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Abstract. This note contains two remarks. The first remark concerns the extension of
the well-known Cayley representation of rotation matrices by skew-symmetric matrices to
rotation matrices admitting −1 as an eigenvalue and then to all orthogonal matrices. We
review a method due to Hermann Weyl and another method involving multiplication by
a diagonal matrix whose entries are +1 or −1. The second remark has to do with ways
of flipping the signs of the entries of a diagonal matrix, C, with nonzero diagonal entries,
obtaining a new matrix, E, so that E+A is invertible, where A is any given matrix (invertible
or not).
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1 The Cayley Representation of Orthogonal Matrices

Given any rotation matrix, R ∈ SO(n), if R does not admit −1 as an eigenvalue, then there
is a unique skew-symmetric matrix, S, (S> = −S) so that

R = (I − S)(I + S)−1.

This is a classical result of Cayley [3] (1846) and R is called the Cayley transform of S.
Among other sources, a proof can be found in Hermann Weyl’s beautiful book The Classical
Groups [7], Chapter II, Section 10, Theorem 2.10.B (page 57).

As we can see, this representation misses rotation matrices admitting the eigenvalue −1,
and of course, as det((I − S)(I + S)−1) = +1, it misses improper orthogonal matrices, i.e.,
those matrices R ∈ O(n) with det(R) = −1.

Question 1. Is there a way to extend the Cayley representation to all rotation matrices
(matrices in SO(n))?

Question 2. Is there a way to extend the Cayley representation to all orthogonal matrices
(matrices in O(n))?

Answer: Yes in both cases!

An answer to Question 1 is given in Weyl’s book [7], Chapter II, Section 10, Lemma
2.10.D (page 60):

Proposition 1.1 (Weyl) Every rotation matrix, R ∈ SO(n), can be expressed as a product

R = (I − S1)(I + S1)
−1(I − S2)(I + S2)

−1,

where S1 and S2 are skew-symmetric matrices.

Thus, if we allow two Cayley representation matrices, we can capture orthogonal matrices
having an even number of −1 as eigenvalues. Actually, proposition 1.1 can be sharpened
slightly as follows:

Proposition 1.2 Every rotation matrix, R ∈ SO(n), can be expressed as

R =
(

(I − S)(I + S)−1
)2

where S is a skew-symmetric matrix.

Proposition 1.2 can be easily proved using the following well-known normal form for
orthogonal matrices:
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Proposition 1.3 For every orthogonal matrix, R ∈ O(n), there is an orthogonal matrix P
and a block diagonal matrix D such that R = PDP>, where D is of the form

D =


D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp


such that each block Di is either 1, −1, or a two-dimensional matrix of the form

Di =

(
cos θi − sin θi
sin θi cos θi

)
where 0 < θi < π.

In particular, if R is a rotation matrix (R ∈ SO(n)), then it has an even number of
eigenvalues −1. So, they can be grouped into two-dimensional rotation matrices of the form(

−1 0
0 −1

)
,

i.e., we allow θi = π and we may assume that D does not contain one-dimensional blocks of
the form −1.

A proof of Proposition 1.3 can be found in Gantmacher [5], Chapter IX, Section 13 (page
285), or Berger [2], or Gallier [4], Chapter 11, Section 11.4 (Theorem 11.4.5).

Now, for every two-dimensional rotation matrix

T =

(
cos θ − sin θ
sin θ cos θ

)
with 0 < θ ≤ π, observe that

T
1
2 =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
does not admit −1 as an eigenvalue (since 0 < θ/2 ≤ π/2) and T =

(
T

1
2

)2
. Thus, if we

form the matrix R
1
2 by replacing each two-dimensional block Di in the above normal form

by D
1
2
i , we obtain a rotation matrix that does not admit −1 as an eigenvalue, R =

(
R

1
2

)2
and the Cayley transform of R

1
2 is well defined. Therefore, we have proved Proposition 1.2.

Next, why is the answer to Question 2 also yes?

This is because
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Proposition 1.4 For any orthogonal matrix, R ∈ O(n), there is some diagonal matrix, E,
whose entries are +1 or −1, and some skew-symmetric matrix, S, so that

R = E(I − S)(I + S)−1.

As such matrices E are orthogonal, all matrices E(I −S)(I +S)−1 are orthogonal, so we
have a Cayley-style representation of all orthogonal matrices.

I am not sure when Proposition 1.4 was discovered and originally published. Since I could
not locate this result in Weyl’s book [7], I assume that it was not known before 1946, but
I did stumble on it as an exercise in Richard Bellman’s classic [1], first published in 1960,
Chapter 6, Section 4, Exercise 11, page 91-92 (see also, Exercises, 7, 8, 9, and 10).

Why does this work?

Fact E: Because, for every n× n matrix, A (invertible or not), there some diagonal matrix,
E, whose entries are +1 or −1, so that I + EA is invertible!

This is Exercise 10 in Bellman [1] (Chapter 6, Section 4, page 91). Using Fact E, it is
easy to prove Proposition 1.4.

Proof of Proposition 1.4. Let R ∈ O(n) be any orthogonal matrix. By Fact E, we can find
a diagonal matrix, E (with diagonal entries ±1), so that I + ER is invertible. But then, as
E is orthogonal, ER is an orthogonal matrix that does not admit the eigenvalue −1 and so,
by the Cayley representation theorem, there is a skew-symmetric matrix, S, so that

ER = (I − S)(I + S)−1.

However, notice that E2 = I, so we get

R = E(I − S)(I + S)−1,

as claimed.

But Why does Fact E hold?

As we just observed, E2 = I, so by multiplying by E,

I + EA is invertible iff E + A is.

Thus, we are naturally led to the following problem: If A is any n×nmatrix, is there a way
to perturb the diagonal entries of A, i.e., to add some diagonal matrix, C = diag(c1, . . . , cn),
to A so that C + A becomes invertible?

Indeed this can be done, and we will show in the next section that what matters is not
the magnitude of the perturbation but the signs of the entries being added.
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2 Perturbing the Diagonal of a Matrix to Make it In-

vertible

In this section we prove the following result:

Proposition 2.1 For every n × n matrix (invertible or not), A, and every any diagonal
matrix, C = diag(c1, . . . , cn), with ci 6= 0 for i = 1, . . . , n, there an assignment of signs,
εi = ±1, so that if E = diag(ε1c1, . . . , εncn), then E + A is invertible.

Proof . Let us evaluate the determinant of C+A. We see that ∆ = det(C+A) is a polynomial
of degree n in the variables c1, . . . , cn and that all the monomials of ∆ consist of products of
distinct variables (i.e., every variable occurring in a monomial has degree 1). In particular,
∆ contains the monomial c1 · · · cn. In order to prove Proposition 2.1, it will suffice to prove

Proposition 2.2 Given any polyomial, P (x1, . . . , xn), of degree n (in the indeterminates
x1, . . . , xn and over any integral domain of characteristic unequal to 2), if every monomial
in P is a product of distinct variables, for every n-tuple (c1, . . . , cn) such that ci 6= 0 for
i = 1, . . . , n, then there is an assignment of signs, εi = ±1, so that

P (ε1c1, . . . , εncn) 6= 0.

Clearly, any assignment of signs given by Proposition 2.2 will make det(E + A) 6= 0,
proving Proposition 2.1.

It remains to prove Proposition 2.2.

Proof of Proposition 2.2. We proceed by induction on n (starting with n = 1). For n = 1, the
polynomial P (x1) is of the form P (x1) = a + bx1, with b 6= 0 since deg(P ) = 1. Obviously,
for any c 6= 0, either a+ bc 6= 0 or a− bc 6= 0 (otherwise, 2bc = 0, contradicting b 6= 0, c 6= 0
and the ring being an integral domain of characteristic 6= 2).

Assume the induction hypothesis holds for any n ≥ 1 and let P (x1, . . . , xn+1) be a
polynomial of degree n+ 1 satisfying the conditions of Proposition 2.2. Then, P must be of
the form

P (x1, . . . , xn, xn+1) = Q(x1, . . . , xn) + S(x1, . . . , xn)xn+1,

where both Q(x1, . . . , xn) and S(x1, . . . , xn) are polynomials in x1, . . . , xn and S(x1, . . . , xn)
is of degree n and all monomials in S are products of distinct variables. By the induction
hypothesis, we can find (ε1, . . . , εn), with εi = ±1, so that

S(ε1c1, . . . , εncn) 6= 0.

But now, we are back to the case n = 1 with the polynomial

Q(ε1c1, . . . , εncn) + S(ε1c1, . . . , εncn)xn+1,
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and we can find εn+1 = ±1 so that

P (ε1c1, . . . , εncn, εn+1cn+1) = Q(ε1c1, . . . , εncn) + S(ε1c1, . . . , εncn)εn+1cn+1 6= 0,

establishing the induction hypothesis.

Note that in Proposition 2.1, the ci can be made arbitrarily small or large, as long as
they are not zero. What matters is the signs that are assigned to the perturbation.

Another nice proof of Fact E is given in a short note by William Kahan [6]. Due to its
elegance, we feel compelled to sketch Kahan’s proof. This proof uses two facts:

(1) If A = (A1, . . . , An−1, U) and B = (A1, . . . , An−1, V ) are two n× n matrices that differ
in their last column, then

det(A+B) = 2n−1(det(A) + det(B)).

This is because determinants are multilinear (alternating) maps of their columns.
Therefore, if det(A) = det(B) = 0, then det(A + B) = 0. Obviously, this fact also
holds whenever A and B differ by just one column (not just the last one).

(2) For every k = 0, . . . 2n − 1, if we write k in binary as k = kn · · · k1, then let Ek be
the diagonal matrix whose ith diagonal entry is −1 iff ki = 1, else +1 iff ki = 0. For
example, E0 = I and E2n−1 = −I. Observe that Ek and Ek+1 differ by exactly one
column. Then, it is easy to see that

E0 + E1 + · · ·+ E2n−1 = 0.

The proof proceeds by contradiction. Assume that det(I + EkA) = 0,
for k = 0, . . . , 2n − 1. The crux of the proof is that

det(I + E0A+ I + E1A+ I + E2A+ · · ·+ I + E2n−1A) = 0.

However, as E0 + E1 + · · ·+ E2n−1 = 0, we see that

I + E0A+ I + E1A+ I + E2A+ · · ·+ I + E2n−1A = 2nI,

and so,

0 = det(I + E0A+ I + E1A+ I + E2A+ · · ·+ I + E2n−1A) = det(2nI) = 2n 6= 0,

a contradiction!

To prove that det(I + E0A + I + E1A + I + E2A + · · · + I + E2n−1A) = 0, we observe
using fact (2) that,

det(I + E2iA+ I + E2i+1A) = det(I + E2iA) + det(I + E2i+1A) = 0,
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for i = 0, . . . , 2n−1 − 1; similarly,

det(I + E4iA+ I + E4i+1A+ I + E4i+2A+ I + E4i+3A) = 0,

for i = 0, . . . , 2n−2 − 1; by induction, we get

det(I + E0A+ I + E1A+ I + E2A+ · · ·+ I + E2n−1A) = 0,

which concludes the proof.

Final Questions:

(1) When was Fact E first stated and by whom (similarly for Proposition 1.4)?

(2) Can Proposition 2.1 be generalized to non-diagonal matrices (in an interesting way)?
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