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the entries λ1, . . . , λn in D (the eigenvalues of A) have absolute value +1.
Thus, the entries in D are of the form cos θ + i sin θ = eiθ. Thus, we can
assume that D is a diagonal matrix of the form

D =




eiθ1 . . .
eiθ2 . . .

...
...

. . .
...

. . . eiθp


 .

If we let E be the diagonal matrix

E =




iθ1 . . .
iθ2 . . .

...
...

. . .
...

. . . iθp




it is obvious that E is skew Hermitian and that

eE = D.

Then, letting B = UEU∗, we have

eB = A,

and it is immediately verified that B is skew Hermitian, since E is.
If A is a unitary matrix with determinant +1, since the eigenvalues of A

are eiθ1 , . . . , eiθp and the determinant of A is the product

eiθ1 · · · eiθp = ei(θ1+···+θp)

of these eigenvalues, we must have

θ1 + · · · + θp = 0,

and so, E is skew Hermitian and has zero trace. As above, letting

B = UEU∗,

we have

eB = A,

where B is skew Hermitian and has null trace.

We now extend the result of Section 14.3 to Hermitian matrices.

14.5 Hermitian Matrices, Hermitian Positive
Definite Matrices, and the Exponential Map

Recall that a Hermitian matrix is called positive (or positive semidefinite) if
its eigenvalues are all positive or null, and positive definite if its eigenvalues
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are all strictly positive. We denote the real vector space of Hermitian n×n
matrices by H(n), the set of Hermitian positive matrices by HP(n), and
the set of Hermitian positive definite matrices by HPD(n).

The next lemma shows that every Hermitian positive definite matrix A is
of the form eB for some unique Hermitian matrix B. As in the real case, the
set of Hermitian matrices is a real vector space, but it is not a Lie algebra
because the Lie bracket [A,B] is not Hermitian unless A and B commute,
and the set of Hermitian (positive) definite matrices is not a multiplicative
group.

Lemma 14.5.1 For every Hermitian matrix B, the matrix eB is Hermi-
tian positive definite. For every Hermitian positive definite matrix A, there
is a unique Hermitian matrix B such that A = eB.

Proof . It is basically the same as the proof of Theorem 14.5.1, except that a
Hermitian matrix can be written as A = UDU∗, where D is a real diagonal
matrix and U is unitary instead of orthogonal.

Lemma 14.5.1 can be reformulated as stating that the map exp:H(n) →
HPD(n) is a bijection. In fact, it can be shown that it is a homeomorphism.
In the case of complex invertible matrices, the polar form theorem can be
reformulated as stating that there is a bijection between the topological
space GL(n, C) of complex n × n invertible matrices (also a group) and
U(n) × HPD(n). As a corollary of the polar form theorem and Lemma
14.5.1, we have the following result: For every complex invertible matrix A,
there is a unique unitary matrix U and a unique Hermitian matrix S such
that

A = U eS .

Thus, we have a bijection between GL(n, C) and U(n) ×H(n). But H(n)
itself is isomorphic to R

n2
, and so there is a bijection between GL(n, C) and

U(n)× R
n2

. It can also be shown that this bijection is a homeomorphism.
This is an interesting fact. Indeed, this homeomorphism essentially reduces
the study of the topology of GL(n, C) to the study of the topology of
U(n). This is nice, since it can be shown that U(n) is compact (as a real
manifold).

In the polar decomposition A = UeS , we have |det(U)| = 1, since U is
unitary, and tr(S) is real, since S is Hermitian (since it is the sum of the
eigenvalues of S, which are real), so that det

(
eS

)
> 0. Thus, if det(A) = 1,

we must have det
(
eS

)
= 1, which implies that S ∈ H(n) ∩ sl(n, C). Thus,

we have a bijection between SL(n, C) and SU(n) × (H(n) ∩ sl(n, C)).
In the next section we study the group SE(n) of affine maps induced by

orthogonal transformations, also called rigid motions, and its Lie algebra.
We will show that the exponential map is surjective. The groups SE(2)
and SE(3) play play a fundamental role in robotics, dynamics, and motion
planning.


