
388 14. Basics of Classical Lie Groups

where Ω0 = In. As a consequence,

eA =
(

eΩ V U
0 1

)
,

where

V = In +
∑
k≥1

Ωk

(k + 1)!
.

Proof . A trivial induction on k shows that

Ak =
(

Ωk Ωk−1U
0 0

)
.

Then we have

eA =
∑
k≥0

Ak

k!
,

= In+1 +
∑
k≥1

1
k!

(
Ωk Ωk−1U
0 0

)
,

=
(

In +
∑

k≥0
Ωk

k!

∑
k≥1

Ωk−1

k! U
0 1

)
,

=
(

eΩ V U
0 1

)
.

We can now prove our main theorem. We will need to prove that V is
invertible when Ω is a skew symmetric matrix. It would be tempting to
write V as

V = Ω−1(eΩ − I).

Unfortunately, for odd n, a skew symmetric matrix of order n is not in-
vertible! Thus, we have to find another way of proving that V is invertible.
However, observe that we have the following useful fact:

V = In +
∑
k≥1

Ωk

(k + 1)!
=

∫ 1

0

eΩtdt.

This is what we will use in Theorem 14.6.4 to prove surjectivity.

Theorem 14.6.4 The exponential map

exp: se(n) → SE(n)

is well-defined and surjective.
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Proof . Since Ω is skew symmetric, eΩ is a rotation matrix, and by Theorem
14.2.2, the exponential map

exp: so(n) → SO(n)

is surjective. Thus, it remains to prove that for every rotation matrix R,
there is some skew symmetric matrix Ω such that R = eΩ and

V = In +
∑
k≥1

Ωk

(k + 1)!

is invertible. By Theorem 11.4.4, for every skew symmetric matrix Ω there
is an orthogonal matrix P such that Ω = PD P�, where D is a block
diagonal matrix of the form

D =




D1 . . .
D2 . . .

...
...

. . .
...

. . . Dp




such that each block Di is either 0 or a two-dimensional matrix of the form

Di =
(

0 −θi

θi 0

)

where θi ∈ R, with θi > 0. Actually, we can assume that θi �= k2π for all
k ∈ Z, since when θi = k2π we have eDi = I2, and Di can be replaced by
two one-dimensional blocks each consisting of a single zero. To compute V ,
since Ω = PD P� = PDP−1, observe that

V = In +
∑
k≥1

Ωk

(k + 1)!

= In +
∑
k≥1

PDkP−1

(k + 1)!

= P


In +

∑
k≥1

Dk

(k + 1)!


 P−1

= PWP−1,

where

W = In +
∑
k≥1

Dk

(k + 1)!
.

We can compute

W = In +
∑
k≥1

Dk

(k + 1)!
=

∫ 1

0

eDtdt,
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by computing

W =




W1 . . .
W2 . . .

...
...

. . .
...

. . . Wp




by blocks. Since

eDi =
(

cos θi − sin θi

sin θi cos θi

)

when Di is a 2 × 2 skew symmetric matrix and Wi =
∫ 1

0
eDitdt, we get

Wi =
(∫ 1

0
cos(θit)dt

∫ 1

0
− sin(θit)dt∫ 1

0
sin(θit)dt

∫ 1

0
cos(θit)dt

)
=

1
θi

(
sin(θit) |10 cos(θit) |10

− cos(θit) |10 sin(θit) |10

)
,

that is,

Wi =
1
θi

(
sin θi −(1 − cos θi)

1 − cos θi sin θi

)
,

and Wi = 1 when Di = 0. Now, in the first case, the determinant is

1
θ2

i

(
(sin θi)2 + (1 − cos θi)2

)
=

2
θ2

i

(1 − cos θi),

which is nonzero, since θi �= k2π for all k ∈ Z. Thus, each Wi is invertible,
and so is W , and thus, V = PWP−1 is invertible.

In the case n = 3, given a skew symmetric matrix

Ω =


 0 −c b

c 0 −a
−b a 0


 ,

letting θ =
√

a2 + b2 + c2, it it easy to prove that if θ = 0, then

eA =
(

I3 U
0 1

)
,

and that if θ �= 0 (using the fact that Ω3 = −θ2Ω), then

eΩ = I3 +
sin θ

θ
Ω +

(1 − cos θ)
θ2

Ω2

and

V = I3 +
(1 − cos θ)

θ2
Ω +

(θ − sin θ)
θ3

Ω2.

We finally reach the best vista point of our hike, the formal definition of
(linear) Lie groups and Lie algebras.


