Typos in "Geometric Methods and Applications for Computer Science and Engineering, Second Edition"

Jean Gallier

January 17, 2024

- 1. Page xvi, Paragraph "New treatment, New Results." Change "books" to "book."
- 2. Page vxiii, Paragraph "How to Use This Book for a Course." Change "books" to "book."
- 3. Page 57, line -2, change "homomorphisms" to "isomorphisms."
- 4. Page 193, line -3, the equation for $Q_n(x)$ should be

$$Q_n(x) = \sqrt{\frac{2n+1}{2}} P_n(x).$$

- 5. Page 201, line 9. Missing period after "upper triangular."
- 6. Page 204, in Problem 6.4, second equation of the hint, the two determinants on the left hand side should be swapped.
- 7. Page 268, lines 12, 14, 16, change U_2P to PU_2 .
- 8. Page 274, line just above part (c), u should be a unit vector.
- 9. Page 275, line just above **Remark**, change $\theta \neq k2\pi$ to $\theta \neq 0$.
- 10. Page 275, in Problem (f), in the formula for $\exp^{-1}(R)$, change $\pm \pi$ to $(2k+1)\pi$, with $k \in \mathbb{Z}$.
- 11. Page 275, in Problem (f), change the last sentence to: Show that there is a unique skew-symmetric B with corresponding θ satisfying $0 < \theta < \pi$ such that $e^B = R$.

- 12. Page 286, the proof that $\rho_{Y,Z}$ is rotation if N(Y)N(Z) = 1 needs to fixed. It uses the fact that since N(Y)N(Z) = 1, we have $YXZ = (Y/\sqrt{N(Y)})X(Z/\sqrt{N(Z)})$, and both $Y/\sqrt{N(Y)}$ and $Z/\sqrt{N(Z)}$ are unit quaternions.
- 13. Page 288, change $\rho(Z_1) = \rho(Z_2)$ to $\rho_{Z_1} = \rho_{Z_2}$.
- 14. Page 288, in Lemma 9.2, change $\sqrt{N(t)}/|a|$ to $\sqrt{N(t)}/a$, and the condition on θ to be $\theta \neq \pi$ and $0 < \theta < 2\pi$. The orientation of the plane orthogonal to the axis of rotation also needs to be specified.
- 15. The the end of the proof of Lemma 9.2 needs to be corrected to prove that $\tan(\theta/2) = \sqrt{N(t)}/a$.
- 16. Page 324, line 6, change $\varphi \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ to $\varphi \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$.
- 17. Page 324, line 11, change "Chapter 11" to "Chapter 6."
- 18. Page 349, line 4, change "of f^{**} to "of $f^*_{\mathbb{C}}$."
- 19. Page 352, line 4, change $\langle f(u), u \rangle$ to $\langle f(u), v \rangle$.
- 20. Pages 354-355, in the proof of Theorem 12.5, all occurrences of "f" should be " $f_{\mathbb{C}}$."
- 21. Page 368, in Proposition 13.1, the last equation should be $n \dim(\operatorname{Ker} f) = m \dim(\operatorname{Ker} f^*).$
- 22. Page 371, line 1, change "Schimdt" to "Schmidt."
- 23. Page 373, in Definition 13.3, change "wih" to "with" and "A symmetric" to "S symmetric."
- 24. Pages 376-378, in Theorem 13.4, the statement about the uniqueness of h_1 and h_2 is incorrect. This can be corrected by changing slightly the definition of a weakly orthogonal map, and requiring that h_1, h_2 and g have the same rank as f.
- 25. Page 387, line 5, change "pécédentes" to "précédentes."
- 26. Page 391, line 2, in the expression for AA^+ , the subscript n r should be m r.
- 27. Page 391, line -7 and -3, n should be m.
- 28. Page 392, line 1, 2, 3, the subscript n r should be m r.
- 29. Page 397, in the proof of Proposition 14.4, p should be n, the subspace V_{k+1} should be U_{k+1} , and (v_1, \ldots, v_{k+1}) should be (u_1, \ldots, u_{k+1}) .
- 30. Page 422, line 3, in the third and fourth expression, $\Sigma_r^{-1}c$ should be Σ_r^{-1} .

- 31. Page 422, line -6, in the left expression, R should be R^{\top} and S should be S^{\top} .
- 32. Page 483, paragraph before Definition 18.5, t is a small real (or complex) number and it is the set of points of the form a + tu that forms an interval [r, s] in A.
- 33. Page 496, line 5, change "rank m" to "rank k." Line 7, Change "Consequently" to "Consequently."
- 34. Page 514, next to last line, change $\theta = k2\pi$ to $\theta = 0$.
- 35. Page 515, line 1, change $\theta \neq k2\pi$ to $\theta \neq 0$.
- 36. Page 515, in the equation just above part (d), E^A should be e^A .
- 37. Page 517, line 1, change $\theta = k2\pi$ to $\theta = 0$. Line 3, change $\theta \neq k2\pi$ to $\theta \neq 0$.
- 38. Page 534, line 17, change " $f'(c) \neq 0$ for all $c \in]a, b[$ " to " $g'(t) \neq 0$ for all $t \in]a, b[$."
- 39. Page 589, in Example 20.1, the numerator of the expression for y should be 2bv instead of 2bu.