are two positive self-adjoint linear maps $h_1: E \to E$ and $h_2: F \to F$ and a weakly orthogonal linear map $g: E \to F$ such that

$$f = g \circ h_1 = h_2 \circ g.$$

Furthermore, if f has rank r, the maps h_1 and h_2 have the same positive eigenvalues μ_1, \ldots, μ_r , which are the singular values of f, i.e., the positive square roots of the nonnull eigenvalues of both $f^* \circ f$ and $f \circ f^*$. Finally, h_1, h_2 are unique, g is unique if rank $(f) = \min(m, n)$ and $h_1 = h_2$ if f is normal.

Proof. By Lemma 12.1.2 there are two (unique) positive self-adjoint linear maps $h_1: E \to E$ and $h_2: F \to F$ such that $f^* \circ f = h_1^2$ and $f \circ f^* = h_2^2$. As in the proof of Theorem 12.1.3,

$$\operatorname{Ker} f = \operatorname{Ker} h_1,$$

and letting r be the rank of f, there is an orthonormal basis (u_1, \ldots, u_n) of eigenvectors of h_1 such that (u_1, \ldots, u_r) are associated with the strictly positive eigenvalues μ_1, \ldots, μ_r of h_1 (the singular values of f). The vectors (u_{r+1}, \ldots, u_n) form an orthonormal basis of Ker $f = \text{Ker } h_1$, and the vectors (u_1, \ldots, u_r) form an orthonormal basis of $(\text{Ker } f)^{\perp} = \text{Im } f^*$. Furthermore, letting

$$v_i = \frac{f(u_i)}{\mu_i}$$

when $1 \leq i \leq r$, using the Gram-Schmidt orthonormalization procedure, we can extend (v_1, \ldots, v_r) to an orthonormal basis (v_1, \ldots, v_m) of F (even when r = 0). Also note that (v_1, \ldots, v_r) is an orthonormal basis of Im f, and (v_{r+1}, \ldots, v_m) is an orthonormal basis of Im $f^{\perp} = \text{Ker } f^*$.

Letting $p = \min(m, n)$, we define the linear map $g: E \to F$ by its action on the basis (u_1, \ldots, u_n) as follows:

$$g(u_i) = v_i$$

for all $i, 1 \leq i \leq p$, and

$$g(u_i) = 0$$

for all $i, p+1 \leq i \leq n$. Note that $r \leq p$. Just as in the proof of Theorem 12.1.3, we have

$$(g \circ h_1)(u_i) = f(u_i)$$

when $1 \leq i \leq r$, and

$$(g \circ h_1)(u_i) = g(h_1(u_i)) = g(0) = 0$$

when $r + 1 \leq i \leq n$ (since (u_{r+1}, \ldots, u_n) is a basis for Ker $f = \text{Ker } h_1$), which shows that $f = g \circ h_1$. The fact that g is weakly orthogonal follows easily from the fact that it maps the orthonormal vectors (u_1, \ldots, u_p) to the orthonormal vectors (v_1, \ldots, v_p) . 344 12. Singular Value Decomposition (SVD) and Polar Form

We can show that $f = h_2 \circ g$ as follows. Just as in the proof of Theorem 12.1.3,

$$h_2^2(v_i) = \mu_i^2 v_i$$

when $1 \leq i \leq r$, and

$$h_2^2(v_i) = (f \circ f^*)(v_i) = f(f^*(v_i)) = 0$$

when $r+1 \leq i \leq m$, since (v_{r+1}, \ldots, v_m) is a basis for Ker $f^* = (\text{Im } f)^{\perp}$. Since h_2 is positive self-adjoint, so is h_2^2 , and by Lemma 12.1.2, we must have

$$h_2(v_i) = \mu_i v_i$$

when $1 \leq i \leq r$, and

$$h_2(v_i) = 0$$

when $r + 1 \leq i \leq m$. This shows that (v_1, \ldots, v_m) are eigenvectors of h_2 for μ_1, \ldots, μ_m (letting $\mu_{r+1} = \cdots = \mu_m = 0$), and thus h_1 and h_2 have the same nonnull eigenvalues μ_1, \ldots, μ_r . As a consequence,

$$(h_2 \circ g)(u_i) = h_2(g(u_i)) = h_2(v_i) = \mu_i v_i = f(u_i)$$

when $1 \leq i \leq m$. Since $h_1, h_2, f^* \circ f$, and $f \circ f^*$ are positive self-adjoint, $f^* \circ f = h_1^2, f \circ f^* = h_2^2$, and μ_1, \ldots, μ_r are the eigenvalues of both h_1 and h_2 , it follows that μ_1, \ldots, μ_r are the singular values of f, i.e., the positive square roots of the nonnull eigenvalues of both $f^* \circ f$ and $f \circ f^*$.

Finally, if $m \ge n$ and $\operatorname{rank}(f) = n$, then $\operatorname{Ker} h_1 = \operatorname{Ker} f = (0)$ and h_1 is invertible and if $n \ge m$ and $\operatorname{rank}(f) = m$, then $\operatorname{Ker} h_2 = \operatorname{Ker} f^* = (0)$ and h_2 is invertible. By Lemma 12.1.2 h_1 and h_2 are unique and since

$$f = g \circ h_1$$
 and $f = h_2 \circ g$,

if h_1 is invertible then $g = f \circ h_1^{-1}$ and if h_2 is invertible then $g = h_2^{-1} \circ f$, and thus g is also unique. If h is normal, then $f^* \circ f = f \circ f^*$ and $h_1 = h_2$.

In matrix form, Theorem 12.2.3 can be stated as follows. For every real $m \times n$ matrix A, there is some weakly orthogonal $m \times n$ matrix R and some positive symmetric $n \times n$ matrix S such that

$$A = RS.$$

The proof also shows that if n > m, the last n - m columns of R are zero vectors. A pair (R, S) such that A = RS is called a *polar decomposition of* A.

Remark: If E is a Hermitian space, Theorem 12.2.3 also holds, but the weakly orthogonal linear map g becomes a weakly unitary map. In terms of matrices, the polar decomposition states that for every complex $m \times n$