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with p > 0. Thus, we have
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proving that >, (ui/p)z: € C(X1) and 37, ; —(ui/n)z; € C(X2) are
identical, and thus that C(X1) N C(X2) # 0. ]

Finally, we prove a version of Helly’s theorem.

Theorem 3.3.2 Given any affine space E of dimension m, for every fam-
ily {K1,...,Kn} of n convex subsets of E, if n > m+2 and the intersection
Micr Ki of any m + 1 of the K; is nonempty (where I C {1,...,n},
|I| =m+1), then (_, K; is nonempty.

Proof. The proof is by induction on n > m+1 and uses Radon’s theorem in
the induction step. For n = m+1, the assumption of the theorem is that the
intersection of any family of m+1 of the K;’s is nonempty, and the theorem

holds trivially. Next, let L = {1,2,...,n+1}, where n+1 > m+ 2. By the
induction hypothesis, C; = ﬂje(L—{i}) K is nonempty for every ¢ € L.

We claim that C; N C; # 0 for some ¢ # j. If so, as C; N C; = Z:} K,
we are done. So, let us assume that the C;’s are pairwise disjoint. Then, we
can pick a set X = {ay,...,an4+1} such that a; € C;, for every i € L. By
Radon’s Theorem, there are two nonempty disjoint sets X7, Xo C X such
that X = X; U X, and C(X1) NC(X2) # 0. However, X; C K for every j
with a; ¢ X;. This is because a; ¢ K; for every j, and so, we get

xic () K
a; X1
Symetrically, we also have
X, C ﬂ K;.
a; ¢X2
Since the Kj’s are convex and
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it follows that C(X;) N C(X2) € Ni7! Ki, so that (7! K; is nonempty,
contradicting the fact that C; N C; = 0 for all i # j. O



