Trimester Program on Computational Manifolds and Applications

Introduction to Computational Manifolds and Applications

Differential Operators on Manifolds

Luis Gustavo Nonato

Depto Matemática Aplicada e Estatística ICMC-USP-Brazil

Summary

Today (Tuesday): Differential Operators on Surfaces

- Differential operators in the parametric domain
- Cotangent formula
- Belkin's approach
- SPH-based scheme

Thursday: Manifold Harmonics and Applications

- Some theoretical background
- Mesh Filtering
- Rustamov Embedding
- Fiedler tree
- Other applications

Since f is defined only on M it does not make sense to write:

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{h}$$

Since f is defined only on M it does not make sense to write:

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{h}$$
May not be on M

$$\boldsymbol{\varphi}(u,v) = (x(u,v),y(u,v),z(u,v))$$

$$g_1 = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \quad g_2 = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)$$

$$\boldsymbol{\varphi}(u,v) = (x(u,v),y(u,v),z(u,v))$$

$$g_1 = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \quad g_2 = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)$$

$$g_{11} = \langle g_1, g_1 \rangle g_{22} = \langle g_2, g_2 \rangle$$

 $g_{12} = g_{21} = \langle g_1, g_2 \rangle$

$$g = det \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}$$

$$g_{11} = \langle g_1, g_1 \rangle g_{22} = \langle g_2, g_2 \rangle$$
 $g_{12} = g_{21} = \langle g_1, g_2 \rangle$
 $g = det \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}$ Metric tensor

$$\begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} g^{11} & g^{12} \\ g^{21} & g^{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

What is the gradient of $f \circ \varphi(u_p, v_p)$?

From the properties of the metric tensor and some algebraic manipulation we get:

$$\nabla f = (g^{11}f_u + g^{12}f_v, g^{22}f_v + g^{21}f_u)$$

What is the gradient of $f \circ \varphi(u_p, v_p)$?

From the properties of the metric tensor and some algebraic manipulation we get:

$$\nabla f = (g^{11}f_u + g^{12}f_v, g^{22}f_v + g^{21}f_u)$$

$$f = f \circ \varphi(u_p, v_p)$$

What is the gradient of $f \circ \varphi(u_p, v_p)$?

From the properties of the metric tensor and some algebraic manipulation we get:

$$\nabla f = (g^{11}f_u + g^{12}f_v, g^{22}f_v + g^{21}f_u)$$

The Laplacian:

$$\nabla^2 f = \frac{1}{\sqrt{g}} \left(\frac{\partial}{\partial u} \left(\sqrt{g} (g^{11} f_u + g^{12} f_v) \right) + \frac{\partial}{\partial v} \left(\sqrt{g} (g^{21} f_u + g^{22} f_v) \right) \right)$$

Jos Stam made use of those operators defined on the parametric domain to simulate flows on surfaces.

[Flows on Surfaces of Arbitrary Topology, ACM TOG 2003]

$$\nabla^2 f = 0$$
 where $f: M \to \mathbb{R}$

Using Finite Element Formulation

$$\nabla^2 f = 0 \Rightarrow Lf = 0$$

$$l_{ij} = \int_{t \cup t'} \langle \nabla \phi_i, \nabla \phi_j \rangle dS$$

In the canonical domain

Considering the two triangles sharing the edge ij

$$l_{ij} = \frac{\cot(\beta_{ij}) + \cot(\beta'_{ij})}{2}$$

$$l_{ii} = -\sum_{t \in st(i)} l_{ij}$$

Considering the two triangles sharing the edge ij

k
$$l_{ij} = \frac{\cot(\beta_{ij}) + \cot(\beta'_{ij})}{2}$$

$$l_{ii} = -\sum_{t \in st(i)} l_{ij}$$

Allows to discretize the Laplace equation directly on the surface.

Boundary Conditions

Least Square-based

The mesh

The symmetric Laplacian L_s

O. Sorkine, Eurographics 2005.

Boundary Conditions

Least Square-based

The mesh

The symmetric Laplacian L_s

Invertible Laplacian

2-anchor \tilde{L}

O. Sorkine, Eurographics 2005.

Penalty Method

$$(L+P)=Pb$$

Boundary Conditions

Least Square-based

The mesh

The symmetric Laplacian L_s

Invertible Laplacian

2-anchor \tilde{L}

O. Sorkine, Eurographics 2005.

Penalty Method

The cotangent formula has been used in many geometry processing applications.

The cotangent formula has been used in many geometry processing applications.

Mesh Editing and Deformation

Base Mesh Construction

[Daniels et al., SMI 2011]

Base Mesh Construction

Base Mesh Construction

The cotangent-based discretization of the Laplace operator is not consistent.

The cotangent-based discretization of the Laplace operator is not consistent.

Recently, Hildebrandt and Polthier (SPG'2011) proposed a weighting scheme to ensure consistency for cotangent based discretization.

The cotangent-based discretization of the Laplace operator is not consistent.

Recently, Hildebrandt and Polthier (SPG'2011) proposed a weighting scheme to ensure consistency for cotangent based discretization.

$$L' = \Phi L$$

 Φ_{ij} is the value in v_j of a kernel function (r-local) defined in v_i .

A consistent discretization schemes have been proposed by Belkin:

[Belkin et al., SCG'08]

A consistent discretization schemes have been proposed by Belkin:

[Belkin et al., SCG'08]

$$L_K^h f(w) = \frac{1}{4\pi h^2} \sum_{t \in K} \frac{\text{Area}(t)}{\# t} \sum_{p \in V(t)} e^{-\frac{\|p-w\|^2}{4h}} (f(p) - f(w))$$

Belkin has also extended the operator for point set surfaces.

Belkin has also extended the operator for point set surfaces.

$$L_P^t f(p) = \frac{1}{(4\pi t)^{k/2} t} \sum_{\sigma \in K_{\frac{\delta}{2}}} \frac{A(\sigma)}{k+1} \sum_{q \in V(\sigma)} e^{-\frac{\|p-\Phi(q)\|^2}{4t}} (f(p) - f(\Phi(q)))$$

A Delaunay triangulation is built on the tangent plane of each point of the mesh.

Belkin has also extended the operator for point set surfaces.

$$\mathbf{L}_P^t f(p) = \frac{1}{(4\pi t)^{k/2} t} \sum_{\sigma \in K_{\frac{\delta}{2}}} \frac{\mathbf{A}(\sigma)}{k+1} \sum_{q \in V(\sigma)} e^{-\frac{\|p-\Phi(q)\|^2}{4t}} (f(p) - f(\Phi(q)))$$
 Projection from the tangent plane back to the surface

A Delaunay triangulation is built on the tangent plane of each point of the mesh.

Petronetto et al. have employed Smooth Particle Hydrodynamics (SPH) as discretization mechanism.

$$\langle \Delta_{\mathcal{M}} f_i \rangle = -\sum_{j \in N_i} 2f_{ij} \frac{\hat{\mathbf{x}}_{ij}}{\|\hat{\mathbf{x}}_{ij}\|^2} \cdot \nabla W_h(\|\hat{\mathbf{x}}_{ij}\|) V_j$$

Petronetto et al. have employed Smooth Particle Hydrodynamics (SPH) as discretization mechanism.

$$\langle \Delta_{\mathcal{M}} f_i \rangle = -\sum_{j \in N_i} 2f_{ij} \frac{\hat{\mathbf{x}}_{ij}}{\|\hat{\mathbf{x}}_{ij}\|^2} \cdot \nabla W_h(\|\hat{\mathbf{x}}_{ij}\|) V_j$$

$$f_{ij} = f_i - f_j \qquad \hat{\mathbf{x}}_{ij} = \hat{\mathbf{x}}_i - \hat{\mathbf{x}}_j$$

Petronetto et al. have employed Smooth Particle Hydrodynamics (SPH) as discretization mechanism.

$$\langle \Delta_{\mathcal{M}} f_i \rangle = -\sum_{j \in N_i} 2f_{ij} \frac{\hat{\mathbf{x}}_{ij}}{\|\hat{\mathbf{x}}_{ij}\|^2} \cdot \nabla W_h(\|\hat{\mathbf{x}}_{ij}\|) V_j$$

$$f_{ij} = f_i - f_j \qquad \hat{\mathbf{x}}_{ij} = \hat{\mathbf{x}}_i - \hat{\mathbf{x}}_j$$

 W_h is a kernel function satisfying

$$\int_{\Omega} W_h(\|\mathbf{x} - \mathbf{x}'\|) d\mathbf{x}' = 1$$

Petronetto et al. have employed Smooth Particle Hydrodynamics (SPH) as discretization mechanism.

$$\langle \Delta_{\mathcal{M}} f_i \rangle = -\sum_{j \in N_i} 2f_{ij} \frac{\hat{\mathbf{x}}_{ij}}{\|\hat{\mathbf{x}}_{ij}\|^2} \cdot \nabla W_h(\|\hat{\mathbf{x}}_{ij}\|) V_j$$

$$\hat{f}_{ij} = f_i - f_j$$
 $\hat{\mathbf{x}}_{ij} = \hat{\mathbf{x}}_i - \hat{\mathbf{x}}_j$ Normal extension

 W_h is a kernel function satisfying

$$\int_{\Omega} W_h(\|\mathbf{x} - \mathbf{x}'\|) d\mathbf{x}' = 1$$

Petronetto et al. have employed Smooth Particle Hydrodynamics (SPH) as discretization mechanism.

$$\langle \Delta_{\mathcal{M}} f_i \rangle = -\sum_{j \in N_i} 2f_{ij} \frac{\hat{\mathbf{x}}_{ij}}{\|\hat{\mathbf{x}}_{ij}\|^2} \cdot \nabla W_h \left(\|\hat{\mathbf{x}}_{ij}\| \right) V_j$$

$$f_{ij} = f_i - f_j \qquad \hat{\mathbf{x}}_{ij} = \hat{\mathbf{x}}_i - \hat{\mathbf{x}}_j$$

 W_h is a kernel function satisfying

$$\int_{\mathbf{O}} W_h(\|\mathbf{x} - \mathbf{x}'\|) d\mathbf{x}' = 1$$

$$\int_{\Omega} W_h(\|\mathbf{x} - \mathbf{x}'\|) d\mathbf{x}' = 1$$

$$\int_{\Omega} A\mathbf{v} = b$$

where $a_{ij} = W_h(||\mathbf{x}_{ij}||), b_i = 1$, and $v_i = V_i$.

In order to enforce a uniform distribution of area elements a regularization term is incorporated and the following minimization problem is solved:

min
$$F^{\rho}(\mathbf{v}) := ||A\mathbf{v} - \mathbf{b}||^2 + \rho ||\mathbf{v}||^2$$

In order to enforce a uniform distribution of area elements a regularization term is incorporated and the following minimization problem is solved:

$$\min F^{\rho}(\mathbf{v}) := ||A\mathbf{v} - \mathbf{b}||^2 + \rho ||\mathbf{v}||^2$$

$$||A\mathbf{v} - \mathbf{b}||^2 + \rho ||\mathbf{v}||^2$$

$$||A\mathbf{v} - \mathbf{b}||^2 + \rho ||\mathbf{v}||^2$$

Figure 1: Histogram of area elements with (left) and without (right) the regularization term.

Convergence Analysis

$$-\Delta_{\mathcal{M}} u = f$$

$$f(x, y, z) = 2(z-1) + 6y^2 - (1 - 2x - x^2)e^x$$

Convergence Analysis

$$-\Delta_{\mathcal{M}} u = f$$

$$f(x, y, z) = 2(z-1) + 6y^2 - (1 - 2x - x^2)e^x$$

There are at least other two approaches we have not discussed:

- Discrete exterior calculus (Desbrun)
- 3D constrained to surface approach (Kazhdan)

Those two methods have been discusses during the advanced seminars.

This Thursday:

Manifold Harmonics !!!

