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when r + 1 ≤ i ≤ n. This shows that (v1, . . . , vn) are eigenvectors of h2 for
µ1, . . . , µn (since µr+1 = · · · = µn = 0), and thus h1 and h2 have the same
eigenvalues µ1, . . . , µn.

As a consequence,

(h2 ◦ g)(ui) = h2(g(ui)) = h2(vi) = µivi = f(ui)

when 1 ≤ i ≤ n. Since h1, h2, f∗ ◦ f , and f ◦ f∗ are positive self-adjoint,
f∗ ◦ f = h2

1, f ◦ f∗ = h2
2, and µ1, . . . , µr are the eigenvalues of both h1 and

h2, it follows that µ1, . . . , µr are the singular values of f , i.e., the positive
square roots of the nonnull eigenvalues of both f∗ ◦ f and f ◦ f∗.

Finally, since

f∗ ◦ f = h2
1 and f ◦ f∗ = h2

2,

by Lemma 12.1.2, h1 and h2 are unique and if f is invertible, then h1 and
h2 are invertible and thus g is also unique, since g = f ◦h−1

1 . If h is normal,
then f∗ ◦ f = f ◦ f∗ and h1 = h2.

In matrix form, Theorem 12.1.3 can be stated as follows. For every real
n × n matrix A, there is some orthogonal matrix R and some positive
symmetric matrix S such that

A = RS.

Furthermore, R,S are unique if A is invertible. A pair (R,S) such that
A = RS is called a polar decomposition of A. For example, the matrix

A =
1
2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




is both orthogonal and symmetric, and A = RS with R = A and S = I,
which implies that some of the eigenvalues of A are negative.

Remark: If E is a Hermitian space, Theorem 12.1.3 also holds, but the
orthogonal linear map g becomes a unitary map. In terms of matrices, the
polar decomposition states that for every complex n×n matrix A, there is
some unitary matrix U and some positive Hermitian matrix H such that

A = UH.

12.2 Singular Value Decomposition (SVD)

The proof of Theorem 12.1.3 shows that there are two orthonormal bases
(u1, . . . , un) and (v1, . . . , vn), where (u1, . . . , un) are eigenvectors of h1

and (v1, . . . , vn) are eigenvectors of h2. Furthermore, (u1, . . . , ur) is an or-
thonormal basis of Im f∗, (ur+1, . . . , un) is an orthonormal basis of Ker f ,


