
Chapter 4

RAM Programs, Turing Machines,
and the Partial Recursive Functions

4.1 Introduction

Anyone with some programming experience has an intuituive idea of the notion of “algo-
rithm”. Even Euclid’s algorithm was called an algorithm long before the invention of mod-
ern computers. However, it was not until the 1930’s that logicians such as Church, Gödel,
Kleene, Turing, and Post, put forth formal definitions for the notions of effective procedure,
computable function, and algorithm.

There are surprisingly many different formalizations of the notion of an algorithm. A
remarkable fact is that all of these definitions have been shown to be equivalent, in the sense
that a function computable in one of these formulations is also computable in all of the
others. For most computer scientists, the notion of algorithm is synonymous with that of a
program written in some general purpose programming language.

To be more accurate, an algorithm refers to a program that halts for all inputs. A
program that halts for some inputs but diverges for others is called a procedure. One of
the characterizations of the computable functions is that they are computed by programs
written in a very simple programming language, the language of RAM programs, also called
Post machines .

Another goal of the theory of computation is to explore the limitations of the computa-
tional power of programs. For example, one can ask whether there exists an algorithm that
could be used as a debugging tool, to test whether any given program halts on any given
input. Another useful program would be one to test whether any two given programs are
equivalent for all inputs. As we shall see, such programs do not exist. We have stumbled
upon some undecidable problems.

Why is a question undecidable, that is, not answerable by a program halting for all
inputs? What power must a programming language (or formal system) have, in order that
some questions about it are undecidable?

75

76 CHAPTER 4. RAM PROGRAMS, TURING MACHINES

We shall be concerned with these issues as we develop a technical formulation of what is
an algorithm.

Before embarking on an extensive study of notions such as algorithms and procedures,
a few crucial remarks are in order. Firstly, a program is a finite object. It may use a very
large amount of memory, but still a bounded amount. However, there is no bound on the
size of data (strings) held in the registers used by programs. Secondly, all the programming
languages under consideration have the property that programs can be effectively coded as
strings or numbers. This means that there is an algorithm that assigns a code to each
program, and conversely, that there is an algorithm that, given a purported code name, tells
whether or not the code name represents a program, and if so, which program. For example,
we shall see that RAM programs can be encoded as positive natural numbers.

Since we will be dealing with algorithms working on strings or natural numbers, we will
have the ability to give as input to a program input data that stand either for a true data, or
an encoding for a program. This situation is analogous to that in assembly languages, where
a memory word either stands for a data or for an instruction, depending on its interpretation.

It turns out that it is the ability of encoding programs into numbers (or strings) and
to decode numbers back into programs, that is often the cause for the undecidability of a
question.

In the following Chapters, we study various algorithmic systems. We begin with RAM
programs, and continue with Turing machines. It turns out that RAM programs and Turing
machine compute precisely the same clas of (partial functions). This famous class of function
is called the class of partial recursive functions .

Chapter 5

Universal RAM Programs and
Undecidability of the Halting Problem

5.1 Pairing Functions

Pairing functions are used to encode pairs of integers into single integers, or more generally,
finite sequences of integers into single integers. We begin by exhibiting a bijective pairing
function J :N2 → N.

The function J has the graph partially showed below:

...
6 . . .

↘
3 7 . . .

↘ ↘
1 4 8 . . .

↘ ↘ ↘
0 2 5 9 . . .

The function J corresponds to a certain way of enumerating pairs of integers. Note that
the value of x+ y is constant along each diagonal, and consequently, we have

J(x, y) = 1 + 2 + · · ·+ (x+ y) + x,

= ((x+ y)(x+ y + 1) + 2x)/2,

= ((x+ y)2 + 3x+ y)/2,

that is,

J(x, y) = ((x+ y)2 + 3x+ y)/2.

77

78 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Let K:N → N and L:N → N be the projection functions onto the axes, that is, the unique
functions such that

K(J(a, b)) = a and L(J(a, b)) = b,

for all a, b ∈ N. Clearly, J is primitive recursive, since it is given by a polynomial. It is
not hard to prove that J is injective and surjective, and that it is strictly monotonic in each
argument, which means that for all x, x′, y, y′ ∈ N, if x < x′ then J(x, y) < J(x′, y), and if
y < y′ then J(x, y) < J(x, y′).

The projection functions can be computed explicitly, although this is a bit tricky. We
only need to observe that by monotonicity of J ,

x ≤ J(x, y) and y ≤ J(x, y),

and thus,
K(z) = min(x ≤ z)(∃y ≤ z)[J(x, y) = z],

and
L(z) = min(y ≤ z)(∃x ≤ z)[J(x, y) = z].

It can be verified that J(K(z), L(z)) = z, for all z ∈ N. The pairing function J(x, y) is also
denoted as 〈x, y〉, and K and L are also denoted as Π1 and Π2.

By induction, we can define bijections between Nn and N for all n ≥ 1. We let 〈z〉1 = z,

〈x1, x2〉2 = 〈x1, x2〉,

and
〈x1, . . . , xn, xn+1〉n+1 = 〈x1, . . . , 〈xn, xn+1〉〉n.

Note that
〈x1, . . . , xn, xn+1〉n+1 = 〈x1, 〈x2, . . . , xn+1〉n〉.

We can define a uniform projection function Π with the following property:
if z = 〈x1, . . . , xn〉, with n ≥ 2, then

Π(i, n, z) = xi

for all i, where 1 ≤ i ≤ n. The idea is to view z as a n-tuple, and Π(i, n, z) as the i-th
component of that n-tuple. The function Π is defined by cases as follows:

Π(i, 0, z) = 0, for all i ≥ 0,

Π(i, 1, z) = z, for all i ≥ 0,

Π(i, 2, z) = Π1(z), if 0 ≤ i ≤ 1,

Π(i, 2, z) = Π2(z), for all i ≥ 2,

and for all n ≥ 2,

Π(i, n+ 1, z) =






Π(i, n, z) if 0 ≤ i < n,
Π1(Π(n, n, z)) if i = n,
Π2(Π(n, n, z)) if i > n.

5.2. EQUIVALENCE OF ALPHABETS 79

By a previous exercise, this is a legitimate primitive recursive definition. Some basic prop-
erties of Π are given as exercises. In particular, the following properties are easily shown:

(a) 〈0, . . . , 0〉n = 0, 〈x, 0〉 = 〈x, 0, . . . , 0〉n;

(b) Π(0, n, z) = Π(1, n, z) and Π(i, n, z) = Π(n, n, z), for all i ≥ n and all n, z ∈ N;

(c) 〈Π(1, n, z), . . . ,Π(n, n, z)〉n = z, for all n ≥ 1 and all z ∈ N;

(d) Π(i, n, z) ≤ z, for all i, n, z ∈ N;

(e) There is a primitive recursive function Large, such that,

Π(i, n + 1,Large(n+ 1, z)) = z,

for i, n, z ∈ N.

As a first application, we observe that we need only consider partial recursive functions of
a single argument. Indeed, let ϕ:Nn → N be a partial recursive function of n ≥ 2 arguments.
Let

ϕ(z) = ϕ(Π(1, n, z), . . . ,Π(n, n, z)),

for all z ∈ N. Then, ϕ is a partial recursive function of a single argument, and ϕ can be
recovered from ϕ, since

ϕ(x1, . . . , xn) = ϕ(〈x1, . . . , xn〉).

Thus, using 〈−,−〉 and Π as coding and decoding functions, we can restrict our attention
to functions of a single argument.

Next, we show that there exist coding and decoding functions between Σ∗ and {a1}∗,
and that partial recursive functions over Σ∗ can be recoded as partial recursive functions
over {a1}∗. Since {a1}∗ is isomorphic to N, this shows that we can restrict out attention to
functions defined over N.

5.2 Equivalence of Alphabets

Given an alphabet Σ = {a1, . . . , ak}, strings over Σ can be ordered by viewing strings as
numbers in a number system where the digits are a1, . . . , ak. In this number system, which
is almost the number system with base k, the string a1 corresponds to zero, and ak to k− 1.
Hence, we have a kind of shifted number system in base k. For example, if Σ = {a, b, c}, a
listing of Σ∗ in the ordering corresponding to the number system begins with

a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc,

aaa, aab, aac, aba, abb, abc, . . .

Clearly, there is an ordering function from Σ∗ to N which is a bijection. Indeed, if u =
ai1 · · ·ain , this function f :Σ∗ → N is given by

f(u) = i1k
n−1 + i2k

n−2 + · · ·+ in−1k + in.

80 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Since we also want a decoding function, we define the coding function Ck:Σ∗ → Σ∗ as follows:

Ck(ε) = ε, and if u = ai1 · · · ain, then

Ck(u) = ai1k
n−1+i2kn−2+···+in−1k+in

1 .

The function Ck is primitive recursive, because

Ck(ε) = ε,

Ck(xai) = Ck(x)
kai1.

The inverse of Ck is a function Dk: {a1}∗ → Σ∗. However, primitive recursive functions are
total, and we need to extend Dk to Σ∗. This is easily done by letting

Dk(x) = Dk(a
|x|
1)

for all x ∈ Σ∗. It remains to define Dk by primitive recursion over {a1}∗. For this, we
introduce three auxiliary functions p, q, r, defined as follows. Let

p(ε) = ε,

p(xai) = xai, if i *= k,

p(xak) = p(x).

Note that p(x) is the result of deteting consecutive ak’s in the tail of x. Let

q(ε) = ε,

q(xai) = q(x)a1.

Note that q(x) = a|x|1 . Finally, let

r(ε) = a1,

r(xai) = xai+1, if i *= k,

r(xak) = xak.

The function r is almost the successor function, for the ordering. Then, the trick is that
Dk(xai) is the successor of Dk(x) in the ordering, and if

Dk(x) = yaja
n
k

with j *= k, since the successor of yajank is yaj+1ank , we can use r. Thus, we have

Dk(ε) = ε,

Dk(xai) = r(p(Dk(x)))q(Dk(x)− p(Dk(x))).

Then, both Ck and Dk are primitive recursive, and C ◦Dk = Dk ◦ Ck = id.

5.2. EQUIVALENCE OF ALPHABETS 81

Let ϕ:Σ∗ → Σ∗ be a partial function over Σ∗, and let

ϕ+(x1, . . . , xn) = Ck(ϕ(Dk(x1), . . . , Dk(xn))).

The function ϕ+ is defined over {a1}∗. Also, for any partial function ψ over {a1}∗, let

ψ!(x1, . . . , xn) = Dk(ψ(Ck(x1), . . . , Ck(xn))).

We claim that if ψ is a partial recursive function over {a1}∗, then ψ! is partial recursive over
Σ∗, and that if ϕ is a partial recursive function over Σ∗, then ϕ+ is partial recursive over
{a1}∗.

First, ψ can be extended to Σ∗ by letting

ψ(x) = ψ(a|x|1)

for all x ∈ Σ∗, and so, if ψ is partial recursive, then so is ψ! by composition. This seems
equally obvious for ϕ and ϕ+, but there is a difficulty. The problem is that ϕ+ is defined as
a composition of functions over Σ∗. We have to show how ϕ+ can be defined directly over
{a1}∗ without using any additional alphabet symbols. This is done in Machtey and Young
[1], see Section 2.2, Proposition 2.2.3.

Pairing functions can also be used to prove that certain functions are primitive recursive,
even though their definition is not a legal primitive recursive definition. For example, consider
the Fibonacci function defined as follows:

f(0) = 1,

f(1) = 2,

f(n+ 2) = f(n+ 1) + f(n),

for all n ∈ N. This is not a legal primitive recursive definition, since f(n+ 2) depends both
on f(n+1) and f(n). In a primitive recursive definition, g(y+1, x) is only allowed to depend
upon g(y, x).

Definition 5.2.1 Given any function f :Nn → N, the function f :Nn+1 → N defined such
that

f(y, x) = 〈f(0, x), . . . , f(y, x)〉y+1

is called the course-of-value function for f .

The following lemma holds.

Lemma 5.2.2 Given any function f :Nn → N, if f is primitive recursive, then so is f .

82 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Proof . First, it is necessary to define a function con such that if x = 〈x1, . . . , xm〉 and
y = 〈y1, . . . , yn〉, where m,n ≥ 1, then

con(m, x, y) = 〈x1, . . . , xm, y1, . . . , yn〉.

This fact is left as an exercise. Now, if f is primitive recursive, let

f(0, x) = f(0, x),

f(y + 1, x) = con(y + 1, f(y, x), f(y + 1, x)),

showing that f is primitive recursive. Conversely, if f is primitive recursive, then

f(y, x) = Π(y + 1, y + 1, f(y, x)),

and so, f is primitive recursive.

Remark : Why is it that

f(y + 1, x) = 〈f(y, x), f(y + 1, x)〉

does not work?

We define course-of-value recursion as follows.

Definition 5.2.3 Given any two functions g:Nn → N and h:Nn+2 → N, the function
f :Nn+1 → N is defined by course-of-value recursion from g and h if

f(0, x) = g(x),

f(y + 1, x) = h(y, f(y, x), x).

The following lemma holds.

Lemma 5.2.4 f :Nn+1 → N is defined by course-of-value recursion from g and h and g, h
are primitive recursive, then f is primitive recursive.

Proof . We prove that f is primitive recursive. Then, by Lemma 5.2.2, f is also primitive
recursive. To prove that f is primitive recursive, observe that

f(0, x) = g(x),

f(y + 1, x) = con(y + 1, f(y, x), h(y, f(y, x), x)).

When we use Lemma 5.2.4 to prove that a function is primitive recursive, we rarely
bother to construct a formal course-of-value recursion. Indtead, we simply indicate how the
value of f(y + 1, x) can be obtained in a primitive recursive manner from f(0, x) through
f(y, x). Thus, an informal use of Lemma 5.2.4 shows that the Fibonacci function is primitive
recursive. A rigorous proof of this fact is left as an exercise.

5.3. CODING OF RAM PROGRAMS 83

5.3 Coding of RAM Programs

In this Section, we present a specific encoding of RAM programs which allows us to treat
programs as integers. Encoding programs as integers also allows us to have programs that
take other programs as input, and we obtain a universal program. Universal programs have
the property that given two inputs, the first one being the code of a program and the second
one an input data, the universal program simulates the actions of the encoded program on
the input data. A coding scheme is also called an indexing or a Gödel numbering, in honor
to Gödel, who invented this technique.

From results of the previous Chapter, without loss of generality, we can restrict out atten-
tion to RAM programs computing partial functions of one argument over N. Furthermore,
we only need the following kinds of instructions, each instruction being coded as shown be-
low. Since we are considering functions over the natural numbers, which corresponds to a
one-letter alphabet, there is only one kind of instruction of the form add and jmp (and add

increments by 1 the contents of the specified register Rj).

Ni add Rj code = 〈1, i, j, 0〉
Ni tail Rj code = 〈2, i, j, 0〉
Ni continue code = 〈3, i, 1, 0〉
Ni Rj jmp Nka code = 〈4, i, j, k〉
Ni Rj jmp Nkb code = 〈5, i, j, k〉

Recall that a conditional jump causes a jump to the closest address Nk above or below
iff Rj is nonzero, and if Rj is null, the next instruction is executed. We assume that all lines
in a RAM program are numbered. This is always feasible, by labeling unnamed instructions
with a new and unused line number.

The code of an instruction I is denoted as #I. To simplify the notation, we introduce
the following decoding primitive recursive functions Typ, Nam, Reg, and Jmp, defined as
follows:

Typ(x) = Π(1, 4, x),

Nam(x) = Π(2, 4, x),

Reg(x) = Π(3, 4, x),

Jmp(x) = Π(4, 4, x).

The functions yield the type, line number, register name, and line number jumped to, if any,
for an instruction coded by x. Note that we have no need to interpret the values of these
functions if x does not code an instruction.

We can define the primitive recursive predicate INST, such that INST(x) holds iff x codes
an instruction. First, we need the connective ⊃ (implies), defined such that

P ⊃ Q iff ¬P ∨Q.

84 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Then, INST(x) holds iff:

[1 ≤ Typ(x) ≤ 5] ∧ [1 ≤ Reg(x)]∧

[Typ(x) ≤ 3 ⊃ Jmp(x) = 0]∧

[Typ(x) = 3 ⊃ Reg(x) = 1]

Program are coded as follows. If P is a RAM program composed of the n instructions
I1, . . . , In, the code of P , denoted as #P , is

#P = 〈n,#I1, . . . ,#In〉.

Recall from a previous exercise that

〈n,#I1, . . . ,#In〉 = 〈n, 〈#I1, . . . ,#In〉〉.

We define the primitive recursive functions Ln, Pg, and Line, such that:

Ln(x) = Π(1, 2, x),

Pg(x) = Π(2, 2, x),

Line(i, x) = Π(i,Ln(x),Pg(x)).

The function Ln yields the length of the program (the number of instructions), Pg yields
the sequence of instructions in the program (really, a code for the sequence), and Line(i, x)
yields the code of the ith instruction in the program. Again, if x does not code a program,
there is no need to interpret these functions. However, note that by a previous exercise, it
happens that

Line(0, x) = Line(1, x), and

Line(Ln(x), x) = Line(i, x), for all i ≥ x.

The primitive recursive predicate PROG is defined such that PROG(x) holds iff x codes
a program. Thus, PROG(x) holds if each line codes an instruction, each jump has an
instruction to jump to, and the last instruction is a continue. Thus, PROG(x) holds iff

∀i ≤ Ln(x)[i ≥ 1 ⊃

[INST(Line(i, x)) ∧ Typ(Line(Ln(x), x)) = 3

∧[Typ(Line(i, x)) = 4 ⊃

∃j ≤ i− 1[j ≥ 1 ∧ Nam(Line(j, x)) = Jmp(Line(i, x))]]∧

[Typ(Line(i, x)) = 5 ⊃

∃j ≤ Ln(x)[j > i ∧ Nam(Line(j, x)) = Jmp(Line(i, x))]]]]

Note that we have used the fact proved as an exercise that if f is a primitive recursive
function and P is a primitive recursive predicate, then ∃x ≤ f(y)P (x) is primitive recursive.

We are now ready to prove a fundamental result in the theory of algorithms. This result
points out some of the limitations of the notion of algorithm.

5.3. CODING OF RAM PROGRAMS 85

Theorem 5.3.1 (Undecidability of the halting problem) There is no RAM program P which
halts for all inputs and has the following property when started with input x in register R1
and with input i in register R2 (the other registers being set to zero):

(1) P halts with output 1 iff i codes a program that eventually halts when started on input
x (all other registers set to zero).

(2) P halts with output 0 in R1 iff i codes a program that runs forever when started on
input x in R1 (all other registers set to zero).

(3) If i does not code a program, then P halts with output 2 in R2.

Proof . Assume that P is such a RAM program, and let Q be the following program:

ProgramQ (code q)






R2 ← R1
P

N1 continue

R1 jmp N1a
continue

The program Q can be translated into a program using only instructions of type 1, 2, 3,
4, 5, described previously, and let q be the code of the program Q.

Let us see what happens if we run the program Q on input q in R1 (all other registers set
to zero).

Just after execution of the assignment R2 ← R1, the program P is started with q in both
R1 and R2. Since P is supposed to halt for all inputs, it eventually halts with output 0 or
1 in R1. If P halts with output 1 in R1, then Q goes into an infinite loop, while if P halts
with output 0 in R1, then Q halts. But then, because of the definition of P , we see that P
says that Q halts when started on input q iff Q loops forever on input q, and that Q loops
forever on input q iff Q halts on input q, a contradiction. Therefore, P cannot exist.

If we identify the notion of algorithm with that of a RAM program which halts for all
inputs, the above theorem says that there is no algorithm for deciding whether a RAM pro-
gram eventually halts for a given input. We say that the halting problem for RAM programs
is undecidable (or unsolvable). The above theorem also implies that the halting problem
for Turing machines is undecidable. Indeed, if we had an algorithm for solving the halting
problem for Turing machines, we could solve the halting problem for RAM programs as
follows: first, apply the algorithm for translating a RAM program into an equivalent Turing
machine, and then apply the algorithm solving the halting problem for Turing machines.
The argument is typical in computability theory and is called a “reducibility argument”.

Our next goal is to define a primitive recursive function that describes the computation
of RAM programs. Assume that we have a RAM program P using n registers R1, . . . , Rn,

86 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

whose contents are denoted as r1, . . . , rn. We can code r1, . . . , rn into a single integer
〈r1, . . . , rn〉. Conversely, every integer x can be viewed as coding the contents of R1, . . . , Rn,
by taking the sequence Π(1, n, x), . . . ,Π(n, n, x). Actually, it is not necessary to know n, the
number of registers, if we make the following observation:

Reg(Line(i, x)) ≤ Line(i, x) ≤ Pg(x)

for all i, x ∈ N. Then, if x codes a program, then R1, . . . , Rx certainly include all the
registers in the program. Also note that from a previous exercise,

〈r1, . . . , rn, 0, . . . , 0〉 = 〈r1, . . . , rn, 0〉.

We now define the primitive recursive functions Nextline, Nextcont, and Comp, describing
the computation of RAM programs.

Definition 5.3.2 Let x code a program and let i be such that 1 ≤ i ≤ Ln(x). The following
functions are defined:

(1) Nextline(i, x, y) is the number of the next instruction to be executed after executing
the ith instruction in the program coded by x, where the contents of the registers is coded
by y.

(2) Nextcont(i, x, y) is the code of the contents of the registers after executing the ith
instruction in the program coded by x, where the contents of the registers is coded by y.

(3) Comp(x, y,m) = 〈i, z〉, where i and z are defined such that after running the program
coded by x form steps, where the initial contents of the program registers are coded by y, the
next instruction to be executed has line number i, and z is the code of the current contents
of the registers.

Lemma 5.3.3 The functions Nextline, Nextcont, and Comp, are primitive recursive.

Proof . (1) Nextline(i, x, y) = i+1, unless the ith instruction is a jump and the contents
of the register being tested is nonzero:

Nextline(i, x, y) =

max j ≤ Ln(x)[j < i ∧ Nam(Line(j, x)) = Jmp(Line(i, x))]

if Typ(Line(i, x)) = 4 ∧Π(Reg(Line(i, x)), x, y) *= 0

min j ≤ Ln(x)[j > i ∧ Nam(Line(j, x)) = Jmp(Line(i, x))]

if Typ(Line(i, x)) = 5 ∧Π(Reg(Line(i, x)), x, y) *= 0

i+ 1 otherwise.

Note that according to this definition, if the ith line is the final continue, then Nextline
signals that the program has halted by yielding

Nextline(i, x, y) > Ln(x).

5.3. CODING OF RAM PROGRAMS 87

(2) We need two auxiliary functions Add and Sub defined as follows.

Add(j, x, y) is the number coding the contents of the registers used by the program coded
by x after register Rj coded by Π(j, x, y) has been increased by 1, and

Sub(j, x, y) codes the contents of the registers after register Rj has been decremented by
1 (y codes the previous contents of the registers). It is easy to see that

Sub(j, x, y) = min z ≤ y[Π(j, x, z) = Π(j, x, y)− 1

∧∀k ≤ x[0 < k *= j ⊃ Π(k, x, z) = Π(k, x, y)]].

The definition of Add is slightly more tricky. We leave as an exercise to the reader to prove
that:

Add(j, x, y) = min z ≤ Large(x, y + 1)

[Π(j, x, z) = Π(j, x, y) + 1 ∧ ∀k ≤ x[0 < k *= j ⊃ Π(k, x, z) = Π(k, x, y)]],

where the function Large is the function defined in an earlier exercise. Then

Nextcont(i, x, y) =

Add(Reg(Line(i, x), x, y) if Typ(Line(i, x)) = 1

Sub(Reg(Line(i, x), x, y) if Typ(Line(i, x)) = 2

y if Typ(Line(i, x)) ≥ 3.

(3) Recall that Π1(z) = Π(1, 2, z) and Π2(z) = Π(2, 2, z). The function Comp is defined
by primitive recursion as follows:

Comp(x, y, 0) = 〈1, y〉

Comp(x, y,m+ 1) = 〈Nextline(Π1(Comp(x, y,m)), x,Π2(Comp(x, y,m))),

Nextcont(Π1(Comp(x, y,m)), x,Π2(Comp(x, y,m)))〉.

Recall that Π1(Comp(x, y,m)) is the number of the next instruction to be executed and that
Π2(Comp(x, y,m)) codes the current contents of the registers.

We can now reprove that every RAM computable function is partial recursive. Indeed,
assume that x codes a program P . We define the partial function End so that for all x, y,
where x codes a program and y codes the contents of its registers, End(x, y) is the number
of steps for which the computation runs before halting, if it halts. If the program does not
halt, then End(x, y) is undefined. Since

End(x, y) = minm[Π1(Comp(x, y,m)) = Ln(x)],

End is a partial recursive function. However, in general, End is not a total function.

If y is the value of the register R1 before the program P coded by x is started, recall that
the contents of the registers is coded by 〈y, 0〉. Noticing that 0 and 1 do not code programs,

88 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

we note that if x codes a program, then x ≥ 2, and Π1(z) = Π(1, x, z) is the contents of R1
as coded by z. If ϕ is the partial recursive function computed by the program P coded by
x, then we have

ϕ(y) = Π1(Π2(Comp(x, 〈y, 0〉,End(x, 〈y, 0〉)))).

Observe that ϕ is written in the form ϕ = g◦min f , for some primitive recursive functions
f and g.

We can also exhibit a partial recursive function which enumerates all the unary partial
recursive functions. It is a universal function.

Abusing the notation slightly, we will write ϕ(x, y) for ϕ(〈x, y〉), viewing ϕ as a function
of two arguments (however, ϕ is really a function of a single argument). We define the
function ϕuniv as follows:

ϕuniv(x, y) =
{
Π1(Π2(Comp(x, 〈y, 0〉,End(x, 〈y, 0〉)))) if PROG(x),
undefined otherwise.

The function ϕuniv is a partial recursive function with the following property: for every x
coding a RAM program P , for every input y,

ϕuniv(x, y) = ϕx(y),

the value of the partial recursive function ϕx computed by the RAM program P coded by
x. If x does not code a program, then ϕuniv(x, y) is undefined for all y.

By Lemma ??, ϕuniv is not recursive. Indeed, being an enumerating function for the
partial recursive functions, it is an enumerating function for the total recursive functions,
and thus, it cannot be recursive. Being a partial function saves us from a contradiction.

The existence of the function ϕuniv leads us to the notion of an indexing of the RAM
programs. We can define a listing of the RAM programs as follows. If x codes a program
(that is, if PROG(x) holds) and P is the program that x codes, we call this program P the
xth RAM program and denote it as Px. If x does not code a program, we let Px be the
program that diverges for every input:

N1 add R1
N1 R1 jmp N1a
N1 continue

Therefore, in all cases, Px stands for the xth RAM program. Thus, we have a listing
of RAM programs, P0, P1, P2, P3, . . ., such that every RAM program (of the restricted type
considered here) appears in the list exactly once, except for the “infinite loop” program. In
particular, note that ϕuniv being a partial recursive function, it is computed by some RAM
program UNIV that has a code univ and is the program Puniv in the list.

Having an indexing of the RAM programs, we also have an indexing of the partial recur-
sive functions.

5.4. KLEENE’S T -PREDICATE 89

Definition 5.3.4 For every integer x ≥ 0, we let Px be the RAM program coded by x as
defined earlier, and ϕx be the partial recursive function computed by Px.

Remark : Kleene used the notation {x} for the partial recursive function coded by x. Due
to the potential confusion with singleton sets, we follow Rogers, and use the notation ϕx.

The existence of the universal function ϕuniv is sufficiently important to be recorded in
the following Lemma.

Lemma 5.3.5 For the indexing of RAM programs defined earlier, there is a universal partial
recursive function ϕuniv such that, for all x, y ∈ N, if ϕx is the partial recursive function
computed by Px, then

ϕx(y) = ϕuniv(〈x, y〉).

The program UNIV computing ϕuniv can be viewed as an interpreter for RAM programs.
By giving the universal program UNIV the “program” x and the “data” y, we get the result
of executing program Px on input y. We can view the RAM model as a stored program
computer .

By Theorem 5.3.1 and Lemma 5.3.5, the halting problem for the single program UNIV
is undecidable. Otherwise, the halting problem for RAM programs would be decidable, a
contradiction. It should be noted that the program UNIV can actually be written (with a
certain amount of pain).

The object of the next Section is to show the existence of Kleene’s T -predicate. This
will yield another important normal form. In addition, the T -predicate is a basic tool in
recursion theory.

5.4 Kleene’s T -Predicate

In Section 5.3, we have encoded programs. The idea of this Section is to also encode com-
putations of RAM programs. Assume that x codes a program, that y is some input (not a
code), and that z codes a computation of Px on input y. The predicate T (x, y, z) is defined
as follows:

T (x, y, z) holds iff x codes a RAM program, y is an input, and z codes a halting compu-
tation of Px on input y.

We will show that T is primitive recursive. First, we need to encode computations. We
say that z codes a computation of length n ≥ 1 if

z = 〈n+ 2, 〈1, y0〉, 〈i1, y1〉, . . . , 〈in, yn〉〉,

where each ij is the physical location of the next instruction to be executed and each yj
codes the contents of the registers just before execution of the instruction at the location

90 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

ij . Also, y0 codes the initial contents of the registers, that is, y0 = 〈y, 0〉, for some input y.
We let Ln(z) = Π1(z). Note that ij denotes the physical location of the next instruction to
be executed in the sequence of instructions constituting the program coded by x, and not
the line number (label) of this instruction. Thus, the first instruction to be executed is in
location 1, 1 ≤ ij ≤ Ln(x), and in−1 = Ln(x). Since the last instruction which is executed is
the last physical instruction in the program, namely, a continue, there is no next instruction
to be executed after that, and in is irrelevant. Writing the definition of T is a little simpler
if we let in = Ln(x) + 1.

Definition 5.4.1 The T -predicate is the primitive recursive predicate defined as follows:

T (x, y, z) iff PROG(x) and (Ln(z) ≥ 3) and

∀j ≤ Ln(z)− 3[0 ≤ j ⊃

Nextline(Π1(Π(j + 2,Ln(z), z)), x,Π2(Π(j + 2,Ln(z), z))) = Π1(Π(j + 3,Ln(z), z)) and

Nextcont(Π1(Π(j + 2,Ln(z), z)), x,Π2(Π(j + 2,Ln(z), z))) = Π2(Π(j + 3,Ln(z), z)) and

Π1(Π(Ln(z)− 1,Ln(z), z)) = Ln(x) and

Π1(Π(2,Ln(z), z)) = 1 and

y = Π1(Π2(Π(2,Ln(z), z))) and Π2(Π2(Π(2,Ln(z), z))) = 0]

The reader can verify that T (x, y, z) holds iff x codes a RAM program, y is an input, and
z codes a halting computation of Px on input y. In order to extract the output of Px from
z, we define the primitive recursive function Res as follows:

Res(z) = Π1(Π2(Π(Ln(z),Ln(z), z))).

The explanation for this formula is that Res(z) are the contents of register R1 when Px halts,
that is, Π1(yLn(z)). Using the T -predicate, we get the so-called Kleene normal form.

Theorem 5.4.2 (Kleene Normal Form) Using the indexing of the partial recursive functions
defined earlier, we have

ϕx(y) = Res[min z(T (x, y, z))],

where T (x, y, z) and Res are primitive recursive.

Note that the universal function ϕuniv can be defined as

ϕuniv(x, y) = Res[min z(T (x, y, z))].

There is another important property of the partial recursive functions, namely, that
composition is effective. We need two auxiliary primitive recursive functions. The function
Conprogs creates the code of the program obtained by concatenating the programs Px and
Py, and for i ≥ 2, Cumclr(i) is the code of the program which clears registers R2, . . . , Ri.
To get Cumclr, we can use the function clr(i) such that clr(i) is the code of the program

5.4. KLEENE’S T -PREDICATE 91

N1 tail Ri
N1 Ri jmp N1a
N continue

We leave it as an exercise to prove that clr, Conprogs, and Cumclr, are primitive recursive.

Theorem 5.4.3 There is a primitive recursive function c such that

ϕc(x,y) = ϕx ◦ ϕy.

Proof . If both x and y code programs, then ϕx ◦ ϕy can be computed as follows: Run
Py, clear all registers but R1, then run Px. Otherwise, let loop be the index of the infinite
loop program:

c(x, y) =

{
Conprogs(y,Conprogs(Cumclr(y), x)) if PROG(x) and PROG(y)
loop otherwise.

92 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Chapter 6

Elementary Recursive Function
Theory

6.1 Acceptable Indexings

In Chapter 5, we have exhibited a specific indexing of the partial recursive functions by
encoding the RAM programs. Using this indexing, we showed the existence of a universal
function ϕuniv and of a recursive function c, with the property that for all x, y ∈ N,

ϕc(x,y) = ϕx ◦ ϕy.

It is natural to wonder whether the same results hold if a different coding scheme is used or
if a different model of computation is used, for example, Turing machines. In other words,
we would like to know if our results depend on a specific coding scheme or not. Our previous
results showing the characterization of the partial recursive functions being independennt
of the specific model used, suggests that it might be possible to pinpoint certain properties
of coding schems which would allow an axiomatic development of recursive function theory.
What we are aiming at is to find some simple properties of “nice” coding schemes that allow
one to proceed without using explicit coding schemes, as long as the above properties hold.

Remarkably, such properties exist. Furthermore, any two coding schemes having these
properties are equivalent in a strong sense (effectively equivalent), and so, one can pick
any such coding scheme without any risk of losing anything else because the wrong coding
scheme was chosen. Such coding schemes, also called indexings, or Gödel numberings, or
even programming systems, are called acceptable indexings.

Definition 6.1.1 An indexing of the partial recursive functions is an infinite sequence
ϕ0,ϕ1, . . . , of partial recursive functions that includes all the partial recursive functions
of one argument (there might be repetitions, this is why we are not using the term enu-
meration). An indexing is universal if it contains the partial recursive function ϕuniv such
that

ϕuniv(i, x) = ϕi(x)

93

94 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

for all i, x ∈ N. An indexing is acceptable if it is universal and if there is a total recursive
function c for composition, such that

ϕc(i,j) = ϕi ◦ ϕj

for all i, j ∈ N.

From Chapter 5, we know that the specific indexing of the partial recursive functions given
for RAM programs is acceptable. Another characterization of acceptable indexings left as
an exercise is the following: an indexing ψ0,ψ1,ψ2, . . . of the partial recursive functions is
acceptable iff there exists a total recurive function f translating the RAM indexing of Section
5.3 into the indexing ψ0,ψ1,ψ2, . . ., that is,

ϕi = ψf(i)

for all i ∈ N.

A very useful property of acceptable indexings is the so-called “s-m-n Theorem”. Using
the slightly loose notation ϕ(x1, . . . , xn) for ϕ(〈x1, . . . , xn〉), the s-m-n theorem says the
following. Given a function ϕ considered as having m+ n arguments, if we fix the values of
the first m arguments and we let the other n arguments vary, we obtain a function ψ of n
arguments. Then, the index of ψ depends in a recursive fashion upon the index of ϕ and the
first m arguments x1, . . . , xm. We can “pull” the first m arguments of ϕ into the index of ψ.

Theorem 6.1.2 (The “s-m-n Theorem”) For any acceptable indexing ϕ0,ϕ1, . . . , there is a
total recursive function s, such that, for all i,m, n ≥ 1, for all x1, . . . , xm and all y1, . . . , yn,
we have

ϕs(i,m,x1,...,xm)(y1, . . . , yn) = ϕi(x1, . . . , xm, y1, . . . , yn).

Proof . First, note that the above identity is really

ϕs(i,m,〈x1,...,xm〉)(〈y1, . . . , yn〉) = ϕi(〈x1, . . . , xm, y1, . . . , yn〉).

Recall that there is a primitive recursive function Con such that

Con(m, 〈x1, . . . , xm〉, 〈y1, . . . , yn〉) = 〈x1, . . . , xm, y1, . . . , yn〉

for all x1, . . . , xm, y1, . . . , yn ∈ N. Hence, a recursive function s such that

ϕs(i,m,x)(y) = ϕi(Con(m, x, y))

will do. We define some auxiliary primitive recursive functions as follows:

P (y) = 〈0, y〉 and Q(〈x, y〉) = 〈x+ 1, y〉.

6.1. ACCEPTABLE INDEXINGS 95

Since we have an indexing of the partial recursive functions, there are indices p and q such
that P = ϕp and Q = ϕq. Let R be defined such that

R(0) = p,

R(x+ 1) = c(q, R(x)),

where c is the recursive function for composition given by the indexing. We leave as an
exercise to prove that

ϕR(x)(y) = 〈x, y〉

for all x, y ∈ N. Also, recall that 〈x, y, z〉 = 〈x, 〈y, z〉〉, by definition of pairing. Then, we
have

ϕR(x) ◦ ϕR(y)(z) = ϕR(x)(〈y, z〉) = 〈x, y, z〉.

Finally, let k be an index for the function Con, that is, let

ϕk(〈m, x, y〉) = Con(m, x, y).

Define s by
s(i,m, x) = c(i, c(k, c(R(m), R(x)))).

Then, we have

ϕs(i,m,x)(y) = ϕi ◦ ϕk ◦ ϕR(m) ◦ ϕR(x)(y) = ϕi(Con(m, x, y)),

as desired. Notice that if the composition function c is primitive recursive, then s is also
primitive recursive. In particular, for the specific indexing of the RAM programs given in
Section 5.3, the function s is primitive recursive.

As a first application of the s-m-n Theorem, we show that any two acceptable indexings
are effectively inter-translatable.

Theorem 6.1.3 Let ϕ0,ϕ1, . . . , be a universal indexing, and let ψ0,ψ1, . . . , be any indexing
with a total recursive s-1-1 function, that is, a function s such that

ψs(i,1,x)(y) = ψi(x, y)

for all i, x, y ∈ N. Then, there is a total recursive function t such that ϕi = ψt(i).

Proof . Let ϕuniv be a universal partial recursive function for the indexing ϕ0,ϕ1,
Since ψ0,ψ1, . . . , is also an indexing, ϕuniv occurs somewhere in the second list, and thus,
there is some k such that ϕuniv = ψk. Then, we have

ψs(k,1,i)(x) = ψk(i, x) = ϕuniv(i, x) = ϕi(x),

for all i, x ∈ N. Therefore, we can take the function t to be the function defined such that

t(i) = s(k, 1, i)

96 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

for all i ∈ N.

Using Theorem 6.1.3, if we have two acceptable indexings ϕ0,ϕ1, . . . , and ψ0,ψ1, . . ., there
exist total recursive functions t and u such that

ϕi = ψt(i) and ψi = ϕu(i)

for all i ∈ N. Also note that if the composition function c is primitive recursive, then any
s-m-n function is primitive recursive, and the translation functions are primitive recursive.
Actually, a stronger result can be shown. It can be shown that for any two acceptable in-
dexings, there exist total recursive injective and surjective translation functions. In other
words, any two acceptable indexings are recursively isomorphic (Roger’s isomorphism theo-
rem). Next, we turn to algorithmically unsolvable, or undecidable, problems.

6.2 Undecidable Problems

We saw in Section 5.3 that the halting problem for RAM programs is undecidable. In this
section, we take a slightly more general approach to study the undecidability of problems,
and give some tools for resolving decidability questions.

First, we prove again the undecidability of the halting problem, but this time, for any
indexing of the partial recursive functions.

Theorem 6.2.1 (Halting Problem, Abstract Version) Let ψ0,ψ1, . . . , be any indexing of the
partial recursive functions. Then, the function f defined such that

f(x, y) =

{
1 if ψx(y) is defined,
0 if ψx(y) is undefined,

is not recursive.

Proof . Assume that f is recursive, and let g be the function defined such that

g(x) = f(x, x)

for all x ∈ N. Then g is also recursive. Let θ be the function defined such that

θ(x) =

{
0 if g(x) = 0,
undefined if g(x) = 1.

We claim that θ is not even partial recursive. Observe that θ is such that

θ(x) =

{
0 if ψx(x) is undefined,
undefined if ψx(x) is defined.

6.2. UNDECIDABLE PROBLEMS 97

If θ was partial recursive, it would occur in the list as some ψi, and we would have

θ(i) = ψi(i) = 0 iff ψi(i) is undefined,

a contradiction. Therefore, f and g can’t be recursive.

Observe that the proof of Theorem 6.2.1 does not use the fact that the indexing is
universal or acceptable, and thus, the theorem holds for any indexing of the partial recursive
functions. The function g defined in the proof of Theorem 6.2.1 is the characteristic function
of a set denoted as K, where

K = {x | ψx(x) is defined}.

Given any set, X , for any subset, A ⊆ X , of X , recall that the characteristic function,
CA (or χA), of A is the function, CA:X → {0, 1}, defined so that, for all x ∈ X ,

CA(x) =
{
1 if x ∈ A
0 if x /∈ A.

The set K is an example of a set which is not recursive. Since this fact is quite important,
we give the following definition:

Definition 6.2.2 A subset, A, of Σ∗ (or a subset, A, of N) is recursive iff its characteristic
function, CA, is a total recursive function.

Using Definition 6.2.2, Theorem 6.2.1 can be restated as follows.

Lemma 6.2.3 For any indexing ϕ0,ϕ1, . . . of the partial recursive functions (over Σ∗ or N),
the set K = {x | ϕx(x) is defined} is not recursive.

Recursive sets allow us to define the concept of a decidable (or undecidable) problem.
The idea is to generalize the situation described in Section 5.3 and Section 5.4, where a set
of objects, the RAM programs, is encoded into a set of natural numbers, using a coding
scheme.

Definition 6.2.4 Let C be a countable set of objects, and let P be a property of objects in
C. We view P as the set

{a ∈ C | P (a)}.

A coding-scheme is an injective function #:C → N that assigns a unique code to each object
in C. The property P is decidable (relative to #) iff the set {#(a) | a ∈ C and P (a)} is
recursive. The property P is undecidable (relative to #) iff the set {#(a) | a ∈ C and P (a)}
is not recursive.

98 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

Observe that the decidability of a property P of objects in C depends upon the coding
scheme #. Thus, if we are cheating in using a non-effective coding scheme, we may declare
that a property is decidabe even though it is not decidable in some reasonable coding scheme.
Consequently, we require a coding scheme # to be effective in the following sense. Given any
object a ∈ C, we can effectively (i.e.. algorithmically) determine its code #(a). Conversely,
given any integer n ∈ N, we should be able to tell effectively if n is the code of some object
in C, and if so, to find this object. In practice, it is always possible to describe the objects
in C as strings over some (possibly complex) alphabet Σ (sets of trees, graphs, etc). In such
cases, the coding schemes are recursive functions from Σ∗ to N = {a1}∗.

For example, let C = N×N, where the property P is the equality of the partial functions
ϕx and ϕy. We can use the pairing function 〈−,−〉 as a coding function, and the problem is
formally encoded as the recursiveness of the set

{〈x, y〉 | x, y ∈ N, ϕx = ϕy}.

In most cases, we don’t even bother to describe the coding scheme explicitly, knowing
that such a description is routine, although perhaps tedious.

We now show that most properties about programs (except the trivial ones) are undecid-
able. First, we show that it is undecidable whether a RAM program halts for every input.
In other words, it is undecidable whether a procedure is an algorithm. We actually prove a
more general fact.

Lemma 6.2.5 For any acceptable indexing ϕ0,ϕ1, . . . of the partial recursive functions, the
set

TOTAL = {x | ϕx is a total function}

is not recursive.

Proof . The proof uses a technique known as reducibility. We try to reduce a set A known
to be nonrecursive to TOTAL via a recursive function f :A → TOTAL, so that

x ∈ A iff f(x) ∈ TOTAL.

If TOTAL were recursive, its characteristic function g would be recursive, and thus, the
function g ◦ f would be recursive, a contradiction, since A is assumed to be nonrecursive.
In the present case, we pick A = K. To find the recursive function f :K → TOTAL, we use
the s-m-n Theorem. Let θ be the function defined below: for all x, y ∈ N,

θ(x, y) =
{
ϕx(x) if x ∈ K,
undefined if x /∈ K.

Note that θ does not depend on y. The function θ is partial recursive. Indeed, we have

θ(x, y) = ϕx(x) = ϕuniv(x, x).

6.2. UNDECIDABLE PROBLEMS 99

Thus, θ has some index j, so that θ = ϕj , and by the s-m-n Theorem, we have

ϕs(j,1,x)(y) = ϕj(x, y) = θ(x, y).

Let f be the recursive function defined such that

f(x) = s(j, 1, x)

for all x ∈ N. Then, we have

ϕf(x)(y) =
{
ϕx(x) if x ∈ K,
undefined if x /∈ K

for all y ∈ N. Thus, observe that ϕf(x) is a total function iff x ∈ K, that is,

x ∈ K iff f(x) ∈ TOTAL,

where f is recursive. As we explained earlier, this shows that TOTAL is not recursive.

The above argument can be generalized to yield a result known as Rice’s Theorem. Let
ϕ0,ϕ1, . . . be any indexing of the partial recursive functions, and let C be any set of partial
recursive functions. We define the set PC as

PC = {x ∈ N | ϕx ∈ C}.

We can view C as a property of some of the partial recursive functions. For example

C = {all total recursive functions}.

We say that C is nontrivial if C is neither empty nor the set of all partial recursive functions.
Equivalently C is nontrivial iff PC *= ∅ and PC *= N. We may think of PC as the set of
programs computing the functions in C.

Theorem 6.2.6 (Rice’s Theorem) For any acceptable indexing ϕ0,ϕ1, . . . of the partial re-
cursive functions, for any set C of partial recursive functions, the set

PC = {x ∈ N | ϕx ∈ C}

is nonrecursive unless C is trivial.

Proof . Assume that C is nontrivial. A set is recursive iff its complement is recursive (the
proof is trivial). Hence, we may assume that the totally undefined function is not in C, and
since C *= ∅, let ψ be some other function in C. We produce a recursive function f such that

ϕf(x)(y) =

{
ψ(y) if x ∈ K,
undefined if x /∈ K,

100 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

for all y ∈ N. We get f by using the s-m-n Theorem. Let ψ = ϕi, and define θ as follows:

θ(x, y) = ϕuniv(i, y) + (ϕuniv(x, x)− ϕuniv(x, x)),

where − is the primitive recursive function for truncated subtraction. Clearly, θ is partial
recursive, and let θ = ϕj. By the s-m-n Theorem, we have

ϕs(j,1,x)(y) = ϕj(x, y) = θ(x, y)

for all x, y ∈ N. Letting f be the recursive function such that

f(x) = s(j, 1, x),

by definition of θ, we get

ϕf(x)(y) = θ(x, y) =
{
ψ(y) if x ∈ K,
undefined if x /∈ K.

Thus, f is the desired reduction function. Now, we have

x ∈ K iff f(x) ∈ PC ,

and thus, the characteristic function CK ofK is equal to CP ◦f , where CP is the characteristic
function of PC . Therefore, PC is not recursive, since otherwise, K would be recursive, a
contradiction.

Rice’s Theorem shows that all nontrivial properties of the input/output behavior of
programs are undecidable! In particular, the following properties are undecidable.

Lemma 6.2.7 The following properties of partial recursive functions are undecidable.

(a) A partial recursive function is a constant function.

(b) Given any integer y ∈ N, is y in the range of some partial recursive function.

(c) Two partial recursive functions ϕx and ϕy are identical.

(d) A partial recursive function ϕx is equal to a given partial recursive function ϕa.

(e) A partial recursive function yields output z on input y, for any given y, z ∈ N.

(f) A partial recursive function diverges for some input.

(g) A partial recursive function diverges for all input.

The above Lemma is left as an easy exercise.

A property may be undecidable although it is partially decidable. By partially decidable,
we mean that there exists a recursive function g that enumerates the set PC = {x | ϕx ∈ C}.
This means that there is a recursive function g whose range is PC . We say that PC is
recursively enumerable. Indeed, g provides a recursive enumeration of PC , with possible
repetitions. Recursively enumerable sets are the object of the next Section.

6.3. RECURSIVELY ENUMERABLE SETS 101

6.3 Recursively Enumerable Sets

Consider the set
A = {x ∈ N | ϕx(a) is defined},

where a ∈ N is any fixed natural number. By Rice’s Theorem, A is not recursive (check this).
We claim that A is the range of a recursive function g. For this, we use the T -predicate.
We produce a function which is actually primitive recursive. First, note that A is nonempty
(why?), and let x0 be any index in A. We define g by primitive recursion as follows:

g(0) = x0,

g(x+ 1) =

{
Π1(x) if T (Π1(x), a,Π2(x)),
x0 otherwise.

Since this type of argument is new, it is helpful to explain informally what g does. For
every input x, the function g tries finitely many steps of a computation on input a of some
partial recursive function. The computation is given by Π2(x), and the partial function is
given by Π1(x). Since Π1 and Π2 are projection functions, when x ranges over N, both Π1(x)
and Π2(x) also range over N. Such a process is called a dovetailing computation. Therefore
all computations on input a for all partial recursive functions will be tried, and the indices of
the partial recursive functions converging on input a will be selected. This type of argument
will be used over and over again.

Definition 6.3.1 A subset X of N is recursively enumerable iff either X = ∅, or X is the
range of some total recursive function. Similarly, a subset X of Σ∗ is recursively enumerable
iff either X = ∅, or X is the range of some total recursive function.

We will often abbreviate recursively enumerable as r.e.

Remark: It should be noted that the definition of an r.e set given in Definition 6.3.1 is
different from an earlier definition given in terms of acceptance by a Turing machine and it
is by no means obvious that these two definitions are equivalent. This equivalence will be
proved in Lemma 6.3.3 ((1) ⇐⇒ (4)).

The following Lemma relates recursive sets and recursively enumerable sets.

Lemma 6.3.2 A set A is recursive iff both A and its complement A are recursively enumer-
able.

Proof . Assume that A is recursive. Then, it is trivial that its complement is also recursive.
Hence, we only have to show that a recursive set is recursively enumerable. The empty set

102 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

is recursively enumerable by definition. Otherwise, let y ∈ A be any element. Then, the
function f defined such that

f(x) =

{
x iff CA(x) = 1,
y iff CA(x) = 0,

for all x ∈ N is recursive and has range A.

Conversely, assume that both A and A are recursively enumerable. If either A or A is
empty, then A is recursive. Otherwise, let A = f(N) and A = g(N), for some recursive
functions f and g. We define the function CA as follows:

CA(x) =
{
1 if f(min y[f(y) = x ∨ g(y) = x]) = x,
0 otherwise.

The function CA lists A and A in parallel, waiting to see whether x turns up in A or in A.
Note that x must eventually turn up either in A or in A, so that CA is a total recursive
function.

Our next goal is to show that the recursively enumerable sets can be given several equiv-
alent definitions.

Lemma 6.3.3 For any subset A of N, the following properties are equivalent:

(1) A is empty or A is the range of a primitive recursive function (Rosser, 1936).

(2) A is recursively enumerable.

(3) A is the range of a partial recursive function.

(4) A is the domain of a partial recursive function.

Proof . The implication (1) ⇒ (2) is trivial, since A is r.e. iff either it is empty or it is
the range of a (total) recursive function.

To prove the implication (2) ⇒ (3), it suffices to observe that the empty set is the range of
the totally undefined function (computed by an infinite loop program), and that a recursive
function is a partial recursive function.

The implication (3) ⇒ (4) is shown as follows. Assume that A is the range of ϕi. Define
the function f such that

f(x) = min y[T (i,Π1(y),Π2(y)) ∧ Res(Π2(y)) = x]

for all x ∈ N. Clearly, f is partial recursive and has domain A.

The implication (4) ⇒ (1) is shown as follows. The only nontrivial case is when A is
nonempty. Assume that A is the domain of ϕi. Since A *= ∅, there is some a ∈ N such that
a ∈ A, so the quantity

min y[T (i,Π1(y),Π2(y))]

6.3. RECURSIVELY ENUMERABLE SETS 103

is defined and we can pick a to be

a = Π1(min y[T (i,Π1(y),Π2(y))]).

We define the primitive recursive function f as follows:

f(0) = a,

f(x+ 1) =

{
Π1(x) if T (i,Π1(x),Π2(x)),
a if ¬T (i,Π1(x),Π2(x)).

Clearly, A is the range of f and f is primitive recursive.

More intuitive proofs of the implications (3) ⇒ (4) and (4) ⇒ (1) can be given. Assume
that A *= ∅ and that A = range(g), where g is a partial recursive function. Assume that g
is computed by a RAM program P . To compute f(x), we start computing the sequence

g(0), g(1), . . .

looking for x. If x turns up as say g(n), then we output n. Otherwise the computation
diverges. Hence, the domain of f is the range of g.

Assume now that A is the domain of some partial recursive function g, and that g is
computed by some Turing machine M . Since the case where A = ∅ is trivial, we may assume
that A *= ∅, and let n0 ∈ A be some chosen element in A. We construct another Turing
machine performing the following steps: On input n,

(0) Do one step of the computation of g(0)

. . .

(n) Do n+ 1 steps of the computation of g(0)

Do n steps of the computation of g(1)

. . .

Do 2 steps of the computation of g(n− 1)

Do 1 step of the computation of g(n)

During this process, whenever the computation of g(m) halts for some m ≤ n, we output
m. Otherwise, we output n0.

In this fashion, we will enumerate the domain of g, and since we have constructed a
Turing machine that halts for every input, we have a total recursive function.

The following Lemma can easily be shown using the proof technique of Lemma 6.3.3.

Lemma 6.3.4 (1) There is a recursive function h such that

range(ϕx) = dom(ϕh(x))

for all x ∈ N.

104 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

(2) There is a recursive function k such that

dom(ϕx) = range(ϕk(x))

and ϕk(x) is total recursive, for all x ∈ N such that dom(ϕx) *= ∅.

The proof of Lemma 6.3.4 is left as an exercise. Using Lemma 6.3.3, we can prove that
K is an r.e. set. Indeed, we have K = dom(f), where

f(x) = ϕuniv(x, x)

for all x ∈ N. The set
K0 = {〈x, y〉 | ϕx(y) converges}

is also an r.e. set, since K0 = dom(g), where

g(z) = ϕuniv(Π1(z),Π2(z)),

which is partial recursive. The sets K and K0 are examples of r.e. sets that are not recursive.

We can now prove that there are sets that are not r.e.

Lemma 6.3.5 For any indexing of the partial recursive functions, the complement K of the
set

K = {x ∈ N | ϕx(x) converges}

is not recursively enumerable.

Proof . If K was recursively enumerable, since K is also recursively enumerable, by
Lemma 6.3.2, the set K would be recursive, a contradiction.

The sets K and K0 are examples of sets that are not r.e. This shows that the r.e. sets
are not closed under complementation. However, we leave it as an exercise to prove that the
r.e. sets are closed under union and intersection.

We will prove later on that TOTAL is not r.e. This is rather unpleasant. Indeed, this
means that there is no way of effectively listing all algorithms (all total recursive functions).
Hence, in a certain sense, the concept of partial recursive function (procedure) is more natural
than the concept of a (total) recursive function (algorithm).

The next two Lemmas give other characterizations of the r.e. sets and of the recursive
sets. The proofs are left as an exercise.

Lemma 6.3.6 (1) A set A is r.e. iff either it is finite or it is the range of an injective
recursive function.

(2) A set A is r.e. if either it is empty or it is the range of a monotonic partial recursive
function.

(3) A set A is r.e. iff there is a Turing machine M such that, for all x ∈ N, M halts on
x iff x ∈ A.

6.3. RECURSIVELY ENUMERABLE SETS 105

Lemma 6.3.7 A set A is recursive iff either it is finite or it is the range of a strictly
increasing recursive function.

Another important result relating the concept of partial recursive function and that of
an r.e. set is given below.

Theorem 6.3.8 For every unary partial function f , the following properties are equivalent:

(1) f is partial recursive.

(2) The set

{〈x, f(x)〉 | x ∈ dom(f)}

is r.e.

Proof . Let g(x) = 〈x, f(x)〉. Clearly, g is partial recursive, and

range(g) = {〈x, f(x)〉 | x ∈ dom(f)}.

Conversely, assume that

range(g) = {〈x, f(x)〉 | x ∈ dom(f)}

for some recursive function g. Then, we have

f(x) = Π2(g(min y[Π1(g(y)) = x)]))

for all x ∈ N, so that f is partial recursive.

Using our indexing of the partial recursive functions and Lemma 6.3.3, we obtain an
indexing of the r.e. sets.

Definition 6.3.9 For any acceptable indexing ϕ0,ϕ1, . . . of the partial recursive functions,
we define the enumeration W0,W1, . . . of the r.e. sets by setting

Wx = dom(ϕx).

We now describe a technique for showing that certain sets are r.e. but not recursive, or
complements of r.e. sets that are not recursive, or not r.e., or neither r.e. nor the complement
of an r.e. set. This technique is known as reducibility .

106 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

6.4 Reducibility and Complete Sets

We already used the notion of reducibility in the proof of Lemma 6.2.5 to show that TOTAL
is not recursive.

Definition 6.4.1 A set A is many-one reducible to a set B if there is a total recursive
function f such that

x ∈ A iff f(x) ∈ B

for all x ∈ A. We write A ≤ B, and for short, we say that A is reducible to B.

The following simple Lemma is left as an exercise to the reader.

Lemma 6.4.2 Let A,B,C be subsets of N (or Σ∗). The following properties hold:

(1) If A ≤ B and B ≤ C, then A ≤ C.

(2) If A ≤ B then A ≤ B.

(3) If A ≤ B and B is r.e., then A is r.e.

(4) If A ≤ B and A is not r.e., then B is not r.e.

(5) If A ≤ B and B is recursive, then A is recursive.

(6) If A ≤ B and A is not recursive, then B is not recursive.

Another important concept is the concept of a complete set.

Definition 6.4.3 An r.e. set A is complete w.r.t. many-one reducibility iff every r.e. set B
is reducible to A, i.e., B ≤ A.

For simplicity, we will often say complete for complete w.r.t. many-one reducibility .

Theorem 6.4.4 The following properties hold:

(1) If A is complete, B is r.e., and A ≤ B, then B is complete.

(2) K0 is complete.

(3) K0 is reducible to K.

Proof . (1) This is left as a simple exercise.

(2) Let Wx be any r.e. set. Then

y ∈ Wx iff 〈x, y〉 ∈ K0,

6.4. REDUCIBILITY AND COMPLETE SETS 107

and the reduction function is the recursive function f such that

f(y) = 〈x, y〉

for all y ∈ N.

(3) We use the s-m-n Theorem. First, we leave it as an exercise to prove that there is a
recursive function f such that

ϕf(x)(y) =

{
1 if ϕΠ1(x)(Π2(x)) converges,
undefined otherwise,

for all x, y ∈ N. Then, for every z ∈ N,

z ∈ K0 iff ϕΠ1(z)(Π2(z)) converges,

iff ϕf(z)(y) = 1 for all y ∈ N. However,

ϕf(z)(y) = 1 iff ϕf(z)(f(z)) = 1,

since ϕf(z) is a constant function. This means that

z ∈ K0 iff f(z) ∈ K,

and f is the desired function.

As a corollary of Theorem 6.4.4, the set K is also complete.

Definition 6.4.5 Two sets A and B have the same degree of unsolvability or are equivalent
iff A ≤ B and B ≤ A.

Since K and K0 are both complete, they have the same degree of unsolvability. We will
now investigate the reducibility and equivalence of various sets. Recall that

TOTAL = {x ∈ N | ϕx is total}.

We define EMPTY and FINITE, as follows:

EMPTY = {x ∈ N | ϕx is undefined for all input},

FINITE = {x ∈ N | ϕx is defined only for finitely many input}.

Obviously, EMPTY ⊂ FINITE, and since

FINITE = {x ∈ N | ϕx has a finite domain},

we have
FINITE = {x ∈ N | ϕx has an infinite domain},

and thus, TOTAL ⊂ FINITE.

108 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

Lemma 6.4.6 We have K0 ≤ EMPTY.

The proof of Lemma 6.4.6 follows from the proof of Theorem 6.4.4. We also have the
following Lemma.

Lemma 6.4.7 The following properties hold:

(1) EMPTY is not r.e.

(2) EMPTY is r.e.

(3) K and EMPTY are equivalent.

(4) EMPTY is complete.

Proof . We prove (1) and (3), leaving (2) and (4) as an exercise (Actually, (2) and (4)
follow easily from (3)). First, we show that K ≤ EMPTY. By the s-m-n Theorem, there
exists a recursive function f such that

ϕf(x)(y) =

{
ϕx(x) if ϕx(x) converges,
undefined if ϕx(x) diverges,

for all x, y ∈ N. Note that for all x ∈ N,

x ∈ K iff f(x) ∈ EMPTY,

and thus, K ≤ EMPTY. Since K is not r.e., EMPTY is not r.e.

By the s-m-n Theorem, there is a recursive function g such that

ϕg(x)(y) = min z[T (x,Π1(z),Π2(z))],

for all x, y ∈ N. Note that
x ∈ EMPTY iff g(x) ∈ K

for all x ∈ N. Therefore, EMPTY ≤ K, and since we just showed that K ≤ EMPTY, the
sets K and EMPTY are equivalent.

Lemma 6.4.8 The following properties hold:

(1) TOTAL and TOTAL are not r.e.

(2) FINITE and FINITE are not r.e.

Proof . Checking the proof of Theorem 6.4.4, we note that K0 ≤ TOTAL and K0 ≤
FINITE. Hence, we get K0 ≤ TOTAL and K0 ≤ FINITE, and neither TOTAL nor FINITE
is r.e. If TOTAL was r.e., then there would be a recursive function f such that TOTAL =
range(f). Define g as follows:

g(x) = ϕf(x)(x) + 1 = ϕuniv(f(x), x) + 1

6.5. THE RECURSION THEOREM 109

for all x ∈ N. Since f is total and ϕf(x) is total for all x ∈ N, the function g is total recursive.
Let e be an index such that

g = ϕf(e).

Since g is total, g(e) is defined. Then, we have

g(e) = ϕf(e)(e) + 1 = g(e) + 1,

a contradiction. Hence, TOTAL is not r.e. Finally, we show that TOTAL ≤ FINITE. This
also shows that FINITE is not r.e. By the s-m-n Theorem, there is a recursive function f
such that

ϕf(x)(y) =

{
1 if ∀z ≤ y(ϕx(z) ↓),
undefined otherwise,

for all x, y ∈ N. It is easily seen that

x ∈ TOTAL iff f(x) ∈ FINITE

for all x ∈ N.

From Lemma 6.4.8, we have TOTAL ≤ FINITE. It turns out that FINITE ≤ TOTAL,
and TOTAL and FINITE are equivalent.

Lemma 6.4.9 The sets TOTAL and FINITE are equivalent.

Proof . We show that FINITE ≤ TOTAL. By the s-m-n Theorem, there is a recursive
function f such that

ϕf(x)(y) =

{
1 if ∃z ≥ y(ϕx(z) ↓),
undefined if ∀z ≥ y(ϕx(z) ↑),

for all x, y ∈ N. It is easily seen that

x ∈ FINITE iff f(x) ∈ TOTAL

for all x ∈ N.

We now turn to the recursion Theorem.

6.5 The Recursion Theorem

The recursion Theorem, due to Kleene, is a fundamental result in recursion theory. Let f
be a total recursive function. Then, it turns out that there is some n such that

ϕn = ϕf(n).

110 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

Theorem 6.5.1 (Recursion Theorem, Version 1) Let ϕ0,ϕ1, . . . be any acceptable indexing
of the partial recursive functions. For every total recursive function f , there is some n such
that

ϕn = ϕf(n).

Proof . Consider the function θ defined such that

θ(x, y) = ϕuniv(ϕuniv(x, x), y)

for all x, y ∈ N. The function θ is partial recursive, and there is some index j such that
ϕj = θ. By the s-m-n Theorem, there is a recursive function g such that

ϕg(x)(y) = θ(x, y).

Consider the function f ◦g. Since it is recursive, there is some index m such that ϕm = f ◦g.
Let

n = g(m).

Since ϕm is total, ϕm(m) is defined, and we have

ϕn(y) = ϕg(m)(y) = θ(m, y) = ϕuniv(ϕuniv(m,m), y) = ϕϕuniv(m,m)(y)

= ϕϕm(m)(y) = ϕf◦g(m)(y) = ϕf(g(m))(y) = ϕf(n)(y),

for all y ∈ N. Therefore, ϕn = ϕf(n), as desired.

The recursion Theorem can be strengthened as follows.

Theorem 6.5.2 (Recursion Theorem, Version 2) Let ϕ0,ϕ1, . . . be any acceptable indexing
of the partial recursive functions. There is a total recursive function h such that for all
x ∈ N, if ϕx is total, then

ϕϕx(h(x)) = ϕh(x).

Proof . The recursive function g obtained in the proof of Theorem 6.5.1 satisfies the
condition

ϕg(x) = ϕϕx(x),

and it has some index i such that ϕi = g. Recall that c is a recursive composition function
such that

ϕc(x,y) = ϕx ◦ ϕy.

It is easily verified that the function h defined such that

h(x) = g(c(x, i))

for all x ∈ N does the job.

A third version of the recursion Theorem is given below.

6.5. THE RECURSION THEOREM 111

Theorem 6.5.3 (Recursion Theorem, Version 3) For all n ≥ 1, there is a total recursive
function h of n+ 1 arguments, such that for all x ∈ N, if ϕx is a total recursive function of
n+ 1 arguments, then

ϕϕx(h(x,x1,...,xn),x1,...,xn) = ϕh(x,x1,...,xn),

for all x1, . . . , xn ∈ N.

Proof . Let θ be the function defined such that

θ(x, x1, . . . , xn, y) = ϕϕx(x,x1,...,xn)(y) = ϕuniv(ϕuniv(x, x, x1, . . . , xn), y)

for all x, x1, . . . , xn, y ∈ N. By the s-m-n Theorem, there is a recursive function g such that

ϕg(x,x1,...,xn) = ϕϕx(x,x1,...,xn).

It is easily shown that there is a recursive function c such that

ϕc(i,j)(x, x1, . . . , xn) = ϕi(ϕj(x, x1, . . . , xn), x1, . . . , xn)

for any two partial recursive functions ϕi and ϕj (viewed as functions of n + 1 arguments)
and all x, x1, . . . , xn ∈ N. Let ϕi = g, and define h such that

h(x, x1, . . . , xn) = g(c(x, i), x1, . . . , xn),

for all x, x1, . . . , xn ∈ N. We have

ϕh(x,x1,...,xn) = ϕg(c(x,i),x1,...,xn) = ϕϕc(x,i)(c(x,i),x1,...,xn),

and

ϕϕc(x,i)(c(x,i),x1,...,xn) = ϕϕx(ϕi(c(x,i),x1,...,xn),x1,...,xn),

= ϕϕx(g(c(x,i),x1,...,xn),x1,...,xn),

= ϕϕx(h(x,x1,...,xn),x1,...,xn).

As a first application of the recursion theorem, we can show that there is an index n such
that ϕn is the constant function with output n. Loosely speaking, ϕn prints its own name.
Let f be the recursive function such that

f(x, y) = x

for all x, y ∈ N. By the s-m-n Theorem, there is a recursive function g such that

ϕg(x)(y) = f(x, y) = x

112 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

for all x, y ∈ N. By the recursion Theorem 6.5.1, there is some n such that

ϕg(n) = ϕn,

the constant function with value n.

As a second application, we get a very short proof of Rice’s Theorem. Let C be such
that PC *= ∅ and PC *= N, and let j ∈ PC and k ∈ N− PC . Define the function f as follows:

f(x) =

{
j if x /∈ PC ,
k if x ∈ PC ,

If PC is recursive, then f is recursive. By the recursion Theorem 6.5.1, there is some n such
that

ϕf(n) = ϕn.

But then, we have
n ∈ PC iff f(n) /∈ PC

by definition of f , and thus,
ϕf(n) *= ϕn,

a contradiction. Hence, PC is not recursive.

As a third application, we prove the following Lemma.

Lemma 6.5.4 Let C be a set of partial recursive functions and let

A = {x ∈ N | ϕx ∈ C}.

The set A is not reducible to its complement A.

Proof . Assume that A ≤ A. Then, there is a recursive function f such that

x ∈ A iff f(x) ∈ A

for all x ∈ N. By the recursion Theorem, there is some n such that

ϕf(n) = ϕn.

But then,
ϕn ∈ C iff n ∈ A iff f(n) ∈ A iff ϕf(n) ∈ C,

contradicting the fact that
ϕf(n) = ϕn.

6.6. EXTENDED RICE THEOREM 113

The recursion Theorem can also be used to show that functions defined by recursive
definitions other than primitive recursion are partial recursive. This is the case for the
function known as Ackermann’s function, defined recursively as follows:

f(0, y) = y + 1,

f(x+ 1, 0) = f(x, 1),

f(x+ 1, y + 1) = f(x, f(x+ 1, y)).

It can be shown that this function is not primitive recursive. Intuitively, it outgrows all
primitive recursive functions. However, f is recursive, but this is not so obvious. We can
use the recursion Theorem to prove that f is recursive. Consider the following definition by
cases:

g(n, 0, y) = y + 1,

g(n, x+ 1, 0) = ϕuniv(n, x, 1),

g(n, x+ 1, y + 1) = ϕuniv(n, x,ϕuniv(n, x+ 1, y)).

Clearly, g is partial recursive. By the s-m-n Theorem, there is a recursive function h such
that

ϕh(n)(x, y) = g(n, x, y).

By the recursion Theorem, there is an m such that

ϕh(m) = ϕm.

Therefore, the partial recursive function ϕm(x, y) satisfies the definition of Ackermann’s
function. We showed in a previous Section that ϕm(x, y) is a total function, and thus,
Ackermann’s function is a total recursive function.

Hence, the recursion Theorem justifies the use of certain recursive definitions. How-
ever, note that there are some recursive definitions that are only satisfied by the completely
undefined function.

In the next Section, we prove the extended Rice Theorem.

6.6 Extended Rice Theorem

The extended Rice Theorem characterizes the sets of partial recursive functions C such that
PC is r.e. First, we need to discuss a way of indexing the partial recursive functions that have
a finite domain. Using the uniform projection function Π, we define the primitive recursive
function F such that

F (x, y) = Π(y + 1,Π1(x) + 1,Π2(x)).

We also define the sequence of partial functions P0, P1, . . . as follows:

Px(y) =
{
F (x, y)− 1 if 0 < F (x, y) and y < Π1(x) + 1,
undefined otherwise.

114 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

Lemma 6.6.1 Every Px is a partial recursive function with finite domain, and every partial
recursive function with finite domain is equal to some Px.

The proof is left as an exercise. The easy part of the extended Rice Theorem is the
following lemma. Recall that given any two partial functions f :A → B and g:A → B, we
say that g extends f iff f ⊆ g, which means that g(x) is defined whenever f(x) is defined,
and if so, g(x) = f(x).

Lemma 6.6.2 Let C be a set of partial recursive functions. If there is an r.e. set A such
that, ϕx ∈ C iff there is some y ∈ A such that ϕx extends Py, then PC = {x | ϕx ∈ C} is
r.e.

Proof . Lemma 6.6.2 can be restated as

PC = {x | ∃y ∈ A, Py ⊆ ϕx}

is r.e. If A is empty, so is PC , and PC is r.e. Otherwise, let f be a recursive function such
that

A = range(f).

Let ψ be the following partial recursive function:

ψ(z) =
{
Π1(z) if Pf(Π2(z)) ⊆ ϕΠ1(z),
undefined otherwise.

It is clear that
PC = range(ψ).

To see that ψ is partial recursive, write ψ(z) as follows:

ψ(z) =

{
Π1(z) if ∀w ≤ Π1(f(Π2(z)))[F (f(Π2(z)), w) > 0

⊃ ϕΠ1(z)(w) = F (f(Π2(z)), w)− 1],
undefined otherwise.

To establish the converse of Lemma 6.6.2, we need two Lemmas.

Lemma 6.6.3 If PC is r.e. and ϕ ∈ C, then there is some Py ⊆ ϕ such that Py ∈ C.

Proof . Assume that PC is r.e. and that ϕ ∈ C. By an s-m-n construction, there is a
recursive function g such that

ϕg(x)(y) =

{
ϕ(y) if ∀z ≤ y[¬T (x, x, z)],
undefined if ∃z ≤ y[T (x, x, z)],

for all x, y ∈ N. Observe that if x ∈ K, then ϕg(x) is a finite subfunction of ϕ, and if x ∈ K,
then ϕg(x) = ϕ. Assume that no finite subfunction of ϕ is in C. Then,

x ∈ K iff g(x) ∈ PC

for all x ∈ N, that is, K ≤ PC . Since PC is r.e., K would also be r.e., a contradiction.

As a corollary of Lemma 6.6.3, we note that TOTAL is not r.e.

6.6. EXTENDED RICE THEOREM 115

Lemma 6.6.4 If PC is r.e., ϕ ∈ C, and ϕ ⊆ ψ, where ψ is a partial recursive function,
then ψ ∈ C.

Proof . Assume that PC is r.e. We claim that there is a recursive function h such that

ϕh(x)(y) =

{
ψ(y) if x ∈ K,
ϕ(y) if x ∈ K,

for all x, y ∈ N. Assume that ψ /∈ C. Then

x ∈ K iff h(x) ∈ PC

for all x ∈ N, that is, K ≤ PC , a contradiction, since PC is r.e. Therefore, ψ ∈ C. To find
the function h we proceed as follows: Let ϕ = ϕj and define Θ such that

Θ(x, y, z) =

{
ϕ(y) if T (j, y, z) ∧ ¬T (x, y, w), for 0 ≤ w < z
ψ(y) if T (x, x, z) ∧ ¬T (j, y, w), for 0 ≤ w < z
undefined otherwise.

Observe that if x = y = j, then Θ(j, j, z) is multiply defined, but since ψ extends ϕ, we
get the same value ψ(y) = ϕ(y), so Θ is a well defined partial function. Clearly, for all
(m,n) ∈ N2, there is at most one z ∈ N so that Θ(x, y, z) is defined, so the function σ
defined by

σ(x, y) =
{
z if (x, y, z) ∈ dom(Θ)
undefined otherwise

is a partial recursive function. Finally, let

θ(x, y) = Θ(x, y, σ(x, y)),

a partial recursive function. It is easy to check that

θ(x, y) =

{
ψ(y) if x ∈ K,
ϕ(y) if x ∈ K,

for all x, y ∈ N. By the s-m-n Theorem, there is a recursive function h such that

ϕh(x)(y) = θ(x, y)

for all x, y ∈ N.

Observe that Lemma 6.6.4 yields a new proof that TOTAL is not r.e. Finally, we can
prove the extended Rice Theorem.

Theorem 6.6.5 (Extended Rice Theorem) The set PC is r.e. iff there is an r.e. set A such
that

ϕx ∈ C iff ∃y ∈ A (Py ⊆ ϕx).

116 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

Proof . Let PC = dom(ϕi). Using the s-m-n Theorem, there is a recursive function k such
that

ϕk(y) = Py

for all y ∈ N. Define the r.e. set A such that

A = dom(ϕi ◦ k).

Then,
y ∈ A iff ϕi(k(y)) ↓ iff Py ∈ C.

Next, using Lemma 6.6.3 and Lemma 6.6.4, it is easy to see that

ϕx ∈ C iff ∃y ∈ A (Py ⊆ ϕx).

Indeed, if ϕx ∈ C, by Lemma 6.6.3, there is a finite subfunction Py ⊆ ϕx such that Py ∈ C,
but

Py ∈ C iff y ∈ A,

as desired. On the other hand, if
Py ⊆ ϕx

for some y ∈ A, then
Py ∈ C,

and by Lemma 6.6.4, since ϕx extends Py, we get

ϕx ∈ C.

6.7 Creative and Productive Sets

In this section, we discuss some special sets that have important applications in logic: creative
and productive sets. The concepts to be described are illustrated by the following situation.
Assume that

Wx ⊆ K

for some x ∈ N. We claim that
x ∈ K −Wx.

Indeed, if x ∈ Wx, then ϕx(x) is defined, and by definition of K, we get x /∈ K, a contradic-
tion. Therefore, ϕx(x) must be undefined, that is,

x ∈ K −Wx.

The above situation can be generalized as follows.

6.7. CREATIVE AND PRODUCTIVE SETS 117

Definition 6.7.1 A set A is productive iff there is a total recursive function f such that

if Wx ⊆ A then f(x) ∈ A−Wx

for all x ∈ N. The function f is called the productive function of A. A set A is creative if it
is r.e. and if its complement A is productive.

As we just showed, K is creative and K is productive. The following facts are immediate
conequences of the definition.

(1) A productive set is not r.e.

(2) A creative set is not recursive.

Creative and productive sets arise in logic. The set of theorems of a logical theory is
often creative. For example, the set of theorems in Peano’s arithmetic is creative. This
yields incompleteness results.

Lemma 6.7.2 If a set A is productive, then it has an infinite r.e. subset.

Proof . We first give an informal proof. let f be the recursive productive function of A.
We define a recursive function g as follows: Let x0 be an index for the empty set, and let

g(0) = f(x0).

Assuming that
{g(0), g(1), . . . , g(y)}

is known, let xy+1 be an index for this finite set, and let

g(y + 1) = f(xy+1).

Since Wxy+1 ⊆ A, we have f(xy+1) ∈ A.

For the formal proof, we use the following facts whose proof is left as an exercise:

(1) There is a recursive function u such that

Wu(x,y) = Wx ∪Wy.

(2) There is a recursive function t such that

Wt(x) = {x}.

Letting x0 be an index for the empty set, we define the function h as follows:

h(0) = x0,

h(y + 1) = u(t(f(y)), h(y)).

We define g such that
g = f ◦ h.

It is easily seen that g does the job.

Another important property of productive sets is the following.

118 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY

Lemma 6.7.3 If a set A is productive, then K ≤ A.

Proof . Let f be a productive function for A. Using the s-m-n Theorem, we can find a
recursive function h such that

Wh(y,x) =

{
{f(y)} if x ∈ K,
∅ if x ∈ K.

The above can be restated as follows:

ϕh(y,x)(z) =

{
1 if x ∈ K and z = f(y),
undefined if x ∈ K,

for all x, y, z ∈ N. By the third version of the recursion Theorem (Theorem 6.5.3), there is
a recursive function g such that

Wg(x) = Wh(g(x),x)

for all x ∈ N. Let
k = f ◦ g.

We claim that
x ∈ K iff k(x) ∈ A

for all x ∈ N. The verification of this fact is left as an exercise. Thus, K ≤ A.

Using Lemma 6.7.3, the following results can be shown.

Lemma 6.7.4 The following facts hold.

(1) If A is productive and A ≤ B, then B is productive.

(2) A is creative iff A is equivalent to K.

(3) A is creative iff A is complete,

Bibliography

[1] Michael Machtey and Paul Young. An Introduction to the General Theory of Algorithms.
Elsevier North-Holland, first edition, 1978.

119

