Papers on lambda-calculus, constructive logic, unification,
automated theorem proving


  • Linear-time algorithms for testing the satisfiability of propositional Horn Formulae. (With William Dowling).
    Journal of Logic Programming, 1(3), 267-284 (1984) (pdf)

  • HORNLOG: A Graph Based Interpreter for General Horn Clauses. (With Stan Raatz). Journal of Logic Programming, 4(2), 119-155 (1987).
    (pdf)

  • Extending SLD-Resolution to Equational Horn Clauses using E-Unification. (With Stan Raatz). Special issue of Journal of Logic Programming, 6(1-2), 3-56 (1989).
    (pdf)

  • Snyder, W. and Gallier, J. Higher-Order Unification Revisited: Complete Sets of Transformations.
    Journal of Symbolic Computation, 8(5), 101--140 (1989).
    (pdf)

  • Snyder, W. and Gallier, J. Complete Sets of Transformations for General E-Unification.
    Theoretical Computer Science, 67, 203-260 (1989).
    (pdf),  

  • On Girard's "Candidats de Reductibilite'."
    In Logic and Computer Science. P. Odifreddi, Editor, Academic Press, 123-203 (1989).
    (pdf)  

  • Gallier, J., Narendran, P., Plaisted, D. and Snyder, W. Rigid E-Unification: NP-Completeness and Applications to Equational Matings.
    Information and Computation, 87(5), 129-195 (1990).
    (pdf)

  • What's so special about Kruskal's Theorem and the ordinal Gamma_0.
    A survey of some results in proof theory.
    Annals of Pure and Applied Logic, 53, 199-260 (1991).
    (pdf)

  • Tannen Val and Gallier, J. Polymorphic rewriting conserves algebraic strong normalization.
    Theoretical Computer Science, 83(2), 3-28 (1991).
    (pdf)

  • Gallier, J., Narendran, P., Raatz, S. and Snyder, W. Theorem Proving Using Equational Matings and
    Rigid E-Unification.
    J. ACM, 39(2), 377-429 (1992).
    (pdf)

  • Constructive Logics. Part I: A Tutorial on Proof Systems and Typed lambda-Calculi.
    Theoretical Computer Science, 110(2), 249-339 (1993).
    (pdf)

  • Constructive Logics. Part II: Linear Logic and Proof Nets.
    Technical Report, CIS Department, University of Pennsylvania, 1991.
    (pdf)

  • Snyder, W., Narendran, P., Plaisted, D., Raatz, S. and Snyder. W.
    An Algorithm for Finding Canonical Sets of Ground Rewrite Rules in Polynomial Time.
    Journal of the ACM, 40(1), 1-16 (1993).
    (pdf)

  • Tannen Val. and Gallier, J. Polymorphic rewriting conserves algebraic confluence.
    Information and Computation, 114, 1-29 (1994).
    (pdf)

  • On the Correspondence Between Proofs and lambda-Terms.
    Cahiers du Centre de Logique, Philippe DeGroote, Editor, Université Catholique de Louvain, 1995.
    (pdf)

  • Proving Properties of Typed lambda-Terms Using Realizability, Covers, and Sheaves.
    Theoretical Computer Science, 142(2), 299-368, (1995).
    (pdf)

  • Kripke Models and the (in)equational logic of the second-order lambda-Calculus
    Annals of Pure and Applied Logic , 84, 257-316, (1997)
    (pdf)

  • Typing untyped lambda terms, or Reducibility Strikes Again!
    Annals of Pure and Applied Logic , 91, 231-270, (1998)
    (pdf)

  • A proof of strong normalization for the theory of constructions using a Kripke-like interpretation.
    First Annual Workshop on Logical Frameworks, Antibes, May 1990.
    (pdf)

  • A Note on Logical PERs and Reducibility. Logical Relations strike again!
    Val Tannen Festschrift, 2024.
    (pdf)

  • Unification in Automated Theorem Proving. Matings,
    Equational Matings. Rigid E-Unification. A Tutorial. (2025)
    Revised version of a paper published in
    Tree automata and languages, Edited by M. Nivat and A. Podelski, Elsevier, 439-485 (1992).
    (pdf)

  • The completeness of propositional resolution, A simple constructive proof.
    LMCS, 2(5), pp. 1-7, (November, 2006).
    (pdf)

 

Back to Gallier's books (complete list)

Back to Gallier Homepage



Jean Gallier
2003-6-6