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are two positive self-adjoint linear maps h1: E — E and ho: F — F and a
weakly orthogonal linear map g: E — F such that

f=gohi=hsog.

Furthermore, if f has rank r, the maps h1 and hy have the same positive
eigenvalues py, . . ., i, which are the singular values of f, i.e., the positive
square roots of the nonnull eigenvalues of both f* o f and f o f*. Finally,
hi,hy are unique, g is unique if rank(f) = min(m,n) and hy = he if f is
normal.

Proof. By Lemma 12.1.2 there are two (unique) positive self-adjoint linear
maps hi: E — E and hy: F — F such that f*o f = h? and fo f* = h3. As
in the proof of Theorem 12.1.3,

Ker f = Ker hy,

and letting r be the rank of f, there is an orthonormal basis (uq, ..., u,)
of eigenvectors of hy such that (uq,...,u,) are associated with the strictly
positive eigenvalues pi1, ..., u, of hy (the singular values of f). The vec-
tors (Up41,-..,uy) form an orthonormal basis of Ker f = Kerh;, and
the vectors (uy,...,u,) form an orthonormal basis of (Ker f)* = Im f*.
Furthermore, letting

S ()
i

when 1 < i < 7, using the Gram—Schmidt orthonormalization procedure,
we can extend (vy,...,v,) to an orthonormal basis (v1,...,v,,) of F (even
when r = 0). Also note that (vi,...,v,) is an orthonormal basis of Im f,
and (Vy11,...,Vy) is an orthonormal basis of Im f+ = Ker f*.

Letting p = min(m, n), we define the linear map g: E — F by its action
on the basis (ug,...,u,) as follows:

v; =

g(u;) = v;
for all i, 1 <7 < p, and
g(u;) =0

for all 4, p+ 1 < ¢ < n. Note that r < p. Just as in the proof of Theorem
12.1.3, we have

(g0 h1)(u;) = f(u;)

when 1 <4 <r, and

(g0 h1)(ui) = g(hi(ui)) = g(0) =0

when r +1 < i < n (since (Upy1,...,u,) is a basis for Ker f = Ker hy),
which shows that f = g o h;. The fact that g is weakly orthogonal follows
easily from the fact that it maps the orthonormal vectors (u1,...,up,) to

the orthonormal vectors (vy,...,vp).
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We can show that f = hy o g as follows. Just as in the proof of Theorem
12.1.3,

h3(vi) = piv;
when 1 <i <r, and
h3(vi) = (f o f*)(vi) = f(f*(vi)) = 0
when r + 1 < < m, since (v,41,...,0m) is a basis for Ker f* = (Im f)*.

Since hy is positive self-adjoint, so is h3, and by Lemma 12.1.2, we must
have

hz(’Ui) = HiU;
when 1 <4 <r, and

hQ (’Ul) =0
when r + 1 < ¢ < m. This shows that (vq,...,v,,) are eigenvectors of hs
for py,. .., pm (letting g1 =+ = py, = 0), and thus hy and he have the
same nonnull eigenvalues p1, ..., 4. As a consequence,

(h2 0 g)(ui) = ha(g(wi)) = ha(vi) = piv; = f(u;)

when 1 < ¢ < m. Since hy, ha, f* o f, and f o f* are positive self-adjoint,
ffof=h3 fof*=h% and p,...,u, are the eigenvalues of both h; and
ha, it follows that pg, ..., u, are the singular values of f, i.e., the positive
square roots of the nonnull eigenvalues of both f* o f and f o f*.

Finally, if m > n and rank(f) = n, then Ker h; = Ker f = (0) and hy is
invertible and if n > m and rank(f) = m, then Ker hy = Ker f* = (0) and
hs is invertible. By Lemma 12.1.2 h; and hy are unique and since

f=gohi and f=hsoy,
if hy is invertible then g = f o hfl and if ho is invertible then g = h;l of,

and thus g is also unique. If h is normal, then f*o f = fo f* and hy = hs.
U

In matrix form, Theorem 12.2.3 can be stated as follows. For every real
m X n matrix A, there is some weakly orthogonal m x n matrix R and some
positive symmetric n X n matrix S such that

A=RS.

The proof also shows that if n > m, the last n — m columns of R are zero
vectors. A pair (R, S) such that A = RS is called a polar decomposition of
A.

Remark: If £ is a Hermitian space, Theorem 12.2.3 also holds, but the
weakly orthogonal linear map g becomes a weakly unitary map. In terms
of matrices, the polar decomposition states that for every complex m x n



