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with µ > 0. Thus, we have
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proving that
∑

i∈I(µi/µ)xi ∈ C(X1) and
∑

j∈J −(µj/µ)xj ∈ C(X2) are
identical, and thus that C(X1) ∩ C(X2) �= ∅.

Finally, we prove a version of Helly’s theorem.

Theorem 3.3.2 Given any affine space E of dimension m, for every fam-
ily {K1, . . . ,Kn} of n convex subsets of E, if n ≥ m+2 and the intersection⋂

i∈I Ki of any m + 1 of the Ki is nonempty (where I ⊆ {1, . . . , n},
|I| = m + 1), then

⋂n
i=1 Ki is nonempty.

Proof . The proof is by induction on n ≥ m+1 and uses Radon’s theorem in
the induction step. For n = m+1, the assumption of the theorem is that the
intersection of any family of m+1 of the Ki’s is nonempty, and the theorem
holds trivially. Next, let L = {1, 2, . . . , n+1}, where n+1 ≥ m+2. By the
induction hypothesis, Ci =

⋂
j∈(L−{i}) Kj is nonempty for every i ∈ L.

We claim that Ci ∩ Cj �= ∅ for some i �= j. If so, as Ci ∩ Cj =
⋂n+1

k=1 Kk,
we are done. So, let us assume that the Ci’s are pairwise disjoint. Then, we
can pick a set X = {a1, . . . , an+1} such that ai ∈ Ci, for every i ∈ L. By
Radon’s Theorem, there are two nonempty disjoint sets X1,X2 ⊆ X such
that X = X1 ∪ X2 and C(X1) ∩ C(X2) �= ∅. However, X1 ⊆ Kj for every j
with aj /∈ X1. This is because aj /∈ Kj for every j, and so, we get

X1 ⊆
⋂

aj /∈X1

Kj .

Symetrically, we also have

X2 ⊆
⋂

aj /∈X2

Kj .

Since the Kj ’s are convex and

 ⋂

aj /∈X1

Kj


 ∩


 ⋂

aj /∈X2

Kj


 =

n+1⋂
i=1

Ki,

it follows that C(X1) ∩ C(X2) ⊆ ⋂n+1
i=1 Ki, so that

⋂n+1
i=1 Ki is nonempty,

contradicting the fact that Ci ∩ Cj = ∅ for all i �= j.


