the entries  $\lambda_1, \ldots, \lambda_n$  in D (the eigenvalues of A) have absolute value +1. Thus, the entries in D are of the form  $\cos \theta + i \sin \theta = e^{i\theta}$ . Thus, we can assume that D is a diagonal matrix of the form

$$D = \begin{pmatrix} e^{i\theta_1} & \dots & \\ & e^{i\theta_2} & \dots & \\ \vdots & \vdots & \ddots & \vdots \\ & & & \dots & e^{i\theta_p} \end{pmatrix}$$

If we let E be the diagonal matrix

$$E = \begin{pmatrix} i\theta_1 & \dots & \\ & i\theta_2 & \dots & \\ \vdots & \vdots & \ddots & \vdots \\ & & & \dots & i\theta_p \end{pmatrix}$$

it is obvious that E is skew Hermitian and that

$$e^E = D.$$

Then, letting  $B = UEU^*$ , we have

$$e^B = A,$$

and it is immediately verified that B is skew Hermitian, since E is.

If A is a unitary matrix with determinant +1, since the eigenvalues of A are  $e^{i\theta_1}, \ldots, e^{i\theta_p}$  and the determinant of A is the product

$$e^{i\theta_1}\cdots e^{i\theta_p} = e^{i(\theta_1+\cdots+\theta_p)}$$

of these eigenvalues, we must have

$$\theta_1 + \dots + \theta_p = 0,$$

and so, E is skew Hermitian and has zero trace. As above, letting

$$B = UEU^*,$$

we have

$$e^B = A,$$

where B is skew Hermitian and has null trace.  $\Box$ 

We now extend the result of Section 14.3 to Hermitian matrices.

## 14.5 Hermitian Matrices, Hermitian Positive Definite Matrices, and the Exponential Map

Recall that a Hermitian matrix is called *positive* (or *positive semidefinite*) if its eigenvalues are all positive or null, and *positive definite* if its eigenvalues

## 386 14. Basics of Classical Lie Groups

are all strictly positive. We denote the real vector space of Hermitian  $n \times n$  matrices by  $\mathbf{H}(n)$ , the set of Hermitian positive matrices by  $\mathbf{HP}(n)$ , and the set of Hermitian positive definite matrices by  $\mathbf{HPD}(n)$ .

The next lemma shows that every Hermitian positive definite matrix A is of the form  $e^B$  for some unique Hermitian matrix B. As in the real case, the set of Hermitian matrices is a real vector space, but it is not a Lie algebra because the Lie bracket [A, B] is not Hermitian unless A and B commute, and the set of Hermitian (positive) definite matrices is not a multiplicative group.

**Lemma 14.5.1** For every Hermitian matrix B, the matrix  $e^B$  is Hermitian positive definite. For every Hermitian positive definite matrix A, there is a unique Hermitian matrix B such that  $A = e^B$ .

*Proof*. It is basically the same as the proof of Theorem 14.5.1, except that a Hermitian matrix can be written as  $A = UDU^*$ , where D is a real diagonal matrix and U is unitary instead of orthogonal.

Lemma 14.5.1 can be reformulated as stating that the map  $\exp: \mathbf{H}(n) \to \mathbf{HPD}(n)$  is a bijection. In fact, it can be shown that it is a homeomorphism. In the case of complex invertible matrices, the polar form theorem can be reformulated as stating that there is a bijection between the topological space  $\mathbf{GL}(n, \mathbb{C})$  of complex  $n \times n$  invertible matrices (also a group) and  $\mathbf{U}(n) \times \mathbf{HPD}(n)$ . As a corollary of the polar form theorem and Lemma 14.5.1, we have the following result: For every complex invertible matrix A, there is a unique unitary matrix U and a unique Hermitian matrix S such that

$$A = U e^S.$$

Thus, we have a bijection between  $\mathbf{GL}(n, \mathbb{C})$  and  $\mathbf{U}(n) \times \mathbf{H}(n)$ . But  $\mathbf{H}(n)$  itself is isomorphic to  $\mathbb{R}^{n^2}$ , and so there is a bijection between  $\mathbf{GL}(n, \mathbb{C})$  and  $\mathbf{U}(n) \times \mathbb{R}^{n^2}$ . It can also be shown that this bijection is a homeomorphism. This is an interesting fact. Indeed, this homeomorphism essentially reduces the study of the topology of  $\mathbf{GL}(n, \mathbb{C})$  to the study of the topology of  $\mathbf{U}(n)$ . This is nice, since it can be shown that  $\mathbf{U}(n)$  is compact (as a real manifold).

In the polar decomposition  $A = Ue^S$ , we have  $|\det(U)| = 1$ , since U is unitary, and  $\operatorname{tr}(S)$  is real, since S is Hermitian (since it is the sum of the eigenvalues of S, which are real), so that  $\det(e^S) > 0$ . Thus, if  $\det(A) = 1$ , we must have  $\det(e^S) = 1$ , which implies that  $S \in \mathbf{H}(n) \cap \mathfrak{sl}(n, \mathbb{C})$ . Thus, we have a bijection between  $\mathbf{SL}(n, \mathbb{C})$  and  $\mathbf{SU}(n) \times (\mathbf{H}(n) \cap \mathfrak{sl}(n, \mathbb{C}))$ .

In the next section we study the group  $\mathbf{SE}(n)$  of affine maps induced by orthogonal transformations, also called rigid motions, and its Lie algebra. We will show that the exponential map is surjective. The groups  $\mathbf{SE}(2)$ and  $\mathbf{SE}(3)$  play play a fundamental role in robotics, dynamics, and motion planning.