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Chapter 1

Directed Graphs, Paths

Recall that a directed graph , G, is a pair
G = (V, E), where E ⊆ V × V .
A pair (u, v) ∈ E is called an edge of G (note
that u = v is allowed).

Given any two nodes u, v ∈ V , a path from u

to v is any sequence of n + 1 edges (n ≥ 0)

(u, v1), (v1, v2), . . . , (vn, v).

(If n = 1, a path from u to v is simply a single
edge, (u, v).) A graph G is strongly connected
if for every pair (u, v) ∈ V × V , there is a path
from u to v. A closed path, or cycle , is a path
from some node u to itself.
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4 CHAPTER 1. DIRECTED GRAPHS, PATHS

We will restrict out attention to finite graphs,
i.e. graphs (V, E) where V is a finite set.

Definition 1.0.1 Given a graph G, an Eule-
rian cycle is a cycle in G that passes through all
the nodes (possibly more than once) and every
edge of G exactly once. A Hamiltonian cycle is
a cycle that passes through all the nodes exactly
once (note, some edges may not be traversed at
all).

Eulerian Cycle Problem : Given a graph G, is
there an Eulerian cycle in G?

Hamiltonian Cycle Problem : Given a graph
G, is there an Hamiltonian cycle in G?



Chapter 2

Eulerian Cycles

The following graph is a directed graph ver-
sion of the Königsberg bridge problem, solved
by Euler in 1736. The nodes A, B, C, D corre-
spond to four areas of land in Königsberg and
the edges to the seven bridges joining these ar-
eas of land. The problem is to find a closed
path that crosses every bridge exactly once and
returns to the starting point.
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6 CHAPTER 2. EULERIAN CYCLES

In fact, the problem is unsolvable, as shown by
Euler, because some nodes do not have the same
number of incoming and outgoing edges (In the
undirected version of the problem, some nodes
do not have an even degree.)
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Figure 2.1: A directed graph modeling the Königsberg bridge problem

It may come as a surprise that the Eulerian Cy-
cle Problem does have a polynomial time algo-
rithm, but that so far, not such algorithm is
known for the Hamiltonian Cycle Problem.
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The reason why the Eulerian Cycle Problem is
decidable in polynomial time is the following
theorem due to Euler:

Theorem 2.0.2 A graph G = (V, E) has an
Eulerian cycle iff the following properties hold:

(1) The graph G is strongly connected.

(2) Every node has the same number of in-
coming and outgoing edges.

Proving that properties (1) and (2) hold if G has
an Eulerian cycle is fairly easy. The converse is
harder, but not that bad (try!).
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Theorem 2.0.2 shows that it is necessary to check
whether a graph is strongly connected. This can
be done by computing the transitive closure of
E, which can be done in polynomial time (in
fact, O(n3)).

Checking property (2) can clearly be done in
polynomial time. Thus, the Eulerian cycle prob-
lem is in P .

Unfortunately, no theorem analogous to Theo-
rem 2.0.2 is know for Hamiltonian cycles.



Chapter 3

Hamiltonian Cycles

A game invented by Sir William Hamilton in
1859 uses a regular solid dodecahedron whose
twenty vertices are labeled with the names of fa-
mous cities. The player is challenged to “travel
around the world” by finding a closed cycle along
the edges of the dodecahedron which passes
through every city exactly once (this is the undi-
rected version of the Hamiltonian cycle prob-
lem).
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10 CHAPTER 3. HAMILTONIAN CYCLES

In graphical terms, assuming an orientation of
the edges between cities, the graph D shown
in Figure 3.1 is a plane projection of a regular
dodecahedron and we want to know if there is
a Hamiltonian cycle in this directed graph.

Figure 3.1: A tour “around the world.”

Finding a Hamiltonian cycle in this graph does
not appear to be so easy!

A solution is shown in Figure 3.2 below:
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Figure 3.2: A Hamiltonian cycle in D

A solution!


