
2.7. FINITE STATE AUTOMATA WITH OUTPUT: TRANSDUCERS 61

2.7 Finite State Automata With Output: Transducers

So far, we have only considered automata that recognize
languages, i.e., automata that do not produce any output
on any input (except “accept” or “reject”).

It is interesting and useful to consider input/output finite
state machines. Such automata are called transducers .
They compute functions or relations. First, we define a
deterministic kind of transducer.

Definition 2.7.1 A general sequential machine (gsm)
is a sextuple M = (Q,Σ,∆, δ,λ, q0), where

(1) Q is a finite set of states ,

(2) Σ is a finite input alphabet ,

(3) ∆ is a finite output alphabet ,

(4) δ:Q× Σ → Q is the transition function ,

(5) λ:Q× Σ → ∆∗ is the output function and

(6) q0 is the initial (or start) state.

62 CHAPTER 2. REGULAR LANGUAGES

If λ(p, a) $= ε, for all p ∈ Q and all a ∈ Σ, then M is
nonerasing . If λ(p, a) ∈ ∆ for all p ∈ Q and all a ∈ Σ,
we say that M is a complete sequential machine (csm).

In order to define how a gsm works, we extend the transi-
tion and the output functions. We define δ∗:Q×Σ∗ → Q
and λ∗:Q × Σ∗ → ∆∗ recursively as follows: For all
p ∈ Q, all u ∈ Σ∗ and all a ∈ Σ

δ∗(p, ε) = p

δ∗(p, ua) = δ(δ∗(p, u), a)

λ∗(p, ε) = ε

λ∗(p, ua) = λ∗(p, u)λ(δ∗(p, u), a).

2.7. FINITE STATE AUTOMATA WITH OUTPUT: TRANSDUCERS 63

For any w ∈ Σ∗, we let

M(w) = λ∗(q0, w)

and for any L ⊆ Σ∗ and L′ ⊆ ∆∗, let

M(L) = {λ∗(q0, w) | w ∈ L}

and
M−1(L′) = {w ∈ Σ∗ | λ∗(q0, w) ∈ L′}.

Note that if M is a csm, then |M(w)| = |w|, for all
w ∈ Σ∗. Also, a homomorphism is a special kind of
gsm—it can be realized by a gsm with one state.

We can use gsm’s and csm’s to compute certain kinds of
functions.

Definition 2.7.2 A function f :Σ∗ → ∆∗ is a gsm (resp.
csm) mapping iff there is a gsm (resp. csm), M , so that
M(w) = f(w), for all w ∈ Σ∗.

64 CHAPTER 2. REGULAR LANGUAGES

Remark: Ginsburg and Rose (1966) characterized gsm

mappings as follows:

A function f :Σ∗ → ∆∗ is a gsm mapping iff

(a) f preserves prefixes, i.e., f(x) is a prefix of f(xy);

(b) There is an integer, m, such that for all w ∈ Σ∗ and
all a ∈ Σ, we have |f(wa)|− |f(w)| ≤ m;

(c) f(ε) = ε;

(d) For every regular language, R ⊆ ∆∗, the language
f−1(R) = {w ∈ Σ∗ | f(w) ∈ R} is regular.

A function f :Σ∗ → ∆∗ is a csm mapping iff f satisfies
(a) and (d) and for all w ∈ Σ∗, |f(w)| = |w|.

2.7. FINITE STATE AUTOMATA WITH OUTPUT: TRANSDUCERS 65

The following proposition is left as a homework problem.

Proposition 2.7.3 The family of regular languages
(over an alphabet Σ) is closed under both gsm and
inverse gsm mappings.

We can generalize the gsm model so that

(1) the device is nondeterministic,

(2) the device has a set of accepting states,

(3) transitions are allowed to occur without new input
being processed,

(4) transitions are defined for input strings instead of in-
dividual letters.

Here is the definition of such a model, the a-transducer .
A much more powerful model of transducer will be inves-
tigated later: the Turing machine.

66 CHAPTER 2. REGULAR LANGUAGES

Definition 2.7.4 An a-transducer (or nondetermin-
istic sequential transducer with accepting states) is a
sextuple M = (K,Σ,∆,λ, q0, F), where

(1) K is a finite set of states ,

(2) Σ is a finite input alphabet ,

(3) ∆ is a finite output alphabet ,

(4) q0 ∈ K is the start (or initial) state,

(5) F ⊆ K is the set of accepting (of final) states and

(6) λ ⊆ K × Σ∗ × ∆∗ × K is a finite set of quadruples
called the transition function of M .

If λ ⊆ K × Σ∗ ×∆+ ×K, then M is ε-free

Clearly, a gsm is a special kind of a-transducer.

An a-transducer defines a binary relation between Σ∗ and
∆∗, or equivalently, a function M :Σ∗ → 2∆

∗
.

2.7. FINITE STATE AUTOMATA WITH OUTPUT: TRANSDUCERS 67

We can explain what this function is by describing how
an a-transducer makes a sequence of moves from config-
urations to configurations.

The current configuration of an a-transducer is described
by a triple

(p, u, v) ∈ K × Σ∗ ×∆∗,

where p is the current state, u is the remaining input, and
v is some ouput produced so far.

We define the binary relation *M on K × Σ∗ × ∆∗ as
follows: For all p, q ∈ K, u,α ∈ Σ∗, β, v ∈ ∆∗, if
(p, u, v, q) ∈ λ, then

(p, uα, β) *M (q, α, βv).

Let *∗
M be the transitive and reflexive closure of *M .

68 CHAPTER 2. REGULAR LANGUAGES

The function M :Σ∗ → 2∆
∗
is defined such that for every

w ∈ Σ∗,

M(w) = {y ∈ ∆∗ | (q0, w, ε) *
∗
M (f, ε, y), f ∈ F}.

For any language L ⊆ Σ∗ let

M(L) =
⋃

w∈L

M(w).

For any y ∈ ∆∗, let

M−1(y) = {w ∈ Σ∗ | y ∈ M(w)}

and for any language L′ ⊆ ∆∗, let

M−1(L′) =
⋃

y∈L′

M−1(y).

2.7. FINITE STATE AUTOMATA WITH OUTPUT: TRANSDUCERS 69

Remark: Notice that if w ∈ M−1(L′), then there exists

some y ∈ L′ such that w ∈ M−1(y), i.e.,
y ∈ M(w). This does not imply that M(w) ⊆ L′, only
that M(w) ∩ L′ $= ∅.

One should realize that for any L′ ⊆ ∆∗ and any a-
transducer, M , there is some a-transducer, M ′, (from ∆∗

to 2Σ
∗
) so that M ′(L′) = M−1(L′).

The following proposition is left as a homework problem:

Proposition 2.7.5 The family of regular languages
(over an alphabet Σ) is closed under both a-transductions
and inverse a-transductions.

70 CHAPTER 2. REGULAR LANGUAGES

2.8 An Application of NFA’s: Text Search

A common problem in the age of the Web (and on-line
text repositories) is the following:

Given a set of words, called the keywords , find all the
documents that contain one (or all) of those words.

Search engines are a popular example of this process.
Search engines use inverted indexes (for each word ap-
pearing on the Web, a list of all the places where that
word occurs is stored).

However, there are applications that are unsuited for in-
verted indexes, but are good for automaton-based tech-
niques.

Some text-processing programs, such as advanced forms
of the UNIX grep command (such as egrep or fgrep)
are based on automaton-based techniques.

The characteristics that make an application suitable for
searches that use automata are:

2.8. AN APPLICATION OF NFA’S: TEXT SEARCH 71

(1) The repository on which the search is conducted is
rapidly changing.

(2) The documents to be searched cannot be catalogued.
For example, Amazon.com creates pages “on the fly”
in response to queries.

We can use an NFA to find occurrences of a set of key-
words in a text. This NFA signals by entering a final state
that it has seen one of the keywords. The form of such
an NFA is special.

(1) There is a start state, q0, with a transition to itself on
every input symbol from the alphabet, Σ.

(2) For each keyword, w = a1 · · · ak, there are k states,

q(w)1 , . . . , q(w)k and there is a transition from q0 to q
(w)
1

on input a1, a transition from q(w)1 to q(w)2 on input a2,

and so on, until a transition from q(w)k−1 to q
(w)
k on input

ak. The state q
(w)
k is an accepting state and indicates

that the keyword w = a1 · · · ak has been found.

72 CHAPTER 2. REGULAR LANGUAGES

The NFA constructed above can then be converted to a
DFA using the subset construction.

The good news news is that, due to the very special struc-
ture of the NFA, the number of states of the correspond-
ing DFA is at most the number of states of the original
NFA!

We find that the states of the DFA are (check it yourself!):

(1) The set {q0}, associated with the start state, q0, of
the NFA.

(2) For any state, p $= q0, of the NFA, reached from q0
along a path whose symbols are u = a1 · · · am, the set
consisting of

(a) q0
(b) p

(c) The set of all states of the NFA, q, reachable from
q0 by following a path whose symbols are a suffix
of u, i.e., a string of the form ajaj+1 · · · am.

As a consequence, we get an efficient (w.r.t. time and
space) method to recognize a set of keywords.

2.9. DIRECTED GRAPHS AND PATHS 73

2.9 Directed Graphs and Paths

It is often useful to view DFA’s and NFA’s as labeled
directed graphs.

Definition 2.9.1 A directed graph is a quadruple
G = (V,E, s, t), where V is a set of vertices, or nodes ,
E is a set of edges, or arcs , and s, t:E → V are two
functions, s being called the source function, and t the
target function. Given an edge e ∈ E, we also call s(e)
the origin (or source) of e, and t(e) the endpoint (or
target) of e.

Remark : the functions s, t need not be injective or sur-
jective. Thus, we allow “isolated vertices”.

74 CHAPTER 2. REGULAR LANGUAGES

Example: Let G be the directed graph defined such that

E = {e1, e2, e3, e4, e5, e6, e7, e8},

V = {v1, v2, v3, v4, v5, v6}, and

s(e1) = v1, s(e2) = v2, s(e3) = v3, s(e4) = v4,

s(e5) = v2, s(e6) = v5, s(e7) = v5, s(e8) = v5,

t(e1) = v2, t(e2) = v3, t(e3) = v4, t(e4) = v2,

t(e5) = v5, t(e6) = v5, t(e7) = v6, t(e8) = v6.

Such a graph can be represented by the following diagram:

2.9. DIRECTED GRAPHS AND PATHS 75

e7

e8

v1 v2

v3

v4

v5
v6

e1

e2

e3

e4

e5

e6

Figure 2.7: A directed graph

In drawing directed graphs, we will usually omit edge
names (the ei), and sometimes even the node names (the
vj).

We now define paths in a directed graph.

76 CHAPTER 2. REGULAR LANGUAGES

Definition 2.9.2 Given a directed graph
G = (V,E, s, t) for any two nodes u, v ∈ V , a path from
u to v is a triple π = (u, e1 . . . en, v), where e1 . . . en is
a string (sequence) of edges in E such that, s(e1) = u,
t(en) = v, and t(ei) = s(ei+1), for all i such that 1 ≤ i ≤
n − 1. When n = 0, we must have u = v, and the path
(u, ε, u) is called the null path from u to u. The number
n is the length of the path. We also call u the source
(or origin) of the path, and v the target (or endpoint)
of the path. When there is a nonnull path π from u to v,
we say that u and v are connected .

Remark : In a path π = (u, e1 . . . en, v), the expression
e1 . . . en is a sequence, and thus, the ei are not neces-
sarily distinct.

2.9. DIRECTED GRAPHS AND PATHS 77

For example, the following are paths:

π1 = (v1, e1e5e7, v6),

π2 = (v2, e2e3e4e2e3e4e2e3e4, v2),

and
π3 = (v1, e1e2e3e4e2e3e4e5e6e6e8, v6).

Clearly, π2 and π3 are of a different nature from π1. In-
deed, they contain cycles. This is formalized as follows.

78 CHAPTER 2. REGULAR LANGUAGES

Definition 2.9.3 Given a directed graph
G = (V,E, s, t), for any node u ∈ V a cycle (or loop)
through u is a nonnull path of the form π = (u, e1 . . . en, u)
(equivalently, t(en) = s(e1)). More generally, a nonnull
path π = (u, e1 . . . en, v) contains a cycle iff for some
i, j, with 1 ≤ i ≤ j ≤ n, t(ej) = s(ei). In this case, let-
ting w = t(ej) = s(ei), the path (w, ei . . . ej, w) is a cycle
through w. A path π is acyclic iff it does not contain any
cycle. Note that each null path (u, ε, u) is acyclic.

Obviously, a cycle π = (u, e1 . . . en, u) through u is also a
cycle through every node t(ei). Also, a path π may con-
tain several different cycles. Paths can be concatenated
as follows.

2.9. DIRECTED GRAPHS AND PATHS 79

Definition 2.9.4 Given a directed graph
G = (V, E, s, t), two paths π1 = (u, e1 . . . em, v) and
π2 = (u′, e′1 . . . e

′
n, v

′) can be concatenated provided that
v = u′, in which case their concatenation is the path

π1π2 = (u, e1 . . . eme
′
1 . . . e

′
n, v

′).

It is immediately verified that the concatenation of paths
is associative, and that the concatenation of the path
π = (u, e1 . . . em, v) with the null path (u, ε, u) or with
the null path (v, ε, v) is the path π itself.

The following fact, although almost trivial, is used all the
time, and is worth stating in detail.

Lemma 2.9.5 Given a directed graph G = (V,E, s, t),
if the set of nodes V contains m ≥ 1 nodes, then every
path π of length at least m contains some cycle.

80 CHAPTER 2. REGULAR LANGUAGES

A consequence of lemma 2.9.5 is that in a finite graph
with m nodes, given any two nodes u, v ∈ V , in order to
find out whether there is a path from u to v, it is enough
to consider paths of length ≤ m− 1.

Indeed, if there is path between u and v, then there is
some path π of minimal length (not necessarily unique,
but this doesn’t matter). If this minimal path has length
at least m, then by the lemma, it contains a cycle. How-
ever, by deleting this cycle from the path π, we get an
even shorter path from u to v, contradicting the minimal-
ity of π.

We now turn to labeled graphs.

2.10. LABELED GRAPHS AND AUTOMATA 81

2.10 Labeled Graphs and Automata

In fact, we only need edge-labeled graphs.

Definition 2.10.1 A labeled directed graph is a tuple
G = (V,E, L, s, t,λ), where V is a set of vertices, or
nodes , E is a set of edges, or arcs , L is a set of labels ,
s, t:E → V are two functions, s being called the source
function, and t the target function, and λ:E → L is the
labeling function . Given an edge e ∈ E, we also call
s(e) the origin (or source) of e, t(e) the endpoint (or
target) of e, and λ(e) the label of e.

Note that the function λ need not be injective or surjec-
tive. Thus, distinct edges may have the same label.

82 CHAPTER 2. REGULAR LANGUAGES

Example: Let G be the directed graph defined such that

E = {e1, e2, e3, e4, e5, e6, e7, e8},

V = {v1, v2, v3, v4, v5, v6}, L = {a, b}, and

s(e1) = v1, s(e2) = v2, s(e3) = v3, s(e4) = v4,

s(e5) = v2, s(e6) = v5, s(e7) = v5, s(e8) = v5,

t(e1) = v2, t(e2) = v3, t(e3) = v4, t(e4) = v2,

t(e5) = v5, t(e6) = v5, t(e7) = v6, t(e8) = v6.

λ(e1) = a,λ(e2) = b,λ(e3) = a,λ(e4) = a,

λ(e5) = b,λ(e6) = a,λ(e7) = a,λ(e8) = b.

Such a labeled graph can be represented by the following
diagram:

2.10. LABELED GRAPHS AND AUTOMATA 83

a

b

a

a

b

e7

a

e8

b

a

v1 v2

v3

v4

v5
v6

e1

e2

e3

e4

e5

e6

Figure 2.8: A labeled directed graph

In drawing labeled graphs, we will usually omit edge
names (the ei), and sometimes even the node names (the
vj). Paths, cycles, and concatenation of paths are defined
just as before (that is, we ignore the labels). However, we
can now define the spelling of a path.

84 CHAPTER 2. REGULAR LANGUAGES

Definition 2.10.2 Given a labeled directed graph
G = (V,E, L, s, t,λ) for any two nodes u, v ∈ V , for any
path π = (u, e1 . . . en, v), the spelling of the path π is
the string of labels

λ(e1) . . .λ(en).

When n = 0, the spelling of the null path (u, ε, u) is the
null string ε.

For example, the spelling of the path

π3 = (v1, e1e2e3e4e2e3e4e5e6e6e8, v6)

is
abaabaabaab.

Every DFA and every NFA can be viewed as a labeled
graph, in such a way that the set of spellings of paths
from the start state to some final state is the language
accepted by the automaton in question.

2.10. LABELED GRAPHS AND AUTOMATA 85

Given a DFA D = (Q,Σ, δ, q0, F), where
δ:Q × Σ → Q, we associate the labeled directed graph
GD = (V,E, L, s, t,λ) defined as follows:

V = Q, E = {(p, a, q) | q = δ(p, a), p, q ∈ Q, a ∈ Σ},

L = Σ, s((p, a, q)) = p, t((p, a, q)) = q,

and λ((p, a, q)) = a.

Such labeled graphs have a special structure that can
easily be characterized.

It is easily shown that a string w ∈ Σ∗ is in the language
L(D) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F} iff w is the spelling of
some path in GD from q0 to some final state.

86 CHAPTER 2. REGULAR LANGUAGES

Similarly, given an NFA N = (Q,Σ, δ, q0, F), where
δ:Q× (Σ∪ {ε}) → 2Q, we associate the labeled directed
graph GN = (V,E, L, s, t,λ) defined as follows:
V = Q

E = {(p, a, q) | q ∈ δ(p, a), p, q ∈ Q, a ∈ Σ ∪ {ε}},

L = Σ ∪ {ε}, s((p, a, q)) = p, t((p, a, q)) = q,
λ((p, a, q)) = a.

Remark : WhenN has no ε-transitions, we can let L = Σ.

Such labeled graphs have also a special structure that can
easily be characterized.

Again, a string w ∈ Σ∗ is in the language
L(N) = {w ∈ Σ∗ | δ∗(q0, w)∩F $= ∅} iff w is the spelling
of some path in GN from q0 to some final state.

2.11. THE CLOSURE DEFINITION OF THE REGULAR LANGUAGES 87

2.11 The Closure Definition of the Regular Languages

Let Σ = {a1, . . . , am} be an alphabet. We define the
family, (R(Σ)n), of sets of languages as follows:

R(Σ)0 = {{a1}, . . . , {am}, ∅, {ε}},
R(Σ)n+1 = R(Σ)n ∪ {L1 ∪ L2, L1L2, L

∗ |
L1, L2, L ∈ R(Σ)n}.

Then, we define R(Σ) as

R(Σ) =
⋃

n≥0

R(Σ)n.

Regular languages, Version 2 = R(Σ)

Consider the following properties of a family of languages,
L ⊆ 2Σ

∗
:

(1) {a1}, . . . , {am}, ∅, {ε} ∈ L

2(a) If L1 ∈ L and L2 ∈ L, then L1 ∪ L2 ∈ L

2(b) If L1 ∈ L and L2 ∈ L, then L1L2 ∈ L

2(c) If L ∈ L, then L∗ ∈ L.

88 CHAPTER 2. REGULAR LANGUAGES

If properties 2(a), 2(b) and 2(c) hold, we say that the
family, L, is closed under union, concatenation and
Kleene ∗.

Lemma The family R(Σ) is the smallest family of
languages which contains the (atomic) languages
{a1}, . . . , {am}, ∅, {ε}, and is closed under union,
concatenation, and Kleene ∗.

Proof sketch : To prove that R(Σ) satisfies properties (1),
2(a), 2(b) and 2(c), use the fact that R(Σ)n ⊆ R(Σ)n+1

for all n ≥ 0.

To prove that for any family, L, if L satisfies properties
(1), 2(a), 2(b) and 2(c), then R(Σ) ⊆ L, prove that
R(Σ)n ⊆ L by induction on n.

Note: a given language L may be built up in different
ways. For example,

{a, b}∗ = ({a}∗{b}∗)∗.

2.12. REGULAR EXPRESSIONS 89

2.12 Regular Expressions

Given an alphabet Σ = {a1, . . . , am}, consider the new
alphabet

∆ = Σ ∪ {+, ·, ∗, (,), ∅, ε}.

We define the family, (R(Σ)n), of languages over ∆ as
follows:

R(Σ)0 = {a1, . . . , am, ∅, ε},
R(Σ)n+1 = R(Σ)n ∪ {(R1 +R2), (R1 ·R2), R

∗ |
R1, R2, R ∈ R(Σ)n}.

Then, we define R(Σ) as

R(Σ) =
⋃

n≥0

R(Σ)n.

R(Σ) is the set of regular expressions (over Σ).

90 CHAPTER 2. REGULAR LANGUAGES

Lemma The language R(Σ) is the smallest language
which contains the symbols a1, . . . , am, ∅, ε, from ∆,
and such that (R1+R2), (R1 ·R2), and R∗, also belong
to R(Σ), when R1, R2, R ∈ R(Σ).

For simplicity of notation, write

(R1R2)

instead of
(R1 ·R2).

Examples : R = (a + b)∗, S = (a∗b∗)∗.

T = (a + b)∗a (a + b) · · · (a + b)︸ ︷︷ ︸
n

.

2.13. REGULAR EXPRESSIONS AND REGULAR LANGUAGES 91

2.13 Regular Expressions and Regular Languages

Every regular expression R ∈ R(Σ) can be viewed as
the name, or denotation , of some language L ∈ R(Σ).
Similarly, every language L ∈ R(Σ) is the interpretation
(or meaning) of some regular expression R ∈ R(Σ).

Think of a regular expression R as a program , and of
L(R) as the result of the execution or evaluation , of R
by L.

This can be made rigorous by defining a function

L:R(Σ) → R(Σ).

92 CHAPTER 2. REGULAR LANGUAGES

This function is defined recursively:

L[ai] = {ai},
L[∅] = ∅,
L[ε] = {ε},

L[(R1 +R2)] = L[R1] ∪ L[R2],

L[(R1R2)] = L[R1]L[R2],

L[R∗] = L[R]∗.

Lemma For every regular expression R ∈ R(Σ), the
language L[R] is regular (version 2), i.e. L[R] ∈
R(Σ). Conversely, for every regular (version 2) lan-
guage L ∈ R(Σ), there is some regular expression
R ∈ R(Σ) such that L = L[R].

Note: the function L is not injective.

Example: If R = (a + b)∗, S = (a∗b∗)∗, then

L[R] = L[S] = {a, b}∗.

2.13. REGULAR EXPRESSIONS AND REGULAR LANGUAGES 93

For simplicity, we often denote L[R] as LR.

Remark. If

R = (a + b)∗a (a + b) · · · (a + b)︸ ︷︷ ︸
n

,

it can be shown that any minimal DFA accepting LR has
2n+1 states.

Yet, both (a + b)∗a and (a + b) · · · (a + b)︸ ︷︷ ︸
n

denote lan-

guages that can be accepted by “small” DFA’s (of size 2
and n + 2).

94 CHAPTER 2. REGULAR LANGUAGES

Definition Two regular expressions R, S ∈ R(Σ) are
equivalent , denoted as R ∼= S, iff L[R] = L[S].

It is immediate that ∼= is an equivalence relation.

The relation ∼= satisfies some (nice) identities. For exam-
ple:

((R1 +R2) +R3) ∼= (R1 + (R2 +R3)),

((R1R2)R3) ∼= (R1(R2R3)),

(R1 +R2) ∼= (R2 +R1),

(R∗R∗) ∼= R∗,

R∗∗ ∼= R∗.

There are algorithms to test equivalence of regular expres-
sions, but their complexity is exponential. It is an open
problem to prove that the problem cannot be decided in
polynomial time.

2.14. REGULAR EXPRESSIONS AND NFA’S 95

2.14 Regular Expressions and NFA’s

Lemma There is an algorithm, which, given any reg-
ular expression R ∈ R(Σ), constructs an NFA NR

accepting LR, i.e., such that LR = L(NR).

In order to ensure the correctness of the construction as
well as to simplify the description of the algorithm it is
convenient to assume that our NFA’s satisfy the following
conditions:

1. Each NFA has a single final state, t, distinct from the
start state, s.

2. There are no incoming transitions into the the start
state, s, and no outgoing transitions from the final
state, t.

3. Every state has at most two incoming and two outgo-
ing transitions.

Here is the algorithm.

96 CHAPTER 2. REGULAR LANGUAGES

For the base case, either

(a) R = ai, in which case, NR is the following NFA:

s t
ai

Figure 2.9: NFA for ai

(b) R = ε, in which case, NR is the following NFA:
s t

ε

Figure 2.10: NFA for ε

(c) R = ∅, in which case, NR is the following NFA:
s t

Figure 2.11: NFA for ∅

The recursive clauses are as follows:

2.14. REGULAR EXPRESSIONS AND NFA’S 97

(i) If our expression is (R + S), the algorithm is applied
recursively to R and S, generating NFA’s NR and NS,
and then these two NFA’s are combined in parallel as
shown in Figure 2.12:

s

s2

s1

t2

t1

t

ε

ε

ε

ε

NS

NR

Figure 2.12: NFA for (R + S)

(ii) If our expression is (R · S), the algorithm is applied
recursively to R and S, generating NFA’s NR and NS,
and then these NFA’s are combined sequentially as shown
in Figure 2.13 by merging the “old” final state, t1, of NR,
with the “old” start state, s2, of NS:

s1 t1 t2NR NS

Figure 2.13: NFA for (R · S)

98 CHAPTER 2. REGULAR LANGUAGES

Note that since there are no incoming transitions into s2
in NS, once we enter NS, there is no way of reentering
NR, and so the construction is correct (it yields the con-
catenation LRLS).

(iii) If our expression isR∗, the algorithm is applied recur-
sively to R, generating the NFA NR. Then we construct
the NFA shown in Figure 2.14 by adding an ε-transition
from the “old” final state, t1, of NR to the “old” start
state, s1, of NR and, as ε is not necessarily accepted by
NR, we add an ε-transition from s to t:

s s1 t1 t
ε ε

ε

ε

NR

Figure 2.14: NFA for R∗

Since there are no outgoing transitions from t1 in NR, we
can only loop back to s1 from t1 using the new ε-transition
from t1 to s1 and so the NFA of Figure 2.14 does accept
N ∗

R.

2.14. REGULAR EXPRESSIONS AND NFA’S 99

As a corollary of this construction, we get

Reg. languages version 2 ⊆ Reg. languages, version 1.

The reader should check that if one constructs the NFA
corresponding to the regular expression (a + b)∗abb and
then applies the subset construction, one get the following
DFA:

A

B

C

D E

a

b

a

b

a b

b

a

b

a

Figure 2.15: A non-minimal DFA for {a, b}∗{abb}

100 CHAPTER 2. REGULAR LANGUAGES

Lemma There is an algorithm, which, given any NFA
N , constructs a regular expression R ∈ R(Σ), denot-
ing L(N), i.e., such that LR = L(N).

As a corollary,

Reg. languages version 1 ⊆ Reg. languages, version 2.

This is the node elimination algorithm . The general
idea is to allow more general labels on the edges of an
NFA, namely, regular expressions. Then, such generalized
NFA’s are simplified by eliminating nodes one at a time,
and readjusting labels.

2.14. REGULAR EXPRESSIONS AND NFA’S 101

Preprocessing, phase 1:

If necessary, we need to add a new start state with an
ε-transition to the old start state, if there are incoming
edges into the old start state.

If necessary, we need to add a new (unique) final state
with ε-transitions from each of the old final states to the
new final state, if there is more than one final state or
some outgoing edge from any of the old final states.

At the end of this phase, the start state, say s, is a source
(no incoming edges), and the final state, say t, is a sink
(no outgoing edges).

102 CHAPTER 2. REGULAR LANGUAGES

Preprocessing, phase 2:

We need to “flatten” parallel edges. For any pair of states
(p, q) (p = q is possible), if there are k edges from p to q
labeled u1, . . ., uk, then create a single edge labeled with
the regular expression

u1 + · · · + uk.

For any pair of states (p, q) (p = q is possible) such that
there is no edge from p to q, we put an edge labeled ∅.

At the end of this phase, the resulting “generalized NFA”
is such that for any pair of states (p, q) (where p = q is
possible), there is a unique edge labeled with some regular
expression denoted as Rp,q. When Rp,q = ∅, this really
means that there is no edge from p to q in the original
NFA N .

2.14. REGULAR EXPRESSIONS AND NFA’S 103

By interpreting each Rp,q as a function call (really, a
macro) to the NFA Np,q accepting L[Rp,q] (constructed
using the previous algorithm), we can verify that the orig-
inal language L(N) is accepted by this new generalized
NFA.

Node elimination only applies if the generalized NFA
has at least one node distinct from s and t.

Pick any node r distinct from s and t. For every pair
(p, q) where p $= r and q $= r, replace the label of the
edge from p to q as indicated below:

104 CHAPTER 2. REGULAR LANGUAGES

Rr,r

Rp,q

Rp,r Rr,q

p q

r

Figure 2.16: Before Eliminating node r

Rp,q +Rp,rR∗

r,rRr,q
p q

Figure 2.17: After Eliminating node r

At the end of this step, delete the node r and all edges
adjacent to r.

2.14. REGULAR EXPRESSIONS AND NFA’S 105

Note that p = q is possible, in which case the triangle is
“flat”. It is also possible that p = s or q = t. Also, this
step is performed for all pairs (p, q), which means that
both (p, q) and (q, p) are considered (when p $= q)). Note
that this step only has an effect if there are edges from p
to r and from r to q in the original NFA N . Otherwise, r
can simply be deleted, as well as the edges adjacent to r.
Other simplifications can be made. For example, when
Rr,r = ∅, we can simplify Rp,rR∗

r,rRr,q to Rp,rRr,q. When
Rp,q = ∅, we have Rp,rR∗

r,rRr,q.

The order in which the nodes are eliminated is irrelevant,
although it affects the size of the final expression.

The algorithm stops when the only remaining nodes are
s and t. Then, the label R of the edge from s to t is a
regular expression denoting L(N).

106 CHAPTER 2. REGULAR LANGUAGES

2.15 Summary of Closure Properties of the Regular
Languages

The family of regular languages is closed under many op-
erations. In particular, it is closed under the following
operations listed below. Some of the closure properties
are left as a homework problem.

(1) Union, intersection, relative complement.

(2) Concatenation, Kleene ∗, Kleene +.

(3) Homomorphisms and inverse homomorphisms.

(4) gsm and inverse gsm mappings, a-transductions and
inverse a-transductions.

Another useful operation is substitution.

Given any two alphabets Σ,∆, a substitution is a func-
tion, τ :Σ → 2∆

∗
, assigning some language, τ (a) ⊆ ∆∗,

to every symbol a ∈ Σ.

2.15. SUMMARY OF CLOSURE PROPERTIES OF THE REGULAR LANGUAGES 107

A substitution τ :Σ → 2∆
∗
is extended to a map

τ : 2Σ
∗
→ 2∆

∗
by first extending τ to strings using the

following definition

τ (ε) = {ε},
τ (ua) = τ (u)τ (a),

where u ∈ Σ∗ and a ∈ Σ, and then to languages by
letting

τ (L) =
⋃

w∈L

τ (w),

for every language L ⊆ Σ∗.

Observe that a homomorphism is a special kind of sub-
stitution.

A substitution is a regular substitution iff τ (a) is a reg-
ular language for every a ∈ Σ. The proof of the next
proposition is left as a homework problem.

Proposition 2.15.1 If L is a regular language and
τ is a regular substitution, then τ (L) is also regular.
Thus, the family of regular languages is closed under
regular substitutions.

108 CHAPTER 2. REGULAR LANGUAGES

2.16 Applications of Regular Expressions:
Lexical analysis, Finding patterns in text

Regular expressions have several practical applications.
The first important application is to lexical analysis .

A lexical analyzer is the first component of a compiler .

The purpose of a lexical analyzer is to scan the source
program and break it into atomic components, known
as tokens , i.e., substrings of consecutive characters that
belong together logically.

Examples of tokens are: identifiers, keywords, numbers
(in fixed point notation or floating point notation, etc.),
arithmetic operators (+, ·,−, ^), comparison operators
(<,>,=, <>), assignment operator (:=), etc.

Tokens can be described by regular expressions. For this
purpose, it is useful to enrich the syntax of regular ex-
pressions, as in UNIX.

2.16. APPLICATIONS OF REGULAR EXPRESSIONS 109

For example, the 26 upper case letters of the (roman)
alphabet, A, . . . , Z, can be specified by the expression

[A-Z]

Similarly, the ten digits, 0, 1, . . . , 9, can be specified by
the expression

[0-9]

The regular expression

R1 + R2 + · · · +Rk

is denoted
[R1R2 · · ·Rk]

So, the expression
[A-Za-z0-9]

denotes any letter (upper case or lower case) or digit. This
is called an alphanumeric.

If we define an identifier as a string beginning with a
letter (upper case or lower case) followed by any number
of alphanumerics (including none), then we can use the
following expression to specify identifiers:

[A-Za-z][A-Za-z0-9]∗

110 CHAPTER 2. REGULAR LANGUAGES

There are systems, such as lex or flex that accept as
input a list of regular expressions describing the tokens of
a programming language and construct a lexical analyzer
for these tokens.

Such systems are called lexical analyzer generators . Ba-
sically, they build a DFA from the set of regular expres-
sions using the algorithms that have been described ear-
lier.

Usually, it is possible associate with every expression some
action to be taken when the corresponding token is rec-
ognized

Another application of regular expressions is finding pat-
terns in text.

2.16. APPLICATIONS OF REGULAR EXPRESSIONS 111

Using a regular expression, we can specify a “vaguely de-
fined” class of patterns.

Take the example of a street address. Most street ad-
dresses end with “Street”, or “Avenue”, or “Road” or
“St.”, or “Ave.”, or “Rd.”.

We can design a regular expression that captures the
shape of most street addresses and then convert it to a
DFA that can be used to search for street addresses in
text.

For more on this, see Hopcroft-Motwani and Ullman.

