left as an exercise.
Proposition 3.4.

(1) The intersection of any family (even infinite) of subspaces of a vector space E is a
subspace.

(2) Let F' be any subspace of a vector space E. For any nonempty finite index set I,
if (w;)ier ts any family of vectors u; € F and (N)ier is any family of scalars, then
Zie[ )\,L’U/Z e F.

The subspace {0} will be denoted by (0), or even 0 (with a mild abuse of notation).

Example 3.3.
1. In R?, the set of vectors u = (z,y) such that

r+y=0

is the subspace illustrated by Figure 3.9.

Figure 3.9: The subspace x + y = 0 is the line through the origin with slope —1. It consists
of all vectors of the form A(—1,1).

2. In R3, the set of vectors u = (x,y, 2) such that
r+y+2=0

is the subspace illustrated by Figure 3.10.
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Figure 3.10: The subspace x+y+ 2z = 0 is the plane through the origin with normal (1,1, 1).

3. For any n > 0, the set of polynomials f(X) € R[X] of degree at most n is a subspace
of R[X].

4. The set of upper triangular n x n matrices is a subspace of the space of n x n matrices.

Proposition 3.5. Given any vector space E, if S is any nonempty subset of E, then the
smallest subspace (S) (or Span(S)) of E containing S is the set of all (finite) linear combi-
nations of elements from S.

Proof. We prove that the set Span(S) of all linear combinations of elements of S is a subspace

of F, leaving as an exercise the verification that every subspace containing S also contains
Span(S).

First, Span(S) is nonempty since it contains S (which is nonempty). If u = >, ; Au;
and v =) e 1j; are any two linear combinations in Span(S), for any two scalars A\, p € K,

)\u—l—,uv:)\Z)\iui—l—,uZ,ujvj

iel jeJ
= Z )\)\ZUZ + Z ,lL/Lj’Uj
icl jeJ
= > M+ Y O i+ Y gy,
iel—J ielnJg jed—I

which is a linear combination with index set I U J, and thus Au 4+ pv € Span(S), which
proves that Span(.S) is a subspace. O

One might wonder what happens if we add extra conditions to the coefficients involved
in forming linear combinations. Here are three natural restrictions which turn out to be
important (as usual, we assume that our index sets are finite):
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(1) Consider combinations ., Aju; for which

Z)\izl.

el

These are called affine combinations. One should realize that every linear combination
> icr Mt can be viewed as an affine combination. For example, if £ is an index not
in 7, if welet J =TU{k}, ug =0, and Ay =1— 3 ,; Ai, then Y-, ; Aju; is an affine

combination and

Z /\luz = Z /\j’LLj.

iel jeJ
However, we get new spaces. For example, in R3, the set of all affine combinations of
the three vectors e; = (1,0,0),es = (0,1,0), and e3 = (0,0,1), is the plane passing
through these three points. Since it does not contain 0 = (0,0,0), it is not a linear
subspace.

(2) Consider combinations ., Aju; for which
A >0, foralliel.

These are called positive (or conic) combinations. It turns out that positive combina-
tions of families of vectors are cones. They show up naturally in convex optimization.

(3) Consider combinations » ., \ju; for which we require (1) and (2), that is

el
ZAFL and \; >0 forallicl.

el

These are called conver combinations. Given any finite family of vectors, the set of all
convex combinations of these vectors is a convez polyhedron. Convex polyhedra play a
very important role in convex optimization.

Remark: The notion of linear combination can also be defined for infinite index sets I.
To ensure that a sum »_._; \;u; makes sense, we restrict our attention to families of finite
support.

el

Definition 3.5. Given any field K, a family of scalars (\;);er has finite support if \; = 0
for all ¢ € I — J, for some finite subset J of I.

If (A\)ies is a family of scalars of finite support, for any vector space E over K, for any
(possibly infinite) family (u;);er of vectors u; € I, we define the linear combination ) ., Au;
as the finite linear combination ) jes Ajuj, where J is any finite subset of I such that A; =0
for all ¢ € I — J. In general, results stated for finite families also hold for families of finite
support.
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3.5 Bases of a Vector Space

Given a vector space E, given a family (v;);es, the subset V' of E consisting of the null vector
0 and of all linear combinations of (v;);cs is easily seen to be a subspace of E. The family
(v3)ier is an economical way of representing the entire subspace V', but such a family would
be even nicer if it was not redundant. Subspaces having such an “efficient” generating family
(called a basis) play an important role and motivate the following definition.

Definition 3.6. Given a vector space F and a subspace V of E, a family (v;);c; of vectors
v; € V spans V or generates V iff for every v € V, there is some family (\;);e; of scalars in

K such that
vV = Z /\zvz

We also say that the elements of (v;);c; are generators of V and that V' is spanned by (v;)icr,
or generated by (v;);er. If a subspace V of E is generated by a finite family (v;);e7, we say
that V is finitely generated. A family (u;);c; that spans V' and is linearly independent is
called a basis of V.

Example 3.4.
1. In R3, the vectors (1,0,0), (0,1,0), and (0,0, 1), illustrated in Figure 3.9, form a basis.

2. The vectors (1,1,1,1),(1,1,—1,-1),(1,—1,0,0), (0,0, 1, —1) form a basis of R* known
as the Haar basis. This basis and its generalization to dimension 2" are crucial in
wavelet theory.

3. In the subspace of polynomials in R[X] of degree at most n, the polynomials 1, X, X?,
..., X" form a basis.

4. The Bernstein polynomials (Z) (1 —X)"*X* for k = 0,...,n, also form a basis of

that space. These polynomials play a major role in the theory of spline curves.

The first key result of linear algebra is that every vector space E has a basis. We begin
with a crucial lemma which formalizes the mechanism for building a basis incrementally.

Lemma 3.6. Given a linearly independent family (u;);e; of elements of a vector space E, if
v € E is not a linear combination of (u;);er, then the family (w;)ier Ux (v) obtained by adding
v to the family (u;)er is linearly independent (where k & I ).

Proof. Assume that pv+ 3, ; Aju; = 0, for any family (\;)ies of scalars in K. If jt # 0, then
p has an inverse (because K is a field), and thus we have v = — >, (™' \;)u;, showing
that v is a linear combination of (u;);e; and contradicting the hypothesis. Thus, = 0. But
then, we have )., A\ju; = 0, and since the family (u;)ic; is linearly independent, we have
ANi=0foralliel O
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The next theorem holds in general, but the proof is more sophisticated for vector spaces
that do not have a finite set of generators. Thus, in this chapter, we only prove the theorem
for finitely generated vector spaces.

Theorem 3.7. Given any finite family S = (u;);e; generating a vector space E and any
linearly independent subfamily L = (u;);es of S (where J C 1), there is a basis B of E such
that L C B C S.

Proof. Consider the set of linearly independent families B such that L C B C S. Since this
set is nonempty and finite, it has some maximal element (that is, a subfamily B = (up)nen
of S with H C [ of maximum cardinality), say B = (up)neny. We claim that B generates
E. Indeed, if B does not generate E, then there is some w, € S that is not a linear
combination of vectors in B (since S generates E), with p ¢ H. Then by Lemma 3.6, the
family B" = (un)nhermugp) is linearly independent, and since L € B C B’ C S, this contradicts
the maximality of B. Thus, B is a basis of E such that L C B C S. ]

Remark: Theorem 3.7 also holds for vector spaces that are not finitely generated. In this
case, the problem is to guarantee the existence of a maximal linearly independent family B
such that L C B C S. The existence of such a maximal family can be shown using Zorn’s
lemma, see Appendix C and the references given there.

A situation where the full generality of Theorem 3.7 is needed is the case of the vector
space R over the field of coefficients Q. The numbers 1 and /2 are linearly independent
over Q, so according to Theorem 3.7, the linearly independent family L = (1,4/2) can be
extended to a basis B of R. Since R is uncountable and Q is countable, such a basis must
be uncountable!

The notion of a basis can also be defined in terms of the notion of maximal linearly
independent family and minimal generating family.

Definition 3.7. Let (v;);c; be a family of vectors in a vector space E. We say that (v;);c; a
mazimal linearly independent family of E if it is linearly independent, and if for any vector
w € E, the family (v;);e; Ur {w} obtained by adding w to the family (v;);cr is linearly
dependent. We say that (v;);cr a minimal generating family of E if it spans E, and if for
any index p € I, the family (v;);er—¢py obtained by removing v, from the family (v;)ic; does
not span E.

The following proposition giving useful properties characterizing a basis is an immediate
consequence of Lemma 3.6.

Proposition 3.8. Given a vector space E, for any family B = (v;)ier of vectors of E, the
following properties are equivalent:

(1) B is a basis of E.
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(2) B is a maximal linearly independent family of E.
(3) B is a minimal generating family of E.

Proof. We will first prove the equivalence of (1) and (2). Assume (1). Since B is a basis, it is
a linearly independent family. We claim that B is a maximal linearly independent family. If
B is not a maximal linearly independent family, then there is some vector w € E such that
the family B’ obtained by adding w to B is linearly independent. However, since B is a basis
of F, the vector w can be expressed as a linear combination of vectors in B, contradicting
the fact that B’ is linearly independent.

Conversely, assume (2). We claim that B spans E. If B does not span F, then there is
some vector w € E which is not a linear combination of vectors in B. By Lemma 3.6, the
family B’ obtained by adding w to B is linearly independent. Since B is a proper subfamily
of B’, this contradicts the assumption that B is a maximal linearly independent family.
Therefore, B must span E, and since B is also linearly independent, it is a basis of E.

Now we will prove the equivalence of (1) and (3). Again, assume (1). Since B is a basis,
it is a generating family of . We claim that B is a minimal generating family. If B is not
a minimal generating family, then there is a proper subfamily B’ of B that spans E. Then,
every w € B — B’ can be expressed as a linear combination of vectors from B’, contradicting
the fact that B is linearly independent.

Conversely, assume (3). We claim that B is linearly independent. If B is not linearly
independent, then some vector w € B can be expressed as a linear combination of vectors
in B = B — {w}. Since B generates E, the family B’ also generates E, but B’ is a
proper subfamily of B, contradicting the minimality of B. Since B spans E and is linearly
independent, it is a basis of E. O

The second key result of linear algebra is that for any two bases (u;)ier and (vj)es of a
vector space E, the index sets I and J have the same cardinality. In particular, if F has a
finite basis of n elements, every basis of E has n elements, and the integer n is called the
dimension of the vector space F.

To prove the second key result, we can use the following replacement lemma due to
Steinitz. This result shows the relationship between finite linearly independent families and
finite families of generators of a vector space. We begin with a version of the lemma which is
a bit informal, but easier to understand than the precise and more formal formulation given
in Proposition 3.10. The technical difficulty has to do with the fact that some of the indices
need to be renamed.

Proposition 3.9. (Replacement lemma, version 1) Given a vector space E, let (uq, ..., up)
be any finite linearly independent family in E, and let (v1,...,v,) be any finite family such
that every w; is a linear combination of (vi,...,v,). Then we must have m < n, and there
is a replacement of m of the vectors v; by (us, ..., uy), such that after renaming some of the
indices of the v;s, the families (u1, ..., Upm, Vi1, .- ., V) and (vq,...,v,) generate the same
subspace of E.
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Proof. We proceed by induction on m. When m = 0, the family (u4, ..., u,,) is empty, and
the proposition holds trivially. For the induction step, we have a linearly independent family

(U1, ..., Upm, Ums1). Consider the linearly independent family (uq, ..., u,,). By the induction
hypothesis, m < n, and there is a replacement of m of the vectors v; by (u1,...,uy), such
that after renaming some of the indices of the vs, the families (uy, ..., Um, Vpmi1,- .-, v,) and
(v1,...,v,) generate the same subspace of E. The vector u,,,1 can also be expressed as a lin-
ear combination of (vy,...,v,), and since (uy, ..., Un, Vmi1, - - -, Uy) and (vy, ..., v,) generate
the same subspace, u,,,1 can be expressed as a linear combination of (u1, ..., U, Umit, - - -
Un), say

m n

Um+1 = Z )\ZUZ + Z )\jUj.
i=1 j=m+1

We claim that A; # 0 for some j with m +1 < j < n, which implies that m + 1 < n.

Otherwise, we would have

m
Um+1 = E iU,
i=1
a nontrivial linear dependence of the w;, which is impossible since (u1, . .., u;,.1) are linearly

independent.

Therefore, m + 1 < n, and after renaming indices if necessary, we may assume that
Ami1 # 0, so we get

m n
Um41 = — Z(A;ﬁrl/\i)ui - )‘;11+1um+1 - Z ()‘;llJrl)\j)vj'

i=1 j=m+2
Observe that the families (uy, ..., Um, Vi1, - -+, Up) and (U, ..., Ups1, Umi2, - - -, V) gENETALE
the same subspace, since u,, 1 is a linear combination of (w1, ..., Upm, Vmi1, - - -, Vp) and vy, 1
is a linear combination of (uy, ..., Umi1, Vms2,---,Un). Since (U, ..., Up, Uity ---,Vp) and
(v1,...,v,) generate the same subspace, we conclude that (uy, ..., Uni1, Vmi2,--.,0,) and
and (vy,...,v,) generate the same subspace, which concludes the induction hypothesis. ]

Here is an example illustrating the replacement lemma. Consider sequences (uy, us, u3)
and (vy,ve, v3, vy, v5), where (uq,us,u3) is a linearly independent family and with the u;s
expressed in terms of the v;s as follows:

Uy = vy + Vs
Ug = V3 + U4 — Vs

Uz = V1 + Vg + v3.

From the first equation we get
Uy = Uy — Us,
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and by substituting in the second equation we have
Uy = V3 + Uy — V5 = U3 + U] — Vs — Vs = Uy + V3 — 205.
From the above equation we get
v3 = —uy + ug + 2vs,

and so
U3:U1+U2+U3:U1+U2—U1+UQ+2U5.

Finally, we get
U1:U1—UQ+U3—U2—21)5

Therefore we have

Ulzul—U2+U3—U2—2U5
V3 = —Up + Ug + 2vs

V4 = U1 — Vs,

which shows that (uq, ug, us, va, v5) spans the same subspace as (vq, v, v3, Vg, v5). The vectors
(v1, v3,v4) have been replaced by (uq,us,us), and the vectors left over are (vy,vs). We can
rename them (vg, vs).

For the sake of completeness, here is a more formal statement of the replacement lemma,
(and its proof).

Proposition 3.10. (Replacement lemma, version 2) Given a vector space E, let (u;);cr be
any finite linearly independent family in E, where |I| = m, and let (v;);es be any finite family
such that every u; is a linear combination of (v;);es, where |J| = n. Then there exists a set
L and an injection p: L — J (a relabeling function) such that LN 1 =10, |L| =n —m, and
the families (u;)icr U (Vo) )ier and (v;)jes generate the same subspace of E. In particular,
m < n.

Proof. We proceed by induction on |I| = m. When m = 0, the family (u;);c; is empty, and
the proposition holds trivially with L = J (p is the identity). Assume |/| = m + 1. Consider
the linearly independent family (u;)ic(r—{p}), Where p is any member of I. By the induction
hypothesis, there exists a set L and an injection p: L — J such that LN (I — {p}) = 0,
|L| = n—m, and the families (u;)ic(1—p1) U (Vo) )icr and (v;);es generate the same subspace
of E. If p € L, we can replace L by (L — {p}) U {p'} where p’ does not belong to I U L, and
replace p by the injection p’ which agrees with p on L — {p} and such that p'(p’) = p(p).
Thus, we can always assume that L NI = ). Since u, is a linear combination of (v;)jcs
and the families (u;)ic(r—gp}) U (Vo) )ier and (vj);es generate the same subspace of E, w,, is
a linear combination of (u;)ic(1—{p1) U (Vo) )icr- Let

Up = Z )\zuz + Z )\lvp(l)- (1)

ie(I—{p}) leL
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If \;, =0 for all [ € L, we have

contradicting the fact that (u;);c; is linearly independent. Thus, \; # 0 for some [ € L, say
[ = q. Since \; # 0, we have

U= D, (AMm N Y (AT A0 (2)
ie(/—{p}) le(L—{q})

We claim that the families (u;)icr—{p}) U (vp))ier and (w;)ier U (vp0))ie(z—{q}) generate the
same subset of E. Indeed, the second family is obtained from the first by replacing v,q) by w,,
and vice-versa, and u,, is a linear combination of (u;)ie(r—{py) U (Vo) )icr, by (1), and v, is a
linear combination of (u;)icrU(vpu))ie(L—{q}), by (2). Thus, the families (u;)icrU(vpu))ie(—{q})
and (vj);es generate the same subspace of E, and the proposition holds for L — {¢} and the
restriction of the injection p: L — J to L —{q}, since LNI = () and |L| = n —m imply that
(L—{¢})nI=0and |L—{q}|=n—(m+1). O

The idea is that m of the vectors v; can be replaced by the linearly independent w;s in
such a way that the same subspace is still generated. The purpose of the function p: L — J
is to pick n — m elements ji, ..., j,_m of J and to relabel them [y,... [, ,, in such a way
that these new indices do not clash with the indices in I; this way, the vectors v;,,..., v, .,
who “survive” (i.e. are not replaced) are relabeled v, ..., v, ., and the other m vectors v;
with j € J—{Jj1,...,Jn_m]} are replaced by the u;. The index set of this new family is /U L.

Actually, one can prove that Proposition 3.10 implies Theorem 3.7 when the vector space
is finitely generated. Putting Theorem 3.7 and Proposition 3.10 together, we obtain the
following fundamental theorem.

Theorem 3.11. Let E be a finitely generated vector space. Any family (u;);e; generating E
contains a subfamily (u;);es which is a basis of E. Any linearly independent family (u;)ier
can be extended to a family (u;);es which is a basis of E (with I C J). Furthermore, for
every two bases (u;)icr and (vj)jes of E, we have |I| = |J| = n for some fized integer n > 0.

Proof. The first part follows immediately by applying Theorem 3.7 with L = () and S =
(u;)ier. For the second part, consider the family S = (u;)icr U (vn)nen, where (vp)pen is any
finitely generated family generating F, and with I N H = (). Then apply Theorem 3.7 to
L = (u;)icr and to S’. For the last statement, assume that (u;);e; and (v;);es are bases of
E. Since (u;);er is linearly independent and (v;);e; spans E, Proposition 3.10 implies that
[I| < |J]. A symmetric argument yields |J| < |1]. O

Remark: Theorem 3.11 also holds for vector spaces that are not finitely generated. This
can be shown as follows. Let (u;);er be a basis of E, let (v;);es be a generating family of E,
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and assume that [ is infinite. For every j € J, let L; C I be the finite set

Li={i€I|v;=>Y Nu X\ #0}.
i€l
Let L = Ujej L;. By definition L C I, and since (u;);ecs is a basis of £, we must have [ = L,
since otherwise (u;);c;, would be another basis of E, and this would contradict the fact that
(u;)ier is linearly independent. Furthermore, J must be infinite, since otherwise, because
the L; are finite, I would be finite. But then, since I = (J;; L; with J infinite and the L;
finite, by a standard result of set theory, |I| < [J|. If (v}) e, is also a basis, by a symmetric
argument, we obtain |J| < |I|, and thus, || = |J]| for any two bases (u;);e; and (v;);es of E.

Definition 3.8. When a vector space E is not finitely generated, we say that E is of infinite
dimension. The dimension of a finitely generated vector space E is the common dimension
n of all of its bases and is denoted by dim(FE).

Clearly, if the field K itself is viewed as a vector space, then every family (a) where a € K
and a # 0 is a basis. Thus dim(X) = 1. Note that dim({0}) = 0.

Definition 3.9. If E is a vector space of dimension n > 1, for any subspace U of F, if
dim(U) = 1, then U is called a line; if dim(U) = 2, then U is called a plane; if dim(U) = n—1,
then U is called a hyperplane. If dim(U) = k, then U is sometimes called a k-plane.

Let (u;);er be a basis of a vector space E. For any vector v € E, since the family (u;);es
generates F, there is a family (\;);e; of scalars in K, such that

il
A very important fact is that the family (\;);cs is unique.

Proposition 3.12. Given a vector space E, let (u;)icr be a family of vectors in E. Letv € E,
and assume that v =Y, Aju;. Then the family (N;)ier of scalars such that v = . ; Au;
is unique iff (u;)ier s linearly independent.

i€l

Proof. First, assume that (u;);cy is linearly independent. If (1;);cr is another family of scalars
in K such that v =), _; pt;u;, then we have

> (N = pu; =0,
iel

and since (u;);¢; is linearly independent, we must have \;—p; = 0 for all i € I, that is, \; = y;
for all i € I. The converse is shown by contradiction. If (u;);c; was linearly dependent, there
would be a family (u;);er of scalars not all null such that

el
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and p; # 0 for some j € I. But then,

iel iel iel iel
with A\; # ;4 p; since p; # 0, contradicting the assumption that (\;);es is the unique family
such that v = >, Aju,. O

Definition 3.10. If (u;);cs is a basis of a vector space E, for any vector v € F| if (z;)cs is
the unique family of scalars in K such that

v = E T,

icl

each x; is called the component (or coordinate) of index i of v with respect to the basis (u;)ics-

Given a field K and any (nonempty) set I, we can form a vector space K) which, in
some sense, is the standard vector space of dimension |I|.

Definition 3.11. Given a field K and any (nonempty) set I, let KO be the subset of the
cartesian product K! consisting of all families (););c; with finite support of scalars in K.?
We define addition and multiplication by a scalar as follows:

(Ni)ier + (pi)ier = (N + thi)iers

and
A (fi)ier = (Mti)ier-

It is immediately verified that addition and multiplication by a scalar are well defined.
Thus, K@ is a vector space. Furthermore, because families with finite support are consid-
ered, the family (e;);e; of vectors e;, defined such that (e;); = 0 if j # i and (e;); = 1, is
clearly a basis of the vector space K!). When I = {1,...,n}, we denote K!) by K". The
function ¢: I — K, such that (i) = e; for every i € I, is clearly an injection.

@ When [ is a finite set, K/) = K, but this is false when I is infinite. In fact, dim(K @) =
1], but dim(K7) is strictly greater when [ is infinite.

3.6 Matrices

In Section 2.1 we introduced informally the notion of a matrix. In this section we define
matrices precisely, and also introduce some operations on matrices. It turns out that matri-
ces form a vector space equipped with a multiplication operation which is associative, but
noncommutative. We will explain in Section 4.1 how matrices can be used to represent linear
maps, defined in the next section.

3Where K! denotes the set of all functions from T to K.
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Definition 3.12. If K =R or K = C, an m x n-matriz over K is a family (a;;)1<i<m, 1<j<n
of scalars in K, represented by an array

a1 a192 ... QAip
a921 929 ... QAop
Am1 Amo ... Amn

In the special case where m = 1, we have a row vector, represented by

(011 aln)

and in the special case where n = 1, we have a column vector, represented by

a11

Qm1

In these last two cases, we usually omit the constant index 1 (first index in case of a row,
second index in case of a column). The set of all m x n-matrices is denoted by M,, ,(K)
or M, . An n X n-matrix is called a square matriz of dimension n. The set of all square
matrices of dimension n is denoted by M, (K), or M,,.

Remark: As defined, a matrix A = (a;;)1<i<m, 1<j<n 18 & family, that is, a function from
{1,2,...,m} x {1,2,...,n} to K. As such, there is no reason to assume an ordering on
the indices. Thus, the matrix A can be represented in many different ways as an array, by
adopting different orders for the rows or the columns. However, it is customary (and usually
convenient) to assume the natural ordering on the sets {1,2,...,m} and {1,2,...,n}, and
to represent A as an array according to this ordering of the rows and columns.

We define some operations on matrices as follows.

Definition 3.13. Given two m x n matrices A = (a;;) and B = (b;;), we define their sum
A+ B as the matrix C' = (¢;;) such that ¢;; = a;; + b;;; that is,

a1 a2 ... QArp bll b12 bln
a9 1 a9 9 asn 1)21 b22 bgn
+ . .
Am1 AGm2 ... OGmn bml bm2 bmn
arp+bi1 arp+bia ... a1ntbip

az1 +ba1  aza+bea ... agy + by

am1+bm1 am2+bm2 CLmn—i_bmn
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For any matrix A = (a;,), we let —A be the matrix (—a;;). Given a scalar A € K, we define
the matrix AA as the matrix C' = (¢;;) such that ¢;; = Aa;;; that is

aiq a1 ... QA1p /\CL11 )\a12 )\aln

921 a29 ... QAap )\CL21 )\CLQQ )\(Ign
A o | = : :

am1 Gm2 .. Qmn Am1 Ao ... AN

Given an m x n matrices A = (a;;) and an n X p matrices B = (by,;), we define their product
AB as the m x p matrix C' = (¢;;) such that

n
Cij = E iy j,
k=1

for 1 <i<m,and 1 <j <p. In the product AB = C shown below

a1 a2 ... Q1n bll b12 blp C11 Ci12 ... Cip
a9 1 g9 ... Agp b21 b22 bgp Co1 Co2 ... Cop

. . . . = 9
Am1 Am2 ... Amn bnl bng bnp Cm1 Cm2 ... Cmp

note that the entry of index ¢ and j of the matrix AB obtained by multiplying the matrices
A and B can be identified with the product of the row matrix corresponding to the i-th row
of A with the column matrix corresponding to the j-column of B:

blj n

(ai1 -+ ain) | ¢ :Zaikbkj-
b k=1

Definition 3.14. The square matrix [,, of dimension n containing 1 on the diagonal and 0
everywhere else is called the identity matriz. It is denoted by

10 ... 0
0 1 0
I, =
0 0 ... 1
Definition 3.15. Given an m X n matrix A = (a,;), its transpose AT = (a;,), is the

n X m-matrix such that ajTZ- =a;j;, foralli,1 <7 <m,and all j,1 < j <n.

The transpose of a matrix A is sometimes denoted by A!, or even by *A. Note that the
transpose A" of a matrix A has the property that the j-th row of AT is the j-th column of
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A. In other words, transposition exchanges the rows and the columns of a matrix. Here is
an example. If A is the 5 x 6 matrix

1 2 3 45 6
7 1 2 3 45
A=18 71 2 3 4],
9 8 71 2 3
10 9 8 7 1 2
then AT is the 6 x 5 matrix
1 7 8 9 10
21 7 8 9
T 3217 8
A= 4 3 21 7
5 4 3 2 1
6 5 4 3 2

The following observation will be useful later on when we discuss the SVD. Given any
m X n matrix A and any n x p matrix B, if we denote the columns of A by A!,..., A" and
the rows of B by By, ..., B,, then we have

AB=A'B; +---+ A"B,.
For every square matrix A of dimension n, it is immediately verified that Al, = [,,A = A.

Definition 3.16. For any square matrix A of dimension n, if a matrix B such that AB =
BA = I, exists, then it is unique, and it is called the inverse of A. The matrix B is also
denoted by A~!. An invertible matrix is also called a nonsingular matrix, and a matrix that
is not invertible is called a singular matrix.

The following result is a matrix analog of Proposition 3.21.

Proposition 3.13. If a square matriz A € M,,(K) has a left inverse, that is a matriz B
such that BA = 1,,, or a right inverse, that is a matriz C such that AC = I, then A is
actually invertible. Furthermore, B = A~! and C = A~!.

Proof. Proposition 3.13 follows from Proposition 3.21 and the fact that matrices represent
linear maps. We can also give a direct proof as follows. Suppose that there is a matrix B
such that BA = I,,. This implies that the columns A, ..., A" of A are linearly independent,
because if

AN=XNA 4 N A" =0,

where A € K" is the column vector
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for some Aq,...,\, € K, by multiplying both sides of the equation A\ = 0 by B we get
BAXN=1,A=)X=B0=0,

so A = 0. Then since (A',..., A") are n linearly independent vectors in K™, they form
a basis of K". Consequently, for every vector b € K", there is a unique column vector
(21,...,2,) € K™ such that

Ar = A+ + 2, A" =0,

where z is the column vector
T

Tn

Thus we can solve the n equations

ij:ej7 1§]§na

where e; = (0,...,0,1,0,...,0) is the jth canonical basis vector in K™. These equations
yield the matrix equation

AX =1,
where X = (2! --- 2") is the n X n matrix whose jth column is z7. Consequently, X is a

right inverse of A. Now A has a left inverse B and a right inverse X, so by Proposition 2.2,
we have X = B, so A is invertible and its inverse is equal to B.

Let us now assume that there is a matrix C' such that AC = I,,. We can repeat the
previous proof with C playing the role of A and A playing the role of B to conclude that
C is invertible and that C~! = A. But then C~! is invertible with inverse C, and since
C=(C1Y)'= A" we conclude that A is invertible and that its inverse is equal to C'. [

Using Proposition 2.3 (or mimicking the computations in its proof), we note that if A
and B are two n X n invertible matrices, then AB is also invertible and (AB)~! = B~1A~L.

An important criterion for a square matrix to be invertible is stated next. Another proof
is provided in Proposition 4.4 .

Proposition 3.14. A square matriv A € M, (K) is invertible iff its columns (A',... A™)
are linearly independent.

Proof. If A is invertible, then in particular it has a left inverse A~!, so the first part of
the proof of Proposition 3.13 with B = A~! proves that the columns (A',... A") of A
are linearly independent. This fact is also proven as part of the proof of Proposition 4.4.
Conversely, assume that the columns (A', ... A") of A are linearly independent. The second
part of the proof of Proposition 3.13 shows that A is invertible. m
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Another useful criterion for a square matrix to be invertible is stated next.

Proposition 3.15. A square matric A € M, (K) is invertible iff for any x € K", the
equation Az = 0 implies that x = 0.

Proof. If A is invertible and if Az = 0, then by multiplying both sides of the equation x = 0
by A7!, we get
A A =TLrx=x=A"10=0.

Conversely, for any x = (z1,...,z,) € K", since
Ar = 0 AV + -+ 2, A",

the condition Ax = 0 implies x = 0 is equivalent to the linear independence of the columns
(A, ... A") of A. By Proposition 3.14, the matrix A is invertible. O

It is immediately verified that the set M,, ,(K) of m x n matrices is a vector space under
addition of matrices and multiplication of a matrix by a scalar.

Definition 3.17. The m x n-matrices E;; = (eny), are defined such that e;; = 1, and
enr =0, if h # i or k # j; in other words, the (i, j)-entry is equal to 1 and all other entries
are 0.

Here are the E;; matrices for m = 2 and n = 3:

100 010 00 1
E“_(o 0 0>’ Em_(o 0 0)’ El?’_(o 0 0)

000 000 000
Eﬂ_(1 0 o>’ EQQ_(O 1 o)’ E23_(0 0 1)'

It is clear that every matrix A = (a;;) € M, ,(K) can be written in a unique way as

)

A= ZZQUE”'

i=1 j=1

Thus, the family (E;;)1<i<m,1<j<n is a basis of the vector space M,, ,,(K'), which has dimension
mn.

Remark: Definition 3.12 and Definition 3.13 also make perfect sense when K is a (com-
mutative) ring rather than a field. In this more general setting, the framework of vector
spaces is too narrow, but we can consider structures over a commutative ring A satisfying
all the axioms of Definition 3.1. Such structures are called modules. The theory of modules
is (much) more complicated than that of vector spaces. For example, modules do not always
have a basis, and other properties holding for vector spaces usually fail for modules. When
a module has a basis, it is called a free module. For example, when A is a commutative
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ring, the structure A" is a module such that the vectors e;, with (e;); = 1 and (e;); = 0 for
j # 1, form a basis of A”. Many properties of vector spaces still hold for A™. Thus, A" is a
free module. As another example, when A is a commutative ring, M,, ,(A) is a free module

SOl ) >

of infinite dimension.

The properties listed in Proposition 3.16 are easily verified, although some of the com-
putations are a bit tedious. A more conceptual proof is given in Proposition 4.1.

Proposition 3.16. (1) Given any matrices A € M,, ,(K), B € M,,,(K), and C € M,, ,(K),
we have

(AB)C = A(BC);
that is, matriz multiplication is associative.

(2) Given any matrices A, B € My, ,(K), and C, D € M,, ,(K), for all A € K, we have

(A+ B)C = AC + BC
A(C + D) = AC + AD
(AA)C = A(AC)
A(XC) = \(AQ),

so that matriz multiplication -: My, ,,(K) x M, ,(K) = M, ,(K) is bilinear.

The properties of Proposition 3.16 together with the fact that Al,, = I,A = A for all
square n X n matrices show that M,,(K) is a ring with unit 7, (in fact, an associative algebra).
This is a noncommutative ring with zero divisors, as shown by the following example.

Example 3.5. For example, letting A, B be the 2 x 2-matrices

(o) m=(00)
o= (YCY-( )
o= (10) (0 5) - 0)

Thus AB # BA, and AB = 0, even though both A, B # 0.

then

and
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3.7 Linear Maps

Now that we understand vector spaces and how to generate them, we would like to be able
to transform one vector space E into another vector space F'. A function between two vector
spaces that preserves the vector space structure is called a homomorphism of vector spaces,
or linear map. Linear maps formalize the concept of linearity of a function.

Keep in mind that linear maps, which are transformations of
space, are usually far more important than the spaces
themselves.

In the rest of this section, we assume that all vector spaces are over a given field K (say
R).

Definition 3.18. Given two vector spaces E and F', a linear map between E and F' is a
function f: E — F satisfying the following two conditions:

fx+y) = f(x)+ f(y) for all 7,y € E;
f(Azx) = Af(x) forall \ e K, x € E.

Setting x = y = 0 in the first identity, we get f(0) = 0. The basic property of linear maps
1s that they transform linear combinations into linear combinations. Given any finite family
(u;)ier of vectors in E| given any family (););e; of scalars in K, we have

f(z Aiui) = Z A f (us).

iel el
The above identity is shown by induction on |I| using the properties of Definition 3.18.
Example 3.6.

1. The map f: R? — R? defined such that

/

T—y

/

is a linear map. The reader should check that it is the composition of a rotation by
7/4 with a magnification of ratio v/2.

2. For any vector space F, the identity map id: F — E given by
id(u) =u forallueFE

is a linear map. When we want to be more precise, we write idg instead of id.
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3. The map D: R[X] — R[X] defined such that

D(f(X)) = f'(X),
where f’(X) is the derivative of the polynomial f(X), is a linear map.
4. The map ®: C([a,b]) — R given by

B(f) = / F(t)t,

where C([a, b]) is the set of continuous functions defined on the interval [a, b], is a linear
map.

5. The function (—, —): C([a,b]) x C([a,b]) — R given by

(f. ) = / f(Dg(t)dt,

is linear in each of the variable f, g. It also satisfies the properties (f, g) = (g, f) and
(f,f) =0iff f=0. It is an example of an inner product.

Definition 3.19. Given a linear map f: F — F, we define its image (or range) Im f = f(FE),
as the set

Imf={yeF|QBrekE)y=/f(x)}
and its Kernel (or nullspace) Ker f = f71(0), as the set

Kerf={z e E| f(x) =0}.

The derivative map D: R[X] — R[X] from Example 3.6(3) has kernel the constant
polynomials, so Ker D = R. If we consider the second derivative D o D: R[X] — R[X], then
the kernel of Do D consists of all polynomials of degree < 1. The image of D: R[X]| — R[X]
is actually R[X] itself, because every polynomial P(X) = agX" +-- -+ a,-1X + a, of degree
n is the derivative of the polynomial Q(X) of degree n + 1 given by

Xn+1 X2

X) = n—l— nX.
Q( ) a0n+1+ +a 12 “+a

On the other hand, if we consider the restriction of D to the vector space R[X],, of polyno-
mials of degree < n, then the kernel of D is still R, but the image of D is the R[X],_1, the
vector space of polynomials of degree < n — 1.

Proposition 3.17. Given a linear map f: E — F, the set Im f is a subspace of F' and the
set Ker f is a subspace of E. The linear map f: E — F is injective iff Ker f = (0) (where
(0) is the trivial subspace {0}).
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Proof. Given any x,y € Im f, there are some u,v € F such that x = f(u) and y = f(v),
and for all A\, u € K, we have

fu A+ po) = Mf(u) + pf(v) = Az + py,
and thus, Ax + py € Im f, showing that Im f is a subspace of F.
Given any x,y € Ker f, we have f(z) =0 and f(y) = 0, and thus,

fa +py) = Af(z) + nf(y) =0,
that is, Ax + py € Ker f, showing that Ker f is a subspace of E.

First, assume that Ker f = (0). We need to prove that f(z) = f(y) implies that x = y.
However, if f(z) = f(y), then f(z) — f(y) = 0, and by linearity of f we get f(z —y) = 0.
Because Ker f = (0), we must have x — y = 0, that is = y, so f is injective. Conversely,
assume that f is injective. If z € Ker f, that is f(z) = 0, since f(0) = 0 we have f(x) = f(0),
and by injectivity, « = 0, which proves that Ker f = (0). Therefore, f is injective iff
Ker f = (0). O

Since by Proposition 3.17, the image Im f of a linear map f is a subspace of F', we can
define the rank rk(f) of f as the dimension of Im f.

Definition 3.20. Given a linear map f: £ — F, the rank rk(f) of f is the dimension of
the image Im f of f.

A fundamental property of bases in a vector space is that they allow the definition of
linear maps as unique homomorphic extensions, as shown in the following proposition.

Proposition 3.18. Given any two vector spaces E and F, given any basis (u;)ie; of E,
given any other family of vectors (v;)ier in F, there is a unique linear map f: E — F such
that f(u;) = v; for all i € I. Furthermore, f is injective iff (v;)icr is linearly independent,
and f is surjective iff (v;);er generates F.

Proof. 1f such a linear map f: E — F exists, since (u;);es is a basis of E, every vector z € E
can written uniquely as a linear combination

xr = Z TiUg,
el
and by linearity, we must have
flz) = Z i f (ui) = Z Z;iVj.
iel iel
Define the function f: £ — F, by letting

flx) =) ww

i€l
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for every x = Y ..  zju;. It is easy to verify that f is indeed linear, it is unique by the
previous reasoning, and obviously, f(u;) = v;.

Now assume that f is injective. Let (\;);e; be any family of scalars, and assume that
iel
Since v; = f(u;) for every i € I, we have
iel icl iel
Since f is injective iff Ker f = (0), we have
Z )\zuz = O,
icl

and since (u;);es 18 a basis, we have \; = 0 for all ¢ € I, which shows that (v;);c; is linearly
independent. Conversely, assume that (v;);es is linearly independent. Since (u;);es is a basis
of E, every vector x € E is a linear combination z = ., \ju; of (u;)ier. If

flx) = FQ_ ) =0,

i€l

Z Aiv; = Z Aif (u;) = f(z i) = 0,

i€l i€l i€l

then

and \; = 0 for all © € I because (v;);cr is linearly independent, which means that z = 0.
Therefore, Ker f = (0), which implies that f is injective. The part where f is surjective is
left as a simple exercise. O

Figure 3.11 provides an illustration of Proposition 3.18 when £ = R? and V = R?

By the second part of Proposition 3.18, an injective linear map f: £ — F' sends a basis
(u;)ier to a linearly independent family (f(u;));e; of F, which is also a basis when f is
bijective. Also, when F and F' have the same finite dimension n, (u;);cr is a basis of £, and
f: E — F is injective, then (f(u;))es is a basis of F' (by Proposition 3.8).

We can now show that the vector space K of Definition 3.11 has a universal property
that amounts to saying that K) is the vector space freely generated by I. Recall that
v: I — KU such that 1(i) = e; for every i € I, is an injection from I to K,

Proposition 3.19. Given any set I, for any vector space F', and for any function f: I — F,
there is a unique linear map f: KO — F, such that

f=Tou
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defining f

2f(u3)

fis not injective

Figure 3.11: Given u; = (1,0,0), us = (0,1,0), us = (0,0,1) and vy = (1,1), v = (—1,1),
v3 = (1,0), define the unique linear map f: R® — R? by f(u;) = v1, f(ua) = v, and
f(usz) = vs. This map is surjective but not injective since f(u; — u2) = f(uy) — f(uz) =

(17 1) - (_17 1) = (27 0) = 2f<U3) = f(2u3)

as in the following diagram:

Proof. If such a linear map f: K!) — F exists, since f = f o ¢, we must have

i) = F(0) = flea),

for every i € I. However, the family (e;)sc; is a basis of KO and (f(2))ier is a family of
vectors in F, and by Proposition 3.18, there is a unique linear map f: KY) — F such that
f(e;) = f(i) for every i € I, which proves the existence and uniqueness of a linear map f
such that f = f o . O]

The following simple proposition is also useful.

Proposition 3.20. Given any two vector spaces E and F', with F nontrivial, given any
family (u;)ier of vectors in E, the following properties hold:

(1) The family (u;)ie; generates E iff for every family of vectors (v;)ier in F, there is at
most one linear map f: E — F such that f(u;) = v; for all i € I.

(2) The family (u;)ier is linearly independent iff for every family of vectors (v;)ier in F,
there is some linear map f: E — F such that f(u;) = v; for alli € I.
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Proof. (1) If there is any linear map f: E — F such that f(u;) = v; for all i € I, since
(u;)ier generates E| every vector x € E can be written as some linear combination

r = E TiUg,

el

and by linearity, we must have

f(z) = szf(uz) = szvz

el el

This shows that f is unique if it exists. Conversely, assume that (u;);c; does not generate E.
Since F' is nontrivial, there is some some vector y € F such that y # 0. Since (u;);e; does
not generate F, there is some vector w € E that is not in the subspace generated by (u;)e;s-
By Theorem 3.11, there is a linearly independent subfamily (u; )iz, of (u;)icr generating the
same subspace. Since by hypothesis, w € E' is not in the subspace generated by (u;)ier,, by
Lemma 3.6 and by Theorem 3.11 again, there is a basis (e;);er,us of E, such that e; = u;
for all i € Iy, and w = e, for some j, € J. Letting (v;);e; be the family in F' such that
v; = 0 for all © € I, defining f: EF — F to be the constant linear map with value 0, we have
a linear map such that f(u;) = 0 for all ¢ € I. By Proposition 3.18, there is a unique linear
map ¢: £ — F such that g(w) =y, and g(e;) =0 for all j € (Ip U J) — {jo}. By definition
of the basis (e;);er,us of E, we have g(u;) = 0 for all ¢ € I, and since f # g, this contradicts
the fact that there is at most one such map. See Figure 3.12.

(2) If the family (u;);es is linearly independent, then by Theorem 3.11, (u;);cr can be
extended to a basis of F/, and the conclusion follows by Proposition 3.18. Conversely, assume
that (u;);er is linearly dependent. Then there is some family (\;);e; of scalars (not all zero)

such that

iel
By the assumption, for any nonzero vector y € F, for every ¢ € I, there is some linear map
fit E — F, such that f;(u;) =y, and f;(u;) =0, for j € I — {i}. Then we would get

0=fiD>_ duws) =Y Nifilus) = Ay,
iel iel
and since y # 0, this implies A\; = 0 for every i € I. Thus, (u;);cs is linearly independent. [

Given vector spaces F, F', and GG, and linear maps f: £ — F and g: F' — G, it is easily
verified that the composition go f: F — G of f and g is a linear map.

Definition 3.21. A linear map f: E — F is an isomorphism iff there is a linear map
g: ' — E, such that

gof=1idg and fog=idp. (%)
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w=00IA E=

defining f as the zero

glw)=y

w=(0,0,1) A

defining g

Figure 3.12: Let £ = R? and F = R?. The vectors u; = (1,0,0), us = (0,1,0) do not
generate R3 since both the zero map and the map g, where g(0,0,1) = (1,0), send the peach
xy-plane to the origin.

The map g in Definition 3.21 is unique. This is because if g and h both satisfy go f = idg,
fog=idp, ho f =idg, and f o h = idp, then

g=goidp=go(foh)=(gof)oh=idgoh=h.

The map g satisfying (*) above is called the inverse of f and it is also denoted by f~.

Observe that Proposition 3.18 shows that if ' = R", then we get an isomorphism between
any vector space E of dimension |J| = n and R". Proposition 3.18 also implies that if £
and F' are two vector spaces, (u;);es is a basis of E, and f: F — F is a linear map which is
an isomorphism, then the family (f(u;)):es is a basis of F.

One can verify that if f: £ — F is a bijective linear map, then its inverse f~': ' — E,
as a function, is also a linear map, and thus f is an isomorphism.

Another useful corollary of Proposition 3.18 is this:

Proposition 3.21. Let E be a vector space of finite dimensionn > 1 and let f: E — E be
any linear map. The following properties hold:

(1) If f has a left inverse g, that is, if g is a linear map such that go f =id, then f is an
isomorphism and f~ = g.
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(2) If f has a right inverse h, that is, if h is a linear map such that f o h =1id, then f is
an isomorphism and f~' = h.

Proof. (1) The equation g o f = id implies that f is injective; this is a standard result
about functions (if f(z) = f(y), then g(f(x)) = g(f(y)), which implies that x = y since
go f =1id). Let (uy,...,u,) be any basis of E. By Proposition 3.18, since f is injective,
(f(uy),..., f(u,)) is linearly independent, and since E has dimension n, it is a basis of
E (if (f(u1),..., f(u,)) doesn’t span E, then it can be extended to a basis of dimension
strictly greater than n, contradicting Theorem 3.11). Then f is bijective, and by a previous
observation its inverse is a linear map. We also have

g=goid=go(fof)=(gof)of T =idof=f"

(2) The equation f o h = id implies that f is surjective; this is a standard result about
functions (for any y € F, we have f(h(y)) = y). Let (uy,...,u,) be any basis of E. By
Proposition 3.18, since f is surjective, (f(uy),..., f(u,)) spans E, and since E has dimension
n, it is a basis of E (if (f(u1),..., f(uy,)) is not linearly independent, then because it spans
E, it contains a basis of dimension strictly smaller than n, contradicting Theorem 3.11).
Then f is bijective, and by a previous observation its inverse is a linear map. We also have

h=idoh=(fof)oh=flo(foh)=floid=f".
This completes the proof. O

Definition 3.22. The set of all linear maps between two vector spaces E and F'is denoted by
Hom(E, F') or by L(E; F') (the notation L(E; F) is usually reserved to the set of continuous
linear maps, where E and F' are normed vector spaces). When we wish to be more precise and
specify the field K over which the vector spaces E and F' are defined we write Homg (E, F).

The set Hom(FE, F') is a vector space under the operations defined in Example 3.1, namely

(f +9)(z) = f(z) +g(x)

for all z € E, and

(Af)(x) = Af(x)
for all x € E. The point worth checking carefully is that \f is indeed a linear map, which
uses the commutativity of x in the field K (typically, K =R or K = C). Indeed, we have

(M) () = M () = Maf () = A f(x) = M) (@),

When E and F have finite dimensions, the vector space Hom(E, F') also has finite di-
mension, as we shall see shortly.

Definition 3.23. When E = F', a linear map f: F — FE is also called an endomorphism.
The space Hom(F, E) is also denoted by End(E).
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It is also important to note that composition confers to Hom(E, E) a ring structure.
Indeed, composition is an operation o: Hom(E, E) x Hom(F, E) — Hom(E, F), which is
associative and has an identity idg, and the distributivity properties hold:

(1+g)of=giof+gaof;
go(fi+fo)=gofit+tgofo
The ring Hom(FE, E) is an example of a noncommutative ring.
It is easily seen that the set of bijective linear maps f: F — E is a group under compo-

sition.

Definition 3.24. Bijective linear maps f: F — FE are also called automorphisms. The
group of automorphisms of F is called the general linear group (of F), and it is denoted by
GL(E), or by Aut(E), or when E = R", by GL(n,R), or even by GL(n).

Although in this book, we will not have many occasions to use quotient spaces, they are
fundamental in algebra. The next section may be omitted until needed.

3.8 Quotient Spaces

Let E be a vector space, and let M be any subspace of E. The subspace M induces a relation
=); on F, defined as follows: For all u,v € F,

u=pyvifu—veM.

We have the following simple proposition.

Proposition 3.22. Given any vector space E and any subspace M of E, the relation =y,
1s an equivalence relation with the following two congruential properties:

1. If uy =p v1 and us =)y vo, then uy + us =pr v1 + Vo, and
2. if u =pr v, then Au =y M.

Proof. 1t is obvious that =), is an equivalence relation. Note that u; =, v1 and uy =y v9
are equivalent to uq; — vy = wy and uy — v9 = wo, with wq, wy € M, and thus,

(u1 + UQ) — (Ul + UQ) = w1 + Wa,

and wy; + wy € M, since M is a subspace of E. Thus, we have u; + uy =y v1 + vg. If
u —v = w, with w € M, then
AU — Av = \w,

and Aw € M, since M is a subspace of E, and thus Au =), A\v. O
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Proposition 3.22 shows that we can define addition and multiplication by a scalar on the
set /M of equivalence classes of the equivalence relation =;.

Definition 3.25. Given any vector space E and any subspace M of E, we define the following
operations of addition and multiplication by a scalar on the set E'/M of equivalence classes
of the equivalence relation =), as follows: for any two equivalence classes [u], [v] € E/M, we
have

[u] + [v] = [u+ ],
Au] = [Au].

By Proposition 3.22, the above operations do not depend on the specific choice of represen-
tatives in the equivalence classes [u], [v] € E/M. It is also immediate to verify that E/M is
a vector space. The function 7: E — E/F, defined such that m(u) = [u] for every u € E, is
a surjective linear map called the natural projection of E onto E/F. The vector space E/M
is called the quotient space of E by the subspace M.

Given any linear map f: E — F, we know that Ker f is a subspace of F, and it is
immediately verified that Im f is isomorphic to the quotient space E/Ker f.

3.9 Linear Forms and the Dual Space

We already observed that the field K itself (K = R or K = C) is a vector space (over itself).
The vector space Hom(FE, K) of linear maps from E to the field K, the linear forms, plays
a particular role. In this section, we only define linear forms and show that every finite-
dimensional vector space has a dual basis. A more advanced presentation of dual spaces and
duality is given in Chapter 11.

Definition 3.26. Given a vector space F, the vector space Hom(FE, K) of linear maps from
E to the field K is called the dual space (or dual) of E. The space Hom(E, K) is also denoted
by E*, and the linear maps in E* are called the linear forms, or covectors. The dual space
E** of the space E* is called the bidual of E.

As a matter of notation, linear forms f: £ — K will also be denoted by starred symbol,
such as u*, x*, etc.

If E is a vector space of finite dimension n and (uy, ..., u,) is a basis of E, for any linear
form f* € E*, for every x = x1uy + -+ + x,u, € E, by linearity we have

[r(@) = ffu)zr+ -+ [ (un)z,
= M2+ Ay,

with \; = f*(u;) € K for every i, 1 < i < n. Thus, with respect to the basis (u1,...,u,),
the linear form f* is represented by the row vector

(AL ),
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we have

Tn

a linear combination of the coordinates of x, and we can view the linear form f* as a linear
equation. If we decide to use a column vector of coefficients

1

Cn
instead of a row vector, then the linear form f* is defined by
f*(z) =c'm.
The above notation is often used in machine learning.

Example 3.7. Given any differentiable function f: R™ — R, by definition, for any x € R",
the total derivative df, of f at x is the linear form df,: R" — R defined so that for all
u=(uy,...,u,) € R™,

= (2w - L) =X e

Example 3.8. Let C([0, 1]) be the vector space of continuous functions f: [0,1] — R. The
map Z: C([0,1]) — R given by

Z(f) :/0 f(z)dx for any f € C([0,1])

is a linear form (integration).

Example 3.9. Consider the vector space M,,(R) of real n x n matrices. Let tr: M,(R) - R
be the function given by
tl"(A) = a1+ ax + -t A,

called the trace of A. It is a linear form. Let s: M, (R) — R be the function given by

s(A) = Z a;j,

,j=1

where A = (a;;). It is immediately verified that s is a linear form.
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Given a vector space F and any basis (u;);e; for E, we can associate to each u; a linear
form u} € E*, and the u; have some remarkable properties.

Definition 3.27. Given a vector space F and any basis (u;);c; for E, by Proposition 3.18,
for every i € I, there is a unique linear form u; such that

. 1 ifi=y
u;(uy) = {o if i £ j,
for every j € I. The linear form ] is called the coordinate form of index ¢ w.r.t. the basis
(wi)ier-

Remark: Given an index set I, authors often define the so called “Kronecker symbol” §;

such that
s _[1ifi=j
10 ifd # g,
for all 7,5 € I. Then, u}(u;) = ;.
The reason for the terminology coordinate form is as follows: If E has finite dimension
and if (uq,...,u,) is a basis of E, for any vector

v=Aup+ -+ A,
we have

= Nul(ug) + -+ Nug (w) + -+ Apul (uy)
== >\ia

since uf(u;) = 6;;. Therefore, u} is the linear function that returns the ith coordinate of a
vector expressed over the basis (ug, ..., uy,).

The following theorem shows that in finite-dimension, every basis (uq, ..., u,) of a vector
space E yields a basis (uj,...,u}) of the dual space E*, called a dual basis.

Theorem 3.23. (Existence of dual bases) Let E be a vector space of dimension n. The
following properties hold: For every basis (ui,...,u,) of E, the family of coordinate forms
(uj,...,uk) is a basis of E* (called the dual basis of (u1, ..., uy,)).

Proof. (a) If v* € E* is any linear form, consider the linear form

*

fr=vt(w)ug 4 - 4 v (),
Observe that because u}(u;) = 9, ;,
frw) = (0 (u)uy + - - 4 0% (un)uy, ) ()
v (up)ui(ug) + - 4 0" (wg)ug (ug) + - 4 0 (un)ug (u;)
v (uy),
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and so f* and v* agree on the basis (ug,...,u,), which implies that

vt = =0 (u)ul + - 0T (ug) .

*

Therefore, (uf,...,u}) spans E*. We claim that the covectors uj,...,u" are linearly inde-
pendent. If not, we have a nontrivial linear dependence

Aul + -+ A, =0,
and if we apply the above linear form to each u;, using a familar computation, we get

proving that uf,...,u} are indeed linearly independent. Therefore, (uj,...,u}) is a basis of

£ [l

In particular, Theorem 3.23 shows a finite-dimensional vector space and its dual E* have
the same dimension.

3.10 Summary

The main concepts and results of this chapter are listed below:
e The notion of a wvector space.
e Families of vectors.

e Linear combinations of vectors; linear dependence and linear independence of a family
of vectors.

e Linear subspaces.

e Spanning (or generating) family; generators, finitely generated subspace; basis of a
subspace.

e Fvery linearly independent family can be extended to a basis (Theorem 3.7).

e A family B of vectors is a basis iff it is a maximal linearly independent family iff it is
a minimal generating family (Proposition 3.8).

e The replacement lemma (Proposition 3.10).

e Any two bases in a finitely generated vector space E have the same number of elements;
this is the dimension of E (Theorem 3.11).

e Hyperplanes.
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e Every vector has a unique representation over a basis (in terms of its coordinates).
o Matrices

e Column vectors, row vectors.

e Matrix operations: addition, scalar multiplication, multiplication.

e The vector space M,,,,(K) of m x n matrices over the field K; The ring M, (K) of
n X n matrices over the field K.

e The notion of a linear map.

e The image Im f (or range) of a linear map f.

e The kernel Ker f (or nullspace) of a linear map f.
e The rank rk(f) of a linear map f.

e The image and the kernel of a linear map are subspaces. A linear map is injective iff
its kernel is the trivial space (0) (Proposition 3.17).

e The unique homomorphic extension property of linear maps with respect to bases
(Proposition 3.18 ).

e (Quotient spaces.

e The vector space of linear maps Homg (E, F).
e Linear forms (covectors) and the dual space E*.
e Coordinate forms.

e The existence of dual bases (in finite dimension).

3.11 Problems

Problem 3.1. Let H be the set of 3 x 3 upper triangular matrices given by

b
H = c| |a,b,ceR
1

o O =
O~ Q2

(1) Prove that H with the binary operation of matrix multiplication is a group; find
explicitly the inverse of every matrix in H. Is H abelian (commutative)?



3.11. PROBLEMS 105

(2) Given two groups GG7 and Go, recall that a homomorphism if a function ¢: G; — G»
such that

p(ab) = p(a)p(b), a,be Gy
Prove that p(e;) = es (where ¢; is the identity element of G;) and that
pla™) = (p(a))™, a€Gi
(3) Let S* be the unit circle, that is
St = {e" = cosf +isinf | 0 <0 < 27},

and let ¢ be the function given by

S~ Q

1 b .
v|0 c| =(a,ce®).
0 1

Prove that ¢ is a surjective function onto G = R x R x S', and that if we define
multiplication on this set by

(1, y1,u1) - (T2, Y2, uz) = (T1 + T2, Y1 + Y2, € uruy),
then G is a group and ¢ is a group homomorphism from H onto G.

(4) The kernel of a homomorphism ¢: G; — G5 is defined as

Ker (¢) = {a € G1 | p(a) = e}
Find explicitly the kernel of ¢ and show that it is a subgroup of H.

Problem 3.2. For any m € Z with m > 0, the subset mZ = {mk | k € Z} is an abelian
subgroup of Z. Check this.

(1) Give a group isomorphism (an invertible homomorphism) from mZ to Z.

(2) Check that the inclusion map i: mZ — Z given by i(mk) = mk is a group homomor-
phism. Prove that if m > 2 then there is no group homomorphism p: Z — mZ such that
poi=id.

Remark: The above shows that abelian groups fail to have some of the properties of vector
spaces. We will show later that a linear map satisfying the condition po: = id always exists.
Problem 3.3. Let £ = R x R, and define the addition operation
(w1, 91) + (22, 42) = (01 + 22,91, +42),  Z1, %2, Y1, Y2 € R,
and the multiplication operation -: R x £ — FE by
A (z,y) = (Ax,y), ANzx,y €R.

Show that E with the above operations + and - is not a vector space. Which of the
axioms is violated?
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Problem 3.4. (1) Prove that the axioms of vector spaces imply that
a-0=0
0-v=0
o (~v) = ~(av)
(~a) v = —(a-0)
for all v € E and all a« € K, where E is a vector space over K.
(2) For every A\ € R and every x = (21, ...,z,) € R", define Az by
A= N1, .., x,) = (Axq, .., ATy,).
Recall that every vector x = (x1,...,2,) € R" can be written uniquely as
T =1T1€1 + -+ Tyey,
where e; = (0,...,0,1,0,...,0), with a single 1 in position ¢. For any operation -: R x R" —
R™, if - satisfies the Axiom (V1) of a vector space, then prove that for any o € R, we have
a-x=a-(rre;+ -+ xpe,) =a- (rie1) + -+ a- (xpe,).
Conclude that - is completely determined by its action on the one-dimensional subspaces of
R™ spanned by ey, ..., e,.

(3) Use (2) to define operations -: R x R® — R” that satisfy the Axioms (V1-V3), but
for which Axiom V4 fails.

(4) For any operation -: R x R™ — R™, prove that if - satisfies the Axioms (V2-V3), then
for every rational number r € Q and every vector x € R", we have
r-x=r(l-z).

In the above equation, 1 -z is some vector (y1,...,¥,) € R™ not necessarily equal to = =
(x1,...,2,), and
r(l-z) = (rys, -, 7yn),
as in Part (2).
Use (4) to conclude that any operation -: Q x R™ — R” that satisfies the Axioms (V1-V3)
is completely determined by the action of 1 on the one-dimensional subspaces of R spanned
by e1,...,en.

Problem 3.5. Let A; be the following matrix:

-3 =5 1

Prove that the columns of A; are linearly independent. Find the coordinates of the vector
x = (6,2,—7) over the basis consisting of the column vectors of A;.
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Problem 3.6. Let Ay be the following matrix:

1 2 1 1
2 3 2 3
Ay = -1 0 1 =1
-2 —-1.3 0

Express the fourth column of A5 as a linear combination of the first three columns of As. Is
the vector z = (7,14, —1,2) a linear combination of the columns of A,?

Problem 3.7. Let A3 be the following matrix:

1
Az= 11
1

DO
W N

Prove that the columns of A; are linearly independent. Find the coordinates of the vector
x = (6,9, 14) over the basis consisting of the column vectors of Aj.

Problem 3.8. Let A4 be the following matrix:

1 2 1 1
2 3 2 3
Ay = -1 0 1 -1
2 -1 4 0

Prove that the columns of A, are linearly independent. Find the coordinates of the vector
x = (7,14, —1,2) over the basis consisting of the column vectors of Ay.

Problem 3.9. Consider the following Haar matrix

11 1 0
1 1 -1 0
H 1 -1 0 1
1 -1 0 -1

Prove that the columns of H are linearly independent.

Hint. Compute the product H' H.

Problem 3.10. Consider the following Hadamard matrix

1 1 1 1
1 -1 1 -1
Hy = 1 1 -1 -1
1 -1 -1 1

Prove that the columns of H, are linearly independent.

Hint. Compute the product H, Hj.
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Problem 3.11. In solving this problem, do not use determinants.
(1) Let (u1,...,uy) and (vy,...,v,) be two families of vectors in some vector space E.
Assume that each v; is a linear combination of the u;s, so that

Vi = QiU+ Gy, 1 <0< m,

and that the matrix A = (a;,) is an upper-triangular matrix, which means that if 1 < j <
i < m, then a;; = 0. Prove that if (us,...,u,,) are linearly independent and if all the
diagonal entries of A are nonzero, then (vy,...,v,,) are also linearly independent.

Hint. Use induction on m.

(2) Let A = (a;;) be an upper-triangular matrix. Prove that if all the diagonal entries of
A are nonzero, then A is invertible and the inverse A~! of A is also upper-triangular.

Hint. Use induction on m.
Prove that if A is invertible, then all the diagonal entries of A are nonzero.

(3) Prove that if the families (uq,...,u,;,) and (vy,...,v,,) are related as in (1), then
(u1,...,u,) are linearly independent iff (vy,...,v,,) are linearly independent.

Problem 3.12. In solving this problem, do not use determinants. Consider the n x n
matrix

12 0 0 ...00
1 2 0 ... 00
00 1 2 ...00
0 0 0 1 20
0 0 0O 0 1 2
0 0 0 0 1
(1) Find the solution x = (xy,...,x,) of the linear system
Ax = b,
for
by
.
bn,

(2) Prove that the matrix A is invertible and find its inverse A~'. Given that the number
of atoms in the universe is estimated to be < 10%2, compare the size of the coefficients the
inverse of A to 1082, if n > 300.
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(3) Assume b is perturbed by a small amount db (note that b is a vector). Find the new
solution of the system

A(z + 62) = b+ b,

where dx is also a vector. In the case where b = (0,...,0,1), and 6b = (0,...,0,¢€), show
that

|(62)1] = 2" e].
(where (dx); is the first component of z).

(4) Prove that (A —1)" = 0.

Problem 3.13. An n x n matrix NN is nilpotent if there is some integer » > 1 such that
N™ = 0.

(1) Prove that if V is a nilpotent matrix, then the matrix I — N is invertible and

(I-N)'=IT+N+N?*+-..+ N1

(2) Compute the inverse of the following matrix A using (1):

e

I
coo o
OO N
cCOo N W
I CINURN N
D W o O

Problem 3.14. (1) Let A be an n x n matrix. If A is invertible, prove that for any z € R,
if Ax =0, then z = 0.

(2) Let A be an m x n matrix and let B be an n x m matrix. Prove that I,, — AB is
invertible iff I,, — BA is invertible.

Hint. If for all x € R", Mx = 0 implies that x = 0, then M is invertible.

Problem 3.15. Consider the following n X n matrix, for n > 3:

1 -1 -1 -1 -+ -1 -1
1 -1 1 1 - 1 1
1 1 -1 1 - 1 1
=1 1 1 -1 1 1
11 1 1 -1 1
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(1) If we denote the columns of B by by, ..., b,, prove that

bl — bg = 2(61 + 62)
bl — b3 = 2(61 + 63)

b1 — bn = 2(61 + €n>,

where eq, ..., e, are the canonical basis vectors of R".

(2) Prove that B is invertible and that its inverse A = (a;;) is given by

(n—3) 1 9 <<
ayy=-—>=, ;1= ——— <1<n
YT om—2) T 2(n—2)
and
S (k. B Y
2(n —2)
1

(3) Show that the n diagonal n x n matrices D; defined such that the diagonal entries of
D; are equal the entries (from top down) of the ith column of B form a basis of the space of
n x n diagonal matrices (matrices with zeros everywhere except possibly on the diagonal).
For example, when n = 4, we have

1000 -1 0 00
0100 0 —1 0 0
D1_0010 D2_0010’
000 1 0 0 01
-1 0 0 0 -1 00 0
0 1 0 0 0 10 0
D3_00—10’ D4_0010
0 0 0 1 0 00 —1

Problem 3.16. Given any m xn matrix A and any n x p matrix B, if we denote the columns
of Aby Al, ... A" and the rows of B by By, ..., B,, prove that

AB=A'B;+---+ A"B,,.

Problem 3.17. Let f: E— F be a linear map which is also a bijection (it is injective and
surjective). Prove that the inverse function f~': F — F is linear.
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Problem 3.18. Given two vectors spaces E and F, let (u;);e; be any basis of E and let
(v;)ier be any family of vectors in F. Prove that the unique linear map f: E — F such that
f(u;) = v; for all i € I is surjective iff (v;);e; spans F.

Problem 3.19. Let f: E — F be a linear map with dim(F) = n and dim(F') = m. Prove
that f has rank 1 iff f is represented by an m x n matrix of the form

A=wuv'

with © a nonzero column vector of dimension m and v a nonzero column vector of dimension
n.

Problem 3.20. Find a nontrivial linear dependence among the linear forms
o1(x,y,2) =2 —y+ 3z, walz,y,2) =3x—dy+ 2z, p3(z,y,2) =4 —Ty+ 2.
Problem 3.21. Prove that the linear forms
o1(z,y,2) =x+2y+2, ¢o(r,y,2) =20+3y+32, @3(r,y,2)=3c+Ty+ =z

are linearly independent. Express the linear form ¢(x,y, z) = 2+y+2 as a linear combination
of P1, P2, L3.
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Chapter 4

Matrices and Linear Maps

In this chapter, all vector spaces are defined over an arbitrary field K. For the sake of
concreteness, the reader may safely assume that K = R.

4.1 Representation of Linear Maps by Matrices

Proposition 3.18 shows that given two vector spaces £ and F and a basis (u;);es of E, every
linear map f: £ — F is uniquely determined by the family (f(u;));jes of the images under
f of the vectors in the basis (u;);e.

If we also have a basis (v;);e; of F, then every vector f(u;) can be written in a unique
way as

flug) = aijui,

el

where j € J, for a family of scalars (a;;)ic;. Thus, with respect to the two bases (u;);jes
of E and (v;);e; of F, the linear map f is completely determined by a “I x J-matrix”

M(f) = (aij)(i,j)elxj-

Remark: Note that we intentionally assigned the index set J to the basis (u;);es of E, and
the index set I to the basis (v;);e; of F, so that the rows of the matrix M(f) associated
with f: E — F are indexed by I, and the columns of the matrix M (f) are indexed by J.
Obviously, this causes a mildly unpleasant reversal. If we had considered the bases (u;);er of
E and (vj)jes of F, we would obtain a J x I-matrix M(f) = (a;:)(jiyesx1- No matter what
we do, there will be a reversal!l We decided to stick to the bases (u;)je; of E and (v;);er of
F, so that we get an I x J-matrix M(f), knowing that we may occasionally suffer from this
decision!

When [ and J are finite, and say, when |I| = m and |J| = n, the linear map f is
determined by the matrix M (f) whose entries in the j-th column are the components of the

113
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vector f(u;) over the basis (vy,...,v,,), that is, the matrix
11 Q12 ... din
]\/[(f): 21 Q22 ... dan
Um1 Qm2 - Qmn

whose entry on Row ¢ and Column jis a;; (1 <i<m,1<j<n).

We will now show that when E and F' have finite dimension, linear maps can be very
conveniently represented by matrices, and that composition of linear maps corresponds to
matriz multiplication. We will follow rather closely an elegant presentation method due to
Emil Artin.

Let FE and F be two vector spaces, and assume that E has a finite basis (ug,...,u,) and
that F' has a finite basis (v1,...,v,). Recall that we have shown that every vector z €
can be written in a unique way as

T =2TiUy + -+ TpUp,
and similarly every vector y € F' can be written in a unique way as

Let f: E — F be a linear map between F and F. Then for every x = x1uy + - -+ + z,u, in
E; by linearity, we have

f(x) =21 f(ur) + - + 20 fun).

Let
f(uj) = aljvl + -+ Clmj'l}m,

or more concisely,

fluy) = Z Q; Vi,
=1

for every j, 1 < j < mn. This can be expressed by writing the coefficients ay;, as;, ..., am; of
f(u;) over the basis (vy,...,v,), as the jth column of a matrix, as shown below:
flur) fluz) oo flun)
(%1 a1 19 c. A1n
(%) ao1 a99 e Aoy

Then substituting the right-hand side of each f(u;) into the expression for f(x), we get

f(z) = xl(i a;10;) + -0+ xn(zm: ;i)
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which, by regrouping terms to obtain a linear combination of the v;, yields

n n

f(z) = (Z arjr;)vy + -+ (Z A §T5) Uy

j=1 j=1

Thus, letting f(x) =y = y1v1 + -+ - + YU, we have

vi= Y i (1)
j=1

forall i, 1 <i<m.

To make things more concrete, let us treat the case where n = 3 and m = 2. In this case,

f(ur) = anvy + ax vy
f(uz) = arpvy + agove

f(us) = a13v1 + agzva,

which in matrix form is expressed by
f(ul) f(u2) f(U3)
U1 a11 a2 a3
3
(% 21 22 23
and for any x = xyu; + xous + x3u3, We have

f(x) = f(xlul —+ TolUo + $3U3)
=21 f(u1) + x2f (ug) + x5 f(us)
= x1(a11v1 + ag1v2) + wa(a12v1 + aeve) + w3(ai3v; + aszvs)

= (CLHIL’l + a12T2 + CL13:L’3>U1 -+ (CL21I1 + a929T9 + CL23I3)U2.

Consequently, since
Y = Y1U1 + Y2Uo,

we have

Y1 = a1171 + Q12T + A1373

Y2 = QA21T1 + A22T2 + A23T3.

This agrees with the matrix equation
T1
Y\ _ (G111 a2 dais
Y2 21 G2 A23
T3

We now formalize the representation of linear maps by matrices.
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Definition 4.1. Let E and F be two vector spaces, and let (uq,...,u,) be a basis for F,
and (vy,...,v,) be a basis for F. Each vector x € E expressed in the basis (uq,...,u,) as
r = r1uy + - + Tpu, is represented by the column matrix

€1
M(z) =

Tn

and similarly for each vector y € I expressed in the basis (vy,...,vy).
Every linear map f: E — F is represented by the matrix M (f) = (a;;), where a;; is the
i-th component of the vector f(u;) over the basis (vy,...,vy,), i.e., where
flu;) = Zaijw, for every j, 1 < j < n.
i=1

The coefficients ay;, asj, . . ., @m; of f(u;) over the basis (v1,...,v,,) form the jth column of

the matrix M (f) shown below:

U1 ai a12 . A1n
V2 21 22 ce A2n
Um am1 Am?2 o Amn

The matrix M(f) associated with the linear map f: F — F'is called the matriz of f with
respect to the bases (uq,...,u,) and (vy,...,v,). When E = F and the basis (vq,...,0n)
is identical to the basis (uy,...,u,) of E, the matrix M(f) associated with f: E — F (as
above) is called the matriz of f with respect to the basis (uy,. .., uy).

Remark: As in the remark after Definition 3.12, there is no reason to assume that the
vectors in the bases (uq, ..., u,) and (vy, ..., v,,) are ordered in any particular way. However,
it is often convenient to assume the natural ordering. When this is so, authors sometimes
refer to the matrix M(f) as the matrix of f with respect to the ordered bases (uy,...,uy)
and (vy, ..., Un).

Let us illustrate the representation of a linear map by a matrix in a concrete situation.
Let E be the vector space R[X]4 of polynomials of degree at most 4, let F' be the vector
space R[X]3 of polynomials of degree at most 3, and let the linear map be the derivative
map d: that is,

d(P + Q) = dP +dQ
d(\P) = \dP,
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with A € R. We choose (1, z,2% 2%, 2%) as a basis of F and (1,z, 2% 2?) as a basis of F.
Then the 4 x 5 matrix D associated with d is obtained by expressing the derivative dz’ of
each basis vector z? for i = 0,1,2, 3,4 over the basis (1, z, 2%, z%). We find

0 000

o O O
S O O

2
0
0

o Ww o
- O O

If P denotes the polynomial
P =32* — 52® + 2* — Tz + 5,

we have
dP = 1223 — 1522 + 22 — 7.

The polynomial P is represented by the vector (5, —7,1, =5, 3), the polynomial dP is repre-
sented by the vector (—7,2, —15,12), and we have

01000 _57 ~7
002o00|["|_]2
00030]]| ", ~15 |
00004/ |7, 12

as expected! The kernel (nullspace) of d consists of the polynomials of degree 0, that is, the
constant polynomials. Therefore dim(Kerd) = 1, and from

dim(F) = dim(Ker d) + dim(Im d)
(see Theorem 6.16), we get dim(Imd) = 4 (since dim(E) = 5).

For fun, let us figure out the linear map from the vector space R[X];3 to the vector space
R[X]4 given by integration (finding the primitive, or anti-derivative) of z*, for i = 0,1, 2, 3).
The 5 x 4 matrix S representing f with respect to the same bases as before is

o 0 0 0
1 0 0 O
S=10 1/2 0 0
0 0 1/3 0
0O 0 0 1/4
We verify that DS = I,
01000 (1) 8 8 8 1 000
00200 0100
012 0 0 |[|=
00030 0010
0000 4 00 1/3 0 0001
0 0 0 1/4
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This is to be expected by the fundamental theorem of calculus since the derivative of an
integral returns the function. As we will shortly see, the above matrix product corresponds
to this functional composition. The equation DS = I, shows that S is injective and has D
as a left inverse. However, SD # I5, and instead

0 0 0 0 00 00O
1 0 0 0 8 é (2) 8 8 01 00O
0 1/2 0 0 0003o0l~ 001001,
0 0 1/3 0 0000 4 00010
0 0 0 1/4 00001

because constant polynomials (polynomials of degree 0) belong to the kernel of D.

4.2 Composition of Linear Maps and Matrix
Multiplication

Let us now consider how the composition of linear maps is expressed in terms of bases.

Let E, F, and G, be three vectors spaces with respective bases (u1,...,u,) for E,
(v1,...,v,) for F and (wy,...,wy) for G. Let g: E — F and f: F — G be linear maps.
As explained earlier, g: E — F'is determined by the images of the basis vectors u;, and
f: F'— G is determined by the images of the basis vectors v,. We would like to understand
how fog: & — G is determined by the images of the basis vectors u;.

Remark: Note that we are considering linear maps ¢g: £ — F and f: FF — G, instead
of f: F — F and ¢g: FF — G, which yields the composition f o g: E — G instead of
go f: E — G. Our perhaps unusual choice is motivated by the fact that if f is represented
by a matrix M (f) = (a;x) and g is represented by a matrix M(g) = (bx;), then fog: E — G
is represented by the product AB of the matrices A and B. If we had adopted the other
choice where f: E — F and g: F — G, then go f: EE — G would be represented by the
product BA. Personally, we find it easier to remember the formula for the entry in Row ¢ and
Column j of the product of two matrices when this product is written by AB, rather than
BA. Obviously, this is a matter of tastel We will have to live with our perhaps unorthodox
choice.

Thus, let
f(Uk) = Zaz’kwia
i=1
for every k, 1 < k <n, and let

9(u;) = Z bk, j U,
k=1
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for every j, 1 < j < p; in matrix form, we have

flo) flva) oo flvn)

w1 ail Q12 ce. Qip
w2 21 22 e Q2n
W, Am1 Am2 s Amn
and
g(ur) g(uz) g(up)
U1 bn b12 e blp
(%) b21 b22 c. bgp

Un bn 1 bn2

By previous considerations, for every

T=T1Ur + -+ Tply,

letting g(z) =y = y1v1 + - -+ + ynv,, we have
p
Yk = Z brj; (2)
j=1

for all k£, 1 < k < n, and for every

Y =1yt YnUn,

letting f(y) = z = zywy + - - + 2 Wy, We have

zi = Z @; kYK (3)
=1

for all i, 1 <i <m. Then if y = g(x) and z = f(y), we have z = f(g(x)), and in view of (2)
and (3), we have

n p
Zi = E azk(g bijj)
k=1 j=1
n p
= E E a;kby j;

k=1 j=1

P n
:5 E i kb j;

j=1 k=1

=> (D aubij)z;.

j=1 k=1
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Thus, defining ¢;; such that
Cij = Zaikbkj7
k=1

for 1 <i<m,and 1 <j < p, we have
p
5=y ey (4)
j=1

Identity (4) shows that the composition of linear maps corresponds to the product of
matrices.

Then given a linear map f: £ — F represented by the matrix M(f) = (a;;) w.r.t. the
bases (u1,...,u,) and (v1,...,v,), by Equation (1), namely

n
?/i:zaijxj I <i<m,
=1

and the definition of matrix multiplication, the equation y = f(z) corresponds to the matrix
equation M (y) = M(f)M (x), that is,

Y1 aiir ... Gip I
Ym Am1 .- Amn Tn
Recall that
a1 ai2 ... Qi x a1 a2 A1n
Qg1 Q22 ... Q2q T a1 az2 A2 n
= . + 9 ) + ot Ty
Am1 Am2 ... Amn T Qm1 A 2 Amn
Sometimes, it is necessary to incorporate the bases (uq,...,u,) and (vq,...,v,) in the

notation for the matrix M (f) expressing f with respect to these bases. This turns out to be
a messy enterprise!

We propose the following course of action:
Definition 4.2. Write Y = (uy,...,u,) and V = (vy,...,v,,) for the bases of F and F', and
denote by My y(f) the matriz of f with respect to the bases U and V. Furthermore, write

xy for the coordinates M(z) = (z1,...,x,) of z € E w.r.t. the basis U and write yy for the
coordinates M(y) = (y1,...,Ym) of y € F w.r.t. the basis V . Then

y = f(x)
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is expressed in matrix form by
yy = My y(f) zu.

When U =V, we abbreviate My v(f) as My(f).

The above notation seems reasonable, but it has the slight disadvantage that in the
expression My v (f)xy, the input argument x;; which is fed to the matrix My, (f) does not
appear next to the subscript U in My (f). We could have used the notation My, (f), and
some people do that. But then, we find a bit confusing that VV comes before & when f maps
from the space F with the basis U to the space F' with the basis V. So, we prefer to use the
notation My v (f).

Be aware that other authors such as Meyer [125] use the notation [f]yy, and others such
as Dummit and Foote [54] use the notation MY (f), instead of M, (f). This gets worse!
You may find the notation MY (f) (as in Lang [109]), or y[f]y, or other strange notations.

Definition 4.2 shows that the function which associates to a linear map f: E — F the
matrix M (f) w.r.t. the bases (uy,...,u,) and (vy,...,v,) has the property that matrix mul-
tiplication corresponds to composition of linear maps. This allows us to transfer properties
of linear maps to matrices. Here is an illustration of this technique:

Proposition 4.1. (1) Given any matrices A € M, ,(K), B € M,, ,(K), and C € M,, ,(K),
we have
(AB)C = A(BC);

that s, matrix multiplication is associative.

(2) Given any matrices A, B € M,,, ,(K), and C,D € M,, ,(K), for all A € K, we have

(A+ B)C = AC + BC
A(C + D) = AC + AD
(M)C = A(AC)
ANC) = M(AC),

so that matriz multiplication -: My, ,,(K) x M, ,(K) = M, ,(K) is bilinear.

Proof. (1) Every m x n matrix A = (a;;) defines the function f4: K™ — K™ given by
fa(z) = Az,

for all z € K™ Tt is immediately verified that f4 is linear and that the matrix M (fa)
representing f4 over the canonical bases in K" and K™ is equal to A. Then Formula (4)
proves that

M(fA © fB) = M(fA)M(fB) = AB,

so we get

M((fao fg)o fc) = M(fao f)M(fc) = (AB)C
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and
M(fao(fsofc))=M(fa)M(fso fc) = A(BC),

and since composition of functions is associative, we have (fa o fg) o fo = fao (fso fo),
which implies that
(AB)C = A(BC).

(2) It is immediately verified that if fi, fo € Homg(E, F), A, B € M, o(K), (uy,...,u,) is
any basis of E, and (vy,...,v,,) is any basis of F', then

M(fi+ f2) = M(f1) + M(f2)
fayp = fa+ fB.

Then we have

(A+ B)C

M(fars)M(fc)
(fars o fc)
((fa+ fB)o fc))
((

(

fao fo)+(feo fo))
fao fo)+M(fpo fo)

= M(fa)M(fc) + M(fs)M(fc)
= AC + BC.

[
S S K

The equation A(C' + D) = AC + AD is proven in a similar fashion, and the last two
equations are easily verified. We could also have verified all the identities by making matrix
computations. 0

Note that Proposition 4.1 implies that the vector space M,,(K) of square matrices is a
(noncommutative) ring with unit 7,,. (It even shows that M, (K) is an associative algebra.)

The following proposition states the main properties of the mapping f +— M (f) between
Hom(F, F') and M,, . In short, it is an isomorphism of vector spaces.

Proposition 4.2. Given three vector spaces E, F, G, with respective bases (uy,...,u,),
(V1,...,Un), and (w1, ..., wy), the mapping M : Hom(E, F') — M,,, that associates the ma-
trix M(g) to a linear map g: E — F satisfies the following properties for all x € E, all
g,h: E— F,andall f: F — G-
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where M (x) is the column vector associated with the vector x and M (g(x)) is the column
vector associated with g(x), as explained in Definition 4.1.

Thus, M: Hom(E,F) — M,,, is an isomorphism of vector spaces, and when p = n
and the basis (v, ...,v,) is identical to the basis (uy,...,u,), M: Hom(E, E) — M, is an
isomorphism of rings.

Proof. That M(g(x)) = M(g)M (x) was shown by Definition 4.2 or equivalently by Formula
(1). The identities M (g +h) = M(g) + M (h) and M(Ag) = AM(g) are straightforward, and
M(fog)= M(f)M(g) follows from Identity (4) and the definition of matrix multiplication.
The mapping M: Hom(E, F') — M,,, is clearly injective, and since every matrix defines a
linear map (see Proposition 4.1), it is also surjective, and thus bijective. In view of the above
identities, it is an isomorphism (and similarly for M : Hom(E, E) — M,,, where Proposition
4.1 is used to show that M, is a ring). ]

In view of Proposition 4.2, it seems preferable to represent vectors from a vector space
of finite dimension as column vectors rather than row vectors. Thus, from now on, we will
denote vectors of R™ (or more generally, of K™) as column vectors.

We explained in Section 3.9 that if the space F is finite-dimensional and has a finite basis
(u1,...,uy,), then a linear form f*: E — K is represented by the row vector of coefficients

(f*(un) o fr(ua)), (1)

over the bases (uq,...,u,) and 1 (in K), and that over the dual basis (uj,...,u*) of E*, the

rn

linear form f* is represented by the same coefficients, but as the column vector

f*(u)
: : (2)

which is the transpose of the row vector in (1).

This is a special case of a more general phenomenon. A linear map f: F — F induces a
map f': F* — E* called the transpose of f (note that f' maps F* to E*, not E* to F*),
and if (uq...,u,) is a basis of E, (vy...,v,,) is a basis of F', and if f is represented by the

m X n matrix A over these bases, then over the dual bases (vf,...,v%) and (uf,...,u}), the
linear map f' is represented by AT, the transpose of the matrix A.

This is because over the basis (v1,...,v,), a linear form ¢ € F* is represented by the
row vector

A= (p(vr) o olvm)),

and we define f7 () as the linear form represented by the row vector

AA
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over the basis (uy,...,u,). Since ¢ is represented by the column vector AT over the dual
basis (vf,...,v"), we see that f'(y) is represented by the column vector

AT =ATNT
over the dual basis (u},...,u"). The matrix defining f' over the dual bases (v},..., v ) and
(uf,...,u’) is indeed AT.

Conceptually, we will show later (see Section 30.1) that the linear map f': F* — E* is
defined by

Fip)=pof,

for all ¢ € F* (remember that ¢: F' — K, so composing f: ' — F and ¢: F' — K yields a
linear form po f: E — K).

4.3 Change of Basis Matrix

It is important to observe that the isomorphism M : Hom(E, F') — M,, ,, given by Proposition
4.2 depends on the choice of the bases (uy,...,u,) and (v1,...,v,), and similarly for the
isomorphism M : Hom(FE, E) — M,,, which depends on the choice of the basis (u1, ..., u,).
Thus, it would be useful to know how a change of basis affects the representation of a linear
map f: E — F as a matrix. The following simple proposition is needed.

Proposition 4.3. Let E be a vector space, and let (uq,...,u,) be a basis of E. For every
family (v, ..., v,), let P = (a;;) be the matriz defined such that v; = 3"\, a;ju;. The matriz
P is invertible iff (vq,...,v,) is a basis of E.

Proof. Note that we have P = M (f), the matrix (with respect to the basis (uy,...,u,))
associated with the unique linear map f: E — E such that f(u;) = v;. By Proposition 3.18,
f is bijective iff (vy,...,v,) is a basis of F. Furthermore, it is obvious that the identity
matrix [, is the matrix associated with the identity id: £ — E w.r.t. any basis. If f is an
isomorphism, then fo f~! = f~' o f = id, and by Proposition 4.2, we get M(f)M(f™!) =
M(f~YHYM(f) = I, showing that P is invertible and that M(f~') = P71, O

An important corollary of Proposition 4.3 yields the following criterion for a square matrix
to be invertible. This criterion was already proven in Proposition 3.14 but Proposition 4.3
yields a shorter proof.

Proposition 4.4. A square matriz A € M,,(K) is invertible iff its columns (A', ..., A") are

linearly independent.

Proof. First assume that A is invertible. If \;A' + .- 4+ X\, A" = 0 for some \,...,\, € K,
then
A=A+ ) A" =0,
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where \ is the column vector A = (\y,...,\,). Since A has an inverse A=, by multiplying
both sides of the equation A\ = 0 by A~! we obtain

AT AN =TI A=) =A"10=0,

which shows that the columns (A!,..., A") are linearly independent.

Conversely, assume that the columns (A!,..., A") are linearly independent. Since the
vector space F = K™ has dimension n, the vectors (v1,...,v,) = (A',..., A") form a basis
of K™. By definition, the matrix A is defined by expressing each vector v; = A7 as the
linear combination A7 = "7 | a;;e;, where (eq,...,e,) is the canonical basis of K™, and
since (v1,...,v,) is a basis, by Proposition 4.3, the matrix A is invertible. O

Proposition 4.3 suggests the following definition.

Definition 4.3. Given a vector space F of dimension n, for any two bases (u1, ..., u,) and
(v1,...,v,) of E, let P = (a;;) be the invertible matrix defined such that

n
vj = E Qg jUsi,
i=1

which is also the matrix of the identity id: £ — E with respect to the bases (vy,...,v,) and
(w1, ...,up), in that order. Indeed, we express each id(v;) = v; over the basis (uq, ..., u,).
The coefficients aq;, asj, . . ., a,; of v; over the basis (uy, ..., u,) form the jth column of the
matrix P shown below:

(%1 Vg ... Un
uyp fain a2 ... QGip
Uz | G21 Q22 ... A2p
Unp, Gp1 Ap2 ... Gpp
The matrix P is called the change of basis matriz from (uy, ..., u,) to (vi,...,v,).
Clearly, the change of basis matrix from (vy,...,v,) to (uy,...,u,) is P71, Since P =
(a;;) is the matrix of the identity id: £ — E with respect to the bases (vy,...,v,) and
(u1,...,uy,), given any vector x € E, if x = xyu; + - - - + z,u, over the basis (uq, ..., u,) and
x = zivy + -+ + 2 v, over the basis (vy,...,v,), from Proposition 4.2, we have
X1 a1y ... QAin ZEII

Ty Api --. Qpp z
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showing that the old coordinates (x;) of = (over (uq,...,u,)) are expressed in terms of the
new coordinates (z}) of x (over (vy,...,v,)). This fact may seem wrong but it is correct as
we can reassure ourselves by doing the following computation. Suppose that n = 2, so that

V1 = Q111 + A21U2

Vg = Q12U1 + A2,

and our matrix is

The same vector z is written as
/ /
T = XUl + Tl = TV1 + TyUg,

so by substituting the expressions for v; and v, as linear combinations of u; and wuy, we
obtain

/ /
T1U] + ToUg = X V1 + XTyUs
/ /
= 2 (a11u1 + a21uz) + r5(a2u; + azus)

(CLnl’/l + a12x'2)u1 -+ (a21x’1 + CL22$L’l2>u2,

and since u; and ug are linearly independent, we must have

/ /
T1 = G117 + 12T,

/ /
Lo = Q2174 + 22T 4,

namely
/
1\ (G111 QA2 Xy
- / )
T2 Q21  A22 Ty
as claimed.

If the vectors uq,...,u, and the vectors vq,...,v, are vectors in K", then we can form
the n x n matrix U = (u; --- u,) whose columns are uy,...,u, and the n x n matrix
V = (v -+ v,) whose columns are vy, ...,v,. Then we can express the change of basis P
from (uq,...,u,) to (vy,...,v,) in terms of U and V. Indeeed, the equation

n
'Uj: E aijui
i=1

can be expressed in matrix form as

V; = UAj,
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where
Q1
Al = | a;
an1
is the jth column of P, so we get
V =UP,
which yields
P=U'V.
Now we face the painful task of assigning a “good” notation incorporating the bases
U= (uy,...,u,) and ¥V = (vq,...,v,) into the notation for the change of basis matrix from

U to V. Because the change of basis matrix from U to V is the matrix of the identity map
idg with respect to the bases V and U in that order, we could denote it by My (id) (Meyer
[125] uses the notation [I]y;). We prefer to use an abbreviation for My, (id).

Definition 4.4. The change of basis matrix from U to V is denoted

Pyy.
Note that
Pyy = Py,
Then, if we write xyy = (x1,...,x,) for the old coordinates of x with respect to the basis U
and zy = (27, ..., 2],) for the new coordinates of  with respect to the basis V, we have

-1
Ty — PVJ/{ Ty, Ty = PV,Z/I Ty -

The above may look backward, but remember that the matrix My (f) takes input
expressed over the basis U to output expressed over the basis V. Consequently, Py takes
input expressed over the basis V to output expressed over the basis U, and zy = Pyy oy
matches this point of view!

@ Beware that some authors (such as Artin [7]) define the change of basis matrix from U
toVas Fyy = Py, i{ Under this point of view, the old basis U is expressed in terms of
the new basis V. We find this a bit unnatural. Also, in practice, it seems that the new basis
is often expressed in terms of the old basis, rather than the other way around.

Since the matrix P = Py expresses the new basis (vq,...,v,) in terms of the old basis
(uq, ..., u,), we observe that the coordinates (x;) of a vector x vary in the opposite direction
of the change of basis. For this reason, vectors are sometimes said to be contravariant.
However, this expression does not make sense! Indeed, a vector in an intrinsic quantity that
does not depend on a specific basis. What makes sense is that the coordinates of a vector
vary in a contravariant fashion.

Let us consider some concrete examples of change of bases.
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Example 4.1. Let £ = F = R? with u; = (1,0), us = (0,1), v; = (1,1) and vy = (—1,1).
The change of basis matrix P from the basis U = (uy, us) to the basis V = (v, vs) is

P17

r= (2 0.

The old coordinates (zy,72) with respect to (u;,us) are expressed in terms of the new
coordinates (z/, x}) with respect to (vy,vy) by

@)=G ) ),

and the new coordinates (2}, z,) with respect to (vy,vy) are expressed in terms of the old
coordinates (x1, zs) with respect to (u1,us) by

o\ _ (12 1/2)\ (=
xh —1/2 1/2) \x9 )"
Example 4.2. Let E F = R[X]; be the set of polynomials of degree at most 3,

and consider the bases U = (1,z,2% 2%) and V = (B3(x), Bi(z), Bi(z), B3(x)), where
Bi(z), B}(x), B3(z), B3(x) are the Bernstein polynomials of degree 3, given by

Bi(r) = (1 —x)* Bi(r) =3(1 —2)*x B3(x) = 3(1 — z)a? B3(x) = 2°.

and its inverse is

By expanding the Bernstein polynomials, we find that the change of basis matrix Py, is
given by

1 0 0 O

-3 3 0 0

Pu=13 6 3 ¢

-1 3 -3 1

We also find that the inverse of Py is

1 0 0 0

pl_ 1 1/3 0 0

M1 2/3 1/3 0

1 1 1 1

Therefore, the coordinates of the polynomial 223 — x + 1 over the basis V are

1 1 0 0 0\ /1

2/3] (113 0o o ]|-1

1371 2/3 13 0|0 |
2 1 1 1 1) \2

and so 9 1
26~ 2+ 1= Bi(a) + 3 Bi{a) + 3B3(a) + 2B (o).
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4.4 The Effect of a Change of Bases on Matrices

The effect of a change of bases on the representation of a linear map is described in the
following proposition.

Proposition 4.5. Let E and F be vector spaces, let U = (uq,...,u,) and U = (uf, ..., u))
be two bases of E, and let V = (vy,...,vy) and V' = (v}, ..., v)) be two bases of F. Let
P = By be the change of basis matriz from U to U', and let () = Py be the change of
basis matrixz from V toV'. For any linear map f: E — F, let M(f) = My v(f) be the matriz
associated to f w.r.t. the basesU and V, and let M'(f) = My (f) be the matriz associated

to f w.r.t. the basesU' and V'. We have

M'(f) = Q' M(f)P,

or more explicitly

My (f) = Py My y(f) Pt = Py My (f) Pur -

Proof. Since f: ' — I’ can be written as f = idp o f oidg, since P = By is the matrix of

idg w.r.t. the bases (ul,...,u,) and (uy,...,u,), and Q7! = PV_,’IV = Py is the matrix of
idg w.r.t. the bases (v1,...,v,) and (v],...,v),) as illustrated by the following diagram
UE—' ~VF
) My v (f) ’
Py |idp Pv_’fv idp
U.E My v (£) V. F
) f ) )
by Proposition 4.2, we have M'(f) = Q~*M(f)P. O

As a corollary, we get the following result.

Corollary 4.6. Let E be a vector space, and let U = (uq, ..., u,) and U = (u}, ..., u,) be
two bases of E. Let P = Py be the change of basis matriz from U to U'. For any linear
map f: E— E, let M(f) = My(f) be the matriz associated to f w.r.t. the basis U, and let
M'(f) = My (f) be the matriz associated to f w.r.t. the basisU'. We have

M'(f) = P7'M(f)P,
or more explicitly,

My (f) = Py Mu(f)Purst = Pugor My (f) P s,
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as illustrated by the following diagram

f
U My, (f) Uk
Pyt | idg Pz;ll’u idp
M,
U, E ”f(f) U’ E.

Example 4.3. Let E = R? U = (e, e3) where e; = (1,0) and e; = (0,1) are the canonical
basis vectors, let V = (vy,v2) = (€1,€1 — €3), and let

()

The change of basis matrix P = Py from U to V is
1 1
=5 )

Pl=P

and we check that

Therefore, in the basis )V, the matrix representing the linear map f defined by A is

D ot 11N (2 1\ /1 1Y\ (2 0\
verareran- (3 1) () )G )0

a diagonal matrix. In the basis V, it is clear what the action of f is: it is a stretch by a
factor of 2 in the v; direction and it is the identity in the vy direction. Observe that v; and
vy are not orthogonal.

What happened is that we diagonalized the matrix A. The diagonal entries 2 and 1 are
the eigenvalues of A (and f), and v; and vy are corresponding eigenvectors. We will come
back to eigenvalues and eigenvectors later on.

The above example showed that the same linear map can be represented by different
matrices. This suggests making the following definition:

Definition 4.5. Two nxn matrices A and B are said to be similar iff there is some invertible

matrix P such that
B =P 'AP.

It is easily checked that similarity is an equivalence relation. From our previous consid-
erations, two n X n matrices A and B are similar iff they represent the same linear map
with respect to two different bases. The following surprising fact can be shown: Every square
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matrix A is similar to its transpose A". The proof requires advanced concepts (the Jordan
form or similarity invariants).

U = (u,...,u,) and V = (vy,...,v,) are two bases of E, the change of basis matrix
apn @iz - Qin
P=Py— Qg1 Q22 -+ Q2p
Ui Gpy -+ Gy
from (uq,...,u,) to (v1,...,v,) is the matrix whose jth column consists of the coordinates
of v; over the basis (u1,...,u,), which means that

n
Uj: E aijui.
i=1

it
It is natural to extend the matrix notation and to express the vector | : | in E™ as the
Un
Uy
product of a matrix times the vector | : | in E”, namely as
un
U1 apn @1 -t Qpl Uy
v2 | | Q12 G2t A2 Uz
Up 1p Qop Gy Up,
but notice that the matrix involved is not P, but its transpose P'.
This observation has the following consequence: if U = (uq,...,u,) and V = (vy, ..., v,)
are two bases of F and if
vy Uy
=Al ],
Up, Up,

that is,
n
V; = E aijuj,
Jj=1

for any vector w € F, if

w = Z%Uz = Zykvk = Zyk (Z akjuj) = Z(Z ak:j?Jk) s
i=1 k=1 k=1 j=1 k=1
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SO
n

T; = E Ak Yk,

k=1
which means (note the inevitable transposition) that

L1 Y1
AT | :
T Yn
and so
Y1 1
. _ (AT)fl
Yn Tn
It is easy to see that (A")™! = (A™)T. Also, if U = (uy,...,u,), V = (v1,...,v,), and
W = (wy,...,w,) are three bases of E, and if the change of basis matrix from U to V is

P = Py and the change of basis matrix from V to W is ) = Py y, then

U1 Uy w1 U1

T . . T .
=P : 5 : = Q : >

Un Unp, Wn, Un,
w1 Uy Uy
TpT . T .

- Q P . - (PQ) . )

W, Unp, U,

which means that the change of basis matrix Py from U to W is P(Q). This proves that

Py = PouPwyy.

Remark: In order to avoid the transposition involved in writing

as a more convenient notation we may write
(Ul Un):(ul un)P
Here we are defining the product

P1j
(ur - wn) | (*)

pnj
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of a row of vectors (u1 e un) by the jth column of P as the linear combination

n
§ PijU;.
i=1

Such a definition is needed since scalar multiplication of a vector by a scalar is only defined
if the scalar is on the left of the vector, but in the matrix expression (%) above, the vectors
are on the left of the scalars!

Even though matrices are indispensable since they are the major tool in applications of
linear algebra, one should not lose track of the fact that

linear maps are more fundamental because they are intrinsic
objects that do not depend on the choice of bases.
Consequently, we aduvise the reader to try to think in terms of
linear maps rather than reduce everything to matrices.

In our experience, this is particularly effective when it comes to proving results about
linear maps and matrices, where proofs involving linear maps are often more “conceptual.”
These proofs are usually more general because they do not depend on the fact that the
dimension is finite. Also, instead of thinking of a matrix decomposition as a purely algebraic
operation, it is often illuminating to view it as a geometric decomposition. This is the case of
the SVD, which in geometric terms says that every linear map can be factored as a rotation,
followed by a rescaling along orthogonal axes and then another rotation.

After all,
a matriz 1s a representation of a linear map,

and most decompositions of a matrix reflect the fact that with a suitable choice of a basis
(or bases), the linear map is a represented by a matrix having a special shape. The problem
is then to find such bases.

Still, for the beginner, matrices have a certain irresistible appeal, and we confess that
it takes a certain amount of practice to reach the point where it becomes more natural to
deal with linear maps. We still recommend it! For example, try to translate a result stated
in terms of matrices into a result stated in terms of linear maps. Whenever we tried this
exercise, we learned something.

Also, always try to keep in mind that

linear maps are geometric in nature; they act on space.
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4.5 Summary
The main concepts and results of this chapter are listed below:
e The representation of linear maps by matrices.

e The matriz representation mapping M: Hom(E, F) — M,, and the representation
isomorphism (Proposition 4.2).

e Change of basis matriz and Proposition 4.5.

4.6 Problems

Problem 4.1. Prove that the column vectors of the matrix A; given by

1
A =12
1

W oW o
— =3 W

are linearly independent.

Prove that the coordinates of the column vectors of the matrix By over the basis consisting
of the column vectors of A; given by

3 5 1
Bi=|(1 2 1
4 3 —6
are the columns of the matrix P, given by
—27 —61 —41
P = 9 18 9
4 10 8

Give a nontrivial linear dependence of the columns of P;. Check that B; = A P;. Is the
matrix B; invertible?

Problem 4.2. Prove that the column vectors of the matrix Ay given by

Ay =

Y el e )
e
—_ N =
W N W =

are linearly independent.
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Prove that the column vectors of the matrix By given by

1 -2 2 -2
0 -3 2 -3
32_3—55—4
3 —4 4 —4

are linearly independent.

Prove that the coordinates of the column vectors of the matrix B, over the basis consisting
of the column vectors of Ay are the columns of the matrix P, given by

2 0 1 -1
-3 1 =2 1
1 -2 2 -1
1 -1 1 -1

Py =

Check that A, P, = By. Prove that

-1 -1 -1 1
2 1 1 =2
2 1 2 =3

-1 -1 0 -1

Pyt =

What are the coordinates over the basis consisting of the column vectors of By of the vector
whose coordinates over the basis consisting of the column vectors of Ay are (2,—3,0,0)?

Problem 4.3. Consider the polynomials

Bi(t) = (1 —t)* Bi(t) =2(1 —t)t B3(t) = t*

By(t) = (1 —t)° Bi(t)=3(1—t)°t  By(t)=3(1—t)f" Bj(t) = t*,
known as the Bernstein polynomials of degree 2 and 3.

(1) Show that the Bernstein polynomials B2(t), Bi(t), B3(t) are expressed as linear com-
binations of the basis (1,¢,t%) of the vector space of polynomials of degree at most 2 as
follows:

B(t) 1 -2 1
Bit)| =0 2 2] |t
B3(t) 0 0 1 t?

Prove that
Bi(t) + B(t) + B3(t) = 1.

(2) Show that the Bernstein polynomials Bg(t), B;(t), Bs(t), B3(t) are expressed as linear
combinations of the basis (1,t,¢%,t3) of the vector space of polynomials of degree at most 3
as follows:

B3(t) 1 -3 3 -1 1
Bit)| [0 3 —6 3 t
Bi#)| |0 0 3 =3||¢
B3(t) 0 0 0 1 3
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Prove that
Bi(t) + Bi(t) + Bi(t) + Bi(t) = 1.

(3) Prove that the Bernstein polynomials of degree 2 are linearly independent, and that
the Bernstein polynomials of degree 3 are linearly independent.

Problem 4.4. Recall that the binomial coefficient (7;) is given by
m\ m!
k) Kl(m—k)

For any m > 1, we have the m + 1 Bernstein polynomials of degree m given by

with 0 < k <m.

B (t) = (m> (1— )"k k 0<k<m.

(1) Prove that
m . fm J .
Brt)=)Y (=1)7* t.
ro =30+ () )
j=k
Use the above to prove that Bj'(t),..., Bin(t) are linearly independent.
(2) Prove that
Bi(t)+---+ B(t) =1.
(3) What can you say about the symmetries of the (m + 1) x (m + 1) matrix expressing
By, ..., B in terms of the basis 1,¢,...,t™7

Prove your claim (beware that in equation (%) the coefficient of ¢ in B} is the entry on
the (k+1)th row of the (j+1)th column, since 0 < k, j < m. Make appropriate modifications
to the indices).

What can you say about the sum of the entries on each row of the above matrix? What
about the sum of the entries on each column?

(4) The purpose of this question is to express the ¢ in terms of the Bernstein polynomials
By (t),...,B"(t), with 0 <i < m.

First, prove that

= t'BIr(t), 0<i<m.
§=0

(07 =(2) )

Then prove that
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Use the above facts to prove that

= 2_: ((22)) BLS(t).

j=0 \i

Conclude that the Bernstein polynomials Bj'(t),..., B/(t) form a basis of the vector
space of polynomials of degree < m.

Compute the matrix expressing 1,¢,¢* in terms of B2(t), B?(t), B3(t), and the matrix
expressing 1,¢,¢? % in terms of B3(t), Bi(t), Bi(t), B3(t).

You should find

1 1 1
0 1/2 1
0 0 1

and
1 1 1 1
0 1/3 2/3 1
0 0 1/3 1
0 O 0 1

(5) A polynomial curve C(t) of degree m in the plane is the set of points
C(t) = (I(t) ) given by two polynomials of degree < m,

y(t)
z(t) = apt™ + o t™ -+ gy,
y(t) = Bot™ + Bit™ 4 -+ By,

with 1 < my,my < m and ag, By # 0.
Prove that there exist m -+ 1 points by, ..., b, € R? so that

C(t) = @8) — BI(t)bo + BBy + - + BY(1)b,,
for all t € R, with C(0) = by and C(1) = by,. Are the points by,...,b,—1 generally on the
curve?

We say that the curve C' is a Bézier curve and (by, . .., by,) is the list of control points of
the curve (control points need not be distinct).

Remark: Because BJ'(t) + --- + B/"(t) = 1 and B*(t) > 0 when ¢t € [0,1], the curve
segment C[0, 1] corresponding to ¢ € [0, 1] belongs to the convex hull of the control points.
This is an important property of Bézier curves which is used in geometric modeling to
find the intersection of curve segments. Bézier curves play an important role in computer
graphics and geometric modeling, but also in robotics because they can be used to model
the trajectories of moving objects.
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Problem 4.5. Consider the n X n matrix

0 0 0 0 —a,
1 0 0 0 —an—1
0 1 0 0 —ap_2
A= . ,
0 0 O 0 —as
0 0 0 1 —a
with a,, # 0.
(1) Find a matrix P such that
AT =P'AP.

What happens when a,, = 07

Hint. First, try n = 3,4,5. Such a matrix must have zeros above the “antidiagonal,” and
identical entries p;; for all ¢, 7 > 0 such that i +j =n + k, where k =1,...,n.

(2) Prove that if a, = 1 and if ay,...,a,_;1 are integers, then P can be chosen so that
the entries in P! are also integers.

Problem 4.6. For any matrix A € M,,(C), let R4 and L4 be the maps from M,,(C) to itself
defined so that
La(B)=AB, R4(B)=BA, forall Be M,(C).
(1) Check that L4 and R4 are linear, and that L4 and Rp commute for all A, B.
Let ada: M, (C) — M,,(C) be the linear map given by

ada(B) = La(B) — Ra(B) = AB— BA=[A,B|, forall BeM,(C).

Note that [A, B] is the Lie bracket.
(2) Prove that if A is invertible, then L4 and R4 are invertible; in fact, (La)™' = L -
and (Ra)~' = Ry-1. Prove that if A= PBP~! for some invertible matrix P, then

LAILPOLBOLIDl, RA:R?ORBORP.

(3) Recall that the n? matrices E;; defined such that all entries in E;; are zero except
the (7, j)th entry, which is equal to 1, form a basis of the vector space M,,(C). Consider the
partial ordering of the E;; defined such that fort =1,...,n,ifn > 35 >k > 1, then then E;;
precedes Ly, and for j =1,...,n,if 1 <i <h <n, then E;; precedes Ej;.

Draw the Hasse diagram of the partial order defined above when n = 3.

There are total orderings extending this partial ordering. How would you find them
algorithmically? Check that the following is such a total order:

(1,3), (1,2), (1,1), (2,3), (2,2), (2,1), (3,3), (3,2), (3,1).
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(4) Let the total order of the basis (E;;) extending the partial ordering defined in (2) be
given by
t=handj >k
or i < h.

(i,7) < (h,k) iff {

Let R be the n x n permutation matrix given by

00 ...0°1
00 10
R=1: " P
0 1 0 0
1 00

Observe that R~! = R. Prove that for any n > 1, the matrix of L4 is given by A®1,, and the
matrix of R, is given by I,, ® RAT R (over the basis (E;;) ordered as specified above), where
® is the Kronecker product (also called tensor product) of matrices defined in Definition 5.4.

Hint. Figure out what are Rg(E;;) = E;;B and Lg(E;;) = BE;;.

(5) Prove that if A is upper triangular, then the matrices representing L4 and R4 are
also upper triangular.

Note that if instead of the ordering
Ei,Ein1,..., B, Eopyoo . Eory oo By oo By,
that I proposed you use the standard lexicographic ordering
Ei, By ... By, Eory oo Eony oo Enty oo B,

then the matrix representing L 4 is still A ® I,,, but the matrix representing R4 is I,, ® AT.
In this case, if A is upper-triangular, then the matrix of R4 is lower triangular. This is the
motivation for using the first basis (avoid upper becoming lower).
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Chapter 5

Haar Bases, Haar Wavelets,
Hadamard Matrices

In this chapter, we discuss two types of matrices that have applications in computer science
and engineering;:

(1) Haar matrices and the corresponding Haar wavelets, a fundamental tool in signal pro-
cessing and computer graphics.

2) Hadamard matrices which have applications in error correcting codes, signal processing,
and low rank approximation.

5.1 Introduction to Signal Compression Using Haar
Wavelets

We begin by considering Haar wavelets in R*.  Wavelets play an important role in audio
and video signal processing, especially for compressing long signals into much smaller ones
that still retain enough information so that when they are played, we can’t see or hear any
difference.

Consider the four vectors wy, wo, w3, w4 given by

1 1 1 0
1 1 —1 0
w, = 1 Wo = 1 W3 = 0 Wy = 1
1 —1 0 —1

Note that these vectors are pairwise orthogonal, which means that their inner product is 0
(see Section 12.1, Example 12.1, and Section 12.2, Definition 12.2), so they are indeed linearly
independent (see Proposition 12.4). Let W = {wy, wy, w3, ws} be the Haar basis, and let

141
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U = {ey, eq,e3,€4} be the canonical basis of R*. The change of basis matrix W = Py from
U to W is given by

11 1 0

1 1 -1 0
W= 1 -1 0 1 |°

1 -1 0 -1

and we easily find that the inverse of W is given by

/4 0 0 o0\ /1 1 1 1
N U VZ S (I I U S S|
0o 0 1/2 0|1 -1 0 o
o o0 0 1/2/\0 0 1 -1

Observe that the second matrix in the above product is W' and the first matrix in this
product is (W TW)~1. So the vector v = (6,4, 5, 1) over the basis U becomes ¢ = (¢, ca, ¢3, ¢4)
over the Haar basis W, with

¢ /4 0 0 0\ /1 1 1 1Y\ /6 4
ol o 14 0o o1 1 -1 —1|f4] |1
es| o o 12 of|1 -1 0 o]]|5] |1
¢y o o o0 1/2/\0 o 1 -1/ \1 2

Given a signal v = (v, v9, v3, v4), we first transform v into its coefficients ¢ = (c1, ¢, 3, ¢4)
over the Haar basis by computing ¢ = W~1v. Observe that

V1 + Vg + U3+ Uy
4

C1 =

is the overall average value of the signal v. The coefficient ¢; corresponds to the background
of the image (or of the sound). Then, ¢, gives the coarse details of v, whereas, c3 gives the
details in the first part of v, and ¢4 gives the details in the second half of v.

Reconstruction of the signal consists in computing v = We. The trick for good compres-
sion is to throw away some of the coefficients of ¢ (set them to zero), obtaining a compressed
signal ¢, and still retain enough crucial information so that the reconstructed signal v = We
looks almost as good as the original signal v. Thus, the steps are:

input v — coefficients ¢ = W 'v — compressed ¢ — compressed v = WE.

This kind of compression scheme makes modern video conferencing possible.

It turns out that there is a faster way to find ¢ = W~1v, without actually using W1
This has to do with the multiscale nature of Haar wavelets.

Given the original signal v = (6,4,5,1) shown in Figure 5.1, we compute averages and
half differences obtaining Figure 5.2. We get the coefficients ¢3 = 1 and ¢4 = 2. Then
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Figure 5.1: The original signal v.

-1

—

Figure 5.2: First averages and first half differences.

again we compute averages and half differences obtaining Figure 5.3. We get the coefficients
c1 = 4 and ¢y = 1. Note that the original signal v can be reconstructed from the two signals
in Figure 5.2, and the signal on the left of Figure 5.2 can be reconstructed from the two
signals in Figure 5.3. In particular, the data from Figure 5.2 gives us

U1 + V2 V1 — Vg

D+1= 5 + 5 = U
v+ v —
5_1— 12 2 12 2:1)2
3+2:U3;U4+U3;U4:U3
vz + v U3 — U
3_9_ 32 4 32 4:1)4‘

5.2 Haar Bases and Haar Matrices, Scaling Properties
of Haar Wavelets

The method discussed in Section 5.1 can be generalized to signals of any length 2. The
previous case corresponds to n = 2. Let us consider the case n = 3. The Haar basis
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-1 -1

Figure 5.3: Second averages and second half differences.

(w1, wa, w3, Wy, ws, We, Wy, wg) is given by the matrix

11 1 O 1 0O 0 O
11 1 O -1 O O O
11 -1 0 O 1 0 O
11 -1 0 0 -1 0 O
W= 1 -1 0 1 O 0 1 0
1 -1 0 1 O 0O =1 0
1 -1 0 -1 0 0 0 1
1 -1 0 -1 0 0 0 -1

The columns of this matrix are orthogonal, and it is easy to see that
W = diag(1/8,1/8,1/4,1/4,1/2,1/2,1/2,1/2)W .

A pattern is beginning to emerge. It looks like the second Haar basis vector wy is the
“mother” of all the other basis vectors, except the first, whose purpose is to perform aver-
aging. Indeed, in general, given

wy = (1,...,1,—1,...,=1),

/

-~

2n
the other Haar basis vectors are obtained by a “scaling and shifting process.” Starting from
wy, the scaling process generates the vectors

W3, Wy, Wy, - .., Wojq1y ..., Won-1471,

such that wy;+1,; is obtained from wy;,; by forming two consecutive blocks of 1 and —1
of half the size of the blocks in wy; 1, and setting all other entries to zero. Observe that
wyi41 has 27 blocks of 2”77 elements. The shifting process consists in shifting the blocks of
1 and —1 in w4 to the right by inserting a block of (k — 1)2"7 zeros from the left, with
0<j<n-—1and 1<k <2/ Notethat our convention is to use j as the scaling index and
k as the shifting index. Thus, we obtain the following formula for ws; y:

0 1<i<(k—1)2n

1 (k—1)2"7+1<i<(k—1)2" 7 420t
—1 (k—=1)2" 7 2n 7 1 < < kv

0 k2" 41<4i<2,

Wai (1) =
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with0<j<n-—1and 1<k <2/ Of course

w1 22(1,...,1).
an

The above formulae look a little better if we change our indexing slightly by letting k vary
from 0 to 2/ — 1, and using the index j instead of 27.

Definition 5.1. The vectors of the Haar basis of dimension 2™ are denoted by

0 1 1 2 2 2 2 J n—1
wi, Bk by 2 W3 R B2 b h

y Toon—1_1>
where .
0 1<i<k2nd
E2n0 41 <4 < k2nJ 4 on—i—1
—1 k2ni 42l 41 < < (k+1)277
0 (k+1)2"74+1<i<2,

with0<j<n—1and 0 <k <2 —1. The 2" x 2" matrix whose columns are the vectors

0 1 1 2 2 2 2 J n—1
wi, B b by B2 W3 R B2 B h

) Hon—1_1>

(in that order), is called the Haar matriz of dimension 2", and is denoted by W,.

It turns out that there is a way to understand these formulae better if we interpret a
vector w = (uq, ..., Uy,) as a piecewise linear function over the interval [0, 1).

Definition 5.2. Given a vector v = (uy,...,u,), the piecewise linear function plf(u) is
defined such that -
’l —

m

plf (u)(x) = w;, <z< i, 1<i<m.
m

In words, the function plf(u) has the value u; on the interval [0,1/m), the value us on
[1/m,2/m), etc., and the value w,, on the interval [(m — 1)/m, 1).

For example, the piecewise linear function associated with the vector
u=(24,2.2,2.15,2.05,6.8,2.8, —1.1,—1.3)

is shown in Figure 5.4. '
Then each basis vector hj, corresponds to the function

Wi = plf(h)).

! Piecewise constant function might be a more accurate name.
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Figure 5.4: The piecewise linear function plf(u).

In particular, for all n, the Haar basis vectors

Ry =wy=(1,...,1,—1,...,—1)

(. S/
-~

2”1

yield the same piecewise linear function v given by

1 if 0<z<1/2
Plr)=¢ -1 if 1/2<z<1

0 otherwise,

whose graph is shown in Figure 5.5. It is easy to see that Q/Ji is given by the simple expression

Figure 5.5: The Haar wavelet 1.

i) =@z —k), 0<j<n-10<k<2 -1
The above formula makes it clear that wi is obtained from v by scaling and shifting.

Definition 5.3. The function ¢ = plf(w;) is the piecewise linear function with the constant
value 1 on [0,1), and the functions ¢7 = plf(h3) together with ¢3 are known as the Haar
wavelets.
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Rather than using W~! to convert a vector u to a vector ¢ of coefficients over the Haar
basis, and the matrix W to reconstruct the vector u from its Haar coefficients ¢, we can use
faster algorithms that use averaging and differencing.

If ¢ is a vector of Haar coefficients of dimension 2", we compute the sequence of vectors
u®,ut, ..., u™ as follows:

uo =C
WL =
w20 — 1) = (i) + ! (27 + 1)
W (260) = (i) — ul (27 +4),

for j=0,...,n—1andi=1,...,27. The reconstructed vector (signal) is u = u".
If u is a vector of dimension 2", we compute the sequence of vectors ¢, ¢" 1, ..., as
follows:
=u
gt
d) = ((2i — 1) + d1(2i))/2

(2 +4) = (20 — 1) — IT1(2i0)) /2,

for j=n—1,...,0and i = 1,...,2/. The vector over the Haar basis is ¢ = c.

We leave it as an exercise to implement the above programs in Matlab using two variables
u and ¢, and by building iteratively 27. Here is an example of the conversion of a vector to
its Haar coefficients for n = 3.

Given the sequence u = (31,29, 23,17, —6, —8, —2, —4), we get the sequence

= (31,29,23,17, -6, —8, -2, —4)
) 31429 23417 —6—-8 —2—4 31-29 23—17 —6—(—8) —2— (—4)
C =

2 2 2 7 2 7 2 2 7 2 ’ 2
= (30,20,-7,-3,1,3,1,1)
61:< 7ﬁ’ ,_T_,(_3>,1,3,1,1)
2 2

= (25,-5,5,-2,1,3,1,1)
. (25—5 25 — (=5

c = 5 5 ),5,—2,1,3,1,1) = (10,15,5,—2,1,3,1,1)

so ¢ = (10,15,5,-2,1,3,1,1). Conversely, given ¢ = (10,15,5,—-2,1,3,1,1), we get the
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sequence

10,15,5,-2,1,3,1,1)

)+ 15,10 — 15,5,-2,1,3,1,1) = (25, —5,5,-2,1,3,1,1)
+5,25—5,-5+(-2),-5—(-2),1,3,1,1) = (30,20, -7, -3, 1,3,1,1)
+1,30—1,204+3,20—3,-7+1,-7T—1,-3+1,-3—1)
= (31,29,23,17, -6, —8, —2, —4),

which gives back u = (31, 29,23,17, —6, —8, —2, —4).

5.3 Kronecker Product Construction of Haar Matrices

There is another recursive method for constructing the Haar matrix W,, of dimension 2"
that makes it clearer why the columns of W,, are pairwise orthogonal, and why the above
algorithms are indeed correct (which nobody seems to prove!). If we split W, into two
2" x 27! matrices, then the second matrix containing the last 2! columns of W, has a
very simple structure: it consists of the vector

(1,-1,0,...,0)

J

-~

271/

and 2"~! — 1 shifted copies of it, as illustrated below for n = 3:

10 0 O
-1 0 0 0
0O 1 0 O
0O -1 0 O
o 0 1 O
0O 0 -1 0
0O 0 0 1
0O 0 0 -1

Observe that this matrix can be obtained from the identity matrix Isn-1, in our example

=
I
O OO =
o O~ O
O O O
_— o O O

by forming the 2" x 2"~! matrix obtained by replacing each 1 by the column vector

()
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(o)

Now the first half of W,,, that is the matrix consisting of the first 2"~! columns of W,,, can
be obtained from W,,_; by forming the 2" x 2"~! matrix obtained by replacing each 1 by the
column vector

and each zero by the column vector

each —1 by the column vector

and each zero by the column vector

For n = 3, the first half of W3 is the matrix

1 1 1 0

1 1 1 0

1 1 -1 0

1 1 -1 0

1 -1 0 1

1 -1 0 1

1 -1 0 -1

1 -1 0 -1

which is indeed obtained from
1 1 1 0
1 1 —=1 0
Wa=17 1 o 1

1 -1 0 -1

using the process that we just described.

These matrix manipulations can be described conveniently using a product operation on
matrices known as the Kronecker product.

Definition 5.4. Given a m x n matrix A = (a;;) and a p x ¢ matrix B = (b;;), the Kronecker
product (or tensor product) A® B of A and B is the mp X ng matrix

anB amB s CLlnB
CLQlB a22B s (IgnB

amlB am2B amnB
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It can be shown that ® is associative and that

(A® B)(C'® D) = AC ® BD
(Ao B)' = AT ® BT,

whenever AC' and BD are well defined. Then it is immediately verified that W, is given by
the following neat recursive equations:

von (e () e (1)

with Wy = (1). If we let
10 20
31_2(0 1) B (0 2)

B, 0
Bn+1 =2 ( 0 ]2n) ’

then it is not hard to use the Kronecker product formulation of W, to obtain a rigorous
proof of the equation

and for n > 1,

WJWn =B,, foralln>1.

The above equation offers a clean justification of the fact that the columns of W, are pairwise
orthogonal.

Observe that the right block (of size 2" x 2"~1) shows clearly how the detail coefficients
in the second half of the vector ¢ are added and subtracted to the entries in the first half of
the partially reconstructed vector after n — 1 steps.

5.4 Multiresolution Signal Analysis with Haar Bases

An important and attractive feature of the Haar basis is that it provides a multiresolution
analysis of a signal. Indeed, given a signal u, if ¢ = (¢q, ..., cn) is the vector of its Haar coef-
ficients, the coefficients with low index give coarse information about u, and the coefficients
with high index represent fine information. For example, if u is an audio signal corresponding
to a Mozart concerto played by an orchestra, ¢; corresponds to the “background noise,” ¢,
to the bass, c3 to the first cello, ¢4 to the second cello, cs, cg, c7, c7 to the violas, then the
violins, etc. This multiresolution feature of wavelets can be exploited to compress a signal,
that is, to use fewer coefficients to represent it. Here is an example.

Consider the signal
u=(2.4,2.2,2.15,2.05,6.8,2.8, —1.1,~1.3),

whose Haar transform 1is
c=(2,0.2,0.1,3,0.1,0.05, 2,0.1).
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The piecewise-linear curves corresponding to u and ¢ are shown in Figure 5.6. Since some of
the coefficients in ¢ are small (smaller than or equal to 0.2) we can compress ¢ by replacing
them by 0. We get

= (2,0,0,3,0,0,2,0),

and the reconstructed signal is
up = (2,2,2,2,7,3,—1,—1).

The piecewise-linear curves corresponding to us and ¢y are shown in Figure 5.7.

250

, L L L L L L L L
0 0.1 0.2 03 0.4 05 0.6 07 0.8 09 1

Figure 5.6: A signal and its Haar transform.

L L L L L L L L n L n L L L L n L L
0 0.1 02 03 0.4 05 0.6 0.7 0.8 09 1 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

Figure 5.7: A compressed signal and its compressed Haar transform.

An interesting (and amusing) application of the Haar wavelets is to the compression of
audio signals. It turns out that if your type load handel in Matlab an audio file will be
loaded in a vector denoted by y, and if you type sound(y), the computer will play this piece
of music. You can convert y to its vector of Haar coefficients ¢. The length of y is 73113,
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-06F

-08
0

x 10" x10°

Figure 5.8: The signal “handel” and its Haar transform.

so first tuncate the tail of y to get a vector of length 65536 = 2!6. A plot of the signals
corresponding to y and ¢ is shown in Figure 5.8. Then run a program that sets all coefficients
of ¢ whose absolute value is less that 0.05 to zero. This sets 37272 coefficients to 0. The
resulting vector ¢ is converted to a signal y5. A plot of the signals corresponding to ys and
o is shown in Figure 5.9. When you type sound(y2), you find that the music doesn’t differ

1 T T T T T T 0.6

-1 L L L L L L 08

Figure 5.9: The compressed signal “handel” and its Haar transform.

much from the original, although it sounds less crisp. You should play with other numbers
greater than or less than 0.05. You should hear what happens when you type sound(c). It
plays the music corresponding to the Haar transform c of y, and it is quite funny.
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5.5 Haar Transform for Digital Images

Another neat property of the Haar transform is that it can be instantly generalized to
matrices (even rectangular) without any extra effort! This allows for the compression of
digital images. But first we address the issue of normalization of the Haar coefficients. As
we observed earlier, the 2" x 2" matrix W,, of Haar basis vectors has orthogonal columns,
but its columns do not have unit length. As a consequence, W, is not the inverse of W,
but rather the matrix

W t=D,W'

with D, = diag (2—n, 9 9=(n=1) 9=(n=1) 9=(n=2)  9-(n=2) 91 ol )
v TV 4 TV - V
20 21 22 on—1

Definition 5.5. The orthogonal matrix
1
H, =W,Dyp

whose columns are the normalized Haar basis vectors, with

: . _n _m _n=l -l n=2 _n=2 _1 _1
D; =diag(272,272,2772 (272 (272 ... 27 2 ... 272 ... 270
) ) Y Y Y 7 ) Y Y )
" ~ v P v N /
20 21 22 on—1

is called the normalized Haar transform matriz. Given a vector (signal) u, we call c = Hu
the normalized Haar coefficients of u.

Because H,, is orthogonal, H,;! = H.

Then a moment of reflection shows that we have to slightly modify the algorithms to
compute H,u and H,c as follows: When computing the sequence of u’s, use

w2 — 1) = (u (i) + (2 + 1)) /2
wt(20) = (W (i) — W (2 + 1))/ V2,
and when computing the sequence of ¢’s, use

A = (20 — 1) + dH(20)) V2
A +i) = (20 — 1) — JH(20)) V2.

Note that things are now more symmetric, at the expense of a division by v/2. However, for
long vectors, it turns out that these algorithms are numerically more stable.

Remark: Some authors (for example, Stollnitz, Derose and Salesin [168]) rescale ¢ by 1/v/2"
and w by v/2". This is because the norm of the basis functions 17 is not equal to 1 (under
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the inner product (f,g) = fol f(t)g(t)dt). The normalized basis functions are the functions
V201

Let us now explain the 2D version of the Haar transform. We describe the version using
the matrix W,,, the method using H, being identical (except that H,! = H,, but this does
not hold for W, 1). Given a 2™ x 2" matrix A, we can first convert the rows of A to their
Haar coefficients using the Haar transform W, !, obtaining a matrix B, and then convert the

columns of B to their Haar coefficients, using the matrix W,-!. Because columns and rows
are exchanged in the first step,

B=AW,"T",

and in the second step C' = W, B, thus, we have
C=w 1AW " =D, W AW, D,.

In the other direction, given a 2™ x 2" matrix C' of Haar coefficients, we reconstruct the
matrix A (the image) by first applying W,, to the columns of C, obtaining B, and then W,
to the rows of B. Therefore

A=W,CW].

Of course, we don’t actually have to invert W, and W,, and perform matrix multiplications.
We just have to use our algorithms using averaging and differencing. Here is an example.

If the data matrix (the image) is the 8 x 8 matrix

64 2 3 61 60 6 7 57
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25|’
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
8 58 59 5 4 62 63 1

then applying our algorithms, we find that

3250 0 0 0 0 0 0
0o 0 0 0 0 0 0 0

0 0 0 0 4 —4 4 —4

P I R e
o 0o 05 05 27 —25 23 —21
0 0 —05 —05 —11 9 -7 5

0 0 05 05 —5 7 -9 11

0 0 —05 —05 21 —23 25 —27
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As we can see, C' has more zero entries than A; it is a compressed version of A. We can
further compress C' by setting to 0 all entries of absolute value at most 0.5. Then we get

325 0 0 0 O 0 0 0

0 000 O 0 0 0

o 000 4 -4 4 -4

C, = 0o 000 4 -4 4 -4
0 000 27 =25 23 =21

o 000 -11 9 -7 5

o 000 -5 7 =9 11
0 000 21 =23 25 =27

We find that the reconstructed image is

635 1.5 3.5 615 595 55 7.5 575
9.5 55.5 53.5 11.5 13.5 51.5 49.5 15.5
17.5 475 455 19.5 21.5 435 41.5 235
39.5 255 27.5 375 355 295 31.5 335
31.5 33,5 355 295 275 375 395 255 |’
41.5 235 21.5 435 455 19.5 17.5 475
49.5 155 13,5 51.5 535 11.5 9.5 555
7.5 575 59.5 55 3.5 615 635 1.5

Ay

which is pretty close to the original image matrix A.

It turns out that Matlab has a wonderful command, image (X) (also imagesc(X), which
often does a better job), which displays the matrix X has an image in which each entry
is shown as a little square whose gray level is proportional to the numerical value of that
entry (lighter if the value is higher, darker if the value is closer to zero; negative values are
treated as zero). The images corresponding to A and C' are shown in Figure 5.10. The
compressed images corresponding to A, and Cy are shown in Figure 5.11. The compressed
versions appear to be indistinguishable from the originals!

If we use the normalized matrices H,, and H,, then the equations relating the image
matrix A and its normalized Haar transform C' are

C=H!AH,
A=H,CH.

The Haar transform can also be used to send large images progressively over the internet.
Indeed, we can start sending the Haar coefficients of the matrix C starting from the coarsest
coefficients (the first column from top down, then the second column, etc.), and at the
receiving end we can start reconstructing the image as soon as we have received enough
data.
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Figure 5.10: An image and its Haar transform.

Figure 5.11: Compressed image and its Haar transform.

Observe that instead of performing all rounds of averaging and differencing on each row
and each column, we can perform partial encoding (and decoding). For example, we can
perform a single round of averaging and differencing for each row and each column. The
result is an image consisting of four subimages, where the top left quarter is a coarser version
of the original, and the rest (consisting of three pieces) contain the finest detail coefficients.
We can also perform two rounds of averaging and differencing, or three rounds, etc. The
second round of averaging and differencing is applied to the top left quarter of the image.
Generally, the kth round is applied to the 2m+1=F x 27+1=k submatrix consisting of the first
2m+1=k rows and the first 2771 =% columns (1 < k < n) of the matrix obtained at the end of
the previous round. This process is illustrated on the image shown in Figure 5.12. The result
of performing one round, two rounds, three rounds, and nine rounds of averaging is shown in
Figure 5.13. Since our images have size 512 x 512, nine rounds of averaging yields the Haar
transform, displayed as the image on the bottom right. The original image has completely
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l .‘.:5"4?_; -~
350 400 450

Figure 5.12: Original drawing by Durer.

disappeared! We leave it as a fun exercise to modify the algorithms involving averaging and
differencing to perform k rounds of averaging/differencing. The reconstruction algorithm is
a little tricky.

A nice and easily accessible account of wavelets and their uses in image processing and
computer graphics can be found in Stollnitz, Derose and Salesin [168]. A very detailed
account is given in Strang and and Nguyen [172], but this book assumes a fair amount of
background in signal processing.

We can find easily a basis of 2" x 2™ = 22" vectors w;; (2" x 2" matrices) for the linear
map that reconstructs an image from its Haar coefficients, in the sense that for any 2™ x 2"
matrix C' of Haar coefficients, the image matrix A is given by

2n 2n

A= Z Z Cij Wiy .

i=1 j=1
Indeed, the matrix w;; is given by the so-called outer product

wij = wi(w;) "
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Figure 5.13: Haar tranforms after one, two, three, and nine rounds of averaging.
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Similarly, there is a basis of 2" x 2" = 22" vectors h;; (2" X 2" matrices) for the 2D Haar
transform, in the sense that for any 2" x 2™ matrix A, its matrix C' of Haar coefficients is

given by
on  on
=SS,
=1 j=1
If the columns of W~ are wf, ..., wh., then

We leave it as exercise to compute the bases (w;;) and (h;j) for n = 2, and to display the
corresponding images using the command imagesc.

5.6 Hadamard Matrices

There is another famous family of matrices somewhat similar to Haar matrices, but these
matrices have entries +1 and —1 (no zero entries).

Definition 5.6. A real n x n matrix H is a Hadamard matriz if h;; = £1 for all 7, j such
that 1 <14,5 <n and if
H'H =nl,.

Thus the columns of a Hadamard matrix are pairwise orthogonal. Because H is a square
matrix, the equation H' H = nl, shows that H is invertible, so we also have HH ' = nl,.
The following matrices are example of Hadamard matrices:

1 1 1 1
1 1 1 -1 1 -1
H2—<1 —1)’ Hi=1y v o
1 -1 -1 1
and

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1

1 -1 -1 1 1 -1 -1 1
Hy = 1 1 1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 1

1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

A natural question is to determine the positive integers n for which a Hadamard matrix
of dimension n exists, but surprisingly this is an open problem. The Hadamard conjecture is
that for every positive integer of the form n = 4k, there is a Hadamard matrix of dimension
n.

What is known is a necessary condition and various sufficient conditions.
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Theorem 5.1. If H is an n x n Hadamard matriz, then either n = 1,2, or n = 4k for some
positive integer k.

Sylvester introduced a family of Hadamard matrices and proved that there are Hadamard
matrices of dimension n = 2™ for all m > 1 using the following construction.

Proposition 5.2. (Sylvester, 1867) If H is a Hadamard matriz of dimension n, then the
block matriz of dimension 2n,
H H
(5 i),

1 1
H2_<1 _1)7

we obtain an infinite family of symmetric Hadamard matrices usually called Sylvester—
Hadamard matrices and denoted by Hom. The Sylvester-Hadamard matrices Ho, Hy and
Hg are shown on the previous page.

1s a Hadamard matriz.

If we start with

In 1893, Hadamard gave examples of Hadamard matrices for n = 12 and n = 20. At the
present, Hadamard matrices are known for all n = 4k < 1000, except for n = 668,716, and
892.

Hadamard matrices have various applications to error correcting codes, signal processing,
and numerical linear algebra; see Seberry, Wysocki and Wysocki [154] and Tropp [177]. For
example, there is a code based on Hsy that can correct 7 errors in any 32-bit encoded block,
and can detect an eighth. This code was used on a Mariner spacecraft in 1969 to transmit
pictures back to the earth.

For every m > 0, the piecewise affine functions plf((Ham );) associated with the 2™ rows
of the Sylvester-Hadamard matrix Hom are functions on [0, 1] known as the Walsh functions.
It is customary to index these 2™ functions by the integers 0, 1,...,2™ —1 in such a way that
the Walsh function Wal(k,t) is equal to the function plf((Ham);) associated with the Row ¢
of Hom that contains k changes of signs between consecutive groups of +1 and consecutive
groups of —1. For example, the fifth row of Hg, namely

(1 -1 -1 11 -1 —1 1),

has five consecutive blocks of +1s and —1s, four sign changes between these blocks, and thus
is associated with Wal(4,t). In particular, Walsh functions corresponding to the rows of Hy
(from top down) are:

Wal(0,t), Wal(7,¢), Wal(3,t), Wal(4,t), Wal(1,t), Wal(6,t), Wal(2,t), Wal(5, t).

Because of the connection between Sylvester-Hadamard matrices and Walsh functions,
Sylvester—-Hadamard matrices are called Walsh—Hadamard matrices by some authors. For
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every m, the 2™ Walsh functions are pairwise orthogonal. The countable set of Walsh
functions Wal(k,t) for all m > 0 and all k such that 0 < & < 2™ — 1 can be ordered in
such a way that it is an orthogonal Hilbert basis of the Hilbert space L?([0,1)]; see Seberry,
Wysocki and Wysocki [154].

The Sylvester-Hadamard matrix Hym plays a role in various algorithms for dimension
reduction and low-rank matrix approximation. There is a type of structured dimension-
reduction map known as the subsampled randomized Hadamard transform, for short SRHT;
see Tropp [177] and Halko, Martinsson and Tropp [86]. For ¢ < n = 2™ an SRHT matriz

is an ¢ X n matrix of the form
b = \/%RH D,

1. D is a random n X n diagonal matrix whose entries are independent random signs.

where

2. H =n"'Y2H,, a normalized Sylvester-Hadamard matrix of dimension n.

3. R is a random ¢ x n matrix that restricts an n-dimensional vector to ¢ coordinates,
chosen uniformly at random.

It is explained in Tropp [177] that for any input « such that ||z||, = 1, the probability

that |(HDzx);| > /n~'log(n) for any i is quite small. Thus H D has the effect of “flattening”
the input . The main result about the SRHT is that it preserves the geometry of an entire
subspace of vectors; see Tropp [177] (Theorem 1.3).

5.7 Summary

The main concepts and results of this chapter are listed below:
e Haar basis vectors and a glimpse at Haar wavelets.
e Kronecker product (or tensor product) of matrices.
e Hadamard and Sylvester-Hadamard matrices.

e Walsh functions.
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5.8 Problems

Problem 5.1. (Haar extravaganza) Consider the matrix

1000 1 0 0 0
1000 -1 0 0 0
0100 0 1 0 0
0100 0 -1 0 0

Was=1o010 0 0 1 o0
0010 0 0 -1 0
0001 0 0 0 1
0001 0 0 0 -1

(1) Show that given any vector ¢ = (¢1, ¢z, ¢3, €4, 5, Cg, C7, Cs), the result W3 3¢ of applying
W53 to cis

W3730 = (Cl + C5,C1 — C5,C9 + Cg,Co — Cg, C3 + C7,C3 — C7,C4 + Cg,Cq — Cg)7

the last step in reconstructing a vector from its Haar coefficients.

(2) Prove that the inverse of W3 is (1/2)W3;. Prove that the columns and the rows of
W3 5 are orthogonal.

(3) Let W54 and W3, be the following matrices:

—_

0

|
—_
— o o

Wso = W51 =

[ eleloeoleolel
SO OO~ EFE OO
SO O O OO
|
—

SO OO+ OO oo
OO R OO o oo
O, OO O o oo
_ o OO o oo

[ eleoleoleolol
SO OO OO

[l oNoNollS =)
S OO O L OO o
S OO+ O o oo
SO R OO o oo
O R OO oo oo
_ o OO oo oo

Show that given any vector ¢ = (¢, ¢a, ¢3, ¢4, 5, Cg, C7, Cs), the result Wi oc of applying Wi o
to cis
Wioc = (c1 + c3,¢1 — 3,2 + €4, C2 — €4, C5, C6, C7, Cg),

the second step in reconstructing a vector from its Haar coefficients, and the result Ws ;¢ of
applying Ws; to cis

Ws1c = (c1 + c2,¢1 — o, C3, Ca, C5, Co, C7, C8),

the first step in reconstructing a vector from its Haar coefficients.

Conclude that
W5 sWs o W51 = Wi,
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the Haar matrix

1 1 1 0 1 0 0 0
1 1 1 0O -1 0 0 0
1 1 -1 0 0 1 0 0
1 1 -1 0 0 -1 0 0
Ws = 1 -1 0 1 0 0 1 0
1 -1 0 1 0 0O -1 0
1 -1 0 -1 0 0 0 1
1 -1 0 -1 0 0 0 -1
Hint. First check that
W2 044
Wa o W- =,
3,2W31 (0474 I4>
where
1 1 1 0
1 1 —-1 0
Wa=17 1 o 1
1 -1 0 -1

(4) Prove that the columns and the rows of W5, and W3 are orthogonal. Deduce from
this that the columns of W; are orthogonal, and the rows of W, ' are orthogonal. Are the
rows of Wj orthogonal? Are the columns of W; ! orthogonal? Find the inverse of W34 and
the inverse of W ;.

Problem 5.2. This is a continuation of Problem 5.1.

(1) For any n > 2, the 2" x 2" matrix W,,,, is obtained form the two rows

1,0,...,0,1,0,...,0

~~ v~
on—1 on—1
1,0,...,0,-1,0,...,0
~~ ~~
on—1 on—1

by shifting them 2"~! — 1 times over to the right by inserting a zero on the left each time.

Given any vector ¢ = (¢y, ¢, . .., Con), show that W, ,c is the result of the last step in the
process of reconstructing a vector from its Haar coefficients c¢. Prove that 1, - I=(1/ 2)VVnT s
and that the columns and the rows of W, , are orthogonal.

(2) Given a m x n matrix A = (a;;) and a p x ¢ matrix B = (b;;), the Kronecker product
(or tensor product) A ® B of A and B is the mp X ng matrix

apnB  apB - a,B
CLQlB a22B s (IgnB

amlB amgB amnB
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It can be shown (and you may use these facts without proof) that ® is associative and that

(A® B)(C ® D) = AC @ BD
(A B)' =A" @ BT,

whenever AC and BD are well defined.

Check that
1 1
o= (1o (1) e (1),
1 1
W, = (Wn_l Q (1) Ion1 ® (_1)) )

Use the above to reprove that

and that

WanW, = 2Ion.

Let
10 2 0
31_2(0 1) - (0 2)
and for n > 1,
B, O
B =2 ( 0 Ign) '
Prove that

W.!W, =B,, foralln>1.

(3) The matrix W,,; is obtained from the matrix W;; (1 <i <n — 1) as follows:

W o VVi,i 0217271_21'
e 0277._22'727; I2n_2i )
It consists of four blocks, where 0Ogi on_9i and Ogn_i 9i are matrices of zeros and Ion_qi is the
identity matrix of dimension 2" — 2.

Explain what W, ; does to ¢ and prove that
Wn,an,n—l T Wn,l = Wn7

where W, is the Haar matrix of dimension 2".

Hint. Use induction on k, with the induction hypothesis

WoapWopg—1-Whi = ( Wi 02k,2n_2k> .

Onikk Inik
on_9k 2 on_2
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Prove that the columns and rows of W), ; are orthogonal, and use this to prove that the
columns of W,, and the rows of W, are orthogonal. Are the rows of W, orthogonal? Are
the columns of W, ! orthogonal? Prove that

1 T
W_l o §Wk,k 02k72n_2k
nk .

02n,2k’2k 1—27L72k
Problem 5.3. Prove that if H is a Hadamard matrix of dimension n, then the block matrix

of dimension 2n,
H H
H —-H)’

Problem 5.4. Plot the graphs of the eight Walsh functions Wal(k,t) for k =0,1,...,7.

is a Hadamard matrix.

Problem 5.5. Describe a recursive algorithm to compute the product Hom x of the Sylvester—
Hadamard matrix Hom by a vector z € R?™ that uses m recursive calls.
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Chapter 6

Direct Sums

In this chapter all vector spaces are defined over an arbitrary field K. For the sake of
concreteness, the reader may safely assume that K = R.

6.1 Sums, Direct Sums, Direct Products

There are some useful ways of forming new vector spaces from older ones, in particular,
direct products and direct sums. Regarding direct sums, there is a subtle point, which is
that if we attempt to define the direct sum E [] F' of two vector spaces using the cartesian
product £ x F'| we don’t quite get the right notion because elements of E x F' are ordered
pairs, but we want E[[ F = F ][ E. Thus, we want to think of the elements of E[[ F' as
unordrered pairs of elements. It is possible to do so by considering the direct sum of a family
(Ei)icq1,2), and more generally of a family (£;);c;. For simplicity, we begin by considering
the case where I = {1,2}.

Definition 6.1. Given a family (E;);c(1,2y of two vector spaces, we define the (external)
direct sum Ey [ Ey (or coproduct) of the family (E;);cq1,2) as the set

E ] B = {{{L,w),(2,0)} |u € Ex, v € Ey},
with addition
{<17u1>’ <27 vl>} + {<17 u2>7 <27U2>} = {<17 up + u2>’ <27 v + U2>}7

and scalar multiplication

)‘{<17u>7 <27U>} = {<17 )\U), <27 >‘U>}

We define the injections iny: By — Ey[[ E> and ing: By — E)[] Ey as the linear maps

defined such that,
ml(U) = {<1> 'LL>, <27 O>}7

and

ing(v) = {(1,0), (2,v)}.

167
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Note that
EJ[ B ={{(2v).(Lw} |veEE, uec B} =E [] E.

Thus, every member {(1, u), (2,v)} of E; || > can be viewed as an unordered pair consisting
of the two vectors u and v, tagged with the index 1 and 2, respectively.

Remark: In fact, E; [ Es is just the product Hie{1,2} E; of the family (E;)icq1,2)-

@ This is not to be confused with the cartesian product F; x Es. The vector space E; X [,
is the set of all ordered pairs (u,v), where u € E;, and v € E,, with addition and
multiplication by a scalar defined such that

(ug, v1) + (ug, v2) = (uy + ug, vy + v9),
Mu, v) = (Au, Av).

There is a bijection between [],. (12} E; and F; x E,, but as we just saw, elements of

HZ.E (12} E; are certain sets. The product E; x --- x E, of any number of vector spaces
can also be defined. We will do this shortly.

The following property holds.

Proposition 6.1. Given any two vector spaces, Ey and Es, the set Ei[] Es is a vector
space. For every pair of linear maps, f: 1 — G and g: Es — G, there is a unique linear
map, [+ g: Ey[[ B2 — G, such that (f 4+ g) oiny = f and (f + g) oiny = g, as in the
following diagram:

Ey
mni
El H E2 f+g G
ingT /
Es

Proof. Define
(f +9) {1, u), (2,0)}) = f(u) + g(v),

for every u € E; and v € E,. It is immediately verified that f + ¢ is the unique linear map
with the required properties. O

We already noted that Ej [ Es is in bijection with Ey x Es. If we define the projections
T : E1 HE2 — E1 and o E1 HE2 — EQ, such that

Wl({<17u>v <27U>}) =u,
and
7T2({<1, u), <27 U>}) =,

we have the following proposition.
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Proposition 6.2. Given any two vector spaces, Ei and Es, for every pair of linear maps,
f: D — Ey and g: D — E,, there is a unique linear map, f X g: D — Ey [[ E2, such that
mo(fxg)=fand mo (f X g) =g, as in the following diagram:

Proof. Define
(f x g)(w) = {(1L, f(w)), (2, 9(w))},

for every w € D. It is immediately verified that f x ¢ is the unique linear map with the
required properties. ]

Remark: It is a peculiarity of linear algebra that direct sums and products of finite families
are isomorphic. However, this is no longer true for products and sums of infinite families.

When U,V are subspaces of a vector space FE, letting i;: U — F and i5: V — E be the
inclusion maps, if U [V is isomomorphic to E under the map i; + i given by Proposition
6.1, we say that E is a direct sum of U and V', and we write E = U [[ V' (with a slight abuse
of notation, since £ and U [[V are only isomorphic). It is also convenient to define the sum
Uy + - -+ + U, and the internal direct sum U; @ - -- @ U, of any number of subspaces of E.

Definition 6.2. Given p > 2 vector spaces £, ..., £, the product F' = E; x --- x E, can
be made into a vector space by defining addition and scalar multiplication as follows:

(Ury.oyup) + (V1,0 0p) = (ug + 01,00, up + V)

Aug, . yup) = (Aug, ..., Auy),

for all u;,v; € E; and all A € R. The zero vector of 4 X --- X E), is the p-tuple

where the ith zero is the zero vector of E;.

With the above addition and multiplication, the vector space F' = £ x - -+ x I, is called
the direct product of the vector spaces i, ..., E,.

As a special case, when Fy = --- = E, = R, we find again the vector space F' = RP. The
projection maps pri: Iy x --- x E, — L; given by

pri(uy, ... up) = U
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are clearly linear. Similarly, the maps in;: F; — E; X --- X E, given by
ll’lZ(UZ) = (O,...,O,UZ‘,O,...,O)

are injective and linear. If dim(F;) = n; and if (e},... e}, ) is a basis of F; for i = 1,...,p,
then it is easy to see that the n; + --- 4 n, vectors

(e1,0,...,0), cel (ey,50,...,0),
0,...,0,€1,0,...,0), ..., (0,...,0,6%1_,0,...,0),
(0,...,0,€), ce (0,...,0,¢h )
form a basis of By x --- x E,, and so

dim(Ey X -+ x E,) = dim(E}) + - - - + dim(E, ).

Let us now consider a vector space E and p subspaces Uy, ..., U, of /. We have a map

a: Uy x -+ xU, = K

given by
a(uy, ... up) =up + -+ up,
with u; € U; for: =1, ..., p. It is clear that this map is linear, and so its image is a subspace
of E denoted by
U +---+U,

and called the sum of the subspaces Uy, ..., U,. By definition,
U+ +U,={u+ - +u, |u €U, 1<i<p}

and it is immediately verified that U; + --- + U, is the smallest subspace of E containing
Ui, ..., U,. This also implies that U; 4 - - - + U, does not depend on the order of the factors
U;; in particular,

Uy +Uy;=U;, + Uy

Definition 6.3. For any vector space F and any p > 2 subspaces Uy, ..., U, of E, if the
map a defined above is injective, then the sum Uy + --- 4 U, is called a direct sum and it is
denoted by

U1 PP Up.

The space F is the direct sum of the subspaces U; if

E=U&---&U,
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As in the case of a sum, Uy ® Uy = Uy @ Uj.
If the map a is injective, then by Proposition 3.17 we have Kera = {(0,...,0)} where
~——

p

each 0 is the zero vector of E, which means that if u; € U; for 2 =1,...,p and if
up+ - +u, =0,

then (uq,...,u,) = (0,...,0), that is, uy = 0,...,u, = 0.

Proposition 6.3. If the map a: Uy x --- x U, = E is injective, then everyu € Uy +---+U,
has a unique expression as a sum

u:ul_i_..._i_up’
with w; € U;, fori=1,...,p.

Proof. 1f
U=v 4+ Uy = Wi+ -+ Wy,

with v;,w; € U;, for t = 1, ..., p, then we have
wy — v+t wp, — v, =0,

and since v;, w; € U; and each U; is a subspace, w; —v; € U;. The injectivity of a implies that
w; —v; = 0, that is, w; = v; for i = 1, ..., p, which shows the uniqueness of the decomposition
of w. O

Proposition 6.4. If the map a: Uy x --- x U, = E is injective, then any p nonzero vectors
Ui, ..., up, with u; € U; are linearly independent.

Proof. To see this, assume that
A1u1+---—|—)\pup:0

for some A\; € R. Since u; € U; and U; is a subspace, \;u; € U;, and the injectivity of a
implies that \;u; = 0, for ¢ = 1,...,p. Since u; # 0, we must have \;, =0 for i = 1,...p;
that is, uy,...,u, with u;, € U; and u; # 0 are linearly independent. O

Observe that if a is injective, then we must have U; N U; = (0) whenever ¢ # j. However,
this condition is generally not sufficient if p > 3. For example, if £ = R? and U, the line
spanned by e; = (1,0), Uy is the line spanned by d = (1,1), and Us is the line spanned by
€y = (0, 1), then UlmUQ = UlﬂUg = UQﬂUg = {(0,0)}, but U1+U2 = U1+U3 = U2+U3 = RQ,
so Uy 4+ Us + Us is not a direct sum. For example, d is expressed in two different ways as

d=(1,1) = (1,0) 4+ (0,1) = €1 + ea.
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See Figure 6.1.

Figure 6.1: The linear subspaces U;, U,, and Us illustrated as lines in R2.

As in the case of a sum, Uy ® Uy = Uy @ U;. Observe that when the map a is injective,
then it is a linear isomorphism between Uy X --- x U, and Uy @ --- @ U,. The difference is
that Uy x --- x U, is defined even if the spaces U; are not assumed to be subspaces of some
common space.

If Fis adirect sum £ = U, @ - - @ U,, since any p nonzero vectors uy, . .., u, with u; € U;
are linearly independent, if we pick a basis (u)rer; in U; for j = 1,...,p, then (u;)er with
I'=1U---Ul,is a basis of E. Intuitively, E is split into p independent subspaces.

Conversely, given a basis (u;);e; of E, if we partition the index set [ as I = [ U---U I,
then each subfamily (ux)rer; spans some subspace U; of E, and it is immediately verified
that we have a direct sum

E=U & - - oU,.

Definition 6.4. Let f: F — E be a linear map. For any subspace U of E, if f(U) C U we
say that U is invariant under f.

Assume that E is finite-dimensional, a direct sum £ = U; @ --- @ U,, and that each Uj
is invariant under f. If we pick a basis (u;);e; as above with I = [, U--- U [, and with
each (ug)rer; a basis of Uj, since each Uj is invariant under f, the image f(uy) of every basis
vector uy, with k € I; belongs to Uj;, so the matrix A representing f over the basis (u;);es is
a block diagonal matrix of the form
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with each block A; a d; x d;-matrix with d; = dim(U;) and all other entries equal to 0. If
d; =1for j =1,...,p, the matrix A is a diagonal matrix.

There are natural injections from each U; to F denoted by in;: U; — FE.

Now, if p = 2, it is easy to determine the kernel of the map a: U; x Uy — E. We have
a(ul,ug) =Up + Uy = 0 iff Uy = —Uz, U1 € Ul,UQ € UQ,

which implies that
Kera = {(u, —u) | u € Uy N Us}.

Now, U; N Us; is a subspace of E and the linear map u — (u, —u) is clearly an isomorphism
between U; N U and Ker a, so Ker a is isomorphic to Uy N Us. As a consequence, we get the
following result:

Proposition 6.5. Given any vector space E and any two subspaces Uy and Us, the sum
Uy + Uy is a direct sum iff Uy N Uy = (0).

An interesting illustration of the notion of direct sum is the decomposition of a square
matrix into its symmetric part and its skew-symmetric part. Recall that an n x n matrix
A€M, is symmetric if AT = A, skew -symmetric if AT = —A. It is clear that s

S(n)={AeM, | AT =A} and Skew(n)={AeM,|A" =4}

are subspaces of M,,, and that S(n) N Skew(n) = (0). Observe that for any matrix A € M,,,
the matrix H(A) = (A+ A")/2 is symmetric and the matrix S(A) = (A — AT)/2 is skew-
symmetric. Since

AL AT A— AT
A= H(A) + S(A) = +2 2

we see that M,, = S(n) + Skew(n), and since S(n) N Skew(n) = (0), we have the direct sum

M,, = S(n) ® Skew(n).

Remark: The vector space Skew(n) of skew-symmetric matrices is also denoted by so(n).
It is the Lie algebra of the group SO(n).

Proposition 6.5 can be generalized to any p > 2 subspaces at the expense of notation.
The proof of the following proposition is left as an exercise.

Proposition 6.6. Given any vector space E/ and any p > 2 subspaces Uy, ..., Uy, the fol-
lowing properties are equivalent:

(1) The sum Uy +--- + U, is a direct sum.
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(2) We have

(3) We have

i—1
U; N (ZU,) =(0), i=2,....p.
j=1

Because of the isomorphism
Ul NEEE XUp%Ul@"'@Upy
we have

Proposition 6.7. If E is any vector space, for any (finite-dimensional) subspaces Uy, .. .,
U, of E, we have
dim(U; & --- @ Up) = dim(Uy) + - - - + dim(U,).

If F is a direct sum
E:U1@®Up7

since every u € E can be written in a unique way as
U=u+- - +u
with u; € U; for i = 1...,p, we can define the maps m;: £ — U,, called projections, by
mi(u) = mi(ur + - +up) = ;.

It is easy to check that these maps are linear and satisfy the following properties:

m ifi=7
T; 0Ty = e .
0 ifi#y,

m 4+, =idg.
For example, in the case of the direct sum
M,, = S(n) ® Skew(n),
the projection onto S(n) is given by

_A+AT
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and the projection onto Skew(n) is given by

ma(A) = S(A) =

Clearly, H(A)+S(A) = A, H(H(A)) = H(A), S(S(A)) = S(A), and H(S(A)) = S(H(A)) =
0.

A function f such that f o f = f is said to be idempotent. Thus, the projections m; are
idempotent. Conversely, the following proposition can be shown:

Proposition 6.8. Let E be a vector space. For any p > 2 linear maps f;: £ — E, if

fi ifi=7
fiolfi= o
0 ifi#7j,
fito 4 fy=ids,
then if we let U; = f;(F), we have a direct sum

E=U&- - ®U,

We also have the following proposition characterizing idempotent linear maps whose proof
is also left as an exercise.

Proposition 6.9. For every vector space E, if f: E — E is an idempotent linear map, i.e.,
fof=f, then we have a direct sum

E =Ker f & Imf,

so that f is the projection onto its image Im f.

We now give the definition of a direct sum for any arbitrary nonempty index set I. First,
let us recall the notion of the product of a family (E;);c;. Given a family of sets (F;);ey, its
product [],.; E;, is the set of all functions f: I — (J,.; Ei, such that, f(i) € E;, for every
i € I. It is one of the many versions of the axiom of choice, that, if E; # ) for every i € I,
then [[,.; £ # 0. A member f € [[,.; £;, is often denoted as (f;)ier. For every i € I, we
have the projection m;: [[,c; Ei — E;, defined such that, 7;((fi)icr) = fi;- We now define
direct sums.

Definition 6.5. Let I be any nonempty set, and let (F;);c; be a family of vector spaces.
The (eaternal) direct sum [[,.; E; (or coproduct) of the family (£;);c; is defined as follows:

[;c; Ei consists of all f € [],.; £, which have finite support, and addition and multi-
plication by a scalar are defined as follows:

(fi)ier + (9i)ier = (fi + 9i)icrs
A(fi)ie[ = ()‘fi)iel-

We also have injection maps in;: E; — [[,.; E:, defined such that, in;(z) = (fi)ier, where

fi=z,and f; =0, for all j € (I — {i}).

iel
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The following proposition is an obvious generalization of Proposition 6.1.

Proposition 6.10. Let I be any nonempty set, let (E;);cr be a family of vector spaces, and
let G be any vector space. The direct sum [],.; E; is a vector space, and for every family
(h)ier of linear maps h;: E; — G, there is a unique linear map

<;h> HEZ-%G,

such that, (3., hi) oin; = hy, for everyi € I.

Remarks:

(1) One might wonder why the direct sum [[,.; E; consists of familes of finite support
instead of arbitrary families; in other words, why didn’t we define the direct sum of
the family (£;)icr as [[,c; £5? The product space [[,.; E; with addition and scalar
multiplication defined as above is also a vector space but the problem is that any
linear map h: [[..; Ei — G such that h oin; = h; for all € I must be given by

h((w)er) =Y hiws),

el

iel

and if [ is infinite, the sum on the right-hand side is infinite, and thus undefined! If I
is finite then [[,., £ and [[,.; E; are isomorphic.

(2) When E; = E, for all i € I, we denote [[,.; E; by EM _ In particular, when E; = K,
for all ¢ € I, we find the vector space K () of Definition 3.11.

We also have the following basic proposition about injective or surjective linear maps.

Proposition 6.11. Let E and F be vector spaces, and let f: E — F be a linear map. If
f: E — F 1is injective, then there is a surjective linear map r: ' — E called a retraction,
such that r o f =idg. See Figure 6.2. If f: E — F' is surjective, then there is an injective
linear map s: ' — E called a section, such that f o s =idp. See Figure 6.3.

Proof. Let (u;);cr be a basis of E. Since f: F — F is an injective linear map, by Proposition
3.18, (f(u;))ier is linearly independent in F. By Theorem 3.7, there is a basis (v;);es of F,
where I C J, and where v; = f(u;), for all i € I. By Proposition 3.18, a linear map r: F' — F
can be defined such that r(v;) = u;, for all i € I, and r(v;) = w for all j € (J — I), where w
is any given vector in E, say w = 0. Since 7(f(u;)) = u; for all i € I, by Proposition 3.18,
we have r o f = idg.

Now, assume that f: £ — F is surjective. Let (v;);es be a basis of F. Since f: £ — F
is surjective, for every v; € F, there is some u; € E such that f(u;) = v;. Since (v))jes is a
basis of F', by Proposition 3.18, there is a unique linear map s: F' — E such that s(v;) = u;.
Also, since f(s(v;)) = v;, by Proposition 3.18 (again), we must have f o s = idp. O

The converse of Proposition 6.11 is obvious.
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Figure 6.2: Let f: E — F be the injective linear map from R? to R? given by f(z,y) =
(x,9,0). Then a surjective retraction is given by r: R* — R? is given by r(z,vy, 2) = (z,y).
Observe that r(vy) = uy, r(vy) = ug, and r(vs) =0 .

6.2 Matrices of Linear Maps and Multiplication by
Blocks

Direct sums yield a fairly easy justification of matrix block multiplication. The key idea
is that the representation of a linear map f: E — F over a basis (uq,...,u,) of E and
a basis (vy,...,v,,) of F' by a matrix A = (a;;) of scalars (in K) can be generalized to
the representation of f over a direct sum decomposition £ = E; & --- @ FE, of E and a
direct sum decomposition F' = F; @ --- & F,, of F' in terms of a matrix (f;;) of linear maps
fij: E; — F;. Futhermore, matrix multiplication of scalar matrices extends naturally to
matrix multiplication of matrices of linear maps. We simply have to replace multiplication
of scalars in K by the composition of linear maps.

Let E and F' be two vector spaces and assume that they are expressed as direct sums
n
E-@r, r-Gr
j=1 i=1

Definition 6.6. Given any linear map f: F — F, we define the linear maps f;;: £; — F;
as follows. Let prf": ' — F; be the projection of F = Fy & --- & F,, onto F;. If f;: E; - F
is the restriction of f to E;, which means that for every vector z; € Ej,

fi(z;) = f(z),
then we define the map f;;: E; — F; by

[ij ZPTZF o fj,
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so that if z; € E;, then
f(xj) = [i(z;) wa xz;), with fi;(z;) € Fi. (1)

Observe that we are summing over the index ¢, which eventually corresponds to summing
the entries in the jth column of the matrix representing f; see Definition 6.7.

We see that for every vector x = 1 +--- + x,, € I, with x; € E;, we have

) = ij(xj) =D Fla) =D filay).

j=1 i=1 i=1 j=1

Il i

obtain the linear map f: E — F' defined such that for every x = x; + - —i— T, E E, with

x; € B;, we have
=YD filwy).
i=1 j=1
As a consequence, it is easy to check that there is an isomorphism between the vector
spaces
Hom(E,F) and ][] Hom(Ej, F,

1<i<m
1Z5<n

Example 6.1. Suppose that £ = E; @ Fy and F' = F; @ F>® F3, and that we have six maps
fiji By = Fyfori=1,2,3 and j = 1,2. For any x = x; + 22, with 1 € £ and 5 € Es, we
have

= fu(z) + fio(x2) € F

Yo = for(z1) + faz(w2) € Fh
Y3 = fs1(21) + fal22) € F3,

fi(w)

1 (1) + for(@) + foi ()
fo(w2)

=f
= fr2(z2) + for(w2) + fa2(w2),
and
f(x) = filz1) + fa(z2) = y1 +v2 + 3

= fu(@1) + fra(w2) + far(@1) + faa(@2) + fa1(21) + faa(22)-

These equations suggest the matrix notation
Y Ju iz "

v | = | far fa2 ( 1> .
Ys Ja1 [fa
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In general we proceed as follows. For any x = x; + --- + x,, with x; € E;, if y = f(x),
since F' = F| & --- & F},, the vector y € F has a unique decomposition y = y; + - -+ + Y,
with y; € F;, and since f;;: E; — F;, we have 2;”:1 fij(x;) € F;, so Z?Zl fij(x;) € F; is the
ith component of f(z) over the direct sum F' = F} @ - -+ @ F,,; equivalently

Consequently, we have
yi=Y_ fiz;), 1<i<m. (2)
j=1

This time we are summing over the index j, which eventually corresponds to multiplying the
ith row of the matrix representing f by the n-tuple (z1,...,z,); see Definition 6.7.

All this suggests a generalization of the matrix notation Az, where A is a matrix of
scalars and x is a column vector of scalars, namely to write

U1 fir . fin T
=y s (T3)

which is an abbreviation for the m equations
yi:zfij(xj)’ z:l,,m
j=1

The interpretation of the multiplication of an m x n matrix of linear maps f;; by a column
vector of n vectors z; € E; is to apply each fi; to z; to obtain f;;(z;) and to sum over the
index j to obtain the ith output vector. This is the generalization of multiplying the scalar
a;; by the scalar ;. Also note that the jth column of the matrix (f;;) consists of the maps
(fijy-- - fmj) such that (fi;(z;), ..., fm;j(x;)) are the components of f(z;) = f;(x;) over the
direct sum FF = F, @ --- @ F,,,.

In the special case in which each F; and each Fj is one-dimensional, this is equivalent
to choosing a basis (u1,...,u,) in E so that E; is the one-dimensional subspace E; = Kuj,
and a basis (vy,...,v,) in F; so that F; is the one-dimensional subspace F; = Kwv;. In this
case every vector x € FE is expressed as © = xju; + - - - + x,u,, where the x; € K are scalars
and similarly every vector y € F' is expressed as y = y1v1 + - - + YmUm, Where the y; € K
are scalars. FEach linear map f;;: F; — F; is a map between the one-dimensional spaces K,
and Kwv;, so it is of the form f;;(z;u;) = a;jxjv;, with z; € K, and so the matrix (f;;) of
linear maps f;; is in one-to-one correspondence with the matrix (a;;) of scalars in K, and
Equation (f3) where the z; and y; are vectors is equivalent to the same familar equation
where the z; and y; are the scalar coordinates of x and y over the respective bases.
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Definition 6.7. Let E' and F' be two vector spaces and assume that they are expressed as

direct sums . .
=@ @
j=1 i=1

Given any linear map f: E — F, if (fi;)1<i<m.,1<j<n is the familiy of linear maps f;;: E; — F;
defined in Definition 6.6, the m x n matrix of linear maps

fir o fin

Mf)=|{ : .
fml e fmn

is called the matrixz of f with respect to the decompositions @?:1 E;, and @, F; of E and
F as direct sums.

Forany v =2, +-- -+, € Ewitha; € Fjand any y = y1 +-- - +yn, € ' with y; € F;,
we have y = f(x) iff
Y1 fir o fin 1

Ym fml fmn T,

where the matrix equation above means that the system of m equations

yi:Zfij(Ij)v i=1...,m, (1)
j=1

holds.

But now we can also promote matrix multiplication. Suppose we have a third space G
written as a direct sum. It is more convenient to write

E:éEk, F:éFj, G:é@i.
k=1 j=1 i=1

Assume we also have two linear maps f: F — F and ¢g: F — G. Now we have the n X p
matrix of linear maps B = (fj;) and the m x n matrix of linear maps A = (g,;). We would
like to find the m x p matrix associated with g o f.

By definition of fi: Ey — F and fj,: By, — Fj, if x; € E), then
filwr) = flax) = fir(ze),  with fix(zy) € F (*1)
j=1

and similarly, by definition of g;: F; — G and g;;: F; — G;, it y; € Fj, then

9i(y;) = 9(y;) = Zgij(yj); with g;;(y;) € Gi. (*2)
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If we write h = g o f, we need to find the maps hy: E, — G, with

hi(wx) = h(zy) = (g o f)(wr),

and h;,: E, — G; given by
hik = p?”z-G (@) hk

We have
hi(zr) = (g o f)(wr) = g(f(zr)) = g(fu(zr))

_ g(z futon)) by (1)

= Zg(fjk(xk)) = Zgj(fjk(xk)) since ¢ is linear
= Z Zgij(fjk(%)) = Z Zgz‘j(fjk(xk)), by (2)

and since > 7, gi;(fik(vx)) € Gy, we conclude that

hir(zx) = Zgij(fjk(xk)) = Z(gij o fix)(w), (*3)
j=1 =1
which can also be expressed as
hie = gij © fin- (*4)
j=1

Equation (%4) is exactly the analog of the formula for the multiplication of matrices of
scalars! We just have to replace multiplication by composition. The m x p matrix of linear
maps (h;) is the “product” AB of the matrices of linear maps A = (g;;) and B = (fj),
except that multiplication is replaced by composition.

In summary we just proved the following result.

Proposition 6.12. Let E, F, G be three vector spaces expressed as direct sums

E:éEk, F:éFj, G:éGi.
k=1 j=1 i=1

For any two linear maps f: E — F and g: F — G, let B = (fji) be the n x p matriz of
linear maps associated with f (with respect to the decomposition of E and F as direct sums)
and let A = (g;5) be the m x n matriz of linear maps associated with g (with respect to the
decomposition of F' and G as direct sums). Then the m x p matriz C' = (hy,) of linear maps
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associated with h = g o f (with respect to the decomposition of E and G as direct sums) is
given by

C = AB,
with

hie =Y gijofu, 1<i<m, 1<k<p.
j=1
We will use Proposition 6.12 to justify the rule for the block multiplication of matrices.
The difficulty is mostly notational. Again suppose that £ and F' are expressed as direct

sums .
E=E, F=F,
j=1 i=1

and let f: F — F be a linear map. Furthermore, suppose that E has a finite basis (u;)er,
where 7' is the disjoint union 7" = 71 U --- U T, of nonempty subsets T; so that (u)er,
is a basis of F;, and similarly F' has a finite basis (vs)seg, where S is the disjoint union
S =S U---US, of nonempty subsets S; so that (vs)ses, is a basis of F;. Let M = |S],
N =T, s; = |Si|, and let t; = |T}|. Since s; is the number of elements in the basis (vs)ses;
of F; and FF = F1 ® --- @ F,,, we have M = dim(F) = s; + -+ + s,,. Similarly, since
t; is the number of elements in the basis (ut)teTj of £, and E = Fy @ --- ® E,, we have
N =dim(E) =t + - +1,.

Let A = (ast)(sp)esxr be the (ordinary) M x N matrix of scalars (in K') representing f
with respect to the basis (u;)ier of E and the basis (vs)ses of F with M =1y + - 4+ 1y,
and N = sy +---+ s,, which means that for any ¢ € T, the tth column of A consists of the
components ag of f(u;) over the basis (vs)ses, as in the beginning of Section 4.1.

For any ¢ and any j such that 1 <7 <m and 1 < j <n, we can form the s; X ¢; matrix
Ag, 1, obtained by deleting all rows in A of index s ¢ S; and all columns in A of index
t ¢ T;. The matrix Ag, 7, is the indexed family (as;)(s,es;x1;, @s explained at the beginning
of Section 4.1.

Observe that the matrix Ag, 7, is actually the matrix representing the linear map f;: £; —
F; of Definition 6.7 with respect to the basis (u;)ier; of E; and the basis (v)ses, of Fj, in the
sense that for any ¢ € T}, the ¢tth column of ASZ.,T]. consists of the components ay of fi;(uy)
over the basis (vs)ses;-

Definition 6.8. Given an M x N matrix A (with entries in K), we define the m x n
matrix (Ajj)i<i<m,1<j<n Whose entry A;; is the matrix Ay = Ag, 7, 1 <i<m, 1 <j <n,
and we call it the block matrixz of A associated with the partitions S = S, U ---U S, and
T =TyU---UT,. The matrix Ag, 1, is an s; x t; matrix called the (i, j)th block of this block
matrix.

Here we run into a notational dilemma which does not seem to be addressed in the
literature. Horn and Johnson [95] (Section 0.7) define partitioned matrices as we do, but
they do not propose a notation for block matrices.
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The problem is that the block matrix (A;;)1<i<m 1<j<n is not equal to the original matrix
A. First of all, the block matrix is m x n and its entries are matrices, but the matrix A is
M x N and its entries are scalars. But even if we think of the block matrix as an M x N
matrix of scalars, some rows and some columns of the original matrix A may have been
permuted due to the choice of the partitions S = S;U---US,, and T'=T1 U ---UT,; see
Example 6.3.

We propose to denote the block matrix (A;j)i1<i<m,1<j<n by [A]. This is not entirely
satisfactory since all information about the partitions of S and T are lost, but at least this
allows us to distinguish between A and a block matrix arising from A.

To be completely rigorous we may proceed as follows. Let [m] = {1,...,m} and [n] =

{1,...,n}.

Definition 6.9. For any two finite sets of indices S and T, an S x T matriz A is an
S x T-indexed family with values in K, that is, a function

A: SxT = K.

Denote the space of S x T matrices with entries in K by Mg r(K).

An S x T matrix A is an S x T-indexed family (as)(sesxr, but the standard representa-
tion of a matrix by a rectangular array of scalars is not quite correct because it assumes that
the rows are indexed by indices in the “canonical index set” [m] and that the columns are
indexed by indices in the “canonical index set” [n]. Also the index sets need not be ordered,
but in practice they are, so if S = {s1,...,8,} and T = {t1,...,t,}, we denote an S x T
matrix A by the rectangular array

asltl e asltn
A=

asmtl e asmtn

Even if the index sets are not ordered, the product of an R x S matrix A and of an S x T
matrix B is well defined and C' = AB is an R x T matrix (where R,S,T are finite index
sets); see Proposition 6.13.

Then an m x n block matrix X induced by two partitions S = S; U ---U S, and
T=TiU---UT,is an [m] x [n]-indexed family
X: [m] x [n] — H Ms, 1, (K),
(i,5)€[m]x[n]
such that X (7, j) € Mg, ,(K), which means that X (i, j) is an S; x T; matrix with entries in
K. The map X also defines the M x N matrix A = (ast)seser, with

Qst = X(i>j)st7
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for any s € S; and any j € T}, so in fact X = [A] and X (7, j) = Ag, 7,. But remember that
we abbreviate X (7, j) as Xj;, so the (7,7)th entry in the block matrix [A] of A associated
with the partitions S = S4U---US,, and T' = Ty U --- U T, should be denoted by [A];;.
To minimize notation we will use the simpler notation A;;. Schematically we represent the
block matrix [A] as

Asym 0 Asim, A o A
[A] = : ; or simply as [A] = e
ASm,Tl e ASm,Tn Aml T Amn

In the simplified notation we lose the information about the index sets of the blocks.

Remark: It is easy to check that the set of m x n block matrices induced by two partitions
S=5U---US,and T =1T,U---UT, is a vector space. In fact, it is isomorphic to the

direct sum
P Mg (K).
(4,5)€[m]x[n]

Addition and rescaling are performed blockwise.

Example 6.2. Let S = {1,2,3,4,5,6}, with S; = {1,2}, Sy = {3}, S3 = {4,5,6}, and
T =1{1,2,3,4,5}, with T} = {1,2}, Ty, = {3,4}, T3 = {5}, and Then s; =2, s9 =1, s3 =3
and t; = 2,ty = 2,t3 = 1. The original matrix is a 6 X 5 matrix A = (a;;). Schematically we
obtain a 3 x 3 matrix of nine blocks. where A;;, Aj2, A13 are respectively 2 x 2, 2 x 2 and
2 x 1, Aoy, Aoy, Aog are respectively 1 x 2, 1 x 2 and 1 x 1, and Asq, Ass, A3z are respectively
3x2,3x2and 3 x 1, as illustrated below.

ann  ai2 a1z Q14 a1s

| Q21 (22 ] |23 (24 | | 25 |

_ An Az A _ [Clsl aaz} [033 &34} [&35}
[A]— Ay Agy Aoz | = - - - - -
Aszp Aszg Ass 41 Q42 43 Q44 a5

as1  Aas2 as3  As4 Qs5

| A61  A62 | | A63 (64 | | 465 |

Technically, the blocks are obtained from A in terms of the subsets S;, T;. For example,
aiz aig
Ap=A = .
12 = A41.2),(34) ng MJ

Example 6.3. Let S = {1,2,3}, with S = {1,3}, Sy = {2}, and T" = {1,2,3}, with
Ty ={1,3}, T5 = {2}. Then s =2, s =1, and t; = 2,t, = 1. The block 2 x 2 matrix [A]
associated with above partitions is

ai; a3 a2
4] = (A{l,fa},{l,:a} A{Ls},{z}) _ [agl aggl {agz}
Apyas Apne
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Observe that [A] viewed as a 3 x 3 scalar matrix is definitely different from

11 Qa2 Q13
A= 21 A2z A23

a31 aszz G33

In practice, S = {1,..., M} and T'= {1,..., N}, so there are bijections o;: {1,...,s;} —
Siand B;: {1,...,t;} = Tj,1 <i<m,1<j<n. Each s; x t; matrix Ag, 7, is considered
as a submatrix of A, this is why the rows are indexed by S; and the columns are indexed by
T;, but this matrix can also be viewed as an s; X t; matrix Aj; = ((aj;)s) by itself, with the
rows indexed by {1,...,s;} and the columns indexed by {1,...,¢;}, with

(@iy)st = Gasypry, 1< s < s, 1<t <t

Symbolic systems like Matlab have commands to construct such matrices. But be careful
that to put a matrix such as A;j back into A at the correct row and column locations requires
viewing this matrix as Ag, r,. Symbolic systems like Matlab also have commands to assign
row vectors and column vectors to specific rows or columns of a matrix. Technically, to be
completely rigorous, the matrices Ag, 7, and Aj; are different, even though they contain the
same entries. The reason they are different is that in Ag, 7, the entries are indexed by the
index sets S; and T}, but in Aj; they are indexed by the index sets {1,...,s;} and {1,...,;}.
This depends whether we view Ag, 7, as a submatrix of A or as a matrix on its own.

In most cases, the partitions S = S;U---US,, and T'=T,U---UT, are chosen so that

Si:{s|81+"'+3i—1+1§S§81+~-~—|—5i}
T'J':{t’t1+"'+ti,1+1§t§t1+...+tj}’

with s, =[S > 1, ¢t; =131 >1,1<i<m,1<j<n. Fori=1, we have S; ={1,...,51}
and Ty = {1,...,t1}. This means that we partition into consecutive subsets of consecutive
integers and we preserve the order of the bases. In this case, [A] can be viewed as A. But
the results about block multiplication hold in the general case.

Finally we tackle block multiplication. But first we observe that the computation made
in Section 4.2 can be immediately adapted to matrices indexed by arbitrary finite index sets
I, J, K, not necessary of the form {1,...,p}, {1,...,n}, {1,...,m}. We need this to deal
with products of matrices occurring as blocks in other matrices, since such matrices are of
the form Ag, 1, etc.

We can prove immediately the following result generalizing Equation (4) proven in Section
4.2 (also see the fourth equation of Proposition 4.2).

Proposition 6.13. Let I,J, K be any nonempty finite index sets. If the I x J matriz
A = (ai;) i jyerxs represents the linear map g: F' — G with respect to the basis (vj);jes of F
and the basis (w;)icr of G and if the J x K matriz B = (bji)(jr)csxix represents the linear
map f: E — F with respect to the basis (up)rex of E and the basis (v;)jes of F, then the
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I x K matriz C' = (cit) @ peixk representing the linear map g o f: E — G with respect to
the basis (ug)rex of E and the basis (w;)ier of G is given by

C = AB,

where for allv € I and all k € K,

Cik = E aijbik.

JjeJ

Let E, F, G be three vector spaces expressed as direct sums

E:éEk, F:éﬂ, G:éGz,
k=1 j=1 =1

and let f: F — F and g: F — G be two linear maps. Furthermore, assume that F has
a finite basis (u;)ier, where T is the disjoint union 7" = T3 U - - - U T}, of nonempty subsets
Ty so that (u¢)ier, is a basis of Ej, F' has a finite basis (vs)ses, where S is the disjoint
union S = Sy U---U S, of nonempty subsets S; so that (vs)ses, is a basis of Fj, and G
has a finite basis (w,),cg, where R is the disjoint union R = Ry U --- U R,, of nonempty
subsets R; so that (w,).cg, is a basis of G;. Also let M = |R|, N = |S|, P =T, r; = |Ri|,
s; = 19|, tk = |Tk|, so that M = dim(G) =r; + -+ rp, N =dim(F) =51+ -+ s, and
P=dim(E) =t +---+t,.

Let B be the N x P matrix representing f with respect to the basis (u;)er of E and the
basis (vs)ses of F', let A be the M x N matrix representing g with respect to the basis (vs)ses
of F' and the basis (w,),er of G, and let C' be the M x P matrix representing h = go f with
respect to the basis basis (u;)ier of F and the basis (w,),ecr of G.

The matrix [A] is an m X n block matrix of 7; X s; matrices A;; (1 <i<m,1 <j <n),
the matrix [B] is an n X p block matrix of s; X ¢, matrices Bj, (1 <j <n,1 <k <p), and
the matrix [C] is an m X p block matrix of r; x ¢, matrices Cy, (1 < i < m,1 < k < p).
Furthermore, to be precise, A;; = Ag, s;, Bjx = Bs; 1, and Cy, = Cg, 1,,-

Now recall that the matrix Ag, s, represents the linear map g;;: F; — G; with respect to
the basis (vs)ses, of Fj and the basis (w,),er, of G;, the matrix Bg, 7, represents the linear
map fjx: Ep — F; with respect to the basis (u;)er, of Ex and the basis (v,)ses, of Fj, and
the matrix Cp, 7, represents the linear map h;,: Ep — G; with respect to the basis (u;)er,
of Ey and the basis (w,.),cgr, of Gj.

By Proposition 6.12, hy is given by the formula

hie =Y _gijo fi, 1<i<m, 1<k<p, (*5)
j=1
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and since the matrix Ag, g, represents g;;: F; — G;, the matrix Bg, 1, represents fj,: Ej —
F;, and the matrix Cp, 7, represents h;,: Er — Gy, so (*5) implies the matrix equation

j=1

establishing (when combined with Proposition 6.13) the fact that [C] = [A][B], namely the
product C = AB of the matrices A and B can be performed by blocks, using the same
product formula on matrices that is used on scalars.

We record the above fact in the following proposition.

Proposition 6.14. Let M, N, P be any positive integers, and let {1,... , M} = RjU---UR,,,
{1,...,N}=5U---US,, and {1,..., P} =Ty U---UT, be any partitions into nonempty
subsets R;, S;, Ty, and write r; = |R;|, s; = |S;| and tj, = [T 1 <i<m,1 <j<n1<
k < p). Let A be an M x N matriz, let [A] be the corresponding m x n block matriz of
i X 85 matrices A;j (1 <i<m,1<j<n), and let B be an N x P matriz and [B] be the
corresponding n X p block matriz of s; x t matrices By, (1 <j <mn,1 <k <p). Then the
M x P matrizx C = AB corresponds to an m X p block matriz [C] of r; X t,, matrices Ci,
(1<i<m,1<k<p) and we have

which means that

n
Cik:ZAz’ijk, 1<i1<m, 1 <k<p.
j=1

Remark: The product A;; By, of the blocks A;; and Bji, which are really the matrices A, s,
and Bg; 1, can be computed using the matrices Aj; and B}, (discussed after Example 6.3)
that are indexed by the “canonical” index sets {1,...,r;}, {1,...,s;} and {1,...,¢;}. But
after computing Aj; Bj;, we have to remember to insert it as a block in [C] using the correct

index sets R; and T},. This is easily achieved in Matlab.

Example 6.4. Consider the partition of the index set R = {1,2,3,4,5,6} given by Ry =
{1,2}, Ry = {3}, Ry = {4,5,6}; of the index set S = {1, 2,3} given by S; = {1,2}, So = {3};
and of the index set 7' = {1,2,3,4,5,6} given by Ty = {1}, Tb = {2,3}, T3 = {4,5,6}. Let
[A] be the 3 x 2 block matrix

Ay A [
(Al = | Ay A | =
Azp Az

1 r
| I
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where Aqq, Ajg are 2 X 2, 2 x 1; Agy, Agg are 1 x 2, 1 x 1; and Az, Asp are 3 x 2, 3 x 1, and
[B] be the 2 x 3 block matrix

m-( i) - (U LD ),

where By, Bia, Biz are 2 x 1, 2 x 2, 2 X 3; and By, Bog, Bog are 1 x 1, 1 x 2, 1 x 3. Then
[C] = [A][B] is the 3 x 3 block matrix

C(11 012 013
[Cl=Cu Cy Cy| = [__} [ } [ ] ;
C(31 032 C33

where 011, 012, 013 are 2 X 1, 2 X 2, 2 X 3; 021,0227023 are 1 X 1, 1x 2, 1 ><3; and 031,032,033
are 3 x 1, 3 x 2, 3 x 3. For example,

Csg = As1 B2 + AsaBos.

Example 6.5. This example illustrates some of the subtleties having to do with the parti-
tioning of the index sets. Consider the 1 x 3 matrix

A:(all ai2 a13)

and the 3 x 2 matrix

bll b12
B =|0bx b
b31 b32

Consider the partition of the index set R = {1} given by R; = {1}; of the index set
S = {1,2,3} given by S; = {1,3}, So = {2}; and of the index set T' = {1,2} given by
Ty = {2}, To = {1}. The corresponding block matrices are the 1 x 2 block matrix

(A= (Apys Aane) = ([an a] [a])

and the 2 x 2 block matrix

b12 bll

B - (179{1,3},{2} %1,3},{1}) _ | o] |bw
21,2 21.{1

e Beno ] o]
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The product of the 1 x 2 block matrix [A] and the 2 x 2 block matrix [B] is the 1 x 2 block
matrix [C] given by

B — (o o] o [ 1) L
[b22]  [b21]

(fon ans) 2]+ ] ] fanr ] [o2] + o] ]

( anm + a13bsz + a12bz2} [ann + azbs1 + 6112521})
([Clnblz + a12b2 + a13b32} [anbn + ai2ba + a13b31}) .

The block matrix [C] is obtained from the 1 x 2 matrix C' = AB using the partitions of
R = {1} given by R; = {1} and of T'= {1,2} given by 71 = {2}, T» = {1}, so

[C] = (Cayy Cuygny) s

which means that [C] is obtained from C' by permuting its two columns. Since

bii b
C=AB= (an aiz alg) ba1  bas
bs1 b3z

= (anbn + a12bo1 + ai3bs1  ainbia + arzber + a13b32) 5
we have confirmed that [C] is correct.

Example 6.6. Matrix block multiplication is a very effective method to prove that if an
upper-triangular matrix A is invertible, then its inverse is also upper-triangular. We proceed
by induction on the dimensiopn n of A. If n =1, then A = (a), where a is a scalar, so A is
invertible iff a # 0, and A~! = (a™'), which is trivially upper-triangular. For the induction
step we can write an (n + 1) x (n + 1) upper triangular matrix A in block form as

T U
4= (o o)

where T' is an n X n upper triangular matrix, U is an n x 1 matrix and o € R. Assume that
A is invertible and let B be its inverse, written in block form as

cC Vv
B:(W 6)’

where C' is an n X n matrix, V is an n X 1 matrix, W is a 1 X n matrix, and g € R. Since
B is the inverse of A, we have AB = [,, 1, which yields

T U C |74 - ]n On,l
01,n—1 a w 6 B Ol,n 1 .
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By block multiplication we get

TC+UW =1,

TV 4+ BU = 0,1
aW =04,
af = 1.

From the above equations we deduce that «, 3 # 0 and 3 = o~ 1. Since o # 0, the equation
aW =0y, yields W = 0y 5, and so

T¢=1,, TV +BU=0,;.
It follows that T is invertible and C' is its inverse, and since T is upper triangular, by the
induction hypothesis, C' is also upper triangular.

The above argument can be easily modified to prove that if A is invertible, then its
diagonal entries are nonzero.

We are now ready to prove a very crucial result relating the rank and the dimension of
the kernel of a linear map.

6.3 The Rank-Nullity Theorem; Grassmann’s Relation

We begin with the following fundamental proposition.

Proposition 6.15. Let E, F' and G, be three vector spaces, f: E — F an injective linear
map, g: F'— G a surjective linear map, and assume that Im f = Ker g. Then, the following
properties hold. (a) For any section s: G — F of g, we have F' = Kerg @ Im s, and the
linear map f + s: E® G — F is an isomorphism.*

(b) For any retraction r: F — E of f, we have F = Im f @& Kerr.?

f g
E F G

Proof. (a) Since s: G — F' is a section of g, we have g o s = idg, and for every u € F,

g(u—=s(g(u))) = g(u) = 9(s(9(u))) = g(u) = g(u) = 0.

Thus, u — s(g(u)) € Kerg, and we have F = Kerg + Ims. On the other hand, if u €
Kerg Nlms, then u = s(v) for some v € G because u € Im s, g(u) = 0 because u € Ker g,
and so,

g(u) = g(s(v)) = v =0,

IThe existence of a section s: G — F of g follows from Proposition 6.11.
2The existence of a retraction 7: F' — E of f follows from Proposition 6.11.
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because g o s = idg, which shows that u = s(v) = 0. Thus, F' = Ker g @ Im s, and since by
assumption, Im f = Ker g, we have F' = Im f @ Im s. But then, since f and s are injective,
f+s: E®G — F is an isomorphism. The proof of (b) is very similar. O

Note that we can choose a retraction r: F' — E so that Kerr = Im s, since
F=Kerg®Ims=1Imf&Ims and f is injective so we can set r =0 on Im s.

Given a sequence of linear maps F BEAN RN G, when Im f = Ker g, we say that the

sequence F Iy F %5 G is emact at F. If in addition to being exact at F', f is injective
and g is surjective, we say that we have a short exact sequence, and this is denoted as

00— E s F 2% aq—o

The property of a short exact sequence given by Proposition 6.15 is often described by saying
that 0 — E 55 F %5 G — Oisa (short) split exact sequence.

As a corollary of Proposition 6.15, we have the following result which shows that given
a linear map f: F — F, its domain FE is the direct sum of its kernel Ker f with some
isomorphic copy of its image Im f.

Theorem 6.16. (Rank-nullity theorem) Let E and F be vector spaces, and let f: E — F
be a linear map. Then, E is isomorphic to Ker f ® Im f, and thus,

dim(F) = dim(Ker f) 4+ dim(Im f) = dim(Ker f) + rk(f).

See Figure 6.3.

Proof. Consider
Ker f —» E 5 Im f,

where Ker f 5 F is the inclusion map, and F Y Im f is the surjection associated

with £ L5 F. Then, we apply Proposition 6.15 to any section Im f — FE of f’ to

get an isomorphism between E and Ker f & Im f, and Proposition 6.7, to get dim(E) =
dim(Ker f) + dim(Im f). O

Definition 6.10. The dimension dim(Ker f) of the kernel of a linear map f is called the
nullity of f.

We now derive some important results using Theorem 6.16.

Proposition 6.17. Given a vector space E, if U and V' are any two subspaces of E, then
dim(U) 4+ dim(V') = dim(U 4+ V) + dim(U N'V),

an equation known as Grassmann’s relation.
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s (f(u)) = (1,1,2)

“ocy2) = ooy

(X,y,2) = (x,y)

=(1,1,1)
3 fy= fup) =(0,1) flu)=(1,1)
% N

L4
’ f1=f(uq) = (1,0)

s(x,y) = (X,y,x+y)

Figure 6.3: Let f: E — F be the linear map from R? to R? given by f(z,y,2) = (z,v).
Then s: R? — R3 is given by s(z,y) = (z,y,7 + y) and maps the pink R? isomorphically
onto the slanted pink plane of R?® whose equation is —x — y + z = 0. Theorem 6.16 shows
that R3 is the direct sum of the plane —x — y + z = 0 and the kernel of f which the orange
z-axis.

Proof. Recall that U + V' is the image of the linear map

a:UxV — F

given by
a(u,v) =u+wv,

and that we proved earlier that the kernel Kera of a is isomorphic to U N'V. By Theorem
6.16,
dim(U x V) = dim(Kera) + dim(Ima),

but dim(U x V) = dim(U) + dim(V), dim(Kera) = dim(U NV), and Ima = U + V, so the
Grassmann relation holds. O

The Grassmann relation can be very useful to figure out whether two subspace have a
nontrivial intersection in spaces of dimension > 3. For example, it is easy to see that in R,
there are subspaces U and V with dim(U) = 3 and dim(V') = 2 such that U NV = (0); for
example, let U be generated by the vectors (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), and V be
generated by the vectors (0,0,0,1,0) and (0,0,0,0,1). However, we claim that if dim(U) = 3
and dim (V') = 3, then dim(U N'V) > 1. Indeed, by the Grassmann relation, we have

dim(U) + dim(V) = dim(U + V) + dim(U N'V),

namely

3+3=6=dim(U+V)+dim(UNYV),
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and since U + V is a subspace of R®, dim(U + V') < 5, which implies
6 <5+dim(UNV),

that is 1 < dim(U N'V).

As another consequence of Proposition 6.17, if U and V' are two hyperplanes in a vector
space of dimension n, so that dim(U) = n — 1 and dim(V') = n — 1, the reader should show
that

dim(UNV)>n—2,

and so, if U #£ V, then
dim(UNV)=n-—2.

Here is a characterization of direct sums that follows directly from Theorem 6.16.

Proposition 6.18. If Uy, ..., U, are any subspaces of a finite dimensional vector space E,
then
dim(U; + - - 4+ U,) < dim(Uy) + - - - + dim(U,),

and
dim(U; + - - 4+ U,) = dim(Uy) + - - - + dim(U,)

iff the U;s form a direct sum Uy @ --- @ U,,.

Proof. 1f we apply Theorem 6.16 to the linear map
a: Uy x---xU,=U+---+U,
given by a(uq,...,u,) = us + - - + u,, we get

dim(U; +--- 4+ U,) = dim(U;y X --- x U,) — dim(Ker a)
= dim(U;) + - - - + dim(U,) — dim(Ker a),

so the inequality follows. Since a is injective iff Kera = (0), the U;s form a direct sum iff
the second equation holds. O

Another important corollary of Theorem 6.16 is the following result:

Proposition 6.19. Let E and F be two vector spaces with the same finite dimension
dim(E) = dim(F) = n. For every linear map f: E — F, the following properties are
equivalent:

(a) f is bijective.
(b) f is surjective.

(¢) [ is injective.
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(d) Ker f = (0).
Proof. Obviously, (a) implies (b).
If f is surjective, then Im f = F'| and so dim(Im f) = n. By Theorem 6.16,
dim(E) = dim(Ker f) + dim(Im f),
and since dim(F) = n and dim(Im f) = n, we get dim(Ker f) = 0, which means that
Ker f = (0), and so f is injective (see Proposition 3.17). This proves that (b) implies (c).
If f is injective, then by Proposition 3.17, Ker f = (0), so (c¢) implies (d).
Finally, assume that Ker f = (0), so that dim(Ker f) = 0 and f is injective (by Proposi-
tion 3.17). By Theorem 6.16,
dim(E) = dim(Ker f) + dim(Im f),
and since dim(Ker f) = 0, we get
dim(Im f) = dim(£) = dim(F),

which proves that f is also surjective, and thus bijective. This proves that (d) implies (a)
and concludes the proof. O

One should be warned that Proposition 6.19 fails in infinite dimension.

The following Proposition will also be useful.

Proposition 6.20. Let E be a vector space. If E=U @&V and E=U & W, then there is
an isomorphism f: V. — W between V and W.

Proof. Let R be the relation between V' and W, defined such that
(v,wye R iff w—veUl.

We claim that R is a functional relation that defines a linear isomorphism f: V — W
between V' and W, where f(v) = w iff (v,w) € R (R is the graph of f). If w —v € U and
w —wv € U, then w' —w € U, and since U & W is a direct sum, U N W = (0), and thus
w' —w =0, that is w’ = w. Thus, R is functional. Similarly, if w —v € U and w —v' € U,
then v —v € U, and since U @ V is a direct sum, U NV = (0), and v = v. Thus, f is
injective. Since F = U @ V, for every w € W, there exists a unique pair (u,v) € U x V,
such that w = u +v. Then, w —v € U, and f is surjective. We also need to verify that f is
linear. If

and
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where u, v’ € U, then, we have
(w+ ) — (v +2) = (u+ ),

where u + v’ € U. Similarly, if

where u € U, then we have
Aw — Av = Au,

where A\u € U. Thus, f is linear. ]

Given a vector space E and any subspace U of E, Proposition 6.20 shows that the
dimension of any subspace V' such that £ = U @&V depends only on U. We call dim(V') the
codimension of U, and we denote it by codim(U). A subspace U of codimension 1 is called
a hyperplane.

The notion of rank of a linear map or of a matrix is an important one, both theoretically
and practically, since it is the key to the solvability of linear equations. Recall from Definition
3.19 that the rank rk(f) of a linear map f: E — F' is the dimension dim(Im f) of the image
subspace Im f of F.

We have the following simple proposition.
Proposition 6.21. Given a linear map f: E — F, the following properties hold:
(i) tk(f) = codim(Ker f).
(i7) tk(f) + dim(Ker f) = dim(F).
(#i) vk(f) < min(dim(F),dim(F")).

Proof. Since by Proposition 6.16, dim(EF) = dim(Ker f) + dim(Im f), and by definition,
rk(f) = dim(Im f), we have rk(f) = codim(Ker f). Since rk(f) = dim(Im f), (ii) follows
from dim(F) = dim(Ker f) + dim(Im f). As for (iii), since Im f is a subspace of F', we have
rk(f) < dim(F'), and since rk(f) + dim(Ker f) = dim(FE), we have rk(f) < dlm(E). O

The rank of a matrix is defined as follows.

Definition 6.11. Given a m x n-matrix A = (a;;) over the field K, the rank rk(A) of the
matrix A is the maximum number of linearly independent columns of A (viewed as vectors
in K™).

In view of Proposition 3.8, the rank of a matrix A is the dimension of the subspace of
K™ generated by the columns of A. Let E and F' be two vector spaces, and let (uq, ..., u,)
be a basis of F, and (vy,...,v,,) a basis of F. Let f: E — F be a linear map, and let M (f)
be its matrix w.r.t. the bases (u1,...,u,) and (vy,...,v,). Since the rank rk(f) of f is the
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dimension of Im f, which is generated by (f(u1),..., f(u,)), the rank of f is the maximum
number of linearly independent vectors in (f(u1),..., f(u,)), which is equal to the number
of linearly independent columns of M (f), since F' and K™ are isomorphic. Thus, we have
tk(f) = rk(M(f)), for every matrix representing f.

We will see later, using duality, that the rank of a matrix A is also equal to the maximal
number of linearly independent rows of A.

If U is a hyperplane, then £ = U & V for some subspace V' of dimension 1. However, a
subspace V' of dimension 1 is generated by any nonzero vector v € V', and thus we denote
V by Kv, and we write F = U @ Kv. Clearly, v ¢ U. Conversely, let z € E be a vector
such that z ¢ U (and thus, x # 0). We claim that £ = U @ Kz. Indeed, since U is a
hyperplane, we have E = U @ Kv for some v ¢ U (with v # 0). Then, x € E can be written
in a unique way as x = u + Av, where u € U, and since z ¢ U, we must have A # 0, and
thus, v = —A\"'u + A"z, Since E = U @ Kwv, this shows that F = U + Kz. Since x ¢ U,
we have U N Kx = 0, and thus £ = U & Kxz. This argument shows that a hyperplane is a
maximal proper subspace H of E.

In Chapter 11, we shall see that hyperplanes are precisely the Kernels of nonnull linear
maps f: E — K, called linear forms.

6.4 Summary
The main concepts and results of this chapter are listed below:

e Direct products, sums, direct sums.

Projections.

The fundamental equation

dim(F) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f)
(Proposition 6.16).
o Grassmann’s relation

dim(U) + dim(V) = dim(U + V) + dim(U N V).

Characterizations of a bijective linear map f: £ — F.

Rank of a matrix.
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6.5 Problems

Problem 6.1. Let V and W be two subspaces of a vector space E. Prove that if VU W is
a subspace of E, then either V C W or W C V.

Problem 6.2. Prove that for every vector space E, if f: E — E is an idempotent linear
map, i.e., fo f = f, then we have a direct sum

E=Ker f&Imf,
so that f is the projection onto its image Im f.

Problem 6.3. Let Uy,...,U, be any p > 2 subspaces of some vector space £ and recall
that the linear map
a: Uy x---xU, = FE

is given by
a(uy, ... up) =up + -+ up,

with u; e U; fori=1,...,p.
(1) If we let Z; C Uy x --- x U, be given by

p
Zi = {(ula---7uila_ E ujaui+17--~7up>

=1,

5 wenn( 3 u))

J=Lj# J=Lj#i

fori=1,...,p, then prove that
Kera =2y =--- = Z,.

In general, for any given ¢, the condition U; N < et Uj> = (0) does not necessarily
imply that Z; = (0). Thus, let

p p
U; = — Z Uj,UiGUiﬂ( Z U]),lgzgp}

/= {(ul,...,ui_l,ui,uiﬂ,...,up>

J=1j#i j=1,j7i
Since Kera = Z; = --- = Z,, we have Z = Kera. Prove that if
p
Um( > Uj) =(0) 1<i<p,

j=1,j#i
then Z = Kera = (0).
(2) Prove that Uy + - - - + U, is a direct sum iff

Um( zp: Uj):(O) 1<i<p.

=1,
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Problem 6.4. Assume that E is finite-dimensional, and let f;: F — E be any p > 2 linear
maps such that

f1+"'+fp:idE'
Prove that the following properties are equivalent:
1) ff=fi,1<i<p.

(2) fiofi=0,foralli#j,1<ij<p.

Hint. Use Problem 6.2.

Let Uy,...,U, be any p > 2 subspaces of some vector space E. Prove that U; 4 --- + U,

is a direct sum iff .
U; N (ZUj) =(0), i=2,...,p.
j=1

Problem 6.5. Given any vector space E, a linear map f: E — FE is an involution if
fof=id.

(1) Prove that an involution f is invertible. What is its inverse?

(2) Let £y and E_; be the subspaces of E defined as follows:

Ey={uveE| f(u) =u}
E i ={uel]| f(u) =—u}.
Prove that we have a direct sum
E = E1 EB E_l.

Hint. For every u € E, write

Cutflw) | u—f(u)
U = 5 + 5 .

(3) If F is finite-dimensional and f is an involution, prove that there is some basis of F
with respect to which the matrix of f is of the form

I 0
[k,n—k:(g B k);

where [, is the k x k identity matrix (similarly for I,, ;) and k = dim(E};). Can you give a
geometric interpretation of the action of f (especially when k =n —1)?7

Problem 6.6. An n x n matrix H is upper Hessenberg if h;, = 0 for all (j, k) such that
j —k > 0. An upper Hessenberg matrix is unreduced if h;,1; # 0 fori=1,... ,n— 1.

Prove that if H is a singular unreduced upper Hessenberg matrix, then dim(Ker (H)) = 1.
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Problem 6.7. Let A be any n X k matrix.

(1) Prove that the k x k matrix AT A and the matrix A have the same nullspace. Use
this to prove that rank(AT A) = rank(A). Similarly, prove that the n x n matrix AA"T and
the matrix A" have the same nullspace, and conclude that rank(AAT) = rank(AT).

We will prove later that rank(AT) = rank(A).

(2) Let ay, ..., ar be k linearly independent vectors in R™ (1 < k < n), and let A be the
n x k matrix whose ith column is a;. Prove that AT A has rank k, and that it is invertible.
Let P = A(ATA)7*AT (an n x n matrix). Prove that

PP=P
PT =P
What is the matrix P when k = 17

(3) Prove that the image of P is the subspace V spanned by a4, ..., a, or equivalently
the set of all vectors in R™ of the form Az, with 2 € R¥. Prove that the nullspace U of P is
the set of vectors u € R" such that AT« = 0. Can you give a geometric interpretation of U?

Conclude that P is a projection of R™ onto the subspace V spanned by ay,...,a, and
that
R"=U®V.

Problem 6.8. A rotation Ry in the plane R? is given by the matrix
cos) —sind
Fy = (sin0 cos 6 ) '

(1) Use Matlab to show the action of a rotation Ry on a simple figure such as a triangle
or a rectangle, for various values of 0, including 6 = 7/6, 7 /4, 7/3,7/2.

(2) Prove that Ry is invertible and that its inverse is R_j.

(3) For any two rotations R, and Rg, prove that
Rﬁ o Ra = Ra 9 R@ = Ra+,3.

Use (2)-(3) to prove that the rotations in the plane form a commutative group denoted
SO(2).

Problem 6.9. Consider the affine map Rp (4, ,q,) in R? given by

Y1 cosf —sinf\ [ ay
= . + :
Yo sinf  cos# T2 as
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(1) Prove that if 0 # k27, with k € Z, then Ry 4, 4,) has a unique fixed point (c1,c2),
that is, there is a unique point (¢, ¢o) such that

C1\ C1
(02) - RG,(al,ag) (CQ) )
and this fixed point is given by

a) 1 cos(m/2 —0/2) —sin(n/2—60/2)\ (a;
c2)  2sin(A/2) \sin(7/2 —0/2) cos(m/2 —6/2) as )’
(2) In this question we still assume that 0 # k2w, with & € Z. By translating the
coordinate system with origin (0, 0) to the new coordinate system with origin (cy, ¢o), which

means that if (z1,29) are the coordinates with respect to the standard origin (0,0) and if
(x), x}) are the coordinates with respect to the new origin (cy, ¢2), we have

/
$1:$1+Cl

/
$2:$2+C2

and similarly for (yi,y2) and (v, v5), then show that

51 xq
=R a1,a
() - (2)
AN T
(ya) — () |

Conclude that with respect to the new origin (¢, ¢;), the affine map Ry (4, q,) becomes
the rotation Ry. We say that Ry (q, q,) is a rotation of center (cy, ca).

becomes

(3) Use Matlab to show the action of the affine map Ry (4, 4,) On a simple figure such as a
triangle or a rectangle, for § = /3 and various values of (a1, az). Display the center (ci, ca)
of the rotation.

What kind of transformations correspond to 6 = k27, with k € Z?

(4) Prove that the inverse of Ry (4, q,) is of the form R_g 4, 4,), and find (b1, bs) in terms
of 6 and (ay, as).

(5) Given two affine maps R, (4, .4,) and Rg (5, ,), Prove that
R/B,(bl,bz) © Ra,(al,ag) = RO&+,37(151,752)
for some (t1,ts), and find (¢1,t3) in terms of S, (aq,as) and (by, bs).

Even in the case where (a1, a2) = (0,0), prove that in general

R (b,,by) © RBa # Ra 0 Rp (5, ,)-
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Use (4)-(5) to show that the affine maps of the plane defined in this problem form a
nonabelian group denoted SE(2).

Prove that Rg s, b,) © Ra,(a1,a2) 15 DOt a translation (possibly the identity) iff o+ 3 # k2,
for all k € Z. Find its center of rotation when (ay,as) = (0,0).

If o+ 3 = k2, then Rg (5, p,) © Ra,(ay,a0) 1 @ pure translation. Find the translation vector
Of R57(b17b2) o RO&7(G1,G2)'

Problem 6.10. (Affine subspaces) A subset A of R" is called an affine subspace if either
A = 0, or there is some vector a € R" and some subspace U of R" such that

A=a+U={a+u|ueU}

We define the dimension dim(.A) of A as the dimension dim(U) of U.
(H)If A=a+U, whyisae A?

What are affine subspaces of dimension 07 What are affine subspaces of dimension 1
(begin with R?)? What are affine subspaces of dimension 2 (begin with R3)?

Prove that any nonempty affine subspace is closed under affine combinations.

(2) Prove that if A = a + U is any nonempty affine subspace, then A = b+ U for any
be A

(3) Let A be any nonempty subset of R" closed under affine combinations. For any
a € A, prove that
U,={z—acR"|ze A}

is a (linear) subspace of R" such that
A=a+U,.

Prove that U, does not depend on the choice of a € A; that is, U, = U, for all a,b € A. In
fact, prove that
U =U={y—zeR"|z,yc A}, forallac A,

and so
A=a+U, foranyacA.

Remark: The subspace U is called the direction of A.

(4) Two nonempty affine subspaces A and B are said to be parallel iff they have the same
direction. Prove that that if A # B and A and B are parallel, then AN B = ().

Remark: The above shows that affine subspaces behave quite differently from linear sub-
spaces.
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Problem 6.11. (Affine frames and affine maps) For any vector v = (vy,...,v,) € R, let
v € R™! be the vector © = (vy,...,v,,1). Equivalently, v = (0y,...,0,41) € R is the
vector defined by

~ {vi if1<i<n,

Vi = e
1 ifi=n+1
(1) For any m + 1 vectors (ug, uq, ..., un,) with u; € R™ and m < n, prove that if the m
vectors (u; — ug, . .., Uy, — Ug) are linearly independent, then the m + 1 vectors (uo, . . ., Up,)

are linearly independent.

(2) Prove that if the m + 1 vectors (4o, ..., u,) are linearly independent, then for any
choice of i, with 0 < i < m, the m vectors u; — u; for j € {0,...,m} with j —i # 0 are
linearly independent.

Any m + 1 vectors (ug, uy, . .., Uy,) such that the m + 1 vectors (4o, ..., U,,) are linearly
independent are said to be affinely independent.

From (1) and (2), the vector (ug, u1, . . ., uy,) are affinely independent iff for any any choice
of 4, with 0 < ¢ < m, the m vectors u; — u; for j € {0,...,m} with j — i # 0 are linearly
independent. If m = n, we say that n + 1 affinely independent vectors (ug, u1, ..., u,) form
an affine frame of R™.

(3) if (ug,uq,...,uy,) is an affine frame of R™, then prove that for every vector v € R™,
there is a unique (n+ 1)-tuple (Ao, A1, ..., \p) € R™™ with \g+ Ay + - -+ )\, = 1, such that

v = )\0U0+>\1U1+"'+/\nun.

The scalars (Ao, A1, ..., \,) are called the barycentric (or affine) coordinates of v w.r.t. the
affine frame (ug, u1, ..., uy).
If we write e; = u; — ug, for i = 1,...,n, then prove that we have

v =g+ Aey + -+ Apey,

and since (e, ..., e,) is a basis of R” (by (1) & (2)), the n-tuple (A, ..., \,) consists of the

standard coordinates of v — ug over the basis (ey,...,e,).
Conversely, for any vector ug € R™ and for any basis (eq, ..., e,) of R™ let u; = uy + €;
fori =1,...,n. Prove that (ug,u1,...,u,) is an affine frame of R", and for any v € R", if

UV =1Up+ X161+ + Tpen,
with (z1,...,2,) € R" (unique), then
v=(1— (214 - +z,))uo + x1u1 + - + Tply,

so that (1 —(z1+---+ax)), 21, -+ ,x,), are the barycentric coordinates of v w.r.t. the affine
frame (ug, w1, ..., up).
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The above shows that there is a one-to-one correspondence between affine frames (uy, . . .,
uy,) and pairs (ug, (e1,...,e,)), with (eq,...,e,) a basis. Given an affine frame (uo, ..., u,),
we obtain the basis (eq,. .., e,) with e; = u; — ug, for ¢ = 1, ..., n; given the pair (u, (e1, .. .,
en)) where (eq,...,e,) is a basis, we obtain the affine frame (uo, ..., u,), with u; = ug + €;,
for 2 =1,...,n. There is also a one-to-one correspondence between barycentric coordinates
w.r.t. the affine frame (uo,...,u,) and standard coordinates w.r.t. the basis (e1,...,e,).
The barycentric cordinates (Mg, A1,...,A,) of v (with \g + Ay + -+ + A\, = 1) yield the
standard coordinates (Aq,...,\,) of v — uyg; the standard coordinates (z1,...,z,) of v — ug
yield the barycentric coordinates (1 — (z1 + -+ + xy), 21, ..., x,) of v.

(4) Recall that an affine map is a map f: E' — F between vector spaces that preserves
affine combinations; that is,

/ (Z )\iui) = Z Aif(ui)a

for all u;...,u, € E and all \; € K such that Y ;" \; = 1.

Let (ug, ..., u,) be any affine frame in R™ and let (v, ..., v,) be any vectors in R™. Prove
that there is a unique affine map f: R” — R™ such that

flu)=v;, 1=0,...,n.

(5) Let (ao,-..,a,) be any affine frame in R™ and let (b, ...,b,) be any n + 1 points in
R™. Prove that there is a unique (n + 1) x (n + 1) matrix

B w
=)
corresponding to the unique affine map f such that

f((li):bi7 i:(],...,n,

in the sense that N
Aﬁl:b“ izO,...,n,

and that A is given by
A= (30 Dy 3n> (G0 @ - )"

Make sure to prove that the bottom row of A is (0,...,0,1).

In the special case where (ay,...,a,) is the canonical affine frame with a; = e;4; for
i=0,...,n—1and a, = (0,...,0) (where e; is the ith canonical basis vector), show that
10 --- 00

01

S

Q)

o

Q)

=

)

3)

SN—

I

O...
= = O o
_ o o O

—_
—_
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and

~ ~ ~ \—1
(ao ay N an) =

—_
o O O
_— o o OO

1 =1 -+ =1

For example, when n = 2, if we write b; = (x;,y;), then we have

T, Ty T3 1 0 O T1 — X3 Xg— T3 I3
A=y v us 0 L O)=1wvi—vys yv2—9Ys U3
1 1 1 -1 -1 1 0 0 1

(6) Recall that a nonempty affine subspace A of R™ is any nonempty subset of R" closed
under affine combinations. For any affine map f: R” — R™, for any affine subspace A of
R™, and any affine subspace B of R™, prove that f(.A) is an affine subspace of R™, and that
f~YB) is an affine subspace of R".



Chapter 7

Determinants

In this chapter all vector spaces are defined over an arbitrary field K. For the sake of
concreteness, the reader may safely assume that K = R.

7.1 Permutations, Signature of a Permutation

This chapter contains a review of determinants and their use in linear algebra. We begin
with permutations and the signature of a permutation. Next, we define multilinear maps
and alternating multilinear maps. Determinants are introduced as alternating multilinear
maps taking the value 1 on the unit matrix (following Emil Artin). It is then shown how
to compute a determinant using the Laplace expansion formula, and the connection with
the usual definition is made. It is shown how determinants can be used to invert matrices
and to solve (at least in theory!) systems of linear equations (the Cramer formulae). The
determinant of a linear map is defined. We conclude by defining the characteristic polynomial
of a matrix (and of a linear map) and by proving the celebrated Cayley-Hamilton theorem
which states that every matrix is a “zero” of its characteristic polynomial (we give two proofs;
one computational, the other one more conceptual).

Determinants can be defined in several ways. For example, determinants can be defined
in a fancy way in terms of the exterior algebra (or alternating algebra) of a vector space.
We will follow a more algorithmic approach due to Emil Artin. No matter which approach
is followed, we need a few preliminaries about permutations on a finite set. We need to
show that every permutation on n elements is a product of transpositions, and that the
parity of the number of transpositions involved is an invariant of the permutation. Let
[n] ={1,2...,n}, where n € N, and n > 0.

Definition 7.1. A permutation on n elements is a bijection 7: [n] — [n]. When n = 1, the
only function from [1] to [1] is the constant map: 1+ 1. Thus, we will assume that n > 2.
A transposition is a permutation 7: [n] — [n] such that, for some i < j (with 1 <1i < j <mn),
T(i) = j, 7(j) = i, and 7(k) = k, for all & € [n] — {i,5}. In other words, a transposition
exchanges two distinct elements i, j € [n]. A cyclic permutation of order k (or k-cycle) is a

205
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permutation o: [n] — [n] such that, for some sequence (i1, s, ..., %) of distinct elements of
[n] with 2 < k < n,

U(i1> = 7;2, U(iz) = ig, ce ,U(ik_l) = ik, O'(Zk) = il,

and o(j) = j, for j € [n] —{i1,...,ix}. Theset {i,..., i} is called the domain of the cyclic
permutation, and the cyclic permutation is usually denoted by (i1 i3 ... i).

If 7 is a transposition, clearly, 7 o 7 = id. Also, a cyclic permutation of order 2 is a
transposition, and for a cyclic permutation o of order k, we have ¢ = id. Clearly, the
composition of two permutations is a permutation and every permutation has an inverse
which is also a permutation. Therefore, the set of permutations on [n] is a group often
denoted &,,. It is easy to show by induction that the group &,, has n! elements. We will
also use the terminology product of permutations (or transpositions), as a synonym for
composition of permutations.

A permutation ¢ on n elements, say o(i) = k; for i = 1,...,n, can be represented in
functional notation by the 2 x n array

known as Cauchy two-line notation. For example, we have the permutation o denoted by
1 23 456
2 4 36 5 1)

A more concise notation often used in computer science and in combinatorics is to rep-
resent a permutation by its image, namely by the sequence

o(1) a(2) --- a(n)

written as a row vector without commas separating the entries. The above is known as
the one-line notation. For example, in the one-line notation, our previous permutation o is
represented by

24365 1.

The reason for not enclosing the above sequence within parentheses is avoid confusion with
the notation for cycles, for which is it customary to include parentheses.

The following proposition shows the importance of cyclic permutations and transposi-
tions.

Proposition 7.1. For every n > 2, for every permutation m: [n] — [n], there is a partition
of [n] into r subsets called the orbits of 7w, with 1 < r < n, where each set J in this partition
is either a singleton {i}, or it is of the form

J = {i,n(i),7*@),..., 7" (i)},
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where r; is the smallest integer, such that, 7" (i) =1 and 2 < r; < n. If 7w is not the identity,
then it can be written in a unique way (up to the order) as a composition T = o1 0...0 0
of cyclic permutations with disjoint domains, where s is the number of orbits with at least
two elements. Every permutation m: [n] — [n| can be written as a nonempty composition of
transpositions.

Proof. Consider the relation R, defined on [n] as follows: iR, j iff there is some k > 1 such
that j = 7%(i). We claim that R, is an equivalence relation. Transitivity is obvious. We
claim that for every i € [n], there is some least r (1 < r < n) such that 7" (i) = i.

Indeed, consider the following sequence of n + 1 elements:

(i, 7(i), 7*(0),...,7"(i)).

Since [n] only has n distinct elements, there are some h, k with 0 < h < k < n such that

and since 7 is a bijection, this implies 77" (i) = i, where 0 < k — h < n. Thus, we proved
that there is some integer m > 1 such that 7™ (i) = 4, so there is such a smallest integer r.

Consequently, R, is reflexive. It is symmetric, since if j = 7%(i), letting r be the least
r > 1 such that 7" (i) = 4, then

i = 77(0) = 20k (0) = 7).

Now, for every ¢ € [n], the equivalence class (orbit) of i is a subset of [n], either the singleton
{i} or a set of the form

J = {i,n(i),7*(),..., 7" (i)},

where 7; is the smallest integer such that 77(i) = ¢ and 2 < r; < n, and in the second case,
the restriction of 7 to J induces a cyclic permutation o;, and m = g, 0...00,, where s is the
number of equivalence classes having at least two elements.

For the second part of the proposition, we proceed by induction on n. If n = 2, there are
exactly two permutations on [2], the transposition 7 exchanging 1 and 2, and the identity.
However, idy = 72. Now, let n > 3. If w(n) = n, since by the induction hypothesis, the
restriction of m to [n — 1] can be written as a product of transpositions, 7 itself can be
written as a product of transpositions. If m(n) = k # n, letting 7 be the transposition such
that 7(n) = k and 7(k) = n, it is clear that 7 o 7 leaves n invariant, and by the induction
hypothesis, we have 7 om = 7,, o ... o7y for some transpositions, and thus

T=TOTyRO...0Ty,

a product of transpositions (since 7o 7 = id,,). ]
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Remark: When 7 = id,, is the identity permutation, we can agree that the composition of
0 transpositions is the identity. The second part of Proposition 7.1 shows that the transpo-
sitions generate the group of permutations &,,.

In writing a permutation 7 as a composition m = oy o ... o g, of cyclic permutations, it
is clear that the order of the o; does not matter, since their domains are disjoint. Given
a permutation written as a product of transpositions, we now show that the parity of the
number of transpositions is an invariant.

Definition 7.2. For every n > 2, since every permutation 7: [n] — [n] defines a partition
of r subsets over which 7 acts either as the identity or as a cyclic permutation, let €(7),
called the signature of m, be defined by e(m) = (—1)""", where r is the number of sets in the
partition.

If 7 is a transposition exchanging ¢ and 7, it is clear that the partition associated with
T consists of n — 1 equivalence classes, the set {i,7}, and the n — 2 singleton sets {k}, for
k € [n] — {i,7}, and thus, (1) = (=1)"" "D = (=)' = —1.

Proposition 7.2. For every n > 2, for every permutation 7: [n|] — [n], for every transpo-
sititon T, we have
e(tom) = —e(m).

Consequently, for every product of transpositions such that @ = 7, o ... o1y, we have

which shows that the parity of the number of transpositions is an invariant.

Proof. Assume that 7(i) = j and 7(j) = 4, where ¢ < j. There are two cases, depending
whether ¢ and j are in the same equivalence class J; of R, or if they are in distinct equivalence
classes. If 7 and j are in the same class J;, then if

Jp= {1y oy ipy gy Tk )y
where 7, = ¢ and 7, = j, since

(7 (ip))) = 7(ip) = 7(i) = j =g

and

T(m(ig—1)) = 7(iq) = 7(j) =i = i,
it is clear that J; splits into two subsets, one of which is {4, ...,4,-1}, and thus, the number
of classes associated with 7o isr+1, and e(tom) = (=1)"""! = —(=1)"" = —¢(m). If ¢

and j are in distinct equivalence classes J; and J,,,, say

(i1, iy, in}
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and
{jla <. 7jq>' . ]k}?

where 4, = ¢ and j, = j, since

and

T(W(ﬂ'_l(jq))) =7(jg) =7(j) =i = ip,
we see that the classes J; and J,,, merge into a single class, and thus, the number of classes
associated with Tomisr — 1, and e(tom) = (=1)" " = —(=1)"" = —¢(7).

Now, let 7 = 7, o ... o7 be any product of transpositions. By the first part of the
proposition, we have

since €(11) = —1 for a transposition. O

Remark: When 7 = id,, is the identity permutation, since we agreed that the composition
of 0 transpositions is the identity, it it still correct that (—1)° = €(id) = +1. From the
proposition, it is immediate that e(n’ o 7) = €(n’)e(r). In particular, since 7!
get e(m71) = e(m).

ow =id,, we

We can now proceed with the definition of determinants.

7.2 Alternating Multilinear Maps

First we define multilinear maps, symmetric multilinear maps, and alternating multilinear
maps.

Remark: Most of the definitions and results presented in this section also hold when K is
a commutative ring and when we consider modules over K (free modules, when bases are

needed).
Let Ey,..., E,, and F, be vector spaces over a field K, where n > 1.

Definition 7.3. A function f: E; x ... x E, — F is a multilinear map (or an n-linear
map) if it is linear in each argument, holding the others fixed. More explicitly, for every i,
1<i<n,forallxy € Fy,...,2; 1 € By, 2,01 € Eyq,..., 2, € E,, forall x,y € F;, for all
A€ K,

fley, o xi, x4y, Ty, ) = f(T1, 00 T, T, Ty, e T)
+ f(l’l, e L1, Y, i1y - - ,ZL’n>,

f(xb s 7xi—l>)‘x>$i+1a tee 7$n) = /\f(xb ey L1, Xy Ty 1y - - - 7$n)-
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When F = K, we call f an n-linear form (or multilinear form). If n > 2 and E; =

Ey,=...=FE,, an n-linear map f: E X ... x B — Fis called symmetric, if f(z1,...,2,) =
f(@ra), .., Tx(n)) for every permutation 7w on {1,...,n}. Ann-linearmap f: Ex...xE — F
is called alternating, if f(z1,...,2,) = 0 whenever z; = x; 1 for some i, 1 <i <n—1 (in

other words, when two adjacent arguments are equal). It does no harm to agree that when
n = 1, a linear map is considered to be both symmetric and alternating, and we will do so.

When n = 2, a 2-linear map f: Fy X Fy — F'is called a bilinear map. We have already
seen several examples of bilinear maps. Multiplication -: K x K — K is a bilinear map,
treating K as a vector space over itself.

The operation (—, —): E* x £ — K applying a linear form to a vector is a bilinear map.

Symmetric bilinear maps (and multilinear maps) play an important role in geometry
(inner products, quadratic forms) and in differential calculus (partial derivatives).

A bilinear map is symmetric if f(u,v) = f(v,u), for all u,v € E.

Alternating multilinear maps satisfy the following simple but crucial properties.

Proposition 7.3. Let f: Ex...x E — F be an n-linear alternating map, with n > 2. The
following properties hold:

(1)

f( vy Ljy Lijg 1y - - ) = —f( vy Lit1y Loy - - )

(2)
f(...,xi,...,xj,...):(),

where v; = x;, and 1 <i < j <n.

(3)

where 1 <1 < j <n.

(4)
floozy,.)=f(. zi+ Az, ...,

for any A € K, and where i # j.

Proof. (1) By multilinearity applied twice, we have

fOo it izt o, ) = fm )+ 0 20T, )
+ 0 i) f s T, T, ),

and since f is alternating, this yields

0:f(...,xi,xiJrl’...)+f(...,$i+1,$i’...)’
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that is, f(..., 2, Tic1,--.) = —f( -, Tiv1, iy - - ).

(2) If z; = x; and 7 and j are not adjacent, we can interchange x; and z;44, and then z;
and x;19, etc, until x; and x; become adjacent. By (1),

flomi o xy, ) =€ef(o. @iz, 0),
where € = +1 or —1, but f(...,z;,2z;,...) =0, since z; = z;, and (2) holds.

(3) follows from (2) as in (1). (4) is an immediate consequence of (2). O

Proposition 7.3 will now be used to show a fundamental property of alternating multilin-
ear maps. First we need to extend the matrix notation a little bit. Let E be a vector space
over K. Given an n x n matrix A = (a;;) over K, we can define a map L(A): E" — E™ as
follows:

L(A)1(u) = ajquy + -+ - + a1 pn,

L<A)n<u> = Qp1UL + 00 F Gy Un,

for all uy,...,u, € E and with v = (u1,...,u,). It is immediately verified that L(A) is
linear. Then given two n x n matrices A = (a;;) and B = (b;;), by repeating the calculations
establishing the product of matrices (just before Definition 3.12), we can show that

L(AB) = L(A) o L(B).

It is then convenient to use the matrix notation to describe the effect of the linear map L(A),
as

L<A>1<U) a1 Q12 ... Qin U1

L(A)Q(u) B 21 Q29 ... Qa2p U9

L(A),(u) An1 Qna .. Qpn Uy,
Lemma 7.4. Let f: Ex ... x E — F be an n-linear alternating map. Let (uq,...,u,) and
(v1,...,0,) be two families of n vectors, such that,

V1 = Q11U + -+ Ap iUy,

Up = Q1pU1 + «*° + Gpply.

Equivalently, letting
11 ai2 ... Qin
21 Q29 ... QA9pn

Ap1 QApo ... QApn
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assume that we have

U1 U1

Vg 4T Ug

Up Up
Then,

f(vh < 7U'n) = ( Z 6<7T>a7r(1)1 T aﬂ'(n)n)f(ub <o 7un)7
eSS,
where the sum ranges over all permutations ™ on {1,...,n}.
Proof. Expanding f(vy,...,v,) by multilinearity, we get a sum of terms of the form
Ar(1)1 " Or(n)nf (Ur(1)s - - -5 Un(m)),

for all possible functions 7: {1,...,n} — {1,...,n}. However, because f is alternating, only

the terms for which 7 is a permutation are nonzero. By Proposition 7.1, every permutation
7 is a product of transpositions, and by Proposition 7.2, the parity e(m) of the number of
transpositions only depends on 7. Then applying Proposition 7.3 (3) to each transposition
in 7, we get

Ar(1)1 " n(mynf (Un(1)s s Un(m)) = €(T) Ay 1 QrynSf (U1, .. Up).
Thus, we get the expression of the lemma. O

For the case of n = 2, the proof details of Lemma 7.4 become

f(u,v2) = f
=f
f

a11U1 + G1U2, A19U1 + A22Us)
aj g + ag Uz, arpuy) + f(anur + agus, agus)

anui, a2ur) + flanus, arour) + fanua, asus) + fazusg, axus)

~—~~ I~

= a21a12f(u2, U1)a11a22f(7~b1, U2)

= (CL11G22 - a12a22) f(ul, Uz)-

Hopefully the reader will recognize the quantity ai1ass — aj2a99. It is the determinant of the
2 X 2 matrix
A= a1 G12 ‘
G21 (22
This is no accident. The quantity

det(A) = Z €(T)ar1y1 " Gr(nyn

7'('6671
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is in fact the value of the determinant of A (which, as we shall see shortly, is also equal to the
determinant of A"). However, working directly with the above definition is quite awkward,
and we will proceed via a slightly indirect route

Remark: The reader might have been puzzled by the fact that it is the transpose matrix
AT rather than A itself that appears in Lemma 7.4. The reason is that if we want the generic
term in the determinant to be

E(W)aﬂ(l) 1" Ar(n)n,
where the permutation applies to the first index, then we have to express the v;s in terms
of the u;s in terms of AT as we did. Furthermore, since
Vj = a Uy + - +a,~jui + - +an]~un,
we see that v; corresponds to the jth column of the matrix A, and so the determinant is

viewed as a function of the columns of A.

The literature is split on this point. Some authors prefer to define a determinant as we
did. Others use A itself, which amounts to viewing det as a function of the rows, in which
case we get the expression

Z 6(0')@10(1) *Qno(n)-

geG,

Corollary 7.7 show that these two expressions are equal, so it doesn’t matter which is chosen.
This is a matter of taste.

7.3 Definition of a Determinant

Recall that the set of all square n x n-matrices with coefficients in a field K is denoted by
M, (K).

Definition 7.4. A determinant is defined as any map
D: M, (K)—= K,
which, when viewed as a map on (K™)", i.e., a map of the n columns of a matrix, is n-linear
alternating and such that D([,,) = 1 for the identity matrix I,,. Equivalently, we can consider
a vector space E of dimension n, some fixed basis (ey, ..., e,), and define
D:E"— K

as an n-linear alternating map such that D(ey,...,e,) = 1.
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First we will show that such maps D exist, using an inductive definition that also gives
a recursive method for computing determinants. Actually, we will define a family (D,,),>1
of (finite) sets of maps D: M, (K) — K. Second we will show that determinants are in fact
uniquely defined, that is, we will show that each D,, consists of a single map. This will show
the equivalence of the direct definition det(A) of Lemma 7.4 with the inductive definition
D(A). Finally, we will prove some basic properties of determinants, using the uniqueness
theorem.

Given a matrix A € M,,(K'), we denote its n columns by A',... A" In order to describe
the recursive process to define a determinant we need the notion of a minor.

Definition 7.5. Given any n xn matrix with n > 2, for any two indices i, j with 1 < 14,7 < n,
let A;; be the (n — 1) x (n — 1) matrix obtained by deleting Row ¢ and Column j from A
and called a minor:

X
X
X X X X X X X
Ajj = X
X
X
X
For example, if
2 -1 0 0 0
-1 2 -1 0 0
A= o -1 2 -1 0
0 o -1 2 -1
o 0 0 -1 2
then
2 -1 0 0
0 -1 -1 0
As=10 o 2 1
0o 0 -1 2

Definition 7.6. For every n > 1, we define a finite set D,, of maps D: M, (K) — K
inductively as follows:

When n = 1, D; consists of the single map D such that, D(A) = a, where A = (a), with
a € K.

Assume that D,_; has been defined, where n > 2. Then D,, consists of all the maps D
such that, for some 7, 1 <17 <n,
D(A) = (=)™ aj D(Ai1) + -+ (=1) i, D(A; ),
where for every j, 1 < j < n, D(A;;) is the result of applying any D in D,_; to the minor
A

ije
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@ We confess that the use of the same letter D for the member of D,, being defined, and
for members of D,,_;, may be slightly confusing. We considered using subscripts to
distinguish, but this seems to complicate things unnecessarily. One should not worry too
much anyway, since it will turn out that each D,, contains just one map.

Each (—1)"" D(A4;;) is called the cofactor of a;;, and the inductive expression for D(A)
is called a Laplace expansion of D according to the i-th Row. Given a matrix A € M, (K),
each D(A) is called a determinant of A.

We can think of each member of D,, as an algorithm to evaluate “the” determinant of A.
The main point is that these algorithms, which recursively evaluate a determinant using all
possible Laplace row expansions, all yield the same result, det(A).

We will prove shortly that D(A) is uniquely defined (at the moment, it is not clear that
D,, consists of a single map). Assuming this fact, given a n x n-matrix A = (a;;),

ajpy a1 ... QAip

21 Q29 ... QdA9p
A= . . . . 3

Ap1 Apo2 ... QApn

its determinant is denoted by D(A) or det(A), or more explicitly by

a1 Q12 ... QAin

21 Q29 ... QA2pn
det(A) = | . ]

Ap1 Ap2 ... QApp

Let us first consider some examples.
Example 7.1.
1. When n = 2, if
A= (i Z) :

then by expanding according to any row, we have
D(A) = ad — be.

2. When n = 3, if
aiyp G2 ai3
A= |a1 a2z ass )

azi1 Az Aass
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then by expanding according to the first row, we have

21 Q22
azi1 sz

az1 Q23

2 + a3
azi1 ass

Y

that is,
D(A) = a11(a22a33 - a32a23) - a12(a21a33 - a31a23) + G13(a21a32 - a31a22),
which gives the explicit formula

D(A) = Q11022033 + Q21032013 + A31G12023 — A11A32023 — (21012033 — G3102201 3.

We now show that each D € D, is a determinant (map).

Lemma 7.5. For every n > 1, for every D € D, as defined in Definition 7.6, D is an
alternating multilinear map such that D(I,) = 1.

Proof. By induction on n, it is obvious that D(I,) = 1. Let us now prove that D is
multilinear. Let us show that D is linear in each column. Consider any Column k. Since

D(A) = (=1 a1 D(Ai1) + -+ (1) a; ;D(A;;) + -+ (1) a; , D(A; ),

if 7 # k, then by induction, D(A; ;) is linear in Column k, and a; ; does not belong to Column
k, so (—1)"a;;D(A;;) is linear in Column k. If j = k, then D(A,;) does not depend on
Column k = j, since A, ; is obtained from A by deleting Row 7 and Column j = &, and a;;
belongs to Column j = k. Thus, (—1)"a;;D(A;;) is linear in Column k. Consequently, in
all cases, (—1)"a;;D(A;;) is linear in Column &, and thus, D(A) is linear in Column k.

Let us now prove that D is alternating. Assume that two adjacent columns of A are
equal, say A¥ = AF1 Assume that j # k and j # k + 1. Then the matrix A;; has two
identical adjacent columns, and by the induction hypothesis, D(A;;) = 0. The remaining
terms of D(A) are

(=1)"*a; . D(Aig) + (= 1) a0 D(A; i)

However, the two matrices A;; and A;,.1 are equal, since we are assuming that Columns &
and k + 1 of A are identical and A; is obtained from A by deleting Row ¢ and Column &
while A; ;1 is obtained from A by deleting Row ¢ and Column £+ 1. Similarly, a;, = a;x41,
since Columns k£ and k£ + 1 of A are equal. But then,

(=1 *aikD(Ask) + (1) a1 D(Aigr1) = (1) FaiD(Aig) — (=1)" @, D(Air) = 0.
This shows that D is alternating and completes the proof. O

Lemma 7.5 shows the existence of determinants. We now prove their uniqueness.
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Theorem 7.6. For every n > 1, for every D € D,,, for every matrix A € M,,(K), we have

D(A) = Z 6(71')@”(1)1 *Ar(n)ny

7T€6n

where the sum ranges over all permutations m on {1,...,n}. As a consequence, D,, consists
of a single map for every n > 1, and this map is given by the above explicit formula.

Proof. Consider the standard basis (ey,...,e,) of K", where (e;); = 1 and (e;); = 0, for
J # i. Then each column A7 of A corresponds to a vector v; whose coordinates over the
basis (eq, .. .,e,) are the components of A7, that is, we can write

V1 =aii1e1+ -+ apilp,

Up = G1p€1 + -+ Guppln.

Since by Lemma 7.5, each D is a multilinear alternating map, by applying Lemma 7.4, we
get

D(A) = D(v1, ..., v,) = (Z e(T)an(iy1 - ~a7r(n)n>D(el, e,

7'('6671

where the sum ranges over all permutations 7 on {1,...,n}. But D(ey,...,e,) = D(I,),
and by Lemma 7.5, we have D(I,,) = 1. Thus,

D(A) = Z E(ﬂ-)aﬂ(l)l © Qr(n)n,

71'6671
where the sum ranges over all permutations 7w on {1,...,n}. ]

From now on we will favor the notation det(A) over D(A) for the determinant of a square
matrix.

Remark: There is a geometric interpretation of determinants which we find quite illumi-
nating. Given n linearly independent vectors (uq, ..., u,) in R", the set

P,={Mui+ -+ Xu, |0< )\ <1, 1<i<n}

is called a parallelotope. If n = 2, then P, is a parallelogram and if n = 3, then Pj is a
parallelepiped, a skew box having wuq, us, u3 as three of its corner sides. See Figures 7.1 and
7.2.

Then it turns out that det(uy, ..., u,) is the signed volume of the parallelotope P, (where
volume means n-dimensional volume). The sign of this volume accounts for the orientation

of P, in R™.

We can now prove some properties of determinants.
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0.8
0.6 4
0.4+

0.2

1
u=(1,0)

Figure 7.1: The parallelogram in R spanned by the vectors u; = (1,0) and us = (1, 1).

Corollary 7.7. For every matriz A € M,,(K), we have det(A) = det(AT).

Proof. By Theorem 7.6, we have

det(A) = Z G(W)aw(l) 1 Ar(n)n,

Tl'esn

where the sum ranges over all permutations 7w on {1,...,n}. Since a permutation is invertible,
every product

Qr(1)1 " Qr(n)n
can be rewritten as

A17=1(1) " Gnr—1(n),

and since €(7!) = ¢(m) and the sum is taken over all permutations on {1,...,n}, we have
Z E(ﬂ-)aﬂ(l) 1 Qr(n)n = Z e(a)al o(1) " " Ano(n),
TeES, oe6,

where m and o range over all permutations. But it is immediately verified that

det(AT) = Z €(0)a15(1) " Ano(n)- -

ceS,

A useful consequence of Corollary 7.7 is that the determinant of a matrix is also a multi-
linear alternating map of its rows. This fact, combined with the fact that the determinant of
a matrix is a multilinear alternating map of its columns, is often useful for finding short-cuts
in computing determinants. We illustrate this point on the following example which shows
up in polynomial interpolation.
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19
06-
06
04-

0.2
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Figure 7.2: The parallelepiped in R? spanned by the vectors u; = (1,1,0), uy = (0,1,0), and

Us = (0, O, 1)

Example 7.2. Consider the so-called Vandermonde determinant

1 1 1

I T Tn

2 2 2

V(zy,...,zn) =] 21 22 Zy,
ot bt !

We claim that

Vizy, ... x,) = H (zj — 75),

1<i<j<n

with V(x1,...,2,) = 1, when n = 1. We prove it by induction on n > 1. The case n =1 is
obvious. Assume n > 2. We proceed as follows: multiply Row n — 1 by x; and subtract it
from Row n (the last row), then multiply Row n — 2 by x; and subtract it from Row n — 1,
etc, multiply Row ¢ — 1 by x; and subtract it from row ¢, until we reach Row 1. We obtain
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the following determinant:

1 1 1

O To — Iq Tp — X1
V(l’l,. 7In) =10 ZEQ(Q]Q —Il) l’n(l’n —]}1>

0 20 %(zy— 1) ... 2" (3 —11)

Now expanding this determinant according to the first column and using multilinearity,
we can factor (z; — x1) from the column of index ¢ — 1 of the matrix obtained by deleting
the first row and the first column, and thus

V(mh v 7*7771) = (:UZ - .1’1)(1'3 - :Ul) T (xn - x1>V($2, s 7*%”)?
which establishes the induction step.

Example 7.3. The determinant of upper triangular matrices and more generally of block
matrices that are block upper triangular has a remarkable form. Recall that an n x n matrix
A = (a;;) is upper-triangular if it is of the form

aiy X X X
0 oo X X
A=10 0

that is, a;; = 0 for all ¢ > j, 1 <+¢,57 < n. Using n — 1 times Laplace expansion with respect
to the first column we obain
det(A) = A11A92 * * * Appy-

Similarly, if A is an n x n block matrix which is block upper triangular,

Ay X X o X
0 A22 X X
A=1] 0 0 :

0 0O 0 0 A,
where each A;; is an n; X n; matrix, with ny + - - - +n, = n, each block x above the diagonal

in position (7, 7) for ¢ < j is an n; X n; matrix, and each block in position (i, ) for ¢ > j is
the n; X n; zero matrix, then it can be shown by induction on p > 1 that

det(A) = det(Ay;) det(Agy) - - - det(A,y).
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Lemma 7.4 can be reformulated nicely as follows.

Proposition 7.8. Let f: Ex ... X E — F be an n-linear alternating map. Let (uq, ..., uy,)
and (vi,...,v,) be two families of n vectors, such that

V1 = Q11U + -+ AU,

Up = Qp1Uy + -+ + Appln.

Equivalently, letting

11 Aai2 ... Qin
A _ 21 Q29 ... Q9pn 7
Ap1 QApo ... QApn
assume that we have
U1 Ul
(%) _ 4 U9
U, Up,

Then,
fvr,... v,) =det(A) f(ug, ..., uy).

Proof. The only difference with Lemma 7.4 is that here we are using A" instead of A. Thus,
by Lemma 7.4 and Corollary 7.7, we get the desired result. O]

As a consequence, we get the very useful property that the determinant of a product of
matrices is the product of the determinants of these matrices.

Proposition 7.9. For any two n x n-matrices A and B, we have det(AB) = det(A) det(B).

Proof. We use Proposition 7.8 as follows: let (ej,...,e,) be the standard basis of K™, and
let

w1 €1

W2 €9
) = AB

Wn, €n

Then we get
det(wy, ..., w,) = det(AB) det(ey, ..., e,) = det(AB),
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since det(eq, ...

we get

and since

we get

,en) = 1. Now letting

(%1
(%)

Un

det(vy, ...

wq
W

Wn,

det(wy, . ..

,wy) = det(A) det(vy, . ..

€1
€2

€n

U1
V2

Un
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,Un) = det(B),

,Un) = det(A) det(B). O

It should be noted that all the results of this section, up to now, also hold when K is a
commutative ring and not necessarily a field. We can now characterize when an n x n-matrix

A is invertible in terms of its determinant det(A).

7.4 Inverse Matrices and Determinants

In the next two sections, K is a commutative ring and when needed a field.

Definition 7.7. Let K be a commutative ring. Given a matrix A € M, (K), let A = (b; ;)
be the matrix defined such that

bij = (—1)i+j det(Aji),

the cofactor of a;;. The matrix A is called the adjugate of A, and each matrix A;; is called
a minor of the matrix A.

For example, if

A:

1 1
2 =2
3 3

1
-2
-3
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we have
b = det(An) = | 5, ‘ 12 by = —det(Ay) = — ‘ N ’ 6
b = det(da) = | 1) ‘ — 0 by = —det(Ap) = — ‘ . ' —0
bae = det(Agg) = ; _13 = —6 bog = —det(Asp) = — ‘ ; _12 ' =4
by = det(A) = | 5 o | =12 by = — det(Ay) = - ’ - ‘ —0
bsg = det(Ass) = ; _12 = —4,
we find that Yo
A=10 —6 4
12 0 -4

g% Note the reversal of the indices in
bij = (—1)i+j det(A”)
Thus, A is the transpose of the matrix of cofactors of elements of A.

We have the following proposition.

Proposition 7.10. Let K be a commutative ring. For every matrizx A € M,,(K), we have
AA = AA = det(A)],.
As a consequence, A is invertible iff det(A) is invertible, and if so, A~ = (det(A))*A.

Proof. If A = (b;;) and AA = (¢;;), we know that the entry ¢;; in row i and column j of AA
is
Cij = aitbij+ -+ aikbry + - + ainbnj,

which is equal to
ail(—l)jH det(Aj 1) + -+ am(—l)j+” det(Ajn).

If j = 4, then we recognize the expression of the expansion of det(A) according to the i-th
row:

Cii — det(A) = ai1<—1)i+1 det(A,l) 4+ -4 am(—l)H" det(Am)

If 7 # i, we can form the matrix A’ by replacing the j-th row of A by the i-th row of A.
Now the matrix A;; obtained by deleting row 7 and column £ from A is equal to the matrix
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A’ obtained by deleting row j and column & from A’, since A and A’ only differ by the j-th
row. Thus,
det(A;jx) = det(A},),

and we have
Cij = ain (=1 det(A] ) + -+ + ain(—1)77" det(4],,).

However, this is the expansion of det(A’) according to the j-th row, since the j-th row of A’
is equal to the i-th row of A. Furthermore, since A’ has two identical rows 7 and j, because
det is an alternating map of the rows (see an earlier remark), we have det(A’) = 0. Thus,
we have shown that ¢;; = det(A), and ¢;; = 0, when j # ¢, and so

AA = det(A)I,.
It is also obvious from the definition of A, that
i
Then applying the first part of the argument to A", we have
ATAT = det(AT)I,,
and since det(AT) = det(A), AT = AT, and (AA)T = ATAT, we get
det(A), = ATAT = ATAT = (AA),

that is, N
(AA)T = det(A)1,,

which yields N
AA = det(A)I,,

since I| = I,,. This proves that
AA = AA = det(A),.

As a consequence, if det(A) is invertible, we have A~! = (det(A))*A. Conversely, if A is
invertible, from AA™! = I,,, by Proposition 7.9, we have det(A) det(A™!) = 1, and det(A) is
invertible. O

For example, we saw earlier that

1 1 1 B 12 6 0
A=12 -2 -2 and A=[0 -6 4 |,
3 3 -3 12 0 —4
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and we have
1 1 1 12 6 0

2 =2 =2 0 -6 4 | =24
3 3 -3 12 0 -4

OO =
O = O
_ O O

with det(A) = 24.

When K is a field, an element a € K is invertible iff a # 0. In this case, the second part
of the proposition can be stated as A is invertible iff det(A) # 0. Note in passing that this
method of computing the inverse of a matrix is usually not practical.

7.5 Systems of Linear Equations and Determinants

We now consider some applications of determinants to linear independence and to solving
systems of linear equations. Although these results hold for matrices over certain rings, their
proofs require more sophisticated methods. Therefore, we assume again that K is a field
(usually, K =R or K = C).

Let A be an n X n-matrix, x a column vectors of variables, and b another column vector,
and let A',..., A" denote the columns of A. Observe that the system of equations Ax = b,

a1 Aaiz2 ... Qin Iy by
21 Q29 ... QdA2p i) b2
an1 QApno ... Gpp Tn b,

is equivalent to
o A+ A 4+ 2, A =),

since the equation corresponding to the i-th row is in both cases

CL¢1CE1+"'+a¢jl‘j+"'+ainl‘n:bi.

First we characterize linear independence of the column vectors of a matrix A in terms
of its determinant.

Proposition 7.11. Given an n x n-matriz A over a field K, the columns A',... A" of
A are linearly dependent iff det(A) = det(A',..., A") = 0. FEquivalently, A has rank n iff
det(A) # 0.

Proof. First assume that the columns A' ..., A" of A are linearly dependent. Then there
are xi,...,xr, € K, such that

x1A1+...+xjAj+...+an”:07
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where x; # 0 for some j. If we compute
det(A', ..., ;A 4+ A+ -+, AN AT = det(AY 0,0, AT) =0,

where 0 occurs in the j-th position. By multilinearity, all terms containing two identical
columns AF for k # j vanish, and we get

det(A', ... ;A + -+ A+, A AT = aydet(AY L AT) = 0.

Since x; # 0 and K is a field, we must have det(A',... A") = 0.

Conversely, we show that if the columns A', ..., A" of A are linearly independent, then
det(A',...  A") # 0. If the columns A’ ... A™ of A are linearly independent, then they
form a basis of K™, and we can express the standard basis (eq,...,e,) of K™ in terms of
Al ... A" Thus, we have

€1 bl 1 b12 e bln Al
€2 bgl b22 . bgn A2
€n bnl bng Ce bnn A"

for some matrix B = (b;;), and by Proposition 7.8, we get
det(eq,...,e,) = det(B)det(A, ... A™),

and since det(ey,...,e,) = 1, this implies that det(A',..., A") # 0 (and det(B) # 0). For
the second assertion, recall that the rank of a matrix is equal to the maximum number of
linearly independent columns, and the conclusion is clear. O

We now characterize when a system of linear equations of the form Az = b has a unique
solution.

Proposition 7.12. Given an n x n-matriz A over a field K, the following properties hold:

(1) For every column vector b, there is a unique column vector x such that Az = b iff the
only solution to Ax = 0 is the trivial vector x = 0, iff det(A) # 0.

(2) If det(A) # 0, the unique solution of Ax = b is given by the expressions

o det(Al L AT b AT A
I det(AL, ... AT, Aj AT An)

known as Cramer’s rules.

(3) The system of linear equations Ax = 0 has a nonzero solution iff det(A) = 0.
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Proof. (1) Assume that Az = b has a single solution zy, and assume that Ay = 0 with y # 0.
Then,
A(zg+y) = Axg + Ay = Axg + 0 = b,

and xg+ y # xg is another solution of Az = b, contradicting the hypothesis that Ax = b has
a single solution zy. Thus, Az = 0 only has the trivial solution. Now assume that Az =0
only has the trivial solution. This means that the columns A' ..., A" of A are linearly
independent, and by Proposition 7.11, we have det(A) # 0. Finally, if det(A) # 0, by
Proposition 7.10, this means that A is invertible, and then for every b, Ax = b is equivalent
to x = A~'b, which shows that Az = b has a single solution.

(2) Assume that Az = b. If we compute
det(A', ... oA+ A, AT AT = det(AY b, AT,

where b occurs in the j-th position, by multilinearity, all terms containing two identical
columns A* for k # j vanish, and we get

xjdet(AL, ... A"y = det(AL, ... AT b AT A",

for every j, 1 < j < n. Since we assumed that det(A) = det(A',..., A") # 0, we get the
desired expression.

(3) Note that Az = 0 has a nonzero solution iff A ... A" are linearly dependent (as
observed in the proof of Proposition 7.11), which, by Proposition 7.11, is equivalent to
det(A) = 0. O

As pleasing as Cramer’s rules are, it is usually impractical to solve systems of linear
equations using the above expressions. However, these formula imply an interesting fact,
which is that the solution of the system Az = b are continuous in A and b. If we assume that
the entries in A are continuous functions a;;(¢) and the entries in b are are also continuous
functions b;(t) of a real parameter ¢, since determinants are polynomial functions of their
entries, the expressions

o det(Al L AL AT AT
%(t) = det(AL, ..., AT, Ai Ait1,___ An)

are ratios of polynomials, and thus are also continuous as long as det(A(t)) is nonzero.
Similarly, if the functions a;;(t) and b;(¢) are differentiable, so are the x;(t).

7.6 Determinant of a Linear Map

Given a vector space F of finite dimension n, given a basis (uy, ..., u,) of E, for every linear
map f: E — FE, if M(f) is the matrix of f w.r.t. the basis (ui,...,u,), we can define
det(f) = det(M(f)). If (vy,...,v,) is any other basis of E, and if P is the change of basis
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matrix, by Corollary 4.6, the matrix of f with respect to the basis (v, ..., v,) is P71M(f)P.
By Proposition 7.9, we have

det(P'M(f)P) = det(P~ ") det(M(f)) det(P) = det(P~1) det(P) det(M(f)) = det(M(f)).
Thus, det(f) is indeed independent of the basis of E.

Definition 7.8. Given a vector space E of finite dimension, for any linear map f: £ — F,
we define the determinant det(f) of f as the determinant det(M(f)) of the matrix of f in
any basis (since, from the discussion just before this definition, this determinant does not
depend on the basis).

Then we have the following proposition.

Proposition 7.13. Given any vector space E of finite dimension n, a linear map f: E — E
is invertible iff det(f) # 0.

Proof. The linear map f: E — E is invertible iff its matrix M (f) in any basis is invertible
(by Proposition 4.2), iff det(M(f)) # 0, by Proposition 7.10. O

Given a vector space of finite dimension n, it is easily seen that the set of bijective linear
maps f: E — F such that det(f) = 1 is a group under composition. This group is a
subgroup of the general linear group GL(FE). It is called the special linear group (of E), and
it is denoted by SL(F), or when E = K", by SL(n, K), or even by SL(n).

7.7 The Cayley—Hamilton Theorem

We next discuss an interesting and important application of Proposition 7.10, the Cayley—
Hamilton theorem. The results of this section apply to matrices over any commutative ring
K. First we need the concept of the characteristic polynomial of a matrix.

Definition 7.9. If K is any commutative ring, for every n x n matrix A € M, (K), the
characteristic polynomial P4(X) of A is the determinant

Pa(X) = det(XT — A).

The characteristic polynomial P4(X) is a polynomial in K[X], the ring of polynomials
in the indeterminate X with coefficients in the ring K. For example, when n = 2, if

a b
(o)

PA(X):‘X—G —b

then

— Y2 _ —
. X—d‘_X (a4 d)X + ad — bc.
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We can substitute the matrix A for the variable X in the polynomial P4(X), obtaining a

matriz Py. If we write
PA(X) = X"+ X"+ ey,

then
Py=A"+c A"+ 4, 1.

We have the following remarkable theorem.

Theorem 7.14. (Cayley-Hamilton) If K is any commutative ring, for every n x n matriz
A e M, (K), if we let
PiAX)=X"4+c X"+t

be the characteristic polynomial of A, then
Pi=A"+c A" '+ .4, ] =0.

Proof. We can view the matrix B = X1 — A as a matrix with coefficients in the polynomial
ring K[X], and then we can form the matrix B which is the transpose of the matrix of
cofactors of elements of B. Each entry in B is an (n — 1) x (n — 1) determinant, and thus a
polynomial of degree a most n — 1, so we can write B as

B=X""By+ X" 2B+ -+ By_1,

for some n x n matrices By, ..., B,_1 with coefficients in K. For example, when n = 2, we
have

= () (U0 ) = D)+ (L),
By Proposition 7.10, we have
BB = det(B)I = Py(X)I.
On the other hand, we have
BB = (XI—A)(X""'By+ X" 2By +---+ X" 77'B; +---+ B,_y),
and by multiplying out the right-hand side, we get
BB =X"Do+ X" 'Dy+---+X"D; + -+ D,,

with

Do = By

D, =By — ABy

anl = anl - Aan2
Dn - _ABn—l-
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Since
PAX) = (X" 4+ X" oo e,

the equality
X"Do+ X" "D+ 4+ D= (X"+ . X" 4o eI

is an equality between two matrices, so it requires that all corresponding entries are equal,
and since these are polynomials, the coefficients of these polynomials must be identical,
which is equivalent to the set of equations

[ =B,
01[: Bl —ABD

CJI = B] — ABj,l

Cn—ll = Bn—l - ABn—2
cnl = _Aanb

for all 7, with 1 < j <n — 1. If, as in the table below,

A" = A"B,
ClAn_l = An_l(Bl — ABo)

CjAnij = Anij (B] - Aijl)

Cn—lA = A(Bn—l - ABn—Q)
cnl = _Aanla

we multiply the first equation by A", the last by I, and generally the (j + 1)th by A",
when we add up all these new equations, we see that the right-hand side adds up to 0, and
we get our desired equation

A" 4+ AV e, ] =0,
as claimed. n

As a concrete example, when n = 2, the matrix
a b
A—

A? — (a+d)A+ (ad — be)I = 0.

satisfies the equation
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Most readers will probably find the proof of Theorem 7.14 rather clever but very myste-
rious and unmotivated. The conceptual difficulty is that we really need to understand how
polynomials in one variable “act” on vectors in terms of the matrix A. This can be done and
yields a more “natural” proof. Actually, the reasoning is simpler and more general if we free
ourselves from matrices and instead consider a finite-dimensional vector space E and some
given linear map f: E — E. Given any polynomial p(X) = aoX" + a; X" + - - - + a,, with
coefficients in the field K, we define the linear map p(f): E — E by

p(f) = aof" +arf" M 4+ anid,
where f* = fo---o f, the k-fold composition of f with itself. Note that

p(f)(w) = aof"(u) + arf""H(u) + - + anu,

for every vector u € E. Then we define a new kind of scalar multiplication -: K[X|x E — E
by polynomials as follows: for every polynomial p(X) € K[X], for every u € E,

p(X) - u=p(f)(w).
It is easy to verify that this is a “good action,” which means that

p-(u+v)=p-u+p-v
(p+q)-u=p-utq-u
(pq) - u=p-(q-u)
1-u=u,

for all p,q € K[X] and all u,v € E. With this new scalar multiplication, F is a K[X]-module.
If p= A is just a scalar in K (a polynomial of degree 0), then

A u = (Aid)(u) = Au,

which means that K acts on E by scalar multiplication as before. If p(X) = X (the monomial
X), then
X u= f(u).

Now if we pick a basis (e1,...,e,) of E, if a polynomial p(X) € K[X] has the property
that
p(X)-e,=0, i=1,...,n,
then this means that p(f)(e;) = 0 for i = 1,...,n, which means that the linear map p(f)
vanishes on E. We can also check, as we did in Section 7.2, that if A and B are two n X n
matrices and if (uq,...,u,) are any n vectors, then

Uy Uy
A-|B-| ] ]|=AB)

Unp, Unp,
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This suggests the plan of attack for our second proof of the Cayley—Hamilton theorem.
For simplicity, we prove the theorem for vector spaces over a field. The proof goes through
for a free module over a commutative ring.

Theorem 7.15. (Cayley-Hamilton) For every finite-dimensional vector space over a field
K, for every linear map f: E — E, for every basis (eq,...,e,), if A is the matriz over f
over the basis (eq,...,e,) and if

Py X)=X"4+c X" -+,
is the characteristic polynomial of A, then
PA<f) = fn + len_l + -+ Cnld =0.

Proof. Since the columns of A consist of the vector f(e;) expressed over the basis (e, ..., ey),

we have
n

flej) = Zaijeia l<j<n

i=1
Using our action of K[X] on E, the above equations can be expressed as

n

X'szzaij'ei, 1<j<n,

i=1
which yields

-1

<.

—aij-ei+(X—ajj)-ej+Z—aij-eiZO, 1§]§Tl

i=1 i=j+1

Observe that the transpose of the characteristic polynomial shows up, so the above system
can be written as

X —ar; —az1 —Apn1 €1 0
—ajy X —azy - —Qp2 €2 0
—Qa1n —Aan X_ann €n O

If we let B = XI — AT, then as in the previous proof, if B is the transpose of the matrix of
cofactors of B, we have

BB = det(B)I = det(XI — AT)I = det(XI — A)I = P4I.

But since
€1 0
()] 0
B . . - . )

€n 0
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and since B is matrix whose entries are polynomials in K [X], it makes sense to multiply on
the left by B and we get

€1 (] €1 0 0
~ €9 ~ €9 €9 ~ 0 0
B-B = (BB) - = Pyl .| =B-1.]= ;
that is,
Py-e; =0, 7=1,...,n,
which proves that P4(f) = 0, as claimed. O]

If K is a field, then the characteristic polynomial of a linear map f: F — F is independent
of the basis (ey, ..., e,) chosen in E. To prove this, observe that the matrix of f over another
basis will be of the form P~'AP, for some inverible matrix P, and then

det(XI — P7'AP) = det(X P
= det(P~}(XI — A)P)
= det(P ') det(X T — A) det(P)
= det(X1 — A).

P~'IP — PT'AP)

Therefore, the characteristic polynomial of a linear map is intrinsic to f, and it is denoted
by’fﬁ.

The zeros (roots) of the characteristic polynomial of a linear map f are called the eigen-
values of f. They play an important role in theory and applications. We will come back to
this topic later on.

7.8 Permanents

Recall that the explicit formula for the determinant of an n x n matrix is

det(A) = Z €(m)ar)y1 - Ar(n)n-
TeES,
If we drop the sign €(7) of every permutation from the above formula, we obtain a quantity
known as the permanent:
per(A) = > ar)1 - Gaimyn-
7T€6n

Permanents and determinants were investigated as early as 1812 by Cauchy. It is clear from
the above definition that the permanent is a multilinear symmetric form. We also have

per(A) = per(A"),



234 CHAPTER 7. DETERMINANTS

and the following unsigned version of the Laplace expansion formula:
per(A) = a;iper(A;1) + - - -+ a;jper(A;;) + - - - + ainper(Ain),

fori =1,...,n. However, unlike determinants which have a clear geometric interpretation as
signed volumes, permanents do not have any natural geometric interpretation. Furthermore,
determinants can be evaluated efficiently, for example using the conversion to row reduced
echelon form, but computing the permanent is hard.

Permanents turn out to have various combinatorial interpretations. One of these is in
terms of perfect matchings of bipartite graphs which we now discuss.

See Definition 20.5 for the definition of an undirected graph. A bipartite (undirected)
graph G = (V, E) is a graph whose set of nodes V' can be partitioned into two nonempty
disjoint subsets V; and V5, such that every edge e € E has one endpoint in V; and one
endpoint in V5.

An example of a bipartite graph with 14 nodes is shown in Figure 7.3; its nodes are
partitioned into the two sets {x1, x9, x3, x4, Ts5, 6, x7} and {y1, Yo, Y3, Y4, Ys, Ys, Y7 }-

Y7

X7

Figure 7.3: A bipartite graph G.

A matching in a graph G = (V, E) (bipartite or not) is a set M of pairwise non-adjacent
edges, which means that no two edges in M share a common vertex. A perfect matching is
a matching such that every node in V' is incident to some edge in the matching M (every
node in V' is an endpoint of some edge in M). Figure 7.4 shows a perfect matching (in red)
in the bipartite graph G.

Obviously, a perfect matching in a bipartite graph can exist only if its set of nodes has
a partition in two blocks of equal size, say {z1,...,z,} and {y1,...,ym}. Then there is
a bijection between perfect matchings and bijections 7: {z1,...,2m} — {y1,...,Ym} such
that m(z;) = y; iff there is an edge between z; and y;.

Now every bipartite graph G with a partition of its nodes into two sets of equal size as
above is represented by an m x m matrix A = (a;;) such that a;; = 1 iff there is an edge
between z; and y;, and a;; = 0 otherwise. Using the interpretation of perfect matchings as
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yr

X7

Figure 7.4: A perfect matching in the bipartite graph G.

bijections 7: {z1,...,zm} — {y1,...,Ym}, we see that the permanent per(A) of the (0,1)-
matrix A representing the bipartite graph G counts the number of perfect matchings in G.

In a famous paper published in 1979, Leslie Valiant proves that computing the permanent
is a #P-complete problem. Such problems are suspected to be intractable. It is known that
if a polynomial-time algorithm existed to solve a #P-complete problem, then we would have
P = NP, which is believed to be very unlikely.

Another combinatorial interpretation of the permanent can be given in terms of systems
of distinct representatives. Given a finite set S, let (A, ..., A,) be any sequence of nonempty
subsets of S (not necessarily distinct). A system of distinct representatives (for short SDR)
of the sets Ay,..., A, is a sequence of n distinct elements (a4, ..., a,), with a; € A; for i =
1,...,n. The number of SDR’s of a sequence of sets plays an important role in combinatorics.
Now, if § = {1,2,...,n} and if we associate to any sequence (Aj,...,A,) of nonempty
subsets of S the matrix A = (a;;) defined such that a;; = 1 if j € A; and a;; = 0 otherwise,
then the permanent per(A) counts the number of SDR’s of the sets Ay, ..., Ap.

This interpretation of permanents in terms of SDR’s can be used to prove bounds for the
permanents of various classes of matrices. Interested readers are referred to van Lint and
Wilson [180] (Chapters 11 and 12). In particular, a proof of a theorem known as Van der
Waerden conjecture is given in Chapter 12. This theorem states that for any n x n matrix
A with nonnegative entries in which all row-sums and column-sums are 1 (doubly stochastic
matrices), we have

with equality for the matrix in which all entries are equal to 1/n.

7.9 Summary

The main concepts and results of this chapter are listed below:



236

CHAPTER 7. DETERMINANTS

Permutations, transpositions, basics transpositions.
Every permutation can be written as a composition of permutations.

The parity of the number of transpositions involved in any decomposition of a permu-
tation o is an invariant; it is the signature €(o) of the permutation o.

Multilinear maps (also called n-linear maps); bilinear maps.
Symmetric and alternating multilinear maps.

A basic property of alternating multilinear maps (Lemma 7.4) and the introduction of
the formula expressing a determinant.

Definition of a determinant as a multlinear alternating map D: M,,(K) — K such that
D(I)=1.

We define the set of algorithms D,,, to compute the determinant of an n X n matrix.
Laplace expansion according to the ith row; cofactors.

We prove that the algorithms in D,, compute determinants (Lemma 7.5).

We prove that all algorithms in D,, compute the same determinant (Theorem 7.6).
We give an interpretation of determinants as signed volumes.

We prove that det(A) = det(AT).

We prove that det(AB) = det(A) det(B).

The adjugate A of a matrix A.

Formula for the inverse in terms of the adjugate.

A matrix A is invertible iff det(A) # 0.

Solving linear equations using Cramer’s rules.

Determinant of a linear map.

The characteristic polynomial of a matrix.

The Cayley—Hamilton theorem.

The action of the polynomial ring induced by a linear map on a vector space.
Permanents.

Permanents count the number of perfect matchings in bipartite graphs.
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e Computing the permanent is a #P-perfect problem (L. Valiant).

e Permanents count the number of SDRs of sequences of subsets of a given set.

7.10 Further Readings

Thorough expositions of the material covered in Chapter 3-6 and 7 can be found in Strang
[170, 169], Lax [113], Lang [109], Artin [7], Mac Lane and Birkhoff [118], Hoffman and Kunze
[94], Dummit and Foote [54], Bourbaki [25, 26], Van Der Waerden [179], Serre [156], Horn
and Johnson [95], and Bertin [15]. These notions of linear algebra are nicely put to use in
classical geometry, see Berger [11, 12], Tisseron [175] and Dieudonné [49].

7.11 Problems

Problem 7.1. Prove that every transposition can be written as a product of basic transpo-
sitions.

Problem 7.2. (1) Given two vectors in R? of coordinates (c;—ay, co—as) and (by—ay, by—as),
prove that they are linearly dependent iff

ay bl C1
a9 bg Cy| = 0.
1 1 1

(2) Given three vectors in R? of coordinates (d;—ay, do—as, ds—a3), (c1—ay1, co—as, c3—as),
and (by — a1, by — ag, by — agz), prove that they are linearly dependent iff

ap by ¢ dy

as by ¢y dy .

az by c3 dj B
1 1 1 1

Problem 7.3. Let A be the (m + n) x (m + n) block matrix (over any field K') given by
_ (AL Ay
A= (0 5),
where A; is an m X m matrix, A, is an m X n matrix, and A4 is an n X n matrix. Prove that

det(A) = det(Ay) det(Ay).

Use the above result to prove that if A is an upper triangular n x n matrix, then det(A) =
a11G22 * * * Qnp-
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Problem 7.4. Prove that if n > 3, then
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1+zyr 14 21y I+ 21yn
det 1+ :’70291 1+ '$292 1+ fEQyn o
1+ xy1 14 201 I+ znyn
Problem 7.5. Prove that
1 4 9 16
49 16 25
9 16 25 36|
16 25 36 49
Problem 7.6. Consider the n x n symmetric matrix
12 0 0 00
25 2 0 0 0
02 5 2 0 0
A= 0 e e s
0 0 2 5 20
0 0 0 2 5 2
0 0 0O 0 2 5
(1) Find an upper-triangular matrix R such that A = R"R.
(2) Prove that det(A) = 1.
(3) Consider the sequence
Pk(A) = (5= Npr—1(N) —4dpr—2(N) 2 <k <n.

Prove that

det(A — M) = pa(N).

Remark: It can be shown that p,(\) has n distinct (real) roots and that the roots of pg(\)

separate the roots of pri1(A).

Problem 7.7. Let B be the n x n matrix (n > 3) given by

1 -1 -1 -1
1 -1 1 1
1 1 -1 1
B=|1 1 1 -1
1 1 1 1
1 1 1 1

-1 -1
1 1
1 1
1 1

-1 1
1 -1
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Prove that

det(B) = (—=1)"(n — 2)2" 1.
Problem 7.8. Given a field K (say K = R or K = C), given any two polynomials
p(X),q(X) € K[X], we says that ¢(X) divides p(X) (and that p(X) is a multiple of q¢(X))
iff there is some polynomial s(X) € K[X] such that

p(X) = ¢(X)s(X).

In this case we say that ¢(X) is a factor of p(X), and if ¢(X) has degree at least one, we
say that ¢(X) is a nontrivial factor of p(X).

Let f(X) and ¢g(X) be two polynomials in K[X] with
fX)=aX™ +a X™ '+ +apn,
of degree m > 1 and
g(X) =boX" + b X"+ + b,
of degree n > 1 (with ag, by # 0).
You will need the following result which you need not prove:

Two polynomials f(X) and g(X) with deg(f) =m > 1 and deg(g) = n > 1 have some
common nontrivial factor iff there exist two nonzero polynomials p(X) and q(X) such that
fr=gq,

with deg(p) < n —1 and deg(q) < m — 1.

(1) Let P, denote the vector space of all polynomials in K [X] of degree at most m — 1,
and let T": P,, X Py, = Puvn be the map given by

T(p,q) = fp+99. pEPn q€Pn,
where f and g are some fixed polynomials of degree m > 1 and n > 1.
Prove that the map 7' is linear.
(2) Prove that T' is not injective iff f and g have a common nontrivial factor.

(3) Prove that f and g have a nontrivial common factor iff R(f,g) = 0, where R(f,g) is
the determinant given by

a’O al o e o e am 0 DY DY DY DY O

0 a a - - Ay O cer e e 0
R(f,g)=| - ..

O ... e PR PR 0 a/O a’l PR PR a/m

bo by cce cee e eee e b0 e 0

0 by by e e e e e by O e

0 0 by b bn
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The above determinant is called the resultant of f and g.

Note that the matrix of the resultant is an (n 4+ m) x (n +m) matrix, with the first row
(involving the a;s) occurring n times, each time shifted over to the right by one column, and
the (n + 1)th row (involving the b;s) occurring m times, each time shifted over to the right
by one column.

Hint. Express the matrix of T over some suitable basis.

(4) Compute the resultant in the following three cases:

(a) n =1, and write f(X) =aX + b and g(X) = cX +d.

(b) m =1 and n > 2 arbitrary.
)

(c

m

f(X)=aX?+bX +cand g(X) = 2aX + b.

(5) Compute the resultant of f(X) = X3+ pX + ¢ and g(X) = 3X? + p, and

f(X) = a0X2 +CL1X+CL2
g(X) = b0X2 +b1X +b2

In the second case, you should get
AR(f,g) = (2aoby — ayby + 2aby)* — (4agag — a?)(4boby — 7).

Problem 7.9. Let A, B,C, D be n x n real or complex matrices.
(1) Prove that if A is invertible and if AC' = C'A, then

A B
det (C D> = det(AD — CB).

(2) Prove that if H is an n x n Hadamard matrix (n > 2), then |det(H)| = n™/2.
(3) Prove that if H is an n x n Hadamard matrix (n > 2), then

det (Z _[Z) _ (2n)".

Problem 7.10. Compute the product of the following determinants

a —b —c —d||lr —y —z -t

b a —d clly x —t =z

c d a =bllz t =z —y

d —c b al||lt —2 y =x
to prove the following identity (due to Euler):

(@ + 0+ +d) @ +y* + 22+ 12) = (ax + by + cz +dt)? + (ay — ba + ct — dz)?
+ (az — bt — cx + dy)* + (at + bz — cy — dx)*.
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Problem 7.11. Let A be an n x n matrix with integer entries. Prove that A~! exists and
has integer entries if and only if det(A) = +1.

Problem 7.12. Let A be an n X n real or complex matrix.
(1) Prove that if AT = —A (A is skew-symmetric) and if n is odd, then det(A) = 0.
(2) Prove that

0 a b c
—a 0 d el 9
b o—d 0 f—(af—be+dc).
—c —e —f 0
Problem 7.13. A Cauchy matriz is a matrix of the form
1 1 1
AM—01 AN —o0 A — Oy
170 Mo 17
Ay =01 Ay — 03 Ay — Op
1 1 | 1
)\n_al )\n_02 )\n_an

where \; # o, for all 4, j, with 1 < ¢,7 < n. Prove that the determinant C,, of a Cauchy
matrix as above is given by

L T v = Aoy — Uz’).

Cn - n n
ITi- Hj:l()‘i — o)
Problem 7.14. Let (ay,...,amn11) be a sequence of pairwise distinct scalars in R and let
(B1, .., Bmy1) be any sequence of scalars in R, not necessarily distinct.

(1) Prove that there is a unique polynomial P of degree at most m such that

Hint. Remember Vandermonde!
(2) Let L;(X) be the polynomial of degree m given by
X —a)- - (X —aia)(X = i) - (X =~ amya)

Li(X) = (i —an) (o — aim1) (o — @iga) -+ (@ — Qg

1<i<m+1.

The polynomials L;(X) are known as Lagrange polynomial interpolants. Prove that
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Prove that
P(X) = BlLl(X) Tt Bm+1Lm+1(X)

is the unique polynomial of degree at most m such that

(3) Prove that Li(X),..., Ly1(X) are linearly independent, and that they form a basis
of all polynomials of degree at most m.

How is 1 (the constant polynomial 1) expressed over the basis (L1(X),. .., Lyi1(X))?

Give the expression of every polynomial P(X) of degree at most m over the basis
(Ll(X)7 R Lm-‘rl(X))

(4) Prove that the dual basis (L7, ..., L ) of the basis (L1 (X),..., Ln41(X)) consists
of the linear forms L} given by
Li(P) = P(ai),

for every polynomial P of degree at most m; this is simply evaluation at ;.



Chapter 8

Gaussian Elimination,
LU-Factorization, Cholesky
Factorization, Reduced Row Echelon
Form

In this chapter we assume that all vector spaces are over the field R. All results that do not
rely on the ordering on R or on taking square roots hold for arbitrary fields.

8.1 Motivating Example: Curve Interpolation

Curve interpolation is a problem that arises frequently in computer graphics and in robotics
(path planning). There are many ways of tackling this problem and in this section we will
describe a solution using cubic splines. Such splines consist of cubic Bézier curves. They
are often used because they are cheap to implement and give more flexibility than quadratic
Bézier curves.

A cubic Bézier curve C(t) (in R? or R3) is specified by a list of four control points
(bo, b1, ba, b3) and is given parametrically by the equation

C(t) = (1—1t)*by +3(1 —t)*tby +3(1 — t)t* by + t3 bs.
Clearly, C(0) = by, C(1) = b3, and for ¢ € [0, 1], the point C(t) belongs to the convex hull of
the control points by, b1, bo, b3. The polynomials
(1—1)*, 3(1—t)2, 3(1—t)t?

are the Bernstein polynomaials of degree 3.

Typically, we are only interested in the curve segment corresponding to the values of ¢ in
the interval [0, 1]. Still, the placement of the control points drastically affects the shape of the
curve segment, which can even have a self-intersection; See Figures 8.1, 8.2, 8.3 illustrating
various configurations.

243
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Figure 8.1: A “standard” Bézier curve.

b1

b
0 by

Figure 8.2: A Bézier curve with an inflection point.
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bo b3

Figure 8.3: A self-intersecting Bézier curve.

Interpolation problems require finding curves passing through some given data points and
possibly satisfying some extra constraints.

A Bézier spline curve F is a curve which is made up of curve segments which are Bézier
curves, say C1,...,Cy, (m > 2). We will assume that F' defined on [0,m], so that for
1=1,...,m,

Fit)y=Cit—i+1), i—1<t<i.

Typically, some smoothness is required between any two junction points, that is, between
any two points C;(1) and C;11(0), for i = 1,...,m — 1. We require that C;(1) = C;11(0)
(C°-continuity), and typically that the derivatives of C; at 1 and of Cj,; at 0 agree up to
second order derivatives. This is called C%-continuity, and it ensures that the tangents agree
as well as the curvatures.

There are a number of interpolation problems, and we consider one of the most common
problems which can be stated as follows:

Problem: Given N + 1 data points z, ..., 2y, find a C? cubic spline curve F such that
F(i)=x;foralli, 0 <i< N (N >2).

A way to solve this problem is to find N + 3 auxiliary points d_1,...,dyy1, called de
Boor control points, from which N Bézier curves can be found. Actually,

d_1=x9 and dyy1 =N
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so we only need to find N + 1 points dy,...,dy.

It turns out that the C%-continuity constraints on the N Bézier curves yield only N — 1
equations, so dy and dy can be chosen arbitrarily. In practice, dy and dy are chosen according
to various end conditions, such as prescribed velocities at zy and xy. For the time being, we
will assume that dy and dy are given.

Figure 8.4 illustrates an interpolation problem involving N +1 =7+ 1 = 8 data points.
The control points dy and d; were chosen arbitrarily.

do

dy
T2

X1 d7

ds
T3

Tg

XLy

Ty

dy

¢ .

Ty = d_l Ty — d8

Figure 8.4: A C? cubic interpolation spline curve passing through the points zg, x1, 2, 73,
Ty, T5, Te, L7-

It can be shown that dy,...,dy_1 are given by the linear system
% 1 dl 61’1 - %do
1 4 1 0 dg 6512'2
0 1 4 1 dn_2 62N _2
1 1) \dna 6rn_1 — Sdn

We will show later that the above matrix is invertible because it is strictly diagonally
dominant.
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Once the above system is solved, the Bézier cubics C1, ..., Cy are determined as follows
(we assume N > 2): For 2 <i < N — 1, the control points ( 0,08, b5, b)) of C; are given by

b6:$i 1

b = d +1d
17 3m g
- 1 2
by, = —d;_ d;
? 3 1+3

The control points (b, b}, b3, b3) of Cy are given by

b[l):l’()
bl = d,

1 1
bl = =dy+ =d
2 20"‘21
bzl)’—l’l,

and the control points (b}, b, b5, b3) of Cy are given by
bév = ITN-1
1 1
BN = ~dy_, + ~d
1= 50N 1+ 5N
b = dy

bév = IN-.

Figure 8.5 illustrates this process spline interpolation for N = 7.

We will now describe various methods for solving linear systems. Since the matrix of the
above system is tridiagonal, there are specialized methods which are more efficient than the
general methods. We will discuss a few of these methods.

8.2 (Gaussian Elimination

Let A be an n x n matrix, let b € R™ be an n-dimensional vector and assume that A is
invertible. Our goal is to solve the system Az = b. Since A is assumed to be invertible,
we know that this system has a unique solution x = A~'b. Experience shows that two
counter-intuitive facts are revealed:

(1) One should avoid computing the inverse A~! of A explicitly. This is inefficient since
it would amount to solving the n linear systems Aul) = ej for j = 1,...,n, where
e; =(0,...,1,...,0) is the jth canonical basis vector of R" (with a 1 is the jth slot).
By doing so, we would replace the resolution of a single system by the resolution of n
systems, and we would still have to multiply A~! by b.
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Figure 8.5: A C? cubic interpolation of xg,x1, 2,3, 4,5, T, T7 With associated color
coded Bézier cubics.

(2) One does not solve (large) linear systems by computing determinants (using Cramer’s
formulae) since this method requires a number of additions (resp. multiplications)
proportional to (n + 1)! (resp. (n+ 2)!).

The key idea on which most direct methods (as opposed to iterative methods, that look
for an approximation of the solution) are based is that if A is an upper-triangular matrix,
which means that a;; = 0 for 1 < j < i < n (resp. lower-triangular, which means that
a;; = 0 for 1 < i < j < n), then computing the solution z is trivial. Indeed, say A is an
upper-triangular matrix

aip Qi -+ Qip-2 a1n—1 a1n
0 age -+ agp—2 A2p—1 azp
0 0
A=
0 0 e 0 Gp—1n—1 An—1n
0 o --- 0 0 Ann

Then det(A) = ay1a22 -+ an, # 0, which implies that a;; # 0 for i = 1,...,n, and we can
solve the system Az = b from bottom-up by back-substitution. That is, first we compute
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x, from the last equation, next plug this value of x,, into the next to the last equation and
compute x,,_; from it, etc. This yields

-1
Tn = a,,by
-1
Tp—1 = anflnfl(bn—l - an—ln'rn)
-1
Ty = aql(bl —A12L2 — " — alnl‘n)-

Note that the use of determinants can be avoided to prove that if A is invertible then
a;; # 0 for i =1,...,n. Indeed, it can be shown directly (by induction) that an upper (or
lower) triangular matrix is invertible iff all its diagonal entries are nonzero.

If A is lower-triangular, we solve the system from top-down by forward-substitution.

Thus, what we need is a method for transforming a matrix to an equivalent one in upper-
triangular form. This can be done by elimination. Let us illustrate this method on the
following example:

2t + y + 2z = 5
dr  — 06y = —2
—2r + Ty + 2z = 0.

We can eliminate the variable x from the second and the third equation as follows: Subtract
twice the first equation from the second and add the first equation to the third. We get the
new system

2 + y + 2z = 5
- 8y — 2z = —12
y + 3z = 14

This time we can eliminate the variable y from the third equation by adding the second
equation to the third:

2 + y + 2z = O
- 8y — 2z = —12
z = 2.

This last system is upper-triangular. Using back-substitution, we find the solution: z = 2,
y=1z=1.

Observe that we have performed only row operations. The general method is to iteratively
eliminate variables using simple row operations (namely, adding or subtracting a multiple of
a row to another row of the matrix) while simultaneously applying these operations to the
vector b, to obtain a system, M Ax = Mb, where M A is upper-triangular. Such a method is
called Gaussian elimination. However, one extra twist is needed for the method to work in
all cases: It may be necessary to permute rows, as illustrated by the following example:

r + y + z =1
r + y + 3z =1
2v + 5y + 8z =1.
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In order to eliminate x from the second and third row, we subtract the first row from the
second and we subtract twice the first row from the third:

r + y + z =1
2z =0
3y + 6z =-—1.

Now the trouble is that y does not occur in the second row; so, we can’t eliminate y from
the third row by adding or subtracting a multiple of the second row to it. The remedy is
simple: Permute the second and the third row! We get the system:

r + y + =z =1
3y + 6z =-1
2z =0,

which is already in triangular form. Another example where some permutations are needed
is:

z = 1
—2r + Ty + 2z = 1
dr — Oy = —1

First we permute the first and the second row, obtaining

—2r + Ty + 2z = 1
z = 1
dr  — 06y = —1,

and then we add twice the first row to the third, obtaining:

—2r + Ty + 2z =1
z 1
8y + 4z = 1.

Again we permute the second and the third row, getting

—2r + Ty + 2z = 1
8y + 4z = 1
z = 1,

an upper-triangular system. Of course, in this example, z is already solved and we could
have eliminated it first, but for the general method, we need to proceed in a systematic
fashion.

We now describe the method of Gaussian elimination applied to a linear system Ax = b,
where A is assumed to be invertible. We use the variable k to keep track of the stages of
elimination. Initially, £ = 1.
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(1) The first step is to pick some nonzero entry a;; in the first column of A. Such an
entry must exist, since A is invertible (otherwise, the first column of A would be the
zero vector, and the columns of A would not be linearly independent. Equivalently, we
would have det(A) = 0). The actual choice of such an element has some impact on the
numerical stability of the method, but this will be examined later. For the time being,
we assume that some arbitrary choice is made. This chosen element is called the pivot
of the elimination step and is denoted 7 (so, in this first step, m = a;1).

(2) Next we permute the row (i) corresponding to the pivot with the first row. Such a
step is called pivoting. So after this permutation, the first element of the first row is
NoNZero.

(3) We now eliminate the variable x; from all rows except the first by adding suitable
multiples of the first row to these rows. More precisely we add —a;q/m times the first
row to the ith row for i« = 2,...,n. At the end of this step, all entries in the first
column are zero except the first.

(4) Increment k by 1. If k£ = n, stop. Otherwise, k < n, and then iteratively repeat Steps
(1), (2), (3) on the (n —k+ 1) x (n — k + 1) subsystem obtained by deleting the first
k — 1 rows and k — 1 columns from the current system.

If we let Ay = A and A, = (agl;)) be the matrix obtained after £ — 1 elimination steps
(2 < k < n), then the kth elimination step is applied to the matrix Ay of the form

(k) (k) (k)

all a:(lk?) .. .« .. ... a’(lkys/
a22 DR ... ... a2n
A — : e :
Tlo oo o0 ) - o
0 0 0 o .. af)
Actually, note that
a®) = ¢
¥ ¥

for all 4,5 with 1 <7 <k —2 and ¢ < j < n, since the first £ — 1 rows remain unchanged
after the (k — 1)th step.

We will prove later that det(Ag) = £det(A). Consequently, Ay is invertible. The fact
that A; is invertible iff A is invertible can also be shown without determinants from the fact
that there is some invertible matrix My such that A, = M A, as we will see shortly.

Since Ay is invertible, some entry agl,? with £ < i < n is nonzero. Otherwise, the last

n — k + 1 entries in the first k£ columns of A, would be zero, and the first k columns of
Ay, would yield k& vectors in R*~!. But then the first k columns of A; would be linearly
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dependent and Ay would not be invertible, a contradiction. This situation is illustrated by
the following matrix for n =5 and k = 3:

af afy ay oy o
0 af) af) af} af)
0o 0 0 af o
0 0 0 aﬁ) aﬂ
0o 0 0 af o

The first three columns of the above matrix are linearly dependent.

So one of the entries al(-],? with £ <7 <n can be chosen as pivot, and we permute the kth

row with the ith row, obtaining the matrix a® = (a%)). The new pivot is 7, = a,(gk,z, and

we zero the entries ¢ = k4 1,...,n in column £k by adding —aﬁ)/ﬂk times row k to row i.
At the end of this step, we have A, ;. Observe that the first £k — 1 rows of Ay are identical
to the first £ — 1 rows of Agiq.

The process of Gaussian elimination is illustrated in schematic form below:

X X X X
X X X X
X X X X
X X X X
!
© O o X
X X X X
X X X X
X X X X
o O O X
© O X X
X X X X
X X X X
S O O X
O O X X
o X X X
X X X X

8.3 Elementary Matrices and Row Operations

It is easy to figure out what kind of matrices perform the elementary row operations used
during Gaussian elimination. The key point is that if A = PB, where A, B are m x n
matrices and P is a square matrix of dimension m, if (as usual) we denote the rows of A and
B by Ay,..., A, and By,..., B,,, then the formula

m
Q5 = E pikbkj
k=1

giving the (4, j)th entry in A shows that the ith row of A is a linear combination of the rows
of B:
Ai =piaBi+ -+ pimBm.

Therefore, multiplication of a matriz on the left by a square matrix performs row opera-
tions. Similarly, multiplication of a matrix on the right by a square matrix performs column
operations

The permutation of the kth row with the ith row is achieved by multiplying A on the left
by the transposition matriz P(i, k), which is the matrix obtained from the identity matrix
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by permuting rows ¢ and k, i.e.,

1
1
0 1
1
P(iak)_
1
1 0
1
1
For example, if m = 3,
0 01
P(1,3)=10 1 0],
100
then
001 biy by -0 o0 ooy, by bag o+ o ce-bap
PL3)B=10 1 0| [bo bop -+ oo by | = | boy bag oo oo eibyy
1 0 0 by bag o0 o -e-bay biy big o+ oo by,

Observe that det(P(i, k)) = —1. Furthermore, P(i, k) is symmetric (P(i, k)" = P(i,k)), and
P(i, k)~ = P(i, k).
During the permutation Step (2), if row k& and row i need to be permuted, the matrix A
is multiplied on the left by the matrix Py such that P, = P(i, k), else we set P, = I.

Adding (5 times row j to row ¢ (with i # j) is achieved by multiplying A on the left by

the elementary matriz,
Eijp =1+ Beij,

where
(e1)1 = 1 ifk=7andl=j
gkl 0 ifk#iorlj,
1.€.,
1 1
1 1
1 1 B
1 1
Eijp = or FEjjp= )
1 1
B 1 1
1 1
1 1




254 CHAPTER 8. GAUSSIAN ELIMINATION, LU, CHOLESKY, ECHELON FORM

on the left, ¢« > j, and on the right, ¢« < j. The index ¢ is the index of the row that is changed
by the multiplication. For example, if m = 3 and we want to add twice row 1 to row 3, since
B=2,7=1andi=3, we form

1 00 0 0O 1 00
E3’1;2:I+2631: 010 + 0 00 = 010 s
0 0 1 2 0 0 2 01
and calculate
1 0 0 bn b12 "'bln
Es1oB=[0 1 0] (b by -+ - - by
20 1 T
b1y bio by
— boy boo <Dy,
2b11 + 031 2b1g+bgy - oo o2 2Dy, + bsy

Observe that the inverse of E; j.3 = I + fe;; is E; j_g = I — [e;; and that det(E; ;.3) = 1.
Therefore, during Step 3 (the elimination step), the matrix A is multiplied on the left by a
product Ej of matrices of the form Ej s, ,, with i > k.

Consequently, we see that
Apy1 = Ep B Ay,

and then
A, =Fy 1P, E1PA.

This justifies the claim made earlier that A, = M, A for some invertible matrix M;; we can
pick

My = Ey 1Py -+ E1 Py,
a product of invertible matrices.

The fact that det(P(i,k)) = —1 and that det(E;;3) = 1 implies immediately the fact
claimed above: We always have

det(Ay) = £ det(A).
Furthermore, since
Ay =FEp 1P E1PLA
and since Gaussian elimination stops for k = n, the matrix

An = En—lpn—l te E2P2E1P1A

is upper-triangular. Also note that ifwelet M = E,, 1P, _1--- EsPoE1 Py, thendet(M) = +1,
and
det(A) = £det(A4,).

The matrices P(i,k) and E; ;.3 are called elementary matrices. We can summarize the
above discussion in the following theorem:
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Theorem 8.1. (Gaussian elimination) Let A be an n x n matriz (invertible or not). Then
there is some invertible matriz M so that U = M A is upper-triangular. The pivots are all
nonzero iff A is invertible.

Proof. We already proved the theorem when A is invertible, as well as the last assertion.
Now A is singular iff some pivot is zero, say at Stage k of the elimination. If so, we must

have al(.l,? =0fori=k,...,n; butin this case, Ax,1 = A and we may pick P, = Ey, =1. O

Remark: Obviously, the matrix M can be computed as
M=E, 1P, E2BE Py,

but this expression is of no use. Indeed, what we need is M ~!; when no permutations are
needed, it turns out that M ~! can be obtained immediately from the matrices E}’s, in fact,
from their inverses, and no multiplications are necessary.

Remark: Instead of looking for an invertible matrix M so that M A is upper-triangular, we
can look for an invertible matrix M so that M A is a diagonal matrix. Only a simple change
to Gaussian elimination is needed. At every Stage k, after the pivot has been found and
pivoting been performed, if necessary, in addition to adding suitable multiples of the kth
row to the rows below row k in order to zero the entries in column k£ for e = k+1,...,n,
also add suitable multiples of the kth row to the rows above row k in order to zero the
entries in column k for ¢ = 1,...,k — 1. Such steps are also achieved by multiplying on
the left by elementary matrices Ejy.gs,,, except that ¢ < k, so that these matrices are not
lower-triangular matrices. Nevertheless, at the end of the process, we find that A, = M A,
is a diagonal matrix.

This method is called the Gauss-Jordan factorization. Because it is more expensive than
Gaussian elimination, this method is not used much in practice. However, Gauss-Jordan
factorization can be used to compute the inverse of a matrix A. Indeed, we find the jth
column of A~! by solving the system Az = e; (where e; is the jth canonical basis vector
of R™). By applying Gauss-Jordan, we are led to a system of the form D;z\)) = M;e;, where
D; is a diagonal matrix, and we can immediately compute ).

It remains to discuss the choice of the pivot, and also conditions that guarantee that no
permutations are needed during the Gaussian elimination process. We begin by stating a
necessary and sufficient condition for an invertible matrix to have an LU-factorization (i.e.,
Gaussian elimination does not require pivoting).

8.4 LU-Factorization

Definition 8.1. We say that an invertible matrix A has an LU-factorization if it can be
written as A = LU, where U is upper-triangular invertible and L is lower-triangular, with
Li;=1fori=1,... n.
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A lower-triangular matrix with diagonal entries equal to 1 is called a unit lower-triangular
matrix. Given an n X n matrix A = (a;;), for any k with 1 <k <n, let A(1: k,1: k) denote
the submatrix of A whose entries are a;;, where 1 <, j < k.! For example, if A is the 5x 5
matrix

ail @12 @13 A4 A1s
Q21 Q22 Q23 A24 d25
A= las azxp a3 ay az |,
41 Q42 Q43 Q44 Q45
51 0As2 Q53 054 G55
then
ai; Gi2 a3
A(l . 37 1: 3) = o1 Q922 Q923
az1 a3z as3
Proposition 8.2. Let A be an invertible n x n-matriz. Then A has an LU -factorization

A = LU iff every matriz A(1: k,1: k) is invertible for k = 1,...,n. Furthermore, when A
has an LU -factorization, we have

det(A(1: k,1: k) =mmy---m, k=1,... 0,

where m;, is the pivot obtained after k — 1 elimination steps. Therefore, the kth pivot is given
by
aj; = det(A(1:1,1:1)) ifk=1
) = det(A(1: k,1:k)) ,
k=2,...,n.
QA0 k=11 k—1) YF=%.n

Proof. First assume that A = LU is an LU-factorization of A. We can write
A . A(l . ]{7,1 . k) A2 . L1 0 U1 U2 . L1U1 LlUQ
- As Ay)  \Lz Ly 0 Uy) \L3Uy L3Uy+ LyUy)’
where Ly, Ly are unit lower-triangular and Uy, Uy are upper-triangular. (Note, A(1: k,1: k),

Ly, and U; are k x k matrices; Ay and Uy are k X (n — k) matrices; Az and L3 are (n—k) x k
matrices; Ay, Ly, and Uy are (n — k) X (n — k) matrices.) Thus,

A(l . k, 1: k’) == L1U1,

and since U is invertible, U; is also invertible (the determinant of U is the product of the
diagonal entries in U, which is the product of the diagonal entries in Uy and Uy). As L, is
invertible (since its diagonal entries are equal to 1), we see that A(1 : k, 1 : k) is invertible
fork=1,...,n.

Conversely, assume that A(1 : k,1 : k) is invertible for kK = 1,...,n. We just need to
show that Gaussian elimination does not need pivoting. We prove by induction on £ that
the kth step does not need pivoting.

"'We are using Matlab’s notation.
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This holds for k£ = 1, since A(1:1,1:1) = (ay1), so a;1; # 0. Assume that no pivoting
was necessary for the first k — 1 steps (2 < k <n — 1). In this case, we have

Ep1--- BBy A = Ay,

where L = Ej_1--- EyE) is a unit lower-triangular matrix and Ag(1 : k,1 : k) is upper-
triangular, so that LA = Ay can be written as

Ll 0 A(l . k’, 1: k’) A2 . Ul Bg

L3 L4 A3 A4 n 0 B4 ’
where L; is unit lower-triangular and U is upper-triangular. (Once again A(1: k,1: k), Ly,
and U; are k x k matrices; Ay and By are k x (n — k) matrices; Az and L3 are (n — k) X k
matrices; Ay, Ly, and By are (n — k) X (n — k) matrices.) But then,

LiA(1: k) 1: k) =Uy,

where L; is invertible (in fact, det(L;) = 1), and since by hypothesis A(1 : k,1 : k) is
invertible, U; is also invertible, which implies that (Uy)g, # 0, since U; is upper-triangular.
Therefore, no pivoting is needed in Step k, establishing the induction step. Since det(L;) = 1,
we also have

det(Uy) = det(L1A(1: k,1: k)) = det(Ly) det(A(1: k,1:k)) =det(A(1: k,1:k)),
and since U; is upper-triangular and has the pivots 7y, ..., 7 on its diagonal, we get
det(A(1: k,1:k))=mmy-- -, k=1,...,n,

as claimed. n

Remark: The use of determinants in the first part of the proof of Proposition 8.2 can be
avoided if we use the fact that a triangular matrix is invertible iff all its diagonal entries are
NONZero.

Corollary 8.3. (LU-Factorization) Let A be an invertible n x n-matriz. If every matric
ALl : k,1: k) is invertible for k = 1,...,n, then Gaussian elimination requires no pivoting
and yields an LU -factorization A = LU.

Proof. We proved in Proposition 8.2 that in this case Gaussian elimination requires no
pivoting. Then since every elementary matrix Ejj.3 is lower-triangular (since we always
arrange that the pivot m; occurs above the rows that it operates on), since E; kl; g = Eik—p
and the Eys are products of Ej ., , s, from

En—l o EQElA - U,
where U is an upper-triangular matrix, we get
A= LU,

where L = E;'E;'---E. !, is a lower-triangular matrix. Furthermore, as the diagonal
entries of each Fj ;.5 are 1, the diagonal entries of each Ej, are also 1. O



258 CHAPTER 8. GAUSSIAN ELIMINATION, LU, CHOLESKY, ECHELON FORM

Example 8.1. The reader should verify that

2110 1000 2110
4 33 1] 2100 0111
8 79 5] 4310 00 2 2
6 79 8 3411 000 2

is an LU-factorization.

One of the main reasons why the existence of an LU-factorization for a matrix A is
interesting is that if we need to solve several linear systems Az = b corresponding to the
same matrix A, we can do this cheaply by solving the two triangular systems

Lw=0b, and Uz =w.

There is a certain asymmetry in the LU-decomposition A = LU of an invertible matrix A.
Indeed, the diagonal entries of L are all 1, but this is generally false for U. This asymmetry
can be eliminated as follows: if

D = diag(ui1, Usg, - - -, Unp)

is the diagonal matrix consisting of the diagonal entries in U (the pivots), then if we let
U’ = DU, we can write

A= LDU,
where L is lower- triangular, U’ is upper-triangular, all diagonal entries of both L and U’
are 1, and D is a diagonal matrix of pivots. Such a decomposition leads to the following
definition.

Definition 8.2. We say that an invertible n x n matrix A has an L DU-factorization if it can
be written as A = LDU’, where L is lower- triangular, U’ is upper-triangular, all diagonal
entries of both L and U’ are 1, and D is a diagonal matrix.

We will see shortly than if A is real symmetric, then U’ = L.

As we will see a bit later, real symmetric positive definite matrices satisfy the condition of
Proposition 8.2. Therefore, linear systems involving real symmetric positive definite matrices
can be solved by Gaussian elimination without pivoting. Actually, it is possible to do better:
this is the Cholesky factorization.

If a square invertible matrix A has an LU-factorization, then it is possible to find L and U
while performing Gaussian elimination. Recall that at Step k, we pick a pivot m, = agj) #0
in the portion consisting of the entries of index 7 > k of the k-th column of the matrix A,
obtained so far, we swap rows ¢ and k if necessary (the pivoting step), and then we zero the

entries of index j = k+1,...,n in column k. Schematically, we have the following steps:
X X X X X X X X X X X X X X X
0 x x x x| . af.,l:) X X X . 0 x x x X
0 x x x x [P L 0w x40 0 x x x
0 ag,{j) X X X 0 x x x X 0 0 X X X
0 X X x X 0 X X X X 0 0 X X X
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More precisely, after permuting row k& and row i (the pivoting step), if the entries in column
k below row k are i1k, .- ., g, then we add —ay, /7, times row k to row j; this process
is illustrated below:

% G\ (Y (e
Otk i1k Ok+1k 0
: pivot : B : elim
L [T e | T ] 0
ik kk v
(k) (k) a 0
ank’ a’nk nk

Then if we write £}, = oy, /7 for j =k +1,...,n, the kth column of L is

Observe that the signs of the multipliers —a, /7, have been flipped. Thus, we obtain the
unit lower triangular matrix

1 0 0
621 1 0
L=|01 [l 1

_ o O O O

gnl €n2 €n3

It is easy to see (and this is proven in Theorem 8.5) that if the result of Gaussian elimination
(without pivoting) is U = E,_; --- E1A, so that L = E;'E; -+ E 1|, then

n—1

1 ... 0 0 .- 0 1 -~ 0 0 --- 0
0 1 0 0 1|0 1 0 0

B = 0 ~lpgrr 1 0 and  By" = 0 Cerre 1 01’
0 v —L, 0 --- 1 0 v Ly 0 --- 1

so the kth column of E, Lis the kth column of L.



260 CHAPTER 8. GAUSSIAN ELIMINATION, LU, CHOLESKY, ECHELON FORM

Unfortunately, even though L' = E,_;--- E>E;, the matrices E}, occur in the wrong
order and the kth column of L~! is not the kth column of Ej.

Here is an example illustrating the method.

Example 8.2. Given

1 1 1 0

1 -1 0 1
A=4, = 1 1 =1 0|

1 -1 0 =1

we have the following sequence of steps: The first pivot is m; = 1 in row 1, and we subtract
row 1 from rows 2, 3, and 4. We get

1 1 1 0 1 000
0 -2 -1 1 1 100
L=1g 0 2 0| BTl101 0
0 -2 -1 -1 1 001
The next pivot is mo = —2 in row 2, and we subtract row 2 from row 4 (and add 0 times row

2 to row 3). We get

11 1 0 1000
0 -2 -1 1 1100
A=10 0 2 o0 =110 1 0
0 0 0 =2 1101
The next pivot is m13 = —2 in row 3, and since the fourth entry in column 3 is already a zero,
we add 0 times row 3 to row 4. We get
11 1 0 100 0
0 -2 -1 1 1100
A=10 0 2 o0 Ls=11010
0 0 0 =2 1 101
The procedure is finished, and we have
1 000 1 1 1 0
1100 0 -2 -1 1
L=Ls=110910 U=4=19 0 -2 o0
1101 0o 0 0 =2
It is easy to check that indeed
1 000 11 1 0 11 1 0
1100 0 -2 -1 1 1 -1 0 1
LU_lOlO 00—20_11—1O_A
1101 o 0 0 =2 1 -1 0 -1

We now show how to extend the above method to deal with pivoting efficiently. This is
the PA = LU factorization.
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8.5 PA = LU Factorization

The following easy proposition shows that, in principle, A can be premultiplied by some
permutation matrix P, so that PA can be converted to upper-triangular form without using
any pivoting. Permutations are discussed in some detail in Section 30.3, but for now we
just need this definition. For the precise connection between the notion of permutation (as
discussed in Section 30.3) and permutation matrices, see Problem 8.16.

Definition 8.3. A permutation matriz is a square matrix that has a single 1 in every row
and every column and zeros everywhere else.

It is shown in Section 30.3 that every permutation matrix is a product of transposition
matrices (the P(i, k)s), and that P is invertible with inverse P'.

Proposition 8.4. Let A be an invertible n X n-matriz. There is some permutation matriz
P so that (PA)(1: k,1: k) is invertible for k =1,... n.

Proof. The case n = 1 is trivial, and so is the case n = 2 (we swap the rows if necessary). If
n > 3, we proceed by induction. Since A is invertible, its columns are linearly independent;
in particular, its first n — 1 columns are also linearly independent. Delete the last column of
A. Since the remaining n — 1 columns are linearly independent, there are also n — 1 linearly
independent rows in the corresponding n x (n — 1) matrix. Thus, there is a permutation
of these n rows so that the (n — 1) x (n — 1) matrix consisting of the first n — 1 rows is
invertible. But then there is a corresponding permutation matrix P;, so that the first n — 1
rows and columns of P; A form an invertible matrix A’. Applying the induction hypothesis
to the (n — 1) X (n — 1) matrix A’, we see that there some permutation matrix P, (leaving
the nth row fixed), so that (P,PyA)(1: k,1 : k) is invertible, for Kk = 1,...,n — 1. Since A
is invertible in the first place and P; and P, are invertible, P P, A is also invertible, and we
are done. O

Remark: One can also prove Proposition 8.4 using a clever reordering of the Gaussian
elimination steps suggested by Trefethen and Bau [176] (Lecture 21). Indeed, we know that
if A is invertible, then there are permutation matrices P; and products of elementary matrices
E;, so that

An = n—an—l s E2P2E1P1A,

where U = A, is upper-triangular. For example, when n = 4, we have E3PsEy PoEyPLA =U.
We can define new matrices F/, E}, EY which are still products of elementary matrices so
that we have

EiE,E PsPyPLA=U.
Indeed, if we let By = Es, B} = P3FEyP; !, and B} = PsP,E Py Pyt we easily verify that
each Fj is a product of elementary matrices and that

EéEéEinPgPl — E3(P3E2P371)<P3P2E1P271Pgil)nggpl — E3P3E2P2E1P1.
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It can also be proven that Ej, Ej, EY are lower triangular (see Theorem 8.5).

In general, we let
E, =Py P B Pl - B,
and we have

E - FEPy---PA=U,
where each E is a lower triangular matrix (see Theorem 8.5).

It is remarkable that if pivoting steps are necessary during Gaussian elimination, a very
simple modification of the algorithm for finding an LU-factorization yields the matrices L, U,
and P, such that PA = LU. To describe this new method, since the diagonal entries of L
are 1s, it is convenient to write

L=1+A.

Then in assembling the matrix A while performing Gaussian elimination with pivoting, we
make the same transposition on the rows of A (really Ajx_;) that we make on the rows of A
(really Ay) during a pivoting step involving row &k and row 7. We also assemble P by starting
with the identity matrix and applying to P the same row transpositions that we apply to A
and A. Here is an example illustrating this method.

Example 8.3. Given

1 1 1 0

1 1 -1 0
A=4,= 1 -1 0 1]

1 -1 0 -1

we have the following sequence of steps: We initialize Ay = 0 and Py = I;. The first pivot is
m = 1 in row 1, and we subtract row 1 from rows 2, 3, and 4. We get

1 1 1 0 00 00 1 0 00
0O 0 -2 0 1 0 00 01 00
=1y 9 1 1 M=l 000 P oo 1o
0o —2 —1 -1 1 0 00 00 01
The next pivot is m19 = —2 in row 3, so we permute row 2 and 3; we also apply this permutation
to A and P:
1 1 1 0 00 00 1 0 00
, 10 =2 -1 1 , |1 000 10010
=10 o —2 o L=11000] 27lo1o0o0
0o -2 -1 -1 1 0 00 0001
Next we subtract row 2 from row 4 (and add 0 times row 2 to row 3). We get
1 1 1 0 00 0O 1 0 00
0 -2 -1 1 1 0 00 0010
=10 0 —2 o0 =11 000] 27lo1o0o0
0 O 0 -2 11 00 0001
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The next pivot is m3 = —2 in row 3, and since the fourth entry in column 3 is already a zero,
we add 0 times row 3 to row 4. We get

1 1 1 0 0000 1000
0 -2 —1 1 1000 0010
A4_00—20 A3_1000 P3_0100
0 0 0 -2 1100 000 1
The procedure is finished, and we have
100 0 1 1 1 0 1000
1100 0 -2 —1 1 0010
L=Mst+I=1f1 o1 o] Usd=|g o 2 o P=B=101 0 0
1101 0 0 0 -2 000 1
It is easy to check that indeed
1000\ /1 1 1 0 1 1 1 0
11000 -2 -1 1 1 -1 0 1
LU=117 91 0fllo 0o =2 o= |1 1 -1 o
1101/ \o o 0 -2 1 -1 0 -1
and
1000\ /1 1 1 0 1 1 1 0
0010|]1 1 =1 0 1 -1 0 1
PA=1g 100l 21 0o 171 1 -1 o
0001/ \1 -1 0 -1 1 -1 0 -1

Using the idea in the remark before the above example, we can prove the theorem below
which shows the correctness of the algorithm for computing P, L and U using a simple
adaptation of Gaussian elimination.

We are not aware of a detailed proof of Theorem 8.5 in the standard texts. Although
Golub and Van Loan [80] state a version of this theorem as their Theorem 3.1.4, they say
that “The proof is a messy subscripting argument.” Meyer [125] also provides a sketch of
proof (see the end of Section 3.10). In view of this situation, we offer a complete proof.
It does involve a lot of subscripts and superscripts, but in our opinion, it contains some
techniques that go far beyond symbol manipulation.

Theorem 8.5. For every invertible n X n-matriz A, the following hold:

(1) There is some permutation matriz P, some upper-triangular matriz U, and some unit
lower-triangular matriz L, so that PA = LU (recall, L;; = 1 fori=1,...,n). Fur-
thermore, if P = I, then L and U are unique and they are produced as a result of
Gaussian elimination without pivoting.
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If E,_1... 1A = U is the result of Gaussian elimination without pivoting, write as
usual Ay = Ex—1 ... E1A (with A, = (al(-;c))), and let Uy, = agz)/a,(c]z), withl <k <n-1
and k+1<i<n. Then

1 0 0
Oy 1 0
L=|%1 fl 1

_ o O O O

gnl €n2 €n3
where the kth column of L is the kth column of E;', fork=1,....,n—1.

If E,_1\P,_1---E1PLA = U is the result of Gaussian elimination with some pivoting,
write A, = Ey_1P,_1--- E1PiA, and define E;-“, withl<j<n—1landj<k<n-—1,
such that, for 7 =1,....,n— 2,
Ej =L
Ef =PBE\TP, fork=j+1,...,n—1,
and
Eﬁ:ll = Enfl.
Then,
Ejk = PPy P EjPj - P Py
U= Eﬁill"'E?_IPn_r--HA,
and if we set
P=P P
L= By (B

then
PA=LU. (1)

Furthermore,
(BN =I+¢&, 1<j<n-1j<k<n-—1,

where 5]]? 1s a lower triangular matrix of the form

O --- 0 0 --- 0
o |0 0 0 - 0
= (k) :
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we have

k _ k

and

gj’s:pkgffl, 1<j<n—-2j+1<k<n-1,
where P, = I or else P, = P(k,i) for some i such that k+1 < i < n; if Py # I, this
means that (EY)~" is obtained from (Ejlf”_l)’1 by permuting the entries on rows i and

k in column j. Because the matrices (Ejl-‘r)_1 are all lower triangular, the matriz L 1is
also lower triangular.

In order to find L, define lower triangular n x n matrices Ay of the form

0 0 0 0 0
A0 0 00 0
AB AW 0 0 0
: : 0 0 :
Ay = k k k
)‘quzn )‘;lez )\gcJZIk 0 0
k k k
)‘24221 )‘24222 T )‘ngzk 0 0
AR AB B g

to assemble the columns of L iteratively as follows: let
k k
(_gl(c-zlkv I _dbk))

be the last n — k elements of the kth column of Ey, and define Ay inductively by setting

0 0 --- 0
(D0 0

A1: 2.1 y
A 0

then for k=2,...,n—1, define

A;i, = PkAkfl, (TZ)
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and
0 0 0 0 0 0
MY 00 0 0 0
WY 0 o

M= T+ AE! ~T=| oy ooy ’09—1) A ’
/\kzl /\k:2 Ak(k—l) 0 N {
M Al Ny e e 0
P US I < B S

with Py = I or P, = P(k,i) for some i > k. This means that in assembling L, row k
and row 1 of Ap_1 need to be permuted when a pivoting step permuting row k and row
1 of Ay, is required. Then
I+ A= (By) (B
Ap=EF+ -+ &F,
fork=1,...,n—1, and therefore
L = [ -+ Anfl.

The proof of Theorem 8.5, which is very technical, is given in Section 8.6.

We emphasize again that Part (3) of Theorem 8.5 shows the remarkable fact that in
assembling the matrix L while performing Gaussian elimination with pivoting, the only
change to the algorithm is to make the same transposition on the rows of A,_; that we
make on the rows of A (really A) during a pivoting step involving row k and row i. We
can also assemble P by starting with the identity matrix and applying to P the same row
transpositions that we apply to A and A. Here is an example illustrating this method.

Example 8.4. Consider the matrix

1 2 -3 4
4 8 12 -8
A= 2 3 2 1
-3 -1 1 -4

We set Py = 14, and we can also set Ag = 0. The first step is to permute row 1 and row 2,
using the pivot 4. We also apply this permutation to Fp:

4 8 12 -8 0100
, |1 2 -3 4 |1t o000
A1_2321 P1_0010
-3 -1 1 -4 0001
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Next we subtract 1/4 times row 1 from row 2, 1/2 times row 1 from row 3, and add 3/4
times row 1 to row 4, and start assembling A:

4 8 12 -8 0 000 0100
o 0o -6 6 |14 000 {too0o0
=1y 1 4 5 A= 1/2 0 0 0 P=1o 010

0 5 10 —10 —3/4 0 0 0 0001

Next we permute row 2 and row 4, using the pivot 5. We also apply this permutation to A
and P:

4 8 12 =8 0 00O 0100

, |0 5 10 -—10 , | -3/4 0 0 0 [0 0 0 1
=10 -1 —1 5 Ay = 1/2 0 0 0 =190 10

0 0 -6 6 /4 000 1 000

Next we add 1/5 times row 2 to row 3, and update Aj:

4 8 12 =8 0 0 00 0100

10 5 10 -10 _|-3/4 0 00 10 0 0 1
A=100 -2 3 Ay = 1/2 —1/5 0 0 =19 010
00 —6 6 1/4 0 00 1 000

Next we permute row 3 and row 4, using the pivot —6. We also apply this permutation to
A and P:

4 8 12 =8 0 0 00 01 00
, 10 5 10 -10 , |-3/4 0 00 10001
Ay = 00 —6 6 As = 1/4 0 00 Py = 1000
00 -2 3 /2 —-1/5 0 0 0010
Finally we subtract 1/3 times row 3 from row 4, and update Aj:
4 8 12 -8 0 0 0 O 01 00
10 5 10 -10 | -3/4 0 0 O {0 0 01
A=100 26 6 Ay = /4 0 0 0 B=119000
00 O 1 /2 —-1/5 1/3 0 0010
Consequently, adding the identity to A3, we obtain
1 0 0 0 4 8 12 -8 0100
1 -3/4 1 0 0 |0 5 10 —10 {0 001
L 1/4 0 1 0}’ U= 00 —6 6 |’ P= 1 000
/2 —-1/5 1/3 1 00 O 1 0010
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We check that

01 00 1 2 -3 4 4 &8 12 -8
0 0 01 4 8 12 -8 -3 -1 1 -4
PA= 1 0 00 2 3 2 1 o 1 2 =3 4\’
0010 -3 -1 1 -4 2 3 2 1
and that
1 0 0 0 4 8 12 -8 4 8 12 -8
B —3/4 1 0 0 05 10 =10 |-3 -1 1 -4
LU = 1/4 0 1 0 00 —6 6 - 1 2 -3 4 = PA.
/2 —-1/5 1/3 1 00 O 1 2 3 2 1

Note that if one willing to overwrite the lower triangular part of the evolving matrix A,
one can store the evolving A there, since these entries will eventually be zero anyway! There
is also no need to save explicitly the permutation matrix P. One could instead record the
permutation steps in an extra column (record the vector (7(1),...,m(n)) corresponding to
the permutation 7 applied to the rows). We let the reader write such a bold and space-
efficient version of LU-decomposition!

Remark: In Matlab the function 1u returns the matrices P, L, U involved in the PA = LU
factorization using the call [L, U, P] = 1lu(A).

As a corollary of Theorem 8.5(1), we can show the following result.

Proposition 8.6. If an invertible real symmetric matriz A has an LU -decomposition, then

A has a factorization of the form
A=LDL",

where L is a lower-triangular matriz whose diagonal entries are equal to 1, and where D
consists of the pivots. Furthermore, such a decomposition is unique.

Proof. If A has an LU-factorization, then it has an LDU factorization
A=LDU,

where L is lower-triangular, U is upper-triangular, and the diagonal entries of both L and
U are equal to 1. Since A is symmetric, we have

LDU=A=A"=U"DL",

with U lower-triangular and DL T upper-triangular. By the uniqueness of LU-factorization
(Part (1) of Theorem 8.5), we must have L = U' (and DU = DL"), thus U = L', as
claimed. ]

Remark: It can be shown that Gaussian elimination plus back-substitution requires n3/3 +
O(n?) additions, n®/3 + O(n?) multiplications and n?/2 + O(n) divisions.
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8.6 Proof of Theorem 8.5 ®

Proof. (1) The only part that has not been proven is the uniqueness part (when P = T).
Assume that A is invertible and that A = L,U; = LyU,, with Ly, Ly unit lower-triangular
and Uy, Uy upper-triangular. Then we have

Ly'Ly = UyU

However, it is obvious that L; ' is lower-triangular and that U; ! is upper-triangular, and so
Ly'Ly is lower-triangular and U,U; " is upper-triangular. Since the diagonal entries of L,
and L, are 1, the above equality is only possible if UyU; ' = I, that is, U; = U, and so
Ly = Ls.

(2) When P = I, we have L = E;'E;*---E.!,, where Ej is the product of n — k
elementary matrices of the form Fj, ._,,, where E; ;. subtracts ¢; times row k from row ¢,
with ¢, = agz)/a,ﬁ), 1<k<n-—1,and k41 <i<mn. Then it is immediately verified that

1 ... 0 0 --- 0
0 --- 1 0 --- 0
Ly, = 0 -+ —Llpyp 1 - 0]
0 b O 1
and that
1 0 0 0
110 1 0 0
B = 0 Crgrr 1 0
0 b O 1
If we define L, by
1 0 0 0 0 0
Uy 1 0 0 0 0
631 632 ' 0 0 0
L = : 1 0 0
Ueyi1 L1z - lppar 1 0
: : - : 0 0
Enl EnQ e Enk; 0 1

for k=1,...,n — 1, we easily check that L; = E;', and that
Lpy=L,,E"', 2<k<n-—1,
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because multiplication on the right by E, ! adds /; times column 4 to column k (of the matrix
Ly_1) with ¢ > k, and column ¢ of Lj;_; has only the nonzero entry 1 as its ith element.
Since

Ly=FE;'---E', 1<k<n-1,

we conclude that L = L,,_1, proving our claim about the shape of L.
(3)
Step 1. Prove (f1).
First we prove by induction on k that
Ay =EF - E¥P-- PIA, k=1,...,n—2.

For k =1, we have Ay = E1 P A = E11P1A, since E% = F/, so our assertion holds trivially.

Now if k& > 2,
A1 = Ep P Ay,

and by the induction hypothesis,
Ay =EFl ENENMIP - PA

Because Py is either the identity or a transposition, PZ = I, so by inserting occurrences of
P, P, as indicated below we can write

Aps1 = EpPL Ay
= EyP B - By BT Py PA
= B P.EN"Y (PP, - (PP EY (PP EY Y (PuP) Pe_y - -- PLA
= EL(P.E{ Py - (P.EY ' P)(PEY P PoPy_y - PLA.

Observe that P, has been “moved” to the right of the elimination steps. However, by
definition,

Ef = PEi'P,, j=1,...k—1
EF = B,

so we get
Apr = BBy ByE{ P PLA,

establishing the induction hypothesis. For k =n — 2, we get
U=A,_,= E;‘:ll . "Ef‘_lpn_1 .- PA,
as claimed, and the factorization PA = LU with

P=P, ,---P
L=(Ep (B
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is clear.

Step 2. Prove that the matrices (Ej’?)*l are lower-triangular. To achieve this, we prove
that the matrices 5]’-“ are strictly lower triangular matrices of a very special form.

Since for j =1,...,n — 2, WehaveE]j:Ej
EV =PETP, k=j+1,...,n—1,

since E'"} = E, 1 and P, = P, we get (E]J-')*1 = Ej_1 for j =1,...,n—1, and for
7=1,...,n—2, we have

(E;‘C)il :Pk(Effl)flpk, k=j+1,...,n—1.

Since
k—1y—1 k-1
(Ej )T =1+ Sj

and P, = P(k,i) is a transposition or P, = I, so P2 = I, and we get
(B)) " = B(E) " Po= Pl + &7 )Py = PU+ P& Po= T+ B E] P
Therefore, we have

(EN ' =1+P& "R, 1<j<n-2j+1<k<n-1

We prove for j =1,...,n—1, that for k =3,...,n—1, each 5]’-“ is a lower triangular matrix
of the form
0o --- 0O 0 --- 0
ok 0 0 0 - 0
i~ o 0 0l
0 @ 0 0
and that

EF=PR& 1<j<n—-2j+1<k<n-—1,

with P, = I or P, = P(k,i) for some i such that k+1 <i < mn.

For each j (1 < j <n —1) we proceed by induction on k = j,...,n — 1. Since (EJJ;)*1 =

E; I and since E; 1is of the above form, the base case holds.

For the induction step, we only need to consider the case where P, = P(k,1) is a trans-
position, since the case where P, = [ is trivial. We have to figure out what P, Ef_l P, =
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P(k,z’)é']’-“_l P(k,i) is. However, since

0 0 0 0
0 0 0 0

&t = (h-1) ,
j 0 oo £ 0 0
0 ... gg;*l) 0 --- 0

and because k +1 < i < n and j < k — 1, multiplying 5]'?_1 on the right by P(k,i) will
permute columns ¢ and k, which are columns of zeros, so

P(k,i) € P(k,i) = P(k,i) €,

and thus,
ky—1 N k-1
(Ej)" =1+ P(k,i) &

But since
k-1 k

we deduce that
E_ N k-1
& = P(k,i)& .

We also know that multiplying 5]’?’1 on the left by P(k,:) will permute rows i and k, which
shows that £F has the desired form, as claimed. Since all Ef are strictly lower triangular, all
(EF)~' = I+ &) are lower triangular, so the product

L= (B (Bny) ™
is also lower triangular.

Step 3. Express Las L =1+ A,_y, with A,,_; =& +--- + &1

n

From Step 1 of Part (3), we know that
L= By~ (B~
We prove by induction on £ that

I+ Ae= (B (B
Ae=EE+-o + &L,

fork=1,...,n—1.
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If k=1, we have E] = F; and

1 0 --- 0
o —M 10
1= : . )
o oo
— 0 1
We also get
1 0 --- 0
ORI
(BH™ = . | =1+A

Since (E;1) ™! =1 + &}, we find that we get A; = £}, and the base step holds.
Since (EF)™" = I 4 £ with

0 0O 0 - 0

o |0 0 0 - 0
= (k)

0 ... 57(1’;) 0 .- 0

and 8;“5;“ =0if i < 7, as in part (2) for the computation involving the products of Lj’s, we
get
(By ) (B =THET e+ T, 25k <n, (+)

Similarly, from the fact that 5]’-“_1 P(k,i) = 5;.‘3_1 ifi>k+1and j <k—1 and since
(BN =I+PRE, 1<j<n-2j+1<k<n-1,

we get
(B (B ) =T+ P& 4+ §5)), 2<k<n—1 ()
By the induction hypothesis,
I+ Apor = (B (B

and from (x), we get
Npor =EF M+ &L
Using (xx), we deduce that

(EY) ™ (Br_y) =1+ Pl
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Since Ef = E},, we obtain
(B (B) N (E) ™ = (L + Phy—n) B
However, by definition
I+A, =+ PA1)E,
which proves that
I+ A= (BN (B (B, (1)
and finishes the induction step for the proof of this formula.

If we apply Equation (%) again with & + 1 in place of k, we have
(BY) (B = T+ &0+ 4 &
and together with (1), we obtain,
A, =&+ + &

also finishing the induction step for the proof of this formula. For k = n —1 in (}), we obtain
the desired equation: L =1+ A,_1. O

8.7 Dealing with Roundoff Errors; Pivoting Strategies

Let us now briefly comment on the choice of a pivot. Although theoretically, any pivot can
be chosen, the possibility of roundoff errors implies that it is not a good idea to pick very
small pivots. The following example illustrates this point. Consider the linear system

107% + y = 1
r 4+ oy = 2.

Since 10~ is nonzero, it can be taken as pivot, and we get

1074z + Y = 1
(1-10y = 2— 10"

Thus, the exact solution is
104 10 —2

Twor YT
However, if roundoff takes place on the fourth digit, then 10* — 1 = 9999 and 10* — 2 = 9998
will be rounded off both to 9990, and then the solution is z = 0 and y = 1, very far from the
exact solution where x ~ 1 and y = 1. The problem is that we picked a very small pivot. If

instead we permute the equations, the pivot is 1, and after elimination we get the system

T + Y = 2
(1-10YYy = 1-2x107%
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This time, 1 — 107 = 0.9999 and 1 — 2 x 10~* = 0.9998 are rounded off to 0.999 and the
solution is x = 1,y = 1, much closer to the exact solution.

To remedy this problem, one may use the strategy of partial pivoting. This consists of
choosing during Step k (1 < k <n — 1) one of the entries aglz) such that

(k) _ (k)
gy | = JQ&’% ’a‘pk|'

By maximizing the value of the pivot, we avoid dividing by undesirably small pivots.

Remark: A matrix, A, is called strictly column diagonally dominant iff

n

laj;| > Z lai;|, forj=1,....n
i=1,i#j

(resp. strictly row diagonally dominant iff

n

|a”“> Z ]aij\, forizl,...,n.)

=1, #i
For example, the matrix
1
1 4 1 0
0 1 4

of the curve interpolation problem discussed in Section 8.1 is strictly column (and row)
diagonally dominant.

It has been known for a long time (before 1900, say by Hadamard) that if a matrix
A is strictly column diagonally dominant (resp. strictly row diagonally dominant), then it
is invertible. It can also be shown that if A is strictly column diagonally dominant, then
Gaussian elimination with partial pivoting does not actually require pivoting (see Problem
8.12).

(k)

Another strategy, called complete pivoting, consists in choosing some entry a;;’, where

k <1,j5 <n,such that
o] = max |a®).
‘ k<pg<n P
However, in this method, if the chosen pivot is not in column k, it is also necessary to
permute columns. This is achieved by multiplying on the right by a permutation matrix.
However, complete pivoting tends to be too expensive in practice, and partial pivoting is the
method of choice.

A special case where the LU-factorization is particularly efficient is the case of tridiagonal
matrices, which we now consider.
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8.8 (Gaussian Elimination of Tridiagonal Matrices

Consider the tridiagonal matrix

by ¢
as bo C2
a3 b3 C3

Ap—2 bn—? Cn—2
Qp—1 bnfl Cn—1
an by

Define the sequence
0o =1, 01 =0b1, Op="0bp0p—1 — arCr_10k—2, 2=<k<n.
Proposition 8.7. If A is the tridiagonal matriz above, then & = det(A(1 : k,1 : k)) for

k=1,...,n.
Proof. By expanding det(A(1 : k,1 : k)) with respect to its last row, the proposition follows
by induction on k. O

Theorem 8.8. If A is the tridiagonal matriz above and o, # 0 for k =1,...,n, then A has
the following LU -factorization:

1 % C1
0
CLQ? 1 @ Co
1 51 51
CL35— 1 % 3
A= ’ ) %
An—1 571—3 ]- 671—1
571—2 5 Cn—1
6n72 n—2 5
(7% 1 n
(5n71 5n—1

Proof. Since 6 = det(A(1: k,1:k)) #0for k=1,...,n, by Theorem 8.5 (and Proposition
8.2), we know that A has a unique LU-factorization. Therefore, it suffices to check that the
proposed factorization works. We easily check that

(LU)kk+1 = Cg, 1§]€§7’L—1

(LU)kk—1 = ar, 2<k<n

LUk = 0, |k—=1]=2
)
(LU)ll — (5_1 — b1
0
(LU)gr = GiCh-10e2 O _ b, 2<k<n,

Ok—1



8.8. GAUSSIAN ELIMINATION OF TRIDIAGONAL MATRICES 277

since 5k = bkék—l — akck_ldk_g. ]

It follows that there is a simple method to solve a linear system Ax = d where A is
tridiagonal (and d; # 0 for k = 1,...,n). For this, it is convenient to “squeeze” the diagonal
matrix A defined such that Ay = §;/d;_1 into the factorization so that A = (LA)(A™IU),
and if we let

c Op— )
H= =t 2<k<n—1, z,= " =b, —anz, 1,
bl 5k 5n71
A= (LA)(A7'U) is written as
1 21
ﬂ 1 2z
21
c
Q9 =2 1 z3
z
2 .
a —_—
ap—1 zn_l 1 20
n—1
an  Zn 1 2,

1

As a consequence, the system Ax = d can be solved by constructing three sequences: First,
the sequence

C1 . Ck
DR

corresponding to the recurrence 6y = bpdr_1 — arcr_10x_2 and obtained by dividing both
sides of this equation by d;_1, next

z1 = k=2,....n—1, z,=0b,— a,z,_1,

)
by, — agzi—1

dy w dy, — apwi_1
- = —————
by’

corresponding to solving the system LAw = d, and finally

wy = k=2 ...,n,

- 9
b — apzp—1

Tp =Wy, Tp=Wg— 2kTpr1, k=n—1,n-—2...1,
corresponding to solving the system A~'Uz = w.

Remark: It can be verified that this requires 3(n — 1) additions, 3(n — 1) multiplications,
and 2n divisions, a total of 8n — 6 operations, which is much less that the O(2n?/3) required
by Gaussian elimination in general.

We now consider the special case of symmetric positive definite matrices (SPD matrices).
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8.9 SPD Matrices and the Cholesky Decomposition

Definition 8.4. A real n x n matrix A is symmetric positive definite, for short SPD, iff it
is symmetric and if
z"Az >0 for all z € R* with z # 0.

The following facts about a symmetric positive definite matrix A are easily established
(some left as an exercise):

(1) The matrix A is invertible. (Indeed, if Az = 0, then #" Az = 0, which implies z = 0.)

(2) We have a;; > 0 for i =1,...,n. (Just observe that for x = e;, the ith canonical basis
vector of R™, we have e/ Ae; = a;; > 0.)

(3) For every n x n real invertible matrix Z, the matrix Z ' AZ is real symmetric positive
definite iff A is real symmetric positive definite.

(4) The set of n x n real symmetric positive definite matrices is convex. This means that
if A and B are two n x n symmetric positive definite matrices, then for any A € R such
that 0 < A < 1, the matrix (1 — A\)A + AB is also symmetric positive definite. Clearly
since A and B are symmetric, (1 — A\)A + AB is also symmetric. For any nonzero
x € R", we have 2" Az > 0 and 2" Bx > 0, so

(1 =NA+AB)z = (1 - N)a' Az + \z" Bz > 0,
because 0 < A <1,s01—A > 0and A > 0, and 1—X and A can’t be zero simultaneously.

(5) The set of n x n real symmetric positive definite matrices is a cone. This means that if
A is symmetric positive definite and if A > 0 is any real, then A\A is symmetric positive
definite. Clearly AA is symmetric, and for nonzero z € R”, we have 2" Az > 0, and
since A > 0, we have 2" Az = Az " Az > 0.

Remark: Given a complex m X n matrix A, we define the matrix A as the m x n matrix
A = (a;;). Then we define A* as the n x m matrix A* = (A)" = (AT). The n x n complex
matrix A is Hermitian if A* = A. This is the complex analog of the notion of a real symmetric
matrix.

Definition 8.5. A complex n x n matrix A is Hermitian positive definite, for short HPD,
if it is Hermitian and if

2*Az >0 forall z € C" with z # 0.

It is easily verified that Properties (1)-(5) hold for Hermitian positive definite matrices;
replace T by .
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It is instructive to characterize when a 2 x 2 real matrix A is symmetric positive definite.
Write
a c
A= :

(z ) (CCL Z) (Z) = az? + 2cxy + by

If the above expression is strictly positive for all nonzero vectors (z), then for x =1,y =0
we get a > 0 and for x =0,y = 1 we get b > 0. Then we can write

Then we have

2 2
azx® + 2cxy + by = (\/5:1: - %y) + by* — %yz

Vva

_ (\/ax " %y)2 + % (ab— ) y?. ()

Since a > 0, if ab — ¢® < 0, then we can choose y > 0 so that the second term is negative or
zero, and we can set # = —(c¢/a)y to make the first term zero, in which case ax?+2cxy+by?* <
0, so we must have ab — ¢ > 0.

Conversely, if a > 0,0 > 0 and ab > ¢?, then for any (x,y) # (0,0), if y = 0, then z # 0
and the first term of (1) is positive, and if y # 0, then the second term of (f) is positive.
Therefore, the matrix A is symmetric positive definite iff

a>0,b>0, ab> . (%)

Note that ab — ¢* = det(A), so the third condition says that det(A) > 0.

Observe that the condition b > 0 is redundant, since if a > 0 and ab > ¢2, then we must
have b > 0 (and similarly b > 0 and ab > ¢? implies that a > 0).

We can try to visualize the space of 2 X 2 real symmetric positive definite matrices in
R3, by viewing (a, b, ¢) as the coordinates along the z,y, z axes. Then the locus determined
by the strict inequalities in (x) corresponds to the region on the side of the cone of equation
xy = z? that does not contain the origin and for which > 0 and y > 0. For z = § fixed,
the equation xy = 62 define a hyperbola in the plane z = §. The cone of equation zy = z°
consists of the lines through the origin that touch the hyperbola xy = 1 in the plane z = 1.
We only consider the branch of this hyperbola for which x > 0 and y > 0. See Figure 8.6.

It is not hard to show that the inverse of a real symmetric positive definite matrix is
also real symmetric positive definite, but the product of two real symmetric positive definite
matrices may not be symmetric positive definite, as the following example shows:

(12 (e ova) = (e 33)
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Figure 8.6: Two views of the surface zy = 2% in R®. The intersection of the surface with
a constant z plane results in a hyperbola. The region associated with the 2 x 2 symmetric
positive definite matrices lies in ”front” of the green side.

According to the above criterion, the two matrices on the left-hand side are real symmetric
positive definite, but the matrix on the right-hand side is not even symmetric, and

o ) ()

even though its eigenvalues are both real and positive.

Next we show that a real symmetric positive definite matrix has a special LU-factorization
of the form A = BB, where B is a lower-triangular matrix whose diagonal elements are
strictly positive. This is the Cholesky factorization.

First we note that a symmetric positive definite matrix satisfies the condition of Propo-
sition 8.2.

Proposition 8.9. If A is a real symmetric positive definite matriz, then A(1 : k,1 : k) is
symmetric positive definite and thus invertible for k =1,...,n.
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Proof. Since A is symmetric, each A(1 : k,1 : k) is also symmetric. If w € RF, with
1 <k <n, welet x € R" be the vector with x; = w; for ¢ = 1,...,k and z; = 0 for
i =k+1,...,n. Now since A is symmetric positive definite, we have 2" Az > 0 for all
x € R™ with  # 0. This holds in particular for all vectors x obtained from nonzero vectors
w € R* as defined earlier, and clearly

e Ar =w A1 k1 k)w,

which implies that A(1 : k,1 : k) is symmetric positive definite. Thus, by Fact 1 above,
A(1: k,1: k) is also invertible. O

Proposition 8.9 also holds for a complex Hermitian positive definite matrix. Proposition
8.9 can be strengthened as follows: A real (resp. complex) matriz A is symmetric (resp.
Hermitian) positive definite iff det(A(1:k,1:k)) >0 fork=1,...,n.

The above fact is known as Sylvester’s criterion. We will prove it after establishing the
Cholesky factorization.

Let A be an n x n real symmetric positive definite matrix and write

[ G11 WT
=i o).
where C'is an (n — 1) x (n — 1) symmetric matrix and W is an (n — 1) x 1 matrix. Since A

is symmetric positive definite, a;; > 0, and we can compute a = /a;;. The trick is that we
can factor A uniquely as

4 (@ Wy a 0\ /1 0 a WT/la
\woc ) \W/a 1)\0 C-—WWT/a;,) \0 1 ’
i.e., as A = ByAB] , where B is lower-triangular with positive diagonal entries. Thus, B;
is invertible, and by Fact (3) above, A; is also symmetric positive definite.

Remark: The matrix C—WW T /a,, is known as the Schur complement of the 1 x 1 matrix
(CLH) in A.

Theorem 8.10. (Cholesky factorization) Let A be a real symmetric positive definite matriz.
Then there is some real lower-triangular matriz B so that A = BBT. Furthermore, B can
be chosen so that its diagonal elements are strictly positive, in which case B is unique.

Proof. We proceed by induction on the dimension n of A. For n = 1, we must have a;; > 0,
and if we let « = \/a;; and B = («), the theorem holds trivially. If n > 2, as we explained
above, again we must have a;; > 0, and we can write

far W\ [ a 0\ /[1 0 a WTja\ T
A_(W C)_<W/a I) (0 C—WWT/aH) (o I )_BlAlBl’
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where o« = /a7, the matrix B; is invertible and

1 (! 0
r= 0 C’—WWT/aH

is symmetric positive definite. However, this implies that C' — WWT /a; is also symmetric
positive definite (consider z" Az for every x € R™ with  # 0 and x; = 0). Thus, we can
apply the induction hypothesis to C' — WW T /a;; (which is an (n — 1) x (n — 1) matrix),
and we find a unique lower-triangular matrix L with positive diagonal entries so that

C—-WW"/a;, = LL".

But then we get

1= (e D6 eowtrn) 6 7°)
= (i D0 ) 6 7)
i )6 26 o) 6 )
= i 2) (6

Therefore, if we let

5= (wn 1)

we have a unique lower-triangular matrix with positive diagonal entries and A = BB". [J

Remark: The uniqueness of the Cholesky decomposition can also be established using the
uniqueness of an LU-decomposition. Indeed, if A = BlBlT = BQB2T where B; and B, are
lower triangular with positive diagonal entries, if we let Ay (resp. Ay) be the diagonal matrix
consisting of the diagonal entries of B; (resp. Bs) so that (Ag); = (Bg)i for k = 1,2, then
we have two LU-decompositions

A= (BIATH)(ALB) = (B2 1) (A By)

with ByATY, BoAS ! unit lower triangular, and Ay B, Ay B, upper triangular. By uniquenes
of LU-factorization (Theorem 8.5(1)), we have

BIAT = BAYY, AB] = AB,,

and the second equation yields
BlAl = BQAQ. (*)
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2

%)

The diagonal entries of ByA; are (Bj)?% and similarly the diagonal entries of ByAy are (By)
so the above equation implies that

(B1)2 = (By)2, i=1,...,n.

%)
Since the diagonal entries of both B; and B, are assumed to be positive, we must have
(B1)ii = (B2)u, i=1,...,m;

that is, A; = Ay, and since both are invertible, we conclude from (x) that B; = Bx.

Theorem 8.10 also holds for complex Hermitian positive definite matrices. In this case,
we have A = BB* for some unique lower triangular matrix B with positive diagonal entries.

The proof of Theorem 8.10 immediately yields an algorithm to compute B from A by
solving for a lower triangular matrix B such that A = BB' (where both A and B are real
matrices). For j =1,...,n,

i1 1/2
bjj = <%‘j—zb?k> ,
k=1
and fori=j+1,...,n(and j=1,...,n—1)
j—1
bij = (aij _szkzbjk> /bjj-
k=1

The above formulae are used to compute the jth column of B from top-down, using the first
j — 1 columns of B previously computed, and the matrix A. In the case of n =3, A= BBT
yields

11 A1z asa b;; O 0 b1 by b31
Q21 Q22 A3z | = by bay 0 0 by 532
as; Qs 0as3 bs1 bsa  bss 0 0 b3
bfl b11091 b11031

= | bi1ba b3, + b3, ba1b31 + baobsa
bi1bsr  bo1bsy + bagbsa b3y + b3y + b3,

We work down the first column of A, compare entries, and discover that

2
a11 = 511 b1 = Vai

21
az1 = by1bay by = —

b1

a31
asy = bnb31 b31
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Next we work down the second column of A using previously calculated expressions for
be; and bs; to find that

1
azs = b3 + b3, bar = (a22 - bgl) ’

aza — bay b31

asa = bo1b31 + baobao b3y = b
22

Finally, we use the third column of A and the previously calculated expressions for bs;
and bsy to determine bss as

1
asz = bgl + b§2 + bgg b33 = (CL33 — b§1 — b§2) 2.

For another example, if

111111
122222
1 23333
A=1193 4 4 4|
1 23455
1 23456
we find that
100000
110000
111000
B=1111100
111110
111111

We leave it as an exercise to find similar formulae (involving conjugation) to factor a
complex Hermitian positive definite matrix A as A = BB*. The following Matlab program
implements the Cholesky factorization.

function B = Cholesky(A)
n = size(A,1);
B = zeros(n,n);
for j = 1:n-1;
if j ==
B(1,1) = sqrt(A(1,1));
for i = 2:n
B(i,1) = A(i,1)/B(1,1);
end
else
B(j,j) = sqrt(A(j,j) - B(j,1:j-1)*B(j,1:j-1)");
for i = j+l:n
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B(i,j) = (A(i,j) - B(i,1:j-1)*B(j,1:j-1)")/B(j,]);

end
end
end
B(n,n) = sqrt(A(n,n) - B(n,1:n-1)*B(n,1:n-1)’);
end

If we run the above algorithm on the following matrix

41000
14100
A=101 4 1 0],
00141
0 0014
we obtain
2.0000 0 0 0 0
0.5000 1.9365 0 0 0
B = 0 0.5164 1.9322 0 0
0 0 0.5175 1.9319 0
0 0 0 0.5176 1.9319

The Cholesky factorization can be used to solve linear systems Ax = b where A is
symmetric positive definite: Solve the two systems Bw = b and B’z = w.

Remark: It can be shown that this method requires n3/6 + O(n?) additions, n®/6 + O(n?)
multiplications, n?/2+0(n) divisions, and O(n) square root extractions. Thus, the Cholesky
method requires half of the number of operations required by Gaussian elimination (since
Gaussian elimination requires n®/3 + O(n?) additions, n®/3 + O(n?) multiplications, and
n?/2 + O(n) divisions). It also requires half of the space (only B is needed, as opposed
to both L and U). Furthermore, it can be shown that Cholesky’s method is numerically
stable (see Trefethen and Bau [176], Lecture 23). In Matlab the function chol returns the
lower-triangular matrix B such that A = BB using the call B = chol(A, ‘lower’).

Remark: If A = BB", where B is any invertible matrix, then A is symmetric positive
definite.

Proof. Obviously, BB is symmetric, and since B is invertible, BT is invertible, and from
v'"Ar =2"'BB'x = (B'2z)"B'x,
it is clear that " Az > 0 if 2 # 0. O

We now give three more criteria for a symmetric matrix to be positive definite.
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Proposition 8.11. Let A be any n x n real symmetric matriz. The following conditions are
equivalent:

(a) A is positive definite.

(b) All principal minors of A are positive; that is: det(A(1:k,1:k)) >0 fork=1,....n
(Sylvester’s criterion).

(¢c) A has an LU-factorization and all pivots are positive.
(d) A has an LDL"-factorization and all pivots in D are positive.

Proof. By Proposition 8.9, if A is symmetric positive definite, then each matrix A(1: k,1 : k)
is symmetric positive definite for £ = 1,...,n. By the Cholesky decomposition, A(1 : k,1 :
k) = QT Q for some invertible matrix Q, so det(A(1 : k,1: k)) = det(Q)? > 0. This shows
that (a) implies (b).

If det(A(1 : k,1:k)) >0 for k =1,...,n, then each A(1 : k,1 : k) is invertible. By
Proposition 8.2, the matrix A has an LU-factorization, and since the pivots 7 are given by

aj; = det(A(1:1,1:1)) if k=1
T = det(A(1: k,1:k)) ,
fk=2,...
det(A(L:k—1,1:k—1)) | et

we see that m, > 0 for k =1,...,n. Thus (b) implies (c).

Assume A has an LU-factorization and that the pivots are all positive. Since A is
symmetric, this implies that A has a factorization of the form

A=LDL",

with L lower-triangular with 1s on its diagonal, and where D is a diagonal matrix with
positive entries on the diagonal (the pivots). This shows that (c) implies (d).

Given a factorization A = LDL" with all pivots in D positive, if we form the diagonal
matrix
VD = diag(\/71, -, \/Tn)
and if we let B = LvV/D, then we have
A= BBT,

with B lower-triangular and invertible. By the remark before Proposition 8.11, A is positive
definite. Hence, (d) implies (a). O

Criterion (c) yields a simple computational test to check whether a symmetric matrix is
positive definite. There is one more criterion for a symmetric matrix to be positive definite:
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its eigenvalues must be positive. We will have to learn about the spectral theorem for
symmetric matrices to establish this criterion (see Proposition 22.3).

Proposition 8.11 also holds for complex Hermitian positive definite matrices, where in
(d), the factorization LDL' is replaced by LDL*.

For more on the stability analysis and efficient implementation methods of Gaussian
elimination, LU-factoring and Cholesky factoring, see Demmel [48], Trefethen and Bau [176],
Ciarlet [41], Golub and Van Loan [80], Meyer [125], Strang [169, 170], and Kincaid and
Cheney [102].

8.10 Reduced Row Echelon Form (RREF)

Gaussian elimination described in Section 8.2 can also be applied to rectangular matrices.
This yields a method for determining whether a system Az = b is solvable and a description
of all the solutions when the system is solvable, for any rectangular m x n matrix A.

It turns out that the discussion is simpler if we rescale all pivots to be 1, and for this we
need a third kind of elementary matrix. For any A # 0, let E; y be the n x n diagonal matrix

1

1
with (E; )i = A (1 <i<mn). Note that E; , is also given by
Ei,)\ =1 + ()\ — 1)6“',

and that £ ) is invertible with
E;\ = E;)-.

Now after £ — 1 elimination steps, if the bottom portion

(al(jc)? al(clilkv S ’afrl:l)c)
of the kth column of the current matrix Ay is nonzero so that a pivot m, can be chosen,
after a permutation of rows if necessary, we also divide row k by 7 to obtain the pivot 1,
and not only do we zero all the entries ¢ = k+1,...,m in column k, but also all the entries
1 =1,...,k — 1, so that the only nonzero entry in column k is a 1 in row k. These row
operations are achieved by multiplication on the left by elementary matrices.

If a,(i) = a,&?lk == af?’j,l = 0, we move on to column k + 1.
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When the kth column contains a pivot, the kth stage of the procedure for converting a
matrix to rref consists of the following three steps illustrated below:

1 x 0 x X X X 1 x 0 x X X X
0 01 x x x X 0 01 x x x X
000 x x x x[pivot |0 0 0 a¥ x x x| rescale
0 0 0 x x x X = 0 0 0 ;5 X X X e
0 0 O af,’j) X X X 0 00 x x x X
0 0 0 x x x X 0 0 0 x x x X

1 x 0 x x X X 1 x 00 x x X

0 01 x x X X 0 01 0 x x x

0 001 x x X elgx; 0 0 01 x x X

0 0 0 x X X X 0 0 00 X X X

0 0 0 x X X X 00 00 X X X

0 0 0 x x X X 0 000 X X X

If the kth column does not contain a pivot, we simply move on to the next column.

The result is that after performing such elimination steps, we obtain a matrix that has a
special shape known as a reduced row echelon matriz, for short rref.

Here is an example illustrating this process: Starting from the matrix

1021 5
Ai=11 15 2 7],
1 2 8 4 12
we perform the following steps
10215
Al—)AQZ 0131 2 s
026 37
by subtracting row 1 from row 2 and row 3;
102 15 10 2 1 5 1 0 2 1 5
A, — |0 2 6 3 7| — |0 1 3 3/2 7/2| —A3=(0 1 3 3/2 7/2 ]|,
0131 2 013 1 2 000 —1/2 —3/2

after choosing the pivot 2 and permuting row 2 and row 3, dividing row 2 by 2, and sub-
tracting row 2 from row 3;

102 1 5 1020 2
As—s |0 13 3/2 72 —A=]0130 -1],
000 1 3 0001 3
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after dividing row 3 by —1/2, subtracting row 3 from row 1, and subtracting (3/2) x row 3
from row 2.

It is clear that columns 1,2 and 4 are linearly independent, that column 3 is a linear
combination of columns 1 and 2, and that column 5 is a linear combination of columns
1,2, 4.

In general, the sequence of steps leading to a reduced echelon matrix is not unique. For
example, we could have chosen 1 instead of 2 as the second pivot in matrix A,. Nevertheless,
the reduced row echelon matriz obtained from any given matriz is unique; that is, it does not
depend on the the sequence of steps that are followed during the reduction process. This
fact is not so easy to prove rigorously, but we will do it later.

If we want to solve a linear system of equations of the form Az = b, we apply elementary
row operations to both the matrix A and the right-hand side b. To do this conveniently, we
form the augmented matriz (A,b), which is the m x (n + 1) matrix obtained by adding b as
an extra column to the matrix A. For example if

1 0 21 5}
A=|1 1 5 2 and b=| 7],
1 2 8 4 12
then the augmented matrix is
1021 5
Aabn=[1152 7
1 2 8 4 12

Now for any matrix M, since
M(A,b) = (MA, Mb),

performing elementary row operations on (A, b) is equivalent to simultaneously performing
operations on both A and b. For example, consider the system

I + 2?[73 + 24 = 5
T1 + X9y 4+ Ox3 + 214 = 7
r1 + 21’2 + 8.’13'3 + 4{134 = 12.

Its augmented matrix is the matrix

1 02 1 5
Abn=[1152 7
128 4 12

considered above, so the reduction steps applied to this matrix yield the system

I + 21‘3 = 2
) + 31‘3 = -1
Ty = 3.
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This reduced system has the same set of solutions as the original, and obviously x3 can be
chosen arbitrarily. Therefore, our system has infinitely many solutions given by

T = 2 — 21’3, To = —1- 3233, Ty = 3,
where x3 is arbitrary.

The following proposition shows that the set of solutions of a system Az = b is preserved
by any sequence of row operations.

Proposition 8.12. Given any m x n matriz A and any vector b € R™, for any sequence
of elementary row operations Fy, ..., Ey, if P = Ey---Ey and (A", V) = P(A,b), then the
solutions of Ax = b are the same as the solutions of A'lx =V'.

Proof. Since each elementary row operation E; is invertible, so is P, and since (A’,b) =
P(A,b), then A = PA and b’ = Pb. If x is a solution of the original system Az = b, then
multiplying both sides by P we get PAx = Pb; that is, A’x = V', so x is a solution of the
new system. Conversely, assume that x is a solution of the new system, that is A'x = b'.
Then because A’ = PA, b’ = Pb, and P is invertible, we get

Ar =P 'Ax =P =,
so x is a solution of the original system Az = b. ]

Another important fact is this:

Proposition 8.13. Given an mxn matriz A, for any sequence of row operations E1, ..., Ey,
if P=FEy---FEy and B = PA, then the subspaces spanned by the rows of A and the rows of
B are identical. Therefore, A and B have the same row rank. Furthermore, the matrices A
and B also have the same (column) rank.

Proof. Since B = PA, from a previous observation, the rows of B are linear combinations
of the rows of A, so the span of the rows of B is a subspace of the span of the rows of A.
Since P is invertible, A = P71B, so by the same reasoning the span of the rows of A is a
subspace of the span of the rows of B. Therefore, the subspaces spanned by the rows of A
and the rows of B are identical, which implies that A and B have the same row rank.

Proposition 8.12 implies that the systems Azx = 0 and Bz = 0 have the same solutions.
Since Ax is a linear combinations of the columns of A and Bz is a linear combinations of
the columns of B, the maximum number of linearly independent columns in A is equal to
the maximum number of linearly independent columns in B; that is, A and B have the same
rank. O

Remark: The subspaces spanned by the columns of A and B can be different! However,
their dimension must be the same.

We will show in Section 8.14 that the row rank is equal to the column rank. This will also
be proven in Proposition 11.15 Let us now define precisely what is a reduced row echelon
matrix.
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Definition 8.6. An m x n matrix A is a reduced row echelon matriz iff the following con-
ditions hold:

(a) The first nonzero entry in every row is 1. This entry is called a pivot.
(b) The first nonzero entry of row 7 + 1 is to the right of the first nonzero entry of row i.
(c) The entries above a pivot are zero.

If a matrix satisfies the above conditions, we also say that it is in reduced row echelon form,
for short rref.

Note that Condition (b) implies that the entries below a pivot are also zero. For example,
the matrix

1 1
A=10 2
0 0

S OO
o = O

is a reduced row echelon matrix. In general, a matrix in rref has the following shape:

1 00 x x 0 0 x
01 0 x x 00 x
0 01 x x 00 x
000 0 0 1 0 x
0000 001 x
0000 0 O0O0O°FO
000 0 0 O0O0OFO
if the last row consists of zeros, or
100 x x 00 x 0 x
01 0 x x 00 x 0 x
001 x x 00 x 0 x
0000 010 x 0 x
0000 0O0T1 x x 0
0000 0O0O0OTO0O 1 x

if the last row contains a pivot.

The following proposition shows that every matrix can be converted to a reduced row
echelon form using row operations.

Proposition 8.14. Given any m x n matriz A, there is a sequence of row operations
Ey, ... E; such that if P = FEj--- Ey, then U = PA is a reduced row echelon matrix.
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Proof. We proceed by induction on m. If m = 1, then either all entries on this row are zero,
so A =0, or if a; is the first nonzero entry in A, let P = (aj_l) (a 1 x 1 matrix); clearly, PA
is a reduced row echelon matrix.

Let us now assume that m > 2. If A = 0, we are done, so let us assume that A # 0.
Since A # 0, there is a leftmost column j which is nonzero, so pick any pivot 7 = a;; in the
jth column, permute row ¢ and row 1 if necessary, multiply the new first row by 7!, and
clear out the other entries in column j by subtracting suitable multiples of row 1. At the
end of this process, we have a matrix A; that has the following shape:

0 0 1 =* *

0 0 0 =% *
A= . :

0 0 0 = *

where * stands for an arbitrary scalar, or more concisely
01 B
A= (o 0 D) ’

where D is a (m — 1) X (n — j) matrix (and B is a 1 X n — j matrix). If j = n, we are done.
Otherwise, by the induction hypothesis applied to D, there is a sequence of row operations
that converts D to a reduced row echelon matrix R, and these row operations do not affect
the first row of Ay, which means that A; is reduced to a matrix of the form

01 B
=0 )

Because R’ is a reduced row echelon matrix, the matrix R satisfies Conditions (a) and (b) of
the reduced row echelon form. Finally, the entries above all pivots in R’ can be cleared out
by subtracting suitable multiples of the rows of R’ containing a pivot. The resulting matrix
also satisfies Condition (c), and the induction step is complete. O

Remark: There is a Matlab function named rref that converts any matrix to its reduced
row echelon form.

If A is any matrix and if R is a reduced row echelon form of A, the second part of
Proposition 8.13 can be sharpened a little, since the structure of a reduced row echelon
matrix makes it clear that its rank is equal to the number of pivots.

Proposition 8.15. The rank of a matriz A is equal to the number of pivots in its rref R.



8.11. RREF, FREE VARIABLES, HOMOGENEOUS SYSTEMS 293

8.11 RREF, Free Variables, and Homogenous Linear
Systems

Given a system of the form Ax = b, we can apply the reduction procedure to the augmented
matrix (A, b) to obtain a reduced row echelon matrix (A’,0’) such that the system A’z =¥
has the same solutions as the original system Ax = b. The advantage of the reduced system
A’z = b is that there is a simple test to check whether this system is solvable, and to find
its solutions if it is solvable.

Indeed, if any row of the matrix A’ is zero and if the corresponding entry in b’ is nonzero,
then it is a pivot and we have the “equation”

0=1,

which means that the system A’z = b’ has no solution. On the other hand, if there is no
pivot in &', then for every row ¢ in which &, # 0, there is some column j in A" where the
entry on row i is 1 (a pivot). Consequently, we can assign arbitrary values to the variable
xy, if column k& does not contain a pivot, and then solve for the pivot variables.

For example, if we consider the reduced row echelon matrix

(A" V) =

o O =
S OO
O = O
[en N (ORI
_— o O

there is no solution to A’x = b/ because the third equation is 0 = 1. On the other hand, the
reduced system

1
(A ¥) =0
0

S OO
S = O

11
2 3
0 0

has solutions. We can pick the variables x5, x4 corresponding to nonpivot columns arbitrarily,
and then solve for z3 (using the second equation) and z; (using the first equation).

The above reasoning proves the following theorem:

Theorem 8.16. Given any system Ax = b where A is a m X n matriz, if the augmented
matriz (A, b) is a reduced row echelon matriz, then the system Ax = b has a solution iff there
is no pwot in b. In that case, an arbitrary value can be assigned to the variable z; if column
J does not contain a pivot.

Definition 8.7. Nonpivot variables are often called free variables.

Putting Proposition 8.14 and Theorem 8.16 together we obtain a criterion to decide
whether a system Ax = b has a solution: Convert the augmented system (A,b) to a row
reduced echelon matrix (A’, ') and check whether " has no pivot.
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Remark: When writing a program implementing row reduction, we may stop when the last
column of the matrix A is reached. In this case, the test whether the system Ax = b is
solvable is that the row-reduced matrix A" has no zero row of index ¢ > r such that b} # 0
(where r is the number of pivots, and ¥’ is the row-reduced right-hand side).

If we have a homogeneous system Ax = 0, which means that b = 0, of course x = 0 is
always a solution, but Theorem 8.16 implies that if the system Az = 0 has more variables
than equations, then it has some nonzero solution (we call it a nontrivial solution).

Proposition 8.17. Given any homogeneous system Ax = 0 of m equations in n variables,
if m < n, then there is a nonzero vector x € R" such that Ax = 0.

Proof. Convert the matrix A to a reduced row echelon matrix A’. We know that Ax = 0 iff
A’z = 0. If r is the number of pivots of A’, we must have r < m, so by Theorem 8.16 we may
assign arbitrary values to n — r > 0 nonpivot variables and we get nontrivial solutions. [

Theorem 8.16 can also be used to characterize when a square matrix is invertible. First,
note the following simple but important fact:

If a square n x n matriz A is a row reduced echelon matriz, then either A is the identity
or the bottom row of A is zero.

Proposition 8.18. Let A be a square matriz of dimension n. The following conditions are
equivalent:

(a) The matriz A can be reduced to the identity by a sequence of elementary row operations.
(b) The matriz A is a product of elementary matrices.

(¢c) The matriz A is invertible.

(d) The system of homogeneous equations Az = 0 has only the trivial solution x = 0.

Proof. First we prove that (a) implies (b). If (a) can be reduced to the identity by a sequence
of row operations Fj, ..., E,, this means that E,--- EyA = I. Since each FE; is invertible,
we get

A=E"-E,

where each E; ' is also an elementary row operation, so (b) holds. Now if (b) holds, since
elementary row operations are invertible, A is invertible and (c) holds. If A is invertible, we
already observed that the homogeneous system Az = 0 has only the trivial solution x = 0,
because from Ax = 0, we get A~' Az = A~10; that is, x = 0. It remains to prove that (d)
implies (a) and for this we prove the contrapositive: if (a) does not hold, then (d) does not
hold.

Using our basic observation about reducing square matrices, if A does not reduce to the
identity, then A reduces to a row echelon matrix A" whose bottom row is zero. Say A’ = PA,
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where P is a product of elementary row operations. Because the bottom row of A’ is zero,
the system A’z = 0 has at most n — 1 nontrivial equations, and by Proposition 8.17, this
system has a nontrivial solution z. But then, Ax = P~'A’z = 0 with x # 0, contradicting
the fact that the system Az = 0 is assumed to have only the trivial solution. Therefore, (d)
implies (a) and the proof is complete. H

Proposition 8.18 yields a method for computing the inverse of an invertible matrix A:
reduce A to the identity using elementary row operations, obtaining

E, - -EA=1.
Multiplying both sides by A=t we get
A'=E,---E.

From a practical point of view, we can build up the product E,--- E; by reducing to row
echelon form the augmented n x 2n matrix (A, I,,) obtained by adding the n columns of the
identity matrix to A. This is just another way of performing the Gauss—Jordan procedure.

Here is an example: let us find the inverse of the matrix

5 4
A (6 5) |
We form the 2 x 4 block matrix

an-(3409

and apply elementary row operations to reduce A to the identity. For example:
5410 54 1 0
(A’I)_(G 50 1>—>(1 1 -1 1)
by subtracting row 1 from row 2,
54 1 0 R 1 0 5 —4
11 -1 1 11 -1 1

by subtracting 4 x row 2 from row 1,
10 5 —4\ _1
(05 )

10 5 —4)

11 -1 1
(5 4
o ().

by subtracting row 1 from row 2. Thus

Proposition 8.18 can also be used to give an elementary proof of the fact that if a square
matrix A has a left inverse B (resp. a right inverse B), so that BA = [ (resp. AB = 1),
then A is invertible and A~! = B. This is an interesting exercise, try it!
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8.12 Uniqueness of RREF Form

For the sake of completeness, we prove that the reduced row echelon form of a matrix is
unique. The neat proof given below is borrowed and adapted from W. Kahan.

Proposition 8.19. Let A be any m x n matriz. If U and V are two reduced row echelon
matrices obtained from A by applying two sequences of elementary row operations Ey, ..., I,
and Fi, ..., Fy, so that

U=E, --E4tA and V =F,---FA,

then U =V . In other words, the reduced row echelon form of any matriz is unique.

Proof. Let
CzEp---ElFfl---Fq_l

so that
U=CV and V =C"'U.

Recall from Proposition 8.13 that U and V' have the same row rank r, and since U and V'
are in rref, this is the number of nonzero rows in both U and V. We prove by induction on
n that U = V' (and that the first 7 columns of C are the first » columns in I,). If r =0
then A =U =V =0 and the result is trivial. We now assume that » > 1.

Let (7 denote the jth column of the identity matrix I, and let u; = UL}, v; = V{7,
c; = Cl, and a; = Al}, be the jth column of U, V, C, and A respectively.

First I claim that u; = 0 iff v; = 0 iff a; = 0.
Indeed, if v; = 0, then (because U = CV) u; = Cv; = 0, and if u; = 0, then v; =
C7'u; =0. Since U = E,--- E1 A, we also get a; = 0 iff u; = 0.

Therefore, we may simplify our task by striking out columns of zeros from U, V', and A,
since they will have corresponding indices. We still use n to denote the number of columns of
A. Observe that because U and V are reduced row echelon matrices with no zero columns,
we must have u; = vy = "

Claim. If U and V are reduced row echelon matrices without zero columns such that
U=CV, forall k> 1, if £k <m, then ¢}’ occurs in U iff ¢]' occurs in V, and if ¢]" does
occur in U, then

1. £} occurs for the same column index j; in both U and V;
2. the first j; columns of U and V match;

3. the subsequent columns in U and V' (of column index > ji.) whose coordinates of index
k + 1 through m are all equal to 0 also match. Let n; be the rightmost index of such
a column, with ny = ji if there is none.
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4. the first k£ columns of C' match the first k£ columns of I,,.

We prove this claim by induction on k.

For the base case k = 1, we already know that u; = v; = ¢]". We also have
=00 =Cvy =u ="
If v; = MY for some A € R, then
u; = ULl = OV = Cvj = ANCO" = Ay = MY = ;.

A similar argument using C~' shows that if u; = A}, then v; = u;. Therefore, all the
columns of U and V proportional to /7" match, which establishes the base case. Observe
that if /3" appears in U, then it must appear in both U and V' for the same index, and if not
then ny =nand U = V.

Next us now prove the induction step. If n, = n, then U =V and we are done. If &k = r,
then C'is a block matrix of the form

I, B
¢= <0m—r,'r’ C)

and since the last m — r rows of both U and V' are zero rows, C' acts as the identity on the
first r rows, and so U = V. Otherwise k <, ny <n, and £ ; appears in both U and V, in
which case, by (2) and (3) of the induction hypothesis, it appears in both U and V for the
same index, say jx41. Thus, u;,  =v;, =" . It follows that

— m — . — . — pm
Ch+1 = Oek-{-l - CU]IH—l = Ujy 1y = gk-&-h

so the first £ + 1 columns of C' match the first £ + 1 columns of I,,.

Consider any subsequent column v; (with j > jix11) whose elements beyond the (k + 1)th
all vanish. Then v; is a linear combination of columns of V' to the left of v;, so

Uj = CUj = Uj.

because the first £ + 1 columns of C' match the first £ + 1 column of [,,. Similarly, any
subsequent column u; (with j > ji11) whose elements beyond the (k+1)th all vanish is equal
to vj. Therefore, all the subsequent columns in U and V' (of index > j,41) whose elements
beyond the (k + 1)th all vanish also match, which completes the induction hypothesis. [

Remark: Observe that C = E,--- E F; -+ Fq_1 is not necessarily the identity matrix I,,.

However, C' = I, if r = m (A has row rank m).

The reduction to row echelon form also provides a method to describe the set of solutions
of a linear system of the form Ax = b.
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8.13 Solving Linear Systems Using RREF

First we have the following simple result.

Proposition 8.20. Let A be any m x n matriz and let b € R™ be any vector. If the system
Ax = b has a solution, then the set Z of all solutions of this system is the set

Z =uz9+ Ker (A) = {zg+ 2 | Az =0},

where xo € R™ is any solution of the system Ax = b, which means that Axq = b (zo is called
a special solution or a particular solution), and where Ker (A) = {x € R™ | Az = 0}, the set
of solutions of the homogeneous system associated with Ax =b.

Proof. Assume that the system Ax = b is solvable and let zy and z; be any two solutions so
that Axqg = b and Az, = b. Subtracting the first equation from the second, we get

A(Qll - .To) = 0,

which means that z; — zy € Ker (A). Therefore, Z C xy + Ker (A), where z, is a special
solution of Az = b. Conversely, if Azq = b, then for any z € Ker (A), we have Az = 0, and
SO

A(zg+2) = Azg+ Az=0+ 0=,

which shows that zg + Ker (A) C Z. Therefore, Z = xy + Ker (A). O

Given a linear system Az = b, reduce the augmented matrix (A,b) to its row echelon
form (A’, V). As we showed before, the system Az = b has a solution iff & contains no pivot.
Assume that this is the case. Then, if (A’,b’) has r pivots, which means that A" has r pivots
since b’ has no pivot, we know that the first » columns of I, appear in A’.

We can permute the columns of A’ and renumber the variables in 2 correspondingly so
that the first r columns of I,, match the first  columns of A’, and then our reduced echelon
matrix is of the form (R, ') with

I, F
k= (Om—r,r Om—r,n—r)

. [ d
= (o)

where F'is a r X (n —r) matrix and d € R". Note that R has m — r zero rows.

I, F d\_(d\_y
Om—r,r Om—nn—r On—r B Om—r -

and

Then because
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(o)
o = O,T

is a special solution of Rx = V', and thus to Ax = b. In other words, we get a special solution
by assigning the first r components of & to the pivot variables and setting the nonpivot
variables (the free variables) to zero.

we see that

Here is an example of the preceding construction taken from Kumpel and Thorpe [107].
The linear system
1’1—.T2+I3+5L’4—2$5 =-1
—2$1+2$2—.’E3+£I§'5 =2
xr1 — To + 21’3 +3[E4 — 5ZL‘5 = —]_,

is represented by the augmented matrix

1 -1 1 1 =2 -1
Ab)=|-2 2 -10 1 2],
1 -1 2 3 =5 —1

where A is a 3 x 5 matrix. The reader should find that the row echelon form of this system
is
1 -1 0 -1 1 -1
(A)y=(0 0 1 2 =3 0
0o 0 0 0 0 O

The 3 x 5 matrix A" has rank 2. We permute the second and third columns (which is
equivalent to interchanging variables xs and x3) to form

(L, F (-1 -1 1
R_(OL2 01,3)7 F‘(o 2 —3)'

Then a special solution to this linear system is given by

() (2
o = 0 = 0
3 0

We can also find a basis of the kernel (nullspace) of A using F. If 2 = (u,v) is in the
kernel of A, with u € R” and v € R"™", then z is also in the kernel of R, which means that

Rz = 0; that is,
I, F u\  (u+Fou\ 0,
Om—r,'r Om—r,n—'r v N Om—'r N Om—'r .

Therefore, u = —Fv, and Ker (A) consists of all vectors of the form

()= ()
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for any arbitrary v € R"™". It follows that the n — r columns of the matrix

v=(:1)

form a basis of the kernel of A. This is because N contains the identity matrix [,,_, as a
submatrix, so the columns of N are linearly independent. In summary, if N!, ..., N"™" are
the columns of N, then the general solution of the equation Az = b is given by

T = (Od ) + 2, N o, N*T,

where x,,1,...,x, are the free variables; that is, the nonpivot variables.

Going back to our example from Kumpel and Thorpe [107], we see that

1 1 -1
0 —2 3

N_<_[F)_ 1 0 0
3 0 1 0

0 0 1

Since earlier we permuted the second and the third column, row 2 and row 3 need to be
swapped so the general solution in terms of the original variables is given by

-1 1 1 -1

0 1 0 0

T = 0 + 23 0+ Ty -2+ Ts 3

0 0 1 0

0 0 0 1
In the general case where the columns corresponding to pivots are mixed with the columns
corresponding to free variables, we find the special solution as follows. Let i1 < -+ < i,
be the indices of the columns corresponding to pivots. Assign b, to the pivot variable
x;, for k= 1,...,r, and set all other variables to 0. To find a basis of the kernel, we
form the n — r vectors N* obtained as follows. Let j; < --- < j,_, be the indices of the

columns corresponding to free variables. For every column j; corresponding to a free variable
(1 <k <n—r), form the vector N* defined so that the entries NJ, ..., N} are equal to the
negatives of the first 7 entries in column j;, (flip the sign of these entries); let ka =1, and
set all other entries to zero. Schematically, if the column of index j; (corresponding to the
free variable x;, ) is

Qg

o7

0 Y
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then the vector N* is given by

1 0
11 — 1 0

11 —Q
11+ 1 0
1, — 1 0

iy —ay,
i+ 1 0
Jgk—11 0

Jk 1
Jr+1

n 0

n

The presence of the 1 in position j, guarantees that N, ..., N*~" are linearly indepen-

dent.

As an illustration of the above method, consider the problem of finding a basis of the
subspace V of n x n matrices A € M,,(R) satisfying the following properties:

1. The sum of the entries in every row has the same value (say ¢;);
2. The sum of the entries in every column has the same value (say ¢).

It turns out that ¢; = ¢ and that the 2n —2 equations corresponding to the above conditions
are linearly independent. We leave the proof of these facts as an interesting exercise. It can
be shown using the duality theorem (Theorem 11.4) that the dimension of the space V' of
matrices satisying the above equations is n? — (2n — 2). Let us consider the case n = 4.
There are 6 equations, and the space V' has dimension 10. The equations are

ay + ap + a3 + a4 — a1 — Gz — A3 — agq = 0
a1 + Aoy + Qg3 + Qg4 — A31 — A3z — a3z — azy = 0
as; + azp + azz + azq — a4 — Qg — A3 — agq = 0
a1y + agy + azr + ag — a1z — Gz — azp — ag2 =0
12 + Aoz + A3z + Qg2 — A13 — Qg3 — a3z — a43 = 0

(13 + a3 + a3z + a43 — A14 — A4 — A34 — Agq = 0,
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and the corresponding matrix is

11 1 1 -1 -1 -1 -1 0 O O O O O O O
o o 60 o0 1 1 1 1 -1 -1-1-1 0 O O O
A oo o0 o o o0 oo o0 1 1 1 1 -1 -1 -1 -1
1 -1 0 o0 1 -1 0 0 1 -1 0 O 1 -1 0 0
o1 -1o0 o0 1 -1 0 0 1 -1 0 0 1 =1 0
o o0 1 -1 0 0 1 -1 0 o0 1 -1 0 0 1 -1

The result of performing the reduction to row echelon form yields the following matrix
in rref:

10000 -1 -1-10-1-1-1 2 1 1 1
o61ro000 1 o0 o001 0 O -1 0 -1 -1
U— coo61ro00 o0 1 o000 1 0 -1 -1 0 -1
oo0o0o1ro0o o606 o 1 00 0 1 -1 -1 -1 0
cooo60o01 1 1 100 O O -1 -1 -1 -1
oooo0oo0 o6 o o1 1 1 1 -1 -1 -1 -1

The list pivlist of indices of the pivot variables and the list freelist of indices of the free
variables is given by

pivlist = (1,2,3,4,5,9),
freelist = (6,7,8,10,11,12, 13,14, 15,16).

After applying the algorithm to find a basis of the kernel of U, we find the following 16 x 10
matrix

11 1 1 1 1 -2 -1 -1 -1
-1 0 0 -1 0 0 1 0 1 1
o -1 0o 0 -1 0 1 1 0 1
o 0 -1 0o 0 -1 1 1 1 O
-1 -1 -1 0 0 O 1 1 1 1
i1 0 0 o o o0 0 0 0 0
o 1 o0 o0 O O 0o o0 0 O
o o0 1 o O O O o0 0 O
BR = o o0 o0 -1 -1 -1 1 1 1 1
o o o 1 0 0 0 0 0 O
o o0 o o 1T 0 0 0 0 O
o o0 o o o0 1 0 0 0 O
o o0 o o o0 o0 1 0 0 0
o o0 o o o0 o0 o 1 0 O
o o o o o0 o0 o0 o0 1 0
o o0 o o o0 0 0o 0 0 1

The reader should check that that in each column j of BK, the lowest bold 1 belongs
to the row whose index is the jth element in freelist, and that in each column j of BK, the
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signs of the entries whose indices belong to pivlist are the flipped signs of the 6 entries in
the column U corresponding to the jth index in freelist. We can now read off from BK the
4 x 4 matrices that form a basis of V': every column of BK corresponds to a matrix whose
rows have been concatenated. We get the following 10 matrices:

1 =100 1 0 -1 0 1 00 —1
1 1 00 10 1 0 100 1
M1_0000’M2_0000’M3_0000’
0 0 00 0 0 0 0 0 00 0
1 —-100 1 0 -1 0 1 00 —1
0 0 00 0 0 0 0 0 00 0
Mi=1| 4 4 0 0] Ms = -10 1 o}l Mg = -1 00 1|
0 0 00 0 0 0 0 0 00 0
2111 101 1 110 1
1 00 0 1 00 0 1 00 0
M7_1000’ M8_1000’ M9_1000’
1 00 0 0 100 0 010
-1 110
1 00 0
M1°_1000
0 00 1

Recall that a magic square is a square matrix that satisfies the two conditions about
the sum of the entries in each row and in each column to be the same number, and also
the additional two constraints that the main descending and the main ascending diagonals
add up to this common number. Furthermore, the entries are also required to be positive
integers. For n = 4, the additional two equations are

A2 + 33 + Qaq — 12 — a13 — a4 = 0

@41 + aszg + agz — aj; — a2 — a3 = 0,

and the 8 equations stating that a matrix is a magic square are linearly independent. Again,
by running row elimination, we get a basis of the “generalized magic squares” whose entries
are not restricted to be positive integers. We find a basis of 8 matrices. For n = 3, we find
a basis of 3 matrices.

A magic square is said to be normal if its entries are precisely the integers 1,2...,n2.

Then since the sum of these entries is
n?(n*+1)

1+2+3+---+n2:T,
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and since each row (and column) sums to the same number, this common value (the magic
sum) is

n(n?+1)

—

It is easy to see that there are no normal magic squares for n = 2. For n = 3, the magic sum
is 15, for n = 4, it is 34, and for n = 5, it is 65.

In the case n = 3, we have the additional condition that the rows and columns add up
to 15, so we end up with a solution parametrized by two numbers x1, xo; namely,

I1+ZE2—5 10-1‘2 ]_0—1’1
20—2!171—1‘2 5 2$1—|—fL‘2—10
1 To 15 —x1 — 29

Thus, in order to find a normal magic square, we have the additional inequality constraints

1+ 2Ty >5
r1 < 10
T < 10
221 + 29 < 20
2x1 4+ x5 > 10
1 >0
To >0
T1+ 1o < 15,

and all 9 entries in the matrix must be distinct. After a tedious case analysis, we discover the
remarkable fact that there is a unique normal magic square (up to rotations and reflections):

=~ O N
w ot
o = O

It turns out that there are 880 different normal magic squares for n = 4, and 275, 305, 224
normal magic squares for n = 5 (up to rotations and reflections). Even for n = 4, it takes a
fair amount of work to enumerate them all! Finding the number of magic squares for n > 5
is an open problem!

8.14 Elementary Matrices and Columns Operations

Instead of performing elementary row operations on a matrix A, we can perform elementary
columns operations, which means that we multiply A by elementary matrices on the right.
As elementary row and column operations, P(i, k), E; .5, E; x» perform the following actions:
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1. As a row operation, P(i, k) permutes row i and row k.

2. As a column operation, P(i, k) permutes column ¢ and column k.
3. The inverse of P(i, k) is P(i, k) itself.

4. As a row operation, E; ;.3 adds /5 times row j to row 7.

5. As a column operation, E; ;.3 adds S times column 4 to column j (note the switch in
the indices).

6. The inverse of F; ;.3 is E; ;..
7. As a row operation, £; x multiplies row ¢ by A.
8. As a column operation, E; y multiplies column 7 by A.

9. The inverse of F; y is E; y-1.

We can define the notion of a reduced column echelon matrix and show that every matrix
can be reduced to a unique reduced column echelon form. Now given any m x n matrix A,
if we first convert A to its reduced row echelon form R, it is easy to see that we can apply
elementary column operations that will reduce R to a matrix of the form

Ir Or,nfr
Om—r,'r’ Om—'r,n—r ’
where 7 is the number of pivots (obtained during the row reduction). Therefore, for every

m x n matrix A, there exist two sequences of elementary matrices £, ..., E, and F,..., I,
such that

Omfr,r Omfr,nfr

Ep~--E1AF1---Fq:( I, Or,n?”)'

The matrix on the right-hand side is called the rank normal form of A. Clearly, r is the rank
of A. As a corollary we obtain the following important result whose proof is immediate.

Proposition 8.21. A matriz A and its transpose A" have the same rank.

8.15 Transvections and Dilatations ®

In this section we characterize the linear isomorphisms of a vector space E that leave every
vector in some hyperplane fixed. These maps turn out to be the linear maps that are
represented in some suitable basis by elementary matrices of the form F; ;.3 (transvections)
or E;, (dilatations). Furthermore, the transvections generate the group SL(E), and the
dilatations generate the group GL(E).
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Let H be any hyperplane in F, and pick some (nonzero) vector v € E such that v ¢ H,
so that
FE=H®Kwv.

Assume that f: E — E is a linear isomorphism such that f(u) = u for all u € H, and that
f is not the identity. We have
f(v) =h+av, forsomeh € H and some a € K,

with a # 0, because otherwise we would have f(v) = h = f(h) since h € H, contradicting
the injectivity of f (v # h since v ¢ H). For any = € E, if we write

x=y+tv, forsomey e H and some t € K,

then
f(x) = fly) + f(tv) =y +tf(v) =y +th+tav,

and since axr = ay + tav, we get

flz) —ar=(1—a)y+th
flx)—z=t(h+ (a—1)v).
Observe that if E is finite-dimensional, by picking a basis of £ consisting of v and basis

vectors of H, then the matrix of f is a lower triangular matrix whose diagonal entries are
all 1 except the first entry which is equal to «. Therefore, det(f) = .

Case 1. a # 1.
We have f(z) = az iff (1 — o)y +th =0 iff

t
a—1

h.

y:

Then if we let w = h + (o — 1)v, for y = (t/(a — 1))k, we have

t
a—1

(h+(av—1)v) =

t
x:y—l—tv:ﬁh%—tv: w,

a—1
which shows that f(z) = az iff + € Kw. Note that w ¢ H, since a # 1 and v ¢ H.

Therefore,
E=H&Kuw,

and f is the identity on H and a magnification by « on the line D = Kw.

Definition 8.8. Given a vector space F, for any hyperplane H in FE, any nonzero vector
u € E such that u € H, and any scalar o # 0,1, a linear map f such that f(x) = x for
all z € H and f(x) = ax for every x € D = Ku is called a dilatation of hyperplane H,
direction D, and scale factor .
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If 7y and 7p are the projections of F onto H and D, then we have
f(x) = mu(z) + amp(z).
The inverse of f is given by

fﬁl(x) = WH(.T) + Ckilﬂ'D(.??).

When o = —1, we have f? = id, and f is a symmetry about the hyperplane H in the
direction D. This situation includes orthogonal reflections about H.
Case 2. a = 1.

In this case,
f(z) @ = th,

that is, f(x) — 2z € Kh for all z € E. Assume that the hyperplane H is given as the kernel
of some linear form ¢, and let a = p(v). We have a # 0, since v ¢ H. For any = € E, we
have

p(r —a™lp(x)v) = p(a) — a "p(2)e(v) = p(z) — p(z) =0,
which shows that z —a™'p(z)v € H for all x € E. Since every vector in H is fixed by f, we
get

v —ap(r)v = flz—a ()
= f(@) —a p(2) f(v),
S0
f@) =z +@)(f(a™v) —a"lv).
Since f(z) — 2z € Kh for all z € E, we conclude that v = f(a™'v) — a~'v = Sh for some
p € K, so p(u) =0, and we have

f(@) =z +p(x)u, ) =0. (%)
A linear map defined as above is denoted by 7, ,,.

Conversely for any linear map f = 7., given by Equation (), where ¢ is a nonzero linear
form and wu is some vector u € E such that p(u) = 0, if uw = 0, then f is the identity, so
assume that u # 0. If so, we have f(z) = x iff p(z) = 0, that is, iff z € H. We also claim
that the inverse of f is obtained by changing u to —u. Actually, we check the slightly more
general fact that

Tou © Tow = Toputw-
Indeed, using the fact that p(w) = 0, we have

= Tow(®) + (0(z) + @(@)p(w))u
= Tpu() + p(2)u

=z +p(x)w + ¢(z)u

=z + ¢(x)(u +w).

Tou(Tow(2)) = Tpu(®) + o(Tpu(T))u
)+
)+



308 CHAPTER 8. GAUSSIAN ELIMINATION, LU, CHOLESKY, ECHELON FORM

_ _ _ -1 .
For v = —u, we have 7, 1, = ¢, 0 = id, so Tou = To—us 88 claimed.

Therefore, we proved that every linear isomorphism of E that leaves every vector in some
hyperplane H fixed and has the property that f(x) —x € H for all z € E' is given by a map
T, as defined by Equation (x), where ¢ is some nonzero linear form defining H and w is
some vector in H. We have 7,, =id iff u = 0.

Definition 8.9. Given any hyperplane H in E, for any nonzero nonlinear form ¢ € E*
defining H (which means that H = Ker (¢)) and any nonzero vector v € H, the linear map
[ = Ty given by

Tou(®) = 2+ ()u,  @(u) =0,
for all z € E is called a transvection of hyperplane H and direction u. The map f = 7.,
leaves every vector in H fixed, and f(z) —x € Ku for all x € E.

The above arguments show the following result.

Proposition 8.22. Let f: E — E be a bijective linear map and assume that f # id and
that f(x) = x for all x € H, where H is some hyperplane in E. If there is some nonzero
vector u € E such that w ¢ H and f(u) —u € H, then f is a transvection of hyperplane H ;
otherwise, f is a dilatation of hyperplane H.

Proof. Using the notation as above, for some v ¢ H, we have f(v) = h 4+ av with a # 0,
and write u =y +tv with y € H and t # 0 since u ¢ H. If f(u) —u € H, from

fu) —u=th+ (a—1)v),

we get (o — 1)v € H, and since v ¢ H, we must have a = 1, and we proved that f is a
transvection. Otherwise, o # 0, 1, and we proved that f is a dilatation. n

If E is finite-dimensional, then a = det(f), so we also have the following result.

Proposition 8.23. Let f: E — E be a bijective linear map of a finite-dimensional vector
space E and assume that f # id and that f(x) = x for allx € H, where H is some hyperplane
in E. If det(f) = 1, then f is a transvection of hyperplane H; otherwise, f is a dilatation
of hyperplane H.

Suppose that f is a dilatation of hyperplane H and direction u, and say det(f) = a # 0, 1.

Pick a basis (u,ea,...,e,) of E where (eg,...,e,) is a basis of H. Then the matrix of f is
of the form

a 0 -+ 0

01

0
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which is an elementary matrix of the form E,; ,. Conversely, it is clear that every elementary
matrix of the form E; , with o # 0,1 is a dilatation.

Now, assume that f is a transvection of hyperplane H and direction u € H. Pick some
v ¢ H, and pick some basis (u, es, ..., e,) of H, so that (v,u,es,...,e,)is a basis of E. Since
f(v) — v € Ku, the matrix of f is of the form

10 --- 0
a 1 0
00 --- 1

which is an elementary matrix of the form Fj ;... Conversely, it is clear that every elementary
matrix of the form E; ;,, (a # 0) is a transvection.

The following proposition is an interesting exercise that requires good mastery of the
elementary row operations F£; j.3; see Problems 8.10 and 8.11.

Proposition 8.24. Given any invertible n X n matriz A, there is a matriz S such that

SA = <In_1 O) = Enaa
0 « ’

with o = det(A), and where S is a product of elementary matrices of the form E; ;.3; that
18, S 1s a composition of transvections.

Surprisingly, every transvection is the composition of two dilatations!

Proposition 8.25. If the field K is not of characteristic 2, then every transvection [ of
hyperplane H can be written as f = dy o dy, where dy,dy are dilatations of hyperplane H,
where the direction of dy can be chosen arbitrarily.

Proof. Pick some dilatation d; of hyperplane H and scale factor o # 0, 1. Then, dy = fod;*
leaves every vector in H fixed, and det(dy) = a~! # 1. By Proposition 8.23, the linear map
ds is a dilatation of hyperplane H, and we have f = dy o d;, as claimed. O

Observe that in Proposition 8.25, we can pick o = —1; that is, every transvection of
hyperplane H is the compositions of two symmetries about the hyperplane H, one of which
can be picked arbitrarily.

Remark: Proposition 8.25 holds as long as K # {0, 1}.
The following important result is now obtained.
Theorem 8.26. Let E be any finite-dimensional vector space over a field K of characteristic

not equal to 2. Then the group SL(FE) is generated by the transvections, and the group GL(E)
18 generated by the dilatations.
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Proof. Consider any f € SL(F), and let A be its matrix in any basis. By Proposition 8.24,

there is a matrix S such that
54 = (]”—1 0) = By
0 « '

with o = det(A), and where S is a product of elementary matrices of the form E; ;3. Since
det(A) = 1, we have a = 1, and the result is proven. Otherwise, if f is invertible but
f ¢ SL(FE), the above equation shows E, , is a dilatation, S is a product of transvections,
and by Proposition 8.25, every transvection is the composition of two dilatations. Thus, the
second result is also proven. O

We conclude this section by proving that any two transvections are conjugate in GL(E).
Let 7, (u # 0) be a transvection and let ¢ € GL(E) be any invertible linear map. We have

(goTpmog )(x) =g(g7 (x) + (g (x))u)
=z + (g ' (2))g(w).

Let us find the hyperplane determined by the linear form x — o(g~!(z)). This is the set of
vectors z € E such that ¢(g~'(z)) = 0, which holds iff g~!(z) € H iff x € g(H). Therefore,
Ker (pog™t) = g(H) = H', and we have g(u) € g(H) = H', so goT,,09 " is the transvection
of hyperplane H' = g(H) and direction v’ = g(u) (with «’ € H').

Conversely, let 7, be some transvection (v # 0). Pick some vectors v,v" such that
p(v) =9((') =1, so that
E=H®&Kv=H & Kv'.

There is a linear map g € GL(E) such that g(u) = «/, g(v) = ¢/, and g(H) = H'. To
define g, pick a basis (v,u,es,...,e,_1) where (u,ey,...,e,_1) is a basis of H and pick a
basis (v',u/,€h, ..., el ;) where (v, e, ... €, _;) is a basis of H'; then g is defined so that
g(v) =, g(u) =, and g(e;) = g(e}), for i = 2,...,n — 1. If n = 2, then ¢; and ¢} are
missing. Then, we have

(goTpmog )(z) =+ p(g™ " (x)u'.

1 1

Now ¢ o g~! also determines the hyperplane H' = g(H), so we have p o g=' = A\ for some

nonzero A in K. Since v' = g(v), we get
p(v) =pog (V) = M),
and since p(v) = ¥ (v') = 1, we must have A = 1. It follows that
(goTtpuog (@) =2+ (x) = Ty (z).

In summary, we proved almost all parts the following result.
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Proposition 8.27. Let E be any finite-dimensional vector space. For every transvection
Tou (u # 0) and every linear map g € GL(E), the map g o T,, 0 g~ ' is the transvection
of hyperplane g(H) and direction g(u) (that is, g o Tyu © 7" = Tpog—1,4())- For every other
transvection Ty, (W # 0), there is some g € GL(E) such Ty = g0 Tpu 0 g ' in other
words any two transvections (# id) are conjugate in GL(E). Moreover, if n > 3, then the
linear isomorphism g as above can be chosen so that g € SL(FE).

Proof. We just need to prove that if n > 3, then for any two transvections 7., and 7,
(u,u’ # 0), there is some g € SL(E) such that 7, = go7,,09 . As before, we pick a basis

(v,u,e9,...,e,-1) where (u, ey, ..., e, 1) is a basis of H, we pick a basis (v/, v, €}, ..., €., _,)

/

where (', €}, ...,¢el,_;) is a basis of H’, and we define g as the unique linear map such that

glv) =7, g(u) =/, and g(e;) = €}, for i = 1,...,n — 1. But in this case, both H and
H' = g(H) have dimension at least 2, so in any basis of H' including v, there is some basis
vector e}, independent of u/, and we can rescale €}, in such a way that the matrix of g over
the two bases has determinant +1. H

8.16 Summary

The main concepts and results of this chapter are listed below:
e One does not solve (large) linear systems by computing determinants.
e Upper-triangular (lower-triangular) matrices.
e Solving by back-substitution (forward-substitution).
o Gaussian elimination.
e Permuting rows.
e The pivot of an elimination step; pivoting.
e Transposition matrixz; elementary matriz.
e The Gaussian elimination theorem (Theorem 8.1).
e (Gauss-Jordan factorization.

o LU-factorization; Necessary and sufficient condition for the existence of an
LU-factorization (Proposition 8.2).

o LDU-factorization.
e “PA = LU theorem” (Theorem 8.5).

e LDL"-factorization of a symmetric matrix.
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e Avoiding small pivots: partial pivoting; complete pivoting.

e Gaussian elimination of tridiagonal matrices.

e LU-factorization of tridiagonal matrices.

e Symmetric positive definite matrices (SPD matrices).

e Cholesky factorization (Theorem 8.10).

e Criteria for a symmetric matrix to be positive definite; Sylvester’s criterion.
e Reduced row echelon form.

e Reduction of a rectangular matrix to its row echelon form.

e Using the reduction to row echelon form to decide whether a system Ax = b is solvable,
and to find its solutions, using a special solution and a basis of the homogeneous system

Ax = 0.
e Magic squares.

o Transvections and dilatations.

8.17 Problems

Problem 8.1. Solve the following linear systems by Gaussian elimination:

2 3 1 T 6 1 11 T 6
1 2 -1 yl=1 2 |, 11 2 yl =19
-3 -5 1 z —7 1 2 3 z 14

Problem 8.2. Solve the following linear system by Gaussian elimination:

1 2
2 3
-1 0
-2 -1

1 T 7
3 To 14
T3 -1
0 Ty 2

=~ = N =
|
—_

Problem 8.3. Consider the matrix

1
A=1|2
3

(2 TSN
=)

When applying Gaussian elimination, which value of ¢ yields zero in the second pivot posi-
tion? Which value of ¢ yields zero in the third pivot position? In this case, what can you
say about the matrix A?
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Problem 8.4. Solve the system

2110 T 1
4 3 3 1 zo | | -1
8 79 5 3| | —1
6 79 8 T4 1
using the LU-factorization of Example 8.1.
Problem 8.5. Apply rref to the matrix
1 2 1 1
2 3 2 3
L=11 0 1 1
-2 -1 3 0
Problem 8.6. Apply rref to the matrix
1 4 9 16
4 9 16 25
9 16 25 36
16 25 36 49

Problem 8.7. (1) Prove that the dimension of the subspace of 2 x 2 matrices A, such that
the sum of the entries of every row is the same (say ¢;) and the sum of entries of every
column is the same (say c¢3) is 2.

(2) Prove that the dimension of the subspace of 2 x 2 matrices A, such that the sum of
the entries of every row is the same (say ¢1), the sum of entries of every column is the same
(say c2), and ¢; = ¢y is also 2. Prove that every such matrix is of the form

(b o)

(3) Prove that the dimension of the subspace of 3 x 3 matrices A, such that the sum of
the entries of every row is the same (say ¢;), the sum of entries of every column is the same
(say c2), and ¢; = ¢y is 5. Begin by showing that the above constraints are given by the set
of equations

and give a basis for this subspace.

an
a12
1 1 -1 -1 -1 0 0 0 a3
0 0 1 1 1 -1 -1 -1 91
-1 0 1 -1 0 a9 | =
1 -1 0 1 -1 0 1 -1 Qo3
1 1 -1 0 0 —1 0 0 asy
as2
@33

OO = O
|
—_
o
—_
|
OO O OO
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Prove that every matrix satisfying the above constraints is of the form

a+b—c —a+c+e —b+c+d
—a—b+c+d+e a b ,
c d e

with a,b,¢,d,e € R. Find a basis for this subspace. (Use the method to find a basis for the
kernel of a matrix).

Problem 8.8. If A is an n X n matrix and B is any n X n invertible matrix, prove that A
is symmetric positive definite iff BT AB is symmetric positive definite.

Problem 8.9. (1) Consider the matrix

2 -1 0 0
-1 2 -1 0
Ag = 0 —-1 2 -1
0 0 -1 2

Find three matrices of the form Ej 1.,, E'3.9.8,, E3.8,, such that
Ey 3.6, E39.8,F21.5 A1 = Uy
where Uy is an upper triangular matrix. Compute
M = Ey 35, F32:8, a1,

and check that
2 —1 0 0

032 -1 0
0 0 4/3 -1
0 0 0 5/4

MA4:U4:

(2) Now consider the matrix

2 -1 0 0 0
-1 2 -1 0 0
As=]10 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2

Find four matrices of the form Fs 1.5, E39.6,, F43.6,, F5.4.8,, such that
Es 5. Ea 38, E3.2:8, E2.1:8, As = Us
where Us is an upper triangular matrix. Compute

M = Es5 4.5, E13.8,E32,,F21,8
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and check that
-1 0 0 0

3/2 -1 0 0
0 4/3 -1 0
0 0 5/4 -1
0 0 0 6/5

MA5:U5:

S OO O NN

(3) Write a Matlab program defining the function Ematrix(n, i, j, b) which is the n x n
matrix that adds b times row j to row i. Also write some Matlab code that produces an
n X n matrix A, generalizing the matrices A4 and As.

Use your program to figure out which five matrices F; ;.3 reduce Ag to the upper triangular

matrix
-1 0 0 0

3/2 -1 0 0
0 4/3 -1 0
0 0 5/4 -1
o 0 0 6/5 —1

0o 0 0 0 0 7/6

Also use your program to figure out which six matrices E; ;.3 reduce A7 to the upper trian-

gular matrix

o O O O

Us

S O OO

-1 0 0 0
3/2 -1 0 0
0 4/3 -1 0
0 0 5/4 —1
0 0 0 6/5 —1
o 0 0 0 7/6 —1
O 0 0 0 0 87

0
0
0
0

S OO OO O

=
|
CoOo0 oo O

(4) Find the lower triangular matrices Lg and L; such that
LGUG = AG

and
L7U7 = A7.

(5) It is natural to conjecture that there are n — 1 matrices of the form F; ;.5 that reduce
A, to the upper triangular matrix

2 -1 0 0 0 0 0
032 -1 0 0 0 0
0 0 4/3 -1 0 0 0
g0 0 0 54 -1 0 0 |
0 0 0 0 6/5 :
S »

00 0 0 - 0 (n+1)/n



316 CHAPTER 8. GAUSSIAN ELIMINATION, LU, CHOLESKY, ECHELON FORM

namely,
E2,1;1/27 E3,2;2/37 E4,3;3/47 e 7En,n71;(n71)/n-

It is also natural to conjecture that the lower triangular matrix L, such that

LnUn - An
is given by
Ln = E2,1;71/2E3,2;72/3E4,3;73/4 T En,nfl;f(nfl)/ny
that is,
1 0 0 0 0 0 0
12 1 0 0 0 0 0
0 —2/3 1 0 0 0 0
L, — 0 0 —3/4 1 0 0 0
0 0 0 —4/5 1
: : : : " " 0
0O 0 0 0 - —(n-1/n 1

Prove the above conjectures.

(6) Prove that the last column of A1 is

1/(n+1)
2/(n+1)
n/(n—l— 1)

Problem 8.10. (1) Let A be any invertible 2 x 2 matrix

A:(g g).

Prove that there is an invertible matrix S such that

1 0
SA = (0 ad—bc)’

where S is the product of at most four elementary matrices of the form F; ;5.

Conclude that every matrix A in SL(2) (the group of invertible 2 x 2 matrices A with
det(A) = +1) is the product of at most four elementary matrices of the form E; ;5.

For any a # 0,1, give an explicit factorization as above for

a 0
A= <0 al)'
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What is this decomposition for a = —17

(2) Recall that a rotation matrix R (a member of the group SO(2)) is a matrix of the
form
cosf —sind
f= (sin@ cos ) ’
Prove that if 0 # kr (with k € Z), any rotation matrix can be written as a product

R=ULU,

where U is upper triangular and L is lower triangular of the form

(1) ()

Therefore, every plane rotation (except a flip about the origin when # = 7) can be written
as the composition of three shear transformations!

Problem 8.11. (1) Recall that E; ; is the diagonal matrix
E;q = diag(1,...,1,d,1,...,1),

whose diagonal entries are all +1, except the (7,7)th entry which is equal to d.

Given any n x n matrix A, for any pair (7, j) of distinct row indices (1 < i,j < n), prove
that there exist two elementary matrices Fy(i, j) and Es(i,j) of the form Ej s, such that

Ej,flEl (Zaj)E2(Za ])El (Za j)A = P(Za ])A7
the matrix obtained from the matrix A by permuting row ¢ and row j. Equivalently, we have
Eq(i, ) Ea(i, j) (i, j)A = Ej 1 P(i, ) A,

the matrix obtained from A by permuting row ¢ and row j and multiplying row 7 by —1.
Prove that for every i = 2,...,n, there exist four elementary matrices Fs(i,d), F4(i,d),
Es(i,d), Eg(i, d) of the form Ej 4.5, such that
Es(i,d)Es(i,d)Ey(i,d)E5(i,d)Ey g = Ei .

What happens when d = —1, that is, what kind of simplifications occur?

Prove that all permutation matrices can be written as products of elementary operations
of the form FEj s and the operation F,, _;.

(2) Prove that for every invertible n x n matrix A, there is a matrix S such that

_ (1 0 _
a= (i 0) =5
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with d = det(A), and where S is a product of elementary matrices of the form Ej 4.5.

In particular, every matrix in SL(n) (the group of invertible n x n matrices A with
det(A) = +1) can be written as a product of elementary matrices of the form Ej ;5. Prove
that at most n(n 4+ 1) — 2 such transformations are needed.

(3) Prove that every matrix in SL(n) can be written as a product of at most (n —
1)(max{n, 3} + 1) elementary matrices of the form Ej sz.

Problem 8.12. A matrix A is called strictly column diagonally dominant iff

n

|aj;| > Z lai;|, forj=1,...,n.
i=1,i#j

Prove that if A is strictly column diagonally dominant, then Gaussian elimination with
partial pivoting does not require pivoting, and A is invertible.

Problem 8.13. (1) Find a lower triangular matrix E such that

1 000 1 000
r 1100 _[0100
1210 0110
1 3 31 0121

(2) What is the effect of the product (on the left) with
E4,3;71E3,2;71E4,3;71E2,1;71E3,2;71E4,3;71

on the matrix

1000
1100
Pas=11 9 1 ¢
1331

(3) Find the inverse of the matrix Pas.

(4) Consider the (n + 1) x (n + 1) Pascal matrix Pa, whose ith row is given by the
binomial coefficients
i1
j-1)

with 1 <1 <n+1,1<7<n+1, and with the usual convention that

. _
(0):1, (;,):0 if >
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The matrix Pag is shown in Part (3) and Pay is shown below:

10000
11000
Pay=11 2 1 0 0
13310
146 41

Find n elementary matrices Fj, j, .3, such that

1 0
Binnitn =~ i Pt = (O Pan1> '

Use the above to prove that the inverse of Pa,, is the lower triangular matrix whose ¢th
row is given by the signed binomial coefficients

(—1)*2 (j _ D = (=)™ (] _ D

with 1 <7<n+1,1<7<n+ 1. For example,

1 0 0 0 0
-1 1 0 0 0
Pa;'=1 -2 1 0 0
-1 3 =3 1 0
1 -4 6 —41

Hint. Given any n X n matrix A, multiplying A by the elementary matrix E; ;.3 on the right
yields the matrix AF; ;.3 in which 8 times the ith column is added to the jth column.

Problem 8.14. (1) Implement the method for converting a rectangular matrix to reduced
row echelon form in Matlab.

(2) Use the above method to find the inverse of an invertible n X n matrix A by applying
it to the the n x 2n matrix [A I] obtained by adding the n columns of the identity matrix to
A.

(3) Consider the matrix

1 2 3 4 n

2 3 4 5 - n+1
A=13 4 5 6 e o n+42

n n+l n+2 n+3 --- 2n-—1

Using your program, find the row reduced echelon form of A for n =4,...,20.
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Also run the Matlab rref function and compare results.

Your program probably disagrees with rref even for small values of n. The problem is
that some pivots are very small and the normalization step (to make the pivot 1) causes
roundoff errors. Use a tolerance parameter to fix this problem.

What can you conjecture about the rank of A?

(4) Prove that the matrix A has the following row reduced form:

10 -1 =2 -+ —(n—2)

01 2 3 -+ n-—1
rR=|l00 0 0o - 0

00 0 0 -- 0

Deduce from the above that A has rank 2.
Hint. Some well chosen sequence of row operations.

(5) Use your program to show that if you add any number greater than or equal to
(2/25)n? to every diagonal entry of A you get an invertible matrix! In fact, running the
Matlab function chol should tell you that these matrices are SPD (symmetric, positive

definite).

Problem 8.15. Let A be an n x n complex Hermitian positive definite matrix. Prove that
the lower-triangular matrix B with positive diagonal entries such that A = BB* is given by
the following formulae: For j =1,...,n,

Problem 8.16. (Permutations and permutation matrices) A permutation can be viewed as
an operation permuting the rows of a matrix. For example, the permutation

1 2 3 4
34 21

corresponds to the matrix

o= O O
_ o O O
o O = O
o O O =
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Observe that the matrix P; has a single 1 on every row and every column, all other
entries being zero, and that if we multiply any 4 x 4 matrix A by P, on the left, then the
rows of A are permuted according to the permutation 7; that is, the m(i)th row of P, A is
the 7th row of A. For example,

0001 aj; iz a1z aiy a41 Qg2 43 A4y
P.A = 0010 (21 G2 QG233 Q24 | _ | 431 (32 (33 (34
1000 asi agz a3z A34 a11 G122 13 Aai14
0100 ay1 Q42 A43 A44 21 Q22 A23 A4

Equivalently, the ith row of P;A is the 77!(i)th row of A. In order for the matrix P, to
move the ith row of A to the m(i)th row, the 7(i)th row of P; must have a 1 in column 7 and
zeros everywhere else; this means that the ith column of P, contains the basis vector e,
the vector that has a 1 in position (i) and zeros everywhere else.

This is the general situation and it leads to the following definition.

Definition 8.10. Given any permutation m: [n] — [n], the permutation matriz Pr = (p;;)
representing 7 is the matrix given by

)1 if i = 7(j)
PO o i # ()

equivalently, the jth column of P, is the basis vector e,;). A permutation matriz P is any

matrix of the form P, (where P is an n X n matrix, and 7: [n] — [n] is a permutation, for
some n > 1).

Remark: There is a confusing point about the notation for permutation matrices. A per-
mutation matrix P acts on a matrix A by multiplication on the left by permuting the rows
of A. As we said before, this means that the m(i)th row of P,A is the ith row of A, or
equivalently that the ith row of P, A is the 7~ !(7)th row of A. But then observe that the row
index of the entries of the ith row of PA is 77'(), and not 7 ()! See the following example:

0001 aj; ajp a1z Ay (41 Qg2 (43 (4
0010 Gg1 Gz Q3 G4 | _ | 31 G3p (33 (34
1000 azy asp az3z A3q aip a2 (13 aig |’
0100 a41 Q42 Q43 QA44 G21 Q22 Qa23 A4
where

7 H1) =4

7 1(2) =3

7 1(3) =1

7 l(4) =2

Prove the following results
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(1) Given any two permutations 7y, mo: [n] — [n], the permutation matrix Py,or, repre-
senting the composition of 7 and 7y is equal to the product Py, Py, of the permutation
matrices P, and P, representing m and my; that is,

Prr207r1 = P7T2P7T1'

(2) The matrix Pﬂ,l—l representing the inverse of the permutation 7 is the inverse P! of
the matrix P, representing the permutation my; that is,

Pﬂ_—l = P;l
1 1
Furthermore,

Pﬂ'_ll - (PM)T

(3) Prove that if P is the matrix associated with a transposition, then det(P) = —1.
(4) Prove that if P is a permutation matrix, then det(P) = +1.

(5) Use permutation matrices to give another proof of the fact that the parity of the
number of transpositions used to express a permutation © depends only on 7.



Chapter 9

Vector Norms and Matrix Norms

9.1 Normed Vector Spaces

In order to define how close two vectors or two matrices are, and in order to define the
convergence of sequences of vectors or matrices, we can use the notion of a norm. Recall
that R, = {z € R | x > 0}. Also recall that if 2 = a + ib € C is a complex number, with
a,b € R, then Z = a — ib and |z| = v/2Z = Va2 + b2 (|2 is the modulus of z).

Definition 9.1. Let F be a vector space over a field K, where K is either the field R of
reals, or the field C of complex numbers. A norm on E is a function || ||: E — R, assigning
a nonnegative real number |ju|| to any vector v € E, and satisfying the following conditions
for all x,y € K and )\ € K:

(N1) ||z|| > 0, and ||z|| = 0 iff x = 0. (positivity)

(N2) [[Az]| = [A] [|=]]. (homogeneity (or scaling))

(N3) lz +yll < |l=| + llyl]- (triangle inequality)
A vector space E together with a norm || || is called a normed vector space.

By (N2), setting A = —1, we obtain
=2l = [[(=D)a|l = [ = 1 ll=[l = ll=[l;
that is, |—z|| = [|z||. From (N3), we have
el = llz =y +yll < llz =yl + llyll,

which implies that
Izl = [yl < llz = yll-
By exchanging = and y and using the fact that by (N2),

ly —zll = I=(z =yl = [z = yll,

323
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we also have
[yl = [l=|l <[z =yl

Therefore,
Nzl = llylll < llz —yll, forallz,y e E. (%)

Observe that setting A = 0 in (N2), we deduce that [|0|] = 0 without assuming (N1).
Then by setting y = 0 in (x), we obtain

lzll] < [lzfl, forallz e E.

Therefore, the condition ||z|| > 0 in (N1) follows from (N2) and (N3), and (N1) can be
replaced by the weaker condition

(N1’) For all z € E| if ||z|| = 0, then x = 0,

A function || || : £ — R satisfying Axioms (N2) and (N3) is called a seminorm. From the
above discussion, a seminorm also has the properties

||| >0 for all z € F, and ||0]| = 0.
However, there may be nonzero vectors = € E such that ||z| = 0.

Let us give some examples of normed vector spaces.
Example 9.1.

1. Let E =R, and ||z|| = ||, the absolute value of x.

2. Let F =C, and ||z|| = |2/, the modulus of z.

3. Let E =R" (or E = C"). There are three standard norms. For every (z1,...,2z,) € E,
we have the norm ||z||;, defined such that,

[z]l1 = [z1] + - + |2al,
we have the Fuclidean norm ||z||2, defined such that,
lzlla = (jor 2 4+ + fzal?)
and the sup-norm |||, defined such that,
[2]loe = max{fa[ | 1 <7 <n}.
More generally, we define the ¢?-norm (for p > 1) by

Il = (1l + - - + |zal ).

See Figures 9.1 through 9.4.
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Figure 9.1: The top figure is {z € R? | ||z]j; < 1}, while the bottom figure is {z € R? |

]}y < 1}

There are other norms besides the /P-norms. Here are some examples.

1. For £ = R?,
[[(ur, u2)|| = [ur] + 2]ua.

See Figure 9.5.

2. For E = R?,
1/2
(w1, u2) |l = ((ur + u2)® + u}) 2,
See Figure 9.6.
3. For E = C?,
(g, ug)|| = |y + dus| + |ug — dus).

The reader should check that they satisfy all the axioms of a norm.

Some work is required to show the triangle inequality for the ¢P-norm.



326 CHAPTER 9. VECTOR NORMS AND MATRIX NORMS

Figure 9.2: The top figure is {z € R? | ||z]|; < 1}, while the bottom figure is {z € R? |
[zll < 1}.

Proposition 9.1. If E = C" or E = R", for every real number p > 1, the (P-norm is indeed
a norm.

Proof. The cases p =1 and p = oo are easy and left to the reader. If p > 1, then let ¢ > 1
such that

S4S=1
P q

We will make use of the following fact: for all o, § € R, if a, f > 0, then
aP q
af < — + 5— (%)
p q

To prove the above inequality, we use the fact that the exponential function t — ¢! satisfies
the following convexity inequality:

It =0y < gev 4 (1 — 0)e?,
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Figure 9.3: The top figure is {z € R? | ||z]l < 1}, while the bottom figure is {z € R? |
[2]loo < 1}

for all z,y € R and all  with 0 <6 <1.

Since the case a8 = 0 is trivial, let us assume that a > 0 and § > 0. If we replace 6 by
1/p, z by plog @ and y by glog 3, then we get

eipbgoﬂr%qlogﬁ < leploga + leqlogﬁ,
p q
which simplifies to
aP q
CY/D) S — + ﬂ_a
p q

as claimed.

We will now prove that for any two vectors u,v € E, (where E is of dimension n), we

have
n

> fugoi] < Jlull, o]l - ()

i=1
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Figure 9.4: The relationships between the closed unit balls from the ¢*-norm, the Euclidean
norm, and the sup-norm.

Since the above is trivial if u = 0 or v = 0, let us assume that v # 0 and v # 0. Then
Inequality (+) with a = |u;|/ [Jul|, and 8 = |vi|/ [Jv]], yields

|u;v;] ;[P |3

el lll, = pllully — qllollg

for i =1,...,n, and by summing up these inequalities, we get

n
> fugoi] < Jlull, o]l
i=1

as claimed. To finish the proof, we simply have to prove that property (N3) holds, since
(N1) and (N2) are clear. For i = 1,...,n, we can write

(el =+ [0i)P = fugl (sl + o)~ + ol (| + i),
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Figure 9.5: The unit closed unit ball {(uj,us) € R? | ||(u1,us)|| < 1}, where ||(u1,us)|| =
|U1‘ + 2|U2|

so that by summing up these equations we get

n n

> sl + Joil)? = S fual (sl + T+ 3 foul (sl + ol

i=1 i=1 i=1
and using Inequality (**), with V' € E where V; = (|u;| + |v;])P~F, we get

n n

1/q
>l + e <l V1, + el 1V, =l + o) (3G + @ 07) ™

i=1 i=1
However, 1/p + 1/q = 1 implies pg = p + q, that is, (p — 1)q = p, so we have

n n

1/q
S (sl + )P < (Jal, + llel,) (Zum ; |vi|>p) |

i=1 i=1
which yields
n 1-1/q n 1/p
(Zﬂuir ; rv@-w) _ (Z(\vm ; |vi|>p) < lull, + 1ol
i=1 =1

Since [u; +v;| < [ug| +[vy], the above implies the triangle inequality [lu + ||, < [lull, + |||,
as claimed. O

For p > 1 and 1/p + 1/q = 1, the inequality

St < (3 ) /(Z ) "

=1 i=1 i=1
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Figure 9.6: The unit closed unit ball {(uj,uz) € R? | ||(u1,us)|| < 1}, where ||(u1,us)|| =
((Ul + UQ>2 + U%)lﬂ.

is known as Holder’s inequality. For p = 2, it is the Cauchy-Schwarz inequality.

Actually, if we define the Hermitian inner product {(—, —) on C" by

n
(u,v) = Zuﬁi,
i=1

where u = (uq,...,u,) and v = (vy,...,v,), then
n n
)] <3 uiwl = 3 fuwil,
i=1 i=1

so Holder’s inequality implies the following inequalities.

Corollary 9.2. (Hélder’s inequalities) For any real numbers p,q, such that p,q > 1 and

1 1
__|__:17
p q

(with ¢ = 400 if p=1 and p = 400 if ¢ = 1), we have the inequalities
n n l/p n 1/(]
Sluwd < (o) ()
i=1 i=1 i=1

and
[(u, )| < lull, [[oll,, w0 €C™
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For p = 2, this is the standard Cauchy—Schwarz inequality. The triangle inequality for

the ¢P-norm,
n 1/p n 1/p n 1/p
(Zuuﬁm)p) < (Zw) i (Z|v,-|p> ,
i=1 i=1

i=1
is known as Minkowski’s inequality.

When we restrict the Hermitian inner product to real vectors, u,v € R", we get the
FEuclidean inner product
n
(u,v) = Zulvz
i=1

It is very useful to observe that if we represent (as usual) u = (uq, ..., u,) and v = (vy, ..., v,)
(in R™) by column vectors, then their Euclidean inner product is given by

(u,v) =u"v=0"u,

and when u,v € C", their Hermitian inner product is given by

(u,v) = v*u = u*v.
In particular, when u = v, in the complex case we get
2
lully = uu,

and in the real case this becomes

2
fully ="

As convenient as these notations are, we still recommend that you do not abuse them; the
notation (u,v) is more intrinsic and still “works” when our vector space is infinite dimen-
sional.

Remark: If 0 < p < 1, then x ~ ||z[[, is not a norm because the triangle inequality
fails. For example, consider z = (2,0) and y = (0,2). Then = +y = (2,2), and we have
H;g”p = (2P 4 OP)/P = 2, ||pr = (0P +2°)1/P = 2 and Hgy_|_y”p = (27 + 27)/p = 20+ 1)/p,
Thus

lz + yll, = 2%, lz], + [lyll, = 4 = 2.

Since 0 < p < 1, we have 2p < p + 1, that is, (p + 1)/p > 2, so 2°+1)/P > 22 — 4 and the
triangle inequality ||z + yl|, < [[z[|, + [ly[l, fails.

Observe that
I(1/2)el, = (1/2)lall, = 11/2ll, = @/ lwl, = 1. 1Q/2) + ), =2,

and since p < 1, we have 2/7 > 2. so

1(1/2) (@ +y)ll, =27 > 2 = (1/2) ], + (1/2) Iyll, ,
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and the map = — ||z|, is not convex.

For p = 0, for any z € R", we have

lzllg = {i € {1,...,n} | z; # 0},

the number of nonzero components of z. The map z — ||z|, is not a norm this time because
Axiom (N2) fails. For example,

(L)l = 110, 0)lly = 1 # 10 = 10]/(1, 0],
The map = — ||z, is also not convex. For example,

11/2)(2,2)[lo = [[(L, DI, = 2,
and
”(270)H0 = ||(07 2)”0 =1,
but
1(1/2)(2,2)[lg =2 > 1= (1/2) [[(2,0)[y + (1/2) [[(0,2)[[, -

Nevertheless, the “zero-norm” z +— ||z||, is used in machine learning as a regularizing
term which encourages sparsity, namely increases the number of zero components of the
vector x.

The following proposition is easy to show.

Proposition 9.3. The following inequalities hold for all x € R™ (or x € C"):

[zl <l < nll2(lo,
2lloe < [l2ll2 < v/nll2]loo,
lzll2 < [zl < Vol

Proposition 9.3 is actually a special case of a very important result: in a finite-dimensional
vector space, any two norms are equivalent.

Definition 9.2. Given any (real or complex) vector space £, two norms || ||, and || ||, are
equivalent iff there exists some positive reals C,Cy > 0, such that

Jull, < Crflull, and Jjull, < Cy[|ull,, for all u € E.

There is an illuminating interpretation of Definition 9.2 in terms of open balls. For any
radius p > 0 and any = € E, consider the open a-ball of center z and radius p (with respect
the norm | [|,),

Ba(z,p) ={z € E |||z -z, < p}.
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We claim that there is some open b-ball By(z,7) of radius > 0 and center z,
By(z,r) ={z € E| [z — x|, <r},

such that
Bb(xv T) - Ba(x7 IO)

Indeed, if we pick r = p/C4, for any z € E, if ||z — z||, < p/C1, then
Iz = zll, < Cillz = 2ll, < Cilp/C1) = p,

which means that
Bb<x7 p/Cl) - Ba(l', p)

Similarly, for any radius p > 0 and any z € E, we have
Ba(xv p/CQ) - Bb(x’ p)'

Now given a normed vector space (E, | ||), a subset U of E is said to be open (with
respect to the norm || ||) if either U = () or if for every x € U, there is some open ball B(z, p)
(for some p > 0) such that B(z,p) CU.

The collection U of open sets defined by the norm || || is called the topology on E induced
by the norm || ||. What we showed above regarding the containments of open a-balls and
open b-balls immediately implies that two equivalent norms induce the same topology on E.
This is the reason why the notion of equivalent norms is important.

Given any norm || || on a vector space of dimension n, for any basis (ey,...,e,) of E,
observe that for any vector x = z1e; + - - - + x,€,, we have

[zl = llzrer + -+ @nenll < faafflex]l + -+ [azal l[enl] < C(lza] + - -+ [aa]) = Cllz]];
with C' = maxi<;<, ||e;]] and with the norm |[|z||, defined as
[zlly = llzres + -+ anenl| = a1 + -+ + |2
The above implies that
Hwll = Tfloll | < llu=oll < Cllu—ol,
and this implies the following corollary.

Corollary 9.4. For any norm u +— ||u|| on a finite-dimensional (complex or real) vector
space E, the map w — ||u|| is continuous with respect to the norm || |;.
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Let S7~! be the unit sphere with respect to the norm || ||,, namely
St ={z e E||zl, =1}

Now S]"! is a closed and bounded subset of a finite-dimensional vector space, so by Heine—
Borel (or equivalently, by Bolzano-Weiertrass), S{'~ ' is compact. On the other hand, it
is a well known result of analysis that any continuous real-valued function on a nonempty
compact set has a minimum and a maximum, and that they are achieved. Using these facts,
we can prove the following important theorem:

Theorem 9.5. If E is any real or complex vector space of finite dimension, then any two
norms on E are equivalent.

Proof. 1t is enough to prove that any norm || || is equivalent to the 1-norm. We already proved
that the function z — ||z|| is continuous with respect to the norm || ||,, and we observed that
the unit sphere S} ! is compact. Now we just recalled that because the function f: x — | z|
is continuous and because S}'! is compact, the function f has a minimum m and a maximum
M, and because ||z|| is never zero on S7~!, we must have m > 0. Consequently, we just
proved that if ||z||; = 1, then

0<m<|z|| <M,

so for any x € E with x # 0, we get
m < [lz/ [lzfl, | < M,

which implies
m |zl < lof] < M [l .

Since the above inequality holds trivially if z = 0, we just proved that || || and || ||, are
equivalent, as claimed. O

Remark: Let P be a n x n symmetric positive definite matrix. It is immediately verified
that the map = — ||z||p given by
lz]lp = («" Pa)'/?

is a norm on R" called a quadratic norm. Using some convex analysis (the Lowner—John
ellipsoid), it can be shown that any norm || || on R™ can be approximated by a quadratic
norm in the sense that there is a quadratic norm || ||, such that

lzllp < |zl < Vnrllz||p,  forallz € RY

see Boyd and Vandenberghe [29], Section 8.4.1.

Next we will consider norms on matrices.
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9.2 Matrix Norms

For simplicity of exposition, we will consider the vector spaces M,,(R) and M,,(C) of square
n x n matrices. Most results also hold for the spaces M,, ,,(R) and M,, ,(C) of rectangular
m X n matrices. Since n X n matrices can be multiplied, the idea behind matrix norms is
that they should behave “well” with respect to matrix multiplication.

Definition 9.3. A matriz norm || || on the space of square n x n matrices in M,,(K), with
K =Ror K = C, is a norm on the vector space M,,(K), with the additional property called

submultiplicativity that
[AB[| < [[All | Bl

for all A, B € M, (K). A norm on matrices satisfying the above property is often called a
submultiplicative matrix norm.

Since I? = I, from ||I|| = ||I?|| < ||1||, we get ||I|| > 1, for every matrix norm.

Before giving examples of matrix norms, we need to review some basic definitions about
matrices. Given any matrix A = (a;;) € M,,.,(C), the conjugate A of A is the matrix such
that

Aj=a; 1<i<m,1<j<n.

The transpose of A is the n x m matrix A" such that

The adjoint of A is the n x m matrix A* such that

At = (AT) = (AT,
When A is a real matrix, A* = AT. A matrix A € M,,(C) is Hermitian if
A* = A
If Ais a real matrix (A € M, (R)), we say that A is symmetric if
AT = A

A matrix A € M,,(C) is normal if
AAT = AA

Y

and if A is a real matrix, it is normal if
AAT = ATA.
A matrix U € M,,(C) is unitary if

vur=U0"U = 1.
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A real matrix @ € M, (R) is orthogonal if
QRT=Q'Q=1

Given any matrix A = (a;;) € M, (C), the trace tr(A) of A is the sum of its diagonal
elements
tr(A) = a1 + -+ + aun.

It is easy to show that the trace is a linear map, so that
tr(AA) = Atr(A)

and

tr(A+ B) = tr(A) + tr(B).

Moreover, if A is an m X n matrix and B is an n X m matrix, it is not hard to show that

tr(AB) = tr(BA).

We also review eigenvalues and eigenvectors. We content ourselves with definition in-
volving matrices. A more general treatment will be given later on (see Chapter 15).

Definition 9.4. Given any square matrix A € M,(C), a complex number A € C is an
eigenvalue of A if there is some nonzero vector u € C”, such that

Au = \u.

If X\ is an eigenvalue of A, then the nonzero vectors u € C" such that Au = Au are called
eigenvectors of A associated with \; together with the zero vector, these eigenvectors form a
subspace of C" denoted by E\(A), and called the eigenspace associated with .

Remark: Note that Definition 9.4 requires an eigenvector to be monzero. A somewhat
unfortunate consequence of this requirement is that the set of eigenvectors is not a subspace,
since the zero vector is missing! On the positive side, whenever eigenvectors are involved,
there is no need to say that they are nonzero. In contrast, even if we allow 0 to be an
eigenvector, in order for a scalar A to be an eigenvalue, there must be a nonzero vector u
such that Au = Au. Without this restriction, since A0 = A0 = 0 for all A, every scalar would
be an eigenvector, which would make the definition of an eigenvalue trivial and useless. The
fact that eigenvectors are nonzero is implicitly used in all the arguments involving them,
so it seems preferable (but perhaps not as elegant) to stipulate that eigenvectors should be
Nonzero.

If A is a square real matrix A € M,,(R), then we restrict Definition 9.4 to real eigenvalues
A € R and real eigenvectors. However, it should be noted that although every complex
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matrix always has at least some complex eigenvalue, a real matrix may not have any real
eigenvalues. For example, the matrix
0 —1
A=

has the complex eigenvalues ¢ and —i, but no real eigenvalues. Thus, typically even for real
matrices, we consider complex eigenvalues.

Observe that A € C is an eigenvalue of A

o iff Au = A\u for some nonzero vector u € C"

o iff ( A\ —A)u=0

e iff the matrix Al — A defines a linear map which has a nonzero kernel, that is,

o iff \] — A not invertible.

However, from Proposition 7.10, AI — A is not invertible iff
det(A\] — A) =0.
Now det(Al — A) is a polynomial of degree n in the indeterminate A, in fact, of the form
A —tr(A)AT 4 4 (=1)" det(A).

Thus we see that the eigenvalues of A are the zeros (also called roots) of the above polyno-
mial. Since every complex polynomial of degree n has exactly n roots, counted with their
multiplicity, we have the following definition:

Definition 9.5. Given any square n x n matrix A € M,,(C), the polynomial
det(A — A) = A" — tr(A)N"H 4+ -+ 4 (—1)" det(A)

is called the characteristic polynomial of A. The n (not necessarily distinct) roots A1, ..., \,
of the characteristic polynomial are all the eigenvalues of A and constitute the spectrum of
A. We let

p(A) = max |\

1<i<n
be the largest modulus of the eigenvalues of Aj c_alled the spectral radius of A.
Since the eigenvalues A1, ..., A, of A are the zeros of the polynomial
det(A — A) = A" — tr(A)A"F 4+ -+ 4 (=1)" det(A),
we deduce (see Section 15.1 for details) that
tr(A) =M+ + A\,
det(A) = A1+ -+ A\
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Proposition 9.6. For any matriz norm || || on M,,(C) and for any square n x n matriz
A € M, (C), we have
p(A) <[ A]l-

Proof. Let X\ be some eigenvalue of A for which |A| is maximum, that is, such that |\| = p(A).
If u (# 0) is any eigenvector associated with A and if U is the n x n matrix whose columns
are all u, then Au = Au implies

AU = MU,

and since

AIUN = AU = [[AU]] < [|A]H|U]]
and U # 0, we have ||U]| # 0, and get

p(A) = AL <Al

as claimed. O

Proposition 9.6 also holds for any real matrix norm || || on M, (R) but the proof is more
subtle and requires the notion of induced norm. We prove it after giving Definition 9.7.

It turns out that if A is a real n X n symmetric matrix, then the eigenvalues of A are all
real and there is some orthogonal matrix () such that

A= Qdiag(\, ..., \)Q7,

where diag(Aq, ..., A\,,) denotes the matrix whose only nonzero entries (if any) are its diagonal
entries, which are the (real) eigenvalues of A. Similarly, if A is a complex n x n Hermitian
matrix, then the eigenvalues of A are all real and there is some unitary matrix U such that

A = Udiag(Ay, ..., \,)UT,
where diag(Ag, ..., \,) denotes the matrix whose only nonzero entries (if any) are its diagonal
entries, which are the (real) eigenvalues of A. See Chapter 17 for the proof of these results.

We now return to matrix norms. We begin with the so-called Frobenius norm, which is
just the norm || ||, on C**, where the n x n matrix A is viewed as the vector obtained by
concatenating together the rows (or the columns) of A. The reader should check that for
any n x n complex matrix A = (a;;),

( i |%‘|2) " = Vtr(A*A) = \/tr(AA*).

4,j=1

Definition 9.6. The Frobenius norm || || is defined so that for every square n x n matrix
A e M, (C),

n 1/2
Al = (Z |aij|2) _ Ju(AA) = /(A A).

1,j=1
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The following proposition show that the Frobenius norm is a matrix norm satisfying other
nice properties.

Proposition 9.7. The Frobenius norm || || on M, (C) satisfies the following properties:
(1) It is a matriz norm; that is, |AB| < ||A||z || Bl g, for all A, B € M,,(C).
(2) It is unitarily invariant, which means that for all unitary matrices U,V , we have

[Allr = UAllp = [[AV]p = [UAV] .

(3) V(A A) < | Allp < Vny/p(A*A), for all A € M (C).

Proof. (1) The only property that requires a proof is the fact ||AB||, < ||A||||B|| . This
follows from the Cauchy—Schwarz inequality:

n 2

IABlz =)

3,7=1

2 (ZII) (Z )

ij=1 N h=1

_ (Z |am\2) ( 3 \w) — AR B
ih=1 kyj=1

n

Z @by

k=1

(2) We have
|A|5 = tr(AA*) = tr(AVV*A*) = tr(AV (AV)*) = || AV |5,
and
A7 = tr(A"A) = tr(A"UUA) = |[UA| 7.

The identity
[Allp = IUAV |z

follows from the previous two.

(3) It is shown in Section 15.1 that the trace of a matrix is equal to the sum of its
eigenvalues. Furthermore, A*A is symmetric positive semidefinite (which means that its
eigenvalues are nonnegative), so p(A*A) is the largest eigenvalue of A*A and

p(A"A) < tr(A"A) < np(A”A),

which yields (3) by taking square roots. O

Remark: The Frobenius norm is also known as the Hilbert-Schmidt norm or the Schur
norm. So many famous names associated with such a simple thing!
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9.3 Subordinate Norms

We now give another method for obtaining matrix norms using subordinate norms. First we
need a proposition that shows that in a finite-dimensional space, the linear map induced by
a matrix is bounded, and thus continuous.

Proposition 9.8. For every norm || || on C" (or R"), for every matric A € M, (C) (or
A € M, (R)), there is a real constant C4 > 0, such that

[Aul] < Cyflull,
for every vector u € C"™ (or u € R™ if A is real).

Proof. For every basis (e1, ..., e,) of C* (or R"), for every vector u = ujey + - - - + upe,, we
have

[Aull = lur Aer) + - - - + unA(en)|
< fua| |ACe) ]| + - -+ + lun| | Alen)]]
< Cillun] + -+ fun) = Cr flull;

where C) = maxi<;<, ||A(e;)||. By Theorem 9.5, the norms || || and || ||, are equivalent, so
there is some constant Cy > 0 so that ||ul|; < Cs ||u|| for all u, which implies that

[Au] < Calul,

where Cy = CC5. O

Proposition 9.8 says that every linear map on a finite-dimensional space is bounded. This
implies that every linear map on a finite-dimensional space is continuous. Actually, it is not
hard to show that a linear map on a normed vector space E is bounded iff it is continuous,
regardless of the dimension of F.

Proposition 9.8 implies that for every matrix A € M,,(C) (or A € M, (R)),

A
1Azl _
aecr ]
x#0
Since [[Au|| = |A| ||ul|, for every nonzero vector x, we have
[Az] _ [lzll |AG/ (=D
= = [[ACz/ [l
]l ] ’
which implies that
x
I _ qup e
secr ||zl gecn
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Similarly
R P
sein [zl pemn
w40 =1

The above considerations justify the following definition.

Definition 9.7. If || || is any norm on C", we define the function || ||,, on M,(C) by
[Ax]|

All = sup —— = sup ||Ax]|.
4], = sup TETE = sup x|
0 lefl=1

The function A — || A, is called the subordinate matriz norm or operator norm induced
by the norm || [|.

Another notation for the operator norm of a matrix A (in particular, used by Horn and
Johnson [95)), is || 4]

It is easy to check that the function A — |[A||,, is indeed a norm, and by definition, it

satisfies the property
JAz] < Al lell, for all z € €

A norm || [, on M,,(C) satisfying the above property is said to be subordinate to the vector
norm || || on C". As a consequence of the above inequality, we have

[ABz| < ||Allop [ Bzl < [|Allop 1Bl ]l
for all z € C", which implies that

1ABI,, < I All,, IBll,, for all A, B € M,(C),

op —
showing that A — [|A[| , is a matrix norm (it is submultiplicative).

Observe that the operator norm is also defined by
|A]l,, = inf{A € R [ [[Az|| < A[z]|, for allz € C"}.

Since the function z — ||Az|| is continuous (because |||Ay|| — ||Az||| < [[Ay — Az|| <
Callz —y||) and the unit sphere S"! = {z € C" | ||z|| = 1} is compact, there is some
x € C" such that ||z|| =1 and

[Az]| = [lAll,, -

Equivalently, there is some x € C" such that x # 0 and
[Az]| = [[All, ll]] -
Consequently we can replace sup by max in the definition of ||Al|,, (and inf by min), namely

Al = max [[Az]
llzll=1
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The definition of an operator norm also implies that
||I”op =1

The above shows that the Frobenius norm is not a subordinate matrix norm for n > 2
(why?).

If || | is a vector norm on C", the operator norm || ||, that it induces applies to matrices
in M,,(C). If we are careful to denote vectors and matrices so that no confusion arises, for
example, by using lower case letters for vectors and upper case letters for matrices, it should
be clear that [|Al|,, is the operator norm of the matrix A and that [|z|| is the vector norm of
x. Consequently, following common practice to alleviate notation, we will drop the subscript
“op” and simply write || A|| instead of [|Al|,.

The notion of subordinate norm can be slightly generalized.

Definition 9.8. If K =R or K = C, for any norm || || on M,,,(X), and for any two norms
||, on K™ and || ||, on K™, we say that the norm || || is subordinate to the norms || ||, and
I, if

| Az, < ||A]| ||z]|, for all A& M,,,(K) and all z € K™.

Remark: For any norm || || on C”, we can define the function || || on M, (R) by

Ax
|Allg = sup IA]_ sup ||Az]| .
zER" ||$” TER™
T [zll=1

The function A — || Al is a matrix norm on M, (R), and
[Alle < 1A,

for all real matrices A € M,,(R). However, it is possible to construct vector norms || || on C"
and real matrices A such that

[Alle < 1Al
In order to avoid this kind of difficulties, we define subordinate matrix norms over M, (C).
Luckily, it turns out that ||A||z = ||A|| for the vector norms, || ||, ||,, and | |-

We now prove Proposition 9.6 for real matrix norms.

Proposition 9.9. For any matriz norm || || on M,,(R) and for any square n x n matriz
A € M, (R), we have
p(A) < [|A]l.

Proof. We follow the proof in Denis Serre’s book [156]. If A is a real matrix, the problem is
that the eigenvectors associated with the eigenvalue of maximum modulus may be complex.
We use a trick based on the fact that for every matrix A (real or complex),

p(A%) = (p(A))",
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which is left as an exercise (use Proposition 15.7 which shows that if (A1,...,\,) are the
(not necessarily distinct) eigenvalues of A, then (A¥,... A\F) are the eigenvalues of A*, for
k>1).

Pick any complex matrix norm || ||, on C" (for example, the Frobenius norm, or any
subordinate matrix norm induced by a norm on C"). The restriction of || ||, to real matrices
is a real norm that we also denote by || ||.. Now by Theorem 9.5, since M, (R) has finite
dimension n?, there is some constant C' > 0 so that

IB|l. < C|B|l, forall Be My (R).

Furthermore, for every k > 1 and for every real n x n matrix A, by Proposition 9.6, p(A*) <
| A .» and because || || is a matrix norm, | A¥|| < |A]|¥, so we have

((A)F = p(A¥) < || 4], < C 44| < 1Al
for all £k > 1. It follows that
p(A) < CYF| A, forall k>1.

However because C' > 0, we have limy, ,o, C/* = 1 (we have limy,_,o % log(C) = 0). There-

fore, we conclude that
p(A) < [IA]l,

as desired. O
We now determine explicitly what are the subordinate matrix norms associated with the

vector norms || ||;, ]| |5, and || ||

Proposition 9.10. For every square matriz A = (a;;) € M,,(C), we have

n
|All, = sup || Az], = max ) |a]
llzll; =1 =

n

1Al = sup [Az[l,, = max )y |as|
zeC” ?

lelloc=1 =
[4lly = sup [[Azll, = Vp(A=4) = v/ p(AA7).
llzlly=1

Note that ||A||, is the mazimum of the (*-norms of the columns of A and ||A|,, is the
mazimum of the (*-norms of the rows of A. Furthermore, |A*||, = ||All,, the norm || |, is
unitarily invariant, which means that

1Al = UAV]],

for all unitary matrices U,V , and if A is a normal matriz, then ||All, = p(A).
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Proof. For every vector u, we have
Jaull, = 3| Sy
i J

which implies that

< S bl Sl < ((max S ot )l
% %

J

n
1A]l, < max )y ay)-
gt

It remains to show that equality can be achieved. For this let j; be some index such that
mjaXZ | = laij,|,

and let u; = 0 for all ¢ # jp and u;, = 1.

In a similar way, we have

[ Au], = max
7

Zaijuj < (m?XZMUO [l »
J J

which implies that
n
[A]lo < m?XZ |ai;|.
j=1
To achieve equality, let ig be some index such that
mz.aXZ il = laigl-

J J

The reader should check that the vector given by

Qi g .
—0L lf aioj 7£ 0
Uj =

laig;l

1 if Ay = 0

works.
We have
|A||> = sup ||Az|> = sup z*A*Az.
zeC” zeC™
z*r=1 z*r=1
Since the matrix A*A is symmetric, it has real eigenvalues and it can be diagonalized with
respect to a unitary matrix. These facts can be used to prove that the function z — x*A* Ax

has a maximum on the sphere z*x = 1 equal to the largest eigenvalue of A*A, namely,
p(A*A). We postpone the proof until we discuss optimizing quadratic functions. Therefore,

[A[l, = v/ p(A*A).
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Let use now prove that p(A*A) = p(AA*). First assume that p(A*A) > 0. In this case, there
is some eigenvector u (# 0) such that

A" Au = p(A*A)u,
and since p(A*A) > 0, we must have Au # 0. Since Au # 0,
AA™(Au) = A(A™Au) = p(A*A) Au
which means that p(A*A) is an eigenvalue of AA*, and thus
p(A*A) < p(AA").
Because (A*)* = A, by replacing A by A*, we get
p(AAY) < p(AA),

and so p(A*A) = p(AA").

If p(A*A) = 0, then we must have p(AA*) = 0, since otherwise by the previous reasoning
we would have p(A*A) = p(AA*) > 0. Hence, in all case

1All; = p(A*A) = p(AA") = [|A*];.

For any unitary matrices U and V, it is an easy exercise to prove that V*A*AV and A*A
have the same eigenvalues, so

1A]l; = p(A™A) = p(V*A*AV) = | AV]|3,

and also
2 * *T T 2
|Al5 = p(A™A) = p(A"UTUA) = |[UA]; .

Finally, if A is a normal matrix (AA* = A*A), it can be shown that there is some unitary

matrix U so that
A=UDU",

where D = diag(Aq, ..., \,) is a diagonal matrix consisting of the eigenvalues of A, and thus
A*A=({UDU")*UDU* =UD*U*UDU* =UD*DU".
However, D*D = diag(|\1]?, ..., |\]?), which proves that
p(A*4) = p(D* D) = max| [ = (p(A))"
so that || A|l, = p(A). O

Definition 9.9. For A = (a;;) € M,,(C), the norm ||A]], is often called the spectral norm.
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Observe that Property (3) of Proposition 9.7 says that
Al < [|All < VAl

which shows that the Frobenius norm is an upper bound on the spectral norm. The Frobenius
norm is much easier to compute than the spectral norm.

The reader will check that the above proof still holds if the matrix A is real (change
unitary to orthogonal), confirming the fact that ||Al|p = || A|| for the vector norms || ||, , || ||,
and || || . It is also easy to verify that the proof goes through for rectangular m x n matrices,
with the same formulae. Similarly, the Frobenius norm given by

m n 1/2
Al = (ZZ |am2) — (A A) = /(A

i=1 j=1
is also a norm on rectangular matrices. For these norms, whenever AB makes sense, we have

[ABI| < [|A[ B[ -

1 1
Remark: It can be shown that for any two real numbers p, ¢ > 1 such that — + — =1, we
p q
have

1A%, = [[A[l, = sup{R(y" Az) | |[z[l, = 1, [[yll, = 1} = sup{[{Az, p)| [ |[z[l, = 1. llyll, = 1},
where [|A*[|, and [|A]|, are the operator norms.

Remark: Let (£, | ||) and (F, | ||) be two normed vector spaces (for simplicity of notation,
we use the same symbol || || for the norms on E and F'; this should not cause any confusion).
Recall that a function f: E — F'is continuous if for every a € E, for every ¢ > 0, there is
some 717 > 0 such that for all x € F,

if [z —al <n then |[f(z)— fla)ll <e

It is not hard to show that a linear map f: E — F' is continuous iff there is some constant
C > 0 such that
IIf ()] < Clz| for all z € E.

If so, we say that f is bounded (or a linear bounded operator). We let L(E; F') denote the
set of all continuous (equivalently, bounded) linear maps from E to F. Then we can define
the operator norm (or subordinate norm) || || on L(E; F) as follows: for every f € L(E; F),

151 = sup L = sup 701,
) =1
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or equivalently by
1F = inf{r € R | [|f(@)]| < Allal], for all 2 € E}.

Here because E may be infinite-dimensional, sup can’t be replaced by max and inf can’t
be replaced by min. It is not hard to show that the map f +— |[|f]| is a norm on L(E; F')
satisfying the property

Lf @) < [1£]H ]l
for all z € E, and that if f € L(E; F) and g € L(F; G), then
llgo fIl < gl lIfIl-

Operator norms play an important role in functional analysis, especially when the spaces FE
and I are complete.

9.4 Inequalities Involving Subordinate Norms

In this section we discuss two technical inequalities which will be needed for certain proofs
in the last three sections of this chapter. First we prove a proposition which will be needed
when we deal with the condition number of a matrix.

Proposition 9.11. Let || || be any matriz norm, and let B € M,,(C) such that |B|| < 1.

(1) If || || is a subordinate matriz norm, then the matriz I + B is invertible and

1

I+B)7 Y <——.

(2) If a matriz of the form I + B is singular, then ||B|| > 1 for every matriz norm (not
necessarily subordinate).

Proof. (1) Observe that (I + B)u = 0 implies Bu = —u, so
[ull = [ Bull

Recall that
| Bul| < [|BI] [|ul]

for every subordinate norm. Since ||B|| < 1, if u # 0, then
[Bull < {[ul],

which contradicts ||u|| = ||Bu||. Therefore, we must have u = 0, wh