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Abstract. In this note, we consider the problem of computing the exponential of a real
matrix. It is shown that if A is a real n × n matrix and A can be diagonalized over C,
then there is a formula for computing eA involving only real matrices. When A is a skew
symmetric matrix, the formula reduces to the generalization of Rodrigues’s formula given in
Gallier and Xu [1].
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1 Introduction

In this note, we consider the problem of computing the exponential of a real matrix. As much
as possible, we would like to find a closed-form formula only involving real matrices. This is
possible in some cases, for instance, if the matrix A has real eigenvalues and is diagonalizable.
This is also possible when A is a 3 × 3 skew symmetric matrix, by the well–known formula
due to Rodrigues (see Marsden and Ratiu [4], McCarthy [5], or Murray, Li and Sastry [7]). In
a recent paper [1], Gallier and Xu prove that there is a natural generalization of Rodrigues’s
formula applying to any n× n skew symmetric matrix. In this paper, we show that if A is a
real n×n matrix and if A can be diagonalized over C, then there is a formula for computing
eA involving only real matrices. When A is a skew symmetric matrix, the formula reduces
to the formula given in Gallier and Xu [1]. The key point is that A can be decomposed as

A =
m∑

i=1

(−λiV
2
i + µiVi

)
+

p∑
i=1

λm+iWi,

where the λj ± iµj’s and λm+i’s are the complex and real eigenvalues of A respectively, and
the matrices Vi and Wj satisfy certain conditions so that

eA = In +
m∑

i=1

(
eλi sin µi Vi + (1 − eλi cos µi) V 2

i

)
+

p∑
i=1

(eλm+i − 1) Wi.

Furthermore, the matrices Vi and Wj are unique.

The general problem of computing the exponential of a matrix is discussed in Moler and
Van Loan [6]. However, more general types of matrices are considered, and Moler and Van
Loan’s investigations have basically no bearing on the results of this paper.

We begin with a special case that turns out to be crucial for the general case.

2 Preliminary Results

Let J be the matrix

J =

(
0 −1
1 0

)
.

Obviously,
J2 = −I2.

Thus, J behaves like the complex number i, and this is basically why the following lemma
holds.

Lemma 2.1 Given any real 2 × 2 matrix A of the form

A =

(
λ −µ
µ λ

)
,
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we have

eA = eλ (cos µ I2 + sin µ J) = eλ

(
cos µ − sin µ
sin µ cos µ

)
.

Proof . The matrix A can be written as

A = λ I2 + µ J,

where

J =

(
0 −1
1 0

)

satisfies the identity J2 = −I2. It is easily checked by induction that

Ak =
1

2

(
(λ + iµ)k + (λ − iµ)k

)
I2 +

1

2i

(
(λ + iµ)k − (λ − iµ)k

)
J

for all k ≥ 0. Thus,

eA =
∑
k≥0

Ak

k!

=
1

2

∑
k≥0

1

k!

(
(λ + iµ)k + (λ − iµ)k

)
I2 +

1

2i

∑
k≥0

1

k!

(
(λ + iµ)k − (λ − iµ)k

)
J

=
1

2

(
eλ+iµ + eλ−iµ

)
I2 +

1

2i

(
eλ+iµ − eλ−iµ

)
J

= eλ (cos µ I2 + sin µ J) .

The proof of Lemma 2.1 yields the following useful result.

Lemma 2.2 If U and V are n × n matrices such that

U2 = U, UV = V U = V, and V 2 = −U,

then for any matrix of the form
A = λ U + µ V,

we have
eA = In + (eλ cos µ − 1) U + eλ sin µ V.

Proof . The proof of Lemma 2.1 can be adapted as follows. We can still prove by induction
that

Ak =
1

2

(
(λ + iµ)k + (λ − iµ)k

)
U +

1

2i

(
(λ + iµ)k − (λ − iµ)k

)
V
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for all k ≥ 1 (but not for k = 0). Thus,

eA = In +
∑
k≥1

Ak

k!

= In +
1

2

∑
k≥1

1

k!

(
(λ + iµ)k + (λ − iµ)k

)
U +

1

2i

∑
k≥1

1

k!

(
(λ + iµ)k − (λ − iµ)k

)
V

= In +
1

2

(
eλ+iµ − 1 + eλ−iµ − 1

)
U +

1

2i

(
eλ+iµ − 1 − (eλ−iµ − 1)

)
V

= In + (eλ cos µ − 1) U + eλ sin µ V.

We are now ready to present a formula for the exponential of a real matrix that can be
diagonalized over C.

3 The Formula

Let A be a real n × n matrix that can be diagonalized over C. The complex eigenvalues of
A come in conjugate pairs λ ± iµ (with λ, µ ∈ R). It is also obvious that if u + iv is an
eigenvector for λ + iµ, where u, v are real vectors, then u − iv is an eigenvector for λ − iµ.
If µ �= 0, then λ + iµ �= λ− iµ and thus u + iv and u− iv are linearly independent (over C),
which implies that u and v are linearly independent. Since

A(u) + iA(v) = A(u + iv) = (λ + iµ)(u + iv) = λu − µv + i(µu + λv),

we get

Au = λu − µv,

Av = µu + λv.

Since A can be diagonalized over C, there is a basis consisting of (complex) eigenvectors,
and using the above remarks, we can find a real basis with respect to which A is a block
diagonal matrix whose blocks are one-dimensional or of the form

(
λ µ
−µ λ

)
,

where λ, µ ∈ R. This is summarized in the following Lemma, where it is more convenient
to replace µ by −µ1. This lemma is also a direct consequence of the real Jordan form, see
Horn and Johnson [3].
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Lemma 3.1 Let A be a real n × n matrix that can be diagonalized over C. Then, A can be
written as A = PDP−1, where P and D are real matrices with D a block diagonal matrix of
the form 


D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp


 ,

such that each block Dj is either a one-dimensional matrix (i.e., a real scalar) or a two-
dimensional matrix of the form

Dj =

(
λj −µj

µj λj

)
,

where λj, µj ∈ R.

The two-dimensional blocks correspond to pairs of conjugate eigenvalues λj + iµj and
λj − iµj, and the one-dimensional blocks to the real eigenvalues of A.

Using Lemma 3.1, we can prove that a certain decomposition of A exists. The existence
of this decomposition immediately yields a formula for eA. The uniqueness of the matrices
involved in the decomposition will be proved in the next section.

Lemma 3.2 Let A be a real n × n matrix that can be diagonalized over C and assume that
its set of nonnull eigenvalues is

{λ1 + iµ1, λ1 − iµ1, . . . , λm + iµm, λm − iµm, λm+1, . . . , λm+p},

with λj, µj, λm+k ∈ R and µj �= 0. Then, there are real matrices Vi,Wk such that

V 3
i = −Vi,

ViVj = VjVi = 0, (i �= j)

ViWk = WkVi = 0, (i �= k)

WkWl = WlWk = 0, (k �= l)

W 2
k = Wk,

and

A =
m∑

i=1

(−λiV
2
i + µiVi

)
+

p∑
i=1

λm+iWi.

Furthermore,

eA = In +
m∑

i=1

(
eλi sin µi Vi + (1 − eλi cos µi) V 2

i

)
+

p∑
i=1

(eλm+i − 1) Wi.
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Proof . Let A = PDP−1, as in Lemma 3.1. For every λj + iµj, let Ej be the matrix obtained
from D by deleting all the blocks corresponding to eigenvalues distinct from λj + iµj. Then,

Ej = λjFj + µjGj,

where λjFj is the diagonal part of Ej and µjGj is obtained by deleting the diagonal entries
from Ej. For every λm+k, let λm+kFm+k be the matrix obtained from D by deleting all the
blocks corresponding to eigenvalues distinct from λm+k. Observe that

G2
j = −Fj and F 2

m+k = Fm+k.

Then, let
Uj = PFjP

−1, Vj = PGjP
−1, and Wk = PFm+kP

−1.

Clearly,

V 3
i = −Vi,

ViVj = VjVi = 0, (i �= j)

ViWk = WkVi = 0, (i �= k)

WkWl = WlWk = 0, (k �= l)

W 2
k = Wk,

V 2
i = −Ui,

and

A =
m∑

i=1

(λiUi + µiVi) +

p∑
i=1

λm+iWi =
m∑

i=1

(−λiV
2
i + µiVi

)
+

p∑
i=1

λm+iWi.

Since Ui = −V 2
i , from V 3

i = −Vi, we get

U2
i = Ui, UiVi = ViUi = Vi.

Since the Vi’s commute, the Wk’s commute, and the Vi’s and the Wk’s commute, we get

eA =
m∏

i=1

eλiUi+µiVi

p∏
i=1

eλm+iWi .

However, by Lemma 2.2,

eλiUi+µiVi = In + (eλi cos µi − 1) Ui + eλi sin µi Vi,

and since Ui = −V 2
i , we get

eλiUi+µiVi = In + eλi sin µi Vi + (1 − eλi cos µi) V 2
i .

Since W 2
k = Wk, we get

eλm+iWi = In + (eλm+i − 1) Wi.
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Since ViVj = VjVi = 0 for i �= j, ViWk = WkVi = 0 for i �= k, and WkWl = WlWk = 0 for
k �= l, we finally get

eA = In +
m∑

i=1

(
eλi sin µi Vi + (1 − eλi cos µi) V 2

i

)
+

p∑
i=1

(eλm+i − 1) Wi.

Recall that a normal matrix is a matrix A such that

AA∗ = A∗A

It is well-known that normal matrices can be diagonalized in terms of unitary matrices (see
Golub and Van Loan [2] or Trefethen and Bau [8]). Then, if A is a normal matrix, the matrix
P of Lemma 3.1 can be chosen to be orthogonal, which implies that the matrices Vi are skew
symmetric and the matrices Wk are symmetric.

If A is skew symmetric, its eigenvalues are pure imaginary of null. Thus, the formula
reduces to

eA = In +
m∑

i=1

(
sin µi Vi + (1 − cos µi) V 2

i

)
,

the generalization of Rodrigues’s formula given in Gallier and Xu [1].

Next, we prove the uniqueness of the Vi’s and Wk’s.

4 Uniqueness of the Vi’s and Wk’s

Lemma 4.1 Let A be a real n × n matrix that can be diagonalized over C and assume that
its set of nonnull eigenvalues is

{λ1 + iµ1, λ1 − iµ1, . . . , λm + iµm, λm − iµm, λm+1, . . . , λm+p},
with λj, µj, λm+k ∈ R and µj �= 0. The real matrices Vi,Wk satisfying the conditions

V 3
i = −Vi,

ViVj = VjVi = 0, (i �= j)

ViWk = WkVi = 0, (i �= k)

WkWl = WlWk = 0, (k �= l)

W 2
k = Wk,

and

A =
m∑

i=1

(−λiV
2
i + µiVi

)
+

p∑
i=1

λm+iWi

as in Lemma 3.2, are unique.
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Proof . Letting Ui = −V 2
i , using the identities

V 3
i = −Vi,

ViVj = VjVi = 0, (i �= j)

ViWk = WkVi = 0, (i �= k)

WkWl = WlWk = 0, (k �= l)

W 2
k = Wk,

Ui and Vi satisfy the conditions of Lemma 2.2, and we get the following formula for Ak:

Ak =
m∑

j=1

(
1

2

(
(λj + iµj)

k + (λj − iµj)
k
)
Uj +

1

2i

(
(λj + iµj)

k − (λj − iµj)
k
)
Vj

)

+

p∑
j=1

λk
m+jWi.

Thus, we can form a system of 2m + p equations with the 2m + p variables U1, . . . , Um,
V1, . . . , Vm, W1, . . . ,Wp, where the kth equation is the above equation. We claim that the
determinant of this system can be reduced to a Vandermonde determinant and that it is
nonnull. Indeed, the determinant of the system is∣∣∣∣∣∣∣∣∣

x1 1 . . . xm 1 y1 1 . . . ym 1 λm+1 . . . λm+p

x1 2 . . . xm 2 y1 2 . . . ym 2 λ2
m+1 . . . λ2

m+p
...

...
...

...
...

...
...

...
...

x1 2m+p . . . xm 2m+p y1 2m+p . . . ym 2m+p λ2m+p
m+1 . . . λ2m+p

m+p

∣∣∣∣∣∣∣∣∣
where

xj k =
1

2

(
(λj + iµj)

k + (λj − iµj)
k
)
,

yj k =
1

2i

(
(λj + iµj)

k − (λj − iµj)
k
)
.

For every j, 1 ≤ j ≤ m, if we add the (m + j)th column to the jth column, we get∣∣∣∣∣∣∣∣∣

λ1 + iµ1 . . . λm + iµm y1 1 . . . ym 1 λm+1 . . . λm+p

(λ1 + iµ1)
2 . . . (λm + iµm)2 y1 2 . . . ym 2 λ2

m+1 . . . λ2
m+p

...
...

...
...

...
...

...
...

...

(λ1 + iµ1)
2m+p . . . (λm + iµm)2m+p y1 2m+p . . . ym 2m+p λ2m+p

m+1 . . . λ2m+p
m+p

∣∣∣∣∣∣∣∣∣
.

For every j, 1 ≤ j ≤ m, if if we subtract 1/2i times the jth column from the (m + j)th
column, we get

(i/2)m

∣∣∣∣∣∣∣∣∣

z1 . . . zm z1 . . . zm λm+1 . . . λm+p

z2
1 . . . z2

m z1
2 . . . zm

2 λ2
m+1 . . . λ2

m+p
...

...
...

...
...

...
...

...
...

z2m+p
1 . . . z2m+p

m z1
2m+p . . . zm

2m+p λ2m+p
m+1 . . . λ2m+p

m+p

∣∣∣∣∣∣∣∣∣
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where zj = λj + iµj (and zj = λj − iµj). Thus, the determinant of the system if proportional
to a Vandermonde determinant, which is nonnull, since

{λ1 + iµ1, λ1 − iµ1, . . . , λm + iµm, λm − iµm, λm+1, . . . , λm+p}

is the set of nonnull eigenvalues of A (where µj �= 0).

5 Conclusion

We have given a formula computing the exponential of a real n × n matrix A that can be
diagonalized over C. This formula reduces to a generalization of Rodrigues’s formula given
in Gallier and Xu [1] when A is skew symmetric. In Gallier and Xu, a formula for computing
exponentials of matrices in the Lie algebra se(n) of the Lie group SE(n) of rigid motions was
also given. This suggests that there may be other classes of matrices for which a formula for
the exponential can be found. Finding such classes is left as an open problem.
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