do with perturbation theory (1912). Autonne came up with the polar decomposition (1902, 1915). Eckart and Young extended SVD to rectangular matrices (1936, 1939).

The next three theorems deal with a linear map $f: E \to E$ over a Euclidean space E. We will show later on how to generalize these results to linear maps $f: E \to F$ between two Euclidean spaces E and F.

Theorem 12.1.3 Given a Euclidean space E of dimension n, for any linear map $f: E \to E$ there are two positive self-adjoint linear maps $h_1: E \to E$ and $h_2: E \to E$ and an orthogonal linear map $g: E \to E$ such that

$$f = g \circ h_1 = h_2 \circ g.$$

Furthermore, if f has rank r, the maps h_1 and h_2 have the same positive eigenvalues μ_1, \ldots, μ_r , which are the singular values of f, i.e., the positive square roots of the nonnull eigenvalues of both $f^* \circ f$ and $f \circ f^*$. Finally, h_1, h_2 are unique, g is unique if f is invertible, and $h_1 = h_2$ if f is normal.

Proof. By Lemma 12.1.2 there are two (unique) positive self-adjoint linear maps $h_1: E \to E$ and $h_2: E \to E$ such that $f^* \circ f = h_1^2$ and $f \circ f^* = h_2^2$. Note that

$$\langle f(u), f(v) \rangle = \langle h_1(u), h_1(v) \rangle$$

for all $u, v \in E$, since

$$\langle f(u), f(v) \rangle = \langle u, (f^* \circ f)(v) \rangle = \langle u, (h_1 \circ h_1)(v) \rangle = \langle h_1(u), h_1(v) \rangle,$$

because $f^* \circ f = h_1^2$ and $h_1 = h_1^*$ (h_1 is self-adjoint). From Lemma 12.1.1, Ker $f = \text{Ker}(f^* \circ f)$, and from Lemma 12.1.2, Ker ($f^* \circ f$) = Ker h_1 . Thus,

$$\operatorname{Ker} f = \operatorname{Ker} h_1.$$

If r is the rank of f, then since h_1 is self-adjoint, by Theorem 11.3.1 there is an orthonormal basis (u_1, \ldots, u_n) of eigenvectors of h_1 , and by reordering these vectors if necessary, we can assume that (u_1, \ldots, u_r) are associated with the strictly positive eigenvalues μ_1, \ldots, μ_r of h_1 (the singular values of f), and that $\mu_{r+1} = \cdots = \mu_n = 0$. Observe that (u_{r+1}, \ldots, u_n) is an orthonormal basis of Ker $f = \text{Ker } h_1$, and that (u_1, \ldots, u_r) is an orthonormal basis of (Ker $f)^{\perp} = \text{Im } f^*$. Note that

$$\langle f(u_i), f(u_j) \rangle = \langle h_1(u_i), h_1(u_j) \rangle = \mu_i \mu_j \langle u_i, u_j \rangle = \mu_i^2 \delta_{ij}$$

when $1 \leq i, j \leq n$ (recall that $\delta_{ij} = 1$ if i = j, and $\delta_{ij} = 0$ if $i \neq j$). Letting

$$v_i = \frac{f(u_i)}{\mu_i}$$

when $1 \leq i \leq r$, observe that

$$\langle v_i, v_j \rangle = \delta_{ij}$$