
Motion Interpolation in SIM(3)

Christine Allen–Blanchette, Spyridon Leonardos, and Jean Gallier

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104, USA
e-mail: jean@seas.upenn.edu

November 20, 2024

Abstract. In this paper, we explore motion interpolation in the group SIM(3), the group of
affine transformations which are the composition of a rotation, a translation, and a uniform
rescaling. The group SIM(n) is a Lie group with Lie algebra sim(n), and we give a formula
for the exponential map exp: sim(n)→ SIM(n). We prove the surjectivity of the exponential
map for any n ≥ 1, and for n = 3, we give an explicit formula and show how to compute
logarithms. We use these algorithms for computing logarithms and exponentials to perform
motion interpolation in SIM(3). Given a sequence A0, A1, . . . , An of transformations in
SIM(3), we compute a sequence of logs X0, X1, . . . , Xn in sim(3) ≈ R7, then fit a cubic spline
c(t) that interpolates the Xi, and then compute the curve ec(t) in SIM(3). However, the fact
that the logarithm is multivalued causes problems. Whenever a rotation “crosses through
π,” the principal logarithm (the one associated with an angle in [0, π]) is not the correct
choice and the motion goes “the long way.” To correct this problem, we choose the next log
so that the length of the interpolating arc from Ai to Ai+1 is minimized. Unfortunately, we
now obtain sequences of cubic splines with discontinuous junctions. To repair this problem,
we introduce a class of sequences of cubic splines with discontinuous junctions but with
continuity of the first and second derivatives at junction points. Since the exponential map
removes the discontinuities (because for two distinct logs X and Y of A ∈ SIM(3), we
have eX = eY), we obtain C2-continuous motions in SIM(3). We give several examples
illustrating our implementation of the above methods.

1

1 Introduction

In this paper, we investigate methods for interpolating various deformations of a body (rigid
or not). The paradigm that we use to define a deformation is the one used in elasticity
theory. According to this method, the motion and deformation of a body (rigid or not) can
be described by a curve in a group G of transformations of a space E (say Rn, n = 2, 3).
Given an initial shape B ∈ E, a deformation of B is a (smooth enough) curve

D : [0, T]→ G.

The element D(t) of the group G specifies how B is moved and deformed at time t, and the
(moved and) deformed body Bt at time t is given by

Bt = D(t)(B).

If G = SO(3), then we are modeling rotations of a rigid body (in R3). If G = SE(3), then
we are modeling the motion of a rigid body (in R3). This means that the rigid body B
rotates and translates in space. In this paper, we consider the slightly more general group
G = SIM(3), which means that we are modeling a simple deformation of a (nonrigid) body
(in R3). In addition to rotating and translating, the body B can grow and shrink in a uniform
fashion (by a homothety).

The group SIM(n) consists of all affine maps ρ of Rn defined such that

ρ(x) = αRx+ u

for all x ∈ Rn, where R ∈ SO(n) is a rotation matrix (an orthogonal matrix of determinant
+1), u is some vector in Rn (the translation part of ρ), and α ∈ R with α > 0 (the scale
factor). Such a map can be represented by the (n+ 1)× (n+ 1) matrix(

αR u
0 1

)
in the sense that (

ρ(x)
1

)
=

(
αR u
0 1

)(
x
1

)
iff

ρ(x) = αRx+ u.

The group SIM(n) is called the group of direct affine similitudes of Rn.

The main reason for considering the Lie group SIM(3) is that, as far as we know, it is the
largest group of affine transformations for which the exponential map exp: sim(3)→ SIM(3)
is surjective and easily computable. In fact, we give an explicit formula for the exponential.
Furthermore, we also show that the (multivalued) logarithm function log : SIM(3→ sim(3)
is easily computable.

2

The interpolation problem is the following: given a sequence g0, . . . , gm of deformations
gi ∈ SIM(3), with g0 = id, find a (reasonably smooth) curve c : [0,m]→ SIM(3) such that

c(i) = gi, i = 0, . . . ,m.

Unfortunately, the naive solution which consists in performing an interpolation

(1− t)gi + tgi+1 (0 ≤ t ≤ 1)

between gi and gi+1 does not work, because (1− t)gi + tgi+1 does not belong to SIM(3) (in
general).

A way around this difficulty is to interpolate in the linear space sim(3) (the Lie algebra of
SIM(3)) and then use the exponential map to go back to SIM(3). The Lie algebra sim(n)
of SIM(n) consists of all (n+ 1)× (n+ 1) matrices of the form(

λIn + Ω u
0 0

)
Ω ∈ so(n), u ∈ Rn, λ ∈ R,

where so(n) consists of the vector space of all n× n skew symmetric matrices. Fortunately,
the exponential map exp: sim(3) → SIM(3) is surjective (this holds not just for n = 3 but
also for all n ≥ 1; see Theorem 3.2). This means that we have a logarithm function (actually,
a multivalued function) log : SIM(3)→ sim(3), such that

elogA = A, A ∈ SIM(3).

We can use the maps log : SIM(3) → sim(3) and exp: sim(3) → SIM(3) to interpolate in
SIM(3) as follows: Given the sequence of “snapshots”

g0, g1, . . . , gm, in SIM(3)

1. Compute logs

X0 = log g0, X1 = log g1, . . . , Xm = log gm, in sim(3);

2. Find an interpolating curve X : [0,m]→ sim(3), in sim(3);

3. Exponentiate, to get the curve

c(t) = eX(t), in SIM(3).

Since sim(3) is a vector space (with an inner product), interpolating in sim(3) can be done
easily using spline curves. Two problems remain:

1. Computing the logarithm of a matrix in SIM(3).

2. Computing the exponential of a matrix in sim(3).

3

In this paper, we give a formula for the exponential map exp: sim(n)→ SIM(n), and we
prove its surjectivity for any n ≥ 1. For n = 3, we give an explicit formula and show how to
compute logarithms. We use these algorithms for computing logarithms and exponentials to
perform motion interpolation in SIM(3). Given a sequence A0, A1, . . . , An of transformations
in SIM(3), we compute a sequence of logs X0, X1, . . . , Xn in sim(3) ≈ R7, then fit a cubic
spline c(t) that interpolates the Xi, and then compute the curve ec(t) in SIM(3). However,
the fact that the logarithm is multivalued causes problems. Whenever a rotation “crosses
through π,” the principal logarithm (the one associated with an angle in [0, π]) is not the
correct choice and the motion goes “the long way.”

To the best of our knowledge, this problem has not been investigated by anybody else.
To correct this problem, we choose the next log so that the length of the interpolating arc
from Ai to Ai+1 is minimized. Unfortunately, we now obtain sequences of cubic splines with
discontinuous junctions. To repair this problem, we introduce a class of sequences of cubic
splines with discontinuous junctions but with continuity of the first and second derivatives
at junction points. Since the exponential map removes the discontinuities (because for two
distinct logs X and Y of A ∈ SIM(3), we have eX = eY), we obtain C2-continuous motions
in SIM(3). We give several examples illustrating our implementation of the above methods.

2 A Formula for the Exponential in SIM(3)

We begin with some preliminary propositions.

Proposition 2.1. Given any (n+ 1)× (n+ 1) matrix B of the form

B =

(
Γ u
0 0

)
,

where Γ is any real n× n matrix and u ∈ Rn, we have

eB =

(
eΓ V u
0 1

)
,

with

V = In +
∑
k≥1

Γk

(k + 1)!
.

Furthermore,

V =

∫ 1

0

etΓdt.

Proof. Using induction on n ≥ 1, it is easy to prove that

Bn =

(
Γn Γn−1W
0 0

)
.

4

This proves the first part of the proposition.

Since the power series for eΓt converges uniformly on [0, 1], we have∫ 1

0

etΓdt =

∫ 1

0

(
I +

∞∑
k=1

(tΓ)k

k!

)
dt

=

[
tI +

∞∑
k=1

tk+1 Γk

(k + 1)!

]t=1

t=0

= I +
∞∑
k=1

Γk

(k + 1)!
= V.

This proves the second part of the proposition.

We now specialize Proposition 2.1 to the case where Γ is of the form Γ = λI + Ω.

Proposition 2.2. Given any (n+ 1)× (n+ 1) matrix B of the form

B =

(
λI + Ω u

0 0

)
,

where Ω is a n× n matrix, λ ∈ R, and u ∈ Rn, we have

eB =

(
eλeΩ V u

0 1

)
,

with

V = In +
∑
k≥1

(λI + Ω)k

(k + 1)!
=

∫ 1

0

eλtIetΩdt.

Proof. The diagonal matrix λI commutes with any matrix, so

(λI)Ω = Ω(λI),

and by a well-known property of the matrix exponential, we deduce that

eλI+Ω = eλIeΩ = (eλI)eΩ = eλeΩ.

Similarly,
et(λI+Ω) = eλtIetΩ.

Then, Proposition 2.2 follows immediately from Proposition 2.1 with Γ = λI + Ω.

5

If Ω is a skew symmetric matrix, then eΩ is a rotation matrix, so we have shown that for
any matrix B ∈ sim(n) given by

B =

(
λI + Ω u

0 0

)
,

we have eB ∈ SIM(n), with

eB =

(
eλeΩ V u

0 1

)
,

and

V = In +
∑
k≥1

(λI + Ω)k

(k + 1)!
=

∫ 1

0

eλtIetΩdt.

Since the exponential map exp: so(n) → SO(n) is surjective, the surjectivity of the expo-
nential map exp: sim(n) → SIM(n) depends on the invertibility of V . We prove that this
exponential map is indeed surjective in Section 3.

Returning to the formula for the exponential in SIM(n), note that if we have an explicit
formula for eΩ, then we may have a chance to compute the integral∫ 1

0

eλtIetΩdt,

and obtain an explicit formula for eB. For n = 3, thanks to the Rodrigues formula, we can
carry out this plan.

For any matrix Ω ∈ so(3) of the form

Ω =

 0 −c b
c 0 −a
−b a 0

 ,

if we let θ =
√
a2 + b2 + c2, then Rodrigues formula states that

eΩ = I3 +
sin θ

θ
Ω +

(1− cos θ)

θ2
Ω2, if θ 6= 0

e0 = I3, if θ = 0.

Then, we have the following theorem.

Theorem 2.3. for any matrix B ∈ sim(3) given by

B =

(
λI + Ω u

0 0

)
,

we have

eB =

(
eλeΩ V u

0 1

)
,

6

and if

Ω =

 0 −c b
c 0 −a
−b a 0

 ,

and θ =
√
a2 + b2 + c2, then

eΩ = I3 +
sin θ

θ
Ω +

(1− cos θ)

θ2
Ω2, if θ 6= 0

e0 = I3, if θ = 0,

and V is determined as follows:

1. If θ = 0 and λ = 0, then
V = I3.

2. If θ = 0 and λ 6= 0, then

V =
(eλ − 1)

λ
I3.

3. If θ 6= 0 and λ = 0, then

V = I3 +
(1− cos θ)

θ2
Ω +

(θ − sin θ)

θ3
Ω2.

4. If θ 6= 0 and λ 6= 0, then

V =
(eλ − 1)

λ
I3 +

(θ(1− eλ cos θ) + eλλ sin θ)

θ(λ2 + θ2)
Ω

+

(
(eλ − 1)

λθ2
− eλ sin θ

θ(λ2 + θ2)
− λ(eλ cos θ − 1)

θ2(λ2 + θ2)

)
Ω2.

With the convention that eλ−1
λ

= 1 if λ = 0, the third clause for V is subsumed by the
fourth clause.

Proof. If λ = θ = 0, then Γ = Ω = 0, so V = I. If θ = 0 and λ 6= 0, we need to compute∫ 1

0

eλtIetΩdt.

But in this case, Ω = 0, so

V =

∫ 1

0

eλtI3dt =
1

λ

[
eλtI3

]t=1

t=0
=

1

λ
(eλ − 1)I3.

7

If θ 6= 0 and λ 6= 0, using the Rodrigues formula, we have

V =

∫ 1

0

eλt
(
I3 +

sin θt

θt
Ωt+

(1− cos θt)

θ2t2
Ω2t2

)
dt

=

∫ 1

0

eλtdt I3 +

∫ 1

0

eλt sin θt

θ
dtΩ +

∫ 1

0

eλt

θ2
dtΩ2 −

∫ 1

0

eλt cos θt

θ2
dtΩ2.

Thus, we need to compute the integrals∫ 1

0

eλt cos θt dt and

∫ 1

0

eλt sin θt dt.

Observe that
eλt+iθt = eλt cos(θt) + ieλt sin(θt),

so we simply have to compute the primitive of eλt+iθt and take its real and imaginary parts.
This is easy: we have ∫ 1

0

eλt+iθtdt =
eλ+iθ − 1

λ+ iθ
,

and from this, we get∫ 1

0

eλt sin θt dt =
1

λ2 + θ2
(θ(1− eλ cos θ) + eλλ sin θ)∫ 1

0

eλt cos θt dt =
1

λ2 + θ2
(λ(eλ cos θ − 1) + eλθ sin θ).

Then, we have

V =

∫ 1

0

eλt
(
I3 +

sin θt

θt
Ωt+

(1− cos θt)

θ2t2
Ω2t2

)
dt

=

∫ 1

0

eλtdt I3 +

∫ 1

0

eλt sin θt

θ
dtΩ +

∫ 1

0

eλt

θ2
dtΩ2 −

∫ 1

0

eλt cos θt

θ2
dtΩ2

=
(eλ − 1)

λ
I3 +

(θ(1− eλ cos θ) + eλλ sin θ)

θ(λ2 + θ2)
Ω

+

(
(eλ − 1)

λθ2
− eλ sin θ

θ(λ2 + θ2)
− λ(eλ cos θ − 1)

θ2(λ2 + θ2)

)
Ω2,

as claimed.

The next step is to figure out when the matrix V is invertible.

8

3 Surjectivity of the Exponential for SIM(n)

To determine when V is invertible, it is sufficient to find the eigenvalues of V . Using the
Schur decomposition, the matrix Γ can be written as

Γ = UTU∗,

for some unitary matrix U and some upper triangular matrix T . By induction, it follows
that Γk = UT kU∗, and thus

V = I +
∞∑
k=1

Γk

(k + 1)!
= U

(
I +

∞∑
k=1

T k

(k + 1)!

)
U∗.

The diagonal entries of T are the eigenvalues of Γ, and it is easy to see that the diagonal
entries of the matrix between U and U∗ are of the form

1 +
∞∑
k=1

zk

(k + 1)!
,

where z is an eigenvalue of Γ. If z = 0, then 1 is an eigenvalue of V . Otherwise, since

ez − 1

z
= 1 +

∞∑
k=1

zk

(k + 1)!
,

we see that the eigenvalues of V are of the form (ez − 1)/z, with z 6= 0 an eigenvalue of Γ.
An eigenvalue of the form (ez − 1)/z (with z 6= 0) is zero iff

ez = 1,

which holds iff z = ik2π, with k ∈ Z− {0} (since we are assuming z 6= 0).

In our situation,
Γ = λI + Ω,

with Ω an n×n skew symmetric matrix. It is well known that the eigenvalues of a (real) skew
symmetric matrix are either 0 or ±iθj with θj 6= 0 for j = 1, . . . ,m (2m ≤ n). Therefore, the
eigenvalues of Γ are λ and λ± iθj, for j = 1, . . . ,m. Consequently, V has 0 as an eigenvalue
iff λ = 0 and θj = k2π for some j, with k ∈ Z−{0}. In summary, we obtained the following
proposition.

Proposition 3.1. Given any n × n skew symmetric matrix Ω and any number λ ∈ R,
if ±iθj with θj 6= 0 for j = 1, . . . ,m (2m ≤ n) are the nonzero eigenvalues of Ω, then

V =
∫ 1

0
eλtIetΩdt is invertible if either λ 6= 0, or for j = 1, . . . ,m, we have θj 6= k2π for all

k ∈ Z− {0}.

Note that if Ω = 0 and λ = 0, then V is invertible, since in this case V = I. We can now
prove that the exponential exp: sim(n)→ SIM(n) is surjective.

9

Theorem 3.2. The exponential map exp: sim(n)→ SIM(n) is surjective for all n ≥ 1.

Proof. Given any matrix

A =

(
αR w
0 1

)
,

we must show that there is some matrix

B =

(
Γ u
0 0

)
,

with Γ = λI + Ω and Ω skew-symmetric, so that

A = eB =

(
eΓ V u
0 1

)
.

From Proposition 2.3, we have
eΓ = eλeΩ.

Therefore, we must find Ω, λ, and u such that

eλeΩ = αR

V u = w.

Case 1. R = I.

Since α > 0, we let λ = logα, and we pick Ω = 0. In this case, θ = 0, so V = 1
λ
(eλ − 1)I

(V = I when λ = 0) is invertible, and u = V −1w.

Case 2. R 6= I.

Since α > 0, we let λ = logα. Since R 6= I, it is known (for example, see Gallier [4]
Theorem 18.1) that the exponential map exp: so(n) → SO(n) is surjective, and by the
reasoning in the proof of Proposition 18.3 in Gallier [4], we may assume that the nonzero
eigenvalues iθj of the skew symmetric matrix Ω such that eΩ = R are such that θj 6= k2π
for all k ∈ Z. In fact, we may assume that 0 < θj < π. By Proposition 3.1, the matrix V is
invertible, so u = V −1w.

Since all cases have been covered, we proved that the map exp: sim(n) → SIM(n) is
surjective.

For n = 3, since we have an explicit formula for V and for eΩ, we can compute logarithms
explicitly, as we now explain.

10

4 Computing Logarithms in SIM(3)

From Section 2, given any matrix

A =

(
αR w
0 1

)
,

in SIM(3), in order to compute logarithms of A, we need to compute logarithms of rotation
matrices R ∈ SO(3) and to invert the matrix V , which is given by the formulae of Theorem
2.3. Computing logarithms of 3×3 rotation matrices is well-known (for example, see Gallier
[4]). For the sake of completeness, we review the procedure.

(1) The case R = I is trivial.

(2) If R 6= I and tr(R) 6= −1, then

exp−1(R) =

{
θ

2 sin θ
(R−R>)

∣∣∣∣ 1 + 2 cos θ = tr(R)

}
.

In particular, there is a unique skew-symmetric

B =
θ

2 sin θ
(R−R>)

with corresponding θ satisfying 0 < θ < π such that eB = R, called the principal
logarithm of R (and with θ called the principal angle). All other determinations of the
logarithm of R are of the form

(θ + k2π)
B

θ
, k ∈ Z.

(3) If R 6= I and tr(R) = −1, then R is symmetric and there exists a skew symmetric
matrix

U =

 0 −d c
d 0 −b
−c b 0


so that

U2 = S =
1

2
(R− I).

Furthermore, b2 + c2 + d2 = 1, and

exp−1(R) =

(2k + 1)π

 0 −d c
d 0 −b
−c b 0

 , k ∈ Z

 .

11

To find a skew symmetric matrix U so that U2 = S = 1
2
(R− I), we can solve the systemb2 − 1 bc bd

bc c2 − 1 cd
bd cd d2 − 1

 = S.

We immediately get b2, c2, d2, and then, since one of b, c, d is nonzero, say b, if we choose the
positive square root of b2, we can determine c and d from bc and bd.

This procedure is easily implemented in Matlab, but tolerance factors are needed to
handle the cases where R is very close to the identity or when the angle θ is small. Because
we typically compute the principal logarithm, 0 < θ < π, the matrix V is invertible and we
never encountered numerical problems computing the inverse of V . However, we will see in
the next section that problems arise when computing interpolating splines, because in this
case, we may need to consider angles whose value is close to a multiple of 2π.

5 Finding Interpolating Splines in sim(3)

Having an algorithm to compute logarithms of transformations in SIM(3) and a formula for
computing the exponential map exp: sim(3)→ SIM(3), in principle, we can find interpolat-
ing splines in SIM(3) by computing logarithms and finding interpolating splines in sim(3).
However, there are unexpected problems due to the fact that the logarithm is multivalued.

Given two transformations A1, A2 ∈ SIM(3), since the logs X1 and X2 in sim(3) such
that A1 = eX1 and A2 = eX2 are not uniquely determined, there are several interpolating
curves between A1 and A2 arising from the various affine interpolants t 7→ (1 − t)X1 + tX2

in sim(3), so we need to decide which curve is the intended motion. It seems reasonable to
assume that the intended motion is the one that minimizes the length of the curve segment
t 7→ e(1−t)X1+tX2 in SIM(3). To make this precise, we need to introduce a Riemannian
metric. We will return to this point shortly, but right now let us proceed more intuitively.

The main problem has to do with “crossing π.” For example, consider

R1 =

cos(2π/3) − sin(2π/3) 0
sin(2π/3) cos(2π/3) 0

0 0 1


corresponding to a rotation by 2π/3 around the z-axis, and

R2 =

cos(4π/3) − sin(4π/3) 0
sin(4π/3) cos(4π/3) 0

0 0 1

 ,

corresponding to a rotation by 4π/3, also around the z-axis. The principal logarithms of R1

and R2 are

B1 =

 0 −2π/3 0
2π/3 0 0

0 0 0


12

and

B2 =

 0 2π/3 0
−2π/3 0 0

0 0 0

 .

Observe that B2 = −B1. Now, the problem is that if we interpolate in so(3) using affine
interpolation,

B = (1− t)B1 + tB2 = (1− t)B1 − tB1 = (1− 2t)B1,

we see that the corresponding rotation

R = eB = e(1−2t)B1

goes through the identity rotation for t = 1/2, and the motion goes the long way from R1 to
R2 through I, instead of going through the rotation of angle π around the z-axis, which is
the intented motion. If we use the other determination of the logarithm of R2 corresponding
to 2π − 2π/3 = 4π/3, namely

B′2 =

 0 −4π/3 0
4π/3 0 0

0 0 0

 ,

this time we have the interpolant

(1− t)B1 + tB′2 =

 0 −(1 + t)2π/3 0
(1 + t)2π/3 0 0

0 0 0

 ,

and for t = 1/2, we get the rotation of angle π around the z-axis, as desired.

The above example shows that if we want to have an interpolation which corresponds to
the intended motion, then we can’t systematically use the principal logarithm. This leads
to another problem. Suppose the next rotation to be interpolated is

R3 =

cos(5π/3) − sin(5π/3) 0
sin(5π/3) cos(5π/3) 0

0 0 1

 ,

corresponding to a rotation by 5π/3, also around the z-axis, and whose principal logarithm
is

B3 =

 0 π/3 0
−π/3 0 0

0 0 0

 .

If we interpolate between B′2 and B3, we obtain

B = (1− t)B′2 + tB3 =

 0 −(4π/3− t5π/3) 0
4π/3− t5π/3 0 0

0 0 0

 ,

13

and for t = 1/5, the interpolated rotation R = eB goes through the rotation of angle π
around the z-axis, and through the identity for t = 4/5. Thus, the interpolation goes the
long way, which is not the intended motion. However, if we interpolate between B2 and B3,
then we have

B = (1− t)B2 + tB3 =

 0 π/3(2− t) 0
−π/3(2− t) 0 0

0 0 0

 ,

and this is the correct (intended) interpolant.

If instead of B3, we use the determination B′3 of the logarithm corresponding to the angle
2π − 5π/3 = π/3 given by

B′3 =

 0 −π/3 0
π/3 0 0
0 0 0

 ,

then the interpolant between B′2 and B′3 is given by

B = (1− t)B′2 + tB′3 =

 0 −(4π/3− tπ) 0
4π/3− tπ 0 0

0 0 0

 ,

and this is also the intended interpolant.

Let us now make precise what we mean when we say that the resulting interpolated
motion is the intended one; that is, does not “go the long way.” The problem really has
to do with computing the logarithm of the rotation part Ri of the transformation Ai. In
order to define the length of a curve in SO(3), we equip SO(3) with a Riemannian metric.
Because SO(3) is a Lie group, it suffices to define the inner product

〈B1, B2〉 =
1

2
tr(B>1 B2) = −1

2
tr(B1B2)

on so(3), and since this inner product is Ad-invariant, it induces a bi-invariant Riemannian
metric on SO(3) (see Gallot, Hullin, Lafontaine [5] or O’Neill [13]). If we write a skew
symmetric matrix B ∈ so(3) as

B =

 0 −c b
c 0 −a
−b a 0

 ,

then we check immediately that the inner product 〈B1, B2〉 corresponds to the inner product
of the vectors (a1, b1, c1) and (a2, b2, c2) associated withB1 andB2. Now, for any two rotations
R1, R2 ∈ SO(3) and any two skew symmetric matrices B1, B2 ∈ so(3) such that R1 = eB1

and R2 = eB2 , consider the curve γ in SO(3) given by

γ(t) = e(1−t)B1+tB2 , t ∈ [0, 1].

14

We have γ(0) = R1 and γ(1) = R2, and it is shown in Section 10 that the length L(γ) of the
curve γ is

L(γ) =

∫ 1

0

〈γ′(t), γ′(t)〉
1
2dt

=
(
−1

2
tr((B2 −B1)2)

) 1
2

=
√
〈B2 −B1, B2 −B1〉 = ‖B2 −B1‖ .

Therefore, given B1, in order to minimize the length L(γ) = ‖B2 −B1‖ of the curve segment

γ, it suffices to pick B2 so that ‖B2 −B1‖ =
(
−1

2
tr((B2 −B1)2)

) 1
2

is minimized.

Then, there appears to be two strategies to compute logarithms of transformations Ai in
SIM(3) so that the resulting interpolated motion is the intended one; that is, does not “go
the long way.”

The two strategies to compute logarithms of rotations (associated with transformations
in SIM(3)) are as follows:

(1) Compute the principal logs Bi and B′i+1 of Ri and Ri+1 (with corresponding principal
angles θi and θi+1), as well as the determination B′′i+1 of the log of Ri+1 corresponding
to 2π − θi+1 if θi+1 6= 0, namely

B′′i+1 = −(2π − θi+1)
B′i+1

θi+1

.

Then, pick for the log of Ri+1 the matrix Bi+1 among B′i+1 and B′′i+1 which minimizes
−1

2
tr((Bi+1 −Bi)

2). If θi+1 = 0, then Ri+1 = I, and we set Bi+1 = 0.

(2) For the second strategy, we keep track of the angle θ′i = θi + ki2π that was used in
determining the logarithm Bi of Ri, where Bi is the principal logarithm of Ri and θi is
the principal angle, so that

Bi = (θi + ki2π)
Bi
θi
.

Then, we choose the angle θ′i+1 = θi+1 + ki+12π in such a way that the integer ki+1

minimizes

−1

2
tr

(
Bi − (θi+1 + ki+12π)

Bi+1

θi+1

)2

if θi+1 6= 0. If θi+1 = 0, then Ri+1 = I, but we want to avoid a lot of “winding,” so we
replace Bi+1 = 0 by Bi/θi, and find ki+1 as above (in this case, θi+1 = 0). This case
can cause trouble regarding the invertibility of V .

Each transformation A ∈ SIM(3) is specified by a triple (R,α, u), where R ∈ SO(3) is
a rotation, α > 0 is a scale factor, and u ∈ R3 is the translation part. Similarly, each log

15

X ∈ sim(3) is a triple (B,α, v), where B ∈ so(3), α ∈ R, and v ∈ R3. We call B the rotation
part of X. Following the first strategy, given a sequence of transformations

A0, A1, . . . , Am

in SIM(3), first we compute the sequence of principal logs

X0, X1, . . . , Xm.

Actually, we compute the principal log of the rotation part Ri of Ai as well as λi = log(αi),
and then we compute the sequence of pairs

(X0, Y1), (X1, Y2), (X2, Y3), . . . , (Xm−1, Ym),

where the rotation part of Yi+1 is computed from the rotation part of Xi according to strategy
1 for i = 0, . . . ,m− 1. Next, we form the longest subsequence

(X0, Y1, . . . , Ym1)

such that Yi = Xi for i = 1, . . . ,m1; then the longest subsequence

(Xm1 , Ym1+1, . . . , Ym1+m2)

such that Yi = Xi for i = m1, . . . ,m1 + m2; and so on. At the end of this process, we have
K sequences of logs

(Xm1+···+mk , Ym1+···+mk+1, . . . , Ym1+···+mk+1
),

which we use for interpolation.

The main drawback of stategy 1 is that we have discontinuities. For example, Ym1 6= Xm1 ,
Ym1+m2 6= Xm1+m2 , etc. However, we found a way to construct interpolating splines with
discontinuities but such that first and second derivatives agree at discontinuity points (see
Section 8 and its subsections). Since we apply the exponential map to all these logs and
since

eYm1 = eXm1 , eYm1+m2 = eXm1+m2 , . . .

in the end, we obtain C2 continuous interpolating splines in SIM(3). A small technical
detail should be noted. If a sequence (Xi, Yi+1) consist of just two elements, then in order
to be able to do spline interpolation, we insert the average of Xi and Yi+1 as a third data
point.

Regarding strategy 2, because

−1

2
tr

(
Bi − (θi+1 + ki+12π)

Bi+1

θi+1

)2

16

is a quadratic function in ki+1, we can determine when it achieves a minimum. Let f(k) be
the function given by

f(k) = −tr

(
Bi − (θi+1 + k2π)

Bi+1

θi+1

)2

.

To find where f(k) is minimum, let’s compute the derivative of f(k). Since

f(k) = −tr(B2
i) + 2tr(BiBi+1)

(θi+1 + k2π)

θi+1

− (θi+1 + k2π)2tr

(
B2
i+1

θ2
i+1

)
,

and since

−tr

(
B2
i+1

θ2
i+1

)
= 2,

we get

f ′(k) = tr(BiBi+1)
4π

θi+1

+ θi+18π + k16π2.

It is adantageous to make the inner product of the unit vectors associated with Bi and Bi+1

appear, so if we write

c = −1

2
tr

(
Bi

θ′i

Bi+1

θi+1

)
= −1

2
tr

(
Bi
θi

Bi+1

θi+1

)
,

then,
f ′(k) = −8πcθ′i + θi+18π + k16π2,

and f ′(k) = 0 for
k = (cθ′i − θi+1)/2π.

Since θ′i = θi + ki2π, we get
k = cki + (cθi − θi+1)/2π.

The above formula can be used to predict what ki+1 is and avoid searching for it. It also
shows that if c is small, which means that the axes of the rotations corresponding to Bi and
Bi+1 are close to being perpendicular, then ki+1 can be a lot smaller than ki, and this causes
of lot of winding in the interpolation. Therefore, when using strategy 2, we have to make sure
that the axes of the rotations associated with our transformations don’t change too much
from one transformation to the next. However there is a worse problem, which has to do
with “crossing I.” Indeed, if some θ′i is a nonzero multiple of 2π, then V is singular if some
λi = 0. Even if λi 6= 0, we observed that the inverse of V tends to have large coefficients,
and as a consequence this yields interpolations that wind a lot.

Strategy 1 does not suffer from these problems because the angles are in the range [0, π].
We found that the splines discussed in Section 8 handle the situation very well.

17

6 Some Implementation Details

The programs implementing motion interpolation in SIM(3) perform essentially two tasks:

1. Compute logs and exponentials.

2. Handle the splines needed for interpolation.

The first task is to compute the list of sequences of log’s that constitutes the list of K
sequences of data points to be interpolated in sim(3) ≈ R7, according to strategy 1 (using
the methods of Sections and 2 and 4). A little bit of care has to be exercised with rotation
angles close to 0 or close to π (we use tolerance factors). However, because we only deal with
angles in [0, π], the matrix V is always invertible, without any problem. Next, we insert a
third data point (the midpoint) if a sequence has only two elements. We also implemented
strategy 2, but as we said before, it does not work well when crossing angles that are multiple
of 2π. In this case, we observed that the matrix V is often singular.

The second stage is to compute a list of sequence of de Boor control points, as explained
in Section 8. For this, we solve a tridiagonal linear system using a fast elimination method.
This is the most complicated program of the whole project. Next, we compute a list of
sequences of Bézier control polygons from the de Boor control points.

The third stage is to compute the list of interpolated transformations. For this we use
the exponential formula of Section 2. We subdivide a Bézier control polygon using either the
Bernstein polynomials, or using the de Casteljau algorithm in R7. The second method can
use the intermediate control points (which are close to the curve,) and appears to be faster.

The last step is to display the motion. In Matlab, we can either use the hold on, hold
off method which produces a “lava flow” rendering of the motion, or create a movie.

7 Examples of Simulations of Deformations

18

The next example is a motion interpolation involving the four transformations

A1 = (u1, 2π/3, 1, w1)

A2 = (u1, 4π/3, 3/2, w2)

A3 = (u2, 0, 1, w3)

A4 = (u3,−π/3, 3/2, w4),

where the rotation component is defined by a pair (u, θ), where u is nonzero vector specifying
the axis of rotation and θ is the angle of rotation, with

u1 = (1, 0, 0) u2 = (0, 1, 0) u3 = (0, 0, 1)

w1 = (−3, 0,−3) w2 = (3, 3, 2) w3 = (−3, 3, 3) w4 = (4, 0,−3).

Observe that the rotation part of A2 is the identity rotation. The successive angles of rotation
are 2π/3, 4π/3, 0,−π/3, so there is a passage through π which causes a discontinuity. Indeed,
we obtain two splines, the first one from A1 to A2, and the second one through A2, A3, A4.
The transformations Ai are applied to an ellipsoid, and Figure 4 shows the bodies to be
interpolated.

Figure 5 shows the trajectory of a point on the original ellipsoid, using the C2-continuous
spline computed from the correct logs.

Figure 6 shows the trajectory of a point on the original ellipsoid, using the two splines
joined with C0-continuity, computed from the correct logs. The second red point on the

19

Figure 4: Four initial bodies.

−6

−4

−2

0

2

4

−6

−4

−2

0

2

4

XY

Figure 5: C2-continous trajectory of a point during the motion.

−6

−4

−2

0

2

4

−6

−4

−2

0

2

4

XY

Figure 6: C0-continuous trajectory of a point during the motion.

20

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6
−6

−4

−2

0

2

4

6

XY

Z

Figure 7: Wrong trajectory (obtained from wrong logs) of a point during the motion.

green arc (which corresponds to the spline interpolating A1 and A2) is a place where the
curve is not even C1.

Figure 7 shows the trajectory of a point on the original ellipsoid, using the single C2-
continuous spline computed from the (incorrect) logs of A1, A2, A3, A4. The first arc from
A1 to A2 curves the wrong way and overturns because the log at A2 is wrong.

Figure 8: Interpolating motion (coarse).

Figure 9: Interpolating motion (fine).

21

The motion interpolation is shown in Figure 8, using a coarse interpolation step, and in
Figure Figure 9, using a finer interpolation step.

The last example shows a simulation of a screw motion. The input consists of 10 bodies
obtained by successsive rotations by 2π/3 and translation along the z-axis by (0, 0, 2); see
Figure 10. Except for the fourth and the fifth transformations where the scale factor is 1.2,
the scale factor is 1.5. The trajectory of a point is shown in Figure 11.

Figure 10: Initial position of the bodies (screw motion).

−5

0

5

−5

0

5

−8

−6

−4

−2

0

2

4

6

8

XY

Z

Figure 11: Trajectory of a point (screw motion).

22

Figure 12: Interpolated screw motion.

The interpolated screw motion is shown in Figure 12. The trajectory of a point using
the single C2-continuous spline computed from the incorrect logs is shown in Figure 13.

−5

0

5

−5

0

5

−8

−6

−4

−2

0

2

4

6

8

XY

Z

Figure 13: Wrong trajectory of a point (screw motion).

23

8 Splicing Interpolating Splines with First and Second

Derivatives Agreement

8.1 K Splines, Each With at Least Four Data Points

Let us begin with the case K = 2. Let (x0, . . . , xM) and (y0, . . . , yN) be two sequences of
M + 1 and N + 1 data points, and assume that M,N ≥ 3. In order to find a cubic spline
S1 interpolating the data points xi, and a cubic spline S2 interpolating the data points yj,
we can solve for M + 1 (resp. N + 1) de Boor control points d0, . . . , dM (resp. f0, . . . , fN),
which are solutions of the system

7
2

1
1 4 1 0

.

0 1 4 1
1 7

2




d1

d2
...

dM−2

dM−1

 =


6x1 − 3

2
d0

6x2
...

6xM−2

6xM−1 − 3
2
dM

 ,

and similarly for f0, . . . , fN .

The derivation of the above system assumes that M ≥ 4. If M = 3, this system reduces
to (

7
2

1

1 7
2

)(
d1

d2

)
=

(
6x1 − 3

2
d0

6x2 − 3
2
d3

)
.

Actually, d0 and dM are free parameters (as well as f0 and fN) and we are really solving for
d1, . . . , dM−1 in terms of d0, dM (resp. f1, . . . , fN−1 in terms of f0, fN). The control points
d0 and dM can be determined by prescribing end conditions (and similarly for f0 and fN).

In our situation, in general, xM 6= y0, yet we would like to find dM and f0 so that the
first and second derivatives at xM and y0 agree. This can indeed be done.

If a cubic Bézier curve C(t) is specified by the control points (b0, b2, b2, b3), then it is easy
to see that the first and the second derivatives for t = 0 and and t = 1 are given by

C ′(0) = 3(b1 − b0) C ′(1) = 3(b3 − b2)

C ′′(0) = 6(b0 − 2b1 + b2) C ′′(1) = 6(b1 − 2b2 + b3).

It follows (refer to Figure 14) that the first derivatives at xM and y0 are

S ′1(xM) = 3(xM − dM)

S ′2(y0) = 3(f0 − y0),

and the second derivatives are given by

24

dM−1

dM

xM

y0

f0

f1

Figure 14: Splicing splines with first and second derivatives agreement.

S ′1(xM) = 6

(
1

2
dM−1 +

1

2
dM − 2dM + xM

)
S ′′2 (y0) = 6

(
y0 − 2f0 +

1

2
f0 +

1

2
f1

)
;

that is,

S ′1(xM) = 6

(
1

2
dM−1 −

3

2
dM + xM

)
S ′′2 (y0) = 6

(
y0 −

3

2
f0 +

1

2
f1

)
.

Thus, the conditions

S ′1(xM) = S ′2(y0)

S ′′1 (xM) = S ′′2 (y0)

yield
xM − dM = f0 − y0

and
1

2
dM−1 −

3

2
dM + xM = y0 −

3

2
f0 +

1

2
f1.

The first equation can be written in a way that has geometric meaning, namely

1

2
(dM + f0) =

1

2
(xM + y0),

which says that the midpoints of the line segments (dM , f0) and (xM , y0) coincide. We can
also use this equation to express dM in terms of f0 to obtain an equation for f0 in terms of
f1 and dM−1. By substituting dM = xM + y0 − f0 in the equation

1

2
dM−1 −

3

2
dM + xM = y0 −

3

2
f0 +

1

2
f1,

25

we get
dM−1 − 3(xM + y0 − f0) + 2xM = 2y0 − 3f0 + f1;

that is,

f0 =
1

6
xM +

5

6
y0 −

1

6
dM−1 +

1

6
f1. (∗)

Using dM = xM + y0 − f0, we obtain

dM =
5

6
xM +

1

6
y0 +

1

6
dM−1 −

1

6
f1. (∗∗)

Observe that equations (∗) and (∗∗) also hold if M = 2 or N = 2.

Now, if M,N ≥ 3, we also have the equations

dM−2 +
7

2
dM−1 = 6xM−1 −

3

2
dM

7

2
f1 + f2 = 6y1 −

3

2
f0.

From the first equation and (∗∗) , we get

dM−2 +
7

2
dM−1 = 6xM−1 −

5

4
xM −

1

4
y0 −

1

4
dM−1 +

1

4
f1,

which yields
4dM−2 + 15dM−1 − f1 = 24xM−1 − 5xM − y0.

From the second equation and (∗), we get

7

2
f1 + f2 = 6y1 −

1

4
xM −

5

4
y0 +

1

4
dM−1 −

1

4
f1,

which yields
−dM−1 + 15f1 + 4f2 = −xM − 5y0 + 24y1.

In summary, we obtain the equations

4dM−2 + 15dM−1 −f1 = 24xM−1 − 5xM − y0

−dM−1 + 15f1 + 4f2 = −xM − 5y0 + 24y1,

and dM , f0 are given by

dM =
5

6
xM +

1

6
y0 +

1

6
dM−1 −

1

6
f1

f0 =
1

6
xM +

5

6
y0 −

1

6
dM−1 +

1

6
f1.

26

If we use the natural end conditions for d0 and fN , namely

d0 =
2

3
x0 +

1

3
d1

fN =
1

3
fN−1 +

2

3
yN ,

then the first equation of our system is

4d1 + d2 = 6x1 − x0,

and the last equation is
fN−2 + 4fN−1 = 6yN−1 − yN .

The matrix of the full system is of the form

4 1 0
1 4 1

.

1 4 1
4 15 −1
−1 15 4

1 4 1
.

1 4 1
0 1 4


,

where the first submatrix has M − 1 rows (the last one containing 4 15 − 1) and the second
submatrix has N − 1 rows (the first one containing −1 15 4), and when M = N = 3, it is

4 1 0 0
4 15 −1 0
0 −1 15 4
0 0 1 4

 .

In the general case where K ≥ 2, we have K sequences of data points (xk0, . . . , x
k
Mk

),
with Mk ≥ 3. For each sequence of data points, we can compute de Boor points d1

0, . . . , d
k
Mk

determining an interpolating spline Sk. Again, for each k, the points dk0 and dkMk
are free,

but we would like to enforce the conditions

S ′k(x
k
Mk

) = S ′k+1(xk+1
0)

S ′′k (xkMk
) = S ′′k+1(xk+1

0),

for k = 1, . . . , K − 1.

27

Our previous work in the case K = 2 yields an interpolating spline with two free de Boor
points d0 and fN , so we may use an inductive method and construct a system of equations
for an interpolating spline SK−1 for K−1 sequences, and then use our method for two splines
on SK−1 and SK . Finally, d0

0 and dKMK
are determined using the natural end condition. We

obtain a tridiagonal matrix of dimension M1 + · · · + MK − K. For k = 1, . . . , K − 1, the
row of index M1 + · · ·+Mk − k contains the nonzero entries 4, 15,−1; and the row of index
M1 + · · ·+Mk − k + 1 contains the nonzero entries −1, 15, 4. These rows correspond to the
last of the kth block of Mk−1 equations and to the first of Mk+1−1 equations of the (k+1)th
block. For k = 1 the first row contains the nonzero entries 4, 1, and for k = K, the last row
contains the nonzero entries 1, 4. Such matrices are row diagonally dominant, so they are
invertible. Once we have computed the de Boor points (dk1, . . . , d

k
Mk−1) for k = 1, . . . , K by

solving the linear system that we just defined, we compute the de Boor points dkMk
and dk+1

0 ,
for k = 1, . . . , K − 1, using formula (∗) and (∗∗); that is,

dkMk
=

5

6
xkMk

+
1

6
xk+1

0 +
1

6
dkMk−1 −

1

6
dk+1

1

dk+1
0 =

1

6
xkMk

+
5

6
xk+1

0 − 1

6
dkMk−1 +

1

6
dk+1

1 .

Finally, d1
0 and dKMK

are determined by using the natural end conditions.

If K = 4 and if the sequences of data points consists of 4, 4, 4, 5 points, we obtain the
following 9× 9 matrix: 

4 1 0 0 0 0 0 0 0
4 15 −1 0 0 0 0 0 0
0 −1 15 4 0 0 0 0 0
0 0 4 15 −1 0 0 0 0
0 0 0 −1 15 4 0 0 0
0 0 0 0 4 15 −1 0 0
0 0 0 0 0 −1 15 4 0
0 0 0 0 0 0 1 4 1
0 0 0 0 0 0 0 1 4


.

8.2 Only The First or the Last Spline Has 3 Data Points

If a cubic spline interpolates three data points, say x0, x1, x2, then we have an equation
relating d0, d1, d2, namely

d0 + 2d1 + d2 = 4x1.

Suppose first that M = 2 and N ≥ 3, namely the first sequence has 3 data points; see
Figure 15. We have the equations

d0 + 2d1 + d2 = 4x1

7

2
f1 + f2 = 6y1 −

3

2
f0.

28

x0

d0

d1

d2

x2

y0

f0

f1x1

Figure 15: Splicing splines; the first spline has 3 data points.

Then, equation (∗∗) from the previous section still holds, so

d2 =
5

6
x2 +

1

6
y0 +

1

6
d1 −

1

6
f1,

and we get

d0 + 2d1 = 4x1 − d2 = 4x1 −
5

6
x2 −

1

6
y0 −

1

6
d1 +

1

6
f1,

which yields
6d0 + 13d1 − f1 = 24x1 − 5x2 − y0.

As in Section, 8.1, using (∗), namely

f0 =
1

6
x2 +

5

6
y0 −

1

6
d1 +

1

6
f1,

the equation
7

2
f1 + f2 = 6y1 −

3

2
f0

becomes
−d1 + 15f1 + 4f2 = −x2 − 5y0 + 24y1.

Thus the equations

d0 + 2d1 + d2 = 4x1

7

2
f1 + f2 = 6y1 −

3

2
f0.

become

6d0 + 13d1 − f1 = 24x1 − 5x2 − y0

−d1 + 15f1 + 4f2 = −x2 − 5y0 + 24y1.

29

If we prescribe that d0 is given by the natural end condition

d0 =
2

3
x0 +

1

3
d1,

then the equation
6d0 + 13d1 − f1 = 24x1 − 5x2 − y0

becomes
15d1 − f1 = −4x0 + 24x1 − 5x2 − y0.

Consequently, the first two new equations are now

15d1 − f1 = −4x0 + 24x1 − 5x2 − y0

− d1 + 15f1 + 4f2 = −x2 − 5y0 + 24y1.

The end condition for d0 yields

d0 =
2

3
x0 +

1

3
d1,

and using the end condition

fN =
1

3
fN−1 +

2

3
yN

for fN , the last equation becomes

fN−2 + 4fN−1 = 6yN−1 − yN .

Also, d2 and f0 are given by

d2 =
5

6
x2 +

1

6
y0 +

1

6
d1 −

1

6
f1

f0 =
1

6
x2 +

5

6
y0 −

1

6
d1 +

1

6
f1.

Next, we may assume without loss of generality that K = 2, M ≥ 3 and N = 2, that is,
the last sequence has 3 data points (see Figure 16). We have the equations

dM−2 +
7

2
dM−1 = 6xM−1 −

3

2
dM

f0 + 2f1 + f2 = 4y1.

Equation (∗) from the previous section still holds, so

f0 =
1

6
xM +

5

6
y0 −

1

6
dM−1 +

1

6
f1,

and from the equation
f0 + 2f1 + f2 = 4y1,

30

y0

f0

f1

f2

y2

xM

dM

dM−1

y1

Figure 16: Splicing splines; the last spline has 3 data points.

we get

2f1 + f2 = 4y1 − f0 = 4y1 −
1

6
xM −

5

6
y0 +

1

6
dM−1 −

1

6
f1,

which yields
−dM−1 + 13f1 + 6f2 = −xM − 5y0 + 24y1.

As in Section 8.1, using (∗∗), namely

dM =
5

6
xM +

1

6
y0 +

1

6
dM−1 −

1

6
f1,

the equation

dM−2 +
7

2
dM−1 = 6xM−1 −

3

2
dM

becomes
4dM−2 + 15dM−1 − f1 = 24xM−1 − 5xM − y0,

so the equations

dM−2 +
7

2
dM−1 = 6xM−1 −

3

2
dM

f0 + 2f1 + f2 = 4y1

become

4dM−2 + 15dM−1 − f1 = 24xM−1 − 5xM − y0

−dM−1 + 13f1 + 6f2 = −xM − 5y0 + 24y1.

If we prescribe that f2 is given by the natural end condition

f2 =
1

3
f1 +

2

3
y2,

then the equation
−dM−1 + 13f1 + 6f2 = −xM − 5y0 + 24y1

31

becomes
−dM−1 + 15f1 = −xM − 5y0 + 24y1 − 4y2.

In conclusion, the equations

dM−2 +
7

2
dM−1 = 6xM−1 −

3

2
dM

f0 + 2f1 + f2 = 4y1

become

4dM−2 + 15dM−1 − f1 = 24xM−1 − 5xM − y0

−dM−1 + 15f1 = −xM − 5y0 + 24y1 − 4y2.

Using the end condition for d0,

d0 =
2

3
x0 +

1

3
d1,

the first equation of our system becomes

4d1 + d2 = 6x1 − x0,

and the end condition for f2 yields

f2 =
1

3
f1 +

2

3
y2.

Finally, dM and f0 are given by

dM =
5

6
xM +

1

6
y0 +

1

6
dM−1 −

1

6
f1

f0 =
1

6
xM +

5

6
y0 −

1

6
dM−1 +

1

6
f1.

In the special case where M = N = 2, we have the two equations

15d1 − f1 = −4x0 + 24x1 − 5x2 − y0

−d1 + 15f1 = −x2 − 5y0 + 24y1 − 4y2,

d0 and f2 are given by the end conditions, and d2 and f0 by the equations

d2 =
5

6
x2 +

1

6
y0 +

1

6
d1 −

1

6
f1

f0 =
1

6
x2 +

5

6
y0 −

1

6
d1 +

1

6
f1.

All the matrices defined above are still row diagonally dominant, so they are invertible.

32

For example, if K = 4, and if the sequences of data points consist of 3, 5, 5, 3 points, we
get the following 8× 8 matrix:

15 −1 0 0 0 0 0 0
−1 15 4 0 0 0 0 0
0 1 4 1 0 0 0 0
0 0 4 15 −1 0 0 0
0 0 0 −1 15 4 0 0
0 0 0 0 1 4 1 0
0 0 0 0 0 4 15 −1
0 0 0 0 0 0 −1 15


.

Last, we consider the case where K ≥ 3 and one or several sequences of data points
(xk0, x

k
1, x

k
2) occur, with 2 ≤ k ≤ K − 1.

8.3 Some Intermediate Spline Has 3 Data Points

In this case, we are considering three consecutive sequences of data points and we may assume
that the first sequence is (x0, . . . , xM), the second is (y0, y1, y2), and the third is (z0, . . . , zN);
see Figure 17. The corresponding de Boor control points are (d0, . . . , dM), (f0, f1, f2), and

y0

f0

f1

f2

y2

xM

dM

dM−1

y1

z0

g0

g1

Figure 17: Splicing splines; some intermediate spline has 3 data points.

(g0, . . . , gN). Here M,N ≥ 2. Since equations (∗) and (∗∗) hold in all cases, applying them
to the mid sequence (for f0 and f2) , we get

f0 =
1

6
xM +

5

6
y0 −

1

6
dM−1 +

1

6
f1

f2 =
5

6
y2 +

1

6
z0 +

1

6
f1 −

1

6
g1.

Since the mid sequence has 3 data points, we have

f0 + 2f1 + f2 = 4y1,

33

and by substituting the expressions for f0 and f2 in the above, we obtain

−dM−1 + 14f1 − g1 = −xM − 5y0 + 24y1 − 5y2 − z0.

In general, we have K ≥ 3 sequences of data points (xi0, . . . , x
i
Mi

) (with Mi + 1 data
points), and we need to consider a maximal subsequence of m ≥ 1 consecutive sequences of
data points with Mj = 3 for j = k, . . . , k +m− 1 (k +m− 1 ≤ K),

(xk0, x
k
1, x

k
2), . . . , (xj0, x

j
1, x

j
2), . . . , (xk+m−1

0 , xk+m−1
1 , xk+m−1

2).

There are four cases depending whether

(1) k ≥ 2, k +m− 1 ≤ K − 1, Mk−1 ≥ 3, Mk+m ≥ 3.

(2) k = 1, 2 ≤ m ≤ K − 1, Mm+1 ≥ 3.

(3) k = K −m+ 1, 2 ≤ m ≤ K − 1, MK−m ≥ 3.

(4) k = 1, m = K (Mi = 2 for i = 1, . . . , K).

Case 1 . k ≥ 2, k + m − 1 ≤ K − 1, Mk−1 ≥ 3, Mk+m ≥ 3. We have the subsystem of
m+ 2 equations

dk−1
Mk−1−2 +

7

2
dk−1
Mk−1−1 = 6xk−1

Mk−1−1 −
3

2
dk−1
Mk−1

dk0 + 2dk1 + dk2 = 4xk1
...

...

dk+m−1
0 + 2dk+m−1

1 + dk+m−1
2 = 4xk+m−1

1

7

2
dk+m

1 + dk+m
2 = 6xk+m

1 − 3

2
dk+m

0 .

According to the previous reasoning applied to three consecutive equations of index
j, j+1, j+2, for j = k−1, . . . k+m−2, since Mj = 2 for j = k, . . . , k+m−1, the equations
of index j = k, . . . , k +m− 1 become

−dk−1
Mk−1−1 + 14dk1 − dk+1

1 = −xk−1
Mk−1

− 5xk0 + 24xk1 − 5xk2 − xk+1
0

−dk1 + 14dk+1
1 − dk+2

1 = −xk2 − 5xk+1
0 + 24xk+1

1 − 5xk+1
2 − xk+2

0

...
...

−dk+m−2
1 + 14dk+m−1

1 − dk+m
1 = −xk+m−2

1 − 5xk+m−1
0 + 24xk+m−1

1 − 5xk+m−1
2 − xk+m

0 .

As in Section 8.1, using (∗∗), namely

dk−1
Mk−1

=
5

6
xk−1
Mk−1

+
1

6
xk0 +

1

6
dk−1
Mk−1−1 −

1

6
dk1,

34

the first eqation

dk−1
Mk−1−2 +

7

2
dk−1
Mk−1−1 = 6xk−1

Mk−1−1 −
3

2
dk−1
Mk−1

becomes
4dk−1

Mk−1−2 + 15dk−1
Mk−1−1 − d

k
1 = 24xk−1

Mk−1−1 − 5xk−1
Mk−1

− xk0.

Similarly, as in Section 8.1, using (∗), namely

dk+m
0 =

1

6
xk+m−1
Mk+m−1

+
5

6
xk+m

0 − 1

6
dk+m−1
Mm+k−1−1 +

1

6
dk+m

1 ,

the equation
7

2
dk+m

1 + dk+m
2 = 6xk+m

1 − 3

2
dk+m

0

becomes
−dk+m−1

1 + 15dk+m
1 + 4dk+m

2 = −xk+m−1
2 − 5xk+m

0 + 24xk+m
1 .

We obtain the following new system of m+ 2 equations:

4dk−1
Mk−1−2 + 15dk−1

Mk−1−1 − d
k
1 = 24xk−1

Mk−1−1 − 5xk−1
Mk−1

− xk0
−dk−1

Mk−1−1 + 14dk1 − dk+1
1 = −xk−1

Mk−1
− 5xk0 + 24xk1 − 5xk2 − xk+1

0

−dk1 + 14dk+1
1 − dk+2

1 = −xk2 − 5xk+1
0 + 24xk+1

1 − 5xk+1
2 − xk+2

0

...
...

−dk+m−2
1 + 14dk+m−1

1 − dk+m
1 = −xk+m−2

1 − 5xk+m−1
0 + 24xk+m−1

1 − 5xk+m−1
2 − xk+m

0

−dk+m−1
1 + 15dk+m

1 + 4dk+m
2 = −xk+m−1

2 − 5xk+m
0 + 24xk+m

1 .

The special cases where M1 = 2, M2 ≥ 3, k ≥ 3, and MK−1 ≥ 3, MK = 2, k ≤ K − 2,
are handled as in Section 8.2.

For example, if K = 5, and if the sequences of data points have 5, 3, 3, 5, 5 elements, we
obtain the following 11× 11 matrix:

4 1 0 0 0 0 0 0 0 0 0
1 4 1 0 0 0 0 0 0 0 0
0 4 15 −1 0 0 0 0 0 0 0
0 0 −1 14 −1 0 0 0 0 0 0
0 0 0 −1 14 −1 0 0 0 0 0
0 0 0 0 −1 15 4 0 0 0 0
0 0 0 0 0 1 4 1 0 0 0
0 0 0 0 0 0 4 15 −1 0 0
0 0 0 0 0 0 0 −1 15 4 0
0 0 0 0 0 0 0 0 1 4 1
0 0 0 0 0 0 0 0 0 1 4


.

35

If K = 6, and if the sequences of data points have 3, 4, 3, 3, 5, 5 elements, we obtain the
following 11× 11 matrix:

15 −1 0 0 0 0 0 0 0 0 0
−1 15 4 0 0 0 0 0 0 0 0
0 4 15 −1 0 0 0 0 0 0 0
0 0 −1 14 −1 0 0 0 0 0 0
0 0 0 −1 14 −1 0 0 0 0 0
0 0 0 0 −1 15 4 0 0 0 0
0 0 0 0 0 1 4 1 0 0 0
0 0 0 0 0 0 4 15 −1 0 0
0 0 0 0 0 0 0 −1 15 4 0
0 0 0 0 0 0 0 0 1 4 1
0 0 0 0 0 0 0 0 0 1 4


.

If K = 6, and if the sequences of data points have 5, 3, 3, 5, 5, 3 elements, we obtain the
following 12× 12 matrix:

4 1 0 0 0 0 0 0 0 0 0 0
1 4 1 0 0 0 0 0 0 0 0 0
0 4 15 −1 0 0 0 0 0 0 0 0
0 0 −1 14 −1 0 0 0 0 0 0 0
0 0 0 −1 14 −1 0 0 0 0 0 0
0 0 0 0 −1 15 4 0 0 0 0 0
0 0 0 0 0 1 4 1 0 0 0 0
0 0 0 0 0 0 4 15 −1 0 0 0
0 0 0 0 0 0 0 −1 15 4 0 0
0 0 0 0 0 0 0 0 1 4 1 0
0 0 0 0 0 0 0 0 0 4 15 −1
0 0 0 0 0 0 0 0 0 0 −1 15



.

If K = 7, and if the sequences of data points have 3, 4, 3, 3, 5, 5, 3 elements, we obtain
the following 12× 12 matrix:

15 −1 0 0 0 0 0 0 0 0 0 0
−1 15 4 0 0 0 0 0 0 0 0 0
0 4 15 −1 0 0 0 0 0 0 0 0
0 0 −1 14 −1 0 0 0 0 0 0 0
0 0 0 −1 14 −1 0 0 0 0 0 0
0 0 0 0 −1 15 4 0 0 0 0 0
0 0 0 0 0 1 4 1 0 0 0 0
0 0 0 0 0 0 4 15 −1 0 0 0
0 0 0 0 0 0 0 −1 15 4 0 0
0 0 0 0 0 0 0 0 1 4 1 0
0 0 0 0 0 0 0 0 0 4 15 −1
0 0 0 0 0 0 0 0 0 0 −1 15



.

36

We compute the de Boor points diMi
and di+1

0 , for i = 1, . . . , K−1, using formula (∗) and
(∗∗); that is,

diMi
=

5

6
xiMi

+
1

6
xi+1

0 +
1

6
diMi−1 −

1

6
di+1

1

di+1
0 =

1

6
xiMi

+
5

6
xi+1

0 − 1

6
diMi−1 +

1

6
di+1

1 .

Finally, d1
0 and dKMK

are determined by using the natural end conditions.

Such matrices are row diagonally dominant, so they are invertible.

Case 2 . k = 1, 2 ≤ m ≤ K − 1, Mm+1 ≥ 3. We have the m+ 1 equations

d1
0 + 2d1

1 + d1
2 = 4x1

1

d2
0 + 2d2

1 + d2
2 = 4x2

1

...
...

dm0 + 2dm1 + dm2 = 4xm1
7

2
dm+1

1 + dm+1
2 = 6xm+1

1 − 3

2
dm+1

0 .

Since m ≥ 2 and Mj = 2 for j = 1, . . . ,m, as in Case 1, the m equations of index 2, . . . ,m+1
become

−d1
1 + 14d2

1 − d3
1 = −x1

2 − 5x2
0 + 24x2

1 − 5x2
2 − x3

0

...
...

−dm−1
1 + 14dm1 − dm+1

1 = −xm−1
2 − 5xm0 + 24xm1 − 5xm2 − xm+1

0

−dm1 + 15dm+1
1 + 4dm+1

2 = −xm2 − 5xm+1
0 + 24xm+1

1 .

As in Section 8.2, the equation
d1

0 + 2d1
1 + d1

2 = 4x1
1

becomes
15d1

1 − d2
1 = −4x1

0 + 24x1
1 − 5x1

2 − x2
0.

The new system of m+ 1 equations is

15d1
1 − d2

1 = −4x1
0 + 24x1

1 − 5x1
2 − x2

0

−d1
1 + 14d2

1 − d3
1 = −x1

2 − 5x2
0 + 24x2

1 − 5x2
2 − x3

0

...
...

−dm−1
1 + 14dm1 − dm+1

1 = −xm−1
2 − 5xm0 + 24xm1 − 5xm2 − xm+1

0

−dm1 + 15dm+1
1 + 4dm+1

2 = −xm2 − 5xm+1
0 + 24xm+1

1 .

The special case where MK−1 ≥ 3, MK = 2, m ≤ K − 2, is handled as in Section 8.2.

37

For example, if K = 5, and if the sequences of data points have 3, 3, 3, 5, 5 elements, we
obtain the following 9× 9 matrix:

15 −1 0 0 0 0 0 0 0
−1 14 −1 0 0 0 0 0 0
0 −1 14 −1 0 0 0 0 0
0 0 −1 15 4 0 0 0 0
0 0 0 1 4 1 0 0 0
0 0 0 0 4 15 −1 0 0
0 0 0 0 0 −1 15 4 0
0 0 0 0 0 0 1 4 1
0 0 0 0 0 0 0 1 4


.

If K = 6, and if the sequences of data points have 3, 3, 3, 5, 5, 3 elements, we obtain the
following 10× 10 matrix:

15 −1 0 0 0 0 0 0 0 0
−1 14 −1 0 0 0 0 0 0 0
0 −1 14 −1 0 0 0 0 0 0
0 0 −1 15 4 0 0 0 0 0
0 0 0 1 4 1 0 0 0 0
0 0 0 0 4 15 −1 0 0 0
0 0 0 0 0 −1 15 4 0 0
0 0 0 0 0 0 1 4 1 0
0 0 0 0 0 0 0 4 15 −1
0 0 0 0 0 0 0 0 −1 15


.

Case 3 . k = K −m+ 1, 2 ≤ m ≤ K − 1, MK−m ≥ 3. Observe that k ≥ 2. We have the
subsystem of m+ 1 equations

dk−1
Mk−1−2 +

7

2
dk−1
Mk−1−1 = 6xk−1

Mk−1−1 −
3

2
dk−1
Mk−1

dk0 + 2dk1 + dk2 = 4xk1
...

...

dK−1
0 + 2dK−1

1 + dK−1
2 = 4xK−1

1

dK0 + 2dK1 + dK2 = 4xK1 .

Since m ≥ 2 and Mj = 2 for j = k, . . . , K, as in Case 1, the equations of index k−1, . . . , K−1

38

become

4dk−1
Mk−1−2 + 15dk−1

Mk−1−1 − d
k
1 = 24xk−1

Mk−1−1 − 5xk−1
Mk−1

− xk0
−dk−1

Mk−1−1 + 14dk1 − dk+1
1 = −xk−1

Mk−1
− 5xk0 + 24xk1 − 5xk2 − xk+1

0

−dk1 + 14dk+1
1 − dk+2

1 = −xk2 − 5xk+1
0 + 24xk+1

1 − 5xk+1
2 − xk+2

0

...
...

−dK−2
1 + 14dK−1

1 − dK1 = −xK−2
1 − 5xK−1

0 + 24xK−1
1 − 5xK−1

2 − xK0 .

As in Section 8.2, the equation

dK0 + 2dK1 + dK2 = 4xK1

becomes
−dK−1

1 + 15dK1 = −xK−1
2 − 5xK0 + 24xK1 − 4xK2 .

The new system of m+ 1 equations is

4dk−1
Mk−1−2 + 15dk−1

Mk−1−1 − d
k
1 = 24xk−1

Mk−1−1 − 5xk−1
Mk−1

− xk0
−dk−1

Mk−1−1 + 14dk1 − dk+1
1 = −xk−1

Mk−1
− 5xk0 + 24xk1 − 5xk2 − xk+1

0

−dk1 + 14dk+1
1 − dk+2

1 = −xk2 − 5xk+1
0 + 24xk+1

1 − 5xk+1
2 − xk+2

0

...
...

−dK−2
1 + 14dK−1

1 − dK1 = −xK−2
1 − 5xK−1

0 + 24xK−1
1 − 5xK−1

2 − xK0
−dK−1

1 + 15dK1 = −xK−1
2 − 5xK0 + 24xK1 − 4xK2 .

The special case where M1 = 2, M2 ≥ 3, k ≥ 3, is handled as in Section 8.2.

For example, if K = 7, and if the sequences of data points have 5, 3, 3, 5, 5, 3, 3 elements,
we obtain the following 13× 13 matrix:

4 1 0 0 0 0 0 0 0 0 0 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0
0 4 15 −1 0 0 0 0 0 0 0 0 0
0 0 −1 14 −1 0 0 0 0 0 0 0 0
0 0 0 −1 14 −1 0 0 0 0 0 0 0
0 0 0 0 −1 15 4 0 0 0 0 0 0
0 0 0 0 0 1 4 1 0 0 0 0 0
0 0 0 0 0 0 4 15 −1 0 0 0 0
0 0 0 0 0 0 0 −1 15 4 0 0 0
0 0 0 0 0 0 0 0 1 4 1 0 0
0 0 0 0 0 0 0 0 0 4 15 −1 0
0 0 0 0 0 0 0 0 0 0 −1 4 −1
0 0 0 0 0 0 0 0 0 0 0 15 −1



.

39

If K = 8, and if the sequences of data points have 3, 4, 3, 3, 5, 5, 3, 3 elements, we obtain
the following 13× 13 matrix:

15 −1 0 0 0 0 0 0 0 0 0 0 0
−1 15 4 0 0 0 0 0 0 0 0 0 0
0 4 15 −1 0 0 0 0 0 0 0 0 0
0 0 −1 14 −1 0 0 0 0 0 0 0 0
0 0 0 −1 14 −1 0 0 0 0 0 0 0
0 0 0 0 −1 15 4 0 0 0 0 0 0
0 0 0 0 0 1 4 1 0 0 0 0 0
0 0 0 0 0 0 4 15 −1 0 0 0 0
0 0 0 0 0 0 0 −1 15 4 0 0 0
0 0 0 0 0 0 0 0 1 4 1 0 0
0 0 0 0 0 0 0 0 0 4 15 −1 0
0 0 0 0 0 0 0 0 0 0 −1 4 −1
0 0 0 0 0 0 0 0 0 0 0 15 −1



.

Case 4 . k = 1, m = K, Mi = 2 for i = 1, . . . , K. We have the system of m equations

d1
0 + 2d1

1 + d1
2 = 4x1

1

d2
0 + 2d2

1 + d2
2 = 4x2

1

...
...

dK−1
0 + 2dK−1

1 + dK−1
2 = 4xK−1

1

dK0 + 2dK1 + dK2 = 4xK1 .

This is a combination of Case 2 and Case 3, so we obtain the new system

15d1
1 − d2

1 = −4x1
0 + 24x1

1 − 5x1
2 − x2

0

−d1
1 + 14d2

1 − d3
1 = −x1

2 − 5x2
0 + 24x2

1 − 5x2
2 − x3

0

...
...

−dK−2
1 + 14dK−1

1 − dK1 = −xK−2
2 − 5xK−1

0 + 24xK−1
1 − 5xK−2

2 − xK0
−dK−1

1 + 15dK1 = −xK−1
2 − 5xK0 + 24xK1 − 4xK2 .

Foe example, if K = 8, we have the following 8× 8 matrix:

15 −1 0 0 0 0 0 0
−1 14 −1 0 0 0 0 0
0 −1 14 −1 0 0 0 0
0 0 −1 14 −1 0 0 0
0 0 0 −1 14 −1 0 0
0 0 0 0 −1 14 −1 0
0 0 0 0 0 −1 14 −1
0 0 0 0 0 0 −1 15


.

40

Figure 18 shows two splines with a discontinuity. The first spline interpolates 5 points and
the second interpolates 6 points. Figure 19 shows three splines with two discontinuities. The
first spline interpolates 3 points, the second interpolates 4 points, and the third interpolates
5 points. Figure 20 shows four splines with three discontinuities. The first spline interpolates
4 points, the second interpolates 3 points, the third interpolates 5 points, and the fourth
interpolates 3 points.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Figure 18: Examples of two splines with a discontinuity.

9 Related Work

The problem of motion interpolation has been studied quite extensively both in the robotics
and computer graphics communities. Since rotations in SO(3) can be represented by quater-
nions, the problem of quaternion interpolation has been investigated, an approach apparently
initiated by Shoemake [17, 18], who extended the de Casteljau algorithm to the 3-sphere.
Related work was done by Barr, Currin, Gabriel, and Hughes [2]. Kim, M.-J., Kim, M.-S.
and Shin [11, 12] corrected bugs in Shoemake and introduced various kinds of splines on
S3, using the exponential map. Motion interpolation and rational motions have been in-
vestigated by Jüttler [7, 8], Jüttler and Wagner [9, 10], Horsch and Jüttler [6], and Röschel
[16]. Park and Ravani [14, 15] also investigated Bézier curves on Riemannian manifolds and
Lie groups, SO(3) in particular. Zefran, Kumar and Croke [19] formulated the problem
interpolating between two given positions of a rigid body as a variational problem on the
group of rigid body motions SE(3). The functional under consideration was a measure of
smoothness of the three dimensional trajectory of the rigid body. Further work in this di-
rection is presented in Belta and Kumar [3], and Altafini [1] gives a version of de Casteljau’s

41

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

Figure 19: Examples of three splines with discontinuities.

1 2 3 4 5 6 7 8 9
Figure 20: Example of four splines with discontinuities.

42

algorithm for SE(3). None of these papers deal with the problem caused by the fact that
the logarithm is multi-valued.

10 Computing the Length of Curves in SO(n)

Assume that so(n) is equipped with the inner product

〈B1, B2〉 =
1

2
tr(B>1 B2) = −1

2
tr(B1B2),

for any two elements B1, B2 ∈ so(n) in the Lie algebra of SO(n). This inner product
is Ad(SO(n))-invariant, so we obtain a bi-invariant metric on SO(n) (see Gallot, Hullin,
Lafontaine [5] or O’Neill [13]). Let us consider the curve γ in SO(n) given by

γ(t) = e(1−t)B1+tB2 , t ∈ [0, 1],

with R1 = eB1 and R2 = eB2 . We have γ(0) = R1 and γ(1) = R2. The length L(γ) of the
curve γ is

L(γ) =

∫ 1

0

〈γ′(t), γ′(t)〉
1
2dt,

so we have

L(γ) =

∫ 1

0

〈(e(1−t)B1+tB2)′, (e(1−t)B1+tB2)′〉
1
2dt

=

∫ 1

0

〈(B2 −B1)e(1−t)B1+tB2 , (B2 −B1)e(1−t)B1+tB2)〉
1
2dt

=

∫ 1

0

(
1

2
tr(((B2 −B1)e(1−t)B1+tB2)>(B2 −B1)e(1−t)B1+tB2)

) 1
2

dt

=

∫ 1

0

(
1

2
tr(e((1−t)B1+tB2)>(B2 −B1)>(B2 −B1)e(1−t)B1+tB2)

) 1
2

dt

=

∫ 1

0

(
1

2
tr((B2 −B1)>(B2 −B1)e(1−t)B1+tB2e−((1−t)B1+tB2))

) 1
2

dt

=
(1

2
tr((B2 −B1)>(B2 −B1))

) 1
2

=
(1

2
tr(−(B2 −B1)2)

) 1
2
.

Thus, we obtain

L(γ) =
(
−1

2
tr((B2 −B1)2)

) 1
2
.

Unless B1 and B2 commute, in which case

R>1 R2 = (eB1)>eB2 = e−B1eB2 = eB2−B1 ,

43

the curve γ is generallly not a geodesic between R1 and R2. A geodesic from R1 to R2 is
given by the curve

γg(t) = R1e
tB, t ∈ [0, 1],

where B ∈ so(n) is any log of R>1 R2; that is, eB = R>1 R2 (see Gallot, Hullin, Lafontaine [5]
or O’Neill [13]). Essentially the same computation as above yields

L(γg) =
(
−1

2
tr(B2)

) 1
2
.

References

[1] Claudio Altafini. The de casteljau algorithm on SE(3). In Nonlinear control in the year
2000, pages 23–34. Springer, 2001.

[2] A.H. Barr, B. Currin, S. Gabriel, and J.F. Hughes. Smooth Interpolation of Orien-
tations with Angular Velocity Constraints using Quaternions. In Computer Graphics
Proceedings, Annual Conference Series, pages 313–320. ACM, 1992.

[3] Calin Belta and Vijay Kumar. An efficient geometric approach to rigid body motion
interpolation. In Proc. ASME 2000 Design Engineering Tech. Conf. Citeseer, 2000.

[4] Jean H. Gallier. Geometric Methods and Applications, For Computer Science and En-
gineering. TAM, Vol. 38. Springer, second edition, 2011.

[5] S. Gallot, D. Hulin, and J. Lafontaine. Riemannian Geometry. Universitext. Springer
Verlag, second edition, 1993.

[6] Thomas Horsch and Bert Jüttler. Cartesian spline interpolation for industrial robots.
Computer-Aided Design, 30(3):217–224, 1998.

[7] Bert Jüttler. Visualization of moving objects using dual quaternion curves. Computers
& Graphics, 18(3):315–326, 1994.

[8] Bert Jüttler. An osculating motion with second order contact for spacial Euclidean
motions. Mech. Mach. Theory, 32(7):843–853, 1997.

[9] Bert Jüttler and M.G. Wagner. Computer-aided design with spacial rational B-spline
motions. Journal of Mechanical Design, 118:193–201, 1996.

[10] Bert Jüttler and M.G. Wagner. Rational motion-based surface generation. Computer-
Aided Design, 31:203–213, 1999.

[11] M.-J. Kim, M.-S. Kim, and S.Y. Shin. A general construction scheme for unit quaternion
curves with simple high-order derivatives. In Computer Graphics Proceedings, Annual
Conference Series, pages 369–376. ACM, 1995.

44

[12] M.-J. Kim, M.-S. Kim, and S.Y. Shin. A compact differential formula for the first
derivative of a unit quaternion curve. Journal of Visualization and Computer Animation,
7:43–57, 1996.

[13] Barrett O’Neill. Semi-Riemannian Geometry With Applications to Relativity. Pure and
Applies Math., Vol 103. Academic Press, first edition, 1983.

[14] F.C. Park and B. Ravani. Bézier curves on Riemannian manifolds and Lie groups with
kinematic applications. ASME J. Mech. Des., 117:36–40, 1995.

[15] F.C. Park and B. Ravani. Smooth invariant interpolation of rotations. ACM Transac-
tions on Graphics, 16:277–295, 1997.

[16] Otto Röschel. Rational motion design: A survey. Computer-Aided Design, 30(3):169–
178, 1998.

[17] Ken Shoemake. Animating rotation with quaternion curves. In ACM SIGGRAPH’85,
volume 19, pages 245–254. ACM, 1985.

[18] Ken Shoemake. Quaternion calculus for animation. In Math for SIGGRAPH, pages
1–19. ACM, 1991. Course Note No. 2.

[19] Milos Zefran, Vijay Kumar, and Christopher Croke. On the generation of smooth three-
dimensional rigid body motions. IEEE T. Robotics and Automation, 14(4):576–589,
1998.

45

