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are two positive self-adjoint linear maps h1:E → E and h2:F → F and a
weakly orthogonal linear map g:E → F such that

f = g ◦ h1 = h2 ◦ g.

Furthermore, if f has rank r, the maps h1 and h2 have the same positive
eigenvalues µ1, . . . , µr, which are the singular values of f , i.e., the positive
square roots of the nonnull eigenvalues of both f∗ ◦ f and f ◦ f∗. Finally,
h1, h2 are unique, g is unique if rank(f) = min(m,n) and h1 = h2 if f is
normal.

Proof . By Lemma 12.1.2 there are two (unique) positive self-adjoint linear
maps h1:E → E and h2:F → F such that f∗ ◦ f = h2

1 and f ◦ f∗ = h2
2. As

in the proof of Theorem 12.1.3,

Ker f = Ker h1,

and letting r be the rank of f , there is an orthonormal basis (u1, . . . , un)
of eigenvectors of h1 such that (u1, . . . , ur) are associated with the strictly
positive eigenvalues µ1, . . . , µr of h1 (the singular values of f). The vec-
tors (ur+1, . . . , un) form an orthonormal basis of Ker f = Ker h1, and
the vectors (u1, . . . , ur) form an orthonormal basis of (Ker f)⊥ = Im f∗.
Furthermore, letting

vi =
f(ui)

µi

when 1 ≤ i ≤ r, using the Gram–Schmidt orthonormalization procedure,
we can extend (v1, . . . , vr) to an orthonormal basis (v1, . . . , vm) of F (even
when r = 0). Also note that (v1, . . . , vr) is an orthonormal basis of Im f ,
and (vr+1, . . . , vm) is an orthonormal basis of Im f⊥ = Ker f∗.

Letting p = min(m,n), we define the linear map g:E → F by its action
on the basis (u1, . . . , un) as follows:

g(ui) = vi

for all i, 1 ≤ i ≤ p, and

g(ui) = 0

for all i, p + 1 ≤ i ≤ n. Note that r ≤ p. Just as in the proof of Theorem
12.1.3, we have

(g ◦ h1)(ui) = f(ui)

when 1 ≤ i ≤ r, and

(g ◦ h1)(ui) = g(h1(ui)) = g(0) = 0

when r + 1 ≤ i ≤ n (since (ur+1, . . . , un) is a basis for Ker f = Ker h1),
which shows that f = g ◦ h1. The fact that g is weakly orthogonal follows
easily from the fact that it maps the orthonormal vectors (u1, . . . , up) to
the orthonormal vectors (v1, . . . , vp).
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We can show that f = h2 ◦ g as follows. Just as in the proof of Theorem
12.1.3,

h2
2(vi) = µ2

i vi

when 1 ≤ i ≤ r, and

h2
2(vi) = (f ◦ f∗)(vi) = f(f∗(vi)) = 0

when r + 1 ≤ i ≤ m, since (vr+1, . . . , vm) is a basis for Ker f∗ = (Im f)⊥.
Since h2 is positive self-adjoint, so is h2

2, and by Lemma 12.1.2, we must
have

h2(vi) = µivi

when 1 ≤ i ≤ r, and

h2(vi) = 0

when r + 1 ≤ i ≤ m. This shows that (v1, . . . , vm) are eigenvectors of h2

for µ1, . . . , µm (letting µr+1 = · · · = µm = 0), and thus h1 and h2 have the
same nonnull eigenvalues µ1, . . . , µr. As a consequence,

(h2 ◦ g)(ui) = h2(g(ui)) = h2(vi) = µivi = f(ui)

when 1 ≤ i ≤ m. Since h1, h2, f∗ ◦ f , and f ◦ f∗ are positive self-adjoint,
f∗ ◦ f = h2

1, f ◦ f∗ = h2
2, and µ1, . . . , µr are the eigenvalues of both h1 and

h2, it follows that µ1, . . . , µr are the singular values of f , i.e., the positive
square roots of the nonnull eigenvalues of both f∗ ◦ f and f ◦ f∗.

Finally, if m ≥ n and rank(f) = n, then Kerh1 = Ker f = (0) and h1 is
invertible and if n ≥ m and rank(f) = m, then Kerh2 = Ker f∗ = (0) and
h2 is invertible. By Lemma 12.1.2 h1 and h2 are unique and since

f = g ◦ h1 and f = h2 ◦ g,

if h1 is invertible then g = f ◦ h−1
1 and if h2 is invertible then g = h−1

2 ◦ f ,
and thus g is also unique. If h is normal, then f∗ ◦ f = f ◦ f∗ and h1 = h2.

In matrix form, Theorem 12.2.3 can be stated as follows. For every real
m×n matrix A, there is some weakly orthogonal m×n matrix R and some
positive symmetric n × n matrix S such that

A = RS.

The proof also shows that if n > m, the last n − m columns of R are zero
vectors. A pair (R,S) such that A = RS is called a polar decomposition of
A.

Remark: If E is a Hermitian space, Theorem 12.2.3 also holds, but the
weakly orthogonal linear map g becomes a weakly unitary map. In terms
of matrices, the polar decomposition states that for every complex m × n


