Trimester Program on

Computational Manifolds and Applications

Introduction to Computational
Manifolds and Applications

Manifold Harmonics

Luis Gustavo Nonato
Depto Matematica Aplicada e Estatistica
ICMC-USP-Brazil |



Summary

Thursday: Manifold Harmonics and Applications

- Some theoretical background
- Mesh Filtering

- Embedding in high-dimension
- Fiedler tree

- Heat Trace



Spectral Mesh Processing

Although relatively recent in the context of Geometry
Processing, spectral methods have already experienced
a large development in the field of spectral graph theory.



Spectral Mesh Processing

Although relatively recent in the context of Geometry
Processing, spectral methods have already experienced
a large development in the field of spectral graph theory.

Those techniques rely on spectrum of a Laplacian-like matrix.



Laplacian Matrices

Given a surface mesh M = V,E a matrix L can be built as follows:

Wij ifi# jande;; €E

=) = X wi ifi=]
tj e,‘jGE

0 otherwise

where w;; 1s a weight assigned to each edge in E.



Laplacian Matrices
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Wij =

_cot(B;j) +cot(B;})

Laplacian Matrices

A\

Cotangent Formula !!




Short Review of Eigenvalues and Eigenvectors

Lv=Av



Short Review of Eigenvalues and Eigenvectors

eigenvalue

Ly =y

eigenvector



Short Review of Eigenvalues and Eigenvectors

Lv=Av

ARPACK — Large sparse matrices

Lanczos algorithm (derived from the power method)



Short Review of Eigenvalues and Eigenvectors

Lv=Av

Let V; = {av;| a € R}, where v; is an eigenvector of L, and
V=VoV,d---dV;

then the subspaces V; are invariant under L: V C R" — V.



Short Review of Eigenvalues and Eigenvectors

If L 1s symmetric then
e The eigenvalues of L are real

e The eigenvectors {vy,...,v,} of L forms an orthonormal basis

xER"=>x=Z<x,v,->vi
i



Spectral Mesh Processing

There are three main steps involved in most
spectral mesh processing methods:

1. Construction of the matrix L
2. Eigendecomposition of L.

3. Handling the eigendecomposition towards
obtaining the desired results.



Spectral Mesh Processing

P={V,E}
fiV=oR o f=(f1,.-,/n)

i+1



Spectral Mesh Processing

P={V,E}
fV_)R fz(fla“'afn)
I+1
Wij=1%=1/2

. 1 |
L) = §(fi—1 — fi) + §(f'i+1 — [i)
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L==
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Spectral Mesh Processing

b | =

1 |
(Lf): = §(fi—1 - fi)+ 3

eigenvalues

Ai=1—cos(2m|i/2|/n)
0<A < <Ay

(fit1 = fi)

—1

b

eigenvectors

[ V/1/n i=1
V/2/nsin(2xj|i/2|/n) ieven

| \/2/ncos(2mj|i/2]/n) iodd



Spectral Mesh Processing

. L . . L . .
(Lf)i= §(fi—1 — fi) + ;(f~zt+1 — fi)
2 -1 —1 ]
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Ai=1—cos(2m|i/2|/n)
0<A < <Ay (Vi)

V1/n i =
¢ /2/nsin(27j|i/2]/n) ieven
V/2/ncos(2mj|i/2] /n) i odd

Fourier Basis




Spectral Mesh Processing

f:Z<faVi>Vi

fr= )3@< fivi>)v;

L filter



Spectral Mesh Processing
f= Z < f,Vi>V;
i

fr =z@< fivi>)vi

L filter

For surfaces, the spectrum of the Laplace operator behaves
quite similarly to a Fourier basis, allowing for filtering
functions defined on the surface.



Spectral Mesh Processing

In particular, if the coordinates of the vertices of surface
mesh are seem as functions defined on the surface,
band-pass filtering can be performed. [vallet and Levy, SGP’08]

=N Fw)aw =Y F(v/ Ao,

F(w) F(w) F(w)

EERSY T3 ]




Spectral Mesh Processing

In particular, if the coordinates of the vertices of surface
mesh are seem as functions defined on the surface,
band-pass filtering can be performed.

low pass filter

original model

1000 100 10



Spectral Mesh Processing

[Taubin, Siggraph’95]

x=Z<x,vi>vi
i

Lx=Y A <Xx,Vi>V;
i



Spectral Mesh Processing

[Taubin, Siggraph’95]

x:Z<x,vi>vi
i

Lx=Y A <Xx,Vi>V;
i

Lrx = Z/’L,-k < X,Vi > Vi
i



Spectral Mesh Processing
[Taubin, Siggraph’95]
Fk(Lx) = ZFk(l,-) < X,V; > V;
i
F(A;) ~ 1 for low frequencies

F (A;) ~ 0O for high frequencies



Spectral Mesh Processing

[Taubin, Siggraph’95]
F(A)=(1-0ad)(1-pua)
where ¢ > 0and U < —o

k
f{ﬂ) 1.0 1.0 fRN
k=L \/’J= X
\\ |
/ 0 kps2 \ 0 kps
A B




Spectral Mesh Processing

[Taubin, Siggraph’95]
F(A)=(1-0ad)(1-pua)
where ¢ > 0and U < —o

(k)

1.0 1.0 fRN

X =x"14+uAx




Spectral Mesh Processing

[Taubin, Siggraph’95]
F(A)=(1-ai)(1-pA)
where ¢ > 0and U < —o

(k) 1.0 1.0 fRN
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Avoid to compute the spectrum



[Taubin, Siggraph’95]




Spectral Mesh Processing

What about eigenvectors ?

oPo
D




Spectral Mesh Processing

Nodal Domain: The nodal set of an eigenfunction is
the set of points where the eigenfunction is zero.

The regions bounded by the nodal set are called
nodal domains.
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Spectral Mesh Processing

Nodal Domain: The nodal set of an eigenfunction is
the set of points where the eigenfunction is zero.
The regions bounded by the nodal set are called
nodal domains.

An eigenfunction is built by interpolating the values
of an eigenvector (defined on the vertices of a mesh)

in each point of the surface.



Spectral Mesh Processing

Courant's Nodal Theorem: Let the eigenvectors of the
Laplace operator be labeled in ascending order
according to the corresponding eigenvalues. Then,

the k-th eigenfunction has at most k nodal domains,
that is, the k-th eigenfunction can separate the surface
into at most kK connected components.



Spectral Mesh Processing

Courant's Nodal Theorem: Let the eigenvectors of the
Laplace operator be labeled in ascending order
according to the corresponding eigenvalues. Then,

the k-th eigenfunction has at most k nodal domains,
that is, the k-th eigenfunction can separate the surface
into at most kK connected components.



Eigenvector 2

Eigenvector 5

Zero is an eigenvalue of the Laplace operator with
a constant corresponding eigenvector.



Spectral Mesh Processing

- Eigenvectors capture symmetries of the model,;
- Invariant by isometric transformation;

- Not sensitive to small topological and geometrical changes



Spectral Mesh Processing

- Eigenvectors capture symmetries of the model,;
- Invariant by isometric transformation;

- Not sensitive to small topological and geometrical changes

Powerful tool for many mesh processing tasks.



Spectral Mesh Processing

Mesh Segmentation [0. Sidi et al., SigAsia’11]




Spectral Mesh Processing

Global Point Signature [Rustamov., SGP’07]

GPS(x) = (%lvl(x), \/Ll_zvz(x), )

Euclidean distance in the GPS space is related to
Green’s function on the surface.



Spectral Mesh Processing

Global Point Signature [Rustamov., SGP’07]




Spectral Mesh Processing

Global Point Signature [Rustamov., SGP’07]
6
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Spectral Mesh Processing

Global Point Signature

[Rustamov., SGP’07]




Spectral Mesh Processing

Global Point Signature

3

[Rustamov., SGP’07]
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Spectral Mesh Processing

Diffusion Maps [Goes, SGP’08]

@, (x) = (e Mvy(x),e M vy (x),- )

Euclidean distance in the DM space is related to
diffusion distance on the surface.



Spectral Mesh Processing

Diffusion Maps [Goes, SGP’08]




Spectral Mesh Processing

Diffusion Maps [Goes, SGP’08]

(RS



Spectral Mesh Processing

The eigenvector corresponding to the
smallest non-zero eigenvalue is called Fiedler vector
and it is characterized by:

vo(L) = argmin Z'u,r.i iy —uj)?

’z‘l' . .
t,J

Subject to: Z u; = 0 and Z u? =1



Spectral Mesh Processing

The eigenvector corresponding to the
smallest non-zero eigenvalue is called Fiedler vector
and it is characterized by:

Will be minimum when adjacent
vertices have similar values.

vo(L) = argmin E w;
u
t,]
Subject to: g u; = 0 and E u; =1



Spectral Mesh Processing

The Fiedler vector also generates nodal domains
with similar areas and minimal boundary curve

Eigenvector 2



Spectral Mesh Processing

Fiedler Tree [Berger, SMI’09]
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Spectral Mesh Process

[Berger, SMI'09]

Fiedler Tree




Spectral Mesh Processing

Fiedler Tree [Berger, SMI’09]
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Spectral Mesh Processing

Fiedler Tree [Berger, SMI’09]




Spectral Mesh Processing

Some Interesting Results

4
area(M)’

Ap, ™~ as n T oo.



Spectral Mesh Processing

Some Interesting Results

41mn
)\"’Narea(M)’ as n T oo.

Heat Trace

Z(t)=Y e

i

Z(t) ~ (4nT) 42 Y '/



Spectral Mesh Processing

Some Interesting Results

41mn
/\"’Narea(M)’ as n T oo.

Heat Trace
Zt)=Y e M
i
For a surface M:

Z(t) ~ (4nT) 42 Y '/
i co = Area(M)



Spectral Mesh Processing

model # points | estimative | surface area

heat trace 12.65

8k triangles 12.56
error 0.7%

heat trace 3.82

12k triangles 3.98
error 4.0%

heat trace 6.03

15k triangles 6.47
error 6.8%

heat trace 1.59

24k triangles 1.42
error 10.7%




That is all Folks !!



