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Preface

This is a book about discrete mathematics which also discusses mathematical rea-
soning and logic. Since the publication of the first edition of this book a few years
ago, we came to realize that for a significant number of readers, it is their first ex-
posure to the rules of mathematical reasoning and to logic. As a consequence, the
version of Chapter 1 from the first edition may be a bit too abstract and too formal
for those readers, and they may find this discouraging. To remedy this problem, we
have written a new version of the first edition of Chapter 1. This new chapter is more
elementary, more intuitive, and less formal. It also contains less material, but as in
the first edition, it is still possible to skip Chapter 1 without causing any problem
or gap, because the other chapters of this book do not depend on the material of
Chapter 1.

It appears that enough readers are interested in the first edition of Chapter 1, so
in this second edition, we reproduce it (slightly updated) as Chapter 11. Again, this
chapter can be omitted without causing any problem or gap.

Our suggestion to readers who have not been exposed to mathematical reasoning
and logic is to read, or at least skim, Chapter 1. On the other hand, our suggestion
to more sophisticated readers is to skip Chapter 1 and proceed directly to Chapter
2. By doing so, they will miss some interesting considerations on the constructive
nature of logic, but that’s because we are very fond of foundational issues, and we
realize that not everybody has the same level of interest in foundations!

In this second edition we tried to make the exposition simpler and clearer. We
added some figures, some examples, clarified certain definitions, and simplified
some proofs. A few changes and additions were also made.

In Chapter 2 we added a section (Section 2.12) which describes the Haar trans-
form on sequences in an elementary fashion as a certain bijection. We also show
how the Haar transform can be used to compress audio signals (see Section 2.13).
This is a spectacular and concrete illustration of the abstract notion of a bijection.

We created a separate chapter (Chapter 3) dealing with the set-theoretical notions
of equinumerosity, finite, countable, and infinite sets. In this new chapter we discuss
the pigeonhole principle more extensively. In particular, we discuss the Frobenius
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coin problem (and its special case, the McNuggets number problem). We also cre-
ated a new section on finite and infinite sets (Section 3.3).

We moved the material on equivalence relations and partitions that used to be
in Chapter 5 of the first edition to Section 4.1, and the material on transitive and
reflexive closures to Section 4.2 (in a new chapter, Chapter 4). This makes sense
because equivalence relations show up everywhere, in particular in graphs as the
connectivity relation, so it is better to introduce equivalence relations as early as
possible. We also provided some proofs that were omitted in the first edition.

Chapter 5 of the first edition has been split into two chapters:

(1) Chapter 5, on partial orders, well-founded orderings, and lattices.
(2) Chapter 7, on Unique Prime Factorization in Z and GCDs, Fibonacci and Lucas

Numbers, Public Key Cryptography and RSA.

This way, the foundational material is contained in Chapter 1 (which can be omit-
ted by readers familiar with basic mathematical reasoning and logic) and Chapters
2–5. Chapters 6–10 cover the core of discrete mathematics.

In Chapter 6 we added some problems on the Stirling numbers of the first and of
the second kind. We also added a section (Section 6.7) on Möbius inversion.

The chapters devoted to graph theory now appear consecutively. This makes it
easier to recall concepts introduced in Chapter 9 when reading Chapter 10. In Chap-
ter 9 we give a fairly complete presentation of the basic concepts of graph theory:
directed and undirected graphs, paths, cycles, spanning trees, Eulerian and Hamil-
tonian cycles. Because the notion of a tree is so fundamental in computer science
(and elsewhere), we added new sections (Sections 9.8 and 9.9) on ordered binary
trees, rooted ordered trees, and binary search trees. We also introduced the concept
of a heap.

In Chapter 10 we discuss more advanced topics requiring some linear algebra:
cocycles, cotrees, flows, and tensions, matchings, coverings, and planar graphs. We
also discuss the network flow problem and prove the max-flow min-cut theorem in
an original way due to M. Sakarovitch.

We added some problems and supplied some missing proofs here and there. Of
course, we corrected a bunch of typos.

Finally, we became convinced that a short introduction to discrete probability
was needed. For one thing, discrete probability theory illustrates how a lot of fairly
dry material from Chapter 6 is used. Also, there is no question that probability the-
ory plays a crucial role in computing, for example, in the design of randomized
algorithms and in the probabilistic analysis of algorithms. Discrete probability is
quite applied in nature and it seems desirable to expose students to this topic early
on. We provide a very elementary account of discrete probability in Chapter 8. We
emphasize that random variables are more important than their underlying probabil-
ity spaces. Notions such as expectation and variance help us to analyze the behavior
of random variables even if their distributions are not known precisely. We give a
number of examples of computations of expectations, including the coupon collec-
tor problem and a randomized version of quicksort.
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The last three sections of this chapter contain more advanced material and are
optional. The topics of these optional sections are generating functions (including
the moment generating function and the characteristic function), the limit theorems
(weak law of large numbers, central limit theorem, and strong law of large numbers),
and Chernoff bounds. A beautiful exposition of discrete probability can be found in
Chapter 8 of Concrete Mathematics , by Graham, Knuth, and Patashnik [1]. Com-
prehensive presentations can be found in Mitzenmacher and Upfal [2], Ross [4, 5],
and Grimmett and Stirzaker [3]. Ross [4] contains an enormous amount of examples
and exercises and is very easy to read.

Acknowledgments: We would like to thank Mickey Brautbar, Kostas Daniilidis,
Spyridon Leonardos, Max Mintz, Daniel Moroz, Joseph Pacheco, Joao Sedoc, Steve
Shatz, Jianbo Shi, Marcelo Siqueira, and Val Tannen for their advice, encourage-
ment, and inspiration.
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Preface to the First Edition

The curriculum of most undergraduate programs in computer science includes a
course titled Discrete Mathematics. These days, given that many students who grad-
uate with a degree in computer science end up with jobs where mathematical skills
seem basically of no use,1 one may ask why these students should take such a
course. And if they do, what are the most basic notions that they should learn?

As to the first question, I strongly believe that all computer science students
should take such a course and I will try justifying this assertion below.

The main reason is that, based on my experience of more than twenty-five years
of teaching, I have found that the majority of the students find it very difficult to
present an argument in a rigorous fashion. The notion of a proof is something very
fuzzy for most students and even the need for the rigorous justification of a claim
is not so clear to most of them. Yet, they will all write complex computer programs
and it seems rather crucial that they should understand the basic issues of program
correctness. It also seems rather crucial that they should possess some basic mathe-
matical skills to analyze, even in a crude way, the complexity of the programs they
will write. Don Knuth has argued these points more eloquently than I can in his
beautiful book, Concrete Mathematics, and I do not elaborate on this any further.

On a scholarly level, I argue that some basic mathematical knowledge should be
part of the scientific culture of any computer science student and more broadly, of
any engineering student.

Now, if we believe that computer science students should have some basic math-
ematical knowledge, what should it be?

There is no simple answer. Indeed, students with an interest in algorithms and
complexity will need some discrete mathematics such as combinatorics and graph
theory but students interested in computer graphics or computer vision will need
some geometry and some continuous mathematics. Students interested in databases
will need to know some mathematical logic and students interested in computer
architecture will need yet a different brand of mathematics. So, what’s the common
core?

1 In fact, some people would even argue that such skills constitute a handicap!
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As I said earlier, most students have a very fuzzy idea of what a proof is. This
is actually true of most people. The reason is simple: it is quite difficult to define
precisely what a proof is. To do this, one has to define precisely what are the “rules
of mathematical reasoning” and this is a lot harder than it looks. Of course, defining
and analyzing the notion of proof is a major goal of mathematical logic.

Having attempted some twenty years ago to “demystify” logic for computer sci-
entists and being an incorrigible optimist, I still believe that there is great value in
attempting to teach people the basic principles of mathematical reasoning in a pre-
cise but not overly formal manner. In these notes, I define the notion of proof as a
certain kind of tree whose inner nodes respect certain proof rules presented in the
style of a natural deduction system “a la Prawitz.” Of course, this has been done be-
fore (e.g., in van Dalen [6]) but our presentation has more of a “computer science”
flavor which should make it more easily digestible by our intended audience. Using
such a proof system, it is easy to describe very clearly what is a proof by contra-
diction and to introduce the subtle notion of “constructive proof”. We even question
the “supremacy” of classical logic, making our students aware of the fact that there
isn’t just one logic, but different systems of logic, which often comes as a shock to
them.

Having provided a firm foundation for the notion of proof, we proceed with a
quick and informal review of the first seven axioms of Zermelo–Fraenkel set theory.
Students are usually surprised to hear that axioms are needed to ensure such a thing
as the existence of the union of two sets and I respond by stressing that one should
always keep a healthy dose of skepticism in life.

What next? Again, my experience has been that most students do not have a clear
idea of what a function is, even less of a partial function. Yet, computer programs
may not terminate for all input, so the notion of partial function is crucial. Thus, we
carefully define relations, functions, and partial functions and investigate some of
their properties (being injective, surjective, bijective).

One of the major stumbling blocks for students is the notion of proof by induc-
tion and its cousin, the definition of functions by recursion. We spend quite a bit of
time clarifying these concepts and we give a proof of the validity of the induction
principle from the fact that the natural numbers are well ordered. We also discuss
the pigeonhole principle and some basic facts about equinumerosity, without intro-
ducing cardinal numbers.

We introduce some elementary concepts of combinatorics in terms of counting
problems. We introduce the binomial and multinomial coefficients and study some
of their properties and we conclude with the inclusion–exclusion principle.

Next, we introduce partial orders, well-founded sets, and complete induction.
This way, students become aware of the fact that the induction principle applies to
sets with an ordering far more complex that the ordering on the natural numbers.
As an application, we prove the unique prime factorization in Z and discuss gcds
and versions of the Euclidean algorithm to compute gcds including the so-called
extended Euclidean algorithm which relates to the Bezout identity.

Another extremely important concept is that of an equivalence relation and the
related notion of a partition.
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As applications of the material on elementary number theory presented in Section
7.1, in Section 7.3 we give an introduction to Fibonacci and Lucas numbers as well
as Mersenne numbers and in Sections 7.5, 7.6, and 7.7, we present some basics of
public key cryptography and the RSA system. These sections contain some beauti-
ful material and they should be viewed as an incentive for the reader to take a deeper
look into the fascinating and mysterious world of prime numbers and more gener-
ally, number theory. This material is also a gold mine of programming assignments
and of problems involving proofs by induction.

We have included some material on lattices, Tarski’s fixed point theorem, dis-
tributive lattices, Boolean algebras, and Heyting algebras. These topics are some-
what more advanced and can be omitted from the “core”.

The last topic that we consider crucial is graph theory. We give a fairly complete
presentation of the basic concepts of graph theory: directed and undirected graphs,
paths, cycles, spanning trees, cocycles, cotrees, flows, and tensions, Eulerian and
Hamiltonian cycles, matchings, coverings, and planar graphs. We also discuss the
network flow problem and prove the max-flow min-cut theorem in an original way
due to M. Sakarovitch.

These notes grew out of lectures I gave in 2005 while teaching CIS260, Math-
ematical Foundations of Computer Science. There is more material than can be
covered in one semester and some choices have to be made regarding what to omit.
Unfortunately, when I taught this course, I was unable to cover any graph theory. I
also did not cover lattices and Boolean algebras.

Beause the notion of a graph is so fundamental in computer science (and else-
where), I have restructured these notes by splitting the material on graphs into two
parts and by including the introductory part on graphs (Chapter 9) before the in-
troduction to combinatorics (Chapter 6). This gives us a chance to illustrate the
important concept of equivalence classes as the strongly connected components of
a directed graph and as the connected components of an undirected graph.

Some readers may be disappointed by the absence of an introduction to prob-
ability theory. There is no question that probability theory plays a crucial role in
computing, for example, in the design of randomized algorithms and in the proba-
bilistic analysis of algorithms. Our feeling is that to do justice to the subject would
require too much space. Unfortunately, omitting probability theory is one of the
tough choices that we decided to make in order to keep the manuscript of manage-
able size. Fortunately, probability and its applications to computing are presented in
a beautiful book by Mitzenmacher and Upfal [4] so we don’t feel too bad about our
decision to omit these topics.

There are quite a few books covering discrete mathematics. According to my per-
sonal taste, I feel that two books complement and extend the material presented here
particularly well: Discrete Mathematics , by Lovász, Pelikán, and Vesztergombi [3],
a very elegant text at a slightly higher level but still very accessible, and Concrete
Mathematics , by Graham, Knuth, and Patashnik [2], a great book at a significantly
higher level.

My unconventional approach of starting with logic may not work for everybody,
as some individuals find such material too abstract. It is possible to skip the chapter
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on logic and proceed directly with sets, functions, and so on. I admit that I have
raised the bar perhaps higher than the average compared to other books on discrete
maths. However, my experience when teaching CIS260 was that 70% of the students
enjoyed the logic material, as it reminded them of programming. I hope this book
will inspire and will be useful to motivated students.

A final word to the teacher regarding foundational issues: I tried to show that
there is a natural progression starting from logic, next a precise statement of the ax-
ioms of set theory, and then to basic objects such as the natural numbers, functions,
graphs, trees, and the like. I tried to be as rigorous and honest as possible regarding
some of the logical difficulties that one encounters along the way but I decided to
avoid some of the most subtle issues, in particular a rigorous definition of the notion
of cardinal number and a detailed discussion of the axiom of choice. Rather than
giving a flawed definition of a cardinal number in terms of the equivalence class
of all sets equinumerous to a set, which is not a set, I only defined the notions of
domination and equinumerosity. Also, I stated precisely two versions of the axiom
of choice, one of which (the graph version) comes up naturally when seeking a right
inverse to a surjection, but I did not attempt to state and prove the equivalence of this
formulation with other formulations of the axiom of choice (such as Zermelo’s well-
ordering theorem). Such foundational issues are beyond the scope of this book; they
belong to a course on set theory and are treated extensively in texts such as Enderton
[1] and Suppes [5].

Acknowledgments: I would like to thank Mickey Brautbar, Kostas Daniilidis, Max
Mintz, Joseph Pacheco, Steve Shatz, Jianbo Shi, Marcelo Siqueira, and Val Tannen
for their advice, encouragement, and inspiration.
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Chapter 1
Mathematical Reasoning And Basic Logic

1.1 Introduction

One of the main goals of this book is to show how to

construct and read mathematical proofs.

Why?

1. Computer scientists and engineers write programs and build systems.
2. It is very important to have rigorous methods to check that these programs and

systems behave as expected (are correct, have no bugs).
3. It is also important to have methods to analyze the complexity of programs

(time/space complexity).

More generally, it is crucial to have a firm grasp of the basic reasoning principles
and rules of logic. This leads to the question:

What is a proof?

There is no short answer to this question. However, it seems fair to say that a
proof is some kind of deduction (derivation) that proceeds from a set of hypotheses
(premises, axioms) in order to derive a conclusion, using some proof templates (also
called logical rules).

A first important observation is that there are different degrees of formality of
proofs.

1. Proofs can be very informal, using a set of loosely defined logical rules, possibly
omitting steps and premises.

2. Proofs can be completely formal, using a very clearly defined set of rules and
premises. Such proofs are usually processed or produced by programs called
proof checkers and theorem provers.

1
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Thus, a human prover evolves in a spectrum of formality.
It should be said that it is practically impossible to write formal proofs. This is

because it would be extremely tedious and time-consuming to write such proofs and
these proofs would be huge and thus, very hard to read.

In principle, it is possible to write formalized proofs and sometimes it is desirable
to do so if we want to have absolute confidence in a proof. For example, we would
like to be sure that a flight-control system is not buggy so that a plane does not
accidentally crash, that a program running a nuclear reactor will not malfunction, or
that nuclear missiles will not be fired as a result of a buggy “alarm system.”

Thus, it is very important to develop tools to assist us in constructing formal
proofs or checking that formal proofs are correct. Such systems do exist, for example
Isabelle, COQ, TPS, NUPRL, PVS, Twelf. However, 99.99% of us will not have the
time or energy to write formal proofs.

Even if we never write formal proofs, it is important to understand clearly what
are the rules of reasoning (proof templates) that we use when we construct informal
proofs.

The goal of this chapter is to explain what is a proof and how we construct proofs
using various proof templates (also known as proof rules).

This chapter is an abbreviated and informal version of Chapter 11. It is meant for
readers who have never been exposed to a presentation of the rules of mathematical
reasoning (the rules for constructing mathematical proofs) and basic logic. Readers
with a good background in these topics may decide to skip this chapter and proceed
directly to Chapter 2. This will not cause any problem and there will be no gap since
the other chapters are written so that they do not rely on the material of Chapter 1
(except for a few remarks).

1.2 Logical Connectives, Definitions

In order to define the notion of proof rigorously, we would have to define a formal
language in which to express statements very precisely, and we would have to set
up a proof system in terms of axioms and proof rules (also called inference rules).
We do not go into this in this chapter as this would take too much time. Instead, we
content ourselves with an intuitive idea of what a statement is and focus on stating as
precisely as possible the rules of logic (proof templates) that are used in constructing
proofs.

In mathematics and computer science we prove statements. Statements may be
atomic or compound, that is, built up from simpler statements using logical con-
nectives, such as implication (if–then), conjunction (and), disjunction (or), negation
(not), and (existential or universal) quantifiers.

As examples of atomic statements, we have:

1. “A student is eager to learn.”
2. “A student wants an A.”
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3. “An odd integer is never 0.”
4. “The product of two odd integers is odd.”

Atomic statements may also contain “variables” (standing for arbitrary objects).
For example,

1. human(x): “x is a human.”
2. needs-to-drink(x): “x needs to drink.”

An example of a compound statement is

human(x)⇒ needs-to-drink(x).

In the above statement,⇒ is the symbol used for logical implication. If we want to
assert that every human needs to drink, we can write

∀x(human(x)⇒ needs-to-drink(x));

this is read “For every x, if x is a human, then x needs to drink.”
If we want to assert that some human needs to drink we write

∃x(human(x)⇒ needs-to-drink(x));

this is read “There is some x such that, if x is a human, then x needs to drink.”
We often denote statements (also called propositions or (logical) formulae) using

letters, such as A,B,P,Q, and so on, typically upper-case letters (but sometimes
Greek letters, ϕ , ψ , etc.).

Compound statements are defined as follows: if P and Q are statements, then

1. the conjunction of P and Q is denoted P∧Q (pronounced, P and Q),
2. the disjunction of P and Q is denoted P∨Q (pronounced, P or Q),
3. the implication of P and Q is denoted by P⇒ Q (pronounced, if P then Q, or P

implies Q).

We also have the atomic statements ⊥ (falsity), think of it as the statement that is
false no matter what; and the atomic statement> (truth), think of it as the statement
that is always true.

The constant ⊥ is also called falsum or absurdum. It is a formalization of the
notion of absurdity or inconsistency (a state in which contradictory facts hold).

Given any proposition P it is convenient to define

4. the negation ¬P of P (pronounced, not P) as P⇒⊥. Thus, ¬P (sometimes de-
noted ∼ P) is just a shorthand for P⇒⊥.

The intuitive idea is that ¬P (an abbreviation for P⇒⊥) is true if and only if P is
false. Actually, because we don’t know what truth is, it is “safer” to say that ¬P is
provable if and only if for every proof of P we can derive a contradiction (namely,
⊥ is provable). By provable, we mean that a proof can be constructed using some
rules that will be described shortly (see Section 1.3).
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Whenever necessary to avoid ambiguities, we add matching parentheses: (P∧Q),
(P∨Q), (P⇒Q). For example, P∨Q∧R is ambiguous; it means either (P∨(Q∧R))
or ((P∨Q)∧R).

Another important logical operator is equivalence.
If P and Q are statements, then

5. the equivalence of P and Q is denoted P≡ Q (or P⇐⇒ Q); it is an abbreviation
for (P⇒ Q)∧ (Q⇒ P). We often say “P if and only if Q” or even “P iff Q” for
P≡ Q.

As a consequence, to prove a logical equivalence P≡ Q, we have to prove both
implications P⇒ Q and Q⇒ P.

The meaning of the logical connectives (∧,∨,⇒,¬,≡) is intuitively clear. This
is certainly the case for and (∧), since a conjunction P∧Q is true if and only if
both P and Q are true (if we are not sure what “true” means, replace it by the word
“provable”). However, for or (∨), do we mean inclusive or or exclusive or? In the
first case, P∨Q is true if either P or Q is true, but in the second case, P∨Q is true
if either P or Q is true but not both at the same time (again, in doubt change “true”
to “provable”). We always mean inclusive or.

The situation is worse for implication (⇒). When do we consider that P⇒ Q is
true (provable)? The answer is that it depends on the rules! The “classical” answer
is that P⇒ Q is false (not provable) if and only if P is true and Q is false. For an
alternative view (that of intuitionistic logic), see Chapter 11. In this chapter (and all
others except Chapter 11), we adopt the classical view of logic. Since negation (¬)
is defined in terms of implication, in the classical view, ¬P is true if and only if P is
false.

The purpose of the proof rules, or proof templates, is to spell out rules for con-
structing proofs which reflect, and in fact specify, the meaning of the logical con-
nectives.

Before we present the proof templates it should be said that nothing of much
interest can be proven in mathematics if we do not have at our disposal various
objects such as numbers, functions, graphs, etc. This brings up the issue of where
we begin, what may we assume. In set theory, everything, even the natural numbers,
can be built up from the empty set! This is a remarkable construction but it takes a
tremendous amount of work. For us, we assume that we know what the set

N= {0,1,2,3, . . .}

of natural numbers is, as well as the set

Z= {. . . ,−3,−2,−1,0,1,2,3, . . .}

of integers (which allows negative natural numbers). We also assume that we know
how to add, subtract and multiply (perhaps even divide) integers (as well as some
of the basic properties of these operations), and we know what the ordering of the
integers is.
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The way to introduce new objects in mathematics is to make definitions. Basi-
cally, a definition characterizes an object by some property. Technically, we define
a “gizmo” x by introducing a so-called predicate (or property) gizmo(x), which is
an abbreviation for some possibly complicated logical proposition P(x). The idea is
that x is a “gizmo” if and only if gizmo(x) holds if and only if P(x) holds. We may
write

gizmo(x)≡ P(x),

or
gizmo(x)

def≡ P(x).

Note that gizmo is just a name, but P(x) is a (possibly complex) proposition.
It is also convenient to define properties (also called predicates) of one of more

objects as abbreviations for possibly complicated logical propositions. In this case,
a property p(x1, . . . ,xn) of some objects x1, . . . ,xn holds if and only if some logical
proposition P(x1, . . . ,xn) holds. We may write

p(x1, . . . ,xn)≡ P(x1, . . . ,xn)

or
p(x1, . . . ,xn)

def≡ P(x1, . . . ,xn)

Here too, p is just a name, but P(x1, . . . ,xn) is a (possibly complex) proposition.
Let us give a few examples of definitions.

Definition 1.1. Given two integers a,b ∈ Z, we say that a is a multiple of b if there
is some c ∈ Z such that a = bc. In this case, we say that a is divisible by b, that b is
a divisor of a (or b is a factor of a), and that b divides a. We use the notation b | a.

In Definition 1.1, we define the predicate divisible(a,b) in terms of the proposi-
tion P(a,b) given by

there is some c ∈ N such that a = bc.

For example, 15 is divisible by 3 since 15 = 3 · 5. On the other hand, 14 is not
divisible by 3.

Definition 1.2. A integer a ∈ Z is even if it is of the form a = 2b for some b ∈ Z,
odd if it is of the form a = 2b+1 for some b ∈ Z.

In Definition 1.2, the property even(a) of a being even is defined in terms of the
predicate P(a) given by

there is some b ∈ N such that a = 2b.

The property odd(a) is obtained by changing a = 2b to a = 2b+ 1 in P(a). The
integer 14 is even, and the integer 15 is odd. Beware that we can’t assert yet that if
an integer is not even, then it is odd. Although this is true, this needs to be proven
and requires induction, which we haven’t discussed yet.
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Prime numbers play a fundamental role in mathematics. Let us review their defi-
nition.

Definition 1.3. A natural number p ∈N is prime if p≥ 2 and if the only divisors of
p are 1 and p.

In the above definition, the property prime(p) is defined by the predicate P(p)
given by

p≥ 2, and for all q ∈ N, if divisible(p,q), then q = 1 or q = p.

If we expand the definition of a prime number by replacing the predicate divisible
by its defining formula we get a rather complicated formula. Definitions allow us to
be more concise.

According to Definition 1.3, the number 1 is not prime even though it is only
divisible by 1 and itself (again 1). The reason for not accepting 1 as a prime is not
capricious. It has to do with the fact that if we allowed 1 to be a prime, then certain
important theorems (such as the unique prime factorization theorem, Theorem 7.2)
would no longer hold.

Nonprime natural numbers (besides 1) have a special name too.

Definition 1.4. A natural number a ∈ N is composite if a = bc for some natural
numbers b,c with b,c≥ 2.

For example, 4, 15, 36 are composite. Note that 1 is neither prime nor composite.
We are now ready to introduce the proof templates for implication.

1.3 Meaning of Implication and Proof Templates for Implication

First, it is important to say that there are two types of proofs:

1. Direct proofs.
2. Indirect proofs.

Indirect proofs use the proof–by–contradiction principle, which will be discussed
soon.

Because propositions do not arise from the vacuum but instead are built up from
a set of atomic propositions using logical connectives (here,⇒), we assume the ex-
istence of an “official set of atomic propositions,” or set of propositional symbols,
PS = {P1,P2,P3, . . .}. So, for example, P1 ⇒ P2 and P1 ⇒ (P2 ⇒ P1) are propo-
sitions. Typically, we use upper-case letters such as P,Q,R,S,A,B,C, and so on, to
denote arbitrary propositions formed using atoms from PS.

We begin by presenting proof templates to construct direct proofs of implications.
An implication P⇒Q can be understood as an if–then statement; that is, if P is true,
then Q is also true. A better interpretation is that any proof of P⇒Q can be used to
construct a proof of Q, given any proof of P. As a consequence of this interpretation,
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we show later that if ¬P is provable, then P⇒Q is also provable (instantly) whether
or not Q is provable. In such a situation, we often say that P⇒ Q is vacuously
provable. For example, (P∧¬P)⇒ Q is provable for any arbitrary Q.

It might help to view the action of proving an implication P⇒Q as the construc-
tion of a program that converts a proof of P into a proof of Q. Then if we supply a
proof of P as input to this program (the proof of P⇒Q), it will output a proof of Q.
So, if we don’t give the right kind of input to this program, for example, a “wrong
proof” of P, we should not expect the program to return a proof of Q. However,
this does not say that the program is incorrect; the program was designed to do the
right thing only if it is given the right kind of input. From this functional point of
view (also called constructive), we should not be shocked that the provability of an
implication P⇒ Q generally yields no information about the provability of Q.

Example 1.1. For a concrete example, say P stands for the statement,
“Our candidate for president wins in Pennsylvania,”
and Q stands for
“Our candidate is elected president.”
Then P⇒Q asserts that if our candidate for president wins in Pennsylvania, then

our candidate is elected president.
If P⇒ Q holds, then if indeed our candidate for president wins in Pennsylvania

then for sure our candidate will win the presidential election. However, if our candi-
date does not win in Pennsylvania, we can’t predict what will happen. Our candidate
may still win the presidential election but he/she may not.

If our candidate president does not win in Pennsylvania, then the statement P⇒
Q should be regarded as holding, though perhaps uninteresting.

Example 1.2. For one more example, let odd(n) assert that n is an odd natural num-
ber and let Q(n,a,b) assert that an+bn is divisible by a+b, where a,b are any given
natural numbers. By divisible, we mean that we can find some natural number c, so
that

an +bn = (a+b)c.

Then we claim that the implication odd(n)⇒ Q(n,a,b) is provable.
As usual, let us assume odd(n), so that n = 2k+ 1, where k = 0,1,2,3, . . .. But

then, we can easily check that

a2k+1 +b2k+1 = (a+b)

(
2k

∑
i=0

(−1)ia2k−ibi

)
,

which shows that a2k+1 +b2k+1 is divisible by a+b. Therefore, we proved the im-
plication odd(n)⇒ Q(n,a,b).

If n is not odd, then the implication odd(n)⇒ Q(n,a,b) yields no information
about the provablity of the statement Q(n,a,b), and that is fine. Indeed, if n is even
and n≥ 2, then in general, an +bn is not divisible by a+b, but this may happen for
some special values of n, a, and b, for example: n = 2, a = 2, b = 2.
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During the process of constructing a proof, it may be necessary to introduce a
list of hypotheses, also called premises (or assumptions), which grows and shrinks
during the proof. When a proof is finished, it should have an empty list of premises.

The process of managing the list of premises during a proof is a bit technical. In
Chapter 11 we study carefully two methods for managing the list of premises that
may appear during a proof. In this chapter we are much more casual about it, which
is the usual attitude when we write informal proofs. It suffices to be aware that at
certain steps, some premises must be added, and at other special steps, premises
must be discarded. We may view this as a process of making certain propositions
active or inactive. To make matters clearer, we call the process of constructing a
proof using a set of premises a deduction, and we reserve the word proof for a
deduction whose set of premises is empty. Every deduction has a possibly empty
list of premises, and a single conclusion. The list of premises is usually denoted by
Γ , and if the conclusion of the deduction is P, we say that we have a deduction of P
from the premises Γ .

The first proof template allows us to make obvious deductions.

Proof Template 1.1. (Trivial Deductions)

If P1, . . . ,Pi, . . . ,Pn is a list of propositions assumed as premises (where each Pi may
occur more than once), then for each Pi, we have a deduction with conclusion Pi.

All other proof templates are of two kinds: introduction rules or elimination rules.
The meaning of these words will be explained after stating the next two proof tem-
plates.

The second proof template allows the construction of a deduction whose conclu-
sion is an implication P⇒ Q.

Proof Template 1.2. (Implication–Intro)

Given a list Γ of premises (possibly empty), to obtain a deduction with conclusion
P⇒ Q, proceed as follows:

1. Add one or more occurrences of P as additional premises to the list Γ .
2. Make a deduction of the conclusion Q from P and the premises in Γ .
3. Delete P from the list of premises.

The third proof template allows the constructions of a deduction from two other
deductions.

Proof Template 1.3. (Implication–Elim or Modus–Ponens)

Given a deduction with conclusion P⇒Q from a list of premises Γ and a deduction
with conclusion P from a list of premises ∆ , we obtain a deduction with conclusion
Q. The list of premises of this new deduction is the list Γ ,∆ .

The modus–ponens proof template formalizes the use of auxilliary lemmas, a
mechanism that we use all the time in making mathematical proofs. Think of P⇒
Q as a lemma that has already been established and belongs to some database of
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(useful) lemmas. This lemma says if I can prove P, then I can prove Q. Now suppose
that we manage to give a proof of P. It follows from modus–ponens that Q is also
provable.

Mathematicians are very fond of modus–ponens because it gives a potential
method for proving important results. If Q is an important result and if we man-
age to build a large catalog of implications P⇒ Q, there may be some hope that,
some day, P will be proven, in which case Q will also be proven. So they build large
catalogs of implications! This has been going on for the famous problem known as
P versus NP. So far, no proof of any premise of such an implication involving P
versus NP has been found (and it may never be found).

� Beware, when we deduce that an implication P⇒ Q is provable, we do not
prove that P and Q are provable; we only prove that if P is provable, then Q is

provable.

In case you wonder why the words “Intro” and “Elim” occur in the names as-
signed to the proof templates, the reason is the following:

1. If the proof template is tagged with X-Intro, the connective X appears in the
conclusion of the proof template; it is introduced. For example, in Proof Template
1.2, the conclusion is P⇒ Q, and⇒ is indeed introduced.

2. If the proof template is tagged with X-Elim, the connective X appears in one of
the premises of the proof template but it does not appear in the conclusion; it is
eliminated. For example, in Proof Template 1.3 (modus ponens), P⇒ Q occurs
as a premise but the conclusion is Q; the symbol⇒ has been eliminated.

The introduction/elimination pattern is a characteristic of the kind of proof system
that we are describing which is called a natural deduction proof system.

Example 1.3. Let us give a simple example of the use of Proof Template 1.2. Recall
that a natural number n is odd iff it is of the form 2k+1, where k ∈N. Let us denote
the fact that a number n is odd by odd(n). We would like to prove the implication

odd(n)⇒ odd(n+2).

Following Proof Template 1.2, we add odd(n) as a premise (which means that
we take as proven the fact that n is odd) and we try to conclude that n+ 2 must be
odd. However, to say that n is odd is to say that n = 2k+1 for some natural number
k. Now,

n+2 = 2k+1+2 = 2(k+1)+1,

which means that n+ 2 is odd. (Here, n = 2h+ 1, with h = k + 1, and k + 1 is a
natural number because k is.)

Thus, we proven that if we assume odd(n), then we can conclude odd(n+2), and
according to Proof Template 1.2, by Step (3) we delete the premise odd(n) and we
obtain a proof of the proposition

odd(n)⇒ odd(n+2).



10 1 Mathematical Reasoning And Basic Logic

It should be noted that the above proof of the proposition odd(n)⇒ odd(n+ 2)
does not depend on any premises (other than the implicit fact that we are assuming n
is a natural number). In particular, this proof does not depend on the premise odd(n),
which was assumed (became “active”) during our subproof step. Thus, after having
applied the Proof Template 1.2, we made sure that the premise odd(n) is deactivated.

Example 1.4. For a second example, we wish to prove the proposition P⇒ P.
According to Proof Template 1.2, we assume P. But then by Proof Template 1.1,

we obtain a deduction with premise P and conclusion P; by executing Step (3) of
Proof Template 1.2, the premise P is deleted, and we obtain a deduction of P⇒ P
from the empty list of premises. Thank God, P⇒ P is provable!

Proofs described in words as above are usually better understood when repre-
sented as trees. We will reformulate our proof templates in tree form and explain
very precisely how to build proofs as trees in Chapter 11. For now, we use tree
representations of proofs in an informal way.

1.4 Proof Trees and Deduction Trees

A proof tree is drawn with its leaves at the top, corresponding to assumptions, and
its root at the bottom, corresponding to the conclusion. In computer science, trees
are usually drawn with their root at the top and their leaves at the bottom, but proof
trees are drawn as the trees that we see in nature. Instead of linking nodes by edges,
it is customary to use horizontal bars corresponding to the proof templates. One
or more nodes appear as premises above a vertical bar, and the conclusion of the
proof template appears immediately below the lowest horizontal bar. Proof trees are
usually constructed from the bottom up (but not always) and once completed they
are read from the top down.

According to the first step of proof of P⇒ P (presented in words) we move the
premise P to the list of premises, building a deduction of the conclusion P from the
premise P corresponding to the following unfinished tree in which some leaf is la-
beled with the premise P but with a missing subtree establishing P as the conclusion

Px

P Implication-Intro x

P⇒ P

The premise P is tagged with the label x which corresponds to the proof rule
which causes its deletion from the list of premises.

In order to obtain a proof we need to apply a proof template which allows use to
deduce P from P and of course this is the Trivial Deduction proof template.

The finished proof is represented by the tree shown below. Observe that the
premise P is tagged with the symbol

√
, which means that it has been deleted from

the list of premises. The tree representation of proofs also has the advantage that
we can tag the premises in such a way that each tag indicates which rule causes the
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corresponding premise to be deleted. In the tree below, the premise P is tagged with
x, and it is deleted when the proof template indicated by x is applied.

Px
√

Trivial Deduction
P Implication-Intro x

P⇒ P

Example 1.5. For a third example, we prove the proposition P⇒ (Q⇒ P).
According to Proof Template 1.2, we assume P as a premise and we try to prove

Q⇒ P assuming P. In order to prove Q⇒ P, by Proof Template 1.2, we assume Q
as a new premise so the set of premises becomes {P,Q}, and then we try to prove P
from P and Q.

At this stage we have the following unfinished tree with two leaves labeled P and
Q but with a missing subtree establishing P as the conclusion.

Px,Qy

P Implication-Intro y

Q⇒ P
Implication-Intro x

P⇒ (Q⇒ P)

We need to find a deduction of P from the premises P and Q. By Proof Template
1.1 (trivial deductions), we have a deduction with the list of premises {P,Q} and
conclusion P. Then, executing Step (3) of Proof Template 1.2 twice, we delete the
premise Q and then the premise P (in this order), and we obtain a proof of P⇒
(Q⇒ P). The above proof of P⇒ (Q⇒ P) (presented in words) is represented by
the following tree:

Px
√
,Qy
√

Trivial Deduction
P Implication-Intro y

Q⇒ P
Implication-Intro x

P⇒ (Q⇒ P)

Observe that both premises P and Q are tagged with the symbol
√

, which means
that they have been deleted from the list of premises.

We tagged the premises in such a way that each tag indicates which rule causes
the corresponding premise to be deleted. In the above tree, Q is tagged with y, and
it is deleted when the proof template indicated by y is applied, and P is tagged with
x, and it is deleted when the proof template indicated by x is applied. In a proof all
leaves must be tagged with the symbol

√
.

Example 1.6. Let us now give a proof of P⇒ ((P⇒ Q)⇒ Q).
Using Proof Template 1.2, we assume both P and P⇒ Q and we try to prove Q.

At this stage we have the following unfinished tree with two leaves labeled P⇒ Q
and P but with a missing subtree establishing Q as the conclusion:
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(P⇒ Q)x Py

Q
Implication-Intro x

(P⇒ Q)⇒ Q
Implication-Intro y

P⇒ ((P⇒ Q)⇒ Q)

We can use Proof Template 1.3 to derive a deduction of Q from P⇒ Q and P.
Finally, we execute Step (3) of Proof Template 1.2 to delete P⇒ Q and P (in this
order), and we obtain a proof of P⇒ ((P⇒ Q)⇒ Q). A tree representation of the
above proof is shown below.

(P⇒ Q)x
√

Py
√

Implication-Elim
Q

Implication-Intro x

(P⇒ Q)⇒ Q
Implication-Intro y

P⇒ ((P⇒ Q)⇒ Q)

Remark: We have not yet examined how we can represent precisely arbitrary de-
ductions. This can be done using certain types of trees where the nodes are tagged
with lists of premises. Two methods for doing this are carefully defined in Chapter
11. It turns out that the same premise may be used in more than one location in the
tree, but in our informal presentation, we ignore such fine details.

We now describe the proof templates dealing with the connectives ¬,∧,∨,≡.

1.5 Proof Templates for ¬

Recall that ¬P is an abbreviation for P⇒⊥. We begin with the proof templates for
negation, involving direct proofs.

Proof Template 1.4. (Negation–Intro)

Given a list Γ of premises (possibly empty), to obtain a deduction with conclusion
¬P proceed as follows:

1. Add one or more occurrences of P as additional premises to the list Γ .
2. Derive a contradiction. More precisely, make a deduction of the conclusion ⊥

from P and the premises in Γ .
3. Delete P from the list of premises.

Proof Template 1.4 is a special case of Proof Template 1.2, since ¬P is an abbre-
viation for P⇒⊥.

Proof Template 1.5. (Negation–Elim)
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Given a deduction with conclusion ¬P from a list of premises Γ and a deduction
with conclusion P from a list of premises ∆ , we obtain a contradiction; that is, a
deduction with conclusion ⊥. The list of premises of this new deduction is Γ ,∆ .

Proof Template 1.5 is a special case of Proof Template 1.3, since ¬P is an abbre-
viation for P⇒⊥.

Proof Template 1.6. (Perp–Elim)

Given a deduction with conclusion ⊥ (a contradiction), for every proposition Q, we
obtain a deduction with conclusion Q. The list of premises of this new deduction is
the same as the original list of premises.

The last proof template for negation constructs an indirect proof; it is the proof–
by–contradiction principle.

Proof Template 1.7. (Proof–By–Contradiction Principle)

Given a list Γ of premises (possibly empty), to obtain a deduction with conclusion
P, proceed as follows:

1. Add one of more occurrences of ¬P as additional premises to the list Γ .
2. Derive a contradiction. More precisely, make a deduction of the conclusion ⊥

from ¬P and the premises in Γ .
3. Delete ¬P from the list of premises.

Proof Template 1.7 (the proof–by–contradiction principle) also has the fancy
name of reductio ad absurdum rule, for short RAA.

Proof Template 1.6 may seem silly and one might wonder why we stated it. It
turns out that it is subsumed by Proof Template 1.7, but it is still useful to state it as
a proof template.

Example 1.7. Let us prove that for every natural number n, if n2 is odd, then n itself
must be odd.

We use the proof–by–contradiction principle (Proof Template 1.7), so we assume
that n is not odd, which means that n is even. (Actually, in this step we are using a
property of the natural numbers that is proven by induction but let’s not worry about
that right now; a proof can be found in Section 1.12) But to say that n is even means
that n = 2k for some k and then n2 = 4k2 = 2(2k2), so n2 is even, contradicting the
assumption that n2 is odd. By the proof–by–contradiction principle (Proof Template
1.7), we conclude that n must be odd.

Example 1.8. Let us prove that ¬¬P⇒ P.
It turns out that this requires using the proof–by–contradiction principle (Proof

Template 1.7). First by Proof Template 1.2, assume ¬¬P as a premise. Then by the
proof–by–contradiction principle (Proof template 1.7), in order to prove P, assume
¬P. By Proof Template 1.5, we obtain a contradiction (⊥). Thus, by Step (3) of the
proof–by–contradiction principle (Proof Template 1.7), we delete the premise ¬P
and we obtain a deduction of P from ¬¬P. Finally, by Step (3) of Proof Template
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1.2, we delete the premise ¬¬P and obtain a proof of ¬¬P⇒ P. This proof has the
following tree representation.

¬¬Py
√

¬Px
√

Negation-Elim
⊥ RAA x

P Implication-Intro y

¬¬P⇒ P

Example 1.9. Now we prove that P⇒¬¬P.
First by Proof Template 1.2, assume P as a premise. In order to prove ¬¬P using

Proof Template 1.4, assume ¬P. We now have the two premises ¬P and P, so by
Proof Template 1.5, we obtain a contradiction (⊥). By Step (3) of Proof Template
1.4, we delete the premise ¬P and we obtain a deduction of ¬¬P from P. Finally, by
Step (3) of Proof Template 1.2, delete the premise P to obtain a proof of P⇒¬¬P.
This proof has the following tree representation.

¬Px
√

Py
√

Negation-Elim
⊥ Negation-Intro x

¬¬P Implication-Intro y

P⇒¬¬P

Observe that the previous two examples show that the equivalence P ≡ ¬¬P is
provable. As a consequence of this equivalence, if we prove a negated proposition
¬P using the proof–by–contradiction principle, we assume ¬¬P and we deduce
a contradiction. But since ¬¬P and P are equivalent (as far as provability), this
amounts to deriving a contradiction from P, which is just the Proof Template 1.4.

In summary, to prove a negated proposition ¬P, always use Proof Template 1.4.

On the other hand, to prove a nonnegated proposition, it is generally not possible
to tell if a direct proof exists or if the proof–by–contradiction principle is required.
There are propositions for which it is required, for example ¬¬P⇒ P and (¬(P⇒
Q))⇒ P.

Example 1.10. Let us now prove that (¬(P⇒ Q))⇒¬Q.
First by Proof Template 1.2, we add ¬(P⇒ Q) as a premise. Then in order to

prove ¬Q from ¬(P⇒ Q), we use Proof Template 1.4 and we add Q as a premise.
We obtain the following deduction tree with a piece missing.

¬(P⇒ Q)z

Qy

?
P⇒ Q

Negation-Elim
⊥ Negation-Intro y

¬Q
Implication-Intro z

(¬(P⇒ Q))⇒¬Q
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Now recall that we showed in Example 1.5 that P⇒ Q is provable assuming Q
(with P and Q switched). Then since ¬(P⇒Q) is a premise, by Proof Template 1.5,
we obtain a deduction of ⊥; see below.

¬(P⇒ Q)z

Qy Px
√

Trivial Deduction
Q

Implication-Intro x

P⇒ Q
Negation-Elim

⊥ Negation-Intro y

¬Q
Implication-Intro z

(¬(P⇒ Q))⇒¬Q

We now execute Step (3) of Proof Template 1.4, delete the premise Q to obtain
a deduction of ¬Q from ¬(P⇒ Q), we and we execute Step (3) of Proof Template
1.2 to delete the premise ¬(P⇒ Q) and obtain a proof of (¬(P⇒ Q))⇒¬Q. The
above proof corresponds to the following tree.

¬(P⇒ Q)z
√

Qy
√

Px
√

Trivial Deduction
Q

Implication-Intro x

P⇒ Q
Negation-Elim

⊥ Negation-Intro y

¬Q
Implication-Intro z

(¬(P⇒ Q))⇒¬Q

Here is an example using Proof Templates 1.6 (Perp–Elim) and 1.7 (RAA).

Example 1.11. Let us prove that (¬(P⇒ Q))⇒ P.
First we use Proof Template 1.2, and we assume ¬(P⇒ Q) as a premise. Next

we use the proof–by–contradiction principle (Proof Template 1.7). So in order to
prove P, we assume ¬P as another premise. The next step is to deduce P⇒ Q.
By Proof Template 1.2, we assume P as an additional premise. By Proof Template
1.5, from ¬P and P we obtain a deduction of ⊥, and then by Proof Template 1.6
a deduction of Q from ¬P and P. By Proof Template 1.2, executing Step (3), we
delete the premise P and we obtain a deduction of P⇒ Q. At this stage, we have
the premises ¬P,¬(P⇒ Q) and a deduction of P⇒ Q, so by Proof Template 1.5,
we obtain a deduction of ⊥. This is a contradiction, so by Step (3) of the proof–
by–contradiction principle (Proof Template 1.7) we can delete the premise ¬P, and
we have a deduction of P from ¬(P⇒ Q). Finally, we execute Step (3) of Proof
Template 1.2 and delete the premise ¬(P⇒ Q), which yields the desired proof of
(¬(P⇒ Q))⇒ P. The above proof has the following tree representation.
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¬(P⇒ Q)z
√

¬Py
√

Px
√

Negation-Elim
⊥ Perp-Elim
Q

Implication-Intro x

P⇒ Q
Negation-Elim

⊥ RAA y

P Implication-Intro z

(¬(P⇒ Q))⇒ P

The reader may be surprised by how many steps are needed in the above proof
and may wonder whether the proof–by–contradiction principle is actually needed.
It can be shown that the proof–by–contradiction principle must be used, and unfor-
tuately there is no shorter proof.

Even though Proof Template 1.4 qualifies as a direct proof template, it proceeds
by deriving a contradiction, so we suggest to call it the proof–by–contradiction for
negated propositions principle.

Remark: The fact that the implication ¬¬P⇒ P is provable has the interesting
consequence that if we take ¬¬P ⇒ P as an axiom (which means that ¬¬P ⇒
P is assumed to be provable without requiring any proof), then the proof–by–
contradiction principle (Proof Template 1.7) becomes redundant. Indeed, Proof
Template 1.7 is subsumed by Proof Template 1.4, because if we have a deduction
of ⊥ from ¬P, then by Proof Template 1.4 we delete the premise ¬P to obtain a
deduction of ¬¬P. Since ¬¬P⇒ P is assumed to be provable, by Proof Template
1.3, we get a proof of P. The tree shown below illustrates what is going on. In this
tree, a proof of ⊥ from the premise ¬P is denoted by D .

¬¬P⇒ P

¬Px
√

D

⊥ Negation-Intro x

¬¬P Implication-Elim
P

Proof Templates 1.5 and 1.6 together imply that if a contradiction is obtained dur-
ing a deduction because two inconsistent propositions P and ¬P are obtained, then
all propositions are provable (anything goes). This explains why mathematicians are
leary of inconsistencies.

1.6 Proof Templates for ∧,∨,≡

The proof templates for conjunction are the simplest.
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Proof Template 1.8. (And–Intro)

Given a deduction with conclusion P from a list of premises Γ and a deduction
with conclusion Q from a list of premises ∆ , we obtain a deduction with conclusion
P∧Q. The list of premises of this new deduction is Γ ,∆ .

Proof Template 1.9. (And–Elim)

Given a deduction with conclusion P∧Q, we obtain a deduction with conclusion P,
and a deduction with conclusion Q. The list of premises of these new deductions is
the same as the list of premises of the orginal deduction.

Let us consider a few examples of proofs using the proof templates for conjunc-
tion as well as Proof Templates 1.4 and 1.7.

Example 1.12. Let us prove that for any natural number n, if n is divisible by 2 and
n is divisible by 3, then n is divisible by 6. This is expressed by the proposition

((2 | n)∧ (3 | n))⇒ (6 | n).

We start by using Proof Templates 1.2 and we add the premise (2 | n)∧ (3 | n).
Using Proof Template 1.9 twice, we obtain deductions of (2 | n) and (3 | n) from
(2 | n)∧ (3 | n). But (2 | n) means that

n = 2a

for some a ∈ N, and 3 | n means that

n = 3b

for some b ∈ N. This implies that

n = 2a = 3b.

Because 2 and 3 are relatively prime (their only common divisor is 1), the number
2 must divide b (and 3 must divide a) so b = 2c for some c ∈ N. Here we are using
Euclid’s lemma, see Proposition 7.4. So we have shown that

n = 3b = 3 ·2c = 6c,

which says that n is divisible by 6. We conclude with Step (3) of Proof Template 1.2
by deleting the premise (2 | n)∧ (3 | n) and we obtain our proof.

Example 1.13. Let us prove that for any natural number n, if n is divisible by 6, then
n is divisible by 2 and n is divisible by 3. This is expressed by the proposition

(6 | n)⇒ ((2 | n)∧ (3 | n)).

We start by using Proof Template 1.2 and we add the premise 6 | n. This means
that
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n = 6a = 2 ·3a

for some a∈N. This implies that 2 | n and 3 | n, so we have a deduction of 2 | n from
the premise 6 | n and a deduction of 3 | n from the premise 6 | n. By Proof Template
1.8, we obtain a deduction of (2 | n)∧ (3 | n) from 6 | n, and we apply Step (3) of
Proof Template 1.2 to delete the premise 6 | n and obtain our proof.

Example 1.14. Let us prove that a natural number n cannot be even and odd simul-
taneously. This is expressed as the proposition

¬(odd(n)∧ even(n)).

We begin with Proof Template 1.4, and we assume odd(n)∧even(n) as a premise.
Using Proof Template 1.9 twice, we obtain deductions of odd(n) and even(n) from
odd(n)∧ even(n). Now odd(n) says that n = 2a+ 1 for some a ∈ N, and even(n)
says that n = 2b for some b ∈ N. But then,

n = 2a+1 = 2b,

so we obtain 2(b−a) = 1. Since b−a is an integer, either 2(b−a) = 0 (if a = b) or
|2(b− a)| ≥ 2, so we obtain a contradiction. Applying Step (3) of Proof Template
1.4, we delete the premise odd(n)∧ even(n) and we have a proof of ¬(odd(n)∧
even(n)).

Example 1.15. Let us prove that (¬(P⇒ Q))⇒ (P∧¬Q).
We start by using Proof Templates 1.2 and we add ¬(P ⇒ Q) as a premise.

Now in Example 1.11 we showed that (¬(P⇒ Q))⇒ P is provable, and this proof
contains a deduction of P from ¬(P⇒ Q). Similarly, in Example 1.10 we showed
that (¬(P⇒ Q))⇒ ¬Q is provable, and this proof contains a deduction of ¬Q
from ¬(P⇒ Q). By proof Template 1.8, we obtain a deduction of P∧¬Q from
¬(P⇒ Q), and executing Step (3) of Proof Templates 1.2, we obtain a proof of
(¬(P⇒ Q))⇒ (P∧¬Q). The following tree represents the above proof. Observe
that two copies of the premise ¬(P⇒ Q) are needed.

¬(P⇒ Q)z
√

¬Py
√

Px
√

⊥
Q

x

P⇒ Q

⊥ RAA y

P

¬(P⇒ Q)z
√

Qw
√

Pt
√

Q
t

P⇒ Q

⊥ Negation-Intro w

¬Q

P∧¬Q
z

(¬(P⇒ Q))⇒ (P∧¬Q)

Observe that the left subtree comes from the proof tree Example 1.11 and the right
subtree comes from from the proof tree in Example 1.10.



1.6 Proof Templates for ∧,∨,≡ 19

Next we present the proof templates for disjunction.

Proof Template 1.10. (Or–Intro)

Given a list Γ of premises (possibly empty),

1. If we have a deduction with conclusion P, then we obtain a deduction with con-
clusion P∨Q.

2. If we have a deduction with conclusion Q, then we obtain a deduction with con-
clusion P∨Q.

In both cases, the new deduction has Γ as premises.

Proof Template 1.11. (Or–Elim or Proof–By–Cases)

Given three lists of premises Γ , ∆ , Λ , to obtain a deduction of some proposition R
as conclusion, proceed as follows:

1. Construct a deduction of some disjunction P∨Q from the list of premises Γ .
2. Add one or more occurrences of P as additional premises to the list ∆ and find a

deduction of R from P and ∆ .
3. Add one or more occurrences of Q as additional premises to the list Λ and find a

deduction of R from Q and Λ .

The list of premises after applying this rule is Γ ,∆ ,Λ .

Note that in making the two deductions of R, the premise P∨Q is not assumed.

Example 1.16. Let us show that for any natural number n, if 4 divides n or 6 divides
n, then 2 divides n. This can expressed as

((4 | n)∨ (6 | n))⇒ (2 | n).

First, by Proof Template 1.2, we assume (4 | n)∨ (6 | n) as a premise. Next, we
use Proof Template 1.11, the proof–by–cases principle. First, assume (4 | n). This
means that

n = 4a = 2 ·2a

for some a ∈N. Therefore, we conclude that 2 | n. Next, assume (6 | n). This means
that

n = 6b = 2 ·3b

for some b ∈ N. Again, we conclude that 2 | n. Since (4 | n)∨ (6 | n) is a premise,
by Proof Template 1.11, we can obtain a deduction of 2 | n from (4 | n)∨ (6 | n).
Finally, by Proof Template 1.2, we delete the premise (4 | n)∨ (6 | n) to obtain our
proof.

Proof Template 1.10 (Or–Intro) may seem trivial, so let us show an example
illustrating its use.
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Example 1.17. Let us prove that ¬(P∨Q)⇒ (¬P∧¬Q).
First by Proof Template 1.2, we assume ¬(P∨Q) (two copies). In order to derive

¬P, by Proof Template 1.4, we also assume P. Then by Proof Template 1.10 we
deduce P∨Q, and since we have the premise ¬(P∨Q), by Proof Template 1.5 we
obtain a contradiction. By Proof Template 1.4, we can delete the premise P and
obtain a deduction of ¬P from ¬(P∨Q).

In a similar way we can construct a deduction of ¬Q from ¬(P∨Q). By Proof
Template 1.8, we get a deduction of ¬P∧¬Q from ¬(P∨Q), and we finish by
applying Proof Template 1.2. A tree representing the above proof is shown below.

¬(P∨Q)z
√

Px
√

Or-Intro
P∨Q

⊥ Negation-Intro x

¬P

¬(P∨Q)z
√

Qw
√

Or-Intro
P∨Q

⊥ Negation-Intro w

¬Q

¬P∧¬Q
z

¬(P∨Q)⇒ (¬P∧¬Q)

The proposition (¬P∧¬Q)⇒ ¬(P∨Q) is also provable using the proof–by–
cases principle. Here is a proof tree; we leave it as an exercise to the reader to check
that the proof templates have been applied correctly.

(P∨Q)z
√

(¬P∧¬Q)t
√

¬P Px
√

⊥

(¬P∧¬Q)t
√

¬Q Qy
√

⊥
x,y

⊥
z

¬(P∨Q)
t

(¬P∧¬Q)⇒¬(P∨Q)

As a consequence the equivalence

¬(P∨Q)≡ (¬P∧¬Q)

is provable. This is one of three identities known as de Morgan laws.

Example 1.18. Next let us prove that ¬(¬P∨¬Q)⇒ P.
First by Proof Template 1.2, we assume ¬(¬P∨¬Q) as a premise. In order to

prove P from¬(¬P∨¬Q), we use the proof–by–contradiction principle (Proof Tem-
plate 1.7). So we add ¬P as a premise. Now by Proof Template 1.10, we can deduce
¬P∨¬Q from ¬P, and since ¬(¬P∨¬Q) is a premise, by Proof Template 1.5,
we obtain a contradiction. By the proof–by–contradiction principle (Proof Template
1.7), we delete the premise ¬P and we obtain a deduction of P from ¬(¬P∨¬Q).
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We conclude by using Proof Template 1.2 to delete the premise ¬(¬P∨¬Q) and to
obtain our proof. A tree representing the above proof is shown below.

¬(¬P∨¬Q)y
√

¬Px
√

¬P∨¬Q

⊥ RAA x

P
y

¬(¬P∨¬Q)⇒ P

A similar proof shows that ¬(¬P∨¬Q)⇒ Q is provable. Putting together the
proofs of P and Q from ¬(¬P∨¬Q) using Proof Template 1.8, we obtain a proof of

¬(¬P∨¬Q)⇒ (P∧Q).

A tree representing this proof is shown below.

¬(¬P∨¬Q)y
√

¬Px
√

¬P∨¬Q

⊥ RAA x

P

¬(¬P∨¬Q)y
√

¬Qw
√

¬P∨¬Q

⊥ RAA w

Q

P∧Q
y

¬(¬P∨¬Q)⇒ (P∧Q)

Example 1.19. The proposition ¬(P∧Q)⇒ (¬P∨¬Q) is provable.
First by Proof Template 1.2, we assume ¬(P∧Q) as a premise. Next we use

the proof–by–contradiction principle (Proof Template 1.7) to deduce ¬P∨¬Q, so
we also assume ¬(¬P∨¬Q). Now, we just showed that P∧Q is provable from the
premise ¬(¬P∨¬Q). Using the premise ¬(P∧Q), by Proof Principle 1.5, we derive
a contradiction, and by the proof–by–contradiction principle, we delete the premise
¬(¬P∨¬Q) to obtain a deduction of ¬P∨¬Q from ¬(P∧Q). We finish the proof
by applying Proof Template 1.2. This proof is represented by the following tree.

¬(P∧Q)t
√

¬(¬P∨¬Q)y
√

¬Px
√

¬P∨¬Q

⊥ RAA x

P

¬(¬P∨¬Q)y
√
¬Qw

√

¬P∨¬Q

⊥ RAA w

Q

P∧Q

⊥ RAA y

¬P∨¬Q
t

¬(P∧Q)⇒¬P∨¬Q
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The next example is particularly interesting. It can be shown that the proof–by–
contradiction principle must be used.

Example 1.20. We prove the proposition

P∨¬P.

We use the proof–by–contradiction principle (Proof Template 1.7), so we assume
¬(P∨¬P) as a premise. The first tricky part of the proof is that we actually assume
that we have two copies of the premise ¬(P∨¬P).

Next the second tricky part of the proof is that using one of the two copies of
¬(P∨¬P), we are going to deduce P∨¬P. For this, we first derive ¬P using Proof
Template 1.4, so we assume P. By Proof Template 1.10, we deduce P∨¬P, but we
have the premise ¬(P∨¬P), so by Proof Template 1.5, we obtain a contradiction.
Next, by Proof Template 1.4, we delete the premise P, deduce ¬P, and then by Proof
Template 1.10, we deduce P∨¬P.

Since we still have a second copy of the premise ¬(P∨¬P), by Proof Template
1.5, we get a contradiction! The only premise left is ¬(P∨¬P) (two copies of it), so
by the proof–by–contradiction principle (Proof Template 1.7), we delete the premise
¬(P∨¬P) and we obtain the desired proof of P∨¬P.

¬(P∨¬P)x
√

¬(P∨¬P)x
√

Py
√

P∨¬P
Negation-Elim

⊥ Negation-Intro y

¬P
P∨¬P

Negation-Elim
⊥ RAA x

P∨¬P

If the above proof made you dizzy, this is normal. The sneaky part of this proof
is that when we proceed by contradiction and assume ¬(P∨¬P), this proposition
is an inconsistency, so it allows us to derive P∨¬P, which then clashes with ¬(P∨
¬P) to yield a contradiction. Observe that during the proof we actually showed that
¬¬(P∨¬P) is provable. The proof–by–contradiction principle is needed to get rid
of the double negation.

The fact is that even though the proposition P∨¬P seems obviously “true,” its
truth is viewed as controversial by certain matematicians and logicians. To some
extant, this is why its proof has to be a bit tricky and has to involve the proof–by–
contradiction principle. This matter is discussed quite extensively in Chapter 11. In
this chapter, which is more informal, let us simply say that the proposition P∨¬P
is known as the law of excluded middle. Indeed, intuitively, it says that for every
proposition P, either P is true or ¬P is true; there is no middle alternative.

It can be shown that if we take all formulae of the form P∨¬P as axioms, then
the proof–by–contradiction principle is derivable from the other proof tempates; see
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Section 11.8. Furthermore, the proposition ¬¬P⇒P and P∨¬P are equivalent (that
is, (¬¬P⇒ P)≡ (P∨¬P) is provable).

Typically, to prove a disjunction P∨Q, it is rare that we can use Proof Template
1.10 (Or–Intro), because this requires constructing of a proof of P or a proof of Q
in the first place. But the fact that P∨Q is provable does not imply in general that
either a proof of P or a proof of Q can be produced, as the example of the proposition
P∨¬P shows (other examples can be given). Thus, usually to prove a disjunction
we use the proof–by-contradiction principle. Here is an example.

Example 1.21. Given some natural numbers p,q, we wish to prove that if 2 divides
pq, then either 2 divides p or 2 divides q. This can be expressed by

(2 | pq)⇒ ((2 | p)∨ (2 | q)).

We use the proof–by-contradiction principle (Proof Template 1.7), so we assume
¬((2 | p)∨ (2 | q)) as a premise. This is a proposition of the form ¬(P∨Q), and in
Example 1.17 we showed that ¬(P∨Q)⇒ (¬P∧¬Q) is provable. Thus, by Proof
Template 1.3, we deduce that ¬(2 | p)∧¬(2 | q). By Proof Template 1.9, we deduce
both ¬(2 | p) and ¬(2 | q). Using some basic arithmetic, this means that p = 2a+1
and q = 2b+1 for some a,b ∈ N. But then,

pq = 2(2ab+a+b)+1.

and pq is not divisible by 2, a contradiction. By the proof–by-contradiction principle
(Proof Template 1.7), we can delete the premise ¬((2 | p)∨ (2 | q)) and obtain the
desired proof.

Another proof template which is convenient to use in some cases is the proof–
by–contrapositive principle.

Proof Template 1.12. (Proof–By–Contrapositive)

Given a list of premises Γ , to prove an implication P⇒ Q, proceed as follows:

1. Add ¬Q to the list of premises Γ .
2. Construct a deduction of ¬P from the premises ¬Q and Γ .
3. Delete ¬Q from the list of premises.

It is not hard to see that the proof–by–contrapositive principle (Proof Template
1.12) can be derived from the proof–by–contradiction principle. We leave this as an
exercise.

Example 1.22. We prove that for any two natural numbers m,n∈N, if m+n is even,
then m and n have the same parity. This can be expressed as

even(m+n)⇒ ((even(m)∧ even(n))∨ (odd(m)∧odd(n))).

According to Proof Template 1.12 (proof–by–contrapositive principle), let us as-
sume ¬((even(m)∧even(n))∨(odd(m)∧odd(n))). Using the implication proven in
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Example 1.17 ((¬(P∨Q))⇒ ¬P∧¬Q)) and Proof Template 1.3, we deduce that
¬(even(m)∧ even(n)) and ¬(odd(m)∧ odd(n)). Using the result of Example 1.19
and modus ponens (Proof Template 1.3), we deduce that ¬even(m)∨¬even(n) and
¬odd(m)∨¬odd(n). At this point, we can use the proof–by–cases principle (twice)
to deduce that ¬even(m+ n) holds. We leave some of the tedious details as an ex-
ercise. In particular, we use the fact proven in Chapter 11 that even(p) iff ¬odd(p)
(see Section 11.19).

We treat logical equivalence as a derived connective: that is, we view P ≡ Q as
an abbreviation for (P⇒Q)∧(Q⇒ P). In view of the proof templates for ∧, we see
that to prove a logical equivalence P ≡ Q, we just have to prove both implications
P⇒ Q and Q⇒ P. For the sake of completeness, we state the following proof
template.

Proof Template 1.13. (Equivalence–Intro)

Given a list of premises Γ , to obtain a deduction of an equivalence P≡ Q, proceed
as follows:

1. Construct a deduction of the implication P⇒ Q from the list of premises Γ .
2. Construct a deduction of the implication Q⇒ P from the list of premises Γ .

The proof templates described in this section and the previous one allow proving
propositions which are known as the propositions of classical propositional logic.
We also say that this set of proof templates is a natural deduction proof system for
propositional logic; see Prawitz [6] and Gallier [3].

1.7 De Morgan Laws and Other Useful Rules of Logic

In Section 1.5, we proved certain implications that are special cases of the so-called
de Morgan laws.

Proposition 1.1. The following equivalences (de Morgan laws) are provable:

¬¬P≡ P

¬(P∧Q)≡ ¬P∨¬Q

¬(P∨Q)≡ ¬P∧¬Q.

The following equivalence expressing⇒ in terms of ∨ and ¬ is also provable:

P⇒ Q≡ ¬P∨Q.

The following proposition (the law of the excluded middle) is provable:

P∨¬P.
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The proofs that we have not shown are left as as exercises (sometimes tedious).
Proposition 1.1 shows a property that is very specific to classical logic, namely,

that the logical connectives ⇒,∧,∨,¬ are not independent. For example, we have
P∧Q ≡ ¬(¬P∨¬Q), which shows that ∧ can be expressed in terms of ∨ and ¬.
Similarly, P⇒ Q≡ ¬P∨Q shows that⇒ can be expressed in terms of ∨ and ¬.

The next proposition collects a list of equivalences involving conjunction and
disjunction that are used all the time. Constructing proofs using the proof templates
is not hard but tedious.

Proposition 1.2. The following propositions are provable:

P∨P≡ P

P∧P≡ P

P∨Q≡ Q∨P

P∧Q≡ Q∧P.

The last two assert the commutativity of ∨ and ∧. We have distributivity of ∧ over ∨
and of ∨ over ∧:

P∧ (Q∨R)≡ (P∧Q)∨ (P∧R)

P∨ (Q∧R)≡ (P∨Q)∧ (P∨R).

We have associativity of ∧ and ∨:

P∧ (Q∧R)≡ (P∧Q)∧R

P∨ (Q∨R)≡ (P∨Q)∨R.

1.8 Formal Versus Informal Proofs; Some Examples

In this section we give some explicit examples of proofs illustrating the proof tem-
plates that we just discussed. But first it should be said that it is practically impos-
sible to write formal proofs (i.e., proofs written using the proof templates of the
system presented earlier) of “real” statements that are not “toy propositions.” This
is because it would be extremely tedious and time-consuming to write such proofs
and these proofs would be huge and thus very hard to read.

As we said before it is possible in principle to write formalized proofs; however,
most of us will never do so. So what do we do?

Well, we construct “informal” proofs in which we still make use of the proof
templates that we have presented but we take shortcuts and sometimes we even omit
proof steps (some proof templates such as 1.9 (And–Elim) and 1.10 (Or–Intro)), and
we use a natural language (here, presumably, English) rather than formal symbols
(we say “and” for ∧, “or” for ∨, etc.). As an example of a shortcut, when using the
Proof Template 1.11 (Or–Elim), in most cases, the disjunction P∨Q has an “obvious
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proof” because P and Q “exhaust all the cases,” in the sense that Q subsumes ¬P (or
P subsumes ¬Q) and classically, P∨¬P is an axiom. Also, we implicitly keep track
of the open premises of a proof in our head rather than explicitly delete premises
when required. This may be the biggest source of mistakes, and we should make
sure that when we have finished a proof, there are no “dangling premises,” that is,
premises that were never used in constructing the proof. If we are “lucky,” some
of these premises are in fact unnecessary and we should discard them. Otherwise,
this indicates that there is something wrong with our proof and we should make
sure that every premise is indeed used somewhere in the proof or else look for a
counterexample.

We urge our readers to read Chapter 3 of Gowers [11] which contains very illu-
minating remarks about the notion of proof in mathematics.

The next question is then, “How does one write good informal proofs?”
It is very hard to answer such a question because the notion of a “good” proof is

quite subjective and partly a social concept. Nevertheless, people have been writing
informal proofs for centuries so there are at least many examples of what to do
(and what not to do). As with everything else, practicing a sport, playing a music
instrument, knowing “good” wines, and so on, the more you practice, the better you
become. Knowing the theory of swimming is fine but you have to get wet and do
some actual swimming. Similarly, knowing the proof rules is important but you have
to put them to use.

Write proofs as much as you can. Find good proof writers (like good swimmers,
good tennis players, etc.), try to figure out why they write clear and easily readable
proofs, and try to emulate what they do. Don’t follow bad examples (it will take you
a little while to “smell” a bad proof style).

Another important point is that nonformalized proofs make heavy use of modus
ponens. This is because, when we search for a proof, we rarely (if ever) go back to
first principles. This would result in extremely long proofs that would be basically
incomprehensible. Instead, we search in our “database” of facts for a proposition of
the form P⇒ Q (an auxiliary lemma) that is already known to be proven, and if we
are smart enough (lucky enough), we find that we can prove P and thus we deduce
Q, the proposition that we really want to prove. Generally, we have to go through
several steps involving auxiliary lemmas. This is why it is important to build up a
database of proven facts as large as possible about a mathematical field: numbers,
trees, graphs, surfaces, and so on. This way we increase the chance that we will be
able to prove some fact about some field of mathematics (by practicing (constructing
proofs).

And now we return to some explicit examples of informal proofs.
Recall that the set of integers is the set

Z= {. . . ,−2,−1,0,1,2, . . .},

and that the set of natural numbers is the set

N= {0,1,2, . . .}.
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(Some authors exclude 0 from N. We don’t like this discrimination against zero.)
The following facts are essentially obvious from the definition of even and odd.

(a) The sum of even integers is even.
(b) The sum of an even integer and of an odd integer is odd.
(c) The sum of two odd integers is even.
(d) The product of odd integers is odd.
(e) The product of an even integer with any integer is even.

We will contruct deductions using sets of premises consisting of the above propo-
sitions.

Now we prove the following fact using the proof–by–cases method.

Proposition 1.3. Let a,b,c be odd integers. For any integers p and q, if p and q are
not both even, then

ap2 +bpq+ cq2

is odd.

Proof. We consider the three cases:

1. p and q are odd. In this case as a,b, and c are odd, by (d) all the products
ap2, bpq, and cq2 are odd. By (c), ap2+bpq is even and by (b), ap2+bpq+cq2

is odd.
2. p is even and q is odd. In this case, by (e), both ap2 and bpq are even and by

(d), cq2 is odd. But then, by (a), ap2 +bpq is even and by (b), ap2 +bpq+ cq2

is odd.
3. p is odd and q is even. This case is analogous to the previous case, except that p

and q are interchanged. The reader should have no trouble filling in the details.

All three cases exhaust all possibilities for p and q not to be both even, thus the
proof is complete by Proof Template 1.11 applied twice, because there are three
cases instead of two. ut

The set of rational numbers Q consists of all fractions p/q, where p,q ∈ Z, with
q 6= 0. The set of real numbers is denoted by R. A real number, a ∈ R, is said to be
irrational if it cannot be expressed as a number in Q (a fraction).

We now use Proposition 1.3 and the proof by contradiction method to prove the
following.

Proposition 1.4. Let a,b,c be odd integers. Then the equation

aX2 +bX + c = 0

has no rational solution X. Equivalently, every zero of the above equation is irra-
tional.

Proof. We proceed by contradiction (by this, we mean that we use the proof–by–
contradiction principle). So assume that there is a rational solution X = p/q. We
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may assume that p and q have no common divisor, which implies that p and q are
not both even. As q 6= 0, if aX2 +bX + c = 0, then by multiplying by q2, we get

ap2 +bpq+ cq2 = 0.

However, as p and q are not both even and a,b,c are odd, we know from Proposition
1.3 that ap2 + bpq+ cq2 is odd. This contradicts the fact that p2 + bpq+ cq2 = 0
and thus finishes the proof. ut

As an example of the proof–by–contrapositive method, we prove that if an integer
n2 is even, then n must be even.

Proof. Observe that if an integer is not even, then it is odd (and vice versa). This
fact may seem quite obvious but to prove it actually requires using induction (which
we haven’t officially met yet). A rigorous proof is given in Section 1.12.

Now the contrapositive of our statement is: if n is odd, then n2 is odd. But to say
that n is odd is to say that n = 2k+ 1, and then n2 = (2k+ 1)2 = 4k2 + 4k+ 1 =
2(2k2 +2k)+1, which shows that n2 is odd. ut

As another illustration of the proof methods that we have just presented, let us
prove that

√
2 is irrational, which means that

√
2 is not rational. The reader may also

want to look at the proof given by Gowers in Chapter 3 of his book [11]. Obviously,
our proof is similar but we emphasize Step (2) a little more.

Because we are trying to prove that
√

2 is not rational, we use Proof Template
1.4. Thus let us assume that

√
2 is rational and derive a contradiction. Here are the

steps of the proof.

1. If
√

2 is rational, then there exist some integers p,q ∈ Z, with q 6= 0, so that√
2 = p/q.

2. Any fraction p/q is equal to some fraction r/s, where r and s are not both even.
3. By (2), we may assume that √

2 =
p
q
,

where p,q ∈ Z are not both even and with q 6= 0.
4. By (3), because q 6= 0, by multiplying both sides by q, we get

q
√

2 = p.

5. By (4), by squaring both sides, we get

2q2 = p2.

6. Inasmuch as p2 = 2q2, the number p2 must be even. By a fact previously estab-
lished, p itself is even; that is, p = 2s, for some s ∈ Z.

7. By (6), if we substitute 2s for p in the equation in (5) we get 2q2 = 4s2. By
dividing both sides by 2, we get

q2 = 2s2.
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8. By (7), we see that q2 is even, from which we deduce (as above) that q itself is
even.

9. Now, assuming that
√

2 = p/q where p and q are not both even (and q 6= 0),
we concluded that both p and q are even (as shown in (6) and(8)), reaching
a contradiction. Therefore, by negation introduction, we proved that

√
2 is not

rational.

A closer examination of the steps of the above proof reveals that the only step
that may require further justification is Step (2): that any fraction p/q is equal to
some fraction r/s where r and s are not both even.

This fact does require a proof, and the proof uses the division algorithm, which
itself requires induction (see Section 5.4, Theorem 5.7). Besides this point, all the
other steps only require simple arithmetic properties of the integers and are con-
structive.

Remark: Actually, every fraction p/q is equal to some fraction r/s where r and s
have no common divisor except 1. This follows from the fact that every pair of inte-
gers has a greatest common divisor (a gcd; see Section 7.1) and r and s are obtained
by dividing p and q by their gcd. Using this fact and Euclid’s lemma (Proposition
7.4), we can obtain a shorter proof of the irrationality of

√
2. First we may assume

that p and q have no common divisor besides 1 (we say that p and q are relatively
prime). From (5), we have

2q2 = p2,

so q divides p2. However, q and p are relatively prime and as q divides p2 = p× p,
by Euclid’s lemma, q divides p. But because 1 is the only common divisor of p and
q, we must have q = 1. Now, we get p2 = 2, which is impossible inasmuch as 2 is
not a perfect square.

The above argument can be easily adapted to prove that if the positive integer n
is not a perfect square, then

√
n is not rational.

We conclude this section by showing that the proof–by–contradiction principle
allows for proofs of propositions that may lack a constructive nature. In particular,
it is possible to prove disjunctions P∨Q which states some alternative that cannot
be settled.

For example, consider the question: are there two irrational real numbers a and b
such that ab is rational? Here is a way to prove that this is indeed the case. Consider

the number
√

2
√

2
. If this number is rational, then a =

√
2 and b =

√
2 is an answer

to our question (because we already know that
√

2 is irrational). Now observe that

(
√

2
√

2
)
√

2 =
√

2
√

2×
√

2
=
√

2
2
= 2 is rational.

Thus, if
√

2
√

2
is not rational, then a =

√
2
√

2
and b =

√
2 is an answer to our ques-

tion. Because P∨¬P is provable using the proof–by–contradiction principle (
√

2
√

2

is rational or it is not rational), we proved that

(
√

2 is irrational and
√

2
√

2
is rational) or
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(
√

2
√

2
and
√

2 are irrational and (
√

2
√

2
)
√

2 is rational).

However, the above proof does not tell us whether
√

2
√

2
is rational!

We see one of the shortcomings of classical reasoning: certain statements (in
particular, disjunctive or existential) are provable but their proof does not provide an
explicit answer. For this reason, classical logic is considered to be nonconstructive.

Remark: Actually, it turns out that another irrational number b can be found so that√
2

b
is rational, and the proof that b is not rational is fairly simple. It also turns out

that the exact nature of
√

2
√

2
(rational or irrational) is known. The answers to these

puzzles can be found in Section 1.10.

1.9 Truth Tables and Truth Value Semantics

So far we have deliberately focused on the construction of proofs using proof tem-
plates, we but have ignored the notion of truth. We can’t postpone any longer a
discussion of the truth value semantics for classical propositional logic.

We all learned early on that the logical connectives ⇒, ∧, ∨, ¬ and ≡ can be
interpreted as Boolean functions, that is, functions whose arguments and whose
values range over the set of truth values,

BOOL = {true, false}.

These functions are given by the following truth tables.

P Q P⇒ Q P∧Q P∨Q ¬P P≡ Q
true true true true true false true
true false false false true false false
false true true false true true false
false false true false false true true

Note that the implication P⇒ Q is false (has the value false) exactly when P =
true and Q = false.

Now any proposition P built up over the set of atomic propositions PS =
{P1,P2,P3, . . .} (our propositional symbols) contains a finite set of propositional
letters, say

{P1, . . . ,Pm}.
If we assign some truth value (from BOOL) to each symbol Pi, then we can “com-
pute” the truth value of P under this assignment by using recursively using the truth
tables above. For example, the proposition P1⇒ (P1⇒ P2), under the truth assign-
ment v given by

P1 = true, P2 = false,
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evaluates to false. Indeed, the truth value, v(P1⇒ (P1⇒ P2)), is computed recur-
sively as

v(P1⇒ (P1⇒ P2)) = v(P1)⇒ v(P1⇒ P2).

Now, v(P1) = true and v(P1⇒ P2) is computed recursively as

v(P1⇒ P2) = v(P1)⇒ v(P2).

Because v(P1) = true and v(P2) = false, using our truth table, we get

v(P1⇒ P2) = true⇒ false = false.

Plugging this into the right-hand side of v(P1⇒ (P1⇒ P2)), we finally get

v(P1⇒ (P1⇒ P2)) = true⇒ false = false.

However, under the truth assignment v given by

P1 = true, P2 = true,

we find that our proposition evaluates to true.
The values of a proposition can be determined by creating a truth table, in which

a proposition is evaluated by computing recursively the truth values of its subexpres-
sions. For example, the truth table corresponding to the proposition P1⇒ (P1⇒P2)
is

P1 P2 P1⇒ P2 P1⇒ (P1⇒ P2)

true true true true
true false false false
false true true true
false false true true

.

If we now consider the proposition P = (P1⇒ (P2⇒ P1)), its truth table is

P1 P2 P2⇒ P1 P1⇒ (P2⇒ P1)

true true true true
true false true true
false true false true
false false true true

,

which shows that P evaluates to true for all possible truth assignments.
The truth table of a proposition containing m variables has 2m rows. When m

is large, 2m is very large, and computing the truth table of a proposition P may
not be practically feasible. Even the problem of finding whether there is a truth
assignment that makes P true is hard. This is actually a very famous problem in
computer science.
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A proposition P is said to be valid or a tautology if in the truth table for P all
the entries in the column corresponding to P have the value true. This means that P
evaluates to true for all 2m truth assignments.

What’s the relationship between validity and provability? Remarkably, validity
and provability are equivalent.

In order to prove the above claim, we need to do two things:

(1) Prove that if a proposition P is provable using the proof templates that we de-
scribed earlier, then it is valid. This is known as soundness or consistency (of
the proof system).

(2) Prove that if a proposition P is valid, then it has a proof using the proof tem-
plates. This is known as the completeness (of the proof system).

In general, it is relatively easy to prove (1) but proving (2) can be quite compli-
cated. In this book we content ourselves with soundness.

Proposition 1.5. (Soundness of the proof templates) If a proposition P is provable
using the proof templates desribed earlier, then it is valid (according to the truth
value semantics).

Sketch of Proof . It is enough to prove that if there is a deduction of a proposition P
from a set of premises Γ , then for every truth assignment for which all the proposi-
tions in Γ evaluate to true, then P evaluates to true. However, this is clear for the
axioms and every proof template preserves that property.

Now, if P is provable, a proof of P has an empty set of premises and so P evaluates
to true for all truth assignments, which means that P is valid. ut

Theorem 1.1. (Completeness) If a proposition P is valid (according to the truth
value semantics), then P is provable using the proof templates.

Proofs of completeness for classical logic can be found in van Dalen [24] or
Gallier [4] (but for a different proof system).

Soundness (Proposition 1.5) has a very useful consequence: in order to prove that
a proposition P is not provable, it is enough to find a truth assignment for which P
evaluates to false. We say that such a truth assignment is a counterexample for P (or
that P can be falsified).

For example, no propositional symbol Pi is provable because it is falsified by the
truth assignment Pi = false.

The soundness of our proof system also has the extremely important consequence
that ⊥ cannot be proven in this system, which means that contradictory statements
cannot be derived. This is by no means obvious at first sight, but reassuring.

Note that completeness amounts to the fact that every unprovable proposition has
a counterexample. Also, in order to show that a proposition is provable, it suffices
to compute its truth table and check that the proposition is valid. This may still be
a lot of work, but it is a more “mechanical” process than attempting to find a proof.
For example, here is a truth table showing that (P1⇒ P2)≡ (¬P1∨P2) is valid.
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P1 P2 P1⇒ P2 ¬P1∨P2 (P1⇒ P2)≡ (¬P1∨P2)

true true true true true
true false false false true
false true true true true
false false true true true

1.10 Proof Templates for the Quantifiers

As we mentioned in Section 1.1, atomic propositions may contain variables. The
intention is that such variables correspond to arbitrary objects. An example is

human(x)⇒ needs-to-drink(x).

In mathematics, we usually prove universal statements, that is statements that hold
for all possible “objects,” or existential statements, that is, statements asserting the
existence of some object satisfying a given property. As we saw earlier, we assert
that every human needs to drink by writing the proposition

∀x(human(x)⇒ needs-to-drink(x)).

The symbol ∀ is called a universal quantifier. Observe that once the quantifier ∀
(pronounced “for all” or “for every”) is applied to the variable x, the variable x
becomes a placeholder and replacing x by y or any other variable does not change
anything. We say that x is a bound variable (sometimes a “dummy variable”).

If we want to assert that some human needs to drink we write

∃x(human(x)⇒ needs-to-drink(x));

The symbol ∃ is called an existential quantifier. Again, once the quantifier ∃ (pro-
nounced “there exists”) is applied to the variable x, the variable x becomes a place-
holder. However, the intended meaning of the second proposition is very different
and weaker than the first. It only asserts the existence of some object satisfying the
statement

human(x)⇒ needs-to-drink(x).

Statements may contain variables that are not bound by quantifiers. For example,
in

∃x parent(x,y),

the variable x is bound but the variable y is not. Here the intended meaning of
parent(x,y) is that x is a parent of y, and the intended meaning of ∃x parent(x,y)
is that any given y has some parent x. Variables that are not bound are called free.
The proposition

∀y∃x parent(x,y),
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which contains only bound variables is meant to assert that every y has some par-
ent x. Typically, in mathematics, we only prove statements without free variables.
However, statements with free variables may occur during intermediate stages of a
proof.

Now in addition to propositions of the form P∧Q,P∨Q,P⇒ Q,¬P,P≡ Q, we
add two new kinds of propositions (also called formulae):

1. Universal formulae, which are formulae of the form ∀xP, where P is any for-
mula and x is any variable.

2. Existential formulae, which are formulae of the form ∃xP, where P is any for-
mula and x is any variable.

The intuitive meaning of the statement ∀xP is that P holds for all possible objects
x, and the intuitive meaning of the statement ∃xP is that P holds for some object x.
Thus we see that it would be useful to use symbols to denote various objects. For
example, if we want to assert some facts about the “parent” predicate, we may want
to introduce some constant symbols (for short, constants) such as “Jean,” “Mia,” and
so on and write

parent(Jean,Mia)

to assert that Jean is a parent of Mia. Often we also have to use function symbols
(or operators, constructors), for instance, to write a statement about numbers: +, ∗,
and so on. Using constant symbols, function symbols, and variables, we can form
terms, such as

(x∗ x+1)∗ (3∗ y+2).

In addition to function symbols, we also use predicate symbols, which are names
for atomic properties. We have already seen several examples of predicate symbols:
“odd,” “even,” “prime,” “human,” “parent.” So in general, when we try to prove
properties of certain classes of objects (people, numbers, strings, graphs, and so
on), we assume that we have a certain alphabet consisting of constant symbols,
function symbols, and predicate symbols. By using these symbols and an infinite
supply of variables we can form terms and predicate terms. We say that we have
a (logical) language. Using this language, we can write compound statements. A
detailed presentation of this approach is given in Chapter 11. Here we follow a
more informal and more intuitive approach. We use the notion of term as a synonym
for some specific object. Terms are often denoted by the Greek letter τ , sometimes
subscripted. A variable qualifies as a term.

When working with propositions possibly containing quantifiers, it is customary
to use the term formula instead of proposition. The term proposition is typically
reserved to formulae wihout quantifiers.

Unlike the proof templates for⇒,∨,∧ and ⊥, which are rather straightforward,
the proof templates for quantifiers are more subtle due to the presence of variables
(occurring in terms and predicates) and the fact that it is sometimes necessary to
make substitutions.

Given a formula P containing some free variable x and given a term τ , the result
of replacing all occurrences of x by τ in P is called a substitution and is denoted
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P[τ/x] (and pronounced “the result of substituting τ for x in P”). Substitutions can
be defined rigorously by recursion. Let us simply give an example. Consider the
predicate P(x) = odd(2x+ 1). If we substitute the term τ = (y+ 1)2 for x in P(x),
we obtain

P[τ/x] = odd(2(y+1)2 +1).

We have to be careful to forbid inferences that would yield “wrong” results, and
for this we have to be very precise about the way we use free variables. More specif-
ically, we have to exercise care when we make substitutions of terms for variables in
propositions. If P(t1, t2, . . . , tn) is a statement containing the free variables t1, . . . , tn
and if τ1, . . . ,τn are terms, we can form the new statement

P[τ1/t1, . . . ,τn/tn]

obtained by substituting the term τi for all free occurrences of the variable ti, for
i = 1, . . . ,n. By the way, we denote terms by the Greek letter τ because we use the
letter t for a variable and using t for both variables and terms would be confusing;
sorry.

However, if P(t1, t2, . . . , tn) contains quantifiers, some bad things can happen;
namely, some of the variables occurring in some term τi may become quantified
when τi is substituted for ti. For example, consider

∀x∃yP(x,y,z)

which contains the free variable z, and substitute the term x+ y for z; we get

∀x∃yP(x,y,x+ y).

We see that the variables x and y occurring in the term x+y become bound variables
after substitution. We say that there is a “capture” of variables.

This is not what we intended to happen. To fix this problem, we recall that bound
variables are really place holders so they can be renamed without changing anything.
Therefore, we can rename the bound variables x and y in ∀x∃yP(x,y,z) to u and v,
getting the statement ∀u∃vP(u,v,z) and now, the result of the substitution is

∀u∃vP(u,v,x+ y),

where x and y are free. Again, all this needs to be explained very carefully but in
this chapter we will content ourselves with an informal treatment.

We begin with the proof templates for the universal quantifier.

Proof Template 1.14. (Forall–Intro)

Let Γ be a list of premises and let y be a variable that does not occur free in any
premise in Γ or in ∀xP. If we have a deduction of the formula P[y/x] from Γ , then
we obtain a deduction of ∀xP from Γ .

Proof Template 1.15. (Forall–Elim)
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Let Γ be a list of premises and let τ be a term representing some specific object. If
we have a deduction of ∀xP from Γ , then we obtain a deduction of P[τ/x] from Γ .

The proof template 1.14 may look a little strange but the idea behind it is actually
very simple: Because y is totally unconstrained, if P[y/x] (the result of replacing all
occurrences of x by y in P) is provable (from Γ ), then intuitively P[y/x] holds for
any arbitrary object, and so, the statement ∀xP should also be provable (from Γ ).

Note that we can’t deduce ∀xP from P[y/x] because the deduction has the single
premise P[y/x] and y occurs in P[y/x] (unless x does not occur in P).

The meaning of the Proof Template 1.15 is that if ∀xP is provable (from Γ ), then
P holds for all objects and so, in particular for the object denoted by the term τ; that
is, P[τ/x] should be provable (from Γ ).

Here are the proof templates for the existential quantifier.

Proof Template 1.16. (Exist–Intro)

Let Γ be a list of premises and let τ be a term representing some specific object. If
we have a deduction of P[τ/x] from Γ , then we obtain a deduction of ∃xP(x) from
Γ .

Proof Template 1.17. (Exist–Elim)

Let Γ and ∆ be a two lists of premises. Let C and ∃xP be formulae, and let y be a
variable that does not occur free in any premise in Γ , in ∃xP, or in C. To obtain a
deduction of C from Γ ,∆ , proceed as follows:

1. Make a deduction of ∃xP from Γ .
2. Add one or more occurrences of P[y/x] as premises to ∆ and find a deduction

of C from P[y/x] and ∆ .
3. Delete the premise P[y/x].

If P[τ/x] is provable (from Γ ), this means that the object denoted by τ satisfies P,
so ∃xP should be provable (this latter formula asserts the existence of some object
satisfying P, and τ is such an object).

Proof Template 1.17 is reminiscent of the proof–by–cases principle (Proof tem-
plate 1.11) and is a little more tricky. It goes as follows. Suppose that we proved
∃xP (from Γ ). Moreover, suppose that for every possible case P[y/x] we were able
to prove C (from ∆ ). Then, as we have “exhausted” all possible cases and as we
know from the provability of ∃xP that some case must hold, we can conclude that C
is provable (from Γ ,∆ ) without using P[y/x] as a premise.

Like the the proof–by–cases principle, Proof Template 1.17 is not very construc-
tive. It allows making a conclusion C by considering alternatives without knowing
which one actually occurs.

Constructing proofs using the proof templates for the quantifiers can be quite
tricky due to the restrictions on variables. In practice, we always use “fresh” (brand
new) variables to avoid problems. Also, when we use Proof Template 1.14, we begin
by saying “let y be arbitrary,” then we prove P[y/x] (mentally substituting y for x),
and we conclude with: “since y is arbitrary, this proves ∀xP.” We proceed in a similar
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way when using Proof Template 1.17, but this time we say “let y be arbitrary” in step
(2). When we use Proof Template 1.15, we usually say: “Since ∀xP holds, it holds
for all x, so in particular it holds for τ , and thus P[τ/x] holds.” Similarly, when
using Proof Template 1.16, we say “since P[τ/x] holds for a specific object τ , we
can deduce that ∃xP holds.”

Here is an example of a “wrong proof” in which the ∀-introduction rule is applied
illegally, and thus, yields a statement that is actually false (not provable). In the
incorrect “proof” below, P is an atomic predicate symbol taking two arguments
(e.g., “parent”) and 0 is a constant denoting zero:

P(u,0)x

illegal step!
∀tP(t,0)

Implication-Intro x

P(u,0)⇒∀tP(t,0)
Forall-Intro

∀s(P(s,0)⇒∀tP(t,0))
Forall-Elim

P(0,0)⇒∀tP(t,0)
The problem is that the variable u occurs free in the premise P[u/t,0] = P(u,0)

and therefore, the application of the ∀-introduction rule in the first step is illegal.
However, note that this premise is discharged in the second step and so the appli-
cation of the ∀-introduction rule in the third step is legal. The (false) conclusion of
this faulty proof is that P(0,0)⇒ ∀tP(t,0) is provable. Indeed, there are plenty of
properties such that the fact that the single instance P(0,0) holds does not imply that
P(t,0) holds for all t.

Let us now give two examples of a proof using the proof templates for ∀ and ∃.

Example 1.23. For any natural number n, let odd(n) be the predicate that asserts that
n is odd, namely

odd(n)≡ ∃m((m ∈ N)∧ (n = 2m+1)).

First let us prove that
∀a((a ∈ N)⇒ odd(2a+1)).

By Proof Template 1.14, let x be a fresh variable; we need to prove

(x ∈ N)⇒ odd(2x+1).

By Proof Template 1.2, assume x ∈ N. If we consider the formula

(m ∈ N)∧ (2x+1 = 2m+1),

by substituting x for m, we get

(x ∈ N)∧ (2x+1 = 2x+1),

which is provable since x ∈ N. By Proof Template 1.16, we obtain
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∃m(m ∈ N)∧ (2x+1 = 2m+1);

that is, odd(2x+ 1) is provable. Using Proof Template 1.2, we delete the premise
x ∈ N and we have proven

(x ∈ N)⇒ odd(2x+1).

This proof has no longer any premises, so we can safely conclude that

∀a((a ∈ N)⇒ odd(2a+1)).

Next consider the term τ = 7. By Proof Template 1.15, we obtain

(7 ∈ N)⇒ odd(15).

Since 7 ∈ N, by modus ponens we deduce that 15 is odd.
Let us now consider the term τ = (b+1)2 with b ∈ N. By Proof Template 1.15,

we obtain
((b+1)2 ∈ N)⇒ odd(2(b+1)2 +1)).

But b ∈ N implies that (b+ 1)2 ∈ N so by modus ponens and Proof Template 1.2,
we deduce that

(b ∈ N)⇒ odd(2(b+1)2 +1)).

Example 1.24. Let us prove the formula ∀x(P∧Q)⇒∀xP∧∀xQ.
First using Proof Template 1.2, we assume ∀x(P∧Q) (two copies). The next step

uses a trick. Since variables are terms, if u is a fresh variable, then by Proof Templare
1.15 we deduce (P∧Q)[u/x]. Now we use a property of substitutions which says
that

(P∧Q)[u/x] = P[u/x]∧Q[u/x].

We can now use Proof Template 1.9 (twice) to deduce P[u/x] and Q[u/x]. But re-
member that the premise is ∀x(P∧Q) (two copies), and since u is a fresh variable,
it does not occur in this premise, so we can safely apply Proof Template 1.14 and
conclude ∀xP, and similarly ∀xQ. By Proof Template 1.8, we deduce ∀xP∧∀xQ
from ∀x(P∧Q). Finally, by Proof Template 1.2, we delete the premise ∀x(P∧Q)
and obtain our proof. The above proof has the following tree representation.

∀x(P∧Q)x
√

P[u/x]∧Q[u/x]

P[u/x]

∀xP

∀x(P∧Q)x
√

P[u/x]∧Q[u/x]

Q[u/x]

∀xQ

∀xP∧∀xQ
x

∀x(P∧Q)⇒∀xP∧∀xQ

The reader should show that ∀xP∧∀xQ⇒∀x(P∧Q) is also provable.



1.10 Proof Templates for the Quantifiers 39

However, in general, one can’t just replace ∀ by ∃ (or ∧ by ∨) and still obtain
provable statements. For example, ∃xP∧∃xQ⇒∃x(P∧Q) is not provable at all.

Here are some useful equivalences involving quantifiers. The first two are analo-
gous to the de Morgan laws for ∧ and ∨.

Proposition 1.6. The following formulae are provable:

¬∀xP≡ ∃x¬P

¬∃xP≡ ∀x¬P

∀x(P∧Q)≡ ∀xP∧∀xQ

∃x(P∨Q)≡ ∃xP∨∃xQ

∃x(P∧Q)⇒∃xP∧∃xQ

∀xP∨∀xQ⇒∀x(P∨Q).

The proof system that uses all the Proof Templates that we have defined proves
formulae of classical first-order logic.

One should also be careful that the order the quantifiers is important. For exam-
ple, a formula of the form

∀x∃yP

is generally not equivalent to the formula

∃y∀xP.

The second formula asserts the existence of some object y such that P holds for all
x. But in the first formula, for every x, there is some y such that P holds, but each y
depends on x and there may not be a single y that works for all x.

Another amusing mistake involves negating a universal quantifier. The formula
∀x¬P is not equivalent to ¬∀xP. Once traveling from Philadelphia to New York I
heard a train conductor say: “All doors will not open.” Actually, he meant “not all
doors will open,” which would give us a chance to get out!

Remark: We can illustrate, again, the fact that classical logic allows for noncon-
structive proofs by re-examining the example at the end of Section 1.8. There we

proved that if
√

2
√

2
is rational, then a =

√
2 and b =

√
2 are both irrational numbers

such that ab is rational, and if
√

2
√

2
is irrational, then a =

√
2
√

2
and b =

√
2 are

both irrational numbers such that ab is rational. By Proof Template 1.16, we deduce

that if
√

2
√

2
is rational, then there exist some irrational numbers a,b so that ab is

rational, and if
√

2
√

2
is irrational, then there exist some irrational numbers a,b so

that ab is rational. In classical logic, as P∨¬P is provable, by the proof–by–cases
principle we just proved that there exist some irrational numbers a and b so that ab

is rational.
However, this argument does not give us explicitly numbers a and b with the

required properties. It only tells us that such numbers must exist.
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Now, it turns out that
√

2
√

2
is indeed irrational (this follows from the Gel’fond–

Schneider theorem, a hard theorem in number theory). Furthermore, there are also
simpler explicit solutions such as a =

√
2 and b = log2 9, as the reader should check.

1.11 Sets and Set Operations

In this section we review the definition of a set and basic set operations. This sec-
tion takes the “naive” point of view that a set is an unordered collection of objects,
without duplicates, the collection being regarded as a single object.

Given a set A we write that some object a is an element of (belongs to) the set A
as

a ∈ A,

and that a is not an element of A (does not belong to A) as

a /∈ A.

The symbol ∈ is the set membership symbol.
A set can either be defined explicitely by listing its elements within curly braces

(the symbols { and }) or as a collection of objects satisfying a certain property. For
example, the set C consisting of the colors red, blue, green is given by

C = {red,blue,green}.

Because the order of elements in a set is irrelevant, the set C is also given by

C = {green, red,blue}.

In fact, a moment of reflexion reveals that there are six ways of writing the set C.
If we denote by N the set of natural numbers

N= {0,1,2,3, . . .},

then the set E of even integers can be defined in terms of the property even of being
even by

E = {n ∈ N | even(n)}.
More generally, given some property P and some set X , we denote the set of all
elements of X that satisfy the property P by

{x ∈ X | P(x)} or {x | x ∈ X ∧P(x)}.

When are two sets A and B equal? The answer is given by the first proof template
of set theory, called the Extensionality Axiom.

Proof Template 1.18. (Extensionality Axiom)
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Two sets A and B are equal iff they have exactly the same elements; that is, every
element of A is an element of B and conversely. This can be written more formally
as

∀x(x ∈ A⇒ x ∈ B)∧∀x(x ∈ B⇒ x ∈ A).

There is a special set having no elements at all, the empty set, denoted /0. The
empty set is characterized by the property

∀x(x /∈ /0).

Next we define the notion of inclusion between sets

Definition 1.5. Given any two sets, A and B, we say that A is a subset of B (or that
A is included in B), denoted A ⊆ B, iff every element of A is also an element of B,
that is,

∀x(x ∈ A⇒ x ∈ B).

We say that A is a proper subset of B iff A ⊆ B and A 6= B. This implies that that
there is some b ∈ B with b /∈ A. We usually write A⊂ B.

For example, if A = {green,blue} and C = {green, red,blue}, then

A⊆C.

Note that the empty set is a subset of every set.
Observe the important fact that equality of two sets can be expressed by

A = B iff A⊆ B and B⊆ A.

Proving that two sets are equal may be quite complicated if the definitions of
these sets are complex, and the above method is the safe one.

If a set A has a finite number of elements, then this number (a natural number)
is called the cardinality of the set and is denoted by |A| (sometimes by card(A)).
Otherwise, the set is said to be infinite. The cardinality of the empty set is 0.

Sets can be combined in various ways, just as numbers can be added, multiplied,
etc. However, operations on sets tend to minic logical operations such as disjunction,
conjunction, and negation, rather than the arithmetical operations on numbers. The
most basic operations are union, intersection, and relative complement.

Definition 1.6. For any two sets A and B, the union of A and B is the set A∪ B
defined such that

x ∈ A∪B iff (x ∈ A)∨ (x ∈ B).

This reads x is a member of A∪B if either x belongs to A or x belongs to B (or both).
We also write

A∪B = {x | x ∈ A or x ∈ B}.
The intersection of A and B is the set A∩B defined such that
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x ∈ A∩B iff (x ∈ A)∧ (x ∈ B).

This reads x is a member of A∩B if x belongs to A and x belongs to B. We also write

A∩B = {x | x ∈ A and x ∈ B}.

The relative complement (or set difference) of A and B is the set A−B defined such
that

x ∈ A−B iff (x ∈ A)∧¬(x ∈ B).

This reads x is a member of A−B if x belongs to A and x does not belong to B. We
also write

A−B = {x | x ∈ A and x /∈ B}.

Example 1.25. For example, if A = {0,2,4,6} and B = {0,1,3,5}, then

A∪B = {0,1,2,3,4,5,6}
A∩B = {0}
A−B = {2,4,6}.

Two sets A,B are said to be disjoint if A∩B = /0. It is easy to see that if A and B
are two finite sets and if A and B are disjoint, then

|A∪B|= |A|+ |B|.

In general, by writing

A∪B = (A∩B)∪ (A−B)∪ (B−A),

if A and B are finite, it can be shown that

|A∪B|= |A|+ |B|− |A∩B|.

The situation in which we maniplulate subsets of some fixed set X often arises,
and it is useful to introduce a special type of relative complement with respect to X .
For any subset A of X , the complement A of A in X is defined by

A = X−A,

which can also be expressed as

A = {x ∈ X | x /∈ A}.

Using the union operation, we can form bigger sets by taking unions with single-
tons. For example, we can form

{a,b,c}= {a,b}∪{c}.
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Remark: We can systematically construct bigger and bigger sets by the following
method: given any set A let

A+ = A∪{A}.
If we start from the empty set, we obtain the sets

/0, { /0}, { /0,{ /0}}, { /0,{ /0},{ /0,{ /0}}}, etc.

These sets can be used to define the natural numbers and the + operation corre-
sponds to the successor function on the natural numbers (i.e., n 7→ n+1).

The algebraic properties of union, intersection, and complementation are inher-
ited from the properties of disjunction, conjunction, and negation. The following
proposition lists some of the most important properties of union, intersection, and
complementation. Some of these properties are versions of Proposition 1.2 for sub-
sets.

Proposition 1.7. The following equations hold for all sets A,B,C:

A∪ /0 = A

A∩ /0 = /0
A∪A = A

A∩A = A

A∪B = B∪A

A∩B = B∩A.

The last two assert the commutativity of ∪ and ∩. We have distributivity of ∩ over ∪
and of ∪ over ∩:

A∩ (B∪C) = (A∩B)∪ (A∩C)

A∪ (B∩C) = (A∪B)∩ (A∪C).

We have associativity of ∩ and ∪:

A∩ (B∩C) = (A∩B)∩C

A∪ (B∪C) = (A∪B)∪C.

Proof. We use Proposition 1.2. Let us prove that A∩ (B∪C) = (A∩B)∪ (A∩C),
leaving the proof of the other equations as an exercise. We prove the two inclusions
A∩ (B∪C)⊆ (A∩B)∪ (A∩C) and (A∩B)∪ (A∩C)⊆ A∩ (B∪C).

Assume that x ∈ A∩ (B∪C). This means that x ∈ A and x ∈ B∪C; that is

(x ∈ A)∧ ((x ∈ B)∨ (x ∈C)).

Using the distributivity of ∧ over ∨, we obtain

((x ∈ A)∧ (x ∈ B))∨ ((x ∈ A)∧ (x ∈C)).
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But the above says that x ∈ (A∩B)∪ (A∩C), which proves our first inclusion.
Conversely assume that x ∈ (A∩B)∪ (A∩C). This means that x ∈ (A∩B) or

x ∈ (A∩C); that is

((x ∈ A)∧ (x ∈ B))∨ ((x ∈ A)∧ (x ∈C)).

Using the distributivity of ∧ over ∨ (in the other direction), we obtain

(x ∈ A)∧ ((x ∈ B)∨ (x ∈C)),

which says that x ∈ A∩ (B∪C), and proves our second inclusion.
Note that we could have avoided two arguments by proving that x ∈ A∩ (B∪C)

iff (A∩B)∪ (A∩C) using the fact that the distributivity of ∧ over ∨ is a logical
equivalence. ut

We also have the following version of Proposition 1.1 for subsets.

Proposition 1.8. For every set X and any two subsets A,B of X, the following iden-
tities hold:

A = A

(A∩B) = A∪B

(A∪B) = A∩B.

The last two are de Morgan laws.

Another operation is the power set formation. It is indeed a “powerful” operation,
in the sense that it allows us to form very big sets.

Definition 1.7. Given any set A, there is a set P(A), also denoted 2A, called the
power set of A whose members are exactly the subsets of A; that is

X ∈P(A) iff X ⊆ A.

For example, if A = {a,b,c}, then

P(A) = { /0,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}},

a set containing eight elements. Note that the empty set and A itself are always
members of P(A).

Remark: If A has n elements, it is not hard to show that P(A) has 2n elements.
For this reason, many people, including us, prefer the notation 2A for the power set
of A.

It is possible to define the union of possibly infinitely many sets. Given any set
X (think of X as a set of sets), there is a set

⋃
X defined so that

x ∈
⋃

X iff ∃B(B ∈ X ∧ x ∈ B).
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This says that
⋃

X consists of all elements that belong to some member of X .
If we take X = {A,B}, where A and B are two sets, we see that⋃

{A,B}= A∪B.

Observe that ⋃
{A}= A,

⋃
{A1, . . . ,An}= A1∪·· ·∪An.

and in particular,
⋃

/0 = /0.
We can also define infinite intersections. For every nonempty set X there is a set⋂

X defined by
x ∈

⋂
X iff ∀B(B ∈ X ⇒ x ∈ B).

Observe that⋂
{A,B}= A∩B,

⋂
{A1, . . . ,An}= A1∩·· ·∩An.

However,
⋂

/0 is undefined. Indeed,
⋂

/0 would have to be the set of all sets, since the
condition

∀B(B ∈ /0⇒ x ∈ B)

holds trivially for all B (as the empty set has no members). However there is no such
set because its existence would lead to a paradox! This point is discussed is Chapter
11. Let us simply say that dealing with big infinite sets is tricky.

Thorough and yet accessible presentations of set theory can be found in Halmos
[5] and Enderton [1].

We close this chapter with a quick discussion of induction on the natural num-
bers.

1.12 Induction and the Well–Ordering Principle on the Natural
Numbers

Recall that the set of natural numbers is the set N given by

N= {0,1,2,3, . . .}.

In this chapter we do not attempt to define the natural numbers from other concepts,
such as sets. We assume that they are “God given.” One of our main goals is to prove
properties of the natural numbers. For this, certain subsets called inductive play a
crucial role.

Definition 1.8. We say that a subset S of N is inductive iff

(1) 0 ∈ S.
(2) For every n ∈ S, we have n+1 ∈ S.
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One of the most important proof principles for the natural numbers is the follow-
ing:

Proof Template 1.19. (Induction Principle for N)
Every inductive subset S of N is equal to N itself; that is S = N.

Let us give one example illustrating Proof Template 1.19. Many more examples
are given in Chapter 2.

Example 1.26. We prove that for every real number a 6= 1 and every natural number
n, we have

1+a+ · · ·+an =
an+1−1

a−1
.

This can also be written as
n

∑
i=0

ai =
an+1−1

a−1
, (∗)

with the convention that a0 = 1, even if a = 0. Let S be the set of natural numbers n
for which the identity (∗) holds, and let us prove that S is inductive.

First we need to prove that 0 ∈ S. The lefthand side becomes a0 = 1, and the
righthand side is (a− 1)/(a− 1), which is equal to 1 since we assume that a 6= 1.
Therefore, (∗) holds for n = 0; that is, 0 ∈ S.

Next assume that n∈ S (this is called the induction hypothesis). We need to prove
that n+1 ∈ S. Observe that

n+1

∑
i=0

ai =
n

∑
i=0

ai +an+1.

Now since we assumed that n ∈ S, we have

n

∑
i=0

ai =
an+1−1

a−1
,

and we deduce that

n+1

∑
i=0

ai =
n

∑
i=0

ai +an+1

=
an+1−1

a−1
+an+1

=
an+1−1+an+2−an+1

a−1

=
an+2−1

a−1
.

This proves that n+1 ∈ S. Therefore, S is inductive, and so S = N.
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We show how to rephrase this induction principle a little more conveniently using
the notion of function in Chapter 2.

Another important property of N is the so-called well–ordering principle. This
principle turns out to be equivalent to the induction principle for N. Such matters
are discussed in Section 5.4. In this chapter we accept the well–ordering principle
without proof.

Proof Template 1.20. (Well–Ordering Principle for N)
Every nonempty subset of N has a smallest element.

Proof Template 1.20 can be used to prove properties of N by contradiction. For
example, consider the property that every natural number n is either even or odd.

For the sake of contradiction (here, we use the proof–by–contradiction principle),
assume that our statement does not hold. If so, the subset S of natural numbers n for
which n is neither even nor odd is nonempty. By the well–ordering principle, the set
S has a smallest element, say m.

If m = 0, then 0 would be neither even nor odd, a contradiction since 0 is even.
Therefore, m > 0. But then, m− 1 /∈ S, since m is the smallest element of S. This
means that m− 1 is either even or odd. But if m− 1 is even, then m− 1 = 2k for
some k, so m = 2k+1 is odd, and if m−1 is odd, then m−1 = 2k+1 for some k,
so m = 2(k+ 1) is even. We just proved that m is either even or odd, contradicting
the fact that m ∈ S. Therefore, S must be empty and we proved the desired result.

We conclude this section with one more example showing the usefulness of the
well–ordering principle.

Example 1.27. Suppose we have a property P(n) of the natural numbers such that
P(n) holds for at least some n, and that for every n such that P(n) holds and n ≥
100, then there is some m < n such that P(m) holds. We claim that there is some
m < 100 such that P(m) holds. Let S be the set of natural numbers n such that P(n)
holds. By hypothesis, there is some n such that P(n) holds, so S is nonempty. By
the well–ordering principle, the set S has a smallest element, say m. For the sake
of contradiction, assume that m≥ 100. Then since P(m) holds and m≥ 100, by the
hypothesis there is some m′ < m such that P(m′) holds, contradicting the fact that m
is the smallest element of S. Therefore, by the proof–by–contradiction principle, we
conclude that m < 100, as claimed.

� Beware that the well–ordering principle is false for Z because Z does not have
a smallest element.

1.13 Summary

The main goal of this chapter is to describe how to construct proofs in terms of
proof templates. A brief and informal introduction to sets and set operations is also
provided.
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• We describe the syntax of propositions.
• We define the proof templates for implication.
• We show that deductions proceed from assumptions (or premises) according to

proof templates.
• We introduce falsity ⊥ and negation ¬P as an abbrevation for P⇒⊥. We de-

scribe the proof templates for conjunction, disjunction, and negation.
• We show that one of the rules for negation is the proof–by–contradiction rule

(also known as RAA). It plays a special role, in the sense that it allows for the
construction of indirect proofs.

• We present the proof–by–contrapositive rule.
• We present the de Morgan laws as well as some basic properties of ∨ and ∧.
• We give some examples of proofs of “real” statements.
• We give an example of a nonconstructive proof of the statement: there are two

irrational numbers, a and b, such that ab is rational.
• We explain the truth-value semantics of propositional logic.
• We define the truth tables for the boolean functions associated with the logical

connectives (and, or, not, implication, equivalence).
• We define the notion of validity and tautology.
• We discuss soundness (or consistency) and completeness.
• We state the soundness and completeness theorems for propositional classical

logic.
• We explain how to use counterexamples to prove that certain propositions are

not provable.
• We add first-order quantifiers (“for all” ∀ and “there exists” ∃) to the language

of propositional logic and define first-order logic.
• We describe free and bound variables.
• We describe proof templates for the quantifiers.
• We prove some “de Morgan”-type rules for the quantified formulae.
• We introduce sets and explain when two sets are equal.
• We define the notion of subset.
• We define some basic operations on sets: the union A∪B, intersection A∩B,

and relative complement A−B.
• We define the complement of a subset of a given set.
• We prove some basic properties of union, intersection and complementation,

including the de Morgan laws.
• We define the power set of a set.
• We define inductive subsets of N and state the induction principle for N.
• We state the well–ordering principle for N.

Problems

1.1. Give a proof of the proposition (P⇒ Q)⇒ ((P⇒ (Q⇒ R))⇒ (P⇒ R)).
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1.2. (a) Prove the “de Morgan” laws:

¬(P∧Q)≡ ¬P∨¬Q

¬(P∨Q)≡ ¬P∧¬Q.

(b) Prove the propositions (P∧¬Q)⇒¬(P⇒ Q) and ¬(P⇒ Q)⇒ (P∧¬Q).

1.3. (a) Prove the equivalences

P∨P≡ P

P∧P≡ P

P∨Q≡ Q∨P

P∧Q≡ Q∧P.

(b) Prove the equivalences

P∧ (P∨Q)≡ P

P∨ (P∧Q)≡ P.

1.4. Prove the propositions

P⇒ (Q⇒ (P∧Q))

(P⇒ Q)⇒ ((P⇒¬Q)⇒¬P)

(P⇒ R)⇒ ((Q⇒ R)⇒ ((P∨Q)⇒ R)).

1.5. Prove the following equivalences:

P∧ (P⇒ Q) ≡ P∧Q

Q∧ (P⇒ Q) ≡ Q(
P⇒ (Q∧R)

)
≡
(
(P⇒ Q)∧ (P⇒ R)

)
.

1.6. Prove the propositions

(P⇒ Q)⇒¬¬(¬P∨Q)

¬¬(¬¬P⇒ P).

1.7. Prove the proposition ¬¬(P∨¬P).

1.8. Prove the propositions

(P∨¬P)⇒ (¬¬P⇒ P) and (¬¬P⇒ P)⇒ (P∨¬P).

1.9. Prove the propositions

(P⇒ Q)⇒¬¬(¬P∨Q) and (¬P⇒ Q)⇒¬¬(P∨Q).
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1.10. (a) Prove the distributivity of ∧ over ∨ and of ∨ over ∧:

P∧ (Q∨R)≡ (P∧Q)∨ (P∧R)

P∨ (Q∧R)≡ (P∨Q)∧ (P∨R).

(b) Prove the associativity of ∧ and ∨:

P∧ (Q∧R)≡ (P∧Q)∧R

P∨ (Q∨R)≡ (P∨Q)∨R.

1.11. (a) Let X = {Xi | 1 ≤ i ≤ n} be a finite family of sets. Prove that if Xi+1 ⊆ Xi
for all i, with 1≤ i≤ n−1, then ⋂

X = Xn.

Prove that if Xi ⊆ Xi+1 for all i, with 1≤ i≤ n−1, then⋃
X = Xn.

(b) Recall that N+ =N−{0}= {1,2,3, . . . ,n, . . .}. Give an example of an infinite
family of sets, X = {Xi | i ∈ N+}, such that

1. Xi+1 ⊆ Xi for all i≥ 1.
2. Xi is infinite for every i≥ 1.
3.
⋂

X has a single element.

(c) Give an example of an infinite family of sets, X = {Xi | i ∈ N+}, such that

1. Xi+1 ⊆ Xi for all i≥ 1.
2. Xi is infinite for every i≥ 1.
3.
⋂

X = /0.

1.12. An integer, n ∈ Z, is divisible by 3 iff n = 3k, for some k ∈ Z. Thus (by the
division theorem), an integer, n ∈ Z, is not divisible by 3 iff it is of the form n =
3k+1 or n = 3k+2, for some k ∈ Z (you don’t have to prove this).

Prove that for any integer, n ∈ Z, if n2 is divisible by 3, then n is divisible by 3.

Hint. Prove the contrapositive. If n of the form n = 3k+1 or n = 3k+2, then so is
n2 (for a different k).

1.13. Use Problem 1.12 to prove that
√

3 is irrational, that is,
√

3 can’t be written as√
3 = p/q, with p,q ∈ Z and q 6= 0.

1.14. Prove that b = log2 9 is irrational. Then prove that a =
√

2 and b = log2 9 are
two irrational numbers such that ab is rational.
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Chapter 2
Relations, Functions, Partial Functions,
Equinumerosity

2.1 What is a Function?

We use functions all the time in mathematics and in computer science. But what
exactly is a function?

Roughly speaking, a function f is a rule or mechanism that takes input values in
some input domain, say X , and produces output values in some output domain, say
Y , in such a way that to each input x ∈ X corresponds a unique output value y ∈ Y ,
denoted f (x). We usually write y = f (x), or better, x 7→ f (x).

Often, functions are defined by some sort of closed expression (a formula), but
not always. For example, the formula

y = 2x

defines a function. Here we can take both the input and output domain to be R, the
set of real numbers. Instead, we could have taken N, the set of natural numbers, for
both the input and output domain; this gives us a different function. In the above
example, 2x makes sense for all input x, whether the input domain is N or R, so our
formula yields a function defined for all of its input values.

Now, look at the function defined by the formula

y =
x
2
.

If the input and output domains are both R, again this function is well defined.
However, what if we assume that the input and output domains are both N? This
time, we have a problem when x is odd. For example, 3/2 is not an integer, so our
function is not defined for all of its input values. It is actually a partial function, a
concept that subsumes the notion of a function but is more general. Observe that this
partial function is defined for the set of even natural numbers (sometimes denoted
2N) and this set is called the domain (of definition) of f . If we enlarge the output
domain to be Q, the set of rational numbers, then our partial function is defined for
all inputs.

53
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Another example of a partial function is given by

y =
x+1

x2−3x+2
,

assuming that both the input and output domains are R. Observe that for x = 1 and
x = 2, the denominator vanishes, so we get the undefined fractions 2/0 and 3/0.
This partial function “blows up” for x = 1 and x = 2, its value is “infinity” (= ∞),
which is not an element of R. So, the domain of f is R−{1,2}.

In summary, partial functions need not be defined for all of their input values and
we need to pay close attention to both the input and the output domain of our partial
functions.

The following example illustrates another difficulty: consider the partial function
given by

y =
√

x,

the nonnegative square root of x. If we assume that the input domain is R and that
the output domain is R+ = {x ∈ R | x≥ 0}, then this partial function is not defined
for negative values of x. To fix this problem, we can extend the output domain to
be C, the complex numbers. Then we can make sense of

√
x when x < 0. However,

a new problem comes up: every negative number x has two complex square roots,
−i
√−x and +i

√−x (where i is “the” square root of −1). Which of the two should
we pick?

In this case, we could systematically pick +i
√−x but what if we extend the

input domain to be C? Then it is not clear which of the two complex roots should
be picked, as there is no obvious total order on C. We can treat f as a multivalued
function, that is, a function that may return several possible outputs for a given input
value.

Experience shows that it is awkward to deal with multivalued functions and that
it is best to treat them as relations (or to change the output domain to be a power set,
which is equivalent to viewing the function as a relation).

Let us give one more example showing that it is not always easy to make sure
that a formula is a proper definition of a function. Consider the function from R to
R given by

f (x) = 1+
∞

∑
n=1

xn

n!
.

Here, n! is the function factorial, defined by

n! = n · (n−1) · · ·2 ·1.

How do we make sense of this infinite expression? Well, that’s where analysis comes
in, with the notion of limit of a series, and so on. It turns out that f (x) is the expo-
nential function f (x) = ex. Actually, ex is even defined when x is a complex number
or even a square matrix (with real or complex entries). Don’t panic, we do not use
such functions in this course.
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Another issue comes up, that is, the notion of computability. In all of our ex-
amples, and for most (partial) functions we will ever need to compute, it is clear
that it is possible to give a mechanical procedure, that is, a computer program that
computes our functions (even if it hard to write such a program or if such a program
takes a very long time to compute the output from the input).

Unfortunately, there are functions that, although well defined mathematically,
are not computable. This can be proven quickly using the notion of countable set
defined later in this chapter. The set of functions from N to itself is not countable
but computer programs are finite strings over a finite alphabet, so the set of com-
puter programs is countable. For an example of a noncomputable function, let us go
back to first-order logic and the notion of provable proposition. Given a finite (or
countably infinite) alphabet of function, predicate, constant symbols, and a count-
able supply of variables, it is quite clear that the set F of all propositions built up
from these symbols and variables can be enumerated systematically. We can define
the function Prov with input domain F and output domain {0,1}, so that, for every
proposition P ∈F ,

Prov(P) =
{

1 if P is provable (classically)
0 if P is not provable (classically).

Mathematically, for every proposition, P ∈F , either P is provable or it is not, so
this function makes sense. However, by Church’s theorem (see Section 11.13), we
know that there is no computer program that will terminate for all input propositions
and give an answer in a finite number of steps. So, although the function Prov makes
sense as an abstract function, it is not computable.

Is this a paradox? No, if we are careful when defining a function not to incorpo-
rate in the definition any notion of computability and instead to take a more abstract
and, in some some sense, naive view of a function as some kind of input/output
process given by pairs 〈input value, output value〉 (without worrying about the way
the output is “computed” from the input).

A rigorous way to proceed is to use the notion of ordered pair and of graph of a
function. Before we do so, let us point out some facts about “functions” that were
revealed by our examples:

1. In order to define a “function,” in addition to defining its input/output behavior,
it is also important to specify what is its input domain and its output domain.

2. Some “functions” may not be defined for all of their input values; a function
can be a partial function.

3. The input/output behavior of a “function” can be defined by a set of ordered
pairs. As we show next, this is the graph of the function.

We are now going to formalize the notion of function (possibly partial) using the
concept of ordered pair.



56 2 Relations, Functions, Partial Functions, Equinumerosity

2.2 Ordered Pairs, Cartesian Products, Relations,
Functions, Partial Functions

Given two sets A and B, one of the basic constructions of set theory is the formation
of an ordered pair, 〈a,b〉, where a ∈ A and b ∈ B. Sometimes, we also write (a,b)
for an ordered pair. The main property of ordered pairs is that if 〈a1,b1〉 and 〈a2,b2〉
are ordered pairs, where a1,a2 ∈ A and b1,b2 ∈ B, then

〈a1,b1〉= 〈a2,b2〉 iff a1 = a2 and b1 = b2.

Observe that this property implies that

〈a,b〉 6= 〈b,a〉,

unless a= b. Thus, the ordered pair 〈a,b〉 is not a notational variant for the set {a,b};
implicit to the notion of ordered pair is the fact that there is an order (even though we
have not yet defined this notion) among the elements of the pair. Indeed, in 〈a,b〉,
the element a comes first and b comes second. Accordingly, given an ordered pair
p = 〈a,b〉, we denote a by pr1(p) and b by pr2(p) (first and second projection or
first and second coordinate).

Remark: Readers who like set theory will be happy to hear that an ordered pair
〈a,b〉 can be defined as the set {{a},{a,b}}. This definition is due to K. Kura-
towski, 1921. An earlier (more complicated) definition given by N. Wiener in 1914
is {{{a}, /0},{{b}}}.

Fig. 2.1 Kazimierz Kuratowski, 1896–1980.

Now, from set theory, it can be shown that given two sets A and B, the set of
all ordered pairs 〈a,b〉, with a ∈ A and b ∈ B, is a set denoted A×B and called
the Cartesian product of A and B (in that order). The set A×B is also called the
cross-product of A and B.

By convention, we agree that /0×B = A× /0 = /0. To simplify the terminology, we
often say pair for ordered pair, with the understanding that pairs are always ordered
(otherwise, we should say set).
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Of course, given three sets, A,B,C, we can form (A× B)×C and we call its
elements (ordered) triples (or triplets). To simplify the notation, we write 〈a,b,c〉
instead of 〈〈a,b〉,c〉 and A×B×C instead of (A×B)×C.

More generally, given n sets A1, . . . ,An (n≥ 2), we define the set of n-tuples,
A1×A2× ·· ·×An, as (· · ·((A1×A2)×A3)× ·· ·)×An. An element of A1×A2×
·· ·×An is denoted by 〈a1, . . . ,an〉 (an n-tuple). We agree that when n = 1, we just
have A1 and a 1-tuple is just an element of A1.

We now have all we need to define relations.

Definition 2.1. Given two sets A and B, a (binary) relation between A and B is any
triple 〈A,R,B〉, where R ⊆ A× B is any set of ordered pairs from A× B. When
〈a,b〉 ∈ R, we also write aRb and we say that a and b are related by R. The set

dom(R) = {a ∈ A | ∃b ∈ B, 〈a,b〉 ∈ R}

is called the domain of R and the set

range(R) = {b ∈ B | ∃a ∈ A, 〈a,b〉 ∈ R}

is called the range of R. Note that dom(R)⊆ A and range(R)⊆ B. When A = B, we
often say that R is a (binary) relation over A.

Sometimes, the term correspondence between A and B is used instead of the
term relation between A and B, and the word relation is reserved for the case where
A = B.

It is worth emphasizing that two relations 〈A,R,B〉 and 〈A′,R′,B′〉 are equal iff
A = A′, B = B′, and R = R′. In particular, if R = R′ but either A 6= A′ or B 6= B′, then
the relations 〈A,R,B〉 and 〈A′,R′,B′〉 are considered to be different. For simplicity,
we usually refer to a relation 〈A,R,B〉 as a relation R⊆ A×B.

Among all relations between A and B, we mention three relations that play a
special role:

1. R = /0, the empty relation. Note that dom( /0) = range( /0) = /0. This is not a very
exciting relation.

2. When A = B, we have the identity relation,

idA = {〈a,a〉 | a ∈ A}.

The identity relation relates every element to itself, and that’s it. Note that
dom(idA) = range(idA) = A.

3. The relation A×B itself. This relation relates every element of A to every ele-
ment of B. Note that dom(A×B) = A and range(A×B) = B.

Relations can be represented graphically by pictures often called graphs. (Be-
ware, the term “graph” is very much overloaded. Later on, we define what a graph
is.) We depict the elements of both sets A and B as points (perhaps with different
colors) and we indicate that a ∈ A and b ∈ B are related (i.e., 〈a,b〉 ∈ R) by drawing
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an oriented edge (an arrow) starting from a (its source) and ending in b (its target).
Here is an example:

1

a1

a2

a3

a4

a5

b1

b2

b3

b4

Fig. 2.2 A binary relation, R.

In Figure 2.2, A = {a1,a2,a3,a4,a5}, B = {b1,b2,b3,b4}, and

R = {(a1,b1),(a1,b2),(a2,b2),(a3,b1),(a3,b2),(a4,b2),(a4,b4)}.

Observe that dom(R) = {a1,a2,a3,a4} because a5 is not related to any element of
B, range(R) = {b1,b2,b4} because b3 is not related to any element of A, and that
some elements of A, namely, a1,a3,a4, are related to several elements of B.

Now, given a relation R ⊆ A×B, some element a ∈ A may be related to several
distinct elements b ∈ B. If so, R does not correspond to our notion of a function, be-
cause we want our functions to be single-valued. So, we impose a natural condition
on relations to get relations that correspond to functions.

Definition 2.2. We say that a relation R between two sets A and B is functional if for
every a∈A, there is at most one b∈B so that 〈a,b〉 ∈R. Equivalently, R is functional
if for all a ∈ A and all b1,b2 ∈ B, if 〈a,b1〉 ∈ R and 〈a,b2〉 ∈ R, then b1 = b2.

The picture in Figure 2.3 shows an example of a functional relation. As we see
in the next definition, it is the graph of a partial function.

Using Definition 2.2, we can give a rigorous definition of a function (partial or
not).

Definition 2.3. A partial function f is a triple f = 〈A,G,B〉, where A is a set called
the input domain of f , B is a set called the output domain of f (sometimes codomain
of f ), and G⊆A×B is a functional relation called the graph of f (see Figure 2.4); we
let graph( f ) = G. We write f : A→ B to indicate that A is the input domain of f and
that B is the codomain of f and we let dom( f ) = dom(G) and range( f ) = range(G).
For every a∈ dom( f ), the unique element b∈B, so that 〈a,b〉 ∈ graph( f ) is denoted
by f (a) (so, b = f (a)). Often we say that b = f (a) is the image of a by f . The range
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of f is also called the image of f and is denoted Im( f ). If dom( f ) = A, we say that
f is a total function, for short, a function with domain A.

1

a1

a2

a3

a4

a5

b1

b2

b3

b4

Fig. 2.3 A functional relation G (the graph of a partial function).

1

a

f(a) 〈a, f(a)〉

G

A

B

A × B

Fig. 2.4 A (partial) function 〈A,G,B〉.

As in the case of relations, it is worth emphasizing that two functions (partial or
total) f = 〈A,G,B〉 and f ′ = 〈A′,G′,B′〉 are equal iff A = A′, B = B′, and G = G′. In
particular, if G = G′ but either A 6= A′ or B 6= B′, then the functions (partial or total)
f and f ′ are considered to be different. Equivalently, two partial functions f and f ′

are equal iff A = A′, B = B′, for all a ∈ A, we have a ∈ dom( f ) iff a ∈ dom( f ′), and
if a ∈ dom( f ), then f (a) = f ′(a).
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Figure 2.3 displays the graph G of a partial function f = 〈A,G,B〉 with A =
{a1,a2,a3,a4,a5} and B = {b1,b2,b3,b4}. The domain of the partial function f is
dom( f ) = {a1,a2,a3,a4}=A′; the partial function f is undefined at a5. On the other
hand, the (partial) function f ′ = 〈A′,G,B〉 is a total function since A′ = dom( f ′).

Observe that most computer programs are not defined for all inputs. For exam-
ple, programs designed to run on numerical inputs will typically crash when given
strings as input. Thus, most computer programs compute partial functions that are
not total and it may be very hard to figure out what is the domain of these functions.
This is a strong motivation for considering the notion of a partial function and not
just the notion of a (total) function.
Remarks:
1. If f = 〈A,G,B〉 is a partial function and b = f (a) for some a ∈ dom( f ), we say

that f maps a to b; we may write f : a 7→ b. For any b ∈ B, the set

{a ∈ A | f (a) = b}

is denoted f−1(b) and called the inverse image or preimage of b by f . (It is also
called the fibre of f above b. We explain this peculiar language later on.) Note
that f−1(b) 6= /0 iff b is in the image (range) of f . Often, a function, partial or
not, is called a map.

2. Note that Definition 2.3 allows A = /0. In this case, we must have G = /0 and,
technically, 〈 /0, /0,B〉 is a total function. It is the empty function from /0 to B.

3. When a partial function is a total function, we don’t call it a “partial total func-
tion,” but simply a “function.” The usual practice is that the term “function”
refers to a total function. However, sometimes we say “total function” to stress
that a function is indeed defined on all of its input domain.

4. Note that if a partial function f = 〈A,G,B〉 is not a total function, then dom( f ) 6=
A and for all a ∈ A− dom( f ), there is no b ∈ B so that 〈a,b〉 ∈ graph( f ). We
often say that f (a) is undefined, even though technically f (a) does not exist.
This corresponds to the intuitive fact that f does not produce any output for any
value not in its domain of definition. We can imagine that f “blows up” for this
input (as in the situation where the denominator of a fraction is 0) or that the
program computing f loops indefinitely for that input.

5. If A 6= /0, the partial function 〈A, /0,B〉 has dom( f ) = /0, and it is called the (par-
tial) function undefined everywhere or undefined function.

6. If f = 〈A,G,B〉 is a total function and A 6= /0, then B 6= /0.
7. For any set A, the identity relation idA, is actually a function idA : A→ A.
8. Given any two sets A and B, the rules 〈a,b〉 7→ a = pr1(〈a,b〉) and 〈a,b〉 7→ b =

pr2(〈a,b〉) make pr1 and pr2 into functions pr1 : A×B→A and pr2 : A×B→B
called the first and second projections.

9. A function f : A→ B is sometimes denoted A
f−→ B. Some authors use a dif-

ferent kind of arrow to indicate that f is partial, for example, a dotted or dashed
arrow. We do not go that far.

10. The set of all functions, f : A→ B, is denoted by BA. If A and B are finite, A has
m elements and B has n elements, it is easy to prove that BA has nm elements.
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The reader might wonder why, in the definition of a (total) function, f : A→ B,
we do not require B = Im f , inasmuch as we require that dom( f ) = A.

The reason has to do with experience and convenience. It turns out that in most
cases, we know what the domain of a function is, but it may be very hard to deter-
mine exactly what its image is. Thus, it is more convenient to be flexible about the
codomain. As long as we know that f maps into B, we are satisfied.

For example, consider functions f : R→R2 from the real line into the plane. The
image of such a function is a curve in the plane R2. Actually, to really get “decent”
curves we need to impose some reasonable conditions on f , for example, to be
differentiable. Even continuity may yield very strange curves (see Section 2.10).
But even for a very well-behaved function, f , it may be very hard to figure out what
the image of f is. Consider the function t 7→ (x(t),y(t)) given by

x(t) =
t(1+ t2)

1+ t4

y(t) =
t(1− t2)

1+ t4 .

The curve that is the image of this function, shown in Figure 2.5, is called the
“lemniscate of Bernoulli.”

Fig. 2.5 Lemniscate of Bernoulli.

Observe that this curve has a self-intersection at the origin, which is not so obvi-
ous at first glance.

2.3 Induction Principles on N

Now that we have the notion of function, we can restate the induction principle
stated as Proof Template 1.19 in Chapter 1 and as Induction Principle for N (Version
2) at the end of Section 11.20 to make it more flexible. For the reader’s convenience
we repeat this induction principle.

Induction Principle for N (Version 2): For any subset, S⊆N, if 0∈ S and n+1∈ S
whenever n ∈ S, then S = N.
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A property of the natural numbers is any function, P : N→ {true, false}. The
idea is that P(n) holds iff P(n)= true, else P(n)= false. Then we have the following
principle.

Principle of Induction for N (Version 3).
Let P be any property of the natural numbers. In order to prove that P(n) holds for
all n ∈ N, it is enough to prove that

(1) P(0) holds.
(2) For every n ∈ N, the implication P(n)⇒ P(n+1) holds.

As a formula, (1) and (2) can be written

[P(0)∧ (∀n ∈ N)(P(n)⇒ P(n+1))]⇒ (∀n ∈ N)P(n).

Step (1) is usually called the basis or base step of the induction and step (2) is
called the induction step. In step (2), P(n) is called the induction hypothesis. That
the above induction principle is valid is given by the following.

Proposition 2.1. The principle of induction stated above is valid.

Proof. Let
S = {n ∈ N | P(n) = true}.

By the induction principle Version 2 (for details, see the end of Section 11.20), it is
enough to prove that S is inductive, because then S = N and we are done.

Because P(0) holds, we have 0 ∈ S. Now, if n ∈ S (i.e., if P(n) holds), because
P(n)⇒ P(n+1) holds for every n we deduce that P(n+1) holds; that is, n+1 ∈ S.
Therefore, S is inductive as claimed and this finishes the proof. ut

Induction is a very valuable tool for proving properties of the natural numbers and
we make extensive use of it. We also show other more powerful induction principles.
Let us give two examples illustrating how it is used.

Example 2.1. We begin by finding a formula for the sum

1+2+3+ · · ·+n,

where n ∈ N. If we compute this sum for small values of n, say n = 0,1,2,3,4,5,6
we get

0 = 0
1 = 1

1+2 = 3
1+2+3 = 6

1+2+3+4 = 10
1+2+3+4+5 = 15

1+2+3+4+5+6 = 21.
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What is the pattern?
After a moment of reflection, we see that

0 = (0×1)/2
1 = (1×2)/2
3 = (2×3)/2
6 = (3×4)/2

10 = (4×5)/2
15 = (5×6)/2
21 = (6×7)/2,

so we conjecture
Claim 1:

1+2+3+ · · ·+n =
n(n+1)

2
,

where n ∈ N.
For the basis of the induction, where n = 0, we get 0 = 0, so the base step holds.
For the induction step, for any n ∈ N, assume that

1+2+3+ · · ·+n =
n(n+1)

2
.

Consider 1+2+3+ · · ·+n+(n+1). Then, using the induction hypothesis, we have

1+2+3+ · · ·+n+(n+1) =
n(n+1)

2
+n+1

=
n(n+1)+2(n+1)

2

=
(n+1)(n+2)

2
,

establishing the induction hypothesis and therefore proving our formula. ut

Example 2.2. Next, let us find a formula for the sum of the first n+1 odd numbers:

1+3+5+ · · ·+2n+1,

where n ∈ N. If we compute this sum for small values of n, say n = 0,1,2,3,4,5,6
we get
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1 = 1
1+3 = 4

1+3+5 = 9
1+3+5+7 = 16

1+3+5+7+9 = 25
1+3+5+7+9+11 = 36

1+3+5+7+9+11+13 = 49.

This time, it is clear what the pattern is: we get perfect squares. Thus, we conjecture
Claim 2:

1+3+5+ · · ·+2n+1 = (n+1)2,

where n ∈ N.
For the basis of the induction, where n = 0, we get 1 = 12, so the base step holds.
For the induction step, for any n ∈ N, assume that

1+3+5+ · · ·+2n+1 = (n+1)2.

Consider 1+3+5+ · · ·+2n+1+2(n+1)+1 = 1+3+5+ · · ·+2n+1+2n+3.
Then, using the induction hypothesis, we have

1+3+5+ · · ·+2n+1+2n+3 = (n+1)2 +2n+3
= n2 +2n+1+2n+3 = n2 +4n+4
= (n+2)2.

Therefore, the induction step holds and this completes the proof by induction. ut

The two formulae that we just discussed are subject to a nice geometric inter-
petation that suggests a closed-form expression for each sum, and this is often the
case for sums of special kinds of numbers. For the formula of Example 2.1, if we
represent n as a sequence of n “bullets,” then we can form a rectangular array with
n rows and n+ 1 columns showing that the desired sum is half of the number of
bullets in the array, which is indeed n(n+1)/2, as shown below for n = 5:

• ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦
• • • • ◦ ◦
• • • • • ◦

Thus, we see that the numbers

∆n =
n(n+1)

2
,
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have a simple geometric interpretation in terms of triangles of bullets; for example,
∆4 = 10 is represented by the triangle

•
• •
• • •
• • • •

For this reason, the numbers ∆n are often called triangular numbers. A natural
question then arises; what is the sum

∆1 +∆2 +∆3 + · · ·+∆n?

The reader should compute these sums for small values of n and try to guess a for-
mula that should then be proved correct by induction. It is not too hard to find a nice
formula for these sums. The reader may also want to find a geometric interpretation
for the above sums (stacks of cannon balls).

In order to get a geometric interpretation for the sum

1+3+5+ · · ·+2n+1

of Example 2.2, we represent 2n+1 using 2n+1 bullets displayed in a V -shape; for
example, 7 = 2×3+1 is represented by

• •
• •
• •
•

Then, the sum 1+3+5+ · · ·+2n+1 corresponds to the square

•
• •
• • •
• • • •
• • •
• •
•

,

which clearly reveals that

1+3+5+ · · ·+2n+1 = (n+1)2.

A natural question is then; what is the sum

12 +22 +32 + · · ·+n2?
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Again, the reader should compute these sums for small values of n, then guess
a formula and check its correctness by induction. It is not too difficult to find such
a formula. For a fascinating discussion of all sorts of numbers and their geometric
interpretations (including the numbers we just introduced), the reader is urged to
read Chapter 2 of Conway and Guy [1].

Sometimes, it is necessary to prove a property P(n) for all natural numbers n≥m,
where m > 0. Our induction principle does not seem to apply because the base case
is not n = 0. However, we can define the property Q(n) given by

Q(n) = P(m+n), n ∈ N,

and because Q(n) holds for all n ∈ N iff P(k) holds for all k ≥ m, we can apply our
induction principle to prove Q(n) for all n ∈ N and thus, P(k), for all k ≥ m (note,
k = m+ n). Of course, this amounts to considering that the base case is n = m and
this is what we always do without any further justification. Here is an example.

Example 2.3. Let us prove that

(3n)2 ≤ 2n, for all n≥ 10.

The base case is n = 10. For n = 10, we get

(3×10)2 = 302 = 900≤ 1024 = 210,

which is indeed true. Let us now prove the induction step. Assuming that (3n)2 ≤ 2n

holds for all n≥ 10, we want to prove that (3(n+1))2 ≤ 2n+1. As

(3(n+1))2 = (3n+3)2 = (3n)2 +18n+9,

if we can prove that 18n+9 ≤ (3n)2 when n ≥ 10, using the induction hypothesis,
(3n)2 ≤ 2n, we have

(3(n+1))2 = (3n)2 +18n+9≤ (3n)2 +(3n)2 ≤ 2n +2n = 2n+1,

establishing the induction step. However,

(3n)2− (18n+9) = (3n−3)2−18

and (3n−3)2 ≥ 18 as soon as n≥ 3, so 18n+9≤ (3n)2 when n≥ 10, as required.
Observe that the formula (3n)2≤ 2n fails for n= 9, because (3×9)2 = 272 = 729

and 29 = 512, but 729 > 512. Thus, the base has to be n = 10.
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2.4 Complete Induction

There is another induction principle which is often more flexible than our original
induction principle. This principle, called complete induction (or sometimes strong
induction), is stated below.

Complete Induction Principle for N.
In order to prove that a property (also called a predicate) P(n) holds for all n ∈N

it is enough to prove that

(1) P(0) holds (the base case).
(2) For every m ∈ N, if (∀k ∈ N)(k ≤ m⇒ P(k)), then P(m+1).

The difference between ordinary induction and complete induction is that in com-
plete induction, the induction hypothesis (∀k∈N)(k≤m⇒P(k)) assumes that P(k)
holds for all k ≤ m and not just for m (as in ordinary induction), in order to deduce
P(m+ 1). This gives us more proving power as we have more knowledge in order
to prove P(m+1). Complete induction is discussed more extensively in Section 5.4
and its validity is proven as a consequence of the fact that every nonempty subset of
N has a smallest element but we can also justify its validity as follows. Define Q(m)
by

Q(m) = (∀k ∈ N)(k ≤ m⇒ P(k)).

Then it is an easy exercise to show that if we apply our (ordinary) induction princi-
ple to Q(m) (induction principle, Version 3), then we get the principle of complete
induction. Here is an example of a proof using complete induction.

Example 2.4. Define the sequence of natural numbers Fn (Fibonacci sequence) by

F1 = 1, F2 = 1, Fn+2 = Fn+1 +Fn, n≥ 1.

Fig. 2.6 Leonardo P. Fibonacci, 1170–1250

We claim that

Fn ≥
3n−3

2n−4 , n≥ 4.
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The base case corresponds to n = 4, where

F4 = 3≥ 31

20 = 3,

which is true. Note that we also need to consider the case n = 5 by itself before we
do the induction step because even though F5 = F4 +F3, the induction hypothesis
only applies to F4 (n≥ 4 in the inequality above). We have

F5 = 5≥ 32

21 =
9
2
,

which is true because 10 > 9. Now for the induction step where n≥ 4, we have

Fn+2 = Fn+1 +Fn

≥ 3n−2

2n−3 +
3n−3

2n−4

≥ 3n−3

2n−4

(
1+

3
2

)
=

3n−3

2n−3
5
2
≥ 3n−3

2n−4
9
4
=

3n−1

2n−2 ,

since 5/2 > 9/4, which concludes the proof of the induction step. Observe that we
used the induction hypothesis for both Fn+1 and Fn in order to deduce that it holds
for Fn+2. This is where we needed the extra power of complete induction.

Remark: The Fibonacci sequence Fn is really a function from N to N defined recur-
sively but we haven’t proved yet that recursive definitions are legitimate methods for
defining functions. In fact, certain restrictions are needed on the kind of recursion
used to define functions. This topic is explored further in Section 2.6. Using results
from Section 2.6, it can be shown that the Fibonacci sequence is a well-defined
function (but this does not follow immediately from Theorem 2.1).

Induction proofs can be subtle and it might be instructive to see some examples
of faulty induction proofs.

Assertion 1: For every natural number n ≥ 1, the number n2− n+ 11 is an odd
prime (recall that a prime number is a natural number p≥ 2, which is only divisible
by 1 and itself).

Proof. We use induction on n≥ 1. For the base case n= 1, we have 12−1+11= 11,
which is an odd prime, so the induction step holds.

Assume inductively that n2−n+11 is prime. Then as

(n+1)2− (n+1)+11 = n2 +2n+1−n−1+11 = n2 +n+11,

we see that
(n+1)2− (n+1)+11 = n2−n+11+2n.

By the induction hypothesis, n2−n+11 is an odd prime p, and because 2n is even,
p+2n is odd and therefore prime, establishing the induction hypothesis. ut
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If we compute n2− n+ 11 for n = 1,2, . . . ,10, we find that these numbers are
indeed all prime, but for n = 11, we get

121 = 112−11+11 = 11×11,

which is not prime.
Where is the mistake?
What is wrong is the induction step: the fact that n2− n+ 11 is prime does not

imply that (n+1)2− (n+1)+11 = n2 +n+11 is prime, as illustrated by n = 10.
Our “proof” of the induction step is nonsense.

The lesson is: the fact that a statement holds for many values of n ∈ N does not
imply that it holds for all n ∈ N (or all n≥ k, for some fixed k ∈ N).

Interestingly, the prime numbers k, so that n2−n+k is prime for n = 1,2, . . . ,k−
1, are all known (there are only six of them). It can be shown that these are the prime
numbers k such that 1− 4k is a Heegner number, where the Heegner numbers are
the nine integers:

−1, −2, −3, −7, −11, −19, −43, −67, −163.

The above results are hard to prove and require some deep theorems of number
theory. What can also be shown (and you should prove it) is that no nonconstant
polynomial takes prime numbers as values for all natural numbers.

Assertion 2: Every Fibonacci number Fn is even.

Proof. For the base case, F3 = 2, which is even, so the base case holds.
Assume inductively that Fm is even for all m≤ n, with n≥ 3. Then, as

Fn+1 = Fn +Fn−1

and as both Fn and Fn−1 are even by the induction hypothesis (we are using complete
induction), we conclude that Fn+1 is even. ut

However, Assertion 2 is clearly false, because the Fibonacci sequence begins
with

1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .

This time, the mistake is that we did not check the two base cases, F1 = 1 and F2 = 1.
Our experience is that if an induction proof is wrong, then, in many cases, the

base step is faulty. So pay attention to the base step(s).
A useful way to produce new relations or functions is to compose them.

2.5 Composition of Relations and Functions

We begin with the definition of the composition of relations.
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Definition 2.4. Given two relations R⊆ A×B and S ⊆ B×C, the composition of R
and S, denoted R◦S, is the relation between A and C defined by

R◦S = {〈a,c〉 ∈ A×C | ∃b ∈ B, 〈a,b〉 ∈ R and 〈b,c〉 ∈ S}.

An example of composition of two relations is shown on the right in Figure 2.7.

a1

a2

a3

a4

a5

b1

b2

b3

b4

c1

c2

c3

c4

c5

a1

a2

a3

a4

a5

c1

c2

c3

c4

c5

Fig. 2.7 The composition of two relations R and S.

One should check that for any relation R ⊆ A× B, we have idA ◦ R = R and
R◦ idB = R.

If R and S are the graphs of functions, possibly partial, is R◦S the graph of some
function? The answer is yes, as shown in the following.

Proposition 2.2. Let R⊆ A×B and S⊆ B×C be two relations.

(a) If R and S are both functional relations, then R◦S is also a functional relation.
Consequently, R◦S is the graph of some partial function.

(b) If dom(R) = A and dom(S) = B, then dom(R◦S) = A.
(c) If R is the graph of a (total) function from A to B and S is the graph of a (total)

function from B to C, then R◦S is the graph of a (total) function from A to C.

Proof. (a) Assume that 〈a,c1〉 ∈ R◦S and 〈a,c2〉 ∈ R◦S. By definition of R◦S, there
exist b1,b2 ∈ B so that

〈a,b1〉 ∈ R, 〈b1,c1〉 ∈ S,

〈a,b2〉 ∈ R, 〈b2,c2〉 ∈ S.

As R is functional, 〈a,b1〉 ∈ R and 〈a,b2〉 ∈ R implies b1 = b2. Let b = b1 = b2, so
that 〈b1,c1〉 = 〈b,c1〉 and 〈b2,c2〉 = 〈b,c2〉. But, S is also functional, so 〈b,c1〉 ∈ S
and 〈b,c2〉 ∈ S implies that c1 = c2, which proves that R◦S is functional.

(b) If A= /0 then R= /0 and so R◦S = /0, which implies that dom(R◦S) = /0=A. If
A 6= /0, pick any a ∈ A. The fact that dom(R) = A 6= /0 means that there is some b ∈ B
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so that 〈a,b〉 ∈ R and so, B 6= /0. As dom(S) = B 6= /0, there is some c ∈ C so that
〈b,c〉 ∈ S. Then by the definition of R ◦ S, we see that 〈a,c〉 ∈ R ◦ S. The argument
holds for any a ∈ A, therefore we deduce that dom(R◦S) = A.

(c) If R and S are the graphs of partial functions, then this means that they are
functional and (a) implies that R ◦ S is also functional. This shows that R ◦ S is the
graph of the partial function 〈A,R◦S,C〉. If R and S are the graphs of total functions,
then dom(R) = A and dom(S) = B. By (b), we deduce that dom(R◦S) = A. By the
first part of (c), R◦S is the graph of the partial function 〈A,R◦S,C〉, which is a total
function, inasmuch as dom(R◦S) = A. ut

Proposition 2.2 shows that it is legitimate to define the composition of functions,
possibly partial. Thus, we make the following definition.

Definition 2.5. Given two functions f : A→ B and g : B→C, possibly partial, the
composition of f and g, denoted g◦ f , is the function (possibly partial)

g◦ f = 〈A,graph( f )◦graph(g),C〉.

The reader must have noticed that the composition of two functions f : A→B and
g : B→C is denoted g◦ f , whereas the graph of g◦ f is denoted graph( f )◦graph(g).
This “reversal” of the order in which function composition and relation composition
are written is unfortunate and somewhat confusing.

Once again, we are the victims of tradition. The main reason for writing function
composition as g ◦ f is that traditionally the result of applying a function f to an
argument x is written f (x). Then, (g ◦ f )(x) = g( f (x)), because z = (g ◦ f )(x) iff
there is some y so that y = f (x) and z = g(y); that is, z = g( f (x)). Some people,
in particular algebraists, write function composition as f ◦ g, but then, they write
the result of applying a function f to an argument x as x f . With this convention,
x( f ◦g) = (x f )g, which also makes sense.

We prefer to stick to the convention where we write f (x) for the result of applying
a function f to an argument x and, consequently, we use the notation g ◦ f for the
composition of f with g, even though it is the opposite of the convention for writing
the composition of relations.

Given any three relations, R⊆A×B, S⊆B×C, and T ⊆C×D, the reader should
verify that

(R◦S)◦T = R◦ (S◦T ).

We say that composition is associative. Similarly, for any three functions (possibly
partial), f : A→ B, g : B→ C, and h : C→ D, we have (associativity of function
composition)

(h◦g)◦ f = h◦ (g◦ f ).

Composition is used to define recursion on the natural numbers, which is the
topic of the next section.
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2.6 Recursion on N

The following situation often occurs. We have some set A, some fixed element a∈A,
some function g : A→ A, and we wish to define a new function h : N→ A, so that

h(0) = a,

h(n+1) = g(h(n)) for all n ∈ N.

This way of defining h is called a recursive definition (or a definition by primitive
recursion). I would be surprised if any computer scientist had any trouble with this
“definition” of h but how can we justify rigorously that such a function exists and is
unique?

Indeed, the existence (and uniqueness) of h requires proof. The proof, although
not really hard, is surprisingly involved and in fact quite subtle. For those reasons,
we do not give a proof of the following theorem but instead the main idea of the
proof. The reader will find a complete proof in Enderton [2] (Chapter 4).

Theorem 2.1. (Recursion theorem on N) Given any set A, any fixed element a ∈ A,
and any function g : A→ A, there is a unique function h : N→ A, so that

h(0) = a,

h(n+1) = g(h(n)) for all n ∈ N.

Proof. The idea is to approximate h. To do this, define a function f to be acceptable
iff

1. dom( f )⊆ N and range( f )⊆ A.
2. If 0 ∈ dom( f ), then f (0) = a.
3. If n+1 ∈ dom( f ), then n ∈ dom( f ) and f (n+1) = g( f (n)).

Let F be the collection of all acceptable functions and set

h =
⋃

F .

All we can say, so far, is that h is a relation. We claim that h is the desired function.
For this, four things need to be proven:

1. The relation h is a function.
2. The function h is acceptable.
3. The function h has domain N.
4. The function h is unique.

As expected, we make heavy use of induction in proving (1)–(4). For complete
details, see Enderton [2] (Chapter 4). ut

Theorem 2.1 is very important. Indeed, experience shows that it is used almost
as much as induction. As an example, we show how to define addition on N. Indeed,
at the moment, we know what the natural numbers are but we don’t know what are
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the arithmetic operations such as + or ∗ (at least, not in our axiomatic treatment; of
course, nobody needs an axiomatic treatment to know how to add or multiply).

How do we define m+n, where m,n ∈ N?
If we try to use Theorem 2.1 directly, we seem to have a problem, because ad-

dition is a function of two arguments, but h and g in the theorem only take one
argument. We can overcome this problem in two ways:

(1) We prove a generalization of Theorem 2.1 involving functions of several argu-
ments, but with recursion only in a single argument. This can be done quite
easily but we have to be a little careful.

(2) For any fixed m, we define addm(n) as addm(n) = m+ n; that is, we define
addition of a fixed m to any n. Then we let m+n = addm(n).

Solution (2) involves much less work, thus we follow it. Let S denote the succes-
sor function on N, that is, the function given by

S(n) = n+ = n+1.

Then using Theorem 2.1 with a = m and g = S, we get a function, addm, such that

addm(0) = m,

addm(n+1) = S(addm(n)) = addm(n)+1 for all n ∈ N.

Finally, for all m,n ∈ N, we define m+n by

m+n = addm(n).

Now, we have our addition function on N. But this is not the end of the story be-
cause we don’t know yet that the above definition yields a function having the usual
properties of addition, such as

m+0 = m

m+n = n+m

(m+n)+ p = m+(n+ p).

To prove these properties, of course, we use induction.
We can also define multiplication. Mimicking what we did for addition, for any

fixed m, define multm(n) by recursion as follows.

multm(0) = 0,
multm(n+1) = addm(multm(n)) = m+multm(n) for all n ∈ N.

Then we set
m ·n = multm(n).
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Note how the recursive definition of multm uses the adddition function addm, previ-
ously defined. Again, to prove the usual properties of multiplication as well as the
distributivity of · over +, we use induction. Using recursion, we can define many
more arithmetic functions. For example, the reader should try defining exponentia-
tion mn.

We still haven’t defined the usual ordering on the natural numbers but we do so
later. Of course, we all know what it is and we do not refrain from using it. Still, it
is interesting to give such a definition in our axiomatic framework.

2.7 Inverses of Functions and Relations

In this section, we motivate two fundamental properties of functions, injectivity and
surjectivity, as a consequence of the fact that a function has a left inverse or a right
inverse.

Given a function f : A→ B (possibly partial), with A 6= /0, suppose there is some
function g : B→ A (possibly partial), called a left inverse of f , such that

g◦ f = idA,

as illustrated in Figure 2.8, with A = {a1,a2}, B = {b1,b2,b3,b4}, f : A→ B given

a1

a2

b1

b2

b3

b4

a1

a2

f g

Fig. 2.8 A function f with a left inverse g.

by f (a1) = b2, f (a2) = b3, and g : B→ A given by g(b1) = g(b2) = a1, and g(b3) =
g(b4) = a2.

If such a g exists, we see that f must be total but more is true. Indeed, assume
that f (a) = f (b). Then by applying g, we get

(g◦ f )(a) = g( f (a)) = g( f (b)) = (g◦ f )(b).

However, because g ◦ f = idA, we have (g ◦ f )(a) = idA(a) = a and (g ◦ f )(b) =
idA(b) = b, so we deduce that
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a = b.

Therefore, we showed that if a function f with nonempty domain has a left inverse,
then f is total and has the property that for all a,b ∈ A, f (a) = f (b) implies that
a = b, or equivalently a 6= b implies that f (a) 6= f (b). This fact is part of Theorem
2.2 which will be stated and proven later. We say that f is injective. As we show
later, injectivity is a very desirable property of functions.

Remark: If A = /0, then f is still considered to be injective. In this case, g is the
empty partial function (and when B = /0, both f and g are the empty function from
/0 to itself).

Now, suppose there is some function h : B→ A (possibly partial) with B 6= /0
called a right inverse of f , but this time we have

f ◦h = idB,

as illustrated in Figure 2.9, with A = {a1,a2,a3,a4,a5}, B = {b1,b2,b3}, f : A→ B

b1

b2

b3

a1

a2

a3

a4

a5

b1

b2

b3

h f

Fig. 2.9 A function f with a right inverse h.

given by f (a1) = f (a2) = b1, f (a3) = b2 f (a4) = f (a5) = b3, and h : B→ A given
by h(b1) = a1, h(b2) = a3, and h(b3) = a5.

If such an h exists, we see that it must be total but more is true. Indeed, for any
b ∈ B, as f ◦h = idB, we have

f (h(b)) = ( f ◦h)(b) = idB(b) = b.

Therefore, we showed that if a function f with nonempty codomain has a right
inverse h then h is total and f has the property that for all b∈ B, there is some a∈ A,
namely, a = h(b), so that f (a) = b. In other words, Im( f ) = B or equivalently, every
element in B is the image by f of some element of A. This fact is part of Theorem
2.2. We say that f is surjective. Again, surjectivity is a very desirable property of
functions.
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Remark: If B = /0, then f is still considered to be surjective but h is not total unless
A = /0, in which case f is the empty function from /0 to itself.

Injective and surjective functions are defined officially in Definition 2.8.

� If a function has a left inverse (respectively, a right inverse), then it may have
more than one left inverse (respectively, right inverse). For example, in Figure

2.8, the function g2 obtained by modifying g so that g2(b1) = a2 is another left
inverse of f . In Figure 2.9, the function h2 obtained by modifying h so that h2(b1) =
a2 is another right inverse of f .

If a function (possibly partial) f : A→ B with A,B 6= /0 happens to have both a
left inverse g : B→ A and a right inverse h : B→ A, then we know that f and h are
total. We claim that g = h, so that g is total and moreover g is uniquely determined
by f .

Lemma 2.1. Let f : A→ B be any function and suppose that f has a left inverse
g : B→ A and a right inverse h : B→ A. Then g = h and, moreover, g is unique,
which means that if g′ : B→ A is any function that is both a left and a right inverse
of f , then g′ = g.

Proof. Assume that
g◦ f = idA and f ◦h = idB.

Then we have

g = g◦ idB = g◦ ( f ◦h) = (g◦ f )◦h = idA ◦h = h.

Therefore, g = h. Now, if g′ is any other left inverse of f and h′ is any other right
inverse of f , the above reasoning applied to g and h′ shows that g = h′ and the same
reasoning applied to g′ and h′ shows that g′ = h′. Therefore, g′ = h′ = g = h, that is,
g is uniquely determined by f . ut

This leads to the following definition.

Definition 2.6. A function f : A→ B is said to be invertible iff there is a function
g : B→ A which is both a left inverse and a right inverse; that is,

g◦ f = idA and f ◦g = idB.

In this case, we know that g is unique and it is denoted f−1.

From the above discussion, if a function is invertible, then it is both injective and
surjective. This shows that a function generally does not have an inverse. In order
to have an inverse a function needs to be injective and surjective, but this fails to be
true for many functions. For example, the function f : N→N given by f (x) = 2x is
not invertible since it is not surjective. It turns out that if a function is injective and
surjective then it has an inverse. We prove this in the next section.

The notion of inverse can also be defined for relations, but it is a somewhat
weaker notion.
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Definition 2.7. Given any relation R ⊆ A×B, the converse or inverse of R is the
relation R−1 ⊆ B×A, defined by

R−1 = {〈b,a〉 ∈ B×A | 〈a,b〉 ∈ R}.

In other words, R−1 is obtained by swapping A and B and reversing the orien-
tation of the arrows. Figure 2.10 below shows the inverse of the relation of Figure
2.2:

1

a1

a2

a3

a4

a5

b1

b2

b3

b4

Fig. 2.10 The inverse of the relation R from Figure 2.2.

Now, if R is the graph of a (partial) function f , beware that R−1 is generally not
the graph of a function at all, because R−1 may not be functional. For example, the
inverse of the graph G in Figure 2.3 is not functional; see below.

1

a1

a2

a3

a4

a5

b1

b2

b3

b4

Fig. 2.11 The inverse, G−1, of the graph of Figure 2.3.
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The above example shows that one has to be careful not to view a function as
a relation in order to take its inverse. In general, this process does not produce a
function. This only works if the function is invertible.

Given any two relations, R⊆ A×B and S⊆ B×C, the reader should prove that

(R◦S)−1 = S−1 ◦R−1.

(Note the switch in the order of composition on the right-hand side.) Similarly, if
f : A→ B and g : B→C are any two invertible functions, then g◦ f is invertible and

(g◦ f )−1 = f−1 ◦g−1.

2.8 Injections, Surjections, Bijections, Permutations

We encountered injectivity and surjectivity in Section 2.7. In this section, by func-
tion we mean a total function. For the record, let us give the following.

Definition 2.8. Given any function f : A→ B, we say that f is injective (or one-to-
one) iff for all a,b ∈ A, if f (a) = f (b), then a = b, or equivalently, if a 6= b, then
f (a) 6= f (b). We say that f is surjective (or onto) iff for every b ∈ B, there is some
a ∈ A so that b = f (a), or equivalently if Im( f ) = B. The function f is bijective
iff it is both injective and surjective. When A = B, a bijection f : A→ A is called a
permutation of A.

Remarks:

1. If A = /0, then any function, f : /0→ B is (trivially) injective.
2. If B = /0, since f is a total function, f is the empty function from /0 to itself and

it is (trivially) surjective.
3. A function, f : A→ B, is not injective iff there exist a,b ∈ A with a 6= b and

yet f (a) = f (b); see Figure 2.12.
4. A function, f : A→ B, is not surjective iff for some b ∈ B, there is no a ∈ A

with b = f (a); see Figure 2.13.
5. We have Im f = {b ∈ B | (∃a ∈ A)(b = f (a))}, thus a function f : A→ B is

always surjective onto its image.
6. The notation f : A ↪→ B is often used to indicate that a function f : A→ B is an

injection.
7. If A 6= /0, a function f : A→ B is injective iff for every b ∈ B, there at most one

a ∈ A such that b = f (a).
8. If A 6= /0, a function f : A→ B is surjective iff for every b ∈ B, there at least one

a ∈ A such that b = f (a) iff f−1(b) 6= /0 for all b ∈ B.
9. If A 6= /0, a function f : A→ B is bijective iff for every b ∈ B, there is a unique

a ∈ A such that b = f (a).
10. When A is the finite set A = {1, . . . ,n}, also denoted [n], it is not hard to show

that there are n! permutations of [n].
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1

a

b

f(a) = f(b)A

B

Fig. 2.12 A noninjective function.

1

b

f
A

B

Im(f)

Fig. 2.13 A nonsurjective function.

The function f1 : Z→ Z given by f1(x) = x+1 is injective and surjective. How-
ever, the function f2 : Z→ Z given by f2(x) = x2 is neither injective nor surjective
(why?). The function f3 : Z→ Z given by f3(x) = 2x is injective but not surjective.
The function f4 : Z→ Z given by

f4(x) =
{k if x = 2k

k if x = 2k+1

is surjective but not injective.

Remark: The reader should prove that if A and B are finite sets, A has m elements
and B has n elements (m≤ n) then the set of injections from A to B has

n!
(n−m)!

elements.
The following theorem relates the notions of injectivity and surjectivity to the

existence of left and right inverses.
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Theorem 2.2. Let f : A→ B be any function and assume A 6= /0.

(a) The function f is injective iff it has a left inverse g (i.e., a function g : B→ A so
that g◦ f = idA).

(b) The function f is surjective iff it has a right inverse h (i.e., a function h : B→ A
so that f ◦h = idB).

(c) The function f is invertible iff it is injective and surjective.

Proof. (a) We already proved in Section 2.7 that the existence of a left inverse im-
plies injectivity. Now, assume f is injective. Then for every b ∈ range( f ), there is
a unique ab ∈ A so that f (ab) = b. Because A 6= /0, we may pick some a0 in A. We
define g : B→ A by

g(b) =
{

ab if b ∈ range( f )
a0 if b ∈ B− range( f ).

The definition of g is illustrated in Figure 2.14, with all the elements not in the image
of f mapped to a0. Then g( f (a)) = a for all a ∈ A, because f (a) ∈ range( f ) and a

ab

b

a0a0

ab

f g

Fig. 2.14 Defining a left inverse of an injective function f .

is the only element of A so that f (a) = f (a) (thus, g( f (a)) = a f (a) = a). This shows
that g◦ f = idA, as required.

(b) We already proved in Section 2.7 that the existence of a right inverse implies
surjectivity. For the converse, assume that f is surjective. As A 6= /0 and f is a func-
tion (i.e., f is total), B 6= /0. So for every b ∈ B, the preimage f−1(b) = {a ∈ A |
f (a) = b} is nonempty. We make a function h : B→ A as follows. For each b ∈ B,
pick some element ab ∈ f−1(b) (which is nonempty) and let h(b) = ab. The defi-
nition of h is illustrated in Figure 2.15, where we picked some representative ab in
every inverse image f−1(b), with b∈ B. By definition of f−1(b), we have f (ab) = b
and so,

f (h(b)) = f (ab) = b, for all b ∈ B.
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b
ab

b

h f

Fig. 2.15 Defining a right inverse of a surjective function f .

This shows that f ◦h = idB, as required.
(c) If f is invertible, we proved in Section 2.7 that f is injective and surjective.

Conversely, if f is both injective and surjective, by (a) the function f has a left
inverse g and by (b) it has a right inverse h. However, by Lemma 2.1, g = h, which
shows that f is invertible. ut

The alert reader may have noticed a “fast turn” in the proof of the converse in (b).
Indeed, we constructed the function h by choosing, for each b ∈ B, some element in
f−1(b). How do we justify this procedure from the axioms of set theory?

Well, we can’t. For this we need another (historically somewhat controversial)
axiom, the axiom of choice. This axiom has many equivalent forms. We state the
following form which is intuitively quite plausible.

Axiom of Choice (Graph Version).
For every relation R⊆A×B, there is a partial function f : A→B, with graph( f )⊆R
and dom( f ) = dom(R).

We see immediately that the axiom of choice justifies the existence of the func-
tion h in part (b) of Theorem 2.2.

Remarks:

1. Let f : A→ B and g : B→ A be any two functions and assume that

g◦ f = idA.

Thus, f is a right inverse of g and g is a left inverse of f . So, by Theorem 2.2 (a)
and (b), we deduce that f is injective and g is surjective. In particular, this shows
that any left inverse of an injection is a surjection and that any right inverse of a
surjection is an injection.

2. Any right inverse h of a surjection f : A→ B is called a section of f (which is
an abbreviation for cross-section). This terminology can be better understood
as follows: Because f is surjective, the preimage, f−1(b) = {a ∈ A | f (a) = b}
of any element b ∈ B is nonempty. Moreover, f−1(b1)∩ f−1(b2) = /0 whenever
b1 6= b2. Therefore, the pairwise disjoint and nonempty subsets f−1(b), where
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b ∈ B, partition A. We can think of A as a big “blob” consisting of the union of
the sets f−1(b) (called fibres) and lying over B. The function f maps each fibre,
f−1(b) onto the element, b ∈ B. Then any right inverse h : B→ A of f picks out
some element in each fibre, f−1(b), forming a sort of horizontal section of A
shown as a curve in Figure 2.16. Referring back to Figure 2.9, the function h is
a section of f .

1

f

f−1(b1)

h

B

A

b1 b2

h(b2)

Fig. 2.16 A section h of a surjective function f .

3. Any left inverse g of an injection f : A→ B is called a retraction of f . The ter-
minology reflects the fact that intuitively, as f is injective (thus, g is surjective),
B is bigger than A and because g ◦ f = idA, the function g “squeezes” B onto
A in such a way that each point b = f (a) in Im f is mapped back to its ances-
tor a ∈ A. So, B is “retracted” onto A by g. Referring back to Figure 2.8, the
function g is a retraction of f .

Before discussing direct and inverse images, we define the notion of restriction
and extension of functions.

Definition 2.9. Given two functions, f : A→C and g : B→C, with A ⊆ B, we say
that f is the restriction of g to A if graph( f )⊆ graph(g); we write f = g � A. In this
case, we also say that g is an extension of f to B.

If f : A→C is a restriction of g : B→C to A (with A⊆ B), then for every a ∈ A
we have f (a) = g(a), but g is defined on a larger set than f . For example, if A = N
(the natural numbers) and B =C =Q (the rational numbers), and if f : N→Q and
g : Q→Q are given by f (x) = x/2 and g(x) = x/2, then f is the restriction of g to
N and g is an extension of f to Q.
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2.9 Direct Image and Inverse Image

A function f : X→Y induces a function from 2X to 2Y also denoted f and a function
from 2Y to 2X , as shown in the following definition.

Definition 2.10. Given any function f : X → Y , we define the function f : 2X → 2Y

so that, for every subset A of X ,

f (A) = {y ∈ Y | ∃x ∈ A, y = f (x)}.

The subset f (A) of Y is called the direct image of A under f , for short, the image of
A under f . We also define the function f−1 : 2Y → 2X so that, for every subset B of
Y ,

f−1(B) = {x ∈ X | ∃y ∈ B, y = f (x)}.
The subset f−1(B) of X is called the inverse image of B under f or the preimage of
B under f .

Example 2.5. If f : A→ B is the function with A = {1,2,3,4,5}, B = {a,b,c,d},
and

f (1) = f (2) = a, f (3) = f (4) = c, f (5) = d,

then

f ({1,2}) = {a}, f ({1,2,3}) = {a,c},
f ({1,2,3,4}= {a,c}, f ({1,2,3,4,5}) = {a,c,d},

so f is not surjective, and

f−1({a}) = {1,2}, f−1({b}) = /0, f−1({a,b}) = {1,2},
f−1({a,c}) = {1,2,3,4}, f−1({a,c,d}) = {1,2,3,4,5},

so f is not injective.

Remarks:

1. The overloading of notation where f is used both for denoting the original func-
tion f : X → Y and the new function f : 2X → 2Y may be slightly confusing. If
we observe that f ({x}) = { f (x)}, for all x∈X , we see that the new f is a natural
extension of the old f to the subsets of X and so, using the same symbol f for
both functions is quite natural after all. To avoid any confusion, some authors
(including Enderton) use a different notation for f (A), for example, f [[A]]. We
prefer not to introduce more notation and we hope that which f we are dealing
with is made clear by the context.

2. The use of the notation f−1 for the function f−1 : 2Y → 2X may even be more
confusing, because we know that f−1 is generally not a function from Y to X .
However, it is a function from 2Y to 2X . Again, some authors use a different
notation for f−1(B), for example, f−1[[A]]. We stick to f−1(B).
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3. The set f (A) is sometimes called the push-forward of A along f and f−1(B) is
sometimes called the pullback of B along f .

4. Observe that f−1(y) = f−1({y}), where f−1(y) is the preimage defined just
after Definition 2.3.

5. Although this may seem counterintuitive, the function f−1 has a better behavior
than f with respect to union, intersection, and complementation.

Some useful properties of f : 2X → 2Y and f−1 : 2Y → 2X are now stated without
proof. The proofs are easy and left as exercises.

Proposition 2.3. Given any function f : X → Y , the following properties hold.

(1) For any B⊆ Y , we have
f ( f−1(B))⊆ B.

(2) If f : X → Y is surjective, then

f ( f−1(B)) = B.

(3) For any A⊆ X, we have
A⊆ f−1( f (A)).

(4) If f : X → Y is injective, then

A = f−1( f (A)).

The next proposition deals with the behavior of f : 2X → 2Y and f−1 : 2Y → 2X

with respect to union, intersection, and complementation.

Proposition 2.4. Given any function f : X → Y the following properties hold.

(1) For all A,B⊆ X, we have

f (A∪B) = f (A)∪ f (B).

(2)
f (A∩B)⊆ f (A)∩ f (B).

Equality holds if f : X → Y is injective.
(3)

f (A)− f (B)⊆ f (A−B).

Equality holds if f : X → Y is injective.
(4) For all C,D⊆ Y , we have

f−1(C∪D) = f−1(C)∪ f−1(D).

(5)
f−1(C∩D) = f−1(C)∩ f−1(D).

(6)
f−1(C−D) = f−1(C)− f−1(D).
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As we can see from Proposition 2.4, the function f−1 : 2Y → 2X has better be-
havior than f : 2X → 2Y with respect to union, intersection, and complementation.

As an interlude, in the next section, we describe a famous space-filling function
due to Hilbert. Such a function is obtained as the limit of a sequence of curves that
can be defined recursively.

2.10 An Amazing Surjection: Hilbert’s Space-Filling Curve

In the years 1890–1891, Giuseppe Peano and David Hilbert discovered examples of
space-filling functions (also called space-filling curves). These are surjective func-
tions from the line segment [0,1] onto the unit square and thus their image is the
whole unit square. Such functions defy intuition because they seem to contradict
our intuition about the notion of dimension; a line segment is one-dimensional, yet
the unit square is two-dimensional. They also seem to contradict our intuitive no-
tion of area. Nevertheless, such functions do exist, even continuous ones, although
to justify their existence rigorously requires some tools from mathematical analysis.
Similar curves were found by others, among whom we mention Sierpinski, Moore,
and Gosper.

Fig. 2.17 David Hilbert 1862–1943 and Waclaw Sierpinski, 1882–1969.

We describe Hilbert’s scheme for constructing such a square-filling curve. We
define a sequence (hn) of polygonal lines hn : [0,1]→ [0,1]× [0,1], starting from
the simple pattern h0 (a “square cap” u) shown on the left in Figure 2.18.

The curve hn+1 is obtained by scaling down hn by a factor of 1
2 , and connecting

the four copies of this scaled-down version of hn obtained by rotating by π/2 (left
lower part), rotating by −π/2, and translating right (right lower part), translating
up (left upper part), and translating diagonally (right upper part), as illustrated in
Figure 2.18.

It can be shown that the sequence (hn) converges (uniformly) to a continuous
curve h : [0,1]→ [0,1]× [0,1] whose trace is the entire square [0,1]× [0,1]. The
Hilbert curve h is surjective, continuous, and nowhere differentiable. It also has
infinite length.
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Fig. 2.18 A sequence of Hilbert curves h0,h1,h2.

Fig. 2.19 The Hilbert curve h5.

The curve h5 is shown in Figure 2.19. You should try writing a computer program
to plot these curves. By the way, it can be shown that no continuous square-filling
function can be injective. It is also possible to define cube-filling curves and even
higher-dimensional cube-filling curves.

We now illustrate how the notion of function can be used to define strings rigor-
ously.
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2.11 Strings

Strings play an important role in computer science and linguistics because they are
the basic tokens of which languages are made. In fact, formal language theory takes
the (somewhat crude) view that a language is a set of strings. A string is a finite
sequence of letters, for example, “Jean”, “Val”, “Mia”, “math”, “gaga”, “abab”.
Usually, we have some alphabet in mind and we form strings using letters from this
alphabet. Strings are not sets; the order of the letters matters: “abab” and “baba” are
different strings. What matters is the position of every letter. In the string “aba”, the
leftmost “a” is in position 1, “b” is in position 2, and the rightmost “b” is in position
3. All this suggests defining strings as certain kinds of functions whose domains
are the sets [n] = {1,2, . . . ,n} (with [0] = /0) encountered earlier. Here is the very
beginning of the theory of formal languages.

Definition 2.11. An alphabet Σ is any finite set.

We often write Σ = {a1, . . . ,ak}. The ai are called the symbols of the alphabet.

Remark: There are a few occasions where we allow infinite alphabets but normally
an alphabet is assumed to be finite.

Examples:
Σ = {a}
Σ = {a,b,c}
Σ = {0,1}
A string is a finite sequence of symbols. Technically, it is convenient to define

strings as functions.

Definition 2.12. Given an alphabet Σ a string over Σ (or simply a string) of length
n is any function

u : [n]→ Σ .

The integer n is the length of the string u, and it is denoted by |u|. When n = 0, the
special string u : [0]→ Σ , of length 0 is called the empty string, or null string, and
is denoted by ε .

Given a string u : [n]→ Σ of length n≥ 1, u(i) is the ith letter in the string u. For
simplicity of notation, we denote the string u = {〈1,u(1)〉, . . . ,〈n,u(n)〉} as

u = u1u2 . . .un,

with each ui ∈ Σ .
For example, if Σ = {a,b} and u : [3]→Σ is defined such that u(1) = a, u(2) = b,

and u(3) = a, we write
u = aba.

Strings of length 1 are functions u : [1]→ Σ simply picking some element u(1) = ai
in Σ . Thus, we identify every symbol ai ∈ Σ with the corresponding string of length
1.
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The set of all strings over an alphabet Σ , including the empty string, is denoted
as Σ ∗. Observe that when Σ = /0, then

/0∗ = {ε}.

When Σ 6= /0, the set Σ ∗ is countably infinite. Later on, we show ways of ordering
and enumerating strings.

Strings can be juxtaposed, or concatenated.

Definition 2.13. Given an alphabet Σ , given two strings u : [m]→ Σ and
v : [n]→ Σ , the concatenation, u · v, (also written uv) of u and v is the string
uv : [m+n]→ Σ , defined such that

uv(i) =
{

u(i) if 1≤ i≤ m,
v(i−m) if m+1≤ i≤ m+n.

In particular, uε = εu = u.

For example, if u = ga, and v = mma, then

uv = gamma.

It is immediately verified that

u(vw) = (uv)w.

Thus, concatenation is a binary operation on Σ ∗ that is associative and has ε as an
identity. Note that generally, uv 6= vu, for example, for u = a and v = b.

Definition 2.14. Given an alphabet Σ , given any two strings u,v∈ Σ ∗, we define the
following notions as follows.

u is a prefix of v iff there is some y ∈ Σ ∗ such that

v = uy.

u is a suffix of v iff there is some x ∈ Σ ∗ such that

v = xu.

u is a substring of v iff there are some x,y ∈ Σ ∗ such that

v = xuy.

We say that u is a proper prefix (suffix, substring) of v iff u is a prefix (suffix,
substring) of v and u 6= v.

For example, ga is a prefix of gallier, the string lier is a suffix of gallier, and all
is a substring of gallier.

Finally, languages are defined as follows.
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Definition 2.15. Given an alphabet Σ , a language over Σ (or simply a language) is
any subset L of Σ ∗.

The next step would be to introduce various formalisms to define languages, such
as automata or grammars but you’ll have to take another course to learn about these
things.

Before we close this chapter, we describe the Haar transform as an example of
a bijection on sequences of length 2n that has applications to compression in signal
processing.

2.12 The Haar Transform

Wavelets play an important role in audio and video signal processing, especially for
compressing long signals into much smaller ones that still retain enough information
so that when they are played, we can’t see or hear any difference.

Audio signals can be encoded as sequences of numbers. The Haar transform
takes a sequence u = (u1, . . . ,u2n) of length 2n (a signal) and converts it to a se-
quence c = (c1, . . . ,c2n) of Haar coefficients, called its Haar transform and denoted
by Haar(u). Roughly speaking, c codes up the original sequence u in such a way that
the coefficients ci with low index i correspond to low frequency, and the coefficients
ci with high index i correspond to high frequency. We can view Haar as a function
from the set of sequences of real numbers of length 2n to itself, and it turns out that
it is a bijection; in fact, it is a very interesting bijection!

The sequence c is obtained from u by iterating a process of averaging and differ-
encing. For example, if n = 8, then given the sequence

u = (u1,u2, . . . ,u8),

we take the average of any to consecutive numbers ui and ui+1, obtaining(
u1 +u2

2
,

u3 +u4

2
,

u5 +u6

2
,

u7 +u8

2

)
.

We can’t recover the original signal from the above sequence, since it consists of
only 4 numbers, but if we also compute half differences, then we can recover u; this
is because for any two real numbers a,b, we have

a =
a+b

2
+

a−b
2

b =
a+b

2
− a−b

2
.

Using averaging and differencing, we obtain the sequence
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u1 +u2

2
,

u3 +u4

2
,

u5 +u6

2
,

u7 +u8

2
,

u1−u2

2
,

u3−u4

2
,

u5−u6

2
,

u7−u8

2

)
.

Then, u1 is recovered by adding up the first element (u1+u2)/2 and the fifth element
(u1− u2)/2, u2 is recovered by subtracting the fifth element (u1− u2)/2 from the
first element (u1 + u2)/2, then u3 is recovered by adding up the second element
(u3 + u4)/2 and the sixth element (u3− u4)/2, u4 is recovered by subtracting the
sixth element (u3−u4)/2 from the second element (u3 +u4)/2, u5 is recovered by
adding up the third element (u5 + u6)/2 and the seventh element (u5− u6)/2, u6
is recovered by subtracting the seventh element (u5−u6)/2 from the third element
(u5+u6)/2; finally, u7 is recovered by adding up the fourth element (u7+u8)/2 and
the eigth element (u7−u8)/2, and u8 is recovered by subtracting the eigth element
(u7−u8)/2 from the fourth element (u7 +u8)/2.

The genius of the Haar transform it to apply the same process recursively to the
half sequence on the left (and leave the half sequence on the right untouched!).

For simplicity, let us illustrate this process on a sequence of length 4, say

u = (6,4,5,1).

We have the following sequence of steps:

c2 = (6,4,5,1)

c1 = (5,3,1,2)

c0 = (4,1,1,2),

where the numbers in red are obtained by averaging. The Haar transform of u if
c = c0, namely

c = (4,1,1,2).

Note that the first coefficient 4, is the average of the signal u. Then, c2 gives coarse
details of u, and c3 gives the details in the first part of u, and c4 gives the details of
the second half of u. The Haar transform performs a multiresolution analysis.

Let us now consider an example with n = 3, say

u = (31,29,23,17,−6,−8,−2,−4).

We get the sequence

c3 = (31,29,23,17,−6,−8,−2,−4)

c2 = (30,20,−7,−3,1,3,1,1)

c1 = (25,−5,5,−2,1,3,1,1)

c0 = (10,15,5,−2,1,3,1,1),

where the numbers in red are obtained by averaging, so
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c = (10,15,5,−2,1,3,1,1).

In general, If u is a vector of dimension 2n, we compute the sequence of vectors
cn,cn−1, . . . ,c0 as follows: initialize cn as

cn = u,

and for j = n−1, . . . ,0,

for i = 1, . . . ,2 j, do

c j = c j+1

c j(i) = (c j+1(2i−1)+ c j+1(2i))/2

c j(2 j + i) = (c j+1(2i−1)− c j+1(2i))/2.

The Haar transform c = Haar(u) is given by c = c0.
Now, given any two real numbers a,b, if we write

m =
a+b

2

d =
a−b

2
,

then we have

a = m+d

b = m−d.

Using these facts, we leave it as an exercise to prove that the inverse of the Haar
transform is computed using the following algorithm. If c is a sequence of Haar co-
efficients of length 2n, we compute the sequence of vectors u0,u1, . . ., un as follows:
initialize u0 as

u0 = c,

and for j = 0, . . . ,n−1,

for i = 1, . . . ,2 j, do

u j+1 = u j

u j+1(2i−1) = u j(i)+u j(2 j + i)

u j+1(2i) = u j(i)−u j(2 j + i).

The reconstructed signal u = Haar−1(c) is given by u = un.
For example, given

c = (10,15,5,−2,1,3,1,1),

we get the sequence



92 2 Relations, Functions, Partial Functions, Equinumerosity

u0 = (10,15,5,−2,1,3,1,1),

u1 = (25,−5,5,−2,1,3,1,1)

u2 = (30,20,−7,−3,1,3,1,1)

u3 = (31,29,23,17,−6,−8,−2,−4),

which gives back u = (31,29,23,17,−6,−8,−2,−4).
A nice feature of the Haar decoding algorithm is that is proceeds from left to

right (from inside out), so if we send an encoded signal c= (c1, . . . ,c2n), the receiver
can start decoding the sequence as soon as it starts receiving the number c1,c2, . . .,
without having to wait for the entire sequence to be received.

The Haar transform and its inverse are linear transformations. This means that
c = Haar(v) and u = Haar−1(c) are defined by matrices. For example, if n = 3, the
inverse transform Haar−1 is specified by the matrix

W3 =



1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1


,

in the sense that
u =W3c,

where u and c are viewed as column vectors. The columns of this matrix are orthog-
onal and it is easy to see that

W−1
3 = diag(1/8,1/8,1/4,1/4,1/2,1/2,1/2,1/2)W>3 .

The columns of the matrix W3 form a basis of orthogonal vectors in R8 known as
the Haar basis.

A pattern is beginning to emerge. It looks like the second Haar basis vector w2
is the “mother” of all the other basis vectors, except the first, whose purpose is to
perform averaging. Indeed, in general, given

w2 = (1, . . . ,1,−1, . . . ,−1)︸ ︷︷ ︸
2n

,

the other Haar basis vectors are obtained by a “scaling and shifting process.” Starting
from w2, the scaling process generates the vectors

w3,w5,w9, . . . ,w2 j+1, . . . ,w2n−1+1,
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such that w2 j+1+1 is obtained from w2 j+1 by forming two consecutive blocks of 1
and −1 of half the size of the blocks in w2 j+1, and setting all other entries to zero.
Observe that w2 j+1 has 2 j blocks of 2n− j elements. The shifting process, consists
in shifting the blocks of 1 and −1 in w2 j+1 to the right by inserting a block of
(k−1)2n− j zeros from the left, with 0≤ j ≤ n−1 and 1≤ k ≤ 2 j.

It is more convenient if we change our indexing slightly by letting k vary from 0
to 2 j−1 and using the index j instead of 2 j. In this case, the Haar basis is denoted
by

w1,h0
0,h

1
0,h

1
1,h

2
0,h

2
1,h

2
2,h

2
3, . . . ,h

j
k, . . . ,h

n−1
2n−1−1.

2.13 Wavelets

It turns out that there is a way to understand the Haar basis better if we interpret a
sequence u = (u1, . . . ,um) as a piecewise linear function over the interval [0,1). We
define the function plf(u) such that

plf(u)(x) = ui,
i−1

m
≤ x <

i
m
, 1≤ i≤ m.

In words, the function plf(u) has the value u1 on the interval [0,1/m), the value u2
on [1/m,2/m), etc., and the value um on the interval [(m−1)/m,1).

For example, the piecewise linear function associated with the vector

u = (2.4,2.2,2.15,2.05,6.8,2.8,−1.1,−1.3)

is shown in Figure 2.20.
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Fig. 2.20 The piecewise linear function plf(u).

Then, each basis vector h j
k corresponds to the function

ψ
j

k = plf(h j
k).
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In particular, for all n, the Haar basis vectors

h0
0 = w2 = (1, . . . ,1,−1, . . . ,−1)︸ ︷︷ ︸

2n

yield the same piecewise linear function ψ given by

ψ(x) =

{1 if 0≤ x < 1/2
−1 if 1/2≤ x < 1
0 otherwise,

whose graph is shown in Figure 2.21.

1

1

−1

0

Fig. 2.21 The Haar wavelet ψ .

Then it is easy to see that ψ
j

k is given by the simple expression

ψ
j

k (x) = ψ(2 jx− k), 0≤ j ≤ n−1, 0≤ k ≤ 2 j−1.

The above formula makes it clear that ψ
j

k is obtained from ψ by scaling and shifting.
The function φ 0

0 = plf(w1) is the piecewise linear function with the constant value 1
on [0,1), and the functions ψ

j
k together with φ 0

0 are known as the Haar wavelets.
An important and attractive feature of the Haar basis is that it provides a mul-

tiresolution analysis of a signal. Indeed, given a signal u, if c = (c1, . . . ,c2n) is the
vector of its Haar coefficients, the coefficients with low index give coarse informa-
tion about u, and the coefficients with high index represent fine information. For
example, if u is an audio signal corresponding to a Mozart concerto played by an
orchestra, c1 corresponds to the “background noise,” c2 to the bass, c3 to the first
cello, c4 to the second cello, c5,c6,c7,c8 to the violas, then the violins, etc. This
multiresolution feature of wavelets can be exploited to compress a signal, that is, to
use fewer coefficients to represent it. Here is an example.

Consider the signal

u = (2.4,2.2,2.15,2.05,6.8,2.8,−1.1,−1.3),
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whose Haar transform is

c = (2,0.2,0.1,3,0.1,0.05,2,0.1).

The piecewise-linear curves corresponding to u and c are shown in Figure 2.22.
Since some of the coefficients in c are small (smaller than or equal to 0.2) we can
compress c by replacing them by 0. We get

c2 = (2,0,0,3,0,0,2,0),

and the reconstructed signal is

u2 = (2,2,2,2,7,3,−1,−1).

The piecewise-linear curves corresponding to u2 and c2 are shown in Figure 2.23.
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Fig. 2.22 A signal and its Haar transform.

An interesting (and amusing) application of the Haar wavelets is to the compres-
sion of audio signals. It turns out that if your type load handel in Matlab an
audio file will be loaded in a vector denoted by y, and if you type sound(y), the
computer will play this piece of music. You can convert y to its vector of Haar co-
efficients, c. The length of y is 73113, so first truncate the tail of y to get a vector
of length 65536 = 216. A plot of the signals corresponding to y and c is shown in
Figure 2.24. Then run a program that sets all coefficients of c whose absolute value
is less that 0.05 to zero. This sets 37272 coefficients to 0. The resulting vector c2 is
converted to a signal y2. A plot of the signals corresponding to y2 and c2 is shown
in Figure 2.25. When you type sound(y2), you find that the music doesn’t differ
much from the original, although it sounds less crisp. You should play with other
numbers greater than or less than 0.05. You should hear what happens when you
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Fig. 2.23 A compressed signal and its compressed Haar transform.
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Fig. 2.24 The signal “handel” and its Haar transform.

type sound(c). It plays the music corresponding to the Haar transform c of y, and
it is quite funny.

Another neat property of the Haar transform is that it can be instantly generalized
to matrices (even rectangular) without any extra effort! This allows for the compres-
sion of digital images. We will not go into this topic here. Intersted readers should
consult Stollnitz, DeRose, and Salesin [3] or Strang and Truong [4].
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Fig. 2.25 The compressed signal “handel” and its Haar transform.

2.14 Summary

This chapter deals with the notions of relations, partial functions and functions, and
their basic properties.

• We give some examples of functions, emphasizing that a function has a set of
input values and a set of output values but that a function may not be defined
for all of its input values (it may be a partial function). A function is given by a
set of 〈 input, output 〉 pairs.

• We define ordered pairs and the Cartesian product A×B of two sets A and B.
• We define the first and second projection of a pair.
• We define binary relations and their domain and range.
• We define the identity relation.
• We define functional relations.
• We define partial functions, total functions, the graph of a partial or total func-

tion, the domain, and the range of a (partial) function.
• We define the preimage or inverse image f−1(a) of an element a by a (partial)

function f .
• The set of all functions from A to B is denoted BA.
• We revisit the induction principle for N stated in terms of properties and give

several examples of proofs by induction.
• We state the complete induction principle for N and prove its validity; we prove

a property of the Fibonacci numbers by complete induction.
• We define the composition R◦S of two relations R and S.
• We prove some basic properties of the composition of functional relations.
• We define the composition g◦ f of two (partial or total) functions, f and g.
• We describe the process of defining functions on N by recursion and state a

basic result about the validity of such a process (The recursion theorem on N).
• We define the left inverse and the right inverse of a function.
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• We define invertible functions and prove the uniqueness of the inverse f−1 of a
function f when it exists.

• We define the inverse or converse of a relation .
• We define, injective, surjective, and bijective functions.
• We characterize injectivity, surjectivity, and bijectivity in terms of left and right

inverses.
• We observe that to prove that a surjective function has a right inverse, we need

the axiom of choice (AC).
• We define sections, retractions, and the restriction of a function to a subset of

its domain.
• We define direct and inverse images of a set under a function ( f (A), respectively,

f−1(B)).
• We prove some basic properties of direct and inverse images with respect to

union, intersection, and relative complement.
• We describe Hilbert’s space-filling curve.
• We define strings.
• We describe the Haar transform as an example of a bijection on sequences of

length 2n that has applications to compression in signal processing.
• We also introduce wavelets, the piecewise-linear functions corresponding to the

Haar bases.

Problems

2.1. Given any two sets A,B, prove that for all a1,a2 ∈ A and all b1,b2 ∈ B,

{{a1},{a1,b1}}= {{a2},{a2,b2}}

iff
a1 = a2 and b1 = b2.

2.2. (a) Prove that the composition of two injective functions is injective. Prove that
the composition of two surjective functions is surjective.

(b) Prove that a function f : A→ B is injective iff for all functions g,h : C→ A,

if f ◦g = f ◦h, then g = h.

(c) Prove that a function f : A→ B is surjective iff for all functions g,h : B→C,

if g◦ f = h◦ f , then g = h.

2.3. (a) Prove that
n

∑
k=1

k2 =
n(n+1)(2n+1)

6
.
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(b) Prove that
n

∑
k=1

k3 =

(
n

∑
k=1

k

)2

.

2.4. Given any finite set A, let |A| denote the number of elements in A.
(a) If A and B are finite sets, prove that

|A∪B|= |A|+ |B|− |A∩B|.

(b) If A, B, and C are finite sets, prove that

|A∪B∪C|= |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|.

2.5. Prove that there is no set X such that

2X ⊆ X .

Hint. Given any two sets A,B, if there is an injection from A to B, then there is a
surjection from B to A.

2.6. Let f : X → Y be any function. (a) Prove that for any two subsets A,B⊆ X we
have

f (A∪B) = f (A)∪ f (B)

f (A∩B) ⊆ f (A)∩ f (B).

Give an example of a function f and of two subsets A,B such that

f (A∩B) 6= f (A)∩ f (B).

Prove that if f : X → Y is injective, then

f (A∩B) = f (A)∩ f (B).

(b) For any two subsets C,D⊆ Y , prove that

f−1(C∪D) = f−1(C)∪ f−1(D)

f−1(C∩D) = f−1(C)∩ f−1(D).

(c) Prove that for any two subsets A⊆ X and C ⊆ Y , we have

f (A)⊆C iff A⊆ f−1(C).

2.7. Let R ⊆ A×A be a relation. Prove that if R ◦R = idA, then R is the graph of a
bijection whose inverse is equal to itself.

2.8. Given any three relations R ⊆ A× B, S ⊆ B×C, and T ⊆ C×D, prove the
associativity of composition:
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(R◦S)◦T = R◦ (S◦T ).

2.9. Let f : A→ A′ and g : B→ B′ be two functions and define
h : A×B→ A′×B′ by

h(〈a,b〉) = 〈 f (a),g(b)〉,
for all a ∈ A and b ∈ B.

(a) Prove that if f and g are injective, then so is h.

Hint. Use the definition of injectivity, not the existence of a left inverse and do not
proceed by contradiction.

(b) Prove that if f and g are surjective, then so is h.

Hint. Use the definition of surjectivity, not the existence of a right inverse and do
not proceed by contradiction.

2.10. Let f : A→ A′ and g : B→ B′ be two injections. Prove that if
Im f ∩ Img = /0, then there is an injection from A∪B to A′∪B′.

Is the above still correct if Im f ∩ Img 6= /0?

2.11. (a) Give an example of a function f : A→ A such that f 2 = f ◦ f = f and f is
not the identity function.

(b) Prove that if a function f : A→ A is not the identity function and f 2 = f , then
f is not invertible.

(c) Give an example of an invertible function f : A→A, such that f 3 = f ◦ f ◦ f =
f , yet f ◦ f 6= f .

(d) Give an example of a noninvertible function f : A→ A, such that f 3 = f ◦ f ◦
f = f , yet f ◦ f 6= f .

2.12. Prove by induction on n that

n2 ≤ 2n for all n≥ 4.

Hint. You need to show that 2n+1≤ n2 for all n≥ 3.

2.13. Let f : A→ A be a function.
(a) Prove that if

f ◦ f ◦ f = f ◦ f and f 6= idA, (∗)
then f is neither injective nor surjective.

Hint. Proceed by contradiction and use the characterization of injections and surjec-
tions in terms of left and right inverses.

(b) Give a simple example of a function f : {a,b,c} → {a,b,c}, satisfying the
conditions of (∗).

2.14. Consider the sum

3
1 ·4 +

5
4 ·9 + · · ·+ 2n+1

n2 · (n+1)2 ,
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with n≥ 1.
Which of the following expressions is the sum of the above:

(1)
n+2

(n+1)2 (2)
n(n+2)
(n+1)2 .

Justify your answer.
Hint. Note that

n4 +6n3 +12n2 +10n+3 = (n3 +3n2 +3n+1)(n+3).

2.15. Consider the following version of the Fibonacci sequence starting from F0 = 0
and defined by:

F0 = 0
F1 = 1

Fn+2 = Fn+1 +Fn, n≥ 0.

Prove the following identity, for any fixed k ≥ 1 and all n≥ 0,

Fn+k = FkFn+1 +Fk−1Fn.

2.16. Recall that the triangular numbers ∆n are given by the formula

∆n =
n(n+1)

2
,

with n ∈ N.
(a) Prove that

∆n +∆n+1 = (n+1)2

and

∆1 +∆2 +∆3 + · · ·+∆n =
n(n+1)(n+2)

6
.

(b) The numbers

Tn =
n(n+1)(n+2)

6
are called tetrahedral numbers, due to their geometric interpretation as 3-D stacks
of triangular numbers. Prove that

T1 +T2 + · · ·+Tn =
n(n+1)(n+2)(n+3)

24
.

Prove that
Tn +Tn+1 = 12 +22 + · · ·+(n+1)2,

and from this, derive the formula
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12 +22 + · · ·+n2 =
n(n+1)(2n+1)

6
.

(c) The numbers

Pn =
n(n+1)(n+2)(n+3)

24
are called pentatope numbers. The above numbers have a geometric interpretation
in four dimensions as stacks of tetrahedral numbers. Prove that

P1 +P2 + · · ·+Pn =
n(n+1)(n+2)(n+3)(n+4)

120
.

Do you see a pattern? Can you formulate a conjecture and perhaps even prove it?

2.17. Consider the following table containing 11 copies of the triangular number,
∆5 = 1+2+3+4+5:

1 12

1 2 1 22

1 2 3 2 1 32

1 2 3 4 3 2 1 42

1 2 3 4 5 4 3 2 1 52

1 2 3 4 5 5 4 3 2 1
12 2 3 4 5 5 4 3 2 12

22 3 4 5 5 4 3 22

32 4 5 5 4 32

42 5 5 42

52 52

Note that the above array splits into three triangles, one above the solid line
and two below the solid line. Observe that the upward diagonals of the left lower
triangle add up to 12, 22, 32, 42, 52; similarly the downward diagonals of the right
lower triangle add up to 12, 22, 32, 42, 52, and the rows of the triangle above the
solid line add up to 12, 22, 32, 42, 52. Therefore,

3× (12 +22 +32 +42 +52) = 11×∆5.

In general, use a generalization of the above array to prove that

3× (12 +22 +32 + · · ·+n2) = (2n+1)∆n,

which yields the familiar formula:

12 +22 +32 · · ·+n2 =
n(n+1)(2n+1)

6
.

2.18. Consider the following table:
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1 = 13

3+5 = 23

7+9+11 = 33

13+15+17+19 = 43

21+23+25+27+29 = 53

· · · · · · · · · · · · · · · · · · · · ·

(a) If we number the rows starting from n = 1, prove that the leftmost number
on row n is 1+(n− 1)n. Then, prove that the sum of the numbers on row n (the n
consecutive odd numbers beginning with 1+(n−1)n)) is n3.

(b) Use the triangular array in (a) to give a geometric proof of the identity

n

∑
k=1

k3 =

(
n

∑
k=1

k

)2

.

Hint. Recall that
1+3+ · · ·+2n−1 = n2.

2.19. Let f : A→ B be a function and define the function g : B→ 2A by

g(b) = f−1(b) = {a ∈ A | f (a) = b},

for all b ∈ B. (a) Prove that if f is surjective, then g is injective.
(b) If g is injective, can we conclue that f is surjective?

2.20. Let X ,Y,Z be any three nonempty sets and let f : X → Y be any function.
Define the function R f : ZY → ZX (R f , as a reminder that we compose with f on the
right), by

R f (h) = h◦ f ,

for every function h : Y → Z.
Let T be another nonempty set and let g : Y → T be any function.
(a) Prove that

Rg◦ f = R f ◦Rg

and if X = Y and f = idX , then

RidX (h) = h,

for every function h : X → Z.
(b) Use (a) to prove that if f is surjective, then R f is injective and if f is injective,

then R f is surjective.

2.21. Let X ,Y,Z be any three nonempty sets and let g : Y → Z be any function.
Define the function Lg : Y X → ZX (Lg, as a reminder that we compose with g on the
left), by
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Lg( f ) = g◦ f ,

for every function f : X → Y .
(a) Prove that if Y = Z and g = idY , then

LidY ( f ) = f ,

for all f : X → Y .
Let T be another nonempty set and let h : Z→ T be any function. Prove that

Lh◦g = Lh ◦Lg.

(b) Use (a) to prove that if g is injective, then Lg : Y X → ZX is also injective and
if g is surjective, then Lg : Y X → ZX is also surjective.

2.22. Consider the alphabet, Σ = {a,b}. We can enumerate all strings in {a,b}∗
as follows. Say that u precedes v if |u| < |v| and if |u| = |v|, use the lexicographic
(dictionary) order. The enumeration begins with

ε

a, b

aa, ab, ba, bb

aaa, aab, aba, abb, baa, bab, bba, bbb

We would like to define a function, f : {a,b}∗→ N, such that f (u) is the position
of the string u in the above list, starting with f (ε) = 0. For example,

f (baa) = 11.

(a) Prove that if u = u1 · · ·un (with u j ∈ {a,b} and n≥ 1), then

f (u) = i12n−1 + i22n−2 + · · ·+ in−121 + in
= 2n−1+(i1−1)2n−1 +(i2−1)2n−2 + · · ·+(in−1−1)21 + in−1,

with i j = 1 if u j = a, else i j = 2 if u j = b.
(b) Prove that the above function is a bijection f : {a,b}∗→ N.
(c) Consider any alphabet Σ = {a1, . . . ,am}, with m ≥ 2. We can also list all

strings in Σ ∗ as in (a). Prove that the listing function f : Σ ∗→N is given by f (ε) = 0
and if u = ai1 · · ·ain (with ai j ∈ Σ and n≥ 1) by

f (u) = i1mn−1 + i2mn−2 + · · ·+ in−1m1 + in

=
mn−1
m−1

+(i1−1)mn−1 +(i2−1)mn−2 + · · ·+(in−1−1)m1 + in−1,

Prove that the above function f : Σ ∗→ N is a bijection.
(d) Consider any infinite set A and pick two distinct elements, a1,a2, in A. We

would like to define a surjection from AA to 2A by mapping any function f : A→ A
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to its image,
Im f = { f (a) | a ∈ A}.

The problem with the above definition is that the empty set is missed. To fix this
problem, let f0 be the function defined so that f0(a0) = a1 and f0(a) = a0 for all
a ∈ A−{a0}. Then, we define S : AA→ 2A by

S( f ) =
{

/0 if f = f0
Im( f ) if f 6= f0.

Prove that the function S : AA→ 2A is indeed a surjection.
(e) Assume that Σ is an infinite set and consider the set of all finite strings Σ ∗. If

Σ n denotes the set of all strings of length n, observe that

Σ
∗ =

⋃
n≥0

Σ
n.

Prove that there is a bijection between Σ ∗ and Σ .

2.23. Consider the sum

1
1 ·2 +

1
2 ·3 + · · ·+ 1

n · (n+1)
,

with n≥ 1.
Which of the following expressions is the sum of the above:

(1)
1

n+1
(2)

n
n+1

.

Justify your answer.

2.24. Let E,F,G, be any arbitrary sets.
(1) Prove that there is a bijection

EG×FG −→ (E×F)G.

(2) Prove that there is a bijection

(EF)G −→ EF×G.

(3) If F and G are disjoint, then prove that there is a bijection

EF ×EG −→ EF∪G.

2.25. Given any two sets E and F , write E � F iff there is an injection from E to F .
Let E,F,G, be any arbitrary sets.

(1) Prove that if G is disjoint from both E and F and if E �F , then E∪G�F∪G.
(2) Prove that if E � F , then E×G� F×G.
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(3) Prove that if E � F , then EG � FG.
(4) Prove that if E and G are not both empty and if E � F , then GE � GF .
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Chapter 3
Equinumerosity, Countable Sets, The Pigeonhole
Principle, Infinite Sets

3.1 Equinumerosity, Countable Sets, and Cantor’s Theorem

The notion of size of a set is fairly intuitive for finite sets but what does it mean for
infinite sets? How do we give a precise meaning to the questions:

(a) Do X and Y have the same size?
(b) Does X have more elements than Y ?

For finite sets, we can rely on the natural numbers. We count the elements in the
two sets and compare the resulting numbers. If one of the two sets is finite and the
other is infinite, it seems fair to say that the infinite set has more elements than the
finite one.

But what if both sets are infinite?

Remark: A critical reader should object that we have not yet defined what a finite
set is (or what an infinite set is). Indeed, we have not. This can be done in terms
of the natural numbers but, for the time being, we rely on intuition. We should also
point out that when it comes to infinite sets, experience shows that our intuition fails
us miserably. So, we should be very careful.

Let us return to the case where we have two infinite sets. For example, consider
N and the set of even natural numbers, 2N= {0,2,4,6, . . .}. Clearly, the second set
is properly contained in the first. Does that make N bigger? On the other hand, the
function n 7→ 2n is a bijection between the two sets, which seems to indicate that
they have the same number of elements. Similarly, the set of squares of natural num-
bers, Squares = {0,1,4,9,16,25, . . .} is properly contained in N and many natural
numbers are missing from Squares. But, the map n 7→ n2 is a bijection between N
and Squares, which seems to indicate that they have the same number of elements.

A more extreme example is provided by N×N and N. Intuitively, N×N is two-
dimensional and N is one-dimensional, so N seems much smaller than N×N. How-
ever, it is possible to construct bijections between N×N and N (try to find one). In
fact, such a function J has the graph partially shown below:

107
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...
3 6 . . .
↘

2 3 7 . . .
↘ ↘

1 1 4 8 . . .
↘ ↘ ↘

0 0 2 5 9
0 1 2 3 . . .

The function J corresponds to a certain way of enumerating pairs of integers.
Note that the value of m+n is constant along each diagonal, and consequently, we
have

J(m,n) = 1+2+ · · ·+(m+n)+m,

= ((m+n)(m+n+1)+2m)/2,
= ((m+n)2 +3m+n)/2.

For example, J(2,1) = ((2+ 1)2 + 3 · 2+ 1)/2 = (9+ 6+ 1)/2 = 16/2 = 8. The
function

J(m,n) =
1
2
((m+n)2 +3m+n)

is a bijection but that’s not so easy to prove.
Perhaps even more surprising, there are bijections between N and Q. What about

between R×R and R? Again, the answer is yes, but that’s harder to prove.
These examples suggest that the notion of bijection can be used to define rigor-

ously when two sets have the same size. This leads to the concept of equinumerosity.

Definition 3.1. A set A is equinumerous to a set B, written A ≈ B, iff there is a
bijection f : A→ B. We say that A is dominated by B, written A � B, iff there is
an injection from A to B. Finally, we say that A is strictly dominated by B, written
A≺ B, iff A� B and A 6≈ B.

Using the above concepts, we can give a precise definition of finiteness. First,
recall that for any n ∈ N, we defined [n] as the set [n] = {1,2, . . . ,n}, with [0] = /0.

Definition 3.2. A set A is finite if it is equinumerous to a set of the form [n], for
some n ∈ N. A set A is infinite iff it is not finite. We say that A is countable (or
denumerable) iff A is dominated by N; that is, if there is an injection from A to N.

A convenient characterization of countable sets is stated below.

Proposition 3.1. A nonempty set A is countable iff there is a surjection g : N→ A
from N onto A.

Proof. Recall that by definition, A is countable iff there is an injection f : A→ N.
The existence of a surjection g : N→ A follows from Theorem 2.2(a). Conversely,
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if there is a surjection g : N→ A, then by Theorem 2.2(b), there is an injection
f : A→N. However, the proof of Theorem 2.2(b) requires the axiom of choice. It is
possible to avoid the axiom of choice by using the fact that every nonempty subset
of N has a smallest element (see Theorem 5.3). ut

Two pretty results due to Cantor (1873) are given in the next theorem. These are
among the earliest results of set theory. We assume that the reader is familiar with
the fact that every number, x ∈ R, can be expressed in decimal expansion (possibly
infinite). For example,

π = 3.14159265358979 · · ·

Theorem 3.1. (Cantor’s Theorem) (a) The set N is not equinumerous to the set R
of real numbers.

(b) For every set A there is no surjection from A onto 2A. Consequently, no set A
is equinumerous to its power set 2A.

Proof. (a) We use a famous proof method due to Cantor and known as a diagonal
argument. We prove that if we assume there is a bijection f : N→ R, then there is
a real number z not belonging to the image of f , contradicting the surjectivity of f .
Now, if f exists, we can form a bi-infinite array

f (0) = k0.d01d02d03d04 · · · ,
f (1) = k1.d11d12d13d14 · · · ,
f (2) = k2.d21d22d23d24 · · · ,

...
f (n) = kn.dn1dn2 · · ·dnn+1 · · · ,

...

where kn is the integer part of f (n) and the dni are the decimals of f (n), with i≥ 1.
The number

z = 0.d1d2d3 · · ·dn+1 · · ·
is defined so that dn+1 = 1 if dnn+1 6= 1, else dn+1 = 2 if dnn+1 = 1, for every n≥ 0,
The definition of z shows that

dn+1 6= dnn+1, for all n≥ 0,

which implies that z is not in the above array; that is, z /∈ Im f .
(b) The proof is a variant of Russell’s paradox. Assume that there is a surjection,

g : A→ 2A; we construct a set B ⊆ A that is not in the image of g, a contradiction.
Consider the set

B = {a ∈ A | a /∈ g(a)}.
Obviously, B⊆ A. However, for every a ∈ A,
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a ∈ B iff a /∈ g(a),

which shows that B 6= g(a) for all a ∈ A (because, if there was some a ∈ A such
that g(a) = B, then from the above we would have a ∈ B iff a /∈ g(a) iff a /∈ B, a
contradiction); that is, B is not in the image of g. ut

Note that the proof of Part (b) actually shows that for every function g : A→ 2A,
the subset B = {a ∈ A | a /∈ g(a)} is not in the range of g.

As there is an obvious injection of N into R, Theorem 3.1 shows that N is strictly
dominated by R. Also, as we have the injection a 7→ {a} from A into 2A, we see that
every set is strictly dominated by its power set. So, we can form sets as big as we
want by repeatedly using the power set operation.

Remark: In fact, R is equinumerous to 2N; see Problem 3.16.
The following proposition shows an interesting connection between the notion

of power set and certain sets of functions. To state this proposition, we need the
concept of characteristic function of a subset.

Given any set X for any subset A of X , define the characteristic function of A,
denoted χA, as the function χA : X →{0,1} given by

χA(x) =
{1 if x ∈ A

0 if x /∈ A.

In other words, χA tests membership in A. For any x ∈ X , χA(x) = 1 iff x ∈ A.
Observe that we obtain a function χ : 2X → {0,1}X from the power set of X to the
set of characteristic functions from X to {0,1}, given by

χ(A) = χA.

We also have the function, S : {0,1}X → 2X , mapping any characteristic function
to the set that it defines and given by

S ( f ) = {x ∈ X | f (x) = 1},

for every characteristic function, f ∈ {0,1}X .

Proposition 3.2. For any set X the function χ : 2X → {0,1}X from the power set
of X to the set of characteristic functions on X is a bijection whose inverse is
S : {0,1}X → 2X .

Proof. Simply check that χ ◦S = id and S ◦χ = id, which is straightforward. ut

In view of Proposition 3.2, there is a bijection between the power set 2X and the
set of functions in {0,1}X . If we write 2 = {0,1}, then we see that the two sets look
the same. This is the reason why the notation 2X is often used for the power set (but
others prefer P(X)).

There are many other interesting results about equinumerosity. We only mention
four more, all very important. The first one is the pigeonhole principle.
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3.2 The Pigeonhole Principle

Recall that [n] = {1,2, . . . ,n}, for any n ∈ N.

Theorem 3.2. (Pigeonhole Principle) No set of the form [n] is equinumerous to a
proper subset of itself, where n ∈ N.

Proof. Although the pigeonhole principle seems obvious, the proof is not. In fact,
the proof requires induction. We advise the reader to skip this proof and come back
to it later after we have given more examples of proof by induction.

Suppose we can prove the following claim.
Claim. Whenever a function f : [n]→ [n] is an injection, then it is a surjection

onto [n] (and thus, a bijection).
Observe that the above claim implies the pigeonhole principle. This is proved by

contradiction. So assume there is a function f : [n]→ [n], such that f is injective and
Im f =A⊆ [n] with A 6= [n]; that is, f is a bijection between [n] and A, a proper subset
of [n]. Because f : [n]→ [n] is injective, by the claim, we deduce that f : [n]→ [n]
is surjective, that is, Im f = [n], contradicting the fact that Im f = A 6= [n].

It remains to prove by induction on n ∈N that if f : [n]→ [n] is an injection, then
it is a surjection (and thus, a bijection). For n = 0, f must be the empty function,
which is a bijection.

Assume that the induction hypothesis holds for any n ≥ 0 and consider any in-
jection, f : [n+1]→ [n+1]. Observe that the restriction of f to [n] is injective.

Case 1. The subset [n] is closed under f ; that is, f ([n]) ⊆ [n]. Then we know
that f � [n] is injective and by the induction hypothesis, f ([n]) = [n]. Because f is
injective, we must have f (n+1) = n+1. Hence, f is surjective, as claimed.

Case 2. The subset [n] is not closed under f ; that is, there is some p≤ n such that
f (p) = n+ 1. Since p ≤ n and f is injective, f (n+ 1) 6= n+ 1, so f (n+ 1) ∈ [n].
We can create a new injection f̂ from [n+1] to itself with the same image as f by
interchanging two values of f so that [n] is closed under f̂ . Define f̂ by

f̂ (p) = f (n+1)

f̂ (n+1) = f (p) = n+1

f̂ (i) = f (i), 1≤ i≤ n, i 6= p.

Then f̂ is an injection from [n+1] to itself and [n] is closed under f̂ . By Case 1, f̂
is surjective, and as Im f = Im f̂ , we conclude that f is also surjective. ut

Theorem 3.3. (Pigeonhole Principle for Finite Sets) No finite set is equinumerous
to a proper subset of itself.

Proof. To say that a set A is finite is to say that there is a bijection g : A→ [n] for
some n∈N. Assume that there is a bijection f between A and some proper subset of
A. Then, consider the function g◦ f ◦g−1, from [n] to itself, as shown in the diagram
below:



112 3 Equinumerosity, Countable Sets, The Pigeonhole Principle, Infinite Sets

A

f

��

[n]
g−1
oo

g◦ f◦g−1

��
A g

// [n]

Since by hypothesis f is a bijection onto some proper subset of A, there is some
b ∈ A such that b /∈ f (A). Let p = g(b) ∈ [n]. We claim that p /∈ (g◦ f ◦g−1)([n]).

Otherwise, there would be some i ∈ [n] such that

(g◦ f ◦g−1)(i) = p = g(b),

and since g is invertible, we would have

f (g−1(i)) = b,

showing that b ∈ f (A), a contradiction. Therefore, g ◦ f ◦ g−1 is a bijection of [n]
onto a proper subset of itself, contradicting Theorem 3.2. ut

The pigeonhole principle is often used in the following way. If we have m distinct
slots and n > m distinct objects (the pigeons), then when we put all n objects into
the m slots, two objects must end up in the same slot. Figure 3.1 shows some not so
friendly pigeons.

Fig. 3.1 Pigeons in holes.

This fact was apparently first stated explicitly by Dirichlet in 1834. As such, it is
also known as Dirichlet’s box principle.
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Fig. 3.2 Johan Peter Gutav Lejeune Dirichlet, 1805–1859.

Here is a simple illustration of the pigeonhole principle.

Example 3.1. We claim that if we pick any six distinct integers from the set

S = [11] = {1,2, . . . ,11},

then at least two of these integers add up to 12.
The reason is that there are 5 distinct 2-element subsets of S that add up to 12,

namely
{1,11}, {2,10}, {3,9}, {4,8}, {5,7},

but we pick a subset of 6 elements; here, the boxes are the five subsets listed above,
and the pigeons are the 6 distinct integers in S that we choose. By the pigeonhole
principle, two of these six numbers, say a,b, must be in the same box, which means
that

a+b = 12,

as claimed.

Example 3.2. Here is another application of the pigeonhole principle to the interest-
ing coin problem. In its simplest form, the coin problem is this: what is the largest
positive amount of money that cannot be obtained using two coins of specified dis-
tinct denominations? For example, using coins of 2 units and 3 units, it is easy so
see that every amount greater than or equal to 2 can be obtained, but 1 cannot be
obtained. Using coins of 2 units and 5 units, every amount greater than or equal to 4
units can be obtained, but 1 or 3 units cannot, so the largest unobtainable amount is
3. What about using coins of 7 and 10 units? We need to figure out which positive
integers n are of the form

n = 7h+10k, with h,k ∈ N.

It turns out that every amount greater than or equal to 54 can be obtained, and 53 is
the largest amount that cannot be achieved.

In general, we have the following result.

Theorem 3.4. Let p,q be any two positive integers such that 2≤ p < q, and assume
that p and q are relatively prime. Then for any integer n≥ (p−1)(q−1), there exist
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some natural numbers h,k ∈ N such that

n = hp+ kq.

Furthermore, the largest integer not expressible in the above form is pq− p− q =
(p−1)(q−1)−1.

Let us prove the first part of the theorem for all integers n such that n≥ pq.

Proof. For this, consider the sequence

n, n−q, n−2q, . . . , n− (p−1)q.

We claim that some integer in this sequence is divisible by p.
Observe that every number n− iq is nonnegative, so divide each n− iq by p,

obtaining the following sequence

r0,r1, . . . ,rp−1

of p remainders, with

n− iq = mi p+ ri, 0≤ ri ≤ p−1, mi ≥ 0,

for i = 0, . . . , p−1. The above is a sequence of p integers ri such that 0≤ ri ≤ p−1,
so by the pigeonhole principle, if the ri are not all distinct, then two of them are
identical. Assume that ri = r j, with 0≤ i < j ≤ p−1. Then,

n− iq = mi p+ ri

n− jq = m j p+ r j

with ri = r j, so by subtraction we get

( j− i)q = (mi−m j)p.

Thus, p divides ( j− i)q, and since p and q are relatively prime, by Euclid’s lemma
(see Proposition 7.4), p should divide j− i. But, 0 < j− i < p, a contradiction.
Therefore, our remainders comprise all distinct p integers between 0 and p− 1,
so one of them must be equal to 0, which proves that some number n− iq in the
sequence is divisible by p. This shows that

n− iq = mi p,

so
n = mi p+ iq,

with i,mi ≥ 0, as desired.
Observe that the above proof also works if n≥ (p−1)q. Thus, to prove the first

part of Theorem 3.4, it remains to consider the case where n ≥ (p−1)(q−1). For
this, we consider the sequence
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n+q,n, n−q, n−2q, . . . , n− (p−2)q.

We leave it as an exercise to prove that one of these integers is divisible by p, with
a large enough quotient (see Problem 3.5).

It remains to show that pq− p− q cannot be expressed as hp + kq for some
h,k ∈ N. If we had

pq− p−q = hp+ kq,

with h,k ≥ 0, then we would have 0≤ h≤ q−1, 0≤ k ≤ p−1, and

p(q−h−1) = (k+1)q,

and since p and q are relatively prime, by Euclid’s lemma q would divide q−h−1,
which is impossible since 0≤ h < q. ut

The number pq− p− q, usually denoted by g(p,q), is known as the Frobenius
number of the set {p,q}, after Ferdinand Frobenius (1849–1917) who first investi-
gated this problem. Theorem 3.4 was proven by James Sylvester in 1884.

Fig. 3.3 Ferdinand Georg Frobenius, 1849–1917.

The coin problem can be generalized to any k≥ 3 coins p1 < p2 < · · ·< pk with
gcd(p1, . . . , pk) = 1. It can be shown that every integer n≥ (p1−1)(pk−1) can be
expressed as

n = h1 p1 +h2 p2 + · · ·+hk pk,

with hi ∈ N for i = 1, . . . ,k. This was proven by I. Schur in 1935, but not published
until 1942 by A. Brauer. In general, the largest integer g(p1, . . . , pk), not express-
ible in the above form, also called the Frobenius number of {p1, . . . , pk}, can be
strictly smaller than p1 pk− p1− pk. In fact, for k ≥ 3 coins, no explicit formula for
g(p1, . . . , pk) is known! For k = 3, there is a quadratic-time algoritm, but in general,
it can be shown that computing the Frobenius number is hard (NP-hard).

As amusing version of the problem is the McNuggets number problem. McDon-
ald’s sells boxes of chicken McNuggets in boxes of 6,9 and 20 nuggets. What is the
largest number of chicken McNuggets that can’t be purchased? It turns out to be 43
nuggets!
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Let us give another application of the pigeonhole principle involving sequences
of integers.

Example 3.3. Given a finite sequence S of integers a1, . . . ,an, a subsequence of S
is a sequence b1, . . . ,bm, obtained by deleting elements from the original sequence
and keeping the remaining elements in the same order as they originally appeared.
More precisely, b1, . . . ,bm is a subsequence of a1, . . . ,an if there is an injection
g : {1, . . . ,m}→{1, . . . ,n} such that bi = ag(i) for all i∈ {1, . . . ,m} and i≤ j implies
g(i)≤ g( j) for all i, j ∈ {1, . . . ,m}. For example, the sequence

1 9 10 8 3 7 5 2 6 4

contains the subsequence
9 8 6 4.

An increasing subsequence is a subsequence whose elements are in strictly increas-
ing order and a decreasing subsequence is a subsequence whose elements are in
strictly decreasing order. For example, 9 8 6 4 is a decreasing subsequence of our
original sequence.

We now prove the following beautiful result due to Erdös and Szekeres.

Theorem 3.5. (Erdös and Szekeres) Let n be any nonzero natural number. Every se-
quence of n2+1 pairwise distinct natural numbers must contain either an increasing
subsequence or a decreasing subsequence of length n+1.

Proof. The proof proceeds by contradiction. So, assume there is a sequence S of n2+
1 pairwise distinct natural numbers so that all increasing or decreasing subsequences
of S have length at most n. We assign to every element s of the sequence S a pair of
natural numbers (us,ds), called a label, where us, is the length of a longest increasing
subsequence of S that starts at s and where ds is the length of a longest decreasing
subsequence of S that starts at s.

There are no increasing or descreasing subsequences of length n+ 1 in S, thus
observe that 1≤ us,ds ≤ n for all s ∈ S. Therefore,

Claim 1: There are at most n2 distinct labels (us,ds), where s∈ S. This is because
there are at most n distinct us and ds.

We also assert the following.
Claim 2: If s and t are any two distinct elements of S, then (us,ds) 6= (ut ,dt).
To prove Claim 2 we may assume that s precedes t in S because otherwise we

interchange s and t in the following argument. Inasmuch as s 6= t, there are two
cases:

(a) s < t. In this case, we know that there is an increasing subsequence of length ut
starting with t. If we insert s in front of this subsequence, we get an increasing
subsequence of ut + 1 elements starting at s. Then, as us is the maximal length
of all increasing subsequences starting with s, we must have ut +1≤ us; that is,

us > ut ,

which implies (us,ds) 6= (ut ,dt).
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(b) s > t. This case is similar to case (a), except that we consider a decreasing sub-
sequence of length dt starting with t. We conclude that

ds > dt ,

which implies (us,ds) 6= (ut ,dt).

Therefore, in all cases, we proved that s and t have distinct labels.
Now, by Claim 1, there are only n2 distinct labels and S has n2+1 elements so, by

the pigeonhole principle, two elements of S must have the same label. But, this con-
tradicts Claim 2, which says that distinct elements of S have distinct labels. There-
fore, S must have either an increasing subsequence or a decreasing subsequence of
length n+1, as originally claimed. ut

Remark: Note that this proof is not constructive in the sense that it does not pro-
duce the desired subsequence; it merely asserts that such a sequence exists.

The following generalization of the pigeonhole principle is sometimes useful.
The proof is left as an easy exercise.

Proposition 3.3. (Generalized Pigeonhole Principle) Let X and Y be two finite sets
and k be a positive integer. If |X | > k|Y |, then for every function f : X → Y , there
exists at least k+1 distinct element of X that are mapped by f to the same element
of Y .

Here is an application of the generalized pigeonhole principle.

Example 3.4. How large should a group of people be to guarantee that three mem-
bers of the group have the same initials (first, middle, last)?

Since we implicitly assumed that our alphabet is the standard one with 26 letters
A, B, ..., Z, there are 263 possible triples of initials. In this problem, k = 2 (so
that k + 1 = 3), and if the number of people is p, by the generalized pigeonhole
principle, if p > 2×263, then three people will have the same initials, so we if pick
2×263+1= 35,153 people, we are certain that three of them have the same initials.

3.3 Finite and Infinite Sets; The Schröder–Bernstein Theorem

Let A be a finite set. Then, by definition, there is a bijection f : A→ [n] for some
n ∈ N.

Proposition 3.4. For every finite set A, there is a unique n such that there is a bijec-
tion f : A→ [n].

Proof. Otherwise, there would be another bijection g : A→ [p] for some p∈N with
n 6= p. But now, we would have a bijection g◦ f−1 between [n] and [p] with n 6= p.
This would imply that there is either an injection from [n] to a proper subset of itself
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or an injection from [p] to a proper subset of itself,1 contradicting the pigeonhole
principle.

Definition 3.3. If A is a finite set, the unique natural number n ∈N such that A≈ [n]
is called the cardinality of A and we write |A|= n (or sometimes, card(A) = n).

Remark: The notion of cardinality also makes sense for infinite sets. What happens
is that every set is equinumerous to a special kind of set (an initial ordinal) called a
cardinal (or cardinal number). Let us simply mention that the cardinal number of
N is denoted ℵ0 (say “aleph” 0). A naive way to define the cardinality of a set X
would be to define it as the equivalence class {Y | Y ≈ X} of all sets equinumerous
to X . However, this does not work because the collection of sets Y such that Y ≈ X ,
is not a set! In order to avoid this logical difficulty, one has to define the notion of
a cardinal in a more subtle manner. One way to proceed is to first define ordinals,
certain kinds of well-ordered sets. Then, assuming the axiom of choice, every set
X is equinumerous to some ordinal, and the cardinal |X | of the set X is defined as
the least ordinal equinumerous to X (an initial ordinal). The theory of ordinals and
cardinals is thoroughly developed in Enderton [1] and Suppes [2] but it is beyond
the scope of this book.

Proposition 3.5. (a) Any set equinumerous to a proper subset of itself is infinite.
(b) The set N is infinite.

Proof. (a) Say A is equinumerous to a proper subset of itself. Were A finite, then this
would contradict the pigeonhole principle for finite sets (Theorem 3.3), so A must
be infinite.

(b The map n 7→ 2n from N to its proper subset of even numbers is a bijection.
By (a), the set N is infinite. ut

The image of a finite set by a function is also a finite set. In order to prove
this important property we need the next two propositions. The first of these two
propositions may appear trivial but again, a rigorous proof requires induction.

Proposition 3.6. Let n be any positive natural number, let A be any nonempty set,
and pick any element a0 ∈ A. Then there exists a bijection f : A→ [n+ 1] iff there
exists a bijection g : (A−{a0})→ [n].

Proof. We proceed by induction on n ≥ 1. The proof of the induction step is very
similar to the proof of the induction step in Theorem 3.2. The details of the proof
are left as an exercise to the reader. ut

1 Recall that n+ 1 = {0,1, . . . ,n} = [n]∪{0}. Here in our argument, we are using the fact that
for any two natural numbers n, p, either n ⊆ p or p ⊆ n. This fact is indeed true but requires a
proof. The proof uses induction and some special properties of the natural numbers implied by the
definition of a natural number as a set that belongs to every inductive set. For details, see Enderton
[1], Chapter 4.
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Proposition 3.7. For any function f : A→ B if f is surjective and if A is a finite
nonempty set, then B is also a finite set and there is an injection h : B→ A such that
f ◦h = idB. Moreover, |B| ≤ |A|.

Proof. The existence of an injection h : B→ A, such that f ◦h = idB, follows imme-
diately from Theorem 2.2 (b), but the proof uses the axiom of choice, which seems
a bit of an overkill. However, we can give an alternate proof avoiding the use of the
axiom of choice by proceeding by induction on the cardinality of A.

If A has a single element, say a, because f is surjective, B is the one-element set
(obviously finite), B = { f (a)}, and the function, h : B→ A, given by g( f (a)) = a is
obviously a bijection such that f ◦h = idB.

For the induction step, assume that A has n+1 elements. If f is a bijection, then
h = f−1 does the job and B is a finite set with n+1 elements.

If f is surjective but not injective, then there exist two distinct elements, a′,a′′ ∈
A, such that f (a′)= f (a′′). If we let A′=A−{a′′} then, by Proposition 3.6, the set A′

has n elements and the restriction f ′ of f to A′ is surjective because for every b ∈ B,
if b 6= f (a′), then by the surjectivity of f there is some a ∈ A−{a′,a′′} such that
f ′(a) = f (a) = b, and if b = f (a′), then f ′(a′) = f (a′). By the induction hypothesis,
B is a finite set and there is an injection h′ : B→ A′ such that f ′ ◦h′ = idB. However,
our injection h′ : B→ A′ can be viewed as an injection h : B→ A, which satisfies the
identity f ◦h = idB, and this concludes the induction step.

Inasmuch as we have an injection h : B→ A and A and B are finite sets, as every
finite set has a uniquely defined cardinality, we deduce that |B| ≤ |A|. ut

Corollary 3.1. For any function f : A→ B, if A is a finite set, then the image f (A)
of f is also finite and | f (A)| ≤ |A|.

Proof. Any function f : A→ B is surjective on its image f (A), so the result is an
immediate consequence of Proposition 3.7. ut

Corollary 3.2. For any two sets A and B, if B is a finite set of cardinality n and is A
is a proper subset of B, then A is also finite and A has cardinality m < n.

Proof. Corollary 3.2 can be proved by induction on n using Proposition 3.6. Another
proof goes as follows: because A ⊆ B, the inclusion function j : A→ B given by
j(a) = a for all a ∈ A, is obviously an injection. By Theorem 2.2(a), there is a
surjection, g : B→ A. Because B is finite, by Proposition 3.7, the set A is also finite
and because there is an injection j : A→ B, we have m = |A| ≤ |B| = n. However,
inasmuch as B is a proper subset of A, by the pigeonhole principle, we must have
m 6= n, that is, m < n. ut

If A is an infinite set, then the image f (A) is not finite in general but we still have
the following fact.

Proposition 3.8. For any function f : A→ B we have f (A)� A; that is, there is an
injection from the image of f to A.
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Proof. Any function f : A→ B is surjective on its image f (A). By Theorem 2.2(b),
there is an injection h : f (A)→ A, such that f ◦h = id f (A), which means that f (A)�
A. ut

Here are two more important facts that follow from the pigeonhole principle for
finite sets and Proposition 3.7.

Proposition 3.9. Let A be any finite set. For any function f : A→ A the following
properties hold.

(a) If f is injective, then f is a bijection.
(b) If f is surjective, then f is a bijection.

Proof. (a) If f is injective but not surjective, then f (A) is a proper subset of A so
f is a bijection from a finite set onto a proper subset of itself, contradicting the
pigeonhole principle for finite sets (Theorem 3.3). Therefore, f is surjective.

(b) If f : A→ A is surjective, then by Proposition 3.7 there is an injection h : A→
A such that f ◦h = id. Since h is injective and A is finite, by part (a), h is surjective.
Pick any two elements a1,a2 ∈ A, by surjectivity of h, there exists some b1,b2 ∈ A
such that a1 = h(b1) and a2 = h(b2). Since f ◦h = id, we have

f (a1) = f (h(b1)) = b1

f (a2) = f (h(b2)) = b2,

so if f (a1) = f (a2), that is, b1 = b2, then

a1 = h(b1) = h(b2) = a2,

which proves that f is injective. ut

Proposition 3.9 only holds for finite sets. Indeed, just after the remarks following
Definition 2.8 we gave examples of functions defined on an infinite set for which
Proposition 3.9 fails.

We now state four main theorems of set theory. The first theorem is an important
fact about infinite sets.

Theorem 3.6. For every infinite set A, there is an injection from N into A.

Proof. The proof of Theorem 3.6 is actually quite tricky. It requires a version of the
axiom of choice and a subtle use of the recursion theorem (Theorem 2.1). Let us
give a sketch of the proof.

The version of the axiom of choice that we need says that for every nonempty set
A, there is a function F (a choice function) such that the domain of F is 2A−{ /0}
(all nonempty subsets of A) and such that F(B) ∈ B for every nonempty subset B of
A.

We use the recursion theorem to define a function h from N to the set of finite
subsets of A. The function h is defined by
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h(0) = /0
h(n+1) = h(n)∪{F(A−h(n))}.

Because A is infinite and h(n) is finite, A−h(n) is nonempty and we use F to pick
some element in A− h(n), which we then add to the set h(n), creating a new finite
set h(n+1). Now, we define g : N→ A by

g(n) = F(A−h(n))

for all n ∈ N. Because h(n) is finite and A is infinite, g is well defined. It remains to
check that g is an injection. For this, we observe that g(n) /∈ h(n) because
F(A−h(n)) ∈ A−h(n); the details are left as an exercise. ut

The intuitive content of Theorem 3.6 is that N is the “smallest” infinite set.
An immediate consequence of Theorem 3.6 is that every infinite subset of N is

equinumerous to N.
Here is a characterization of infinite sets originally proposed by Dedekind in

1888.

Proposition 3.10. A set A is infinite iff it is equinumerous to a proper subset of itself.

Proof. If A is equinumerous to a proper subset of itself, then it must be infinite
because otherwise the pigeonhole principle would be contradicted.

Conversely, assume A is infinite. By Theorem 3.6, there is an injection f : N→A.
Define the function g : A→ A as follows.

g( f (n)) = f (n+1) if n ∈ N
g(a) = a if a /∈ Im( f ).

It is easy to check that g is a bijection of A onto A−{ f (0)}, a proper subset of A.
ut

Our second theorem is the historically famous Schröder–Bernstein theorem,
sometimes called the “Cantor–Bernstein theorem.” Cantor proved the theorem in
1897 but his proof used a principle equivalent to the axiom of choice. Schröder
announced the theorem in an 1896 abstract. His proof, published in 1898, had prob-
lems and he published a correction in 1911. The first fully satisfactory proof was
given by Felix Bernstein and was published in 1898 in a book by Emile Borel. A
shorter proof was given later by Tarski (1955) as a consequence of his fixed point
theorem. We postpone giving this proof until the section on lattices (see Section
5.2).

Theorem 3.7. (Schröder–Bernstein Theorem) Given any two sets A and B, if there
is an injection from A to B and an injection from B to A, then there is a bijection
between A and B. Equivalently, if A� B and B� A, then A≈ B.
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Fig. 3.4 Georg Cantor, 1845–1918 (left), Ernst Schröder, 1841–1902 (middle left), Felix Bern-
stein, 1878–1956 (middle right) and Emile Borel, 1871–1956 (right).

The Schröder–Bernstein theorem is quite a remarkable result and it is a main
tool to develop cardinal arithmetic, a subject beyond the scope of this course. Note
that Theorem 3.6 and Theorem 3.7 imply that an infinite set is countable iff it is
equinumerous to N.

Our third theorem is perhaps the one that is the more surprising from an intuitive
point of view. If nothing else, it shows that our intuition about infinity is rather poor.

Theorem 3.8. If A is any infinite set, then A×A is equinumerous to A.

Proof. The proof is more involved than any of the proofs given so far and it makes
use of the axiom of choice in the form known as Zorn’s lemma (see Theorem 5.1).
For these reasons, we omit the proof and instead refer the reader to Enderton [1]
(Chapter 6). ut

Fig. 3.5 Max August Zorn, 1906–1993.

In particular, Theorem 3.8 implies that R×R is in bijection with R. But, geo-
metrically, R×R is a plane and R is a line and, intuitively, it is surprising that a
plane and a line would have “the same number of points.” Nevertheless, that’s what
mathematics tells us.

Remark: It is possible to give a bijection between R×R and R without using
Theorem 3.8; see Problem 3.17.

Our fourth theorem also plays an important role in the theory of cardinal num-
bers.
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Theorem 3.9. (Cardinal Comparability) Given any two sets, A and B, either there
is an injection from A to B or there is an injection from B to A (i.e., either A� B or
B� A).

Proof. The proof requires the axiom of choice in a form known as the well-ordering
theorem, which is also equivalent to Zorn’s lemma. For details, see Enderton [1]
(Chapters 6 and 7). ut

Theorem 3.8 implies that there is a bijection between the closed line segment

[0,1] = {x ∈ R | 0≤ x≤ 1}

and the closed unit square

[0,1]× [0,1] = {(x,y) ∈ R2 | 0≤ x,y≤ 1}.

In Section 2.10 we defined a surjection from [0,1] onto [0,1]× [0,1] (Hilbert’s
curve).

Before we close this chapter, we illustrate how the notion of function can be used
indexed families, and multisets, rigorously.

3.4 Indexed Families

The Cartesian product construct, A1×A2×·· ·×An, allows us to form finite indexed
sequences, 〈a1, . . . ,an〉, but there are situations where we need to have infinite in-
dexed sequences. Typically, we want to be able to consider families of elements
indexed by some index set of our choice, say I. We can do this as follows.

Definition 3.4. Given any set X and any other set I, called the index set, the set
of I-indexed families (or sequences) of elements from X is the set of all functions
A : I→ X . Since a function A : I→ X is determined by its graph

{(i,A(i)) | i ∈ I},

the i-indexed family A can be viewed as the set of pairs {(i,A(i)) | i ∈ I}. For nota-
tional simplicity, we write Ai instead of A(i), and denote the family {(i,A(i)) | i∈ I}
by (Ai)i∈I . When X is a set of sets, each Ai is some set in X and we call (Ai)i∈I a
family of sets (indexed by I).

For example, if I = {r,g,b,y} and X = N, the set of pairs

A = {(r,2),(g,3),(b,2),(g,11)}

is an indexed family. The element 2 appears twice with the two distinct tags r and b.
Observe that if I = [n] = {1, . . . ,n}, then an I-indexed family is just a string over

X . When I = N, an N-indexed family is called an infinite sequence or often just a
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sequence. In this case, we usually write (xn) for such a sequence ((xn)n∈N, if we
want to be more precise). Also, note that although the notion of indexed family may
seem less general than the notion of arbitrary collection of sets, this is an illusion.
Indeed, given any collection of sets X , we may choose the index set I to be X itself,
in which case X appears as the range of the identity function, id : X → X .

The point of indexed families is that the operations of union and intersection can
be generalized in an interesting way. We can also form infinite Cartesian products,
which are very useful in algebra and geometry.

Given any indexed family of sets (Ai)i∈I , the union of the family (Ai)i∈I , denoted⋃
i∈I Ai, is simply the union of the range of A; that is,⋃

i∈I

Ai =
⋃

range(A) = {a | (∃i ∈ I), a ∈ Ai}.

Observe that when I = /0, the union of the family is the empty set. When I 6= /0, we
say that we have a nonempty family (even though some of the Ai may be empty).

Similarly, if I 6= /0, then the intersection of the family (Ai)i∈I , denoted
⋂

i∈I Ai, is
simply the intersection of the range of A; that is,⋂

i∈I

Ai =
⋂

range(A) = {a | (∀i ∈ I), a ∈ Ai}.

Unlike the situation for union, when I = /0, the intersection of the family does not
exist. It would be the set of all sets, which does not exist.

It is easy to see that the laws for union, intersection, and complementation gen-
eralize to families but we leave this to the exercises.

An important construct generalizing the notion of finite Cartesian product is the
product of families.

Definition 3.5. Given any family of sets (Ai)i∈I , the product of the family (Ai)i∈I ,
denoted ∏i∈I Ai, is the set

∏
i∈I

Ai = {a : I→
⋃
i∈I

Ai | (∀i ∈ I), a(i) ∈ Ai}.

Definition 3.5 says that the elements of the product ∏i∈I Ai are the functions
a : I→⋃

i∈I Ai, such that a(i)∈ Ai for every i∈ I. We denote the members of ∏i∈I Ai
by (ai)i∈I and we usually call them I-tuples. When I = {1, . . . ,n}= [n], the members
of ∏i∈[n] Ai are the functions whose graph consists of the sets of pairs

{〈1,a1〉,〈2,a2〉, . . . ,〈n,an〉}, ai ∈ Ai, 1≤ i≤ n,

and we see that the function

{〈1,a1〉,〈2,a2〉, . . . ,〈n,an〉} 7→ 〈a1, . . . ,an〉

yields a bijection between ∏i∈[n] Ai and the Cartesian product A1×·· ·×An. Thus, if
each Ai is nonempty, the product ∏i∈[n] Ai is nonempty. But what if I is infinite?
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If I is infinite, we smell choice functions. That is, an element of ∏i∈I Ai is ob-
tained by choosing for every i ∈ I some ai ∈ Ai. Indeed, the axiom of choice is
needed to ensure that ∏i∈I Ai 6= /0 if Ai 6= /0 for all i ∈ I. For the record, we state this
version (among many) of the axiom of choice.

Axiom of Choice (Product Version)
For any family of sets, (Ai)i∈I , if I 6= /0 and Ai 6= /0 for all i ∈ I, then ∏i∈I Ai 6= /0.

Given the product of a family of sets, ∏i∈I Ai, for each i∈ I, we have the function
pri : ∏i∈I Ai→ Ai, called the ith projection function, defined by

pri((ai)i∈I) = ai.

We now consider multisets.

3.5 Multisets

Among other things multisets are useful to define the axioms of propositional logic;
see Section 11.2. As for sets, in a multiset, the order of elements does not matter,
but as in strings, multiple occurrences of elements matter. For example,

{a,a,b,c,c,c}

is a multiset with two occurrences of a, one occurrence of b, and three occurrences
of c. This suggests defining a multiset as a function with range N, to specify the
multiplicity of each element.

Definition 3.6. Given any set S, a multiset M over S is any function M : S→ N.
A finite multiset M over S is any function M : S→ N such that M(a) 6= 0 only for
finitely many a ∈ S. If M(a) = k > 0, we say that a appears with mutiplicity k in M.

Remark: A multiset M over S is an S-indexed family of N.
For example, if S = {a,b,c}, we may use the notation {a,a,a,b,c,c} for the

multiset where a has multiplicity 3, b has multiplicity 1, and c has multiplicity 2.
The empty multiset is the function having the constant value 0. The cardinality

|M| of a (finite) multiset is the number

|M|= ∑
a∈S

M(a).

Note that this is well defined because M(a) = 0 for all but finitely many a ∈ S. For
example,

|{a,a,a,b,c,c}|= 6.

We can define the union of multisets as follows. If M1 and M2 are two multisets,
then M1∪M2 is the multiset given by
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(M1∪M2)(a) = M1(a)+M2(a), for all a ∈ S.

For example, if

M2{a,a,a,b,c,c,c,d}, M2 = {a,c,c,d},

then
M1∪M2 = {a,a,a,a,b,c,c,c,c,c,d,d}.

A multiset M1 is a submultiset of a multiset M2, written M1 ⊆ M2, if M1(a) ≤
M2(a) for all a ∈ S. For example,

{a,a,c,d,d} ⊆ {a,a,a,b,c,d,d,d}.

The difference of M1 and M2 is the multiset M1−M2 given by

(M1−M2)(a) =
{

M1(a)−M2(a) if M1(a)≥M2(a)
0 if M1(a)< M2(a).

For example, if

M2{a,a,a,b,c,c,c,d}, M2 = {a,c,c,d},

then
M1−M2 = {a,a,b,c}.

Intersection of multisets can also be defined but we leave this as an exercise.

3.6 Summary

This chapter deals with the concepts of finite, infinite, and countable sets, and
presents a rigorous approach to compare the “size” of infinite sets. In particular,
we prove that the power set 2A of any set A is always “strictly bigger” than A itself
(Cantor’s theorem).

• We define when two sets are equinumerous or when a set A dominates a set B.
• We give a bijection between N×N and N.
• We define when a set is finite or infinite.
• We prove that N is not equinumerous to R (the real numbers), a result due to

Cantor, and that there is no surjection from A to 2A.
• We define the characteristic function χA of a subset A.
• We state and prove the pigeonhole principle.
• As an illustration of the pigeonhole principle, we discuss the coin problem of

Frobenius and define the Frobenius number.
• We also present a theorem of Erdös and Szekeres about increasing or decreasing

subsequences.
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• We state the generalized pigeonhole principle.
• The set of natural numbers N is infinite.
• Every finite set A is equinumerous with a unique set [n] = {1, . . . ,n} and the

integer n is called the cardinality of A and is denoted |A|.
• If A is a finite set, then for every function f : A→ B, the image f (A) of f is

finite and | f (A)| ≤ |A|.
• Any subset A of a finite set B is also finite and |A| ≤ |B|.
• If A is a finite set, then every injection f : A→ A is a bijection and every surjec-

tion f : A→ A is a bijection.
• A set A is countable iff there is a surjection from N onto A.
• For every infinite set A there is an injection from N into A.
• A set A is infinite iff it is equinumerous to a proper subset of itself.
• We state the Schröder–Bernstein theorem.
• We state that every infinite set A is equinumerous to A×A.
• We state the cardinal comparability theorem.
• We mention Zorn’s lemma, one of the many versions of the axiom of choice.
• We define the product of a family of sets and explain how the non-emptyness of

such a product is equivalent to the axiom of choice.
• We define multisets.

Problems

3.1. Prove that the set of natural numbers N is infinite. (Recall, a set X is finite iff
there is a bijection from X to [n] = {1, . . . ,n}, where n ∈N is a natural number with
[0] = /0. Thus, a set X is infinite iff there is no bijection from X to any [n], with
n ∈ N.)

3.2. Let [0,1] and (0,1) denote the set of real numbers

[0,1] = {x ∈ R | 0≤ x≤ 1}
(0,1) = {x ∈ R | 0 < x < 1}.

(a) Give a bijection f : [0,1]→ (0,1).

Hint. There are such functions that are the identity almost everywhere but for a
countably infinite set of points in [0,1].

(b) Consider the open square (0,1)× (0,1) and the closed square [0,1]× [0,1].
Give a bijection f : [0,1]× [0,1]→ (0,1)× (0,1).

3.3. Consider the function, J : N×N→ N, given by

J(m,n) =
1
2
[(m+n)2 +3m+n].

(a) Prove that for any z ∈ N, if J(m,n) = z, then
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8z+1 = (2m+2n+1)2 +8m.

Deduce from the above that

2m+2n+1≤
√

8z+1 < 2m+2n+3.

(b) If x 7→ bxc is the function from R to N (the floor function), where bxc is the
largest integer ≤ x (e.g., b2.3c= 2, b

√
2c= 1), prove that

b
√

8z+1c+1 = 2m+2n+2 or b
√

8z+1c+1 = 2m+2n+3,

so that
b(b
√

8z+1c+1)/2c= m+n+1.

(c) Because J(m,n) = z means that

2z = (m+n)2 +3m+n,

prove that m and n are solutions of the system

m+n = b(b
√

8z+1c+1)/2c−1

3m+n = 2z− (b(b
√

8z+1c+1)/2c−1)2.

If we let

Q1(z) = b(b
√

8z+1c+1)/2c−1

Q2(z) = 2z− (b(b
√

8z+1c+1)/2c−1)2 = 2z− (Q1(z))2,

prove that Q2(z)−Q1(z) is an even number and that

m =
1
2
(Q2(z)−Q1(z)) = K(z)

n = Q1(z)−
1
2
(Q2(z)−Q1(z)) = L(z).

Conclude that J is an injection between N×N and N, with

m = K(J(m,n))

n = L(J(m,n)).

To prove surjectivity, for every z ∈ N, let r ∈ N be the largest number such that

1+2+ · · ·+ r ≤ z.

If we let
x = z− (1+2+ · · ·+ r),

then prove that x≤ r. Let y = r− x≥ 0. Prove that
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z = J(x,y).

Prove that J(K(z),L(z)) = z.

3.4. (i) In 3-dimensional space R3 the sphere S2 is the set of points of coordinates
(x,y,z) such that x2 + y2 + z2 = 1. The point N = (0,0,1) is called the north pole,
and the point S = (0,0,−1) is called the south pole. The stereographic projection
map σN : (S2−{N})→ R2 is defined as follows. For every point M 6= N on S2, the
point σN(M) is the intersection of the line through N and M and the equatorial plane
of equation z = 0.

Prove that if M has coordinates (x,y,z) (with x2 + y2 + z2 = 1), then

σN(M) =

(
x

1− z
,

y
1− z

)
.

Hint. Recall that if A = (a1,a2,a3) and B = (b1,b2,b3) are any two distinct points
in R3, then the unique line (AB) passing through A and B has parametric equations

x = (1− t)a1 + tb1

y = (1− t)a2 + tb2

z = (1− t)a3 + tb3,

which means that every point (x,y,z) on the line (AB) is of the above form, with
t ∈ R. Find the intersection of a line passing through the north pole and a point
M 6= N on the sphere S2.

Prove that σN is bijective and that its inverse is given by the map τN : R2 →
(S2−{N}) with

(x,y) 7→
(

2x
x2 + y2 +1

,
2y

x2 + y2 +1
,

x2 + y2−1
x2 + y2 +1

)
.

Hint. Find the intersection of a line passing through the North pole and some point
P of the equatorial plane z = 0 with the sphere of equation

x2 + y2 + z2 = 1.

Similarly, σS : (S2−{S})→ R2 is defined as follows. For every point M 6= S on
S2, the point σS(M) is the intersection of the line through S and M and the plane of
equation z = 0.

Prove that

σS(M) =

(
x

1+ z
,

y
1+ z

)
.

Prove that σS is bijective and that its inverse is given by the map, τS : R2 → (S2−
{S}), with

(x,y) 7→
(

2x
x2 + y2 +1

,
2y

x2 + y2 +1
,

1− x2− y2

x2 + y2 +1

)
.
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(ii) Give a bijection between the sphere S2 and the equatorial plane of equation
z = 0.

Hint. Use the stereographic projection and the method used in Problem 3.2, to define
a bijection between [0,1] and (0,1).

3.5. Finish the proof of Theorem 3.4. That is, prove that for any n≥ (p−1)(q−1),
if we consider the sequence

n+q,n, n−q, n−2q, . . . , n− (p−2)q,

then some integer in this sequence is divisible by p with a nonnegative quotient, and
that when this number is n+q, then n+q = ph with h≥ q.

Hint. If n≥ (p−1)(q−1), then n+q≥ p(q−1)+1.

3.6. (1) Let (−1,1) be the set of real numbers

(−1,1) = {x ∈ R | −1 < x < 1}.

Let f : R→ (−1,1) be the function given by

f (x) =
x√

1+ x2
.

Prove that f is a bijection. Find the inverse of f .
(2) Let (0,1) be the set of real numbers

(0,1) = {x ∈ R | 0 < x < 1}.

Give a bijection between (−1,1) and (0,1). Use (1) and (2) to give a bijection
between R and (0,1).

3.7. Let D⊆ R2 be the subset of the real plane given by

D = {(x,y) ∈ R2 | x2 + y2 < 1},

that is, all points strictly inside of the unit circle x2+y2 = 1. The set D is often called
the open unit disc. Let f : R2→ D be the function given by

f (x,y) =

(
x√

1+ x2 + y2
,

y√
1+ x2 + y2

)
.

(1) Prove that f is a bijection and find its inverse.
(2) Give a bijection between the sphere S2 and the open unit disk D in the equa-

torial plane.

3.8. Recall that a set A is infinite iff there is no bijection from {1, . . . ,n} onto A, for
any natural number n ∈ N. Prove that the set of odd natural numbers is infinite.
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3.9. Recall that given any two sets X ,Y , every function f : X→Y induces a function
f : 2X → 2Y such that for every subset A⊆ X ,

f (A) = { f (a) ∈ Y | a ∈ A}

and a function f−1 : 2Y → 2X , such that, for every subset B⊆ Y ,

f−1(B) = {x ∈ X | f (x) ∈ B}.

(a) Prove that if f : X → Y is injective, then so is f : 2X → 2Y .
(b) Prove that if f is bijective then f−1( f (A)) = A and f ( f−1(B)) = B, for all

A⊆ X and all B⊆ Y . Deduce from this that f : 2X → 2Y is bijective.
(c) Prove that for any set A there is an injection from the set AA of all functions

from A to A to 2A×A, the power set of A×A. If A is infinite, prove that there is an
injection from AA to 2A.

3.10. Recall that given any two sets X ,Y , every function f : X → Y induces a func-
tion f : 2X → 2Y such that for every subset A⊆ X ,

f (A) = { f (a) ∈ Y | a ∈ A},

and a function f−1 : 2Y → 2X , such that, for every subset B⊆ Y ,

f−1(B) = {x ∈ X | f (x) ∈ B}.

(a) Prove that if f : X → Y is surjective, then so is f : 2X → 2Y .
(b) If A is infinite, prove that there is a bijection from AA to 2A.

Hint. Prove that there is an injection from AA to 2A and an injection from 2A to AA.

3.11. (a) Finish the proof of Theorem 3.6, which states that for any infinite set X
there is an injection from N into X . Use this to prove that there is a bijection between
X and X×N.

(b) Prove that if a subset A⊆N of N is not finite, then there is a bijection between
A and N.

(c) Prove that every infinite set X can be written as a disjoint union X =
⋃

i∈I Xi,
where every Xi is in bijection with N.

(d) If X is any set, finite or infinite, prove that if X has at least two elements then
there is a bijection f of X leaving no element fixed (i.e., so that f (x) 6= x for all
x ∈ X).

3.12. Prove that if (Xi)i∈I is a family of sets and if I and all the Xi are countable,
then (Xi)i∈I is also countable.
Hint. Define a surjection from N×N onto (Xi)i∈I .

3.13. Let Aut(A) denote the set of all bijections from A to itself.
(a) Prove that there is a bijection between Aut(N) and 2N.

Hint. Consider the map S : Aut(N)→ 2N−{0} given by
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S( f ) = {n ∈ N−{0} | f (n) = n},

and prove that it is surjective. Also, there is a bijection between N and N−{0}.
(b) Prove that for any infinite set A there is a bijection between Aut(A) and 2A.

Hint. Use results from Problem 3.11 and adapt the method of Part (a).

3.14. Recall that a set A is infinite iff there is no bijection from {1, . . . ,n} onto A,
for any natural number n ∈ N. Prove that the set of even natural numbers is infinite.

3.15. Consider the triangular region T1, defined by 0 ≤ x ≤ 1 and |y| ≤ x and the
subset D1, of this triangular region inside the closed unit disk, that is, for which we
also have x2 + y2 ≤ 1. See Figure 3.6 where D1 is shown shaded in gray.

1

D1D3

D2

D4

Fig. 3.6 The regions Di

(a) Prove that the map f1 : T1→ D1 defined so that

f1(x,y) =

(
x2√

x2 + y2
,

xy√
x2 + y2

)
, x 6= 0

f1(0,0) = (0,0),

is bijective and that its inverse is given by

g1(x,y) =
(√

x2 + y2,
y
x

√
x2 + y2

)
, x 6= 0

g1(0,0) = (0,0).

If T3 and D3 are the regions obtained from T3 and D1 by the reflection about the
y axis, x 7→ −x, show that the map, f3 : T3→ D3, defined so that
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f3(x,y) =

(
− x2√

x2 + y2
,− xy√

x2 + y2

)
, x 6= 0

f3(0,0) = (0,0),

is bijective and that its inverse is given by

g3(x,y) =
(
−
√

x2 + y2,
y
x

√
x2 + y2

)
, x 6= 0

g3(0,0) = (0,0).

(b) Now consider the triangular region T2 defined by 0 ≤ y ≤ 1 and |x| ≤ y and
the subset D2, of this triangular region inside the closed unit disk, that is, for which
we also have x2 + y2 ≤ 1. The regions T2 and D2 are obtained from T1 and D1 by a
counterclockwise rotation by the angle π/2.

Prove that the map f2 : T2→ D2 defined so that

f2(x,y) =

(
xy√

x2 + y2
,

y2√
x2 + y2

)
, y 6= 0

f2(0,0) = (0,0),

is bijective and that its inverse is given by

g2(x,y) =
(

x
y

√
x2 + y2,

√
x2 + y2

)
, y 6= 0

g2(0,0) = (0,0).

If T4 and D4 are the regions obtained from T2 and D2 by the reflection about the
x axis y 7→ −y, show that the map f4 : T4→ D4, defined so that

f4(x,y) =

(
− xy√

x2 + y2
,− y2√

x2 + y2

)
, y 6= 0

f4(0,0) = (0,0),

is bijective and that its inverse is given by

g4(x,y) =
(

x
y

√
x2 + y2,−

√
x2 + y2

)
, y 6= 0

g4(0,0) = (0,0).

(c) Use the maps, f1, f2, f3, f4 to define a bijection between the closed square
[−1,1]× [−1,1] and the closed unit disk D= {(x,y)∈R2 | x2+y2≤ 1}, which maps
the boundary square to the boundary circle. Check that this bijection is continuous.
Use this bijection to define a bijection between the closed unit disk D and the open
unit disk D = {(x,y) ∈ R2 | x2 + y2 < 1}.
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3.16. The purpose of this problem is to prove that there is a bijection between R and
2N. Using the results of Problem 3.6, it is sufficient to prove that there is a bijection
betwen (0,1) and 2N. To do so, we represent the real numbers r ∈ (0,1) in terms of
their decimal expansions,

r = 0.r1r2 · · ·rn · · · ,
where ri ∈ {0,1, . . . ,9}. However, some care must be exercised because this rep-
resentation is ambiguous due to the possibility of having sequences containing the
infinite suffix 9999 · · · . For example,

0.1200000000 · · ·= 0.1199999999 · · ·

Therefore, we only use representations not containing the infinite suffix
9999 · · · . Also recall that by Proposition 3.2, the power set 2N is in bijection with
the set {0,1}N of countably infinite binary sequences

b0b1 · · ·bn · · · ,

with bi ∈ {0,1}.
(1) Prove that the function f : {0,1}N→ (0,1) given by

f (b0b1 · · ·bn · · ·) = 0.1b0b1 · · ·bn · · · ,

where 0.1b0b1 · · ·bn · · · (with bn ∈ {0,1}) is interpreted as a decimal (not binary)
expansion, is an injection.

(2) Show that the image of the function f defined in (1) is the closed interval
[ 1

10 ,
1
9 ] and thus, that f is not surjective.

(3) Every number, k ∈ {0,1,2, . . . ,9} has a binary representation, bin(k), as a
string of four bits; for example,

bin(1) = 0001, bin(2) = 0010, bin(5) = 0101, bin(6) = 0110, bin(9) = 1001.

Prove that the function g : (0,1)→{0,1}N defined so that

g(0.r1r2 · · ·rn · · ·) = .bin(r1)bin(r2)bin(r1) · · ·bin(rn) · · ·

is an injection (Recall that we are assuming that the sequence r1r2 · · ·rn · · · does not
contain the infinite suffix 99999 · · · ). Prove that g is not surjective.

(4) Use (1) and (3) to prove that there is a bijection between R and 2N.

3.17. The purpose of this problem is to show that there is a bijection between R×R
and R. In view of the bijection between {0,1}N and R given by Problem 3.16, it
is enough to prove that there is a bijection between {0,1}N×{0,1}N and {0,1}N,
where {0,1}N is the set of countably infinite sequences of 0 and 1.

(1) Prove that the function f : {0,1}N×{0,1}N→{0,1}N given by

f (a0a1 · · ·an · · · ,b0b1 · · ·bn · · ·) = a0b0a1b1 · · ·anbn · · ·
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is a bijection (here, ai,bi ∈ {0,1}).
(2) Suppose, as in Problem 3.16, that we represent the reals in (0,1) by their

decimal expansions not containing the infinite suffix 99999 · · · . Define the function
h : (0,1)× (0,1)→ (0,1) by

h(0.r0r1 · · ·rn · · · ,0.s0s1 · · ·sn · · ·) = 0.r0s0r1s1 · · ·rnsn · · ·

with ri,si ∈ {0,1,2, . . . ,9}. Prove that h is injective but not surjective.
If we pick the decimal representations ending with the infinite suffix 99999 · · ·

rather that an infinite string of 0s, prove that h is also injective but still not surjective.
(3) Prove that for every positive natural number n ∈ N, there is a bijection be-

tween Rn and R.
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Chapter 4
Equivalence Relations and Partitions

4.1 Equivalence Relations and Partitions

Equivalence relations play a fundamental role in mathematics and computer science.
Intuitively, the notion of an equivalence relation is a generalization of the notion of
equality. Since the equality relation satisfies the properties that

1. a = a, for all a.
2. If a = b and b = c, then a = c, for all a,b,c.
3. If a = b, then b = a, for all a,b.

we postulate axioms that capture these properties.

Definition 4.1. A binary relation R on a set X is an equivalence relation iff it is
reflexive, transitive, and symmetric, that is:

(1) (Reflexivity): aRa, for all a ∈ X
(2) (Transitivity): If aRb and bRc, then aRc, for all a,b,c ∈ X .
(3) (Symmetry): If aRb, then bRa, for all a,b ∈ X

Here are some examples of equivalence relations.

1. The identity relation idX on a set X is an equivalence relation.
2. The relation X×X is an equivalence relation.
3. Let S be the set of students in CIS160. Define two students to be equivalent iff

they were born the same year. It is trivial to check that this relation is indeed an
equivalence relation.

4. Given any natural number p≥ 1, we can define a relation on Z as follows,

n≡ m (mod p)

iff p divides n−m; that is, n = m+ pk, for some k ∈ Z. It is an easy exercise to
check that this is indeed an equivalence relation called congruence modulo p.

137
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5. Equivalence of propositions is the relation defined so that P ≡ Q iff P⇒ Q
and Q⇒ P are both provable (say, classically). It is easy to check that logical
equivalence is an equivalence relation.

6. Suppose f : X → Y is a function. Then we define the relation ≡ f on X by

x≡ f y iff f (x) = f (y).

It is immediately verified that ≡ f is an equivalence relation. Actually, we show
that every equivalence relation arises in this way, in terms of (surjective) func-
tions.

The crucial property of equivalence relations is that they partition their domain
X into pairwise disjoint nonempty blocks. Intuitively, they carve out X into a bunch
of puzzle pieces.

Definition 4.2. Given an equivalence relation R on a set X for any x ∈ X , the set

[x]R = {y ∈ X | xRy}

is the equivalence class of x. Each equivalence class [x]R is also denoted xR and the
subscript R is often omitted when no confusion arises. The set of equivalence classes
of R is denoted by X/R. The set X/R is called the quotient of X by R or quotient of
X modulo R. The function, π : X → X/R, given by

π(x) = [x]R, x ∈ X ,

is called the canonical projection (or projection) of X onto X/R.

Every equivalence relation is reflexive, that is, xRx for every x ∈ X , therefore
observe that x ∈ [x]R for any x ∈ R; that is, every equivalence class is nonempty. It
is also clear that the projection π : X → X/R is surjective. The main properties of
equivalence classes are given by the following.

Proposition 4.1. Let R be an equivalence relation on a set X. For any two elements
x,y ∈ X we have

xRy iff [x] = [y].

Moreover, the equivalence classes of R satisfy the following properties.

(1) [x] 6= /0, for all x ∈ X.
(2) If [x] 6= [y], then [x]∩ [y] = /0.
(3) X =

⋃
x∈X [x].

Proof. First, assume that [x] = [y]. We observed that by reflexivity, y ∈ [y]. As [x] =
[y], we get y ∈ [x] and by definition of [x], this means that xRy.

Next, assume that xRy. Let us prove that [y] ⊆ [x]. Pick any z ∈ [y]; this means
that yRz. By transitivity, we get xRz; that is, z ∈ [x], proving that [y] ⊆ [x]. Now, as
R is symmetric, xRy implies that yRx and the previous argument yields [x] ⊆ [y].
Therefore, [x] = [y], as needed.
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Property (1) follows from the fact that x ∈ [x] (by reflexivity).
Let us prove the contrapositive of (2). So assume [x]∩ [y] 6= /0. Thus, there is some

z so that z ∈ [x] and z ∈ [y]; that is,

xRz and yRz.

By symmetry, we get zRy and by transitivity, xRy. But then, by the first part of the
proposition, we deduce [x] = [y], as claimed.

The third property follows again from the fact that x ∈ [x]. ut

A useful way of interpreting Proposition 4.1 is to say that the equivalence classes
of an equivalence relation form a partition, as defined next.

Definition 4.3. Given a set X , a partition of X is any family Π = {Xi}i∈I , of subsets
of X such that

(1) Xi 6= /0, for all i ∈ I (each Xi is nonempty).
(2) If i 6= j then Xi∩X j = /0 (the Xi are pairwise disjoint).
(3) X =

⋃
i∈I Xi (the family is exhaustive).

Each set Xi is called a block of the partition.

In the example where equivalence is determined by the same year of birth, each
equivalence class consists of those students having the same year of birth.

Let us now go back to the example of congruence modulo p (with p > 0) and
figure out what are the blocks of the corresponding partition. Recall that

m≡ n (mod p)

iff m− n = pk for some k ∈ Z. By the division theorem (Theorem 5.7), we know
that there exist some unique q,r, with m = pq+ r and 0≤ r ≤ p−1. Therefore, for
every m ∈ Z,

m≡ r (mod p) with 0≤ r ≤ p−1,

which shows that there are p equivalence classes, [0], [1], . . . , [p− 1], where the
equivalence class [r] (with 0≤ r ≤ p−1) consists of all integers of the form pq+ r,
where q ∈ Z, that is, those integers whose residue modulo p is r.

Proposition 4.1 defines a map from the set of equivalence relations on X to the
set of partitions on X . Given any set X , let Equiv(X) denote the set of equivalence
relations on X and let Part(X) denote the set of partitions on X . Then, Proposition
4.1 defines the function Π : Equiv(X)→ Part(X) given by,

Π(R) = X/R = {[x]R | x ∈ X},

where R is any equivalence relation on X . We also write ΠR instead of Π(R).
There is also a function R : Part(X)→ Equiv(X) that assigns an equivalence

relation to a partition as shown by the next proposition.
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Proposition 4.2. For any partition Π = {Xi}i∈I on a set X, the relation R(Π) de-
fined by

xR(Π)y iff (∃i ∈ I)(x,y ∈ Xi),

is an equivalence relation whose equivalence classes are exactly the blocks Xi.

Proof. By Property (3) of a partition (in Definition 4.3), every x ∈ X belongs to
some subset Xi for some index i ∈ I. Furthermore, the index i such that x ∈ Xi is
unique, since otherwise we would have x ∈ Xi ∩X j for some i 6= j, contradicting
(2). The fact that R(Π) is reflexive is trivial, since x ∈ Xi for some (unique) i ∈ I.
If xR(Π)y and yR(Π)z, then x,y ∈ Xi for some unique index i ∈ I and y,z ∈ X j
for some unique index j ∈ I. Since y ∈ Xi and y ∈ X j, by uniqueness of the index
of the subset containing y, we must have i = j, and then x,z ∈ Xi, which shows
that xR(Π)z; that is, R(Π) is transitive. Since xR(Π)y means that x,y ∈ Xi for
some (unique) index i ∈ I, we also have y,x ∈ Xi; that is, yR(Π)x, which shows that
R(Π) is symmetric. Therefore, R(Π) is an equivalence relation. For all x,y ∈ X ,
since xR(Π)y iff x,y ∈ Xi for some i ∈ I, it is clear that the equivalence class of x
is equal to Xi. Also, since each Xi is nonempty, every Xi is an equivalence class of
R(Π), so the equivalence classes of R(Π) are exactly the Xi. ut

Putting Propositions 4.1 and 4.2 together we obtain the useful fact that there is
a bijection between Equiv(X) and Part(X). Therefore, in principle, it is a matter of
taste whether we prefer to work with equivalence relations or partitions. In computer
science, it is often preferable to work with partitions, but not always.

Proposition 4.3. Given any set X the functions Π : Equiv(X)→ Part(X) and
R : Part(X)→ Equiv(X) are mutual inverses; that is,

R ◦Π = id and Π ◦R = id.

Consequently, there is a bijection between the set Equiv(X) of equivalence relations
on X and the set Part(X) of partitions on X.

Proof. This is a routine verification left to the reader. ut
Now, if f : X → Y is a surjective function, we have the equivalence relation ≡ f

defined by
x≡ f y iff f (x) = f (y).

It is clear that the equivalence class of any x ∈ X is the inverse image f−1( f (x)), of
f (x) ∈ Y (this is the fibre of f (x)). Therefore, there is a bijection between X/ ≡ f
and Y . Thus, we can identify f and the projection π , from X onto X/≡ f . If f is not
surjective, note that f is surjective onto f (X) and so, we see that f can be written as
the composition

f = i◦π,

where π : X → f (X) is the canonical projection and i : f (X)→ Y is the inclusion
function mapping f (X) into Y (i.e., i(y) = y, for every y ∈ f (X)).
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Given a set X , the inclusion ordering on X ×X defines an ordering on binary
relations on X ,1 namely,

R≤ S iff (∀x,y ∈ X)(xRy⇒ xSy).

When R≤ S, we say that R refines S.
If R and S are equivalence relations and R ≤ S, we observe that every equiva-

lence class of R is contained in some equivalence class of S. Actually, in view of
Proposition 4.1, we see that every equivalence class of S is the (disjoint) union of
equivalence classes of R.

As an example, if S is the equivalence relation where two students in a class are
equivalent if they were both the same year, and R is the equivalence relation where
two students are equivalent if they were both the same year and the same month,
then R is a refinement of S. Each equivalence class of R contains students born the
same year (say 1995) and the same month (say July), and each equivalence class of
S contains students born the same year and is the (disjoint) union of the equivalence
classes (of R) consisting of students born the same month of that year (say January,
March, December of 1995).

Note that idX is the least equivalence relation on X and X×X is the largest equiv-
alence relation on X . This suggests the following questions: given two equivalence
relations R and S,

1. Is there a greatest equivalence relation contained in both R and S, called the meet
of R and S?

2. Is there a smallest equivalence relation containing both R and S, called the join
of R and S?

The answer is yes in both cases. It is easy to see that the meet of two equivalence
relations is R∩ S, their intersection. But beware, their join is not R∪ S, because
in general, R∪ S is not transitive. However, there is a least equivalence relation
containing R and S, and this is the join of R and S. This leads us to look at various
closure properties of relations.

4.2 Transitive Closure, Reflexive and Transitive Closure,
Smallest Equivalence Relation

Let R be any relation on a set X . Note that R is reflexive iff idX ⊆ R. Consequently,
the smallest reflexive relation containing R is idX ∪R.

Definition 4.4. The relation idX ∪R is called the reflexive closure of R.

Proposition 4.4. The binary relation R is transitive iff R◦R⊆ R.

1 For a precise definition of the notion of ordering, see Section 5.1.
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Proof. If R is transitive, then for any pair (x,z)∈ R◦R, there is some y∈ X such that
(x,y) ∈ R and (y,z) ∈ R, and by transitivity of R, we have (x,z) ∈ R, which shows
that R◦R ⊆ R. Conversely, assume that R◦R ⊆ R. If (x,y) ∈ R and (y,z) ∈ R, then
(x,z) ∈ R◦R, and since R◦R⊆ R, we have (x,z) ∈ R; thus R is transitive. ut

This suggests a way of making the smallest transitive relation containing R (if R
is not already transitive). Define Rn by induction as follows.

R0 = idX

Rn+1 = Rn ◦R.

For n = 0 the definition implies that R1 = R and it is easy to prove by induction on
n that

Rm+n = Rm ◦Rn for all m,n≥ 0,

so in particular Rn+1 = Rn ◦R = R◦Rn.

Definition 4.5. Given any relation R on a set X , the transitive closure of R is the
relation R+ given by

R+ =
⋃
n≥1

Rn.

The reflexive and transitive closure of R is the relation R∗, given by

R∗ =
⋃
n≥0

Rn = idX ∪R+.

Proposition 4.5. Given any relation R on a set X, the relation R+ is the smallest
transitive relation containing R and R∗ is the smallest reflexive and transitive rela-
tion containing R.

Proof. By definition of R+, we have R⊆ R+. First, let us prove that R+ is transitive.
Since R+ =

⋃
k≥1 Rk, if (x,y) ∈ R+, then (x,y) ∈ Rm for some m≥ 1, and if (y,z) ∈

R+, then (y,z) ∈ Rn for some n ≥ 1. Consequently, (x,z) ∈ Rm ◦Rn = Rm+n, but
Rm+n ⊆⋃k≥1 Rk = R+, so (x,z) ∈ R+, which shows that R+ is transitive.

Secondly, we show that if S is any transitive relation containing R, then Rn ⊆ S
for all n ≥ 1. We proceed by induction on n ≥ 1. The base case n = 1 simply says
that R ⊆ S, which holds by hypothesis. Now, it is easy to see that for any relations
R1,R2,S1,S2, if R1 ⊆ S1 and if R2 ⊆ S2, then R1 ◦R2 ⊆ S1 ◦ S2. Going back to the
induction step, by the induction hypothesis Rn ⊆ S, and by hypothesis R⊆ S. By the
fact that we just stated and because S is transitive iff S◦S⊆ S, we get

Rn+1 = Rn ◦R⊆ S◦S⊆ S,

establishing the induction step. Therefore, if R⊆ S and if S is transitive, then, Rn ⊆ S
for all n≥ 1, so

R+ =
⋃
n≥1

Rn ⊆ S.
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This proves that R+ is indeed the smallest transitive relation containing R.
Next, consider R∗ = idX ∪R+. Since idX ◦ idX = idX , idX ◦R+ = R+ ◦ idX = R+

and R+ is transitive, the relation R∗ is transitive. By definition of R∗, we have R⊆R∗,
and since R0 = idX ⊆ R∗, the relation R∗ is reflexive.

Conversely, we prove that if S is any relation such that R ⊆ S and S is reflexive
and transtive, then Rn ⊆ S for all n≥ 0. The case n = 0 corresponds to the reflexivity
of S (since R0 = idX ⊆ S), and for n ≥ 1, the proof is identical to the previous one.
In summary, R∗ is the smallest reflexive and transitive relation containing R. ut

If R is reflexive, then idX ⊆ R, which implies that R ⊆ R2, so Rk ⊆ Rk+1 for all
k ≥ 0. From this, we can show that if X is a finite set, then there is a smallest k so
that Rk = Rk+1. In this case, Rk is the reflexive and transitive closure of R. If X has
n elements it can be shown that k ≤ n−1.

Note that a relation R is symmetric iff R−1 = R. As a consequence, R∪R−1 is the
smallest symmetric relation containing R.

Definition 4.6. The relation R∪R−1 is called the symmetric closure of R.

Finally, given a relation R, what is the smallest equivalence relation containing
R? The answer is given by

Proposition 4.6. For any relation R on a set X, the relation

(R∪R−1)∗

is the smallest equivalence relation containing R.

Proof. By Proposition 4.5, the relation (R∪R−1)∗ is reflexive and transitive and
clearly it contains R, so we need to prove that (R∪R−1)∗ is symmetric. For this, it
is sufficient to prove that every power (R∪R−1)n is symmetric for all n≥ 0. This is
easily done by induction. The base case n = 0 is trivial since (R∪R−1)0 = idX . For
the induction step, since by the induction hypothesis,

(
(R∪R−1)n

)−1
= (R∪R−1)n,

we have (
(R∪R−1)n+1)−1

=
(
(R∪R−1)n ◦ (R∪R−1)

)−1

= (R∪R−1)−1 ◦
(
(R∪R−1)n)−1

= (R∪R−1)◦ (R∪R−1)n

= (R∪R−1)n+1;

that is, (R∪R−1)n+1 is symmetric. Therefore, (R∪R−1)∗ is an equivalence relation
containing R.

Every equivalence relation S containing R must contain R∪R−1, and since S is
a reflexive and transitive relation containing R∪R−1, by Proposition 4.5, S contains
(R∪R−1)∗. ut

Going back to the notion of join of two equivalence relations, it is easy to adapt
the proof of Proposition 4.6 to prove the following result.
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Proposition 4.7. For any two equivalence relations R and S on a set X, the relation
(R∪S)+ is the smallest equivalence relation containing R∪S (the join of R and S).

4.3 Summary

This chapter deals with the notions equivalence relations, partitions, and their basic
properties.

• We define equivalence relations, equivalence classes, quotient sets, and the
canonical projection.

• We define partitions and blocks of a partition.
• We define a bijection between equivalence relations and partitions (on the same

set).
• We define when an equivalence relation is a refinement of another equivalence

relation.
• We define the reflexive closure, the transitive closure, and the reflexive and tran-

sitive closure of a relation.
• We characterize the smallest equivalence relation containing a relation.

Problems

4.1. Let R and S be two relations on a set X . (1) Prove that if R and S are both
reflexive, then R◦S is reflexive.

(2) Prove that if R and S are both symmetric and if R ◦ S = S ◦R, then R ◦ S is
symmetric.

(3) Prove that if R and S are both transitive and if R ◦ S = S ◦R, then R ◦ S is
transitive.

Can the hypothesis R◦S = S◦R be omitted?
(4) Prove that if R and S are both equivalence relations and if R◦S = S ◦R, then

R◦S is the smallest equivalence relation containing R and S.

4.2. Prove Proposition 4.3.

4.3. Recall that for any function f : A→ A, for every k ∈ N, we define f k : A→ A
by

f 0 = idA

f k+1 = f k ◦ f .

Also, an element a ∈ A is a fixed point of f if f (a) = a. Now, assume that π : [n]→
[n] is any permutation of the finite set [n] = {1,2, . . . ,n}.

(1) For any i ∈ [n], prove that there is a least r with 1≤ r ≤ n such that πr(i) = i.
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(2) Define the relation Rπ on [n] such that iRπ j iff there is some integer k ≥ 1
such that

j = π
k(i).

Prove that Rπ is an equivalence relation.
(3) Prove that every equivalence class of Rπ is either a singleton set {i} or a set

of the form
J = {i,π(i),π2(i), . . . ,πri−1(i)},

with ri the least integer such that πri(i) = i and 2≤ ri ≤ n. The equivalence class of
any element i∈ [n] is called the orbit of i (under π). We say that an orbit is nontrivial
if it has at least two elements.

(4) A k-cycle (or cyclic permutation of order k) is a permutation σ : [n]→ [n]
such that for some sequence (i1, i2, . . . , ik) of distinct elements of [n] with 2≤ k≤ n,

σ(i1) = i2,σ(i2) = i3, . . . ,σ(ik−1) = ik,σ(ik) = i1

and σ( j) = j for all j ∈ [n]−{i1, . . . , ik}. The set {i1, i2, . . . , ik} is called the domain
of the cyclic permutation. Observe that any element i ∈ [n] is a fixed point of σ iff i
is not in the domain of σ .

Prove that a permutation σ is a k-cycle (k ≥ 2) iff Rπ has a single orbit of size
at least 2. If σ is a cyclic permutation with domain {i1, i2, . . . , ik} (k ≥ 2), every
element i j determines the sequence

O(i j) = (i j,σ(i j),σ
2(i j), . . . ,σ

k−1(i j)),

which is some ordering of the orbit {i1, i2, . . . , ik}. Prove that there are k distinct
sequences of the form O(i j), and that given any i j in the domain of σ , the sequences
O(im) (m = 1, . . . ,k) are obtained by repeatedly applying σ to O(i j) (k− 1 times).
In other words, the sequences O(im) (m = 1, . . . ,k) are cyclic permutations (under
σ ) of any one of them.

(5) Prove that for every permutation π : [n]→ [n], if π is not the identity, then π

can be written as the composition

π = σ1 ◦ · · · ◦σs

of cyclic permutations σ j with disjoint domains, where s is the number of nontrivial
orbits of Rπ . Furthermore, the cyclic permutations σ j are uniquely determined by
the nontrivial orbits of Rπ . Observe that an element i ∈ [n] is a fixed point of π iff i
is not in the domain of any cycle σ j.

Check that σi ◦σ j = σ j ◦σi for all i 6= j, which shows that the decomposition of
π into cycles is unique up to the order of the cycles.

4.4. A permutation τ : [n]→ [n] is a transposition if there exist i, j ∈ [n] such that
i < j, τ(i) = j, τ( j) = i, and τ(k) = k for all k ∈ [n]−{i, j}. In other words, a
transposition exchanges two distinct elements i and j. This transposition is usually
denoted by (i, j). Observe that if τ is a transposition, then τ ◦ τ = id, so τ−1 = τ .
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(i) Prove that every permutation f : [n]→ [n] can be written as the composition
of transpositions

f = τ1 ◦ · · · ◦ τs,

for some s≥ 1.
(ii) Prove that every transposition (i, j) with 1 ≤ i < j ≤ n can be obtained as

some composition of the transpositions (i, i + 1), i = 1, . . . ,n− 1. Conclude that
every permutation of [n] is the composition of transpositions of the form (i, i+ 1),
i = 1, . . . ,n−1.

(iii) Let σ be the n-cycle such that σ(i) = i+1 for i = 1, . . . ,n−1 and σ(n) = 1
denoted by (1,2, . . . ,n), and let τ1 be the transposition (1,2).

Prove that every transpositions of the form (i, i + 1) (i = 1, . . . ,n− 1) can be
obtained as some composition of copies of σ and τ1.
Hint. Use permutations of the form στσ−1, for some suitable transposition τ .

Conclude that every permutation of [n] is the composition of copies of σ and τ1.
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Chapter 5
Partial Orders, Lattices, Well-Founded
Orderings, Distributive Lattices, Boolean
Algebras, Heyting Algebras

5.1 Partial Orders

There are two main kinds of relations that play a very important role in mathematics
and computer science:

1. Partial orders.
2. Equivalence relations.

Equivalence relations were studied in Section 4.1. In this section and the next
few ones, we define partial orders and investigate some of their properties. As we
show, the ability to use induction is intimately related to a very special property of
partial orders known as well-foundedness.

Intuitively, the notion of order among elements of a set X captures the fact that
some elements are bigger than others, perhaps more important, or perhaps that they
carry more information. For example, we are all familiar with the natural ordering
≤ of the integers

· · · ≤ −3≤−2≤−1≤ 0≤ 1≤ 2≤ 3≤ ·· · ,

the ordering of the rationals (where

p1

q1
≤ p2

q2
iff

p2q1− p1q2

q1q2
≥ 0,

i.e., p2q1− p1q2 ≥ 0 if q1q2 > 0 else p2q1− p1q2 ≤ 0 if q1q2 < 0), and the ordering
of the real numbers. In all of the above orderings, note that for any two numbers a
and b, either a≤ b or b≤ a. We say that such orderings are total orderings.

A natural example of an ordering that is not total is provided by the subset or-
dering. Given a set X , we can order the subsets of X by the subset relation: A ⊆ B,
where A,B are any subsets of X . For example, if X = {a,b,c}, we have {a}⊆ {a,b}.
However, note that neither {a} is a subset of {b,c} nor {b,c} is a subset of {a}. We
say that {a} and {b,c} are incomparable.

147
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Now, not all relations are partial orders, so which properties characterize partial
orders? Our next definition gives us the answer.

Definition 5.1. A binary relation≤ on a set X is a partial order (or partial ordering)
iff it is reflexive, transitive, and antisymmetric; that is:

(1) (Reflexivity): a≤ a, for all a ∈ X .
(2) (Transitivity): If a≤ b and b≤ c, then a≤ c, for all a,b,c ∈ X .
(3) (Antisymmetry): If a≤ b and b≤ a, then a = b, for all a,b ∈ X .

A partial order is a total order (ordering) (or linear order (ordering)) iff for all
a,b ∈ X , either a ≤ b or b ≤ a. When neither a ≤ b nor b ≤ a, we say that a and b
are incomparable. A subset, C ⊆ X , is a chain iff ≤ induces a total order on C (so,
for all a,b ∈C, either a≤ b or b≤ a). A subset, C ⊆ X , is an antichain iff any two
distinct elements in C are incomparable. The strict order (ordering) < associated
with ≤ is the relation defined by: a < b iff a≤ b and a 6= b. If ≤ is a partial order on
X , we say that the pair 〈X ,≤〉 is a partially ordered set or for short, a poset.

Remark: Observe that if < is the strict order associated with a partial order≤, then
< is transitive and antireflexive, which means that

(4) a 6< a, for all a ∈ X .

Conversely, let < be a relation on X and assume that < is transitive, antisymmetric
and antireflexive. Then we can define the relation ≤ so that a≤ b iff a = b or a < b.
It is easy to check that ≤ is a partial order and that the strict order associated with
≤ is our original relation, <.

The concept of antichain is the version for posets of the notion of independent (or
stable) set in a graph (usually undirected) introduced in Problem 9.17 and defined
officially in Definition 10.30.

Given a poset 〈X ,≤〉, by abuse of notation we often refer to 〈X ,≤〉 as the poset
X , the partial order ≤ being implicit. If confusion may arise, for example, when we
are dealing with several posets, we denote the partial order on X by ≤X .

Here are a few examples of partial orders.

1. The subset ordering. We leave it to the reader to check that the subset relation
⊆ on a set X is indeed a partial order. For example, if A⊆ B and B⊆ A, where
A,B ⊆ X , then A = B, because these assumptions are exactly those needed by
the extensionality axiom.

2. The natural order on N. Although we all know what the ordering of the natural
numbers is, we should realize that if we stick to our axiomatic presentation
where we defined the natural numbers as sets that belong to every inductive set
(see Definition 11.37), then we haven’t yet defined this ordering. However, this
is easy to do because the natural numbers are sets. For any m,n ∈ N, define
m≤ n as m = n or m ∈ n. Then it is not hard to check that this relation is a total
order. (Actually, some of the details are a bit tedious and require induction; see
Enderton [2], Chapter 4.)
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3. Orderings on strings. Let Σ = {a1, . . . ,an} be an alphabet. The prefix, suffix,
and substring relations defined in Section 2.11 are easily seen to be partial or-
ders. However, these orderings are not total. It is sometimes desirable to have a
total order on strings and, fortunately, the lexicographic order (also called dic-
tionnary order) achieves this goal. In order to define the lexicographic order we
assume that the symbols in Σ are totally ordered, a1 < a2 < · · ·< an. Then given
any two strings u,v ∈ Σ ∗, we set

u� v


if v = uy, for some y ∈ Σ ∗, or
if u = xaiy, v = xa jz,
and ai < a j, for some x,y,z ∈ Σ ∗.

In other words, either u is a prefix of v or else u and v share a common prefix
x, and then there is a differing symbol, ai in u and a j in v, with ai < a j. It is
fairly tedious to prove that the lexicographic order is a partial order. Moreover,
the lexicographic order is a total order. For example, using the usual alphabetic
ordering,

gallhager � gallier.

4. The divisibility order on N. Let us begin by defining divisibility in Z. Given
any two integers, a,b ∈ Z, with b 6= 0, we say that b divides a (a is a multiple
of b) iff a = bq for some q ∈ Z. Such a q is called the quotient of a and b.
Most number theory books use the notation b | a to express that b divides a. For
example, 4 | 12 because 12 = 4 · 3 and 7 | −21 because −21 = 7 · (−3) but 3
does not divide 16 because 16 is not an integer multiple of 3.
We leave the verification that the divisibility relation is reflexive and transitive
as an easy exercise. What about antisymmetry? So, assume that b | a and a | b
(thus, a,b 6= 0). This means that there exist q1,q2 ∈ Z so that

a = bq1 and b = aq2.

From the above, we deduce that b = bq1q2; that is,

b(1−q1q2) = 0.

As b 6= 0, we conclude that
q1q2 = 1.

Now, let us restrict ourselves to N+ = N−{0}, so that a,b ≥ 1. It follows that
q1,q2 ∈ N and in this case, q1q2 = 1 is only possible iff q1 = q2 = 1. There-
fore, a = b and the divisibility relation is indeed a partial order on N+. Why is
divisibility not a partial order on Z−{0}?

Given a poset 〈X ≤〉, if X is finite, then there is a convenient way to describe the
partial order≤ on X using a graph. In preparation for that, we need a few preliminary
notions.

Consider an arbitrary poset 〈X ≤〉 (not necessarily finite). Given any element
a ∈ X , the following situations are of interest.
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1. For no b ∈ X do we have b < a. We say that a is a minimal element (of X).
2. There is some b ∈ X such that b < a, and there is no c ∈ X such that b < c < a.

We say that b is an immediate predecessor of a.
3. For no b ∈ X do we have a < b. We say that a is a maximal element (of X).
4. There is some b ∈ X such that a < b, and there is no c ∈ X such that a < c < b.

We say that b is an immediate successor of a.

Note that an element may have more than one immediate predecessor (or more
than one immediate successor).

If X is a finite set, then it is easy to see that every element that is not minimal has
an immediate predecessor and any element that is not maximal has an immediate
successor (why?). But if X is infinite, for example, X =Q, this may not be the case.
Indeed, given any two distinct rational numbers a,b ∈Q, we have

a <
a+b

2
< b.

Let us now use our notion of immediate predecessor to draw a diagram repre-
senting a finite poset 〈X ,≤〉. The trick is to draw a picture consisting of nodes and
oriented edges, where the nodes are all the elements of X and where we draw an
oriented edge from a to b iff a is an immediate predecessor of b. Such a diagram is
called a Hasse diagram for 〈X ,≤〉. Observe that if a < c < b, then the diagram does
not have an edge corresponding to the relation a < b. However, such information
can be recovered from the diagram by following paths consisting of one or several
consecutive edges. Similarly, the self-loops corresponding to the reflexive relations
a≤ a are omitted. A Hasse diagram is an economical representation of a finite poset
and it contains the same amount of information as the partial order ≤.

The diagram associated with the partial order on the power set of the two-element
set {a,b} is shown in Figure 5.1.

1

∅

{a} {b}

{a, b}

Fig. 5.1 The partial order of the power set 2{a,b}.
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The diagram associated with the partial order on the power set of the three-
element set {a,b,c} is shown in Figure 5.2.

1

∅

{a} {b} {c}

{b, c} {a, c} {a, b}

{a, b, c}

Fig. 5.2 The partial order of the power set 2{a,b,c}.

Note that /0 is a minimal element of the poset in Figure 5.2. (in fact, the smallest
element) and {a,b,c} is a maximal element (in fact, the greatest element). In this
example, there is a unique minimal (respectively, maximal) element. A less trivial
example with multiple minimal and maximal elements is obtained by deleting /0 and
{a,b,c} and is shown in Figure 5.3.

1

{a} {b} {c}

{b, c} {a, c} {a, b}

Fig. 5.3 Minimal and maximal elements in a poset.

Given a poset 〈X ,≤〉, observe that if there is some element m ∈ X so that m≤ x
for all x ∈ X , then m is unique. Indeed, if m′ is another element so that m′ ≤ x for all
x∈ X , then if we set x = m′ in the first case, we get m≤m′ and if we set x = m in the
second case, we get m′ ≤ m, from which we deduce that m = m′, as claimed. Such
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an element m, is called the smallest or the least element of X . Similarly, an element
b ∈ X , so that x ≤ b for all x ∈ X is unique and is called the greatest or the largest
element of X .

We summarize some of our previous definitions and introduce a few more useful
concepts in the following.

Definition 5.2. Let 〈X ,≤〉 be a poset and let A⊆ X be any subset of X . An element
b ∈ X is a lower bound of A iff b ≤ a for all a ∈ A. An element m ∈ X is an upper
bound of A iff a ≤ m for all a ∈ A. An element b ∈ X is the least element of A iff
b ∈ A and b ≤ a for all a ∈ A. An element m ∈ X is the greatest element of A iff
m ∈ A and a ≤ m for all a ∈ A. An element b ∈ A is minimal in A iff a < b for no
a ∈ A, or equivalently, if for all a ∈ A, a≤ b implies that a = b. An element m ∈ A is
maximal in A iff m < a for no a ∈ A, or equivalently, if for all a ∈ A, m≤ a implies
that a = m. An element b ∈ X is the greatest lower bound of A iff the set of lower
bounds of A is nonempty and if b is the greatest element of this set. An element
m ∈ X is the least upper bound of A iff the set of upper bounds of A is nonempty
and if m is the least element of this set.

Figure 5.4 illustrates some of the notions of Definition 5.2.

≤

≤

≤
≤

≤

≤

A

X

lower bound

greatest lower bound

least upper bound

upper bound

Fig. 5.4 Lower bounds and upper bounds.

Remarks:

1. If b is a lower bound of A (or m is an upper bound of A), then b (or m) may not
belong to A.

2. The least element of A is a lower bound of A that also belongs to A and the
greatest element of A is an upper bound of A that also belongs to A. The least
element of a subset A is also called the minimum of A, and greatest element
of a subset A is also called the maximum of A, When A = X , the least element
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is often denoted ⊥, sometimes 0, and the greatest element is often denoted >,
sometimes 1.

3. Minimal or maximal elements of A belong to A but they are not necessarily
unique.

The greatest lower bound (or the least upper bound) of A may not belong to A.
We use the notation

∧
A for the greatest lower bound of A and the notation

∨
A for

the least upper bound of A. In computer science, some people also use
⊔

A instead
of
∨

A and the symbol
⊔

upside down instead of
∧

. When A = {a,b}, we write a∧b
for

∧{a,b} and a∨ b for
∨{a,b}. The element a∧ b is called the meet of a and b

and a∨ b is the join of a and b. (Some computer scientists use au b for a∧ b and
atb for a∨b.)

Observe that if it exists,
∧

/0 = >, the greatest element of X and if its exists,∨
/0 =⊥, the least element of X . Also, if it exists,

∧
X =⊥ and if it exists,

∨
X =>.

The above identities may seem paradoxical but they are correct. For example, when
we write that m≤ a for all a ∈ A, to be precise we mean that ∀a(a ∈ A⇒m≤ a), so
if A is the empty set, every m ∈ X is a lower bound of the empty set, which implies
that the greatest lower bound of the empty set is the largest element > of X , if it
exists. Similarly, every m ∈ X is an upper bound of the empty set, which implies
that the least upper bound of the empty set is the smallest element ⊥ of X , if it
exists.

The reader should look at the posets in Figures 5.2 and 5.3 for examples of the
above notions.

For the sake of completeness, we state the following fundamental result known as
Zorn’s lemma even though it is unlikely that we use it in this course. Zorn’s lemma
turns out to be equivalent to the axiom of choice. For details and a proof, the reader
is referred to Suppes [3] or Enderton [2].

Fig. 5.5 Max Zorn, 1906–1993.

Theorem 5.1. (Zorn’s Lemma) Given a poset 〈X ,≤〉, if every nonempty chain in X
has an upper bound, then X has some maximal element.

When we deal with posets, it is useful to use functions that are order preserving
as defined next.
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Definition 5.3. Given two posets 〈X ,≤X 〉 and 〈Y,≤Y 〉, a function f : X → Y is
monotonic (or order preserving) iff for all a,b ∈ X ,

if a≤X b, then f (a)≤Y f (b).

5.2 Lattices

We now take a closer look at posets having the property that every two elements
have a meet and a join (a greatest lower bound and a least upper bound). Such
posets occur a lot more often than we think. A typical example is the power set
under inclusion, where meet is intersection and join is union.

Definition 5.4. A lattice is a poset in which any two elements have a meet and a
join. A complete lattice is a poset in which any subset has a greatest lower bound
and a least upper bound.

According to Part (3) of the remark just before Zorn’s lemma, observe that a
complete lattice must have a least element ⊥ and a greatest element >.

Remark: The notion of complete lattice is due to G. Birkhoff (1933). The notion
of a lattice is due to Dedekind (1897) but his definition used properties (L1)–(L4)
listed in Proposition 5.1. The use of meet and join in posets was first studied by C.
S. Peirce (1880).

Fig. 5.6 J. W. Richard Dedekind, 1831–1916 (left), Garrett Birkhoff, 1911–1996 (middle) and
Charles S. Peirce, 1839–1914 (right).

Figure 5.7 shows the lattice structure of the power set of {a,b,c}. It is actually a
complete lattice.

It is easy to show that any finite lattice is a complete lattice.
The poset N+ under the divisibility ordering is a lattice. Indeed, it turns out that

the meet operation corresponds to greatest common divisor and the join operation
corresponds to least common multiple. However, it is not a complete lattice. The
power set of any set X is a complete lattice under the subset ordering. Indeed, one
may verify immediately that for any collection C of subsets of X , the least upper
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1

∅

{a} {b} {c}

{b, c} {a, c} {a, b}

{a, b, c}

Fig. 5.7 The lattice 2{a,b,c}.

bound of C is its union
⋃

C and the greatest lower bound of C is its intersection⋂
C . The least element of 2X is /0 and its greatest element is X itself.
The following proposition gathers some useful properties of meet and join.

Proposition 5.1. If X is a lattice, then the following identities hold for all a,b,c∈X.

L1 a∨b = b∨a, a∧b = b∧a

L2 (a∨b)∨ c = a∨ (b∨ c), (a∧b)∧ c = a∧ (b∧ c)

L3 a∨a = a, a∧a = a

L4 (a∨b)∧a = a, (a∧b)∨a = a.

Properties (L1) correspond to commutativity, properties (L2) to associativity, prop-
erties (L3) to idempotence, and properties (L4) to absorption. Furthermore, for all
a,b ∈ X, we have

a≤ b iff a∨b = b iff a∧b = a,

called consistency.

Proof. The proof is left as an exercise to the reader. ut

Properties (L1)–(L4) are algebraic identities that were found by Dedekind (1897).
A pretty symmetry reveals itself in these identities: they all come in pairs, one in-
volving ∧, the other involving ∨. A useful consequence of this symmetry is duality,
namely, that each equation derivable from (L1)–(L4) has a dual statement obtained
by exchanging the symbols ∧ and ∨. What is even more interesting is that it is pos-
sible to use these properties to define lattices. Indeed, if X is a set together with
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two operations ∧ and ∨ satisfying (L1)–(L4), we can define the relation a ≤ b by
a∨ b = b and then show that ≤ is a partial order such that ∧ and ∨ are the corre-
sponding meet and join. The first step is to show that

a∨b = b iff a∧b = a.

If a∨b = b, then substituting b for a∨b in (L4), namely

(a∨b)∧a = a,

we get
b∧a = a,

which, by (L1), yields
a∧b = a,

as desired. Conversely, if a∧b = a, then by (L1) we have b∧a = a, and substituting
a for b∧a in the instance of (L4) where a and b are switched, namely

(b∧a)∨b = b,

we get
a∨b = b,

as claimed. Therefore, we can define a≤ b as a∨b = b or equivalently as a∧b = a.
After a little work, we obtain the following proposition.

Proposition 5.2. Let X be a set together with two operations ∧ and ∨ satisfying the
axioms (L1)–(L4) of Proposition 5.1. If we define the relation≤ by a≤ b iff a∨b= b
(equivalently, a∧b = a), then≤ is a partial order and (X ,≤) is a lattice whose meet
and join agree with the original operations ∧ and ∨.

The following proposition shows that the existence of arbitrary least upper
bounds (or arbitrary greatest lower bounds) is already enough ensure that a poset
is a complete lattice.

Proposition 5.3. Let 〈X ,≤〉 be a poset. If X has a greatest element >, and if every
nonempty subset A of X has a greatest lower bound

∧
A, then X is a complete lattice.

Dually, if X has a least element ⊥ and if every nonempty subset A of X has a least
upper bound

∨
A, then X is a complete lattice.

Proof. Assume X has a greatest element > and that every nonempty subset A of
X has a greatest lower bound,

∧
A. We need to show that any subset S of X has a

least upper bound. As X has a greatest element >, the set U of upper bounds of S
is nonempty and so, m =

∧
U exists. We claim that

∧
U =

∨
S (i.e., m is the least

upper bound of S). First, note that every element of S is a lower bound of U because
U is the set of upper bounds of S. As m =

∧
U is the greatest lower bound of U ,

we deduce that s≤ m for all s ∈ S (i.e., m is an upper bound of S). Next, if b is any
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upper bound for S, then b ∈U and as m is a lower bound of U (the greatest one), we
have m≤ b (i.e., m is the least upper bound of S). The other statement is proved by
duality. ut

5.3 Tarski’s Fixed-Point Theorem

We are now going to prove a remarkable result due to A. Tarski (discovered in 1942,
published in 1955). A special case (for power sets) was proved by B. Knaster (1928).
First, we define fixed points.

Fig. 5.8 Alfred Tarski, 1902–1983.

Definition 5.5. Let 〈X ,≤〉 be a poset and let f : X → X be a function. An element
x ∈ X is a fixed point of f (sometimes spelled fixpoint) iff

f (x) = x.

An element, x ∈ X , is a least (respectively, greatest) fixed point of f if it is a fixed
point of f and if x≤ y (resp. y≤ x) for every fixed point y of f .

Fixed points play an important role in certain areas of mathematics (e.g., topol-
ogy, differential equations, functional analysis) and also in economics because they
tend to capture the notion of stability or equilibrium.

We now prove the following pretty theorem due to Tarski and then immediately
proceed to use it to give a very short proof of the Schröder–Bernstein theorem (The-
orem 3.7).

Theorem 5.2. (Tarski’s Fixed-Point Theorem) Let 〈X ,≤〉 be a complete lattice and
let f : X → X be any monotonic function. Then the set F of fixed points of f is a
complete lattice. In particular, f has a least fixed point,

xmin =
∧
{x ∈ X | f (x)≤ x}

and a greatest fixed point
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xmax =
∨
{x ∈ X | x≤ f (x)}.

Proof. We proceed in three steps.
Step 1. We prove that xmax is the largest fixed point of f .
Because xmax is an upper bound of A = {x ∈ X | x ≤ f (x)} (the smallest one),

we have x ≤ xmax for all x ∈ A. By monotonicity of f , we get f (x) ≤ f (xmax) and
because x ∈ A, we deduce

x≤ f (x)≤ f (xmax) for all x ∈ A,

which shows that f (xmax) is an upper bound of A. As xmax is the least upper bound
of A, we get

xmax ≤ f (xmax). (∗)
Again, by monotonicity, from the above inequality, we get

f (xmax)≤ f ( f (xmax)),

which shows that f (xmax) ∈ A. As xmax is an upper bound of A, we deduce that

f (xmax)≤ xmax. (∗∗)

But then, (∗) and (∗∗) yield
f (xmax) = xmax,

which shows that xmax is a fixed point of f . If x is any fixed point of f , that is, if
f (x) = x, we also have x ≤ f (x); that is, x ∈ A. As xmax is the least upper bound of
A, we have x≤ xmax, which proves that xmax is the greatest fixed point of f .

Step 2. We prove that xmin is the least fixed point of f .
This proof is dual to the proof given in Step 1.
Step 3. We know that the set of fixed points F of f has a least element and a

greatest element, so by Proposition 5.3, it is enough to prove that any nonempty
subset S⊆ F has a greatest lower bound. If we let

I = {x ∈ X | x≤ s for all s ∈ S and x≤ f (x)},

then we claim that a =
∨

I is a fixed point of f and that it is the greatest lower bound
of S. The set I is illustrated in Figure 5.9.

The proof that a =
∨

I is a fixed point of f is analogous to the proof used in Step
1. Because a is an upper bound of I, we have x≤ a for all x ∈ I. By monotonicity of
f and the fact that x ∈ I, we get

x≤ f (x)≤ f (a).

Thus, f (a) is an upper bound of I and so, as a is the least upper bound of I, we have

a≤ f (a). (†)
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X

F

 
xmax

x min

S

I
x ≤ s

x ≤ f(x)

nI = a = f(a)

Fig. 5.9 The set I in the proof of Tarski’s theorem.

By monotonicity of f , we get f (a)≤ f ( f (a)). Now, to claim that f (a) ∈ I, we need
to check that f (a) is a lower bound of S. However, by definition of I, every element
of S is an upper bound of I and because a is the least upper bound of I, we must
have a ≤ s for all s ∈ S; that is, a is a lower bound of S. By monotonicity of f and
the fact that S is a set of fixed points, we get

f (a)≤ f (s) = s, for all s ∈ S,

which shows that f (a) is a lower bound of S and thus, f (a) ∈ I, as contended. As a
is an upper bound of I and f (a) ∈ I, we must have

f (a)≤ a, (††)

and together with (†), we conclude that f (a) = a; that is, a is a fixed point of f .
We already proved that a is a lower bound of S thus it only remains to show that

if x is any fixed point of f and x is a lower bound of S, then x ≤ a. But, if x is any
fixed point of f , then x≤ f (x), and because x is also a lower bound of S, then x ∈ I.
As a is an upper bound of I, we do get x≤ a. ut

It should be noted that the least upper bounds and the greatest lower bounds in
F do not necessarily agree with those in X . In technical terms, F is generally not a
sublattice of X .

Now, as promised, we use Tarski’s fixed-point theorem to prove the Schröder–
Bernstein theorem.

Theorem 3.7 Given any two sets A and B, if there is an injection from A to B
and an injection from B to A, then there is a bijection between A and B.
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Proof. Let f : A → B and g : B → A be two injections. We define the function
ϕ : 2A→ 2A by

ϕ(S) = A−g(B− f (S)),

for any S ⊆ A. Because of the two complementations, it is easy to check that ϕ is
monotonic (check it). The monotonicity of ϕ is illustrated in Figure 5.10.

A
B

f
S f(S)

T
f(T)

T 4S
f(T) 4f(S)

A B

g
f(S)

f(T)

g(B - f(T))

g(B-f(
T))

g(B-f(S))

A B

g
f(S)

f(T)

A - g(B-f(T)) 4 A - g(B-f(S))

Fig. 5.10 Monotonicty of ϕ .

As 2A is a complete lattice, by Tarski’s fixed point theorem, the function ϕ has a
fixed point; that is, there is some subset C ⊆ A so that

C = A−g(B− f (C)).

The set C is illustrated in Figure 5.11.

A
B

f

g

C

A - C = g(B - f(C))

f(C)

Fig. 5.11 The set C in the proof of the Schröder–Bernstein theorem.
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By taking the complement of C in A, we get

A−C = g(B− f (C)).

Now, as f and g are injections, the restricted functions f �C : C→ f (C) and
g � (B− f (C)) : (B− f (C))→ (A−C) are bijections. Using these functions, we
define the function h : A→ B as follows.

h(a) =
{

f (a) if a ∈C
(g � (B− f (C))−1(a) if a /∈C.

The reader may check that h is indeed a bijection. ut
The above proof is probably the shortest known proof of the Schröder–Bernstein

theorem because it uses Tarski’s fixed-point theorem, a powerful result. If one looks
carefully at the proof, one realizes that there are two crucial ingredients:

1. The set C is closed under g◦ f ; that is, g◦ f (C)⊆C.
2. A−C ⊆ g(B).

These proprerties follow from the fact that f and g are injective and that f �C : C→
f (C) and g � (B− f (C)) : (B− f (C))→ (A−C) are bijections.

Using these observations, it is possible to give a proof that circumvents the use
of Tarski’s theorem. Such a proof is given in Enderton [2], Chapter 6, and we give a
sketch of this proof below.

Define a sequence of subsets Cn of A by recursion as follows.

C0 = A−g(B)

Cn+1 = (g◦ f )(Cn),

and set
C =

⋃
n≥0

Cn.

Clearly, A−C ⊆ g(B) and because direct images preserve unions, (g ◦ f )(C) ⊆C.
The definition of h is similar to the one used in our proof:

h(a) =
{

f (a) if a ∈C
(g � (A−C))−1(a) if a /∈C.

When a /∈C, that is, a ∈ A−C, as A−C ⊆ g(B) and g is injective, g−1(a) is indeed
well-defined. As f and g are injective, so is g−1 on A−C. So, to check that h is in-
jective, it is enough to prove that f (a) = g−1(b) with a ∈C and b /∈C is impossible.
However, if f (a) = g−1(b), then (g◦ f )(a) = b. Because (g◦ f )(C)⊆C and a ∈C,
we get b = (g◦ f )(a) ∈C, yet b /∈C, a contradiction. It is not hard to verify that h is
surjective and therefore, h is a bijection between A and B. ut

The classical reference on lattices is Birkhoff [1]. We highly recommend this
beautiful book (but it is not easy reading).

We now turn to special properties of partial orders having to do with induction.
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5.4 Well-Orderings and Complete Induction

Have you ever wondered why induction on N actually “works”? The answer, of
course, is that N was defined in such a way that, by Theorem 11.5, it is the “smallest”
inductive set. But this is not a very illuminating answer. The key point is that every
nonempty subset of N has a least element. This fact is intuitively clear inasmuch
as if we had some nonempty subset of N with no smallest element, then we could
construct an infinite strictly decreasing sequence, k0 > k1 > · · ·> kn > · · · . But this
is absurd, as such a sequence would eventually run into 0 and stop. It turns out that
the deep reason why induction “works” on a poset is indeed that the poset ordering
has a very special property and this leads us to the following definition.

Definition 5.6. Given a poset 〈X ,≤〉 we say that ≤ is a well-order or well-ordering
and that X is well-ordered by ≤ iff every nonempty subset of X has a least element.

When X is nonempty, if we pick any two-element subset {a,b} of X , because the
subset {a,b} must have a least element, we see that either a ≤ b or b ≤ a; that is,
every well-order is a total order. First, let us confirm that N is indeed well-ordered.

Theorem 5.3. (Well-Ordering of N) The set of natural numbers N is well-ordered.

Proof. Not surprisingly we use induction, but we have to be a little shrewd. Let A
be any nonempty subset of N. We prove by contradiction that A has a least element.
So, suppose A does not have a least element and let P(m) be the predicate

P(m)≡ (∀k ∈ N)(k < m⇒ k /∈ A),

which says that no natural number strictly smaller than m is in A. We prove by
induction on m that P(m) holds. But then, the fact that P(m) holds for all m shows
that A = /0, a contradiction.

Let us now prove P(m) by induction. The base case P(0) holds trivially. Next,
assume P(m) holds; we want to prove that P(m+1) holds. Pick any k < m+1. Then
either

(1) k < m, in which case, by the induction hypothesis, k /∈ A; or
(2) k = m. By the induction hypothesis, P(m) holds. Now, if m were in A, as P(m)

holds no k < m would belong to A and m would be the least element of A,
contradicting the assumption that A has no least element. Therefore, m /∈ A.

Thus in both cases we proved that if k <m+1, then k /∈A, establishing the induction
hypothesis. This concludes the induction and the proof of Theorem 5.3. ut

Theorem 5.3 yields another induction principle which is often more flexible than
our original induction principle. This principle, called complete induction (or some-
times strong induction), was already encountered in Section 2.3. It turns out that it
is a special case of induction on a well-ordered set but it does not hurt to review it
in the special case of the natural ordering on N. Recall that N+ = N−{0}.
Complete Induction Principle on N.
In order to prove that a predicate P(n) holds for all n ∈ N it is enough to prove that



5.4 Well-Orderings and Complete Induction 163

(1) P(0) holds (the base case).
(2) For every m ∈ N+, if (∀k ∈ N)(k < m⇒ P(k)) then P(m).

As a formula, complete induction is stated as

P(0)∧ (∀m ∈ N+)[(∀k ∈ N)(k < m⇒ P(k))⇒ P(m)]⇒ (∀n ∈ N)P(n).

The difference between ordinary induction and complete induction is that in com-
plete induction, the induction hypothesis (∀k∈N)(k <m⇒P(k)) assumes that P(k)
holds for all k < m and not just for m−1 (as in ordinary induction), in order to de-
duce P(m). This gives us more proving power as we have more knowledge in order
to prove P(m).

We have many occasions to use complete induction but let us first check that it
is a valid principle. Even though we already sketched how the validity of complete
induction is a consequence of the (ordinary) induction principle (Version 3) on N
in Section 2.3 and we soon give a more general proof of the validity of complete
induction for a well-ordering, we feel that it is helpful to give the proof in the case
of N as a warm-up.

Theorem 5.4. The complete induction principle for N is valid.

Proof. Let P(n) be a predicate on N and assume that P(n) satisfies Conditions (1)
and (2) of complete induction as stated above. We proceed by contradiction. So,
assume that P(n) fails for some n ∈ N. If so, the set

F = {n ∈ N | P(n) = false}

is nonempty. By Theorem 5.3, the set F has a least element m and thus

P(m) = false.

Now, we can’t have m = 0, as we assumed that P(0) holds (by (1)) and because m
is the least element for which P(m) = false, we must have

P(k) = true for all k < m.

But, this is exactly the premise in (2) and as we assumed that (2) holds, we deduce
that

P(m) = true,

contradicting the fact that we already know that P(m) = false. Therefore, P(n) must
hold for all n ∈ N. ut

Remark: In our statement of the principle of complete induction, we singled out
the base case (1), and consequently we stated the induction step (2) for every m ∈
N+, excluding the case m = 0, which is already covered by the base case. It is also
possible to state the principle of complete induction in a more concise fashion as
follows.
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(∀m ∈ N)[(∀k ∈ N)(k < m⇒ P(k))⇒ P(m)]⇒ (∀n ∈ N)P(n).

In the above formula, observe that when m = 0, which is now allowed, the premise
(∀k ∈ N)(k < m⇒ P(k)) of the implication within the brackets is trivially true and
so, P(0) must still be established. In the end, exactly the same amount of work is
required but some people prefer the second more concise version of the principle
of complete induction. We feel that it would be easier for the reader to make the
transition from ordinary induction to complete induction if we make explicit the
fact that the base case must be established.

Let us illustrate the use of the complete induction principle by proving that every
natural number factors as a product of primes. Recall that for any two natural num-
bers, a,b ∈ N with b 6= 0, we say that b divides a iff a = bq, for some q ∈ N. In this
case, we say that a is divisible by b and that b is a factor of a. Then we say that a
natural number p∈N is a prime number (for short, a prime) if p≥ 2 and if p is only
divisible by itself and by 1. Any prime number but 2 must be odd but the converse
is false. For example, 2,3,5,7,11,13,17 are prime numbers, but 9 is not. There are
infinitely many prime numbers but to prove this, we need the following theorem.

Theorem 5.5. Every natural number n≥ 2 can be factored as a product of primes;
that is, n can be written as a product n = pm1

1 · · · p
mk
k , where the pis are pairwise

distinct prime numbers and mi ≥ 1 (1≤ i≤ k).

Proof. We proceed by complete induction on n≥ 2. The base case, n = 2 is trivial,
inasmuch as 2 is prime.

Consider any n > 2 and assume that the induction hypothesis holds; that is, every
m with 2≤ m < n can be factored as a product of primes. There are two cases.

(a) The number n is prime. Then we are done.
(b) The number n is not a prime. In this case, n factors as n = n1n2, where

2 ≤ n1,n2 < n. By the induction hypothesis, n1 has some prime factorization
and so does n2. If {p1, . . . , pk} is the union of all the primes occurring in these
factorizations of n1 and n2, we can write

n1 = pi1
1 · · · p

ik
k and n2 = p j1

1 · · · p
jk
k ,

where ih, jh ≥ 0 and, in fact, ih + jh ≥ 1, for 1≤ h≤ k. Consequently, n factors
as the product of primes,

n = pi1+ j1
1 · · · pik+ jk

k ,

with ih + jh ≥ 1, establishing the induction hypothesis. ut

For example, 21 = 31 ·71, 98 = 21 ·72, and 396 = 22 ·33 ·11.

Remark: The prime factorization of a natural number is unique up to permutation
of the primes p1, . . . , pk but this requires the Euclidean division lemma. However,
we can prove right away that there are infinitely primes.
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Theorem 5.6. Given any natural number n≥ 1, there is a prime number p such that
p > n. Consequently, there are infinitely many primes.

Proof. Let m = n!+1. If m is prime, we are done. Otherwise, by Theorem 5.5, the
number m has a prime decomposition. We claim that p > n for every prime p in this
decomposition. If not, 2 ≤ p ≤ n and then p would divide both n!+ 1 and n!, so p
would divide 1, a contradiction. ut

As an application of Theorem 5.3, we prove the Euclidean division lemma for
the integers.

Theorem 5.7. (Euclidean Division Lemma for Z) Given any two integers a,b ∈ Z,
with b 6= 0, there is some unique integer q ∈ Z (the quotient) and some unique
natural number r ∈ N (the remainder or residue), so that

a = bq+ r with 0≤ r < |b|.

Proof. First, let us prove the existence of q and r with the required condition on r.
We claim that if we show existence in the special case where a,b ∈ N (with b 6= 0),
then we can prove existence in the general case. There are four cases:

1. If a,b ∈ N, with b 6= 0, then we are done (this is the claim).
2. If a≥ 0 and b < 0, then −b > 0, so we know that there exist q,r with

a = (−b)q+ r with 0≤ r ≤−b−1.

Then,
a = b(−q)+ r with 0≤ r ≤ |b|−1.

3. If a < 0 and b > 0, then −a > 0, so we know that there exist q,r with

−a = bq+ r with 0≤ r ≤ b−1.

Then,
a = b(−q)− r with 0≤ r ≤ b−1.

If r = 0, we are done. Otherwise, 1≤ r≤ b−1, which implies 1≤ b−r≤ b−1,
so we get

a = b(−q)−b+b− r = b(−(q+1))+b− r with 0≤ b− r ≤ b−1.

4. If a < 0 and b < 0, then −a > 0 and −b > 0, so we know that there exist q,r
with

−a = (−b)q+ r with 0≤ r ≤−b−1.

Then,
a = bq− r with 0≤ r ≤−b−1.

If r = 0, we are done. Otherwise, 1≤ r ≤−b−1, which implies 1≤−b− r ≤
−b−1, so we get
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a = bq+b−b− r = b(q+1)+(−b− r) with 0≤−b− r ≤ |b|−1.

We are now reduced to proving the existence of q and r when a,b ∈ N with b 6= 0.
Consider the set

R = {a−bq ∈ N | q ∈ N}.
Note that a ∈ R by setting q = 0, because a ∈ N. Therefore, R is nonempty. By
Theorem 5.3, the nonempty set R has a least element r. We claim that r ≤ b−1 (of
course, r ≥ 0 as R⊆N). If not, then r ≥ b, and so r−b≥ 0. As r ∈ R, there is some
q ∈ N with r = a−bq. But now, we have

r−b = a−bq−b = a−b(q+1)

and as r−b≥ 0, we see that r−b ∈ R with r−b < r (because b 6= 0), contradicting
the minimality of r. Therefore, 0≤ r ≤ b−1, proving the existence of q and r with
the required condition on r.

We now go back to the general case where a,b ∈ Z with b 6= 0 and we prove
uniqueness of q and r (with the required condition on r). So, assume that

a = bq1 + r1 = bq2 + r2 with 0≤ r1 ≤ |b|−1 and 0≤ r2 ≤ |b|−1.

Now, as 0 ≤ r1 ≤ |b| − 1 and 0 ≤ r2 ≤ |b| − 1, we have |r1− r2| < |b|, and from
bq1 + r1 = bq2 + r2, we get

b(q2−q1) = r1− r2,

which yields
|b||q2−q1|= |r1− r2|.

Because |r1− r2|< |b|, we must have r1 = r2. Then, from b(q2−q1) = r1− r2 = 0,
as b 6= 0, we get q1 = q2, which concludes the proof. ut

For example, 12 = 5 · 2+ 2, 200 = 5 · 40+ 0, and 42823 = 6409× 6+ 4369.
The remainder r in the Euclidean division, a = bq+ r, of a by b, is usually denoted
a mod b.

5.5 Well-Founded Orderings and Complete Induction

We now show that complete induction holds for a very broad class of partial orders
called well-founded orderings that subsume well-orderings.

Definition 5.7. Given a poset 〈X ,≤〉, we say that ≤ is a well-founded ordering (or-
der) and that X is well founded iff X has no infinite strictly decreasing sequence
x0 > x1 > x2 > · · ·> xn > xn+1 > · · · .

The following property of well-founded sets is fundamental.
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Proposition 5.4. A poset 〈X ,≤〉 is well founded iff every nonempty subset of X has
a minimal element.

Proof. First, assume that every nonempty subset of X has a minimal element. If we
had an infinite strictly decreasing sequence, x0 > x1 > x2 > · · ·> xn > · · · , then the
set A = {xn} would have no minimal element, a contradiction. Therefore, X is well
founded.

Now, assume that X is well founded. We prove that A has a minimal element
by contradiction. So, let A be some nonempty subset of X and suppose A has no
minimal element. This means that for every a ∈ A, there is some b ∈ A with a > b.
Using the axiom of choice (graph version), there is some function g : A→ A with
the property that

a > g(a), for all a ∈ A.

Inasmuch as A is nonempty, we can pick some element, say a ∈ A. By the recursion
Theorem (Theorem 2.1), there is a unique function f : N→ A so that

f (0) = a,

f (n+1) = g( f (n)) for all n ∈ N.

But then f defines an infinite sequence {xn} with xn = f (n), so that xn > xn+1 for
all n ∈ N, contradicting the fact that X is well founded. ut

So, the seemingly weaker condition that there is no infinite strictly decreasing
sequence in X is equivalent to the fact that every nonempty subset of X has a minimal
element. If X is a total order, any minimal element is actually a least element and so
we get the following.

Corollary 5.1. A poset, 〈X ,≤〉, is well-ordered iff ≤ is total and X is well founded.

Note that the notion of a well-founded set is more general than that of a well-
ordered set, because a well-founded set is not necessarily totally ordered.

Remark: Suppose we can prove some property P by ordinary induction on N. Then
I claim that P can also be proven by complete induction on N. To see this, observe
first that the base step is identical. Also, for all m ∈ N+, the implication

(∀k ∈ N)(k < m⇒ P(k))⇒ P(m−1)

holds and because the induction step (in ordinary induction) consists in proving for
all m ∈ N+ that

P(m−1)⇒ P(m)

holds, from this implication and the previous implication we deduce that for all
m ∈ N+, the implication

(∀k ∈ N)(k < m⇒ P(k))⇒ P(m)

holds, which is exactly the induction step of the complete induction method. So, we
see that complete induction on N subsumes ordinary induction on N. The converse
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is also true but we leave it as a fun exercise. But now, by Theorem 5.3 (ordinary)
induction on N implies that N is well-ordered and by Theorem 5.4, the fact that
N is well-ordered implies complete induction on N. We just showed that complete
induction on N implies (ordinary) induction on N, therefore we conclude that all
three are equivalent; that is,

(ordinary) induction on N is valid
iff

complete induction on N is valid
iff

N is well-ordered.

These equivalences justify our earlier claim that the ability to do induction hinges
on some key property of the ordering, in this case, that it is a well-ordering.

We finally come to the principle of complete induction (also called transfinite
induction or structural induction), which, as we prove, is valid for all well-founded
sets. Every well-ordered set is also well-founded, thus complete induction is a very
general induction method.

Let (X ,≤) be a well-founded poset and let P be a predicate on X (i.e., a function
P : X →{true, false}).
Principle of Complete Induction on a Well-Founded Set.
To prove that a property P holds for all z ∈ X , it suffices to show that, for every
x ∈ X ,

(∗) If x is minimal or P(y) holds for all y < x,
(∗∗) Then P(x) holds.

The statement (∗) is called the induction hypothesis, and the implication
for all x, (∗) implies (∗∗) is called the induction step.

Formally, the induction principle can be stated as:

(∀x ∈ X)[(∀y ∈ X)(y < x⇒ P(y))⇒ P(x)]⇒ (∀z ∈ X)P(z) (CI)

Note that if x is minimal, then there is no y ∈ X such that y < x, and
(∀y ∈ X)(y < x⇒ P(y)) is true. Hence, we must show that P(x) holds for every
minimal element x. These cases are called the base cases.

Complete induction is not valid for arbitrary posets (see the problems) but holds
for well-founded sets as shown in the following theorem.

Theorem 5.8. The principle of complete induction holds for every well-founded set.

Proof. We proceed by contradiction. Assume that (CI) is false. Then

(∀x ∈ X)[(∀y ∈ X)(y < x⇒ P(y))⇒ P(x)] (1)

holds and
(∀z ∈ X)P(z) (2)

is false, that is, there is some z ∈ X so that
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P(z) = false.

Hence, the subset F of X defined by

F = {x ∈ X | P(x) = false}

is nonempty. Because X is well founded, by Proposition 5.4, F has some minimal
element b. Because (1) holds for all x ∈ X , letting x = b, we see that

[(∀y ∈ X)(y < b⇒ P(y))⇒ P(b)] (3)

holds. If b is also minimal in X , then there is no y ∈ X such that y < b and so,

(∀y ∈ X)(y < b⇒ P(y))

holds trivially and (3) implies that P(b)= true, which contradicts the fact that b∈F .
Otherwise, for every y ∈ X such that y < b, P(y) = true, because otherwise y would
belong to F and b would not be minimal. But then,

(∀y ∈ X)(y < b⇒ P(y))

also holds and (3) implies that P(b) = true, contradicting the fact that b∈ F . Hence,
complete induction is valid for well-founded sets. ut

As an illustration of well-founded sets, we define the lexicographic ordering on
pairs.

Definition 5.8. Given a partially ordered set 〈X ,≤〉, the lexicographic ordering�
on X×X induced by ≤ is defined as follows. For all x,y,x′,y′ ∈ X ,

(x,y)� (x′,y′) iff either
x = x′ and y = y′ or
x < x′ or
x = x′ and y < y′.

For example
(3,100)� (5,1), (4,10)� (4,17).

We leave it as an exercise to check that� is indeed a partial order on X ×X . The
following proposition is useful.

Proposition 5.5. If 〈X ,≤〉 is a well-founded set, then the lexicographic ordering�
on X×X is also well-founded.

Proof. We proceed by contradiction. Assume that there is an infinite decreasing
sequence (〈xi,yi〉)i in X×X . Then, either,

(1) There is an infinite number of distinct xi, or
(2) There is only a finite number of distinct xi.
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In case (1), the subsequence consisting of these distinct elements forms a de-
creasing sequence in X , contradicting the fact that ≤ is well-founded. In case (2),
there is some k such that xi = xi+1, for all i ≥ k. By definition of�, the sequence
(yi)i≥k is a decreasing sequence in X , contradicting the fact that ≤ is well-founded.
Hence,� is well-founded on X×X . ut

As an illustration of the principle of complete induction, consider the following
example in which it is shown that a function defined recursively is a total function.

Example 5.1. (Ackermann’s Function) The following function, A : N× N → N,
known as Ackermann’s function is well known in recursive function theory for its
extraordinary rate of growth. It is defined recursively as follows.

A(x,y) = if x = 0 then y+1
else if y = 0 then A(x−1,1)
else A(x−1,A(x,y−1)).

We wish to prove that A is a total function. We proceed by complete induction
over the lexicographic ordering on N×N.

1. The base case is x = 0, y = 0. In this case, because A(0,y) = y+1, A(0,0) is
defined and equal to 1.

2. The induction hypothesis is that for any (m,n), A(m′,n′) is defined for all
(m′,n′)� (m,n), with (m,n) 6= (m′,n′).

3. For the induction step, we have three cases:

a. If m = 0, because A(0,y) = y+1, A(0,n) is defined and equal to n+1.
b. If m 6= 0 and n= 0, because (m−1,1)� (m,0) and (m−1,1) 6= (m,0), by

the induction hypothesis, A(m−1,1) is defined, and so A(m,0) is defined
because it is equal to A(m−1,1).

c. If m 6= 0 and n 6= 0, because (m,n−1)� (m,n) and (m,n−1) 6= (m,n),
by the induction hypothesis, A(m,n−1) is defined. Because (m−1,y)�
(m,z) and (m−1,y) 6= (m,z) no matter what y and z are,
(m−1,A(m,n−1))� (m,n) and (m−1,A(m,n−1)) 6= (m,n), and by the
induction hypothesis, A(m−1,A(m,n−1)) is defined. But this is precisely
A(m,n), and so A(m,n) is defined. This concludes the induction step.

Hence, A(x,y) is defined for all x,y≥ 0. ut

5.6 Distributive Lattices, Boolean Algebras

If we go back to one of our favorite examples of a lattice, namely, the power set
2X of some set X , we observe that it is more than a lattice. For example, if we look
at Figure 5.7, we can check that the two identities D1 and D2 stated in the next
definition hold.
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Definition 5.9. We say that a lattice X is a distributive lattice if (D1) and (D2) hold:

D1 a∧ (b∨ c) = (a∧b)∨ (a∧ c)

D2 a∨ (b∧ c) = (a∨b)∧ (a∨ c).

Remark: Not every lattice is distributive but many lattices of interest are distribu-
tive. The set of subspaces of a (finite-dimensional) vector space E ordered by inclu-
sion is a lattice, but this lattice is not distributive if dim(E)≥ 2.

It is a bit surprising that in a lattice (D1) and (D2) are actually equivalent, as we
now show. Suppose (D1) holds, then

(a∨b)∧ (a∨ c) = ((a∨b)∧a)∨ ((a∨b)∧ c) (D1)
= a∨ ((a∨b)∧ c) (L4)
= a∨ ((c∧ (a∨b)) (L1)
= a∨ ((c∧a)∨ (c∧b)) (D1)
= a∨ ((a∧ c)∨ (b∧ c)) (L1)
= (a∨ (a∧ c))∨ (b∧ c) (L2)
= ((a∧ c)∨a)∨ (b∧ c) (L1)
= a∨ (b∧ c) (L4)

which is (D2). Dually, (D2) implies (D1).
The reader should prove that every totally ordered poset is a distributive lattice.

The lattice N+ = N−{0} under the divisibility ordering also turns out to be a dis-
tributive lattice.

The following fact about arbitrary lattices implies a useful fact about distributiv-
ity.

Proposition 5.6. In any lattice,

a∧ (b∨ c)≥ (a∧b)∨ (a∧ c)

for all a,b,c.

Proof. In any lattice, a∧ (b∨ c)≥ a∧b and a∧ (b∨ c)≥ a∧ c. ut

Therefore, in order to establish distributivity in a lattice it suffices to show that

a∧ (b∨ c)≤ (a∧b)∨ (a∧ c).

Another important property of distributive lattices is the following.

Proposition 5.7. In a distributive lattice X, if z∧ x = z∧ y and z∨ x = z∨ y, then
x = y (for all x,y,z ∈ X).

Proof. We have
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x = (x∨ z)∧ x (L4)
= x∧ (z∨ x) (L1)
= x∧ (z∨ y)

= (x∧ z)∨ (x∧ y) (D1)
= (z∧ x)∨ (x∧ y) (L1)
= (z∧ y)∨ (x∧ y)

= (y∧ z)∨ (y∧ x) (L1)
= y∧ (z∨ x) (D1)
= y∧ (z∨ y)

= (y∨ z)∧ y (L1)
= y; (L4)

that is, x = y, as claimed. ut

The power set lattice has yet some additional properties having to do with com-
plementation. First, the power lattice 2X has a least element 0 = /0 and a greatest
element, 1 = X . If a lattice X has a least element 0 and a greatest element 1, the
following properties are clear: For all a ∈ X , we have

a∧0 = 0 a∨0 = a

a∧1 = a a∨1 = 1.

More importantly, for any subset A ⊆ X , we have the complement A of A in X ,
which satisfies the identities:

A∪A = X , A∩A = /0.

Moreover, we know that the de Morgan identities hold. The generalization of these
properties leads to what is called a complemented lattice.

Fig. 5.12 Augustus de Morgan, 1806–1871.
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Definition 5.10. Let X be a lattice and assume that X has a least element 0 and a
greatest element 1 (we say that X is a bounded lattice). For any a∈ X , a complement
of a is any element b ∈ X , so that

a∨b = 1 and a∧b = 0.

If every element of X has a complement, we say that X is a complemented lattice.

Remarks:

1. When 0 = 1, the lattice X collapses to the degenerate lattice consisting of a
single element. As this lattice is of little interest, from now on, we always
assume that 0 6= 1.

2. In a complemented lattice, complements are generally not unique. For exam-
ple, for any finite-dimensional vector space E, the set of subspaces is a com-
plemented lattice which is not distributive if dim(E) ≥ 2. For every subspace
V of E, any subspace W such that E =V ⊕W (a direct sum) is a complement
of V . However, as the next proposition shows, this is the case for distributive
lattices.

Proposition 5.8. Let X be a lattice with least element 0 and greatest element 1. If
X is distributive, then complements are unique if they exist. Moreover, if b is the
complement of a, then a is the complement of b.

Proof. If a has two complements, b1 and b2, then a∧b1 = 0, a∧b2 = 0, a∨b1 = 1,
and a∨b2 = 1. By Proposition 5.7, we deduce that b1 = b2; that is, a has a unique
complement.

By commutativity, the equations

a∨b = 1 and a∧b = 0

are equivalent to the equations

b∨a = 1 and b∧a = 0,

which shows that a is indeed a complement of b. By uniqueness, a is the complement
of b. ut

In view of Proposition 5.8, if X is a complemented distributive lattice, we denote
the complement of any element, a ∈ X , by a. We have the identities

a∨a = 1
a∧a = 0

a = a.

We also have the following proposition about the de Morgan laws.
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Proposition 5.9. Let X be a lattice with least element 0 and greatest element 1. If X
is distributive and complemented, then the de Morgan laws hold:

a∨b = a∧b

a∧b = a∨b.

Proof. We prove that
a∨b = a∧b,

leaving the dual identity as an easy exercise. Using the uniqueness of complements,
it is enough to check that a∧ b works, that is, satisfies the conditions of Definition
5.10. For the first condition, we have

(a∨b)∨ (a∧b) = ((a∨b)∨a)∧ ((a∨b)∨b)

= (a∨ (b∨a))∧ (a∨ (b∨b))

= (a∨ (a∨b))∧ (a∨1)
= ((a∨a)∨b)∧1
= (1∨b)∧1
= 1∧1 = 1.

For the second condition, we have

(a∨b)∧ (a∧b) = (a∧ (a∧b))∨ (b∧ (a∧b))

= ((a∧a)∧b)∨ (b∧ (b∧a))

= (0∧b)∨ ((b∧b)∧a)

= 0∨ (0∧a)

= 0∨0 = 0.

ut

All this leads to the definition of a Boolean lattice.

Definition 5.11. A Boolean lattice is a lattice with a least element 0, a greatest ele-
ment 1, and which is distributive and complemented.

Of course, every power set is a Boolean lattice, but there are Boolean lattices that
are not power sets. Such boolean lattices occur in measure theory, for example, in
the construction of the product of two measurable spaces.

Putting together what we have done, we see that a Boolean lattice is a set X
with two special elements, 0, 1, and three operations ∧, ∨, and a 7→ a satisfying the
axioms stated in the following.

Proposition 5.10. If X is a Boolean lattice, then the following equations hold for all
a,b,c ∈ X.
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L1 a∨b = b∨a, a∧b = b∧a

L2 (a∨b)∨ c = a∨ (b∨ c), (a∧b)∧ c = a∧ (b∧ c)

L3 a∨a = a, a∧a = a

L4 (a∨b)∧a = a, (a∧b)∨a = a

D1-D2 a∧ (b∨ c) = (a∧b)∨ (a∧ c), a∨ (b∧ c) = (a∨b)∧ (a∨ c)

LE a∨0 = a, a∧0 = 0
GE a∨1 = 1, a∧1 = a

C a∨a = 1, a∧a = 0
I a = a

dM a∨b = a∧b, a∧b = a∨b.

Conversely, if X is a set together with two special elements 0, 1, and three operations
∧, ∨, and a 7→ a satisfying the axioms above, then it is a Boolean lattice under the
ordering given by a≤ b iff a∨b = b.

In view of Proposition 5.10, we make the following definition.

Definition 5.12. A set X together with two special elements 0, 1 and three opera-
tions ∧, ∨, and a 7→ a satisfying the axioms of Proposition 5.10 is called a Boolean
algebra.

Proposition 5.10 shows that the notions of a Boolean lattice and of a Boolean al-
gebra are equivalent. The first one is order-theoretic and the second one is algebraic.

Remarks:

1. As the name indicates, Boolean algebras were invented by G. Boole (1854).
One of the first comprehensive accounts is due to E. Schröder (1890–1895).

2. The axioms for Boolean algebras given in Proposition 5.10 are not indepen-
dent. There is a set of independent axioms known as the Huntington axioms
(1933).

Fig. 5.13 George Boole, 1815–1864 (left) and Ernst Schröder 1841–1902 (right).

Let p be any integer with p ≥ 2. Under the division ordering, it turns out that
the set Div(p) of divisors of p is a distributive lattice. In general not every integer
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k ∈Div(p) has a complement but when it does k = p/k. It can be shown that Div(p)
is a Boolean algebra iff p is not divisible by any square integer (an integer of the
form m2, with m > 1).

Classical logic is also a rich source of Boolean algebras. Indeed, it is easy to show
that logical equivalence is an equivalence relation and, as homework problems, you
have shown (with great pain) that all the axioms of Proposition 5.10 are provable
equivalences (where ∨ is disjunction and ∧ is conjunction, P = ¬P; i.e., negation,
0 =⊥ and 1 =>) (see Problems 11.7, 11.17, 11.27). Furthermore, again, as home-
work problems (see Problems 11.17–11.19), you have shown that logical equiva-
lence is compatible with ∨,∧,¬ in the following sense. If P1 ≡ Q1 and P2 ≡ Q2,
then

(P1∨P2) ≡ (Q1∨Q2)

(P1∧P2) ≡ (Q1∧Q2)

¬P1 ≡ ¬Q1.

Consequently, for any set T of propositions we can define the relation ≡T by

P≡T Q iff T ` P≡ Q,

that is, iff P≡ Q is provable from T (as explained in Section 11.13). Clearly, ≡T is
an equivalence relation on propositions and so, we can define the operations ∨,∧,
and on the set of equivalence classes BT of propositions as follows.

[P]∨ [Q] = [P∨Q]

[P]∧ [Q] = [P∧Q]

[P] = [¬P].

We also let 0 = [⊥] and 1 = [>]. Then we get the Boolean algebra BT called the
Lindenbaum algebra of T .

It also turns out that Boolean algebras are just what’s needed to give truth-value
semantics to classical logic. Let B be any Boolean algebra. A truth assignment is any
function v from the set PS = {P1,P2, . . .} of propositional symbols to B. Then we
can recursively evaluate the truth value PB[v] in B of any proposition P with respect
to the truth assignment v as follows.

(Pi)B[v] = v(P)

⊥B [v] = 0
>B[v] = 1

(P∨Q)B[v] = PB[v]∨PB[v]

(P∧Q)B[v] = PB[v]∧PB[v]

(¬P)B[v] = P[v]B.
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In the equations above, on the right-hand side, ∨ and ∧ are the lattice operations of
the Boolean algebra B. We say that a proposition P is valid in the Boolean algebra
B (or B-valid) if PB[v] = 1 for all truth assignments v. We say that P is (classically)
valid if P is B-valid in all Boolean algebras B. It can be shown that every provable
proposition is valid. This property is called soundness. Conversely, if P is valid, then
it is provable. This second property is called completeness. Actually completeness
holds in a much stronger sense: if a proposition is valid in the two-element Boolean
algebra {0,1}, then it is provable.

5.7 Heyting algebras

One might wonder if there are certain kinds of algebras similar to Boolean alge-
bras well suited for intuitionistic logic. The answer is yes: such algebras are called
Heyting algebras.

Fig. 5.14 Arend Heyting, 1898–1980.

In our study of intuitionistic logic, we learned that negation is not a primary
connective but instead it is defined in terms of implication by ¬P = P⇒⊥. This
suggests adding to the two lattice operations ∨ and ∧ a new operation→, that will
behave like⇒. The trick is, what kind of axioms should we require on→ to “cap-
ture” the properties of intuitionistic logic? Now, if X is a lattice with 0 and 1, given
any two elements a,b ∈ X , after some experimentation logicians found that a→ b
should be the largest element c, such that c∧a≤ b. This leads to

Definition 5.13. A lattice X with 0 and 1 is a Heyting lattice iff it has a third binary
operation→ such that

c∧a≤ b iff c≤ (a→ b)

for all a,b,c ∈ X . We define the negation (or pseudo-complement) of a as
a = (a→ 0).

At first glance, it is not clear that a Heyting lattice is distributive but in fact, it is.
The following proposition (stated without proof) gives an algebraic characterization
of Heyting lattices which is useful to prove various properties of Heyting lattices.
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Proposition 5.11. Let X be a lattice with 0 and 1 and with a binary operation →.
Then X is a Heyting lattice iff the following equations hold for all a,b,c ∈ X.

a→ a = 1
a∧ (a→ b) = a∧b

b∧ (a→ b) = b

a→ (b∧ c) = (a→ b)∧ (a→ c).

A lattice with 0 and 1 and with a binary operation, →, satisfying the equations
of Proposition 5.11 is called a Heyting algebra. So we see that Proposition 5.11
shows that the notions of Heyting lattice and Heyting algebra are equivalent (this
is analogous to Boolean lattices and Boolean algebras). Example 5.2 provides an
interesting family of Heyting algebras.

The reader will notice that these axioms are propositions that were shown to be
provable intuitionistically in homework problems. The proof of Proposition 5.11 is
not really difficult but it is a bit tedious so we omit it.

Let us simply show that the fourth equation implies the following result.

Proposition 5.12. For any fixed a ∈ X, the map b 7→ (a→ b) is monotonic.

Proof. Assume b≤ c; that is, b∧ c = b. Then we get

a→ b = a→ (b∧ c) = (a→ b)∧ (a→ c),

which means that (a→ b)≤ (a→ c), as claimed. ut

The following theorem shows that every Heyting algebra is distributive, as we
claimed earlier. This theorem also shows “how close” to a Boolean algebra a Heyt-
ing algebra is.

Theorem 5.9. (a) Every Heyting algebra is distributive.
(b) A Heyting algebra X is a Boolean algebra iff a = a for all a ∈ X.

Proof. (a) From a previous remark, to show distributivity, it is enough to show the
inequality

a∧ (b∨ c)≤ (a∧b)∨ (a∧ c).

Observe that from the property characterizing→, we have

b≤ a→ (a∧b) iff b∧a≤ a∧b

which holds, by commutativity of ∧. Thus, b≤ a→ (a∧b) and similarly,
c≤ a→ (a∧ c).

Recall that for any fixed a, the map x 7→ (a→ x) is monotonic. Because
a∧b≤ (a∧b)∨ (a∧ c) and a∧ c≤ (a∧b)∨ (a∧ c), we get

a→ (a∧b)≤ a→ ((a∧b)∨ (a∧c)) and a→ (a∧c)≤ a→ ((a∧b)∨ (a∧c)).
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These two inequalities imply (a→ (a∧b))∨(a→ (a∧c))≤ a→ ((a∧b)∨(a∧c)),
and because we also have b≤ a→ (a∧b) and c≤ a→ (a∧ c), we deduce that

b∨ c≤ a→ ((a∧b)∨ (a∧ c)),

which, using the fact that (b∨ c)∧a = a∧ (b∨ c), means that

a∧ (b∨ c)≤ (a∧b)∨ (a∧ c),

as desired.
(b) We leave this part as an exercise. The trick is to see that the de Morgan laws

hold and to apply one of them to a∧a = 0. ut

Remarks:

1. Heyting algebras were invented by A. Heyting in 1930. Heyting algebras are
sometimes known as “Brouwerian lattices”.

2. Every Boolean algebra is automatically a Heyting algebra: set a→ b = a∨b.
3. It can be shown that every finite distributive lattice is a Heyting algebra.

We conclude this brief exposition of Heyting algebras by explaining how they
provide a truth-value semantics for intuitionistic logic analogous to the truth-value
semantics that Boolean algebras provide for classical logic.

As in the classical case, it is easy to show that intuitionistic logical equivalence
is an equivalence relation and you have shown (with great pain) that all the ax-
ioms of Heyting algebras are intuitionistically provable equivalences (where ∨ is
disjunction, ∧ is conjunction, and→ is⇒). Furthermore, you have also shown that
intuitionistic logical equivalence is compatible with ∨,∧,⇒ in the following sense.
If P1 ≡ Q1 and P2 ≡ Q2, then

(P1∨P2) ≡ (Q1∨Q2)

(P1∧P2) ≡ (Q1∧Q2)

(P1⇒ P2) ≡ (Q1⇒ Q2).

Consequently, for any set T of propositions we can define the relation ≡T by

P≡T Q iff T ` P≡ Q,

that is iff P≡Q is provable intuitionistically from T (as explained in Section 11.13).
Clearly, ≡T is an equivalence relation on propositions, and we can define the oper-
ations ∨,∧, and→ on the set of equivalence classes HT of propositions as follows.

[P]∨ [Q] = [P∨Q]

[P]∧ [Q] = [P∧Q]

[P]→ [Q] = [P⇒ Q].
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We also let 0 = [⊥] and 1 = [>]. Then we get the Heyting algebra HT called the
Lindenbaum algebra of T , as in the classical case.

Now let H be any Heyting algebra. By analogy with the case of Boolean algebras,
a truth assignment is any function v from the set PS = {P1,P2, . . .} of propositional
symbols to H. Then we can recursively evaluate the truth value PH [v] in H of any
proposition P, with respect to the truth assignment v as follows.

(Pi)H [v] = v(P)

⊥H [v] = 0
>H [v] = 1

(P∨Q)H [v] = PH [v]∨PH [v]

(P∧Q)H [v] = PH [v]∧PH [v]

(P⇒ Q)H [v] = (PH [v]→ PH [v])

(¬P)H [v] = (PH [v]→ 0).

In the equations above, on the right-hand side, ∨, ∧, and→ are the operations of the
Heyting algebra H. We say that a proposition P is valid in the Heyting algebra H (or
H-valid) if PH [v] = 1 for all truth assignments, v. We say that P is HA-valid (or intu-
itionistically valid) if P is H-valid in all Heyting algebras H. As in the classical case,
it can be shown that every intuitionistically provable proposition is HA-valid. This
property is called soundness. Conversely, if P is HA-valid, then it is intuitionistically
provable. This second property is called completeness. A stronger completeness re-
sult actually holds: if a proposition is H-valid in all finite Heyting algebras H, then
it is intuitionistically provable. As a consequence, if a proposition is not provable
intuitionistically, then it can be falsified in some finite Heyting algebra.

We conclude with an example of a family of Heyting algebras arising in topology.

Example 5.2. If X is any set, a topology on X is a family O of subsets of X satisfying
the following conditions.

(1) /0 ∈ O and X ∈ O .
(2) For every family (even infinite), (Ui)i∈I , of sets Ui ∈ O , we have

⋃
i∈I Ui ∈ O .

(3) For every finite family, (Ui)1≤i≤n, of sets Ui ∈ O , we have
⋂

1≤i≤n Ui ∈ O .

Every subset in O is called an open subset of X (in the topology O) . The pair
〈X ,O〉 is called a topological space. Given any subset A of X , the union of all open

subsets contained in A is the largest open subset of A and is denoted
◦
A.

Given a topological space 〈X ,O〉, we claim that O with the inclusion ordering is
a Heyting algebra with 0 = /0; 1 = X ; ∨= ∪ (union); ∧= ∩ (intersection); and with

(U →V ) =

◦︷ ︸︸ ︷
(X−U)∪V .

(Here, X−U is the complement of U in X .) In this Heyting algebra, we have



5.8 Summary 181

U =

◦︷ ︸︸ ︷
X−U .

Because X −U is usually not open, we generally have U 6= U . Therefore, we see
that topology yields another supply of Heyting algebras.

5.8 Summary

In this chapter, we introduce partial orders and we study some of their main prop-
erties. The ability to use induction to prove properties of the elements of a partially
ordered set is related to a property known as well-foundedness. We investigate quite
thoroughly induction principles valid for well-ordered sets and, more generally,
well-founded sets. We also investigate the properties of partially ordered sets where
the partial order has some extra properties. For example, we briefly study lattices,
complete lattices, Boolean algebras, and Heyting algebras. Regarding complete lat-
tices, we prove a beautiful theorem due to Tarski (Tarski’s fixed-point theorem) and
use it to give a very short proof of the Schröder–Bernstein theorem (Theorem 3.7).

• We begin with the definition of a partial order.
• Next, we define total orders, chains, strict orders, and posets.
• We define a minimal element, an immediate predecessor, a maximal element,

and an immediate successor.
• We define the Hasse diagram of a poset.
• We define a lower bound, and upper bound, a least element, a greatest element,

a greatest lower bound, and a least upper bound.
• We define a meet and a join.
• We state Zorn’s lemma.
• We define monotonic functions.
• We define lattices and complete lattices.
• We prove some basic properties of lattices and introduce duality.
• We define fixed points as well as least and greatest fixed points.
• We state and prove Tarski’s fixed-point theorem.
• As a consequence of Tarski’s fixed-point theorem we give a short proof of the

Schröder–Bernstein theorem (Theorem 3.7).
• We define a well order and show that N is well ordered.
• We revisit complete induction on N and prove its validity.
• We define prime numbers and we apply complete induction to prove that every

natural number n≥ 2 can be factored as a product of primes.
• We prove that there are infinitely many primes.
• We use the fact that N is well ordered to prove the correctness of Euclidean

division.
• We define well-founded orderings.
• We characterize well-founded orderings in terms of minimal elements.
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• We define the principle of complete induction on a well-founded set and prove
its validity.

• We define the lexicographic ordering on pairs.
• We give the example of Ackermann’s function and prove that it is a total func-

tion.
• We define distributive lattices and prove some properties about them.
• We define complemented lattices and prove some properties about them.
• We define Boolean lattices, state some of their properties, and define Boolean

algebras.
• We discuss the Boolean-valued semantics of classical logic.
• We define the Lindenbaum algebra of a set of propositions.
• We define Heyting lattices and prove some properties about them and define

Heyting algebras.
• We show that every Heyting algebra is distributive and characterize when a

Heyting algebra is a Boolean algebra.
• We discuss the semantics of intuitionistic logic in terms of Heyting algebras

(HA-validity).
• We conclude with the definition of a topological space and show how the open

sets form a Heyting algebra.

Problems

5.1. Give a proof for Proposition 5.1.

5.2. Give a proof for Proposition 5.2.

5.3. Draw the Hasse diagram of all the (positive) divisors of 60, where the partial
ordering is the division ordering (i.e., a ≤ b iff a divides b). Does every pair of
elements have a meet and a join?

5.4. Check that the lexicographic ordering on strings is indeed a total order.

5.5. Check that the function ϕ : 2A → 2A used in the proof of Theorem 3.7, is in-
deed monotonic. Check that the function h : A→ B constructed during the proof of
Theorem 3.7, is indeed a bijection.

5.6. Give an example of a poset in which complete induction fails.

5.7. Prove that the lexicographic ordering� on pairs is indeed a partial order.

5.8. If one wants to prove a property P(n) of the natural numbers, rather than using
induction, it is sometimes more convenient to use the method of proof by smallest
counterexample. This is a method that proceeds by contradiction as follows.

1. If P is false, then we know from Theorem 5.3 that there is a smallest k ∈ N
such that P(k) is false; this k is the smallest counterexample.
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2. Next, we prove that k 6= 0. This is usually easy and it is a kind of basis step.
3. Because k 6= 0, the number k−1 is a natural number and P(k−1) must hold

because k is the smallest counterexample. Then, use this fact and the fact that
P(k) is false to derive a contradiction.

Use the method of proof by smallest counterexample to prove that every natural
number is either odd or even.

5.9. Prove that the function, f : N×N→ N, given by

f (m,n) = 2m(2n+1)−1

is a bijection.

5.10. Let S = {a1, . . . ,an} be any nonempty set of n positive natural numbers. Prove
that there is a nonempty subset of S whose sum is divisible by n.
Hint. Consider the numbers, b1 = a1, b2 = a1 +a2, . . . , bn = a1 +a2 + · · ·+an.

5.11. Prove that every totally ordered poset is a distributive lattice. Prove that the
lattice N+ under the divisibility ordering is a distributive lattice.

5.12. Let E be a finite-dimensional vector space.
(1) Prove that the set of subspaces of E is a lattice.
(2) Prove that if dim(E)≥ 2, then this lattice is not distributive.
(3) Prove that the set of subspaces of E is a complemented lattice.

5.13. Prove part (b) of Proposition 5.9.

5.14. Prove that every finite distributive lattice is a Heyting algebra.
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Chapter 6
Some Counting Problems; Binomial and
Multinomial Coefficients

6.1 Counting Permutations and Functions

In this section we consider some simple counting problems. Let us begin with per-
mutations. Recall that a permutation of a set A is any bijection between A and itself.
If A is a finite set with n elements, we mentioned earlier (without proof) that A has
n! permutations, where the factorial function, n 7→ n! (n ∈ N), is given recursively
by:

0! = 1
(n+1)! = (n+1)n!.

The reader should check that the existence of the function n 7→ n! can be justified
using the recursion theorem (Theorem 2.1).

A permutation is often described by its image. For example, if A = {a,b,c},
the string acb corresponds to the bijection a 7→ a, b 7→ c, c 7→ b. In order to find
all permutations π of A, first we have to decide what the image π(a) of a is, and
there are three possibilities. Then we have to decide what is the image π(b) of b;
there are two possibilities from the set A−{π(a)}. At this stage, the target set is
A−{π(a),π(b)}, a set with a single element, and the only choice is to map c to this
element. We get the following 6 = 3 ·2 permutations:

abc, acb, bac, cab, bca, cba.

The method to find all permutations of a set A with n elements is now pretty clear:
first map a1 to any of the n elements of A, say π(a1), and then apply the same
process recursively to the sets A−{a1} and A−{π(a1)}, both of size n− 1. So,
our proof should proceed by induction. However, there is a small problem, which is
that originally we deal with a bijection from A to itself, but after the first step, the
domain and the range of our function are generally different. The way to circumvent
this problem is to prove a slightly more general fact involving two sets of the same
cardinality.

185
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Proposition 6.1. The number of permutations of a set of n elements is n!.

Proof. We prove that if A and B are any two finite sets of the same cardinality n,
then the number of bijections between A and B is n!. Now, in the special case where
B = A, we get our theorem.

The proof is by induction on n. For n = 0, the empty set has one bijection (the
empty function). So, there are 0! = 1 permutations, as desired.

Assume inductively that if A′ and B′ are any two finite sets of the same cardinality,
n, then the number of bijections between A′ and B′ is n!. If A and B are sets with n+1
elements, then pick any element a ∈ A, and write A = A′∪{a}, where A′ = A−{a}
has n elements. Now any bijection f : A→ B must assign some element of B to
a and then f � A′ is a bijection between A′ and B′ = B−{ f (a)}. By the induction
hypothesis, there are n! bijections between A′ and B′. There are n+1 ways of picking
f (a) in B, thus the total number of bijections between A and B is (n+1)n!=(n+1)!,
establishing the induction hypothesis. ut

Let us also count the number of functions between two finite sets.

Proposition 6.2. If A and B are finite sets with |A| = m and |B| = n, then the set of
function BA from A to B has nm elements.

Proof. We proceed by induction on m. For m = 0, we have A = /0, and the only
function is the empty function. In this case, n0 = 1 and the base case holds.

Assume the induction hypothesis holds for m and assume |A| = m+1. Pick any
element a ∈ A and let A′ = A−{a}, a set with m elements. Any function f : A→ B
assigns an element f (a) ∈ B to a and f � A′ is a function from A′ to B. By the induc-
tion hypothesis, there are nm functions from A′ to B. There are n ways of assigning
f (a) ∈ B to a, thus there are n · nm = nm+1 functions from A to B, establishing the
induction hypothesis. ut

As a corollary, we determine the cardinality of a finite power set.

Corollary 6.1. For any finite set A, if |A|= n, then |2A|= 2n.

Proof. By Proposition 3.2, there is a bijection between 2A and the set of functions
{0,1}A. Because |{0,1}|= 2, we get |2A|= |{0,1}A|= 2n, by Proposition 6.2. ut

Computing the value of the factorial function for a few inputs, say n= 1,2 . . . ,10,
shows that it grows very fast. For example,

10! = 3,628,800.

Is it possible to quantify how fast the factorial grows compared to other functions,
say nn or en? Remarkably, the answer is yes. A beautiful formula due to James
Stirling (1692–1770) tells us that

n!∼
√

2πn
(n

e

)n
,
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which means that
lim
n→∞

n!√
2πn

( n
e

)n = 1.

Here, of course,

e = 1+
1
1!

+
1
2!

+
1
3!

+ · · ·+ 1
n!

+ · · · ,

the base of the natural logarithm. It is even possible to estimate the error. It turns out

Fig. 6.1 Jacques Binet, 1786–1856.

that
n! =

√
2πn

(n
e

)n
eλn ,

where
1

12n+1
< λn <

1
12n

,

a formula due to Jacques Binet (1786–1856).
Let us introduce some notation used for comparing the rate of growth of func-

tions. We begin with the “big oh” notation.

Definition 6.1. Given any two functions, f : N→R and g : N→R, we say that f is
O(g) (or f (n) is O(g(n))) iff there is some N > 0 and a constant c > 0 such that

| f (n)| ≤ c|g(n)|, for all n≥ N.

In other words, for n large enough, | f (n)| is bounded by c|g(n)|.
We sometimes write n >> 0 to indicate that n is “large.” For example, λn is

O(1/12n). By abuse of notation, we often write f (n) = O(g(n)) even though this
does not make sense.

Definition 6.2. The “big omega” notation means the following: f is Ω(g) (or f (n)
is Ω(g(n))) iff there is some N > 0 and a constant c > 0 such that

| f (n)| ≥ c|g(n)|, for all n≥ N.

The reader should check that f (n) is O(g(n)) iff g(n) is Ω( f (n)). We can com-
bine O and Ω to get the “big theta” notation:
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Definition 6.3. We say that f is Θ(g) (or f (n) is Θ(g(n))) iff there is some N > 0
and some constants c1 > 0 and c2 > 0 such that

c1|g(n)| ≤ | f (n)| ≤ c2|g(n)|, for all n≥ N.

The “little oh” notation expresses the fact that a function f has much slower
growth than a function g.

Definition 6.4. We say that f is o(g) (or f (n) is o(g(n))) iff

lim
n→∞

f (n)
g(n)

= 0.

For example,
√

n is o(n) (as n goes to ∞).

6.2 Counting Subsets of Size k; Binomial Coefficients

Let us now consider the problem of counting the number of subsets of cardinality k
of a set of cardinality n, with 0≤ k ≤ n. Denote this number by

(n
k

)
(say “n choose

k”). For example, if we consider the set X = {1,2,3}, a set of cardinality 3, then the
empty set is the only subset of size 0, there are 3 subsets of size 1,

{1}, {2}, {3},

3 subsets of size 2,
{1,2}, {1,3}, {2,3},

and a single subset of size 3, namely X itself.
Next, consider the set X = {1,2,3,4}, a set of cardinality 4. Again, the empty set

is the only subset of size 0, and X itself is the only subset of size 4. We also have 4
subsets of size 1,

{1}, {2}, {3}, {4},
6 subsets of size 2,

{1,2}, {1,3}, {2,3}, {1,4}, {2,4}, {3,4},

and 4 subsets of size 3,

{2,3,4}, {1,3,4}, {1,2,4}, {1,2,3},

Observe that the subsets of size 3 are in one–to–one correspondence with the subsets
of size 1, since every subset of size 3 is the complement of a subset of size 1 (given
a one-element subset {a}, delete a from X = {1,2,3,4}). This is true in general:
the number of subsets with k elements is equal to the number of subsets with n− k
elements.
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Let us now consider X = {1,2,3,4,5,6}, a set of cardinality 6. The empty set is
the only subset of size 0, the set X itself is the only set of size 6, and the 6 subsets
of size 1 are

{1}, {2}, {3}, {4}, {5}, {6},
so let us try to find the subsets of size 2 and 3. The subsets of size 4 are obtained by
complementation from the subsets of size 2, and the subsets of size 5 are obtained
by complementation from the subsets of size 1.

To find the subsets of size 2, let us observe that these subsets are of two kinds:

1. those subsets that do not contain 6.
2. those subsets that contain 6.

Now, the subsets of size 2 that do not contain 6 are exactly the two-element subsets
of {1,2,3,4,5}, and the subsets that contain 6,

{1,6}, {2,6}, {3,6}, {4,6}, {5,6},

are obtained from the 5 subsets of size 1 of {1,2,3,4,5}, by adding 6 to them.
We now have to find all subsets of size 2 of {1,2,3,4,5}. By the same reasoning

as above, these subsets are of two kinds:

1. those subsets that do not contain 5.
2. those subsets that contain 5.

The 2-element subsets of {1,2,3,4,5} that do not contain 5 are all 2-element subsets
of {1,2,3,4}, which have been found before:

{1,2}, {1,3}, {2,3}, {1,4}, {2,4}, {3,4}.

The 2-element subsets of {1,2,3,4,5} that contain 5 are

{1,5}, {2,5}, {3,5}, {4,5}.

Thus, we obtain the following 10 = 6+4 subsets of size 2 of {1,2,3,4,5}:

{1,2}, {1,3}, {2,3}, {1,4}, {2,4}, {3,4},
{1,5}, {2,5}, {3,5}, {4,5}.

Finally, we obtain the following
(6

2

)
= 15 = 10 + 5 subsets of size 2 of X =

{1,2,3,4,5,6}:

{1,2}, {1,3}, {2,3}, {1,4}, {2,4}, {3,4},
{1,5}, {2,5}, {3,5}, {4,5}
{1,6}, {2,6}, {3,6}, {4,6}, {5,6}.

The 3-element subsets of X are found in a similar fashion. These subsets are of
two kinds:
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1. those subsets that do not contain 6.
2. those subsets that contain 6.

We leave it as an exercise to show that there are 10 subsets of size 3 not containing
6 and also 10 subsets of size 3 containing 6. Therefore, there are

(6
3

)
= 20 = 10+10

subsets of size 3 of {1,2,3,4,5,6}.
The method used in the above examples to count all subsets of size k of the set

{1, . . . ,n}, by counting all subsets containing n and all subsets not containing n, can
be used used to prove the proposition below. Actually, in this proposition, it is more
convenient to assume that k ∈ Z.

Proposition 6.3. For all n ∈ N and all k ∈ Z, if
(n

k

)
denotes the number of subsets

of cardinality k of a set of cardinality n, then(
0
0

)
= 1(

n
k

)
= 0 if k /∈ {0,1, . . . ,n}(

n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
(n≥ 1, 0≤ k ≤ n).

Proof. Obviously, when k is “out of range,” that is, when k /∈ {0,1, . . . ,n}, we have(
n
k

)
= 0.

Next, assume that 0≤ k≤ n. Clearly, we may assume that our set is [n] = {1, . . . ,n}
([0] = /0). If n = 0, we have (

0
0

)
= 1,

because the empty set is the only subset of size 0.
If n≥ 1, we need to consider the cases k = 0 and k = n separately. If k = 0, then

the only subset of [n] with 0 elements is the empty set, so(
n
0

)
= 1 =

(
n−1

0

)
+

(
n−1
−1

)
= 1+0,

inasmuch as
(n−1

0

)
= 1 and

(n−1
−1

)
= 0. If k = n, then the only subset of [n] with n

elements is [n] itself, so(
n
n

)
= 1 =

(
n−1

n

)
+

(
n−1
n−1

)
= 0+1,

because
(n−1

n

)
= 0 and

(n−1
n−1

)
= 1.

If 1 ≤ k ≤ n− 1, then there are two kinds of subsets of {1, . . . ,n} having k ele-
ments: those containing n, and those not containing n. Now, there are as many sub-
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sets of k elements from {1, . . . ,n} containing n as there are subsets of k−1 elements
from {1, . . . ,n−1}, namely

(n−1
k−1

)
, and there are as many subsets of k elements from

{1, . . . ,n} not containing n as there are subsets of k elements from {1, . . . ,n− 1},
namely

(n−1
k

)
. Thus, the number of subsets of {1, . . . ,n} consisting of k elements is(n−1

k

)
+
(n−1

k−1

)
, which is equal to

(n
k

)
. ut

Definition 6.5. The number
(n

k

)
counting the number of subsets of size k of a set of

size n binomial!coefficientsis called a binomial coefficient

The binomial coefficients arise in the expansion of the binomial expression (a+
b)n, as we show shortly. The binomial coefficients can be computed inductively
using the formula (

n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
(sometimes known as Pascal’s recurrence formula) by forming what is usually
called Pascal’s triangle, which is based on the recurrence for

(n
k

)
; see Table 6.1.

n
(n

0

) (n
1

) (n
2

) (n
3

) (n
4

) (n
5

) (n
6

) (n
7

) (n
8

) (n
9

) ( n
10

)
. . .

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1
...

...
...

...
...

...
...

...
...

...
...

...
...

Table 6.1 Pascal’s Triangle.

We can also give the following explicit formula for
(n

k

)
in terms of the factorial

function.

Proposition 6.4. For all n,k ∈ N, with 0≤ k ≤ n, we have(
n
k

)
=

n!
k!(n− k)!

.

Proof. We use complete induction on n. For the base case, n = 0, since 0 ≤ k ≤ n,
we also have k = 0, and in this case, by definition,(

0
0

)
= 1.
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Since 0! = 1, we also have
0!

0!0!
= 1,

and the base case is verified. For the induction step, we have n≥ 1. If k = 0 or k = n,
then we showed that (

n
0

)
=

(
n
n

)
= 1,

and since 0! = 1, we have

1 =
n!

0!n!
=

n!
n!0!

,

so indeed (
n
0

)
=

n!
0!n!

= 1,
(

n
n

)
=

n!
n!0!

= 1.

If 0 < k < n, by Pascal’s identity(
n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
,

so by the induction hypothesis,(
n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
=

(n−1)!
k!(n−1− k)!

+
(n−1)!

(k−1)!(n−1− (k−1))!

=
(n−1)!

k!(n−1− k)!
+

(n−1)!
(k−1)!(n− k)!

=

(
n− k

k!(n− k)(n− k−1)!
+

k
k(k−1)!(n− k)!

)
(n−1)!

=

(
n− k

k!(n− k)!
+

k
k!(n− k)!

)
(n−1)!

=
n(n−1)!
k!(n− k)!

=
n!

k!(n− k)!
,

proving our claim. ut

Then it is clear that we have the symmetry identity(
n
k

)
=

(
n

n− k

)
=

n(n−1) · · ·(n− k+1)
k(k−1) · · ·2 ·1 .
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As we discussed earlier, a combinatorial justification of the above formula consists
in observing that the complementation map A 7→ {1,2, . . . ,n}− A, is a bijection
between the subsets of size k and the subsets of size n− k.

Remarks:

(1) The binomial coefficients were already known in the twelfth century by the
Indian scholar Bhaskra. Pascal’s triangle was taught back in 1265 by the Persian
philosopher, Nasir-Ad-Din.

Fig. 6.2 Blaise Pascal, 1623–1662.

(2) The formula given in Proposition 6.4 suggests generalizing the definition of the
binomial coefficients to upper indices taking real values. Indeed, for all r ∈ R
and all integers k ∈ Z we can set(

r
k

)
=

{
rk

k!
=

r(r−1) · · ·(r− k+1)
k(k−1) · · ·2 ·1 if k ≥ 0

0 if k < 0.

Definition 6.6. The expression rk stands for the product of the k terms

rk =

k terms︷ ︸︸ ︷
r(r−1) · · ·(r− k+1),

and is called a falling power or falling factorial. By convention, the value of
this expression is 1 when k = 0, so that

(r
0

)
= 1.

The notation rk is used in Graham, Knuth, and Patashnik [5], and they suggest
to pronouce this as “r to the k falling;” it is apparently due to Alfredo Capelli
(1893). The notation (r)k is also used, for example in van Lint and Wilson [9].
The falling factorial rk is also known under the more exotic name of Pochham-
mer symbol. We can view rk as a polynomial in r. For example



194 6 Some Counting Problems; Binomial and Multinomial Coefficients

r0 = 1

r1 = r

r2 =−r+ r2

r3 = 2r−3r2 + r3

r4 =−6r+11r2−6r3 + r4.

Definition 6.7. The coefficients arising in these polynomials are known as the
Stirling numbers of the first kind (more precisely, the signed Stirling numbers
of the first kind). In general, for k ∈ N, we have

rk =
k

∑
i=0

s(k, i)ri,

and the coefficients s(k, i) are the Stirling numbers of the first kind.

They can also be defined by the following recurrence which looks like a strange
version of Pascal’s identity:

s(0,0) = 1
s(n+1,k) = s(n,k−1)−ns(n,k), 1≤ k ≤ n+1,

with s(n,k) = 0 if n ≤ 0 or k ≤ 0 except for (n,k) = (0,0), or if k > n. Re-
markably, from a combinatorial point of view, the positive integer (−1)k−is(k, i)
counts certain types of permutations of k elements (those having i cycles). By
definition, rk = k!

(r
k

)
, and in particular if r = n ∈ N, then

nk =
n!

(n− k)!
.

The expression
(r

k

)
can also be viewed as a polynomial of degree k in r. The

generalized binomial coefficients allow for a useful extension of the binomial
formula (see next) to real exponents. However, beware that the symmetry iden-
tity does not make sense if r is not an integer and that it is false if r a negative
integer. In particular, the formula

(−1
k

)
=
( −1
−1−k

)
is always false! Also, the for-

mula in Proposition 6.4 (in terms of the factorial function) only makes sense for
natural numbers.

We now prove the “binomial formula” (also called “binomial theorem”).

Proposition 6.5. (Binomial Formula) For all n ∈ N and for all reals a,b ∈ R, (or
more generally, any two commuting variables a,b, i.e., satisfying ab = ba), we have
the formula:

(a+b)n = an +

(
n
1

)
an−1b+ · · ·+

(
n
k

)
an−kbk + · · ·+

(
n

n−1

)
abn−1 +bn.
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The above can be written concisely as

(a+b)n =
n

∑
k=0

(
n
k

)
an−kbk.

Proof. We proceed by induction on n. For n = 0, we have (a+b)0 = 1 and the sum
on the right hand side is also 1, inasmuch as

(0
0

)
= 1.

Assume inductively that the formula holds for n. Because

(a+b)n+1 = (a+b)n(a+b),

using the induction hypothesis, we get

(a+b)n+1 = (a+b)n(a+b)

=

(
n

∑
k=0

(
n
k

)
an−kbk

)
(a+b)

=
n

∑
k=0

(
n
k

)
an+1−kbk +

n

∑
k=0

(
n
k

)
an−kbk+1

= an+1 +
n

∑
k=1

(
n
k

)
an+1−kbk +

n−1

∑
k=0

(
n
k

)
an−kbk+1 +bn+1

= an+1 +
n

∑
k=1

(
n
k

)
an+1−kbk +

n

∑
k=1

(
n

k−1

)
an+1−kbk +bn+1

= an+1 +
n

∑
k=1

((
n
k

)
+

(
n

k−1

))
an+1−kbk +bn+1

=
n+1

∑
k=0

(
n+1

k

)
an+1−kbk,

where we used Proposition 6.3 to go from the next to the last line to the last line.
This establishes the induction step and thus proves the binomial formula. ut

The binomial formula is a very effective tool to obtain short proofs of identities
about the binomial coefficients. For example, let us prove that(

n
0

)
+

(
n
1

)
+ · · ·+

(
n

n−1

)
+

(
n
n

)
=

n

∑
k=0

(
n
k

)
= 2n.

Simply let a = b = 1 in the binomial formula! On the left hand side, we have
2n = (1+ 1)n, and on the right hand side, the desired sum. Of course, we can also
justify the above formula using a combinatorial argument, by observing that we are
counting the numbers of all subsets of a set with n elements in two different ways:
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one way is to group all subsets of size k, for k = 0, . . . ,n, and the other way is to
consider the totally of all these subsets.

Remark: The binomial formula can be generalized to the case where the exponent
r is a real number (even negative). This result is usually known as the binomial
theorem or Newton’s generalized binomial theorem. Formally, the binomial theorem
states that

(a+b)r =
∞

∑
k=0

(
r
k

)
ar−kbk, r ∈ N or |b/a|< 1.

Observe that when r is not a natural number, the right-hand side is an infinite sum
and the condition |b/a| < 1 ensures that the series converges. For example, when
a = 1 and r = 1/2, if we rename b as x, we get

(1+ x)
1
2 =

∞

∑
k=0

( 1
2
k

)
xk

= 1+
∞

∑
k=1

1
k!

1
2

(
1
2
−1
)(

1
2
−2
)
· · ·
(

1
2
− k+1

)
xk

= 1+
∞

∑
k=1

(−1)k−1 1 ·3 ·5 · · ·(2k−3)
2 ·4 ·6 · · ·2k

xk

= 1+
∞

∑
k=1

(−1)k−1(2k)!
(2k−1)(k!)222k xk

= 1+
∞

∑
k=1

(−1)k−1

22k(2k−1)

(
2k
k

)
xk

= 1+
∞

∑
k=1

(−1)k−1

22k−1
1
k

(
2k−2
k−1

)
xk

which converges if |x|< 1. The first few terms of this series are

(1+ x)
1
2 = 1+

1
2

x− 1
8

x2 +
1
16

x3− 5
128

x4 + · · · ,

For r =−1, we get the familiar geometric series

1
1+ x

= 1− x+ x2− x3 + · · ·+(−1)kxk + · · · ,

which converges if |x|< 1.
We also stated earlier that the number of injections between a set with m elements

and a set with n elements, where m≤ n, is given by n!/(n−m)!, and we now prove
it.

Proposition 6.6. The number of injections between a set A with m elements and a set
B with n elements, where m≤ n, is given by n!/(n−m)! = n(n−1) · · ·(n−m+1).
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Proof. We proceed by induction on m ≤ n. If m = 0, then A = /0 and there is only
one injection, namely the empty function from /0 to B. Because

n!
(n−0)!

=
n!
n!

= 1,

the base case holds.
Assume the induction hypothesis holds for m and consider a set A with m+ 1

elements, where m+1≤ n. Pick any element a ∈ A and let A′ = A−{a}, a set with
m elements. Any injection f : A→ B assigns some element f (a) ∈ B to a and then
f � A′ is an injection from A′ to B′ = B−{ f (a)}, a set with n−1 elements. By the
induction hypothesis, there are

(n−1)!
(n−1−m)!

injections from A′ to B′. There are n ways of picking f (a) in B, therefore the number
of injections from A to B is

n
(n−1)!

(n−1−m)!
=

n!
(n− (m+1))!

,

establishing the induction hypothesis. ut

Observe that n!/(n−m)! = n(n−1) · · ·(n−m+1) = nm, a falling factorial.
Counting the number of surjections between a set with n elements and a set with

p elements, where n≥ p, is harder. We state the following formula without giving a
proof right now. Finding a proof of this formula is an interesting exercise. We give
a quick proof using the principle of inclusion–exclusion in Section 6.6.

Proposition 6.7. The number of surjections Sn p between a set A with n elements
and a set B with p elements, where n≥ p, is given by

Sn p = pn−
(

p
1

)
(p−1)n +

(
p
2

)
(p−2)n + · · ·+(−1)p−1

(
p

p−1

)
.

Remarks:

1. It can be shown that Sn p satisfies the following peculiar version of Pascal’s
recurrence formula,

Sn p = p(Sn−1 p +Sn−1 p−1), p≥ 2,

and, of course, Sn1 = 1 and Sn p = 0 if p > n. Using this recurrence formula and
the fact that Snn = n!, simple expressions can be obtained for Sn+1n and Sn+2n.

2. The numbers Sn p are intimately related to the so-called Stirling numbers of the
second kind, denoted

{n
p

}
, S(n, p), or S(p)

n , which count the number of partitions
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of a set of n elements into p nonempty pairwise disjoint blocks (see Section
4.1). In fact,

Sn p = p!
{

n
p

}
.

The Stirling numbers
{n

p

}
satisfy a recurrence equation that is another variant

of Pascal’s recurrence formula:{
n
1

}
= 1{

n
n

}
= 1{

n
p

}
=

{
n−1
p−1

}
+ p
{

n−1
p

}
(1≤ p < n).

The Stirling numbers of the first kind and the Stirling numbers of the second
kind are very closely related. Indeed, they can be obtained from each other by
matrix inversion; see Problem 6.8.

3. The total numbers of partitions of a set with n≥ 1 elements is given by the Bell
number,

bn =
n

∑
p=1

{
n
p

}
.

There is a recurrence formula for the Bell numbers but it is complicated and not
very useful because the formula for bn+1 involves all the previous Bell numbers.

Fig. 6.3 Eric Temple Bell, 1883–1960 (left) and Donald Knuth, 1938– (right).

A good reference for all these special numbers is Graham, Knuth, and Patashnik
[5], Chapter 6.

6.3 Multinomial Coefficients

The binomial coefficients can be generalized as follows.
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Definition 6.8. For all n,m,k1, . . . ,km ∈ N, with k1 + · · ·+ km = n and m ≥ 2, we
have the multinomial coefficient, (

n
k1, . . . ,km

)
,

which counts the number of ways of splitting a set of n elements into an ordered
sequence of m disjoint subsets, the ith subset having ki≥ 0 elements. Such sequences
of disjoint subsets whose union is {1, . . . ,n} itself are sometimes called ordered
partitions.

Beware that some of the subsets in an ordered partition may be empty, so we feel
that the terminology “partition” is confusing because as we show in Section 4.1, the
subsets that form a partition are never empty. Note that when m = 2, the number of
ways of splitting a set of n elements into two disjoint subsets where the first subset
has k1 elements and the second subset has k2 = n− k1 elements is precisely the
number of subsets of size k1 of a set of n elements; that is,(

n
k1,k2

)
=

(
n
k1

)
.

An ordered partition is an ordered sequence

(S1, . . . ,Sm)

of m disjoint subsets Si ⊆ {1, . . . ,n}, such that Si has ki ≥ 0 elements. We can think
of the numbers 1,2, . . . ,m as the labels of boxes Si that split the set {1, . . . ,n} into
m disjoint parts, with ki elements in box Si.

Beware that defining an ordered partition as a set

{S1, . . . ,Sm}

of m disjoint subsets Si ⊆ {1, . . . ,n}, such that Si has ki ≥ 0 elements, is wrong!
The problem with using a set of boxes is that that we do not keep track of the

assignment of objects to boxes. For example, for n = 5, m = 4, k1 = 2, and k2 =
k3 = k4 = 1, the sequences of subsets (S1,S2,S3,S4) given by ({1,2},{3},{4},{5}),
({1,2},{3},{5},{4}), ({1,2},{5},{3},{4}), ({1,2},{4},{3},{5}), ({1,2},{4},
{5},{3}), ({1,2},{5},{4},{3}) are all different. For example the ordered partition
obtained by placing 1,2 in box S1, 3 in box S2, 4 in box S3, and 5 in box S4, is not
the same as the ordered partition obtained by placing 1,2 in box S1, 3 in box S2, 5
in box S3, and 4 in box S4. Not distinguishing among the order of S2,S3,S4, yields
{{1,2},{3},{4},{5}}, which does not capture the other 5 ordered partitions.

How do we construct ordered partitions? Consider the case n = 5, m = 3, k1 = 3,
k2 = k3 = 1. Here we have three boxes, S1,S2,S3, with |S1| = 3, |S2| = |S3| = 1.
First, we can fill S3 with one of the five elements in {1, . . . ,5}. For each of these, the
remaining set is {1, . . . ,5}−S3, and we can fill S2 with one of these four elements.
There are three elements remaining in the set {1, . . . ,5}−(S3∪S3), and box S1 must
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be filled with these elements. We obtain the following 20 ordered partitions:

({3,4,5},{2},{1}), ({2,4,5},{3},{1}), ({2,3,5},{4},{1}), ({2,3,4},{5},{1})
({3,4,5},{1},{2}), ({1,4,5},{3},{2}), ({1,3,5},{4},{2}), ({1,3,4},{5},{2})
({2,4,5},{1},{3}), ({1,4,5},{2},{3}), ({1,2,5},{4},{3}), ({1,2,4},{5},{3})
({2,3,5},{1},{4}), ({1,3,5},{2},{4}), ({1,2,5},{3},{4}), ({1,2,3},{5},{4})
({2,3,4},{1},{5}), ({1,3,4},{2},{5}), ({1,2,4},{3},{5}), ({1,2,3},{4},{5}).

The principle of the proof of Proposition 6.8 should now be clear.

Proposition 6.8. For all n,m,k1, . . . ,km ∈ N, with k1 + · · ·+ km = n and m ≥ 2, we
have (

n
k1, . . . ,km

)
=

n!
k1! · · ·km!

.

Proof. There are
( n

k1

)
ways of forming a subset of k1 elements from the set of n

elements; there are
(n−k1

k2

)
ways of forming a subset of k2 elements from the remain-

ing n− k1 elements; there are
(n−k1−k2

k3

)
ways of forming a subset of k3 elements

from the remaining n− k1− k2 elements and so on; finally, there are
(n−k1−···−km−2

km−1

)
ways of forming a subset of km−1 elements from the remaining n− k1−·· ·− km−2
elements and there remains a set of n− k1−·· ·− km−1 = km elements. This shows
that (

n
k1, . . . ,km

)
=

(
n
k1

)(
n− k1

k2

)
· · ·
(

n− k1−·· ·− km−2

km−1

)
.

But then, using the fact that km = n− k1−·· ·− km−1, we get(
n

k1, . . . ,km

)
=

n!
k1!(n− k1)!

(n− k1)!
k2!(n− k1− k2)!

· · · (n− k1−·· ·− km−2)!
km−1!(n− k1−·· ·− km−1)!

=
n!

k1! · · ·km!
,

as claimed. ut

As in the binomial case, it is convenient to set(
n

k1, . . . ,km

)
= 0

if ki < 0 or ki > n, for any i, with 1≤ i≤ m.
Proposition 6.8 shows that the number of ordered partitions of n elements into m

boxes labeled 1,2, . . . ,m, with ki elements in the ith box, does not depend on the or-
der in which the boxes are labeled. For every permutation π of {1, . . . ,m}, the num-
ber of ordered partitions of n elements into m boxes labeled π(1),π(2), . . . ,π(m),
with kπ(i) element in the ith box, is also

( n
k1,...,km

)
.
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Another useful way to interpret the multinomial coefficients
( n

k1,...,km

)
is as the

number of strings of length n formed using an alphabet of m letters, say {a1, . . . ,am},
with ki occurrences of the letter ai, for i = 1, . . . ,m. For example, if n = 4, m = 2,
k1 = 2 and k2 = 2, writing the alphabet as {A,G} (instead of {a1,a2}), we have the
following six strings:

AAGG, AGAG, GAAG, AGGA, GAGA, GGAA.

If n = 5, m = 3, k1 = 3, k2 = k3 = 1, if we let the alphabet be {A,G,T}, then we
obtain the following 20 strings:

T GAAA, TAGAA, TAAGA, TAAAG

GTAAA, AT GAA, ATAGA, ATAAG

GATAA, AGTAA, AAT GA, AATAG

GAATA, AGATA, AAGTA, AAAT G

GAAAT, AGAAT, AAGAT, AAAGT.

Indeed, in order to form a string of length 5 with three A’s, one G and one T , first
we place a T in one of 5 positions, and then we place a G in one of 4 positions; at
this stage, the three A’s occupy the remaining positions.

In general, a string of length n over an alphabet of m letters {a1, . . . ,am}, with
ki occurrences of ai, is formed by first assigning k1 occurrences of a1 to any of the( n

k1

)
subsets S1 of positions in {1, . . . ,n}, then assigning k2 occurrences of a2 to any

of the
(n−k1

k2

)
subsets S2 of remaining positions in {1, . . . ,n}− S1, then assigning

k3 occurrences of a3 to any of the
(n−k1−k2

k3

)
subsets S3 of remaining positions in

{1, . . . ,n}− (S1∪S2), and so on. In the end, we get(
n

k1, . . . ,km

)
=

n!
k1! · · ·km!

strings.
Note that the above formula has the following interpretation: first, we count all

possible permutations of the n letters, ignoring the fact that some of these letters are
identical. But then we overcounted all strings containing k1 occurences of the letter
a1, and since there are k1! of them, we divide n! by k1!. Similarly, since the letter
a2 occurs k2 times, our strings are counted k2! times, so we have to divide n!/k1! by
k2!, etc.

For another example, if we consider the string PEPPER (with n = 6, m = 3,
k1 = 3, k2 = 2,k3 = 1), then we have

6!
2!3!1

= 60

distinct words obtained by permutation of its letters.
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Note that the multinomial symbol makes sense when m= 1, since then k1 = n, but
it is not very interesting, since it is equal to 1. The interpertation of the multinomial
coefficient

( n
k1,...,km

)
in terms of strings of length n over the alphabet {a1, . . . ,am},

with ki occurrences of the symbol ai, also shows that
( n

k1,...,km

)
can be interpreted as

the number of permutations of a multiset of size n, formed from a set {a1, . . . ,am} of
m elements, where each ai appears with multplicity ki.

Proposition 6.3 is generalized as follows.

Proposition 6.9. For all n,m,k1, . . . ,km ∈N, with k1+ · · ·+km = n, n≥ 1 and m≥ 2,
we have (

n
k1, . . . ,km

)
=

m

∑
i=1

(
n−1

k1, . . . ,(ki−1), . . . ,km

)
.

Proof. Note that we have ki−1 =−1 when ki = 0. First, observe that

ki

(
n

k1, . . . ,km

)
= n
(

n−1
k1, . . . ,(ki−1), . . . ,km

)
even if ki = 0. This is because if ki ≥ 1, then(

n
k1, . . . ,km

)
=

n(n−1)!
k1! · · ·ki(ki−1)! · · ·km!

=
n
ki

(
n−1

k1, . . . ,(ki−1), . . . ,km

)
,

and so,

ki

(
n

k1, . . . ,km

)
= n
(

n−1
k1, . . . ,(ki−1), . . . ,km

)
.

With our convention that
( n−1

k1,...,−1,...,km

)
= 0, the above identity also holds when

ki = 0. Then we have

m

∑
i=1

(
n−1

k1, . . . ,(ki−1), . . . ,km

)
=

(
k1

n
+ · · ·+ km

n

)(
n

k1, . . . ,km

)
=

(
n

k1, . . . ,km

)
,

because k1 + · · ·+ km = n. ut

Remark: Proposition 6.9 shows that Pascal’s triangle generalizes to “higher di-
mensions,” that is, to m ≥ 3. Indeed, it is possible to give a geometric interpreta-
tion of Proposition 6.9 in which the multinomial coefficients corresponding to those
k1, . . . ,km with k1 + · · ·+ km = n lie on the hyperplane of equation x1 + · · ·+ xm = n
in Rm, and all the multinomial coefficients for which n≤ N, for any fixed N, lie in a
generalized tetrahedron called a simplex. When m = 3, the multinomial coefficients
for which n≤ N lie in a tetrahedron whose faces are the planes of equations, x = 0;
y = 0; z = 0; and x+ y+ z = N.
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Another application of multinomial coefficients is to counting paths in integral
lattices. For any integer p ≥ 1, consider the set Np of integral p-tuples. We define
an ordering on Np as follows:

(a1, . . . ,ap)≤ (b1, . . . ,bp) iff ai ≤ bi, 1≤ i≤ p.

We also define a directed graph structure on Np by saying that there is an oriented
edge from a to b iff there is some i such that

ak =

{
bk if k 6= i
bi +1 if k = i .

Then if a≥ b, we would like to count the number of (oriented) path from a to b. The
following proposition is left as an exercise.

Proposition 6.10. For any two points a,b ∈Np, if a≥ b and if we write ni = ai−bi
and n = ∑

p
i=1 ni, then the number of oriented paths from a to b is(

n
n1, . . . ,np

)
.

We also have the following generalization of Proposition 6.5.

Proposition 6.11. (Multinomial Formula) For all n,m ∈N with m≥ 2, for all pair-
wise commuting variables a1, . . . ,am, we have

(a1 + · · ·+am)
n = ∑

k1,...,km≥0
k1+···+km=n

(
n

k1, . . . ,km

)
ak1

1 · · ·akm
m .

Proof. We proceed by induction on n and use Proposition 6.9. The case n = 0 is
trivially true.

Assume the induction hypothesis holds for n≥ 0, then we have

(a1 + · · ·+am)
n+1 = (a1 + · · ·+am)

n(a1 + · · ·+am)

=

 ∑
k1,...,km≥0

k1+···+km=n

(
n

k1, . . . ,km

)
ak1

1 · · ·akm
m

(a1 + · · ·+am)

=
m

∑
i=1

∑
k1,...,km≥0

k1+···+km=n

(
n

k1, . . . ,ki, . . .km

)
ak1

1 · · ·a
ki+1
i · · ·akm

m

=
m

∑
i=1

∑
k1,...,km≥0,ki≥1
k1+···+km=n+1

(
n

k1, . . . ,(ki−1), . . . ,km

)
ak1

1 · · ·a
ki
i · · ·akm

m .

We seem to hit a snag, namely, that ki ≥ 1, but recall that
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n

k1, . . . ,−1, . . . ,km

)
= 0,

so we have

(a1 + · · ·+am)
n+1 =

m

∑
i=1

∑
k1,...,km≥0,ki≥1
k1+···+km=n+1

(
n

k1, . . . ,(ki−1), . . . ,km

)
ak1

1 · · ·a
ki
i · · ·akm

m

=
m

∑
i=1

∑
k1,...,km≥0,

k1+···+km=n+1

(
n

k1, . . . ,(ki−1), . . . ,km

)
ak1

1 · · ·a
ki
i · · ·akm

m

= ∑
k1,...,km≥0,

k1+···+km=n+1

(
m

∑
i=1

(
n

k1, . . . ,(ki−1), . . . ,km

))
ak1

1 · · ·a
ki
i · · ·akm

m

= ∑
k1,...,km≥0,

k1+···+km=n+1

(
n+1

k1, . . . ,ki, . . . ,km

)
ak1

1 · · ·a
ki
i · · ·akm

m ,

where we used Proposition 6.9 to justify the last equation. Therefore, the induction
step is proved and so is our proposition. ut

How many terms occur on the right-hand side of the multinomial formula? After
a moment of reflection, we see that this is the number of finite multisets of size
n whose elements are drawn from a set of m elements, which is also equal to the
number of m-tuples, k1, . . . ,km, with ki ∈ N and

k1 + · · ·+ km = n.

Thus, the problem is equivalent to placing n identical objects into m boxes, the ith
box consisting of ki ≥ 0 objects.

Proposition 6.12. The number of finite multisets of size n≥ 0 whose elements come
from a set of size m≥ 1 is (

m+n−1
n

)
=

(
m+n−1

m−1

)
.

This is also the number of distinct nonnegative integral solutions (k1, . . . ,km) of the
equation

k1 + · · ·+ km = n,

with ki ∈ N for i = 1, . . . ,m.

Proof. The proof uses the following neat trick. As we said earlier, the problem is
equivalent to placing n identical objects, say blue balls, into m boxes, the ith box
consisting of ki ≥ 0 balls, so that k1 + · · ·+ km = n. Line up the blues balls in front
of the m boxes and insert m−1 red balls between consecutive boxes:
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••· · ·•••••· · ·•••••· · ·•••••· · ·•••••· · ·••︸ ︷︷ ︸
m−1 red balls

Clearly, there is a bijection between these strings of n+m−1 balls with n blue balls
and m−1 red balls and multisets of size n formed from m elements. Since there are(

m+n−1
m−1

)
=

(
m+n−1

n

)
strings of the above form, our proposition is proven. ut

We also give a second proof based on Proposition 6.13 below.

Definition 6.9. Given a set S = {s1, . . . ,sm} with m ≥ 0 elements, consider the set
A (m,n) of functions f : S→{0, . . . ,n} such that

m

∑
i=1

f (si)≤ n,

with the convention that ∑
m
i=1 f (si) = 0 when m = 0; that is S = /0. For m ≥ 1, let

B(m,n) be the set of functions f : S→{0, . . . ,n} such that

m

∑
i=1

f (si) = n.

Let A(m,n) be the number of functions in A (m,n) and let B(m,n) be the number of
functions in B(m,n).

Observe that B(m,n) is the number of multisets of size n formed from m ele-
ments.

Proposition 6.13. For any integers m≥ 0 and n≥ 0, we have

A(m,n) =
(

m+n
m

)
B(m,n) =

(
m+n−1

m−1

)
, m≥ 1.

Proof. First, we prove that

B(m,n) = A(m−1,n).

Let S′ = S−{sm}. Given any function f ∈B(m,n), we have ∑
m
i=1 f (si) = n, so the

restriction f ′ of f to S′ satisfies ∑
m−1
i=1 f (si) ≤ n; that is, f ′ ∈A (m−1,n). Further-

more,

f (sm) = n−
m−1

∑
i=1

f ′(si).
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Conversely, given any function f ′ ∈A (m− 1,n), since ∑
m−1
i=1 f (si) ≤ n, we can

extend f ′ uniquely to a function f ∈B(m,n) by setting

f (sm) = n−
m−1

∑
i=1

f ′(si).

The map f 7→ f ′ is clearly a bijection between B(m,n) and A (m− 1,n), so
B(m,n) = A(m−1,n), as claimed.

Next, we claim that

A(m,n) = A(m,n−1)+B(m,n).

This is because ∑
m
i=1 f (si) ≤ n iff either ∑

m
i=1 f (si) = n or ∑

m
i=1 f (si) ≤ n− 1. But

then, we get

A(m,n) = A(m,n−1)+B(m,n) = A(m,n−1)+A(m−1,n).

We finish the proof by induction on m+ n. For the base case m = n = 0, we know
that A(0,0) = 1, and

(0+0
0

)
=
(0

0

)
= 1, so this case holds.

For the induction step, m+n≥ 1, and by the induction hypothesis,

A(m,n−1) =
(

m+n−1
m

)
, A(m−1,n) =

(
m+n−1

m−1

)
,

and using Pascal’s formula, we get

A(m,n) = A(m,n−1)+A(m−1,n)

=

(
m+n−1

m−1

)
+

(
m+n−1

m

)
=

(
m+n

m

)
,

establishing the induction step. Since B(m,n) = A(m−1,n), we also obtain the sec-
ond equation of the proposition. ut

The proof of Proposition 6.13 yields another proof of Proposition 6.12 (but not as
short). Observe that given m variables X1, . . . ,Xm, Proposition 6.13 shows that there
are
(m+n

m

)
monomials

Xk1
1 · · ·Xkm

m

of total degree at most n (that is, k1 + · · ·+ km ≤ n), and
(m+n−1

n

)
=
(m+n−1

m−1

)
mono-

mials of total degree n (that is, k1 + · · ·+ km = n).

Proposition 6.14. The number of distinct positive integral solutions (k1, . . . ,km) of
the equation

k1 + · · ·+ km = n

(with ki ∈ N and ki > 0, for i = 1, . . . ,m) is equal to
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n−1
m−1

)
.

Proof. We reduce this problem to the similar problem of counting the number of
distinct nonnegative integral solutions of the equation

y1 + · · ·+ ym = p, yi ∈ N.

If we write yi = ki−1, then ki ∈ N−{0} iff yi ∈ N, so our problem is equivalent to
determining the number of distinct nonnegative integral solutions of the equation

y1 + · · ·+ ym = n−m, yi ∈ N.

By Proposition 6.12, there are(
m+n−m−1

m−1

)
=

(
n−1
m−1

)
such solutions. ut

The proof technique of Proposition 6.14 can be adapted to solve similar problems
involving constraints on the solutions (k1, . . . ,km) of the equation k1 + · · ·+ km = n.

6.4 Some Properties of the Binomial Coefficients

The binomial coefficients satisfy many remarkable identities.
If one looks at the Pascal triangle, it is easy to figure out what are the sums of

the elements in any given row. It is also easy to figure out what are the sums of
n−m+1 consecutive elements in any given column (starting from the top and with
0≤ m≤ n).

What about the sums of elements on the diagonals? Again, it is easy to determine
what these sums are. Here are the answers, beginning with the sums of the elements
in a column.

(a) Sum of the first n−m+1 elements in column m (0≤ m≤ n).
For example, if we consider the sum of the first five (nonzero) elements in column

m = 3 (so, n = 7), we find that

1+4+10+20+35 = 70,

where 70 is the entry on the next row and the next column. Thus, we conjecture that(
m
m

)
+

(
m+1

m

)
+ · · ·+

(
n−1

m

)
+

(
n
m

)
=

(
n+1
m+1

)
,

which is easily proved by induction.
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n
(n

0

) (n
1

) (n
2

) (n
3

) (n
4

) (n
5

) (n
6

) (n
7

) (n
8

)
. . .

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
...

...
...

...
...

...
...

...
...

...
...

The above formula can be written concisely as

n

∑
k=m

(
k
m

)
=

(
n+1
m+1

)
,

or even as
n

∑
k=0

(
k
m

)
=

(
n+1
m+1

)
,

because
(k

m

)
= 0 when k < m. It is often called the upper summation formula (or

as the “Hockey Stick identity”) inasmuch as it involves a sum over an index k,
appearing in the upper position of the binomial coefficient

(k
m

)
.

(b) Sum of the elements in row n.
For example, if we consider the sum of the elements in row n = 6, we find that

1+6+15+20+15+6+1 = 64 = 26.

n
(n

0

) (n
1

) (n
2

) (n
3

) (n
4

) (n
5

) (n
6

) (n
7

) (n
8

)
. . .

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
...

...
...

...
...

...
...

...
...

...
...

Thus, we conjecture that
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n
0

)
+

(
n
1

)
+ · · ·+

(
n

n−1

)
+

(
n
n

)
= 2n.

This is easily proved by setting a = b = 1 in the binomial formula for (a+b)n.
Unlike the columns for which there is a formula for the partial sums, there is no

closed-form formula for the partial sums of the rows. However, there is a closed-
form formula for partial alternating sums of rows. Indeed, it is easily shown by
induction that

m

∑
k=0

(−1)k
(

n
k

)
= (−1)m

(
n−1

m

)
,

if 0≤ m≤ n (this is identity (6.40) in Gould [4]). For example,

1−7+21−35 =−20.

Also, for m = n, we get
n

∑
k=0

(−1)k
(

n
k

)
= 0,

which can also be shown directly by the binomial formula.
(c) Sum of the first n+1 elements on the descending diagonal starting from row

m.
For example, if we consider the sum of the first five elements starting from row

m = 3 (so, n = 4), we find that

1+4+10+20+35 = 70,

the elements on the next row below the last element, 35.

n
(n

0

) (n
1

) (n
2

) (n
3

) (n
4

) (n
5

) (n
6

) (n
7

) (n
8

)
. . .

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
...

...
...

...
...

...
...

...
...

...
...

Thus, we conjecture that(
m
0

)
+

(
m+1

1

)
+ · · ·+

(
m+n

n

)
=

(
m+n+1

n

)
,
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which is easily shown by induction. The above formula can be written concisely as

n

∑
k=0

(
m+ k

k

)
=

(
m+n+1

n

)
.

It is often called the parallel summation formula because it involves a sum over
an index k appearing both in the upper and in the lower position of the binomial
coefficient

(m+k
k

)
.

(d) Sum of the elements on the ascending diagonal starting from row n.

n Fn+1
(n

0

) (n
1

) (n
2

) (n
3

) (n
4

) (n
5

) (n
6

) (n
7

) (n
8

)
. . .

0 1 1
1 1 1 1
2 2 1 2 1
3 3 1 3 3 1
4 5 1 4 6 4 1
5 8 1 5 10 10 5 1
6 13 1 6 15 20 15 6 1
7 21 1 7 21 35 35 21 7 1
8 34 1 8 28 56 70 56 28 8 1
...

...
...

...
...

...
...

...
...

...
...

...

For example, the sum of the numbers on the diagonal starting on row 6 (in green),
row 7 (in blue) and row 8 (in red) are:

1+6+5+1 = 13
4+10+6+1 = 21

1+10+15+7+1 = 34.

We recognize the Fibonacci numbers F7,F8, and F9; what a nice surprise.
Recall that F0 = 0, F1 = 1, and

Fn+2 = Fn+1 +Fn.

Thus, we conjecture that

Fn+1 =

(
n
0

)
+

(
n−1

1

)
+

(
n−2

2

)
+ · · ·+

(
0
n

)
.

The above formula can indeed be proved by induction, but we have to distinguish
the two cases where n is even or odd.

We now list a few more formulae that are often used in the manipulations of
binomial coefficients. They are among the “top ten binomial coefficient identities”
listed in Graham, Knuth, and Patashnik [5]; see Chapter 5. See also Gould [4], Table
1.0.
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(e) The equation (
n
i

)(
n− i
k− i

)
=

(
k
i

)(
n
k

)
,

holds for all n, i,k, with 0≤ i≤ k ≤ n.
This is because we find that after a few calculations,(

n
i

)(
n− i
k− i

)
=

n!
i!(k− i)!(n− k)!

=

(
k
i

)(
n
k

)
.

Observe that the expression in the middle is really the trinomial coefficient(
n

i,k− i,n− k

)
.

For this reason, the equation (e) is often called trinomial revision.
For i = 1, we get

n
(

n−1
k−1

)
= k
(

n
k

)
,

sometimes known as the “committee/chair identity.” So if k 6= 0, we get the equation(
n
k

)
=

n
k

(
n−1
k−1

)
, k 6= 0.

This equation is often called the absorption identity.
(f) The equation (

m+ p
n

)
=

m

∑
k=0

(
m
k

)(
p

n− k

)
holds for m,n, p ≥ 0 such that m+ p ≥ n. This equation is usually known as Van-
dermonde convolution.

One way to prove this equation is to observe that
(m+p

n

)
is the coefficient of

am+p−nbn in (a+ b)m+p = (a+ b)m(a+ b)p; a detailed proof is left as an exercise
(see Problem 6.17).

By making the change of variables n = r+s and k = r+ i, we get another version
of Vandermonde convolution, namely:(

m+ p
r+ s

)
=

s

∑
i=−r

(
m

r+ i

)(
p

s− i

)
for m,r,s, p≥ 0 such that m+ p≥ r+ s.

An interesting special case of Vandermonde convolution arises when m = p = n.
In this case, we get the equation(

2n
n

)
=

n

∑
k=0

(
n
k

)(
n

n− k

)
.
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However,
(n

k

)
=
( n

n−k

)
, so we get

n

∑
k=0

(
n
k

)2

=

(
2n
n

)
,

that is, the sum of the squares of the entries on row n of the Pascal triangle is the
middle element on row 2n. An exhaustive list of Vandermonde convolution formulae
is given in Gould [4], Table 2/0.

A summary of the top nine binomial coefficient identities is given in Table 6.2.

Remark: Going back to the generalized binomial coefficients
(r

k

)
, where r is a real

number, possibly negative, the following formula is easily shown.(
r
k

)
= (−1)k

(
k− r−1

k

)
,

where r ∈R and k ∈Z. When k < 0, both sides are equal to 0, and if k = 0 then both
sides are equal to one. If r < 0 and k ≥ 1 then k− r−1 > 0, so the formula shows
how a binomial coefficient with negative upper index can be expessed as a binomial
coefficient with positive index. For this reason, this formula is known as negating
the upper index.

Next, we would like to better understand the growth pattern of the binomial co-
efficients.

6.5 Rate of Growth of the Binomial Coefficients

Looking at the Pascal triangle, it is clear that when n = 2m is even, the central el-
ement

(2m
m

)
is the largest element on row 2m and when n = 2m+ 1 is odd, the two

central elements
(2m+1

m

)
=
(2m+1

m+1

)
are the largest elements on row 2m+1. Further-

more,
(n

k

)
is strictly increasing until it reaches its maximal value and then it is strictly

decreasing (with two equal maximum values when n is odd).
The above facts are easy to prove by considering the ratio(

n
k

)/(
n

k+1

)
=

n!
k!(n− k)!

(k+1)!(n− k−1)!
n!

=
k+1
n− k

,

where 0≤ k ≤ n−1. Because

k+1
n− k

=
2k− (n−1)

n− k
+1,

we see that if n = 2m, then (
2m
k

)
<

(
2m

k+1

)
if k < m,
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(
n
k

)
=

n!
k!(n− k)!

, 0≤ k ≤ n factorial expansion

(
n
k

)
=

(
n

n− k

)
, 0≤ k ≤ n symmetry

(
n
k

)
=

n
k

(
n−1
k−1

)
, k 6= 0 absorption

(
n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
, 0≤ k ≤ n addition/induction

(
n
i

)(
n− i
k− i

)
=

(
k
i

)(
n
k

)
, 0 ≤ i≤ k ≤ n trinomial revision

(a+b)n =
n

∑
k=0

(
n
k

)
an−kbk, n≥ 0 binomial formula

n

∑
k=0

(
m+ k

k

)
=

(
m+n+1

n

)
, m,n≥ 0 parallel summation

n

∑
k=0

(
k
m

)
=

(
n+1
m+1

)
, 0≤ m≤ n upper summation

(
m+ p

n

)
=

m

∑
k=0

(
m
k

)(
p

n− k

)
m+ p≥ n
m,n, p≥ 0

Vandermonde convolution

Table 6.2 Summary of Binomial Coefficient Identities.

and if n = 2m+1, then (
2m+1

k

)
<

(
2m+1
k+1

)
if k < m.

By symmetry, (
2m
k

)
>

(
2m

k+1

)
if k > m,

and (
2m+1

k

)
>

(
2m+1
k+1

)
if k > m+1.

It would be nice to have an estimate of how large is the maximum value of the
largest binomial coefficient

( n
bn/2c

)
. The sum of the elements on row n is 2n and

there are n+1 elements on row n. Therefore some rough bounds are
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2n

n+1
≤
(

n
bn/2c

)
< 2n,

for all n≥ 1. Thus, we see that the middle element on row n grows very fast (expo-
nentially). We can get a sharper estimate using Stirling’s formula (see Section 6.1).
We give such an estimate when n= 2m is even, the case where n is odd being similar
(see Problem 6.26). We have (

2m
m

)
=

(2m)!
(m!)2 ,

and because by Stirling’s formula,

n!∼
√

2πn
(n

e

)n
,

we get (
2m
m

)
∼ 22m
√

πm
.

The next question is to figure out how quickly
(n

k

)
drops from its maximum value,( n

bn/2c
)
. Let us consider the case where n = 2m is even, the case when n is odd being

similar and left as an exercise (see Problem 6.27). We would like to estimate the
ratio (

2m
m− t

)/(
2m
m

)
,

where 0≤ t ≤ m. Actually, it is more convenient to deal with the inverse ratio,

r(t) =
(

2m
m

)/(
2m

m− t

)
=

(2m)!
(m!)2

/
(2m)!

(m− t)!(m+ t)!
=

(m− t)!(m+ t)!
(m!)2 .

Observe that

r(t) =
(m+ t)(m+ t−1) · · ·(m+1)

m(m−1) · · ·(m− t +1)
.

The above expression is not easy to handle but if we take its (natural) logarithm, we
can use basic inequalities about logarithms to get some bounds. We make use of the
following proposition.

Proposition 6.15. We have the inequalities

1− 1
x
≤ lnx≤ x−1,

for all x ∈ R with x > 0.

Proof. These inequalities are quite obvious if we plot the curves; see Figure 6.4.
A rigorous proof can be given using the power series expansion of the exponen-

tial function and the fact that x 7→ logx is strictly increasing and that it is the inverse
of the exponential. Recall that
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Fig. 6.4 The curves of Proposition 6.15.

ex =
∞

∑
n=0

xn

n!
,

for all x ∈ R. First we can prove that

x≤ ex−1,

for all x ∈ R; see Figure 6.5.

Fig. 6.5 The inequality x≤ ex−1.

This is clear when x < 0 because ex−1 > 0 and if x≥ 1, then

ex−1 = 1+ x−1+
∞

∑
n=2

(x−1)n

n!
= x+C
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with C ≥ 0. When 0≤ x < 1, we have −1≤ x−1 < 0, and we still have

ex−1 = x+
∞

∑
n=2

(x−1)n

n!
.

In order to prove that the second term on the right-hand side is nonnegative, it suf-
fices to prove that

(x−1)2n

(2n)!
+

(x−1)2n+1

(2n+1)!
≥ 0,

for all n≥ 1, which amounts to proving that

(x−1)2n

(2n)!
≥− (x−1)2n+1

(2n+1)!
,

which (because 2n is even) is equivalent to

2n+1≥ 1− x,

which holds, inasmuch as 0≤ x < 1.
Now, because x≤ ex−1 for all x ∈ R, taking logarithms, we get

lnx≤ x−1,

for all x > 0 (recall that lnx is undefined if x≤ 0).
Next, if x > 0, applying the above formula to 1/x, we get

ln
(

1
x

)
≤ 1

x
−1;

that is,

− lnx≤ 1
x
−1,

which yields

1− 1
x
≤ lnx,

as claimed. ut

We are now ready to prove the following inequalities:

Proposition 6.16. For every m> 0 and every t, with 0≤ t ≤m, we have the inequal-
ities

e−t2/(m−t+1) ≤
(

2m
m− t

)/(
2m
m

)
≤ e−t2/(m+t).

For any m ≥ 1 and any function f such that limm7→∞ f (m) = 0 and f (m) ≤ m, if
t = d

√
m f (m)e, then (

2m
m− t

)/(
2m
m

)
∼ e−t2/m.
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Proof. The first inequality holds trivially if t = 0, so we assume that t > 0. Recall
that

r(t) =
(

2m
m

)/(
2m

m− t

)
=

(m+ t)(m+ t−1) · · ·(m+1)
m(m−1) · · ·(m− t +1)

and take logarithms. We get

lnr(t) = ln
(

m+ t
m

)
+ ln

(
m+ t−1

m−1

)
+ · · ·+ ln

(
m+1

m− t +1

)
= ln

(
1+

t
m

)
+ ln

(
1+

t
m−1

)
+ · · ·+ ln

(
1+

t
m− t +1

)
.

By Proposition 6.15, we have ln(1+ x)≤ x for x >−1, therefore we get

lnr(t)≤ t
m
+

t
m−1

+ · · ·+ t
m− t +1

.

If we replace the denominators on the right-hand side by the smallest one, m− t+1,
we get an upper bound on this sum, namely,

lnr(t)≤ t2

m− t +1
.

Now, remember that r(t) is the inverse of the ratio in which we are really interested.
So, by exponentiating and then taking inverses, we get

e−t2/(m−t+1) ≤
(

2m
m− t

)/(
2m
m

)
.

Proposition 6.15 also says that (x−1)/x≤ ln(x) for x > 0, thus from

lnr(t) = ln
(

1+
t
m

)
+ ln

(
1+

t
m−1

)
+ · · ·+ ln

(
1+

t
m− t +1

)
,

we get

t
m

/
m+ t

m
+

t
m−1

/
m+ t−1

m−1
+ · · ·+ t

m− t +1

/
m+1

m− t +1
≤ lnr(t);

that is ,
t

m+ t
+

t
m+ t−1

+ · · ·+ t
m+1

≤ lnr(t).

This time, if we replace the denominators on the left-hand side by the largest one,
m+ t, we get a lower bound, namely,

t2

m+ t
≤ lnr(t).

Again, if we exponentiate and take inverses, we get
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2m

m− t

)/(
2m
m

)
≤ e−t2/(m+t),

as claimed. Finally, since 0≤ t ≤ m+ t, we have

e−t2/(m+t)

e−t2/m
= e−

t2
m+t +

t2
m = e

t3
m(m+t) ≥ 1,

and since m≥ 0 and t ≥ 1, we have

e−t2/(m−t+1)

e−t2/m
= e−

t2
m−t+1+

t2
m = e

t2(−t+1)
m(m−t+1) ≤ 1.

Since

e−t2/(m−t+1) ≤
(

2m
m− t

)/(
2m
m

)
≤ e−t2/(m+t),

by dividing by e−t2/m, we get

e
t2(−t+1)
m(m−t+1) ≤

((
2m

m− t

)/(
2m
m

))
et2/m ≤ e

t2
m .

For any function f such that limm 7→∞ f (m) = 0 and f (m) ≤ m, if t = d
√

m f (m)e,
then limm7→∞ t2/m = limm 7→∞ f (m) = 0, and

lim
m7→∞

−t +1
m− t +1

= lim
m 7→∞

−d
√

m f (m)e+1

m−d
√

m f (m)e+1
= lim

m 7→∞

−
√

f (m)
m + 1

m

1−
√

f (m)
m + 1

m

= 0,

so we deduce that (
2m

m− t

)/(
2m
m

)
∼ e−t2/m,

as claimed. ut

What is remarkable about Proposition 6.16 is that it shows that
( 2m

m−t

)
varies ac-

cording to the Gaussian curve (also known as the bell curve), t 7→ e−t2/m, which
is the probability density function of the normal distribution (or Gaussian distribu-
tion); see Section 8.9. If we make the change of variable k = m− t, we see that if
0≤ k ≤ 2m, then (

2m
k

)
∼ e−(m−k)2/m

(
2m
m

)
.

If we plot this curve, we observe that it reaches its maximum for k = m and that it
decays very quickly as k varies away from m. It is interesting to plot a bar chart of
the binomial coefficients and the above curve together, say for m = 25; see Figure
6.6. We find that the bell curve is an excellent fit for m−√m < k ≤ m+

√
m. Nu-
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Fig. 6.6 Approximation of the binomial coefficients by the curve t 7→ e−(m−k)2/m
(2m

m

)
, for m = 25.

merically, the Gaussian curve underestimates the binomial coefficients for t close to
m and overestimates (quite a bit) for t close to 0 or 2m.

Given some number c > 1, it sometimes desirable to find for which values of t
does the inequality (

2m
m

)/(
2m

m− t

)
> c

hold. This question can be answered using Proposition 6.16.

Proposition 6.17. For every constant c > 1 and every natural number m≥ 0, if√
m lnc+ lnc≤ t ≤ m, then (

2m
m

)/(
2m

m− t

)
> c

and if 0≤ t ≤
√

m lnc− lnc≤ m, then(
2m
m

)/(
2m

m− t

)
≤ c.

The proof uses the inequalities of Proposition 6.16 and is left as an exercise (see
Problem 6.28). As an example, if m = 1000 and c = 100, we have(

1000
500

)/(
1000

500− (500− k)

)
> 100

or equivalently (
1000

k

)/(
1000
500

)
<

1
100
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when 500− k ≥
√

500ln100+ ln100, that is, when

k ≤ 447.4.

It is also possible to give an upper on the partial sum(
2m
0

)
+

(
2m
1

)
+ · · ·+

(
2m

k−1

)
,

with 0 ≤ k ≤ m in terms of the ratio c =
(2m

k

)/(2m
m

)
. The following proposition is

taken from Lovász, Pelikán, and Vesztergombi [6].

Proposition 6.18. For any natural numbers m and k with 0≤ k ≤ m, if we let
c =

(2m
k

)/(2m
m

)
, then we have(

2m
0

)
+

(
2m
1

)
+ · · ·+

(
2m

k−1

)
< c22m−1.

The proof of Proposition 6.18 is not hard; this is the proof of Lemma 3.8.2 in
Lovász, Pelikán, and Vesztergombi [6]. This proposition implies an important result
in (discrete) probability theory as explained in [6] (see Chapter 5).

Observe that 22m is the sum of all the entries on row 2m. As an application, if
k ≤ 447, the sum of the first 447 numbers on row 1000 of the Pascal triangle makes
up less than 0.5% of the total sum and similarly for the last 447 entries. Thus, the
middle 107 entries account for 99% of the total sum.

6.6 The Principle of Inclusion–Exclusion, Sylvester’s Formula,
The Sieve Formula

We now discuss a powerful formula for determining the cardinality of the union
of a finite number of (finite) sets in terms of the cardinalities of the various inter-
sections of these sets. This identity variously attributed to Nicholas Bernoulli, de
Moivre, Sylvester, and Poincaré, has many applications to counting problems and
to probability theory. We begin with the “baby case” of two finite sets.

Proposition 6.19. Given any two finite sets A and B, we have

|A∪B|= |A|+ |B|− |A∩B|.

See Figure 6.8.

Proof. This formula is intuitively obvious because if some element a ∈ A∪B be-
longs to both A and B then it is counted twice in |A|+ |B| and so we need to subtract
its contribution to A∩B. Now,
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Fig. 6.7 Abraham de Moivre, 1667–1754 (left) and Henri Poincaré, 1854–1912 (right).

A
B

h A    B
A - B B - A

Fig. 6.8 A graphical illustration of Proposition 6.19.

A∪B = (A− (A∩B))∪ (A∩B)∪ (B− (A∩B)),

where the three sets on the right-hand side are pairwise disjoint. If we let a = |A|,
b = |B|, and c = |A∩B|, then it is clear that

|A− (A∩B)| = a− c

|B− (A∩B)| = b− c,

so we get

|A∪B| = |A− (A∩B)|+ |A∩B|+ |B− (A∩B)|
= a− c+ c+b− c = a+b− c

= |A|+ |B|− |A∩B|,

as desired. One can also give a proof by induction on n = |A∪B|. ut

We generalize the formula of Proposition 6.19 to any finite collection of finite
sets, A1, . . . ,An. A moment of reflection shows that when n = 3, we have
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|A∪B∪C|= |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|.

One of the obstacles in generalizing the above formula to n sets is purely notational.
We need a way of denoting arbitrary intersections of sets belonging to a family of
sets indexed by {1, . . . ,n}. We can do this by using indices ranging over subsets
of {1, . . . ,n}, as opposed to indices ranging over integers. So, for example, for any
nonempty subset I ⊆ {1, . . . ,n}, the expression

⋂
i∈I Ai denotes the intersection of

all the subsets whose index i belongs to I.

Theorem 6.1. (Principle of Inclusion–Exclusion) For any finite sequence A1, . . . ,
An, of n≥ 2 subsets of a finite set X, we have∣∣∣∣∣ n⋃

k=1

Ak

∣∣∣∣∣= ∑
I⊆{1,...,n}

I 6= /0

(−1)(|I|−1)

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .
Proof. We proceed by induction on n≥ 2. The base case, n = 2, is exactly Proposi-
tion 6.19. Let us now consider the induction step. We can write

n+1⋃
k=1

Ak =

(
n⋃

k=1

Ak

)
∪{An+1}

and so, by Proposition 6.19, we have∣∣∣∣∣n+1⋃
k=1

Ak

∣∣∣∣∣ =
∣∣∣∣∣
(

n⋃
k=1

Ak

)
∪{An+1}

∣∣∣∣∣
=

∣∣∣∣∣ n⋃
k=1

Ak

∣∣∣∣∣+ |An+1|−
∣∣∣∣∣
(

n⋃
k=1

Ak

)
∩{An+1}

∣∣∣∣∣ .
We can apply the induction hypothesis to the first term and we get∣∣∣∣∣ n⋃

k=1

Ak

∣∣∣∣∣= ∑
J⊆{1,...,n}

J 6= /0

(−1)(|J|−1)

∣∣∣∣∣⋂
j∈J

A j

∣∣∣∣∣ .
Using distributivity of intersection over union, we have(

n⋃
k=1

Ak

)
∩{An+1}=

n⋃
k=1

(Ak ∩An+1).

Again, we can apply the induction hypothesis and obtain
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−
∣∣∣∣∣ n⋃
k=1

(Ak ∩An+1)

∣∣∣∣∣ = − ∑
J⊆{1,...,n}

J 6= /0

(−1)(|J|−1)

∣∣∣∣∣⋂
j∈J

(A j ∩An+1)

∣∣∣∣∣
= ∑

J⊆{1,...,n}
J 6= /0

(−1)|J|

∣∣∣∣∣∣ ⋂
j∈J∪{n+1}

A j

∣∣∣∣∣∣
= ∑

J⊆{1,...,n}
J 6= /0

(−1)(|J∪{n+1}|−1)

∣∣∣∣∣∣ ⋂
j∈J∪{n+1}

A j

∣∣∣∣∣∣ .
Putting all this together, we get∣∣∣∣∣n+1⋃

k=1

Ak

∣∣∣∣∣ = ∑
J⊆{1,...,n}

J 6= /0

(−1)(|J|−1)

∣∣∣∣∣⋂
j∈J

A j

∣∣∣∣∣+ |An+1|

+ ∑
J⊆{1,...,n}

J 6= /0

(−1)(|J∪{n+1}|−1)

∣∣∣∣∣∣ ⋂
j∈J∪{n+1}

A j

∣∣∣∣∣∣
= ∑

J⊆{1,...,n+1}
J 6= /0,n+1/∈J

(−1)(|J|−1)

∣∣∣∣∣⋂
j∈J

A j

∣∣∣∣∣+ ∑
J⊆{1,...,n+1}

n+1∈J

(−1)(|J|−1)

∣∣∣∣∣⋂
j∈J

A j

∣∣∣∣∣

= ∑
I⊆{1,...,n+1}

I 6= /0

(−1)(|I|−1)

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ ,
establishing the induction hypothesis and finishing the proof. ut

By taking complements, we obtain the following formula which is the one used
in most applications. A more general version of this formula will be given in Propo-
sition 6.4.

Theorem 6.2. (Sylvester’s Formula) For any finite sequence A1, . . . ,An of n≥ 2 sub-
sets of a finite set X, the number of elements of X that do not belong to any of the
sets Ai is given by ∣∣∣∣∣ n⋂

k=1

Ak

∣∣∣∣∣= |X |+ ∑
I⊆{1,...,n}

I 6= /0

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .
Example 6.1. As an application of the inclusion–exclusion principle, let us prove the
formula for counting the number of surjections from {1, . . . ,n} to {1, . . . , p}, with
p≤ n, given in Proposition 6.7.
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Recall that the total number of functions from {1, . . . ,n} to {1, . . . , p} is pn. The
trick is to count the number of functions that are not surjective. Any such function
has the property that its image misses one element from {1, . . . , p}. So, if we let

Ai = { f : {1, . . . ,n}→ {1, . . . , p} | i /∈ Im( f )},

we need to count |A1 ∪ ·· · ∪ Ap|. But we can easily do this using the inclusion–
exclusion principle. Indeed, for any nonempty subset I of {1, . . . , p}, with |I| = k,
the functions in

⋂
i∈I Ai are exactly the functions whose range misses I. But these are

exactly the functions from {1, . . . ,n} to {1, . . . , p}− I and there are (p− k)n such
functions. Thus, ∣∣∣∣∣⋂

i∈I

Ai

∣∣∣∣∣= (p− k)n.

As there are
(p

k

)
subsets I ⊆ {1, . . . , p} with |I| = k, the contribution of all k-fold

intersections to the inclusion–exclusion principle is(
p
k

)
(p− k)n.

Note that A1 ∩ ·· · ∩Ap = /0, because functions have a nonempty image. Therefore,
the inclusion–exclusion principle yields

|A1∪·· ·∪Ap|=
p−1

∑
k=1

(−1)k−1
(

p
k

)
(p− k)n,

and so the number of surjections Sn p is

Sn p = pn−|A1∪·· ·∪Ap|= pn−
p−1

∑
k=1

(−1)k−1
(

p
k

)
(p− k)n

=
p

∑
k=0

(−1)k
(

p
k

)
(p− k)n

= pn−
(

p
1

)
(p−1)n +

(
p
2

)
(p−2)n + · · ·+(−1)p−1

(
p

p−1

)
,

which is indeed the formula of Proposition 6.7.

Example 6.2. Another amusing application of the inclusion–exclusion principle is
the formula giving the number pn of permutations of {1, . . . ,n} that leave no ele-
ment fixed (i.e., f (i) 6= i, for all i ∈ {1, . . . ,n}). Such permutations are often called
derangements. Let Ak be the set of permutations of {1, . . . ,n} that leave exactly k
elerments fixed, for k = 1, . . . ,n. Then the set of derangements is equal to

⋂n
k=1 Ak.

Thus we can use Sylvester’s formula to find its cardinality. The set Ak consists of the
permutations whose restriction to some subset of size k is the identity. Since there
are
(n

k

)
such subsets, and there are (n−k)! permutations leaving some subset of size
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k fixed, there are
(n

k

)
(n−k)! permutations in Ak, and by Sylvester’s formula, we get

pn = n!−
(

n
1

)
(n−1)!+ · · ·+(−1)k

(
n
k

)
(n− k)!+ · · ·+(−1)n

(
n
n

)
= n!

(
1− 1

1!
+

1
2!

+ · · ·+ (−1)k

k!
+ · · ·+ (−1)n

n!

)
.

Remark: We know (using the series expansion for ex in which we set x =−1) that

1
e
= 1− 1

1!
+

1
2!

+ · · ·+ (−1)k

k!
+ · · · .

Consequently, the factor of n! in the above formula for pn is the sum of the first
n+1 terms of 1/e and so,

lim
n→∞

pn

n!
=

1
e
.

It turns out that the series for 1/e converges very rapidly, so pn ≈ n!/e. The ratio
pn/n! has an interesting interpretation in terms of probabilities. Assume n persons
go to a restaurant (or to the theatre, etc.) and that they all check their coats. Unfor-
tunately, the clerk loses all the coat tags. Then pn/n! is the probability that nobody
will get her or his own coat back. As we just explained, this probability is roughly
1/e≈ 1/3, a surprisingly large number.

Example 6.3. We can also count the number pn,r of permutations that leave r ele-
ments fixed; that is, f (i) = i for r elments i ∈ {1, . . . ,n}, with 0 ≤ r ≤ n. We can
pick

(n
r

)
subsets of r elements that remain fixed, and the remaining n− r elements

must all move, so we have

pn,r =

(
n
r

)
pn−r,

with p0 = 1. From Example 6.2 we have

pn = n!
n

∑
k=0

(−1)k

k!
,

so we have

pn,r =

(
n
r

)
(n− r)!

n−r

∑
k=0

(−1)k

k!

=
n!
r!

(
n−r

∑
k=0

(−1)k

k!

)
.

As a consequence,

lim
n→∞

pn,r

n!
=

1
r!e

.
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The inclusion–exclusion principle can be easily generalized in a useful way as
follows.

Definition 6.10. Given a finite set X , let m be any given function m : X → R+ and
for any nonempty subset A⊆ X set

m(A) = ∑
a∈A

m(a),

with the convention that m( /0) = 0 (recall that R+ = {x ∈R | x≥ 0}). For any x ∈ X ,
the number m(x) is called the weight (or measure) of x and the quantity m(A) is
often called the measure of the set A.

For example, if m(x) = 1 for all x ∈ A, then m(A) = |A|, the cardinality of A,
which is the special case that we have been considering. For any two subsets A,B⊆
X , it is obvious that

m(A∪B) = m(A)+m(B)−m(A∩B)

m(X−A) = m(X)−m(A)

m(A∪B) = m(A∩B)

m(A∩B) = m(A∪B),

where A = X−A. Then we have the following version of Theorem 6.1.

Theorem 6.3. (Principle of Inclusion–Exclusion, Version 2) Given any measure
function m : X → R+, for any finite sequence A1, . . . ,An, of n ≥ 2 subsets of a fi-
nite set X, we have

m

(
n⋃

k=1

Ak

)
= ∑

I⊆{1,...,n}
I 6= /0

(−1)(|I|−1) m

(⋂
i∈I

Ai

)
.

Proof. The proof is obtained from the proof of Theorem 6.1 by changing every-
where any expression of the form |B| to m(B). ut

A useful corollary of Theorem 6.3 often known as Sylvester’s formula is the
following.

Theorem 6.4. (Sylvester’s Formula) Given any measure m : X → R+, for any finite
sequence A1, . . . ,An of n ≥ 2 subsets of a finite set X, the measure of the set of
elements of X that do not belong to any of the sets Ai is given by

m

(
n⋂

k=1

Ak

)
= m(X)+ ∑

I⊆{1,...,n}
I 6= /0

(−1)|I|m

(⋂
i∈I

Ai

)
.

Proof. Observe that
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Fig. 6.9 James Joseph Sylvester, 1814–1897.

n⋂
k=1

Ak = X−
n⋃

k=1

Ak.

Consequently, using Theorem 6.3, we get

m

(
n⋂

k=1

Ak

)
= m

(
X−

n⋃
k=1

Ak

)

= m(X)−m

(
n⋃

k=1

Ak

)

= m(X)− ∑
I⊆{1,...,n}

I 6= /0

(−1)(|I|−1) m

(⋂
i∈I

Ai

)

= m(X)+ ∑
I⊆{1,...,n}

I 6= /0

(−1)|I|m

(⋂
i∈I

Ai

)
,

establishing Sylvester’s formula. ut

Note that if we use the convention that when the index set I is empty then⋂
i∈ /0

Ai = X ,

hence the term m(X) can be included in the above sum by removing the condition
that I 6= /0 and this version of Sylvester’s formula is written:

m

(
n⋂

k=1

Ak

)
= ∑

I⊆{1,...,n}
(−1)|I|m

(⋂
i∈I

Ai

)
.

Sometimes, it is also convenient to regroup terms involving subsets I having the
same cardinality, and another way to state Sylvester’s formula is as follows.
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m

(
n⋂

k=1

Ak

)
=

n

∑
k=0

(−1)k
∑

I⊆{1,...,n}
|I|=k

m

(⋂
i∈I

Ai

)
. (Sylvester’s Formula)

Example 6.4. Sylvester’s formula can be used to give a quick proof for the formula
for the Euler φ -function (or totient), which is defined as follows. For every positive
integer n, define φ(n) as the number of integers m ∈ {1, . . . ,n}, such that m is rela-
tively prime to n (gcd(m,n) = 1). Observe that φ(1) = 1. In order to obtain a formula
for φ using Sylvester’s formula, let X = {1,2, . . . ,n}, for each i with 1 ≤ i ≤ r, set
Ai to be the set of positive integers divisible by pi, and for any i, let m(i) = 1.

Then for any integer n≥ 2, if the prime factorization of n is

n = pk1
1 · · · pkr

r ,

where p1 < · · ·< pr are primes and ki ≥ 1, we have

φ(n) = n−
r

∑
i=1

n
pi

+
r

∑
1≤i< j≤r

n
pi p j
−·· ·= n

r

∏
i=1

(
1− 1

pi

)
.

Example 6.5. As another application of Sylvester’s formula, let us prove the formula

n

∑
i=0

(−1)i
(

n
i

)(
m+n− i

k− i

)
=

{(m
k

)
if k ≤ m

0 if k > m.

To obtain a combinatorial proof of the above formula, let Y = {y1, . . . ,yn} be a
set of n blue balls, and let Z = {z1, . . . ,zm} be a set of m red balls.

How many subsets of Y ∪Z of size k can we form consisting of red balls only?
Clearly, the expression on the right hand side is the answer. We can also use
Sylvester’s formula to obtain the left hand side. Indeed, let X = Y ∪ Z, set Ai to
be the collection of all k-subsets of X containing yi, and let m(yi) = m(z j) = 1. We
leave it as an exercise to show that Sylvester’s formula yields the left hand side.

Finally, Sylvester’s formula can be generalized to a formula usually known as the
“sieve formula.”

Theorem 6.5. (Sieve Formula) Given any measure m : X → R+ for any finite se-
quence A1, . . . ,An of n≥ 2 subsets of a finite set X, the measure of the set of elements
of X that belong to exactly p of the sets Ai (0≤ p≤ n) is given by

T p
n =

n

∑
k=p

(−1)k−p
(

k
p

)
∑

I⊆{1,...,n}
|I|=k

m

(⋂
i∈I

Ai

)
.

Proof. Observe that the set of elements of X that belong to exactly p of the sets Ai
(with 0≤ p≤ n) is given by the expression
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⋃
I⊆{1,...,n}
|I|=p

⋂
i∈I

Ai∩
⋂
j/∈I

A j

 .

For any subset I ⊆ {1, . . . ,n}, if we apply Sylvester’s formula to X =
⋂

i∈I Ai and to
the subsets A j ∩

⋂
i∈I Ai for which j 6∈ I (i.e., j ∈ {1, . . . ,n}− I), we get

m

⋂
i∈I

Ai∩
⋂
j/∈I

A j

= ∑
J⊆{1,...,n}

I⊆J

(−1)|J|−|I|m

(⋂
j∈J

A j

)
.

Hence,

T p
n = ∑

I⊆{1,...,n}
|I|=p

m

⋂
i∈I

Ai∩
⋂
j/∈I

A j


= ∑

I⊆{1,...,n}
|I|=p

∑
J⊆{1,...,n}

I⊆J

(−1)|J|−|I|m

(⋂
j∈J

A j

)

= ∑
J⊆{1,...,n}
|J|≥p

∑
I⊆J
|I|=p

(−1)|J|−|I|m

(⋂
j∈J

A j

)

=
n

∑
k=p

(−1)k−p
(

k
p

)
∑

J⊆{1,...,n}
|J|=k

m

(⋂
j∈J

A j

)
,

establishing the sieve formula. ut

Observe that Sylvester’s formula is the special case of the sieve formula for which
p = 0. The inclusion–exclusion principle (and its relatives) plays an important role
in combinatorics and probability theory as the reader may verify by consulting any
text on combinatorics.

6.7 Möbius Inversion Formula

There are situations, for example in the theory of error-correcting codes, where the
following situation arises: we have two functions f ,g : N+→R defined on the pos-
itive natural numbers, and f and g are related by the equation

g(n) = ∑
d|n

f (d), n ∈ N+,
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where d | n means that d divides n (that is, n = kd, for some k ∈ N). Then there is a
function µ , the Möbius function, such that f is given in terms of g by the equation

f (n) = ∑
d|n

µ(d)g
(

n
d

)
, n ∈ N+,

Such a formula is known as Möbius inversion.
Roughly speaking, the Möbius function tests whether a positive integer is square-

free.

Definition 6.11. A positive integer n is squarefree squarefreeif it is not divisible by
a square d2, with d ∈ N, and d > 1.

For example, n = 18 is not squarefree since it is divisible by 9 = 32. On the other
hand, 15 = 3 ·5 is squarefree. If n≥ 2 is a positive integer and if

n = pk1
1 · · · pkr

r

is its prime factorization, where p1 < · · · < pr are primes and ki ≥ 1, then n is
squarefree iff k1 = · · ·= kr = 1.

Definition 6.12. The Möbius function is the function µ : N+ → {−1,0,1} defined
as follows:

µ(n) =

{1 if n = 1
(−1)r if k1 = · · ·= kr = 1 in the prime factorization of n
0 if n is not squarefree.

It should be noted that Möbius functions and the Möbius inversion formula can
be generalized to the more general setting of locally finite posets; see Berge [1] and
Stanley [8].

A crucial property of the function µ is stated in the following lemma, whose
proof uses the formula for the alternating sum of the binomial coefficients that we
obtained in Section 6.4 (b).

Proposition 6.20. For every integer n ∈ N+, we have

∑
d|n

µ(d) =
{

1 if n = 1
0 if n≥ 2.

Proof. The case where n = 1 is clear. Otherwise, if we write the prime factorization
of n as

n = pk1
1 · · · pkr

r ,

then by definition of µ , only the squarefree divisors contribute to the sum ∑d|n µ(d),
and these correspond to the subsets of {p1, . . . , pr} (where /0 yields 1). Since there
are
(r

i

)
subsets I of size i, and since for each I,
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µ

(
∏
I∈I

pi

)
= (−1)i,

we get

∑
d|n

µ(d) =
r

∑
i=0

(
r
i

)
(−1)i.

However, ∑
r
i=0
(r

i

)
(−1)i = (1−1)r = 0, which concludes the proof. ut

Remark: Note that the Euler φ -function is also given by

φ(n) = ∑
d|n

µ(d)
n
d
.

Here is the famous Möbius inversion formula.

Theorem 6.6. (Möbius inversion formula) Let f ,g : N+→ R be any two functions
defined on the positive natural numbers, and assume that f and g are related by the
equation

g(n) = ∑
d|n

f (d), n ∈ N+.

Then f is given in terms of g by the equation

f (n) = ∑
d|n

µ(d)g
(

n
d

)
, n ∈ N+.

Proof. The proof consists in pushing and interchanging summations around, and it
is not very illuminating. For any divisor d of n, the quotient n/d is also a divisor of
n, and conversely, so

∑
d|n

µ(d)g
(

n
d

)
= ∑

d|n
µ

(
n
d

)
g(d)

= ∑
d|n

µ

(
n
d

)
∑
d′|d

f (d′).

Now, if d | n, then n = dd1 and if d′ | d, then d = d′d2, so n = d′d1d2. A moment of
reflexion(!) shows that

∑
d|n

µ

(
n
d

)
∑
d′|d

f (d′) = ∑
d′|n

f (d′) ∑
m|(n/d′)

µ(m)

= f (n),

since by Proposition 6.20, we have

∑
m|(n/d′)

µ(m) = 0,
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unless d′ = n, in which case the sum has value 1. ut

Remark: A beautiful application of the Möbius inversion formula is the fact that
for every finite field Fq of order q, for every integer n≥ 1, there is some irreducible
polynomial of degree n with coefficients in Fq. This is a crucial fact in the theory
of error-correcting codes. In fact, if I (n,q) is the number of monic irreducible
polynomials of degree n over Fq, then the following recurrence equation holds (see
Cameron [2], Section 4.7 ):

qn = ∑
d|n

dI (d,q).

By the Möbius inversion formula,

I (n,q) =
1
n ∑

d|n
µ(d)q

n
d .

For n = 1,2,3,4, we have

I (1,q) = q

I (2,q) =
q(q−1)

2

I (3,q) =
q(q−1)(q+1)

3

I (4,q) =
q2(q−1)(q+1)

4
.

In general, since µ(1) = 1, the polynomial I (n,q) contains the monomial qn/n,
so we must have I (n,q)> 0.

Other interesting applications of the Möbius inversion formula are given in Gra-
ham, Knuth, and Patashnik [5] (Section 4.9).

A classical reference on combinatorics is Berge [1]; a more recent one is
Cameron [2]; more advanced references are van Lint and Wilson [9] and Stanley
[8]. Another great (but deceptively tough) reference covering discrete mathematics
and including a lot of combinatorics is Graham, Knuth, and Patashnik [5]. Conway
and Guy [3] is another beautiful book that presents many fascinating and intriguing
geometric and combinatorial properties of numbers in a very untertaining manner.
For readers interested in geometry with a combinatriol flavor, Matousek [7] is a
delightful (but more advanced) reference.

6.8 Summary

This chapter provided a very brief and elementary introduction to combinatorics.
To be more precise, we considered various counting problems, such as counting
the number of permutations of a finite set, the number of functions from one set to
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another, the number of injections from one set to another, the number of surjections
from one set to another, the number of subsets of size k in a finite set of size n and the
number of partitions of a set of size n into p blocks. This led us to the binomial (and
the multinomial) coefficients and various properties of these very special numbers.
We also presented various formulae for determining the size of the union of a finite
collection of sets in terms of various intersections of these sets. We discussed the
principle of inclusion–exclusion (PIE), Sylvester’s formula, and the sieve formula.

• We review the notion of a permutation and the factorial function (n 7→ n!).
• We show that a set of size n has n! permutations.
• We show that if A has m elements and B has n elements, then BA (the set of

functions from A to B) has nm elements.
• We state Stirling’s formula, as an estimation of the factorial function.
• We defined the “big oh” notation, the “big Ω” notation, the “big Θ” notation,

and the “little oh” notation.
• We give recurrence relations for computing the number of subsets of size k

of a set of size n (the “Pascal recurrence relations”); these are the binomial
coefficients

(n
k

)
.

• We give an explicit formula for
(n

k

)
and we prove the binomial formula (ex-

pressing (a+b)n in terms of the monomials an−kbk).
• We define the falling factorial and introduce the Stirling numbers of the first

kind, s(n,k).
• We give a formula for the number of injections from a finite set into another

finite set.
• We state a formula for the number of surjections Sn p from a finite set of n

elements onto another finite set of p elements.
• We relate the Sn p to the Stirling numbers of the second kind

{n
p

}
that count the

number of partitions of a set of n elements into p disjoint blocks.
• We define the bell numbers, which count the number of partitions of a finite set.
• We define the multinomial coefficients

( n
k1,...,km

)
and give an explicit formula for

these numbers.
• We prove the multinomial formula (expressing (a1 + · · ·+am)

n).
• We count the number of multisets with n elements formed from a set of m

elements.
• We prove some useful identities about the binomial coefficients summarized in

Table 6.2.
• We estimate the value of the central (and largest) binomial coefficient

(2m
m

)
on

row 2m.
• We give bounds for the ratio

( 2m
m−t

)/(2m
m

)
and show that it is approximately

e−t2/m.
• We prove the formula for the principle of inclusion–exclusion.
• We apply this formula to derive a formula for Sn p.
• We define derangements as permutations that leave no element fixed and give a

formula for counting them.
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• We generalize slightly the inclusion–exclusion principle by allowing finite sets
with weights (defining a measure on the set).

• We prove Sylvester’s formula.
• We prove the sieve formula.
• We define the Möbius function and prove the Möbius inversion formula.

Problems

6.1. In how many different ways can 9 distinct boy scouts be arranged in a 3× 3
formation? In such a formation, there are 3 scouts in the first row, 3 in the second,
and 3 in the third. Two formations are the same if in every row, both formations
contain the same three scouts in the same order.

6.2. In how many different ways can we seat 9 distinct philosophers around a round
table? You may assume that the chairs are indistinguishable. Begin by stating, in at
least two different ways, what it means for two seating arrangements to be different.

6.3. (a) How many sequences of bits of length 10 have as many 0’s as 1s?
(b) How many different ways are there to color the objects a1,a2, . . . ,an (n≥ 3)

using 3 colors if every color must be used at least once?

6.4. For n≥ 1 and k ≥ 0, let A(n,k) be the number of ways in which n children can
divide k indistinguishable apples among them so that no apples are left over. Note
that there may be children getting no apples at all.

(a) Explain why A(n,0) = 1, for all n≥ 1.
(b) Explain why A(1,k) = 1, for all k ≥ 0.
(c) Compute A(2,k), for all k ≥ 0.
(d) Give a combinatorial proof of the following identity:

A(n,k) =
k

∑
i=0

A(n−1,k− i), n≥ 2.

(e) Compute A(4,4).

6.5. Let Sn p be the number of surjections from the set {1, . . . ,n} onto the set
{1, . . . , p}, where 1≤ p≤ n. Observe that Sn1 = 1.

(a) Recall that n! (factorial) is defined for all n ∈ N by 0! = 1 and (n+ 1)! =
(n+1)n!. Also recall that

(n
k

)
(n choose k) is defined for all n ∈ N and all k ∈ Z as

follows.
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n
k

)
= 0, if k /∈ {0, . . . ,n}(

0
0

)
= 1(

n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
, if n≥ 1.

Prove by induction on n that (
n
k

)
=

n!
k!(n− k)!

.

(b) Prove that

n

∑
k=0

(
n
k

)
= 2n (n≥ 0) and

n

∑
k=0

(−1)k
(

n
k

)
= 0 (n≥ 1).

Hint. Use the binomial formula. For all a,b ∈ R and all n≥ 0,

(a+b)n =
n

∑
k=0

(
n
k

)
an−kbk.

(c) Prove that

pn = Sn p +

(
p
1

)
Sn p−1 +

(
p
2

)
Sn p−2 + · · ·+

(
p

p−1

)
.

(d) For all p≥ 1 and all i,k, with 0≤ i≤ k ≤ p, prove that(
p
i

)(
p− i
k− i

)
=

(
k
i

)(
p
k

)
.

Use the above to prove that(
p
0

)(
p
k

)
−
(

p
1

)(
p−1
k−1

)
+ · · ·+(−1)k

(
p
k

)(
p− k

0

)
= 0.

(e) Prove that

Sn p = pn−
(

p
1

)
(p−1)n +

(
p
2

)
(p−2)n + · · ·+(−1)p−1

(
p

p−1

)
.

Hint. Write all p equations given by (c) for 1,2, . . . , p−1, p, multiply both sides of
the equation involving (p− k)n by (−1)k

(p
k

)
, add up both sides of these equations,

and use (b) to simplify the sum on the right-hand side.
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6.6. (a) Let Sn p be the number of surjections from a set of n elements onto a set of
p elements, with 1≤ p≤ n. Prove that

Sn p = p(Sn−1 p−1 +Sn−1 p).

Hint. Adapt the proof of Pascal’s recurrence formula.
(b) Prove that

Sn+1n =
n(n+1)!

2
and

Sn+2n =
n(3n+1)(n+2)!

24
.

Hint. First, show that Snn = n!.
(c) Let Pn p be the number of partitions of a set of n elements into p blocks

(equivalence classes), with 1≤ p≤ n. Note that Pn p, is usually denoted by{
n
p

}
, S(n, p) or S(p)

n ,

a Stirling number of the second kind. If n≤ 0 or p≤ 0, except for (n, p) = (0,0), or
if p > n, we set

{n
p

}
= 0.

Prove that {
n
1

}
= 1{

n
n

}
= 1{

n
p

}
=

{
n−1
p−1

}
+ p
{

n−1
p

}
(1≤ p < n).

Hint. Fix the first of the n elements, say a1. There are two kinds of partitions: those
in which {a1} is a block and those in which the block containing a1 has at least two
elements.

Construct the array of
{n

p

}
s for n, p ∈ {1, . . . ,6}.

(d) Prove that {
n

n−1

}
=

(
n
2

)
, n≥ 1,

and that {
n
2

}
= 2n−1−1, n≥ 1.

(e) Prove that
Sn p = p!Pn p.

Deduce from the above that
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Pn p =
1
p!

(
pn−

(
p
1

)
(p−1)n +

(
p
2

)
(p−2)n + · · ·+(−1)p−1

(
p

p−1

))
.

6.7. Recall that the falling factorial is given by

rk =

k terms︷ ︸︸ ︷
r(r−1) · · ·(r− k+1),

where r is any real number and k ∈ N. Prove the following formula relating the
Stirling numbers of the second kind and the falling factorial:

xn =
n

∑
k=0

{
n
k

}
xk, for all x ∈ R.

Hint. First, assume x = m ∈ N, with m ≤ n, and using Problem 6.6, show that the
number of functions from {1, . . . ,n} to {1, . . . ,m}, is given by

n

∑
k=1

(
m
k

)
Snk =

m

∑
k=1

(
m
k

)
k!
{

n
k

}
,

and note that

mk =

(
m
k

)
k!.

Then, observe that

xn =
n

∑
k=0

{
n
k

}
xk,

is a polynomial identity of degree n valid for the n+1 values 0,1, . . . ,n.

6.8. The Stirling numbers of the first kind are the coefficients s(n,k) arising in the
polynomial expansion of the falling factorial

xn =
n

∑
k=0

s(n,k)xk.

(1) Prove that the s(n,k) satisfy the following recurrence relations:

s(0,0) = 1
s(n+1,k) = s(n,k−1)−ns(n,k), 1≤ k ≤ n+1,

with s(n,k) = 0 if n≤ 0 or k ≤ 0 except for (n,k) = (0,0), or if k > n.
(2) Prove that
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s(n,n) = 1, n≥ 0
s(n,1) = (n−1)!, n≥ 1

s(n,n−1) =
(

n
2

)
, n≥ 1

s(n,2) = (n−1)!Hn−1, n≥ 1,

where Hn−1 is a Harmonic number as defined in Problem 6.32.
(3) Show that for n = 0, . . . ,6, the Stirling numbers of the second kind

{n
k

}
are

given by the following matrix S7, and that the Stirling numbers of the first kind
s(n,k) are given by the following matrix s7, where the rows are indexed by n and
the columns by k:

S7 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 3 1 0 0 0
0 1 7 6 1 0 0
0 1 15 25 10 1 0
0 1 31 90 65 15 1


, s7 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 2 −3 1 0 0 0
0 −6 11 −6 1 0 0
0 24 −50 35 −10 1 0
0 −120 274 −225 85 −15 1


.

Check that s7 is the inverse of the matrix S7; that is

S7 · s7 = s7 ·S7 = I7.

Prove that the Stirling numbers of the first kind and the Stirling numbers of the
second kind are related by the inversion formulae

n

∑
k=m

{
n
k

}
s(k,m) = δmn

n

∑
k=m

s(n,k)
{

k
m

}
= δmn,

where δmn = 1 iff m = n, else δmn = 0.
Hint. Use the fact that

xn =
n

∑
k=0

{
n
k

}
xk

and

xn =
n

∑
m=0

s(n,m)xm.

(4) Prove that

|s(n,k)| ≥
{

n
k

}
, n,k ≥ 0.

6.9. (1) Prove that the Stirling numbers of the second kind satisfy the identity
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n+1

m

}
=

n

∑
k=0

(
n
k

){
k

m−1

}
=

n

∑
k=m−1

(
n
k

){
k

m−1

}
.

(b) Recall that the Bell number bn, the number of partitions of set with n elements,
is given by

bn =
n

∑
p=1

{
n
p

}
.

Prove that

bn+1 =
n

∑
k=0

(
n
k

)
bk.

Remark: It can be shown that

∞

∑
n=0

bn

n!
tn = e(e

t−1);

see Berge [1] (Chapter I).

6.10. By analogy with the falling factorial

rk =

k terms︷ ︸︸ ︷
r(r−1) · · ·(r− k+1),

where r is any real number and k ∈ N, we can define the rising factorial

rk =

k terms︷ ︸︸ ︷
r(r+1) · · ·(r+ k−1) .

We define the signless Stirling numbers of the first kind c(n,k), by

c(n,k) = (−1)n−ks(n,k),

where the s(n,k) are the (signed) Stirling numbers of the first kind. Observe that
c(n,k)≥ 0.

(1) Prove that the c(n,k) satisfy the following recurrence relations:

c(0,0) = 1
c(n+1,k) = c(n,k−1)+nc(n,k), 1≤ k ≤ n+1,

with c(n,k) = 0 if n≤ 0 or k ≤ 0 except for (n,k) = (0,0), or if k > n.
(2) Prove that

rn =
n

∑
k=0

c(n,k)rk;

that is, the c(n,k) are the coefficients of the polynomial rn.
(3) Prove that the falling and the rising factorials are related as follows:
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rn = (−1)n(−r)n.

6.11. In Problem 4.3, we defined a k-cycle (or cyclic permutation of order k) as
a permutation σ : [n]→ [n] such that for some sequence (i1, i2, . . . , ik) of distinct
elements of [n] with 2≤ k ≤ n,

σ(i1) = i2,σ(i2) = i3, . . . ,σ(ik−1) = ik,σ(ik) = i1

and σ( j) = j for all j ∈ [n]−{i1, . . . , ik}. The set {i1, i2, . . . , ik} is called the domain
of the cyclic permutation. Then, we proved that for every permutation π : [n]→ [n],
if π is not the identity, then π can be written as the composition

π = σ1 ◦ · · · ◦σs

of cyclic permutations σ j with disjoint domains. Furthermore, the cyclic permuta-
tions σ j are uniquely determined by the nontrivial orbits of Rπ (defined in Problem
4.3), and an element m ∈ [n] is a fixed point of π iff m is not in the domain of any
cycle σ j.

In the above definition of a k-cycle, we assumed that k ≥ 2, but in order to count
the number of permutations with i cycles, it is necessary to allow 1-cycles to account
for the fixed points of permutations. Consequently, we define a 1-cycle as any sin-
gleton subset { j} of [n], and we call { j} the domain of the 1-cycle. As permutations,
1-cycles all correspond to the identity permutation, but for the purpose of counting
the cycles of a permutation π , it is convenient to distinguish among the 1-cycles
depending on which particular fixed point of π is singled out. Then the main result
of Problem 4.3 can be formulated as follows: every permutation π can be written in
a unique way (up to order of the cycles) as the composition of k-cycles with disjoint
domains

π = σ1 ◦ · · · ◦σs ◦σ j1 ◦ · · · ◦σ jt ,

where σ1, . . . ,σs are k-cycles with k ≥ 2, and σ j1 , . . . ,σ jt are copies of the identity
permutation corresponding to the fixed points of π (π( jm) = jm for m = 1, . . . , t).

(i) Prove that the number c(n, i) of permutations of n elements consisting of ex-
actly i cycles satisfies the following recurrence:

c(0,0) = 1
c(n+1, i) = c(n, i−1)+nc(n, i), 1≤ i≤ n+1

c(0,n) = 0 n≥ 1
c(n,0) = 0 n≥ 1.

(ii) Conclude that the signless Stirling numbers of the first kind count the number
of permutations of n elements with exactly i cycles.

(iii) Prove that
n

∑
i=0

c(n, i) = n!, n ∈ N.
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(iv) Consider all permutations π of [n] that can be written as a composition of
cycles, with λ1 cycles of length 1, λ2 cycles of length 2, ..., λk cycles of length k,
where 1 ·λ1 +2 ·λ2 + · · ·+k ·λk = n. Prove that the number of such permutations is
given by

h(λ1,λ2, . . . ,λk) =
n!

1λ1 ·λ1! ·2λ2 ·λ2! · · ·kλk ·λk!
,

a formula known as Cauchy’s formula.

6.12. The Fibonacci numbers Fn are defined recursively as follows.

F0 = 0
F1 = 1

Fn+2 = Fn+1 +Fn, n≥ 0.

For example, 0,1,1,2,3,5,8,13,21,34,55, . . . are the first 11 Fibonacci numbers.
Prove that

Fn+1 =

(
n
0

)
+

(
n−1

1

)
+

(
n−2

2

)
+ · · ·+

(
0
n

)
.

Hint. Use complete induction. Also, consider the two cases, n even and n odd.

6.13. Given any natural number, n ≥ 1, let pn denote the number of permutations
f : {1, . . . ,n}→ {1, . . . ,n} that leave no element fixed, that is, such that f (i) 6= i, for
all i ∈ {1, . . . ,n}. Such permutations are sometimes called derangements. Note that
p1 = 0 and set p0 = 1.

(a) Prove that

n! = pn +

(
n
1

)
pn−1 +

(
n
2

)
pn−2 + · · ·+

(
n
n

)
.

Hint. For every permutation f : {1, . . . ,n}→ {1, . . . ,n}, let

Fix( f ) = {i ∈ {1, . . . ,n} | f (i) = i}

be the set of elements left fixed by f . Prove that there are pn−k permutations associ-
ated with any fixed set Fix( f ) of cardinality k.

(b) Prove that

pn = n!
(

1− 1
1!

+
1
2!

+ · · ·+ (−1)k

k!
+ · · ·+ (−1)n

n!

)
= n!−

(
n
1

)
(n−1)!+

(
n
2

)
(n−2)!+ · · ·+(−1)n.

Hint. Use the same method as in Problem 6.5.
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Conclude from (b) that

lim
n→∞

pn

n!
=

1
e
.

Hint. Recall that

ex = 1+
x
1!

+
x2

2!
+ · · ·+ xn

n!
+ · · · .

Remark: The ratio pn/n! has an interesting interpretation in terms of probabili-
ties. Assume n persons go to a restaurant (or to the theatre, etc.) and that they all
cherk their coats. Unfortunately, the cleck loses all the coat tags. Then, pn/n! is the
probability that nobody will get her or his own coat back.

(c) Prove that
pn = npn−1 +(−1)n,

for all n≥ 1, with p0 = 1.
Note that n! is defined by n! = n(n−1)!. So, pn is a sort of “weird factorial” with

a strange corrective term (−1)n.

6.14. Consider a sequence of n ≥ 2 items (not necessarily distinct), and assume
that m of them are (indistinguishable and) defective, the remaining n−m being
functional (also indistinguishable).

(1) Prove that the number of sequences of n items such that no two defective
objects are next to each other is (

n−m+1
m

)
.

Hint. Let x1 be the number of items to the left of the first defective object, x2 the
number of items between the first two defective objects, and so on. The list of items
is described by the sequence

x1 0 x2 0 . . . xm 0 xm+1.

Observe that there will be a functional item between any pair of defectives iff xi > 0,
for i = 2, . . . ,m.

(2) Assume n ≥ 3m−2. Prove that the number of sequences where each pair of
defective items is separated by at least 2 functional items is(

n−2m+2
m

)
.

6.15. Consider the integers 1,2, . . . ,n. For any any r ≥ 2 such that n≥ 2r−1, prove
that the number of subsequences (x1, . . . ,xr) of 1,2, . . . ,n such that xi 6= xi+1 for
i = 1, . . . ,r−1, is (

n− r+1
r

)
.
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Hint. Define y1, . . . ,yr+1 such that y1 = x1, yi = xi− xi−1− 1 for i = 2, . . . ,r, and
yr+1 = n− xr−1, and observe that the yi must be positive solutions of the equation

y1 + · · ·+ yr+1 = n− r+2.

6.16. For all k,n ≥ 1, prove that the number of sequences (A1, . . . ,Ak) of (possibly
empty) subsets Ai ⊆ {1, . . . ,n} such that

k⋃
i=1

Ai = {1, . . . ,n},

is
(2k−1)n.

Hint. Reduce this to counting the number of certain kinds of matrices with 0,1-
entries.

6.17. Prove that if m+ p≥ n and m,n, p≥ 0, then(
m+ p

n

)
=

m

∑
k=0

(
m
k

)(
p

n− k

)
.

Hint. Observe that
(m+p

n

)
is the coefficient of am+p−nbn in (a + b)m+p = (a +

b)m(a+b)p.
Show that the above implies that if n≥ p, then(

m+ p
n

)
=

(
m

n− p

)(
p
p

)
+

(
m

n− p+1

)(
p

p−1

)
+

(
m

n− p+2

)(
p

p−2

)
+ · · ·+

(
m
n

)(
p
0

)
and if n≤ p then(

m+ p
n

)
=

(
m
0

)(
p
n

)
+

(
m
1

)(
p

n−1

)
+

(
m
2

)(
p

n−2

)
+ · · ·+

(
m
n

)(
p
0

)
.

6.18. Give combinatorial proofs for the following identities:(
2n
n

)
= 2
(

n
2

)
+n2 (a)

(
m+n

r

)
=

r

∑
k=0

(
m
k

)(
n

r− k

)
. (b)

6.19. Prove that (
0
m

)
+

(
1
m

)
+ · · ·+

(
n
m

)
=

(
n+1
m+1

)
,
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for all m,n ∈ N with 0≤ m≤ n.

6.20. Prove that(
m
0

)
+

(
m+1

1

)
+ · · ·+

(
m+n

n

)
=

(
m+n+1

n

)
.

6.21. Prove that
m

∑
k=0

(−1)k
(

n
k

)
= (−1)m

(
n−1

m

)
,

if 0≤ m≤ n.

6.22. (1) Prove that (
r
k

)
= (−1)k

(
k− r−1

k

)
,

where r ∈ R and k ∈ Z (negating the upper index).
(2) Use (1) and the identity of Problem 6.20 to prove that

m

∑
k=0

(−1)k
(

n
k

)
= (−1)m

(
n−1

m

)
,

if 0≤ m≤ n.

6.23. Prove that
n

∑
k=0

(
n
k

)(
k
m

)
= 2n−m

(
m
k

)
,

where 0≤ m≤ n.

6.24. Prove that

(1+ x)−
1
2 = 1+

∞

∑
k=1

(−1)k 1 ·3 ·5 · · ·(2k−1)
2 ·4 ·6 · · ·2k

xk

= 1+
∞

∑
k=1

(−1)k(2k)!
(k!)222k xk

= 1+
∞

∑
k=1

(−1)k

22k

(
2k
k

)
xk

if |x|< 1.

6.25. Prove that

ln(1+ x)≤ x− x2

2
+

x3

3
,

for all x≥−1.

6.26. If n = 2m+1, prove that
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2m+1

m

)
∼
√

2m+1
2πm(m+1)

(
1+

1
2m

)m(
1− 1

2(m+1)

)m+1

22m+1,

for m large and so, (
2m+1

m

)
∼
√

2m+1
2πm(m+1)

22m+1,

for m large.

6.27. If n = 2m+1, prove that

e−t(t+1)/(m+1−t) ≤
(

2m+1
m− t

)/(
2m+1

m

)
≤ e−t(t+1)/(m+1+t)

with 0≤ t ≤ m. Deduce from this that(
2m+1

k

)/(
2m+1

m

)
∼ e1/(4(m+1)) e−(2m+1−2k)2/(4(m+1)),

for m large and 0≤ k ≤ 2m+1.

6.28. Prove Proposition 6.17.
Hint. First, show that the function

t 7→ t2

m+ t

is strictly increasing for t ≥ 0.

6.29. (1) Prove that

1−
√

1−4x
2x

= 1+
∞

∑
k=1

1
k+1

(
2k
k

)
xk.

(2) The numbers

Cn =
1

n+1

(
2n
n

)
,

are known as the Catalan numbers (n≥ 0). The Catalan numbers are the solution of
many counting problems in combinatorics. The Catalan sequence begins with

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . . .

Prove that

Cn =

(
2n
n

)
−
(

2n
n−1

)
=

1
2n+1

(
2n+1

n

)
.

(3) Prove that C0 = 1 and that
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Cn+1 =
2(2n+1)

n+2
Cn.

(4) Prove that Cn is the number of ways a convex polygon with n+2 sides can be
subdivided into triangles (triangulated) by connecting vertices of the polygon with
(nonintersecting) line segments.
Hint. Observe that any triangulation of a convex polygon with n+2 sides has n−1
edges in addition to the sides of the polygon and thus, a total of 2n+1 edges. Prove
that

(4n+2)Cn = (n+2)Cn+1.

(5) Prove that Cn is the number of full binary trees with n+1 leaves (a full binary
tree is a tree in which every node has degree 0 or 2).

6.30. Which of the following expressions is the number of partitions of a set with
n≥ 1 elements into two disjoint blocks:

(1) 2n−2 (2) 2n−1−1.

Justify your answer.

6.31. (1) If X is a finite set, prove that any function m : 2X → R+ such that, for all
subsets A,B of X , if A∩B = /0, then

m(A∪B) = m(A)+m(B), (∗)

induces a measure on X . This means that the function m′ : X → R+ given by

m′(x) = m({x}), x ∈ X ,

gives m back, in the sense that for every subset A of X ,

m(A) = ∑
x∈A

m′(x) = ∑
x∈A

m({x}).

Hint. First, prove that m( /0) = 0. Then, generalize (∗) to finite families of pairwise
disjoint subsets.

Show that m is monotonic, which means that for any two subsets A,B of X if
A⊆ B, then m(A)≤ m(B).

(2) Given any sequence A1, . . . ,An of subsets of a finite set X , for any measure m
on X , prove that

m
( n⋃

k=1

Ak

)
= ∑

I⊆{1,...,n}
I 6= /0

(−1)(|I|−1)m
(⋂

i∈I

Ai

)
,

and

m
( n⋂

k=1

Ak

)
= ∑

I⊆{1,...,n}
I 6= /0

(−1)(|I|−1)m
(⋃

i∈I

Ai

)
.
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6.32. Let Hn, called the nth harmonic number, be given by

Hn = 1+
1
2
+

1
3
+ · · ·+ 1

n
,

with n≥ 1.
(a) Prove that Hn /∈N for all n≥ 2; that is, Hn is not a whole number for all n≥ 2.

Hint. First, prove that every sequence 1,2,3, . . . ,n, with n ≥ 2, contains a unique
number of the form 2kq, with k ≥ 1 as big as possible and q odd (q = 1 is possible),
which means that for every other number of the form 2k′q′, with 2k′q′ 6= 2kq, 1 ≤
2k′q′ ≤ n, k′ ≥ 1 and q′ odd, we must have k′ < k. Then, prove that the numerator of
Hn is odd and that the denominator of Hn is even, for all n≥ 2.

(b) Prove that

H1 +H2 + · · ·+Hn = (n+1)(Hn+1−1) = (n+1)Hn−n.

(c) Prove that
ln(n+1)≤ Hn,

for all n≥ 1.
Hint. Use the fact that

ln(1+ x)≤ x for all x >−1,

that

ln(n+1) = ln(n)+ ln
(

1+
1
n

)
,

and compute the sum
n

∑
k=1

(
1
k
− ln

(
1+

1
k

))
.

Prove that
ln(n)+

1
n
≤ Hn.

(d) Prove that

Hn ≤ ln(n+1)+
1
2

n

∑
k=1

1
k2 = ln(n)+ ln

(
1+

1
n

)
+

1
2

n

∑
k=1

1
k2 .

Hint. Use the fact that

ln(1+ x)≥ x− x2

2
for all x, where 0≤ x≤ 1 (in fact, for all x≥ 0), and compute the sum

n

∑
k=1

(
ln
(

1+
1
k

)
− 1

k
+

1
2k2

)
.



248 6 Some Counting Problems; Binomial and Multinomial Coefficients

Show that
n

∑
k=1

1
k2 ≤ 2− 1

n
,

and deduce that
Hn ≤ 1+ ln(n)+

1
2n

.

Remark: Actually,
∞

∑
k=1

1
k2 =

π2

6
≈ 1.645,

and this can be used to prove that

Hn ≤ 1+ ln(n).

Indeed, prove that for n≥ 6,

ln
(

1+
1
n

)
+

π2

12
≤ 1,

and that Hn ≤ 1+ ln(n) for n = 1, . . . ,5.
(e) It is known that ln(1 + x) is given by the following convergent series for

|x|< 1,

ln(1+ x) = x− x2

2
+

x3

3
+ · · ·+(−1)n+1 xn

n
+ · · · .

Deduce from this that

ln
(

x
x−1

)
=

1
x
+

1
2x2 +

1
3x3 + · · ·+ 1

nxn + · · · .

for all x with |x|> 1.
Let

H(r)
n =

n

∑
k=1

1
kr .

If r > 1, it is known that each H(r)
n converges to a limit denoted H(r)

∞ or ζ (r), where
ζ is Riemann’s zeta function given by

ζ (r) =
∞

∑
k=1

1
kr ,

for all r > 1.
Prove that
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Fig. 6.10 G. F. Bernhard Riemann, 1826–1866.

ln(n) =
n

∑
k=2

(
1
k
+

1
2k2 +

1
3k3 + · · ·+ 1

mkm + · · ·
)

= (Hn−1)+
1
2
(H(2)

n −1)+
1
3
(H(3)

n −1)+ · · ·+ 1
m
(H(m)

n −1)+ · · ·

and therefore,

Hn− ln(n) = 1− 1
2
(H(2)

n −1)− 1
3
(H(3)

n −1)−·· ·− 1
m
(H(m)

n −1)−·· · .

Remark: The right-hand side has the limit

γ = 1− 1
2
(ζ (2)−1)− 1

3
(ζ (3)−1)−·· ·− 1

m
(ζ (m)−1)−·· ·

known as Euler’s constant (or the Euler–Mascheroni number).

Fig. 6.11 Leonhard Euler, 1707–1783 (left) and Jacob Bernoulli, 1654–1705 (right).

It is known that
γ = 0.577215664901 · · ·

but we don’t even know whether γ is irrational! It can be shown that

Hn = ln(n)+ γ +
1

2n
− 1

12n2 +
εn

120n4 ,
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with 0 < εn < 1.

6.33. The purpose of this problem is to derive a formula for the sum

Sk(n) = 1k +22 +3k + · · ·+nk

in terms of a polynomial in n (where k,n≥ 1 and n≥ 0, with the understanding that
this sum is 0 when n = 0). Such a formula was derived by Jacob Bernoulli (1654–
1705) and is expressed in terms of certain numbers now called Bernoulli numbers.

The Bernoulli numbers Bk are defined inductively by solving some equations
listed below,

B0 = 1
B2−2B1 +1 = B2

B3−3B2 +3B1−1 = B3

B4−4B3 +6B2−4B1 +1 = B4

B5−5B4 +10B3−10B2 +5B1−1 = B5

and, in general,
k

∑
i=0

(
k
i

)
(−1)iBk−i = Bk, k ≥ 2.

Because B1, . . . ,Bk−2 are known inductively, this equation can be used to compute
Bk−1.

Remark: It should be noted that there is more than one definition of the Bernoulli
numbers. There are two main versions that differ in the choice of B1:

1. B1 = 1
2

2. B1 =− 1
2 .

The first version is closer to Bernoulli’s original definition and we find it more
convenient for stating the identity for Sk(n) but the second version is probably used
more often and has its own advantages.

(a) Prove that the first 14 Bernoulli numbers are the numbers listed below:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bn 1 1
2

1
6 0 −1

30 0 1
42 0 −1

30 0 5
66 0 −691

2730 0 7
6

Observe two patterns:

1. All Bernoulli numbers B2k+1, with k ≥ 1, appear to be zero.
2. The signs of the Bernoulli numbers Bn, alternate for n≥ 2.

The above facts are indeed true but not so easy to prove from the defining equations.
However, they follow fairly easily from the fact that the generating function of the
numbers
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Bk

k!
can be computed explicitly in terms of the exponential function.

(b) Prove that
z

1− e−z =
∞

∑
k=0

Bk zk

k!
.

Hint. Expand z/(1− e−z) into a power series

z
1− e−z =

∞

∑
k=0

bk
zk

k!

near 0, multiply both sides by 1−e−z, and equate the coefficients of zk+1; from this,
prove that bk = Bk for all k ≥ 0.

Remark: If we define B1 =− 1
2 , then we get

z
ez−1

=
∞

∑
k=0

Bk zk

k!
.

(c) Prove that B2k+1 = 0, for all k ≥ 1.
Hint. Observe that

z
1− e−z −

z
2
=

z(ez +1)
2(ez−1)

= 1+
∞

∑
k=2

Bk zk

k!

is an even function (which means that it has the same value when we change z to
−z).

(d) Define the Bernoulli polynomial Bk(x) by

Bk(x) =
k

∑
i=0

(
k
i

)
xk−iBi,

for every k ≥ 0. Prove that

Bk+1(n)−Bk+1(n−1) = (k+1)nk,

for all k ≥ 0 and all n≥ 1. Deduce from the above identities that

Sk(n) =
1

k+1
(Bk+1(n)−Bk+1(0)) =

1
k+1

k

∑
i=0

(
k+1

i

)
nk+1−iBi,

an identity often known as Bernoulli’s formula.
Hint. Expand (n−1)k+1−i using the binomial formula and use the fact that(

m
i

)(
m− i

j

)
=

(
m

i+ j

)(
i+ j

i

)
.
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Remark: If we assume that B1 =− 1
2 , then

Bk+1(n+1)−Bk+1(n) = (k+1)nk.

Find explicit formulae for S4(n) and S5(n).

Extra Credit. It is reported that Euler computed the first 30 Bernoulli numbers.
Prove that

B20 =
−174611

330
, B32 =

−7709321041217
510

.

What does the prime 37 have to do with the numerator of B32?

Remark: Because

z
1− e−z −

z
2
=

z(ez +1)
2(ez−1)

=
z
2

ez/2 + e−z/2

ez/2− e−z/2 =
z
2

coth
( z

2

)
,

where coth is the hyperbolic tangent function given by

coth(z) =
coshz
sinhz

,

with

coshz =
ez + e−z

2
, sinhz =

ez− e−z

2
.

It follows that

zcothz =
2z

1− e−2z − z =
∞

∑
k=0

B2k (2z)2k

(2k)!
=

∞

∑
k=0

4kB2k z2k

(2k)!
.

If we use the fact that

sinz =−i sinh iz, cosz = coshiz,

we deduce that cotz = cosz/sinz = i coth iz, which yields

zcotz =
∞

∑
k=0

(−4)kB2k z2k

(2k)!
.

Now, Euler found the remarkable formula

zcotz = 1−2
∞

∑
k=1

z2

k2π2− z2 .

By expanding the right-hand side of the above formula in powers of z2 and equating
the coefficients of z2k in both series for z cotz, we get the amazing formula:

ζ (2k) = (−1)k−1 22k−1π2k

(2k)!
B2k,
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for all k ≥ 1, where ζ (r) is Riemann’s zeta function given by

ζ (r) =
∞

∑
n=1

1
nr ,

for all r > 1. Therefore, we get

B2k = ζ (2k)(−1)k−1 (2k)!
22k−1π2k = (−1)k−12(2k)!

∞

∑
n=1

1
(2πn)2k ,

a formula due to due to Euler. This formula shows that the signs of the B2k alternate
for all k ≥ 1. Using Stirling’s formula, it also shows that

|B2k| ∼ 4
√

πk
(

k
πe

)2k

so B2k tends to infinity rather quickly when k goes to infinity.

6.34. The purpose of this problem is to derive a recurrence formula for the sum

Sk(n) = 1k +22 +3k + · · ·+nk.

Using the trick of writing (n+1)k as the “telescoping sum”

(n+1)k = 1k +(2k−1k)+(3k−2k)+ · · ·+((n+1)k−nk),

use the binomial formula to prove that

(n+1)k = 1+
k−1

∑
j=0

(
k
j

) n

∑
i=1

i j = 1+
k−1

∑
j=0

(
k
j

)
S j(n).

Deduce from the above formula the recurrence formula

(k+1)Sk(n) = (n+1)k+1−1−
k−1

∑
j=0

(
k+1

j

)
S j(n).

6.35. Given n cards and a table, we would like to create the largest possible overhang
by stacking cards up over the table’s edge, subject to the laws of gravity. To be more
precise, we require the edges of the cards to be parallel to the edge of the table; see
Figure 6.12. We assume that each card is 2 units long.

With a single card, obviously we get the maximum overhang when its center of
gravity is just above the edge of the table. Because the center of gravity is in the
middle of the card, we can create half of a cardlength, namely 1 unit, of overhang.

With two cards, a moment of thought reveals that we get maximum overhang
when the center of gravity of the top card is just above the edge of the second card
and the center of gravity of both cards combined is just above the edge of the table.
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1

d2

d3

dn+1

card 1card 2

card n

Fig. 6.12 Stack of overhanging cards.

The joint center of gravity of two cards is in the middle of their common part, so we
can achieve an additional half unit of overhang.

Given n cards, we find that we place the cards so that the center of gravity of
the top k cards lies just above the edge of the (k+ 1)st card (which supports these
top k cards). The table plays the role of the (n + 1)st card. We can express this
condition by defining the distance dk from the extreme edge of the topmost card
to the corresponding edge of the kth card from the top (see Figure 6.12). Note that
d1 = 0. In order for dk+1 to be the center of gravity of the first k cards, we must have

dk+1 =
(d1 +1)+(d2 +2)+ · · ·+(dk +1)

k
,

for 1 ≤ k ≤ n. This is because the center of gravity of k objects having respective
weights w1, . . . ,wk and having respective centers of gravity at positions x1, . . . ,xk is
at position

w1x1 +w2x2 + · · ·+wkxk

w1 +w2 + · · ·+wk
.

Prove that the equations defining the dk+1 imply that

dk+1 = dk +
1
k
,

and thus, deduce that

dk+1 = Hk = 1+
1
2
+

1
3
+ · · ·+ 1

k
,

the kth Harmonic number (see Problem 6.32). Conclude that the total overhang with
n cards is Hn.
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Prove that it only takes four cards to achieve an overhang of one cardlength. What
kind of overhang (in terms of cardlengths) is achieved with 52 cards? (See the end
of Problem 6.32.)

6.36. Consider n≥ 2 lines in the plane. We say that these lines are in general posi-
tion iff no two of them are parallel and no three pass through the same point. Prove
that n lines in general position divide the plane into

n(n+1)
2

+1

regions.

6.37. (A deceptive induction, after Conway and Guy [3]) Place n distinct points
on a circle and draw the line segments joining all pairs of these points. These line
segments determine some regions inside the circle as shown in Figure 6.13 for five
points. Assuming that the points are in general position, which means that no more
than two line segments pass through any point inside the circle, we would like to
compute the number of regions inside the circle. These regions are convex and their
boundaries are line segments or possibly one circular arc.

1

Fig. 6.13 Regions inside a circle.

If we look at the first five circles in Figure 6.14, we see that the number of regions
is

1, 2, 4, 8, 16.

Thus, it is reasonable to assume that with n≥ 1 points, there are R= 2n−1 regions.
(a) Check that the circle with six points (the sixth circle in Figure 6.14) has 32

regions, confirming our conjecture.
(b) Take a closer look at the circle with six points on it. In fact, there are only

31 regions. Prove that the number of regions R corresponding to n points in general
position is

R =
1
24

(n4−6n3 +23n2−18n+24).
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Thus, we get the following number of regions for n = 1, . . . ,14:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
R = 1 2 4 8 16 31 57 99 163 256 386 562 794 1093

1 1 1

1 1 1

Fig. 6.14 Counting regions inside a circle.

Hint. Label the points on the circle, 0,1, . . . ,n−1, in counterclockwise order. Next,
design a procedure for assigning a unique label to every region. The region deter-
mined by the chord from 0 to n− 1 and the circular arc from 0 to n− 1 is labeled
“empty”. Every other region is labeled by a nonempty subset, S, of {0,1, . . .n−1},
where S has at most four elements as illustrated in Figure 6.15. The procedure for
assigning labels to regions goes as follows.

For any quadruple of integers, a,b,c,d, with 0 < a < b < c < d ≤ n− 1, the
chords ac and bd intersect in a point that uniquely determines a region having this
point as a vertex and lying to the right of the oriented line bd; we label this region
abcd. In the special case where a = 0, this region, still lying to the right of the
oriented line bd is labeled bcd. All regions that do not have a vertex on the circle
are labeled that way. For any two integers c,d, with 0 < c < d ≤ n− 1, there is a
unique region having c as a vertex and lying to the right of the oriented line cd and
we label it cd. In the special case where c = 0, this region, still lying to the right of
the oriented line 0d is labeled d.

To understand the above procedure, label the regions in the six circles of Figure
6.14.

Use this labeling scheme to prove that the number of regions is
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1

0

a

b

c

d

abcd

1

0

b

c

d

bcd1

0

c

d

cd

1

0

d

d

Fig. 6.15 Labeling the regions inside a circle.

R =

(
n−1

0

)
+

(
n−1

1

)
+

(
n−1

2

)
+

(
n−1

3

)
+

(
n−1

4

)
1+
(

n
2

)
+

(
n
4

)
.

(c) Prove again, using induction on n, that

R = 1+
(

n
2

)
+

(
n
4

)
.
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Chapter 7
Unique Prime Factorization in Z and GCDs,
Fibonacci and Lucas Numbers, Public Key
Cryptography and RSA

7.1 Unique Prime Factorization in Z and GCDs

In Section 5.4 we proved that every natural number n ≥ 2 can be factored as a
product of primes numbers. In this section we use the Euclidean division lemma
(also introduced in Section 5.4) to prove that such a factorization is unique. For
this, we need to introduce greatest common divisors (gcds) and prove some of their
properties.

In this section it is convenient to allow 0 to be a divisor. So, given any two in-
tegers, a,b ∈ Z, we say that b divides a and that a is a multiple of b iff a = bq,
for some q ∈ Z. Contrary to our previous definition, b = 0 is allowed as a divisor.
However, this changes very little because if 0 divides a, then a = 0q = 0; that is,
the only integer divisible by 0 is 0. Thenotation b | a is usually used to denote that b
divides a. For example, 3 | 21 because 21 = 3 · 7, 5 | −20 because −20 = 5 · (−4),
but 3 does not divide 20.

We begin by introducing a very important notion in algebra, that of an ideal due
to Richard Dedekind, and prove a fundamental property of the ideals of Z.

Fig. 7.1 Richard Dedekind, 1831–1916.

Definition 7.1. An ideal of Z is any nonempty subset I of Z satisfying the following
two properties.

259
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(ID1) If a,b ∈ I, then b−a ∈ I.
(ID2) If a ∈ I, then ak ∈ I for every k ∈ Z.

An ideal I is a principal ideal if there is some a ∈ I, called a generator, such that
I = {ak | k ∈ Z}. The equality I = {ak | k ∈ Z} is also written as I = aZ or as
I= (a). The ideal I= (0) = {0} is called the null ideal.

Note that if I is an ideal, then I= Z iff 1 ∈ I. Because by definition, an ideal I
is nonempty, there is some a ∈ I, and by (ID1) we get 0 = a−a ∈ I. Then for every
a ∈ I, since 0 ∈ I, by (ID1) we get −a ∈ I.

Theorem 7.1. Every ideal I of Z is a principal ideal; that is, I = mZ for some
unique m ∈ N, with m > 0 iff I 6= (0).

Proof. Note that I = (0) iff I = 0Z and the theorem holds in this case. So assume
that I 6= (0). Then our previous observation that−a ∈ I for every a ∈ I implies that
some positive integer belongs to I and so the set I∩N+ is nonempty. As N is well
ordered, this set has a smallest element, say m > 0. We claim that I= mZ.

As m ∈ I, by (ID2), mZ ⊆ I. Conversely, pick any n ∈ I. By the Euclidean
division lemma, there are unique q∈Z and r ∈N so that n=mq+r, with 0≤ r <m.
If r > 0, because m ∈ I, by (ID2), mq ∈ I, and by (ID1), we get r = n−mq ∈ I.
Yet r < m, contradicting the minimality of m. Therefore, r = 0, so n = mq ∈ mZ,
establishing that I ⊆ mZ and thus, I = mZ, as claimed. As to uniqueness, clearly
(0) 6= mZ if m 6= 0, so assume mZ = m′Z, with m > 0 and m′ > 0. Then m divides
m′ and m′ divides m, but we already proved earlier that this implies m = m′. ut

Theorem 7.1 is often phrased: Z is a principal ideal domain, for short, a PID.
Note that the natural number m such that I= mZ is a divisor of every element in I.

Corollary 7.1. For any two integers, a,b ∈ Z, there is a unique natural number
d ∈ N, and some integers u,v ∈ Z, so that d divides both a and b and

ua+ vb = d.

(The above is called the Bézout identity.) Furthermore, d = 0 iff a = 0 and b = 0.

Proof. It is immediately verified that

I= {ha+ kb | h,k ∈ Z}

is an ideal of Z with a,b∈ I. Therefore, by Theorem 7.1, there is a unique d ∈N, so
that I = dZ. We already observed that d divides every number in I so, as a,b ∈ I,
we see that d divides a and b. If d = 0, as d divides a and b, we must have a = b = 0.
Conversely, if a = b = 0, then d = ua+bv = 0. ut

Given any nonempty finite set of integers S = {a1, . . . ,an}, it is easy to verify
that the set

I= {k1a1 + · · ·+ knan | k1, . . . ,kn ∈ Z}
is an ideal of Z and, in fact, the smallest (under inclusion) ideal containing S.
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Definition 7.2. Given any nonempty finite set of integers S = {a1, . . . ,an}, the ideal

I= {k1a1 + · · ·+ knan | k1, . . . ,kn ∈ Z}

is called the ideal generated by S and it is often denoted (a1, . . . ,an).

Corollary 7.1 can be restated by saying that for any two distinct integers, a,b∈Z,
there is a unique natural number d ∈N, such that the ideal (a,b), generated by a and
b is equal to the ideal dZ (also denoted (d)), that is,

(a,b) = dZ.

This result still holds when a = b; in this case, we consider the ideal (a) = (b). With
a slight (but harmless) abuse of notation, when a = b, we also denote this ideal by
(a,b).

Fig. 7.2 Étienne Bézout, 1730–1783.

The natural number d of Corollary 7.1 divides both a and b. Moreover, every
divisor of a and b divides d = ua+ vb. This motivates the next definition.

Definition 7.3. Given any two integers a,b ∈ Z, an integer d ∈ Z is a greatest com-
mon divisor of a and b (for short, a gcd of a and b) if d divides a and b and, for
any integer, h ∈ Z, if h divides a and b, then h divides d. We say that a and b are
relatively prime if 1 is a gcd of a and b.

Remarks:

1. If a = b = 0, then any integer d ∈ Z is a divisor of 0. In particular, 0 divides 0.
According to Definition 7.3, this implies gcd(0,0) = 0. The ideal generated by
0 is the trivial ideal (0), so gcd(0,0) = 0 is equal to the generator of the zero
ideal, (0).
If a 6= 0 or b 6= 0, then the ideal (a,b), generated by a and b is not the zero
ideal and there is a unique integer, d > 0, such that (a,b) = dZ. For any gcd
d′, of a and b, because d divides a and b we see that d must divide d′. As d′

also divides a and b and since (a,b) = dZ implies that d = ha+ kb for some
h,k ∈ Z, the number d′ must also divide d. Thus, d = d′q′ and d′ = dq for
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some q,q′ ∈ Z and so, d = dqq′ which implies qq′ = 1 (inasmuch as d 6= 0).
Therefore, d′ = ±d. So according to the above definition, when (a,b) 6= (0),
gcds are not unique. However, exactly one of d′ or −d′ is positive and equal
to the positive generator d, of the ideal (a,b). We refer to this positive gcd as
“the” gcd of a and b and write d = gcd(a,b). Observe that gcd(a,b) = gcd(b,a).
For example, gcd(20,8) = 4, gcd(1000,50) = 50, gcd(42823,6409) = 17, and
gcd(5,16) = 1.

2. Another notation commonly found for gcd(a,b) is (a,b), but this is confusing
because (a,b) also denotes the ideal generated by a and b.

3. Observe that if d = gcd(a,b) 6= 0, then d is indeed the largest positive common
divisor of a and b because every divisor of a and b must divide d. However,
we did not use this property as one of the conditions for being a gcd because
such a condition does not generalize to other rings where a total order is not
available. Another minor reason is that if we had used in the definition of a gcd
the condition that gcd(a,b) should be the largest common divisor of a and b, as
every integer divides 0, gcd(0,0) would be undefined.

4. If a = 0 and b > 0, then the ideal (0,b), generated by 0 and b, is equal to the
ideal (b) = bZ, which implies gcd(0,b) = b and similarly, if a > 0 and b = 0,
then gcd(a,0) = a.

Let p ∈ N be a prime number. Then note that for any other integer n, if p does
not divide n, then gcd(p,n) = 1, as the only divisors of p are 1 and p.

Proposition 7.1. Given any two integers a,b ∈ Z, a natural number d ∈ N is the
greatest common divisor of a and b iff d divides a and b and if there are some
integers, u,v ∈ Z, so that

ua+ vb = d. (Bézout identity)

In particular, a and b are relatively prime iff there are some integers u,v∈Z, so that

ua+ vb = 1. (Bézout identity)

Proof. We already observed that half of Proposition 7.1 holds, namely if d ∈ N
divides a and b and if there are some integers u,v ∈ Z so that ua+ vb = d, then d is
the gcd of a and b. Conversely, assume that d = gcd(a,b). If d = 0, then a = b = 0
and the proposition holds trivially. So, assume d > 0, in which case (a,b) 6= (0). By
Corollary 7.1, there is a unique m ∈N with m > 0 that divides a and b and there are
some integers u,v ∈ Z so that

ua+ vb = m.

But now m is also the (positive) gcd of a and b, so d = m and our proposition holds.
Now a and b are relatively prime iff gcd(a,b) = 1 in which case the condition that
d = 1 divides a and b is trivial. ut

The gcd of two natural numbers can be found using a method involving Euclidean
division and so can the numbers u and v (see Problems 7.8 and 7.9). This method is
based on the following simple observation.
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Proposition 7.2. If a,b are any two positive integers with a≥ b, then for every k∈Z,

gcd(a,b) = gcd(b,a− kb).

In particular,
gcd(a,b) = gcd(b,a−b) = gcd(b,a+b),

and if a = bq+ r is the result of performing the Euclidean division of a by b, with
0≤ r < b, then

gcd(a,b) = gcd(b,r).

Proof. We claim that
(a,b) = (b,a− kb),

where (a,b) is the ideal generated by a and b and (b,a− kb) is the ideal generated
by b and a− kb. Recall that

(a,b) = {k1a+ k2b | k1,k2 ∈ Z},

and similarly for (b,a− kb). Because a = a− kb+ kb, we have a ∈ (b,a− kb), so
(a,b)⊆ (b,a−kb). Conversely, we have a−kb ∈ (a,b) and so, (b,a−kb)⊆ (a,b).
Therefore, (a,b) = (b,a− kb), as claimed. But then, (a,b) = (b,a− kb) = dZ for a
unique positive integer d > 0, and we know that

gcd(a,b) = gcd(b,a− kb) = d,

as claimed. The next two equations correspond to k = 1 and k = −1. When a =
bq+ r, we have r = a−bq, so the previous result applies with k = q. ut

Using the fact that gcd(a,0) = a, we have the following algorithm for finding the
gcd of two natural numbers a,b, with (a,b) 6= (0,0).

Euclidean Algorithm for Finding the gcd.
The input consists of two natural numbers m,n, with (m,n) 6= (0,0).

begin
a := m; b := n;
if a < b then

t := b; b := a; a := t; (swap a and b)
while b 6= 0 do

r := a mod b; (divide a by b to obtain the remainder r)
a := b; b := r

endwhile;
gcd(m,n) := a

end

In order to prove the correctness of the above algorithm, we need to prove two
facts:
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1. The algorithm always terminates.
2. When the algorithm exits the while loop, the current value of a is indeed

gcd(m,n).

The termination of the algorithm follows by induction on min{m,n}. Without
loss of generality, we may assume that m ≥ n. If n = 0, then b = 0, the body of
the while loop is not even entered and the algorithm stops. If n > 0, then b > 0,
we divide m by n, obtaining m = qn+ r, with 0 ≤ r < n and we set a to n and b
to r. Because r < n, we have min{n,r} = r < n = min{m,n}, and by the induction
hypothesis, the algorithm terminates.

The correctness of the algorithm is an immediate consequence of Proposition
7.2. During any round through the while loop, the invariant gcd(a,b) = gcd(m,n) is
preserved, and when we exit the while loop, we have

a = gcd(a,0) = gcd(m,n),

which proves that the current value of a when the algorithm stops is indeed
gcd(m,n).

Let us run the above algorithm for m = 42823 and n = 6409. There are five
division steps:

42823 = 6409×6+4369
6409 = 4369×1+2040
4369 = 2040×2+289
2040 = 289×7+17
289 = 17×17+0,

so we find that
gcd(42823,6409) = 17.

You should also use your computation to find numbers x,y so that

42823x+6409y = 17.

Check that x =−22 and y = 147 work.
The complexity of the Euclidean algorithm to compute the gcd of two natural

numbers is quite interesting and has a long history. It turns out that Gabriel Lamé
published a paper in 1844 in which he proved that if m > n > 0, then the number of
divisions needed by the algorithm is bounded by 5δ +1, where δ is the number of
digits in n. For this, Lamé realized that the maximum number of steps is achieved by
taking m and n to be two consecutive Fibonacci numbers (see Section 7.3). Dupré, in
a paper published in 1845, improved the upper bound to 4.785δ +1, also making use
of the Fibonacci numbers. Using a variant of Euclidean division allowing negative
remainders, in a paper published in 1841, Binet gave an algorithm with an even
better bound: (10/3)δ + 1. For more on these bounds, see Problems 7.8, 7.10, and
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7.38. (It should observed that Binet, Lamé, and Dupré do not count the last division
step, so the term +1 is not present in their upper bounds.)

The Euclidean algorithm can be easily adapted to also compute two integers, x
and y, such that

mx+ny = gcd(m,n);

Such an algorithm called the extended Euclidean algorithm is shown below.

Extended Euclidean Algorithm

begin
x := 1; y := 0; u := 0; v := 1; g := m; r := n;
if m < n then

t := g; g := r; r := t; (swap g and r)
pr := r; q := bg/prc; r := g− pr q; (divide g by r, to get g = pr q+ r)
if r = 0 then

x := 1; y :=−(q−1); g := pr
else

r = pr;
while r 6= 0 do

pr := r; pu := u; pv := v;
q := bg/prc; r := g− pr q; (divide g by pr, to get g = pr q+ r)
u := x− puq; v := y− pvq;
g := pr; x := pu; y := pv

endwhile;
endif;
gcd(m,n) := g;
if m < n then t := x; x = y; y = t (swap x and y)

end

The correctness of the extended Euclidean algorithm is the object of Problem
7.8. Another version of an algorithm for computing x and y is given in Problem 7.9.

What can be easily shown is the following proposition.

Proposition 7.3. The number of divisions made by the Euclidean algorithm for gcd
applied to two positive integers m,n, with m > n, is at most log2 m+ log2 n.

Proof. We claim that during every round through the while loop, we have

ab > 2br.

Indeed, as a≥ b, we have a = bq+ r, with q≥ 1 and 0≤ r < b, so a≥ b+ r > 2r,
and thus

ab > 2br.

as claimed. The Euclidean algorithm applied to the pair (m,n) with 1 ≤ n < m,
computes the following sequence of quotients and remainders:
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m = nq1 + r1

n = r1q2 + r2

r1 = r2q3 + r3

...
r j−1 = r jq j+1 + r j+1

...
rk−3 = rk−2qk−1 + rk−1

rk−2 = rk−1qk +0,

with k≥ 1, 0< r1 < n, q j ≥ 1, for j = 1, . . . ,k, and 0< r j+1 < r j, for j = 1, . . . ,k−2.
Here it is convenient to set r−1 = m and r0 = n. If k = 1, then r1 = 0 and since
1≤ n < m, we have mn≥ 21 = 2k. If k ≥ 2, applying the above Claim we have the
inequalities

mn > 2nr1

nr1 > 2r1r2

r1r2 > 2r2r3

...
rk−3rk−2 > 2rk−2rk−1.

Consequently we deduce that

mn > 2k−1rk−2rk−1.

Since rk−2 > rk−1 ≥ 1, we obtain

mn > 2k.

In all cases we have 2k ≤ mn, and by taking logarithms, k ≤ log2 m+ log2 n. ut

The exact role played by the Fibonacci numbers in figuring out the complexity
of the Euclidean algorithm for gcd is explored in Problem 7.38.

We now return to Proposition 7.1 as it implies a very crucial property of divisi-
bility in any PID.

Proposition 7.4. (Euclid’s lemma) Let a,b,c∈Z be any integers. If a divides bc and
a is relatively prime to b, then a divides c.

Proof. From Proposition 7.1, a and b are relatively prime iff there exist some inte-
gers u,v ∈ Z such that

ua+ vb = 1.

Then we have
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uac+ vbc = c,

and because a divides bc, it divides both uac and vbc and so, a divides c. ut

Fig. 7.3 Euclid of Alexandria, about 325 BC–about 265 BC.

In particular, if p is a prime number and if p divides ab, where a,b ∈ Z are
nonzero, then either p divides a or p divides b because if p does not divide a, by a
previous remark, then p and a are relatively prime, so Proposition 7.4 implies that
p divides b.

Proposition 7.5. Let a,b1, . . . ,bm ∈ Z be any integers. If a and bi are relatively
prime for all i, with 1≤ i≤ m, then a and b1 · · ·bm are relatively prime.

Proof. We proceed by induction on m. The case m = 1 is trivial. Let c = b2 · · ·bm.
By the induction hypothesis, a and c are relatively prime. Let d be the gcd of a and
b1c. We claim that d is relatively prime to b1. Otherwise, d and b1 would have some
gcd d1 6= 1 which would divide both a and b1, contradicting the fact that a and b1 are
relatively prime. Now by Proposition 7.4, d divides b1c and d and b1 are relatively
prime, thus d divides c = b2 · · ·bm. But then d is a divisor of a and c, and because
a and c are relatively prime, d = 1, which means that a and b1 · · ·bm are relatively
prime. ut

One of the main applications of the Euclidean algorithm is to find the inverse of
a number in modular arithmetic, an essential step in the RSA algorithm, the first and
still widely used algorithm for public-key cryptography.

Definition 7.4. Given any natural number p ≥ 1, we can define a relation on Z,
called congruence, as follows:

n≡ m (mod p)

iff p | n−m; that is, iff n = m + pk, for some k ∈ Z. We say that m and n are
congruent modulo p and that m is a residue of n modulo p.

The notation for congruence was introduced by Carl Friedrich Gauss (1777–
1855), one of the greatest mathematicians of all time. Gauss contributed signifi-
cantly to the theory of congruences and used his results to prove deep and funda-
mental results in number theory.
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Fig. 7.4 Carl Friedrich Gauss, 1777–1855.

Definition 7.5. If n, p ≥ 1 and n and p are relatively prime, an inverse of n modulo
p is a number s≥ 1 such that

ns≡ 1 (mod p).

Using Proposition 7.4 (Euclid’s lemma), it is easy to see that if s1 and s2 are both
an inverse of n modulo p, then s1 ≡ s2 (mod p). Finding an inverse of n modulo p
means finding some integers x,y so that nx = 1+ py, that is nx− py = 1, therefore
we can find x and y using the extended Euclidean algorithm; see Problems 7.8 and
7.9. If p = 1, we can pick x = 1 and y = n−1 and 1 is the smallest positive inverse
of n modulo 1. Let us now assume that p≥ 2. Using Euclidean division (even if x is
negative), we can write

x = pq+ r,

where 1≤ r < p (r 6= 0 because otherwise p≥ 2 would divide 1), so that

nx− py = n(pq+ r)− py = nr− p(y−nq) = 1,

and r is the unique inverse of n modulo p such that 1≤ r < p.
We can now prove the uniqueness of prime factorizations in N. The first rigorous

proof of this theorem was given by Gauss.

Theorem 7.2. (Unique Prime Factorization in N) For every natural number a≥ 2,
there exists a unique set {〈p1,k1〉, . . . ,〈pm,km〉}, where the pis are distinct prime
numbers and the kis are (not necessarily distinct) integers, with m ≥ 1, ki ≥ 1, so
that

a = pk1
1 · · · pkm

m .

Proof. The existence of such a factorization has already been proven in Theorem
5.5.

Let us now prove uniqueness. Assume that

a = pk1
1 · · · pkm

m and a = qh1
1 · · ·qhn

n .

Thus, we have
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pk1
1 · · · pkm

m = qh1
1 · · ·qhn

n .

We prove that m= n, pi = qi, and hi = ki, for all i, with 1≤ i≤ n. The proof proceeds
by induction on h1 + · · ·+hn.

If h1 + · · ·+hn = 1, then n = 1 and h1 = 1. Then

pk1
1 · · · pkm

m = q1,

and because q1 and the pi are prime numbers, we must have m = 1 and p1 = q1 (a
prime is only divisible by 1 or itself).

If h1 + · · ·+hn ≥ 2, because h1 ≥ 1, we have

pk1
1 · · · pkm

m = q1q,

with
q = qh1−1

1 · · ·qhn
n ,

where (h1− 1)+ · · ·+ hn ≥ 1 (and qh1−1
1 = 1 if h1 = 1). Now, if q1 is not equal to

any of the pi, by a previous remark, q1 and pi are relatively prime, and by Proposi-
tion 7.5, q1 and pk1

1 · · · pkm
m are relatively prime. But this contradicts the fact that q1

divides pk1
1 · · · pkm

m . Thus, q1 is equal to one of the pi. Without loss of generality, we
can assume that q1 = p1. Then, as q1 6= 0, we get

pk1−1
1 · · · pkm

m = qh1−1
1 · · ·qhn

n ,

where pk1−1
1 = 1 if k1 = 1, and qh1−1

1 = 1 if h1 = 1. Now, (h1− 1) + · · ·+ hn <
h1 + · · ·+ hn, and we can apply the induction hypothesis to conclude that m = n,
pi = qi and hi = ki, with 1≤ i≤ n. ut

Theorem 7.2 is a basic but very important result of number theory and it has many
applications. It also reveals the importance of the primes as the building blocks of
all numbers.

Remark: Theorem 7.2 also applies to any nonzero integer a ∈ Z−{−1,+1}, by
adding a suitable sign in front of the prime factorization. That is, we have a unique
prime factorization of the form

a =±pk1
1 · · · pkm

m .

Theorem 7.2 shows that Z is a unique factorization domain, for short, a UFD. Such
rings play an important role because every nonzero element that is not a unit (i.e.,
which is not invertible) has a unique factorization (up to some unit factor) into so-
called irreducible elements which generalize the primes.

Readers who would like to learn more about number theory are strongly advised
to read Silverman’s delightful and very “friendly” introductory text [13]. Another
excellent but more advanced text is Davenport [2] and an even more comprehensive
book (and a classic) is Niven, Zuckerman, and Montgomery [10]. For those inter-



270 7 Unique Prime Factorization in Z and GCDs, RSA

ested in the history of number theory (up to Gauss), we highly recommend Weil
[14], a fascinating book (but no easy reading).

In the next section we give a beautiful application of the pigeonhole principle to
number theory due to Dirichlet (1805–1949).

7.2 Dirichlet’s Diophantine Approximation Theorem

The pigeonhole principle (see Section 3.1) was apparently first stated explicitly by
Dirichlet in 1834. Dirichlet used the pigeonhole principle (under the name Schub-
fachschluß) to prove a fundamental theorem about the approximation of irrational
numbers by fractions (rational numbers). The proof is such a beautiful illustration

Fig. 7.5 Johan Peter Gustav Lejeune Dirichlet, 1805–1859.

of the use of the pigeonhole principle that we can’t resist presenting it. Recall that a
real number α ∈ R is irrational iff it cannot be written as a fraction p/q ∈Q.

Theorem 7.3. (Dirichlet) For every positive irrational number α > 0, there are in-
finitely many pairs of positive integers, (x,y), such that gcd(x,y) = 1 and

|x− yα|< 1
y
.

Proof. Pick any positive integer m such that m≥ 1/α , and consider the numbers

0, α, 2α, 3α, · · · ,mα.

We can write each number in the above list as the sum of a whole number (a natural
number) and a decimal real part, between 0 and 1, say
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0 = N0 +F0

α = N1 +F1

2α = N2 +F2

3α = N3 +F3

...
mα = Nm +Fm,

with N0 = F0 = 0, Ni ∈ N, and 0 ≤ Fi < 1, for i = 1, . . . ,m. Observe that there are
m+1 numbers F0, . . . ,Fm. Consider the m “boxes” consisting of the intervals{

t ∈ R
∣∣∣∣ i

m
≤ t <

i+1
m

}
, 0≤ i≤ m−1.

These boxes form a partition of the unit interval [0,1] into m disjoint consecutive
subintervals. There are m+1 numbers Fi, and only m intervals, thus by the pigeon-
hole principle, two of these numbers must be in the same interval, say Fi and Fj, for
i < j. As

i
m
≤ Fi,Fj <

i+1
m

,

we must have
|Fi−Fj|<

1
m

and because iα = Ni +Fi and jα = N j +Fj, we conclude that

|iα−Ni− ( jα−N j)|<
1
m

;

that is,

|N j−Ni− ( j− i)α|< 1
m
.

Note that 1≤ j− i≤ m and so, if N j−Ni = 0, then

α <
1

( j− i)m
≤ 1

m
,

which contradicts the hypothesis m ≥ 1/α . Therefore, x = N j −Ni > 0 and y =
j− i > 0 are positive integers such that y≤ m and

|x− yα|< 1
m
.

If gcd(x,y) = d > 1, then write x = dx′, y = dy′, and divide both sides of the above
inequality by d to obtain

|x′− y′α|< 1
md

<
1
m
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with gcd(x′,y′) = 1 and y′ < m. In either case, we proved that there exists a pair of
positive integers (x,y), with y≤ m and gcd(x,y) = 1 such that

|x− yα|< 1
m
.

However, y≤ m, so we also have

|x− yα|< 1
m
≤ 1

y
,

as desired.
Suppose that there are only finitely many pairs (x,y) satisfying gcd(x,y) = 1 and

|x− yα|< 1
y
.

In this case, there are finitely many values for |x− yα| and thus, the minimal value
of |x− yα| is achieved for some (x0,y0). Furthermore, as α is irrational, we have
0 < |x0− y0α|. However, if we pick m large enough, we can find (x,y) such that
gcd(x,y) = 1 and

|x− yα|< 1
m

< |x0− y0α|,

contradicting the minimality of |x0−y0α|. Therefore, there are infinitely many pairs
(x,y), satisfying the theorem. ut

Note that Theorem 7.3 yields rational approximations for α , because after divi-
sion by y, we get ∣∣∣∣xy −α

∣∣∣∣< 1
y2 .

For example,
355
113

= 3.1415929204,

a good approximation of
π = 3.1415926535 . . .

The fraction
103993
33102

= 3.1415926530

is even better.

Remark: Actually, Dirichlet proved his approximation theorem for irrational num-
bers of the form

√
D, where D is a positive integer that is not a perfect square, but

a trivial modification of his proof applies to any (positive) irrational number. One
should consult Dirichlet’s original proof in Dirichlet [4], Supplement VIII. This
book was actually written by R. Dedekind in 1863 based on Dirichlet’s lectures,
after Dirichlet’s death. It is considered as one of the most important mathematics
book of the nineteenth century, and it is a model of exposition for its clarity.
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Theorem 7.3 only gives a brute-force method for finding x and y, namely, given
y, we pick x to be the integer closest to yα . There are better ways for finding rational
approximations based on continued fractions; see Silverman [13], Davenport [2], or
Niven, Zuckerman, and Montgomery [10].

It should also be noted that Dirichlet made another clever use of the pigeonhole
principle to prove that the equation (known as Pell’s equation)

x2−Dy2 = 1,

where D is a positive integer that is not a perfect square, has some solution (x,y),
where x and y are positive integers. Such equations had been considered by Fermat
around the 1640s and long before that by the Indian mathematicians, Brahmagupta
(598–670) and Bhaskaracharya (1114–1185). Surprisingly, the solution with the
smallest x can be very large. For example, the smallest (positive) solution of

x2−61y2 = 1

is (x1,y1) = (1766319049,226153980).
It can also be shown that Pell’s equation has infinitely many solutions (in pos-

itive integers) and that these solutions can be expressed in terms of the smallest
solution. For more on Pell’s equation, see Silverman [13] and Niven, Zuckerman,
and Montgomery [10].

We now take a look at Fibonacci and Lucas numbers. The Lucas numbers come
up in primality testing.

7.3 Fibonacci and Lucas Numbers; Mersenne Primes

We have encountered the Fibonacci numbers (after Leonardo Fibonacci, also known
as Leonardo of Pisa, 1170–1250) in Section 2.3. These numbers show up unex-
pectedly in many places, including algorithm design and analysis, for example, Fi-
bonacci heaps. The Lucas numbers (after Edouard Lucas, 1842–1891) are closely
related to the Fibonacci numbers. Both arise as special instances of the recurrence
relation

un+2 = un+1 +un, n≥ 0,

where u0 and u1 are some given initial values.
The Fibonacci sequence (Fn) arises for u0 = 0 and u1 = 1, and the Lucas se-

quence (Ln) for u0 = 2 and u1 = 1. These two sequences turn out to be intimately
related and they satisfy many remarkable identities. The Lucas numbers play a role
in testing for primality of certain kinds of numbers of the form 2p−1, where p is a
prime, known as Mersenne numbers. In turns out that the largest known primes so
far are Mersenne numbers and large primes play an important role in cryptography.

It is possible to derive a closed-form formula for both Fn and Ln using some
simple linear algebra.
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Fig. 7.6 Leonardo Pisano Fibonacci, 1170–1250 (left) and F. Edouard Lucas, 1842–1891 (right).

Observe that the recurrence relation

un+2 = un+1 +un

yields the recurrence (
un+1

un

)
=

(
1 1
1 0

)(
un

un−1

)
for all n≥ 1, and so, (

un+1

un

)
=

(
1 1
1 0

)n(u1

u0

)
(∗)

for all n≥ 0. Now, the matrix

A =

(
1 1
1 0

)
has characteristic polynomial, λ 2−λ −1, which has two real roots

λ =
1±
√

5
2

.

Observe that the larger root is the famous golden ratio, often denoted

ϕ =
1+
√

5
2

= 1.618033988749 · · ·

and that
1−
√

5
2

=−ϕ
−1.

Inasmuch as A has two distinct eigenvalues, it can be diagonalized, and it is easy to
show that

A =

(
1 1
1 0

)
=

1√
5

(
ϕ −ϕ−1

1 1

)(
ϕ 0
0 −ϕ−1

)(
1 ϕ−1

−1 ϕ

)
.

It follows that
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An =
1√
5

(
ϕ −ϕ−1

1 1

)(
ϕ 0
0 −ϕ−1

)n( 1 ϕ−1

−1 ϕ

)
=

1√
5

(
ϕ −ϕ−1

1 1

)(
ϕn 0
0 (−ϕ−1)n

)(
1 ϕ−1

−1 ϕ

)
,

which by (∗) yields(
un+1

un

)
=

1√
5

(
ϕ −ϕ−1

1 1

)(
(ϕ−1u0 +u1)ϕ

n

(ϕu0−u1)(−ϕ−1)n

)
,

and so
un =

1√
5

(
(ϕ−1u0 +u1)ϕ

n +(ϕu0−u1)(−ϕ
−1)n),

for all n≥ 0.
For the Fibonacci sequence, u0 = 0 and u1 = 1, so

Fn =
1√
5

(
ϕ

n− (−ϕ
−1)n)= 1√

5

[(
1+
√

5
2

)n

−
(

1−
√

5
2

)n]
,

a formula established by Jacques Binet (1786–1856) in 1843 and already known to
Euler, Daniel Bernoulli, and de Moivre. Because

ϕ−1
√

5
=

√
5−1

2
√

5
<

1
2
,

we see that Fn is the closest integer to ϕn/
√

5 and that

Fn =

⌊
ϕn
√

5
+

1
2

⌋
.

It is also easy to see that
Fn+1 = ϕFn +(−ϕ

−1)n,

which shows that the ratio Fn+1/Fn approaches ϕ as n goes to infinity.
For the Lucas sequence, u0 = 2 and u1 = 1, so

ϕ
−1u0 +u1 = 2

(
√

5−1)
2

+1 =
√

5,

ϕu0−u1 = 2
(1+
√

5)
2

−1 =
√

5

and we get

Ln = ϕ
n +(−ϕ

−1)n =

(
1+
√

5
2

)n

+

(
1−
√

5
2

)n

.
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Because

ϕ
−1 =

√
5−1
2

< 0.62

it follows that Ln is the closest integer to ϕn.
We record the above formulae for the Fibonacci numbers and the Lucas numbers

in the following proposition.

Proposition 7.6. The Fibonacci numbers Fn are given by the formula

Fn =
1√
5

[(
1+
√

5
2

)n

−
(

1−
√

5
2

)n]
,

known as Binet’s formula. The number Fn is the closest integer to ϕn/
√

5, and

Fn =

⌊
ϕn
√

5
+

1
2

⌋
.

The Lucas numbers Ln are given by the formula

Ln =

(
1+
√

5
2

)n

+

(
1−
√

5
2

)n

.

The number Ln is the closest integer to ϕn.

When u0 = u1, because ϕ−ϕ−1 = 1, we get

un =
u0√

5

(
ϕ

n+1− (−ϕ
−1)n+1);

that is,
un = u0Fn+1.

Therefore, from now on, we assume that u0 6= u1.
It is easy to prove the following by induction.

Proposition 7.7. The following identities hold.

F2
0 +F2

1 + · · ·+F2
n = FnFn+1

F0 +F1 + · · ·+Fn = Fn+2−1
F2 +F4 + · · ·+F2n = F2n+1−1

F1 +F3 + · · ·+F2n+1 = F2n+2
n

∑
k=0

kFk = nFn+2−Fn+3 +2

for all n≥ 0 (with the third sum interpreted as F0 for n = 0).
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Following Knuth (see [5]), the third and fourth identities yield the identity

F(n mod 2)+2 + · · ·+Fn−2 +Fn = Fn+1−1,

for all n≥ 2.
The above can be used to prove the Zeckendorf representation of the natural

numbers (see Knuth [5], Chapter 6).

Proposition 7.8. (Zeckendorf’s Representation) Every natural number n ∈ N with
n > 0, has a unique representation of the form

n = Fk1 +Fk2 + · · ·+Fkr ,

with ki ≥ ki+1 +2 for i = 1, . . . ,r−1 and kr ≥ 2.

For example,

30 = 21+8+1
= F8 +F6 +F2

and

1000000 = 832040+121393+46368+144+55
= F30 +F26 +F24 +F12 +F10.

The fact that
Fn+1 = ϕFn +(−ϕ

−1)n

and the Zeckendorf representation lead to an amusing method for converting be-
tween kilometers and miles (see [5], Section 6.6). Indeed, ϕ is nearly the number of
kilometers in a mile (the exact number is 1.609344 and ϕ = 1.618033). It follows
that a distance of Fn+1 kilometers is very nearly a distance of Fn miles,

Thus, to convert a distance d expressed in kilometers into a distance expressed
in miles, first find the Zeckendorf representation of d and then shift each Fki in this
representation to Fki−1. For example,

30 = 21+8+1 = F8 +F6 +F2

so the corresponding distance in miles is

F7 +F6 +F1 = 13+5+1 = 19.

The “exact” distance in miles is 18.64 miles.
We can prove two simple formulas for obtaining the Lucas numbers from the

Fibonacci numbers and vice-versa.

Proposition 7.9. The following identities hold:
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Ln = Fn−1 +Fn+1

5Fn = Ln−1 +Ln+1,

for all n≥ 1.

The Fibonacci sequence begins with
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610

and the Lucas sequence begins with
2,1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364.
Notice that Ln = Fn−1 +Fn+1 is equivalent to

2Fn+1 = Fn +Ln.

It can also be shown that
F2n = FnLn,

for all n≥ 1.
The proof of the above formula proceeds by induction but one finds that it is

necessary to prove an auxiliary fact.

Proposition 7.10. For any fixed k ≥ 1 and all n≥ 0, we have

Fn+k = FkFn+1 +Fk−1Fn.

The reader can also prove that

LnLn+2 = L2
n+1 +5(−1)n

L2n = L2
n−2(−1)n

L2n+1 = LnLn+1− (−1)n

L2
n = 5F2

n +4(−1)n.

Using the matrix representation derived earlier, the following can be shown.

Proposition 7.11. The sequence given by the recurrence

un+2 = un+1 +un

satisfies the equation:

un+1un−1−u2
n = (−1)n−1(u2

0 +u0u1−u2
1).

For the Fibonacci sequence, where u0 = 0 and u1 = 1, we get the Cassini identity
(after Jean-Dominique Cassini, also known as Giovanni Domenico Cassini, 1625–
1712),

Fn+1Fn−1−F2
n = (−1)n, n≥ 1.

The above identity is a special case of Catalan’s identity,



7.3 Fibonacci and Lucas Numbers; Mersenne Primes 279

Fn+rFn−r−F2
n = (−1)n−r+1F2

r , n≥ r,

due to Eugène Catalan (1814–1894).

Fig. 7.7 Jean-Dominique Cassini, 1748–1845 (left) and Eugène Charles Catalan, 1814–1984
(right).

For the Lucas numbers, where u0 = 2 and u1 = 1 we get

Ln+1Ln−1−L2
n = 5(−1)n−1, n≥ 1.

In general, we have

ukun+1 +uk−1un = u1un+k +u0un+k−1,

for all k ≥ 1 and all n≥ 0.
For the Fibonacci sequence, where u0 = 0 and u1 = 1, we just re-proved the

identity
Fn+k = FkFn+1 +Fk−1Fn.

For the Lucas sequence, where u0 = 2 and u1 = 1, we get

LkLn+1 +Lk−1Ln = Ln+k +2Ln+k−1

= Ln+k +Ln+k−1 +Ln+k−1

= Ln+k+1 +Ln+k−1

= 5Fn+k;

that is,
LkLn+1 +Lk−1Ln = Ln+k+1 +Ln+k−1 = 5Fn+k,

for all k ≥ 1 and all n≥ 0.
The identity

Fn+k = FkFn+1 +Fk−1Fn

plays a key role in the proof of various divisibility properties of the Fibonacci num-
bers. Here are two such properties.

Proposition 7.12. The following properties hold.
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1. Fn divides Fmn, for all m,n≥ 1.
2. gcd(Fm,Fn) = Fgcd(m,n), for all m,n≥ 1.

An interesting consequence of this divisibility property is the following fact.

Proposition 7.13. If Fn is a prime and n > 4, then n must be a prime.

Proof. Indeed, if n≥ 5 and n is not prime, then n = pq for some integers p,q (pos-
sibly equal) with p≥ 2 and q≥ 3, so Fq divides Fpq = Fn and because q≥ 3, Fq ≥ 2
and Fn is not prime. ut

For n = 4, F4 = 3 is prime. However, there are prime numbers n≥ 5 such that Fn
is not prime, for example, n = 19, as F19 = 4181 = 37×113 is not prime.

The gcd identity can also be used to prove that for all m,n with 2 < n < m, if Fn
divides Fm, then n divides m, which provides a converse of our earlier divisibility
property.

The formulae

2Fm+n = FmLn +FnLm

2Lm+n = LmLn +5FmFn

are also easily established using the explicit formulae for Fn and Ln in terms of ϕ

and ϕ−1.
The Fibonacci sequence and the Lucas sequence contain primes but it is unknown

whether they contain infinitely many primes. Here are some facts about Fibonacci
and Lucas primes taken from The Little Book of Bigger Primes , by Paulo Riben-
boim [11].

As we proved earlier, if Fn is a prime and n 6= 4, then n must be a prime but the
converse is false. For example,

F3,F4,F5,F7,F11,F13,F17,F23

are prime but F19 = 4181 = 37× 113 is not a prime. One of the largest prime Fi-
bonacci numbers is F81839. This number has 17,103 digits. Concerning the Lucas
numbers, we prove shortly that if Ln is an odd prime and n is not a power of 2, then
n is a prime. Again, the converse is false. For example,

L0,L2,L4,L5,L7,L8,L11,L13,L16,L17,L19,L31

are prime but L23 = 64079 = 139×461 is not a prime. Similarly, L32 = 4870847 =
1087×4481 is not prime. One of the largest Lucas primes is L51169.

Generally, divisibility properties of the Lucas numbers are not easy to prove be-
cause there is no simple formula for Lm+n in terms of other Lks. Nevertheless, we
can prove that if n,k ≥ 1 and k is odd, then Ln divides Lkn. This is not necessarily
true if k is even. For example, L4 = 7 and L8 = 47 are prime.

Proposition 7.14. If n,k ≥ 1 and k is odd, then Ln divides Lkn.
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Proof. The trick is that when k is odd, the binomial expansion of Lk
n = (ϕn +

(−ϕ−1)n)k has an even number of terms and these terms can be paired up. Indeed,
if k is odd, say k = 2h+1, we have the formula

L2h+1
n = L(2h+1)n +

(
2h+1

1

)
(−1)nL(2h−1)n +

(
2h+1

2

)
(−1)2nL(2h−3)n + · · ·

+

(
2h+1

h

)
(−1)hnLn.

By induction on h, we see that Ln divides L(2h+1)n for all h≥ 0. ut

Consequently, if n≥ 2 is not prime and not a power of 2, then either n = 2iq for
some odd integer q ≥ 3 and some i ≥ 1, and thus L2i ≥ 3 divides Ln, or n = pq for
some odd integers (possibly equal), p ≥ 3 and q ≥ 3, and so, Lp ≥ 4 (and Lq ≥ 4)
divides Ln. Therefore, if Ln is an odd prime (so n 6= 1, because L1 = 1), then either
n is a power of 2 or n is prime.

Remark: When k is even, say k = 2h, the “middle term,”
(2h

h

)
(−1)hn, in the bino-

mial expansion of L2h
n = (ϕn +(−ϕ−1)n)2h stands alone, so we get

L2h
n = L2hn +

(
2h
1

)
(−1)nL(2h−2)n +

(
2h
2

)
(−1)2nL(2h−4)n + · · ·

+

(
2h

h−1

)
(−1)(h−1)nL2n +

(
2h
h

)
(−1)hn.

Unfortunately, the above formula seems of little use to prove that L2hn is divisible
by Ln. Note that the last term is always even inasmuch as(

2h
h

)
=

(2h)!
h!h!

=
2h
h

(2h−1)!
(h−1)!h!

= 2
(

2h−1
h

)
.

It should also be noted that not every sequence (un) given by the recurrence

un+2 = un+1 +un

and with gcd(u0,u1) = 1 contains a prime number. According to Ribenboim [11],
Graham found an example in 1964 but it turned out to be incorrect. Later, Knuth
gave correct sequences (see Concrete Mathematics [5], Chapter 6), one of which
began with

u0 = 62638280004239857
u1 = 49463435743205655.
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7.4 Generalized Lucas Sequences and Mersenne Primes

We just studied some properties of the sequences arising from the recurrence rela-
tion

un+2 = un+1 +un.

Lucas investigated the properties of the more general recurrence relation

un+2 = Pun+1−Qun,

where P,Q ∈ Z are any integers with P2−4Q 6= 0, in two seminal papers published
in 1878. Lucas numbers play a crucial role in testing the primality of certain num-
bers of the form N = 2p−1, called Mersenne numbers. A Mersenne number which
is prime is called a Mersenne prime. We will discuss methods due to Lucas and
Lehmer for testing the primality of Mersenne numbers later in this section.

We can prove some of the basic results about these Lucas sequences quite easily
using the matrix method that we used before. The recurrence relation

un+2 = Pun+1−Qun

yields the recurrence (
un+1

un

)
=

(
P −Q
1 0

)(
un

un−1

)
for all n≥ 1, and so, (

un+1

un

)
=

(
P −Q
1 0

)n(u1

u0

)
for all n≥ 0. The matrix

A =

(
P −Q
1 0

)
has the characteristic polynomial −(P− λ )λ +Q = λ 2−Pλ +Q, which has the
discriminant D = P2− 4Q. If we assume that P2− 4Q 6= 0, the polynomial λ 2−
Pλ +Q has two distinct roots:

α =
P+
√

D
2

, β =
P−
√

D
2

.

Obviously,

α +β = P

αβ = Q

α−β =
√

D.

The matrix A can be diagonalized as
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A =

(
P −Q
1 0

)
=

1
α−β

(
α β

1 1

)(
α 0
0 β

)(
1 −β

−1 α

)
.

Thus, we get (
un+1

un

)
=

1
α−β

(
α β

1 1

)(
(−βu0 +u1)α

n

(αu0−u1)β n

)
and so,

un =
1

α−β

(
(−βu0 +u1)α

n +(αu0−u1)β
n).

Actually, the above formula holds for n = 0 only if α 6= 0 and β 6= 0, that is, iff
Q 6= 0. If Q = 0, then either α = 0 or β = 0, in which case the formula still holds if
we assume that 00 = 1.

For u0 = 0 and u1 = 1, we get a generalization of the Fibonacci numbers,

Un =
αn−β n

α−β

and for u0 = 2 and u1 = P, because

−βu0 +u1 =−2β +P =−2β +α +β = α−β

and
αu0−u1 = 2α−P = 2α− (α +β ) = α−β ,

we get a generalization of the Lucas numbers,

Vn = α
n +β

n.

The orginal Fibonacci and Lucas numbers correspond to P = 1 and Q =−1. The
vectors

(0
1

)
and

(2
P

)
are linearly independent, therefore every sequence arising from

the recurrence relation
un+2 = Pun+1−Qun

is a unique linear combination of the sequences (Un) and (Vn).
It is possible to prove the following generalization of the Cassini identity.

Proposition 7.15. The sequence defined by the recurrence

un+2 = Pun+1−Qun

(with P2−4Q 6= 0) satisfies the identity:

un+1un−1−u2
n = Qn−1(−Qu2

0 +Pu0u1−u2
1).

For the U-sequence, u0 = 0 and u1 = 1, so we get

Un+1Un−1−U2
n =−Qn−1.
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For the V -sequence, u0 = 2 and u1 = P, so we get

Vn+1Vn−1−V 2
n = Qn−1D,

where D = P2−4Q.
Because α2−Q = α(α−β ) and β 2−Q =−β (α−β ), we easily get formulae

expressing Un in terms of the Vks and vice versa.

Proposition 7.16. We have the following identities relating the Un and the Vn,

Vn = Un+1−QUn−1

DUn = Vn+1−QVn−1,

for all n≥ 1.

The following identities are also easy to derive.

U2n = UnVn

V2n = V 2
n −2Qn

Um+n = UmUn+1−QUnUm−1

Vm+n = VmVn−QnVm−n.

Lucas numbers play a crucial role in testing the primality of certain numbers of
the form N = 2p−1, called Mersenne numbers. A Mersenne number which is prime
is called a Mersenne prime.

Fig. 7.8 Marin Mersenne, 1588–1648.

Proposition 7.17. If N = 2p−1 is prime, then p itself must be a prime.

Proof. If p = ab is a composite, with a,b≥ 2, as

2p−1 = 2ab−1 = (2a−1)(1+2a +22a + · · ·+2(b−1)a),

then 2a−1 > 1 divides 2p−1, a contradiction. ut
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For p = 2,3,5,7 we see that 3 = 22− 1, 7 = 23− 1, 31 = 25− 1, 127 = 27− 1
are indeed prime.

However, the condition that the exponent p be prime is not sufficient for N =
2p−1 to be prime, because for p= 11, we have 211−1= 2047= 23×89. Mersenne
(1588–1648) stated in 1644 that N = 2p−1 is prime when

p = 2,3,5,7,13,17,19,31,67,127,257.

Mersenne was wrong about p = 67 and p = 257, and he missed p = 61,89, and 107.
Euler showed that 231−1 was indeed prime in 1772 and at that time, it was known
that 2p−1 is indeed prime for p = 2,3,5,7,13,17,19,31.

Then came Lucas. In 1876, Lucas, proved that 2127− 1 was prime. Lucas came
up with a method for testing whether a Mersenne number is prime, later rigorously
proven correct by Lehmer, and known as the Lucas–Lehmer test. This test does not
require the actual computation of N = 2p−1, but it requires an efficient method for
squaring large numbers (less that N) and a way of computing the residue modulo
2p−1 just using p.

A version of the Lucas–Lehmer test uses the Lucas sequence given by the recur-
rence

Vn+2 = 2Vn+1 +2Vn,

starting from V0 = V1 = 2. This corresponds to P = 2 and Q = −2. In this case,
D = 12 and it is easy to see that α = 1+

√
3, β = 1−

√
3, so

Vn = (1+
√

3)n +(1−
√

3)n.

This sequence starts with
2,2,8,20,56, . . . .

Here is the first version of the Lucas–Lehmer test for primality of a Mersenne num-
ber.

Fig. 7.9 Derrick Henry Lehmer, 1905–1991.

Theorem 7.4. Lucas–Lehmer test (Version 1) The number N = 2p− 1 is prime for
any odd prime p iff N divides V2p−1 .
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A proof of the Lucas–Lehmer test can be found in The Little Book of Bigger
Primes [11]. Shorter proofs exist and are available on the web but they require some
knowledge of algebraic number theory. The most accessible proof that we are aware
of (it only uses the quadratic reciprocity law) is given in Volume 2 of Knuth [6]; see
Section 4.5.4. Note that the test does not apply to p = 2 because 3 = 22−1 does not
divide V2 = 8 but that’s not a problem.

The numbers V2p−1 get large very quickly but if we observe that

V2n =V 2
n −2(−2)n,

we may want to consider the sequence Sn, given by

Sn+1 = S2
n−2,

starting with S0 = 4. This sequence starts with

4,14,194,37643,1416317954, . . . .

Then it turns out that
V2k = Sk−122k−1

,

for all k ≥ 1. It is also easy to see that

Sk = (2+
√

3)2k
+(2−

√
3)2k

.

Now N = 2p−1 is prime iff N divides V2p−1 iff N = 2p−1 divides Sp−222p−2
iff

N divides Sp−2 (because if N divides 22p−2
, then N is not prime).

Thus, we obtain an improved version of the Lucas–Lehmer test for primality of
a Mersenne number.

Theorem 7.5. Lucas–Lehmer test (Version 2) The number N = 2p− 1 is prime for
any odd prime p iff

Sp−2 ≡ 0 (mod N).

The test does not apply to p = 2 because 3 = 22− 1 does not divide S0 = 4 but
that’s not a problem.

The above test can be performed by computing a sequence of residues mod N,
using the recurrence Sn+1 = S2

n−2, starting from 4.
As of January 2009, only 46 Mersenne primes were known. The largest one was

found in August 2008 by mathematicians at UCLA. This is

M46 = 243112609−1,

and it has 12,978,189 digits. It is an open problem whether there are infinitely many
Mersenne primes.

Going back to the second version of the Lucas–Lehmer test, because we are
computing the sequence of Sks modulo N, the squares being computed never exceed
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N2 = 22p. There is also a clever way of computing n mod 2p− 1 without actually
performing divisions if we express n in binary. This is because

n≡ (n mod 2p)+ bn/2pc (mod 2p−1).

But now, if n is expressed in binary, (n mod 2p) consists of the p rightmost
(least significant) bits of n and bn/2pc consists of the bits remaining as the head
of the string obtained by deleting the rightmost p bits of n. Thus, we can compute
the remainder modulo 2p− 1 by repeating this process until at most p bits remain.
Observe that if n is a multiple of 2p−1, the algorithm will produce 2p−1 in binary
as opposed to 0 but this exception can be handled easily. For example,

916 mod 25−1 = 11100101002 (mod 25−1)
= 101002 +111002 (mod 25−1)
= 1100002 (mod 25−1)
= 100002 +12 (mod 25−1)
= 100012 (mod 25−1)
= 100012

= 17.

The Lucas–Lehmer test applied to N = 127 = 27−1 yields the following steps if
we denote Sk mod 2p−1 by rk:
r0 = 4,
r1 = 42−2 = 14 (mod 127); that is, r1 = 14.
r2 = 142−2 = 194 (mod 127); that is, r2 = 67.
r3 = 672−2 = 4487 (mod 127); that is, r3 = 42.
r4 = 422−2 = 1762 (mod 127); that is, r4 = 111.
r5 = 1112−2 = 12319 (mod 127); that is, r5 = 0.

As r5 = 0, the Lucas–Lehmer test confirms that N = 127= 27−1 is indeed prime.

7.5 Public Key Cryptography; The RSA System

Ever since written communication was used, people have been interested in trying
to conceal the content of their messages from their adversaries. This has led to the
development of techniques of secret communication, a science known as cryptogra-
phy.

The basic situation is that one party, A, say Albert, wants to send a message
to another party, J, say Julia. However, there is a danger that some ill-intentioned
third party, Machiavelli, may intercept the message and learn things that he is not
supposed to know about and as a result do evil things. The original message, un-
derstandable to all parties, is known as the plain text (or plaintext). To protect the
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content of the message, Albert encrypts his message. When Julia receives the en-
crypted message, she must decrypt it in order to be able to read it. Both Albert and
Julia share some information that Machiavelli does not have, a key. Without a key,
Machiavelli, is incapable of decrypting the message and thus, to do harm.

There are many schemes for generating keys to encrypt and decrypt messages.
We are going to describe a method involving public and private keys known as
the RSA Cryptosystem, named after its inventors, Ronald Rivest, Adi Shamir, and
Leonard Adleman (1978), based on ideas by Diffie and Hellman (1976). We highly
recommend reading the orginal paper by Rivest, Shamir, and Adleman [12]. It is
beautifully written and easy to follow. A very clear, but concise exposition can also
be found in Koblitz [7]. An encyclopedic coverage of cryptography can be found in
Menezes, van Oorschot, and Vanstone’s Handbook [9].

The RSA system is widely used in practice, for example in SSL (Secure Socket
Layer), which in turn is used in https (secure http). Any time you visit a “secure site”
on the internet (to read e-mail or to order merchandise), your computer generates a
public key and a private key for you and uses them to make sure that your credit card
number and other personal data remain secret. Interestingly, although one might
think that the mathematics behind such a scheme is very advanced and complicated,
this is not so. In fact, little more than the material of Section 7.1 is needed. Therefore,
in this section we are going to explain the basics of RSA.

The first step is to convert the plain text of characters into an integer. This can
be done easily by assigning distinct integers to the distinct characters, for example,
by converting each character to its ASCII code. From now on we assume that this
conversion has been performed.

The next and more subtle step is to use modular arithmetic. We pick a (large)
positive integer m and perform arithmetic modulo m. Let us explain this step in
more detail.

Recall that for all a,b∈Z, we write a≡ b(mod m) iff a−b= km, for some k∈Z,
and we say that a and b are congruent modulo m. We already know that congruence
is an equivalence relation but it also satisfies the following properties.

Proposition 7.18. For any positive integer m, for all a1,a2,b1,b2 ∈ Z, the following
properties hold. If a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m), then

(1) a1 +a2 ≡ b1 +b2 (mod m).
(2) a1−a2 ≡ b1−b2 (mod m).
(3) a1a2 ≡ b1b2 (mod m).

Proof. We only check (3), leaving (1) and (2) as easy exercises. Because a1 ≡
b1 (mod m) and a2 ≡ b2 (mod m), we have a1 = b1 + k1m and a2 = b2 + k2m, for
some k1,k2 ∈ Z, and so

a1a2 = (b1 + k1m)(b2 + k2m) = b1b2 +(b1k2 + k1b2 + k1mk2)m,

which means that a1a2 ≡ b1b2 (mod m). A more elegant proof consists in observing
that
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a1a2−b1b2 = a1(a2−b2)+(a1−b1)b2

= (a1k2 + k1b2)m,

as claimed. ut

Proposition 7.18 allows us to define addition, subtraction, and multiplication on
equivalence classes modulo m.

Definition 7.6. If we denote by Z/mZ the set of equivalence classes modulo m and
if we write a for the equivalence class of a, then we define

a+b = a+b

a−b = a−b

ab = ab.

The above make sense because a+b does not depend on the representatives cho-
sen in the equivalence classes a and b, and similarly for a−b and ab. Of course,
each equivalence class a contains a unique representative from the set of remainders
{0,1, . . . ,m−1}, modulo m, so the above operations are completely determined by
m×m tables. Using the arithmetic operations of Z/mZ is called modular arithmetic.

For an arbitrary m, the set Z/mZ is an algebraic structure known as a ring. Ad-
dition and subtraction behave as in Z but multiplication is stranger. For example,
when m = 6,

2 ·3 = 0
3 ·4 = 0,

inasmuch as 2 ·3= 6≡ 0(mod6), and 3 ·4= 12≡ 0(mod6). Therefore, it is not true
that every nonzero element has a multiplicative inverse. However, we know from
Section 7.1 that a nonzero integer a has a multiplicative inverse iff gcd(a,m) = 1
(use the Bézout identity). For example,

5 ·5 = 1,

because 5 ·5 = 25≡ 1 (mod 6).
As a consequence, when m is a prime number, every nonzero element not divisi-

ble by m has a multiplicative inverse. In this case, Z/mZ is more like Q; it is a finite
field. However, note that in Z/mZ we have

1+1+ · · ·+1︸ ︷︷ ︸
m times

= 0

(because m≡ 0 (mod m)), a phenomenom that does not happen in Q (or R).
The RSA method uses modular arithmetic. One of the main ingredients of public

key cryptography is that one should use an encryption function, f : Z/mZ→Z/mZ,
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which is easy to compute (i.e., can be computed efficiently) but such that its inverse
f−1 is practically impossible to compute unless one has special additional informa-
tion. Such functions are usually referred to as trapdoor one-way functions. Remark-
ably, exponentiation modulo m, that is, the function, x 7→ xe mod m, is a trapdoor
one-way function for suitably chosen m and e.

Thus, we claim the following.

(1) Computing xe mod m can be done efficiently .
(2) Finding x such that

xe ≡ y (mod m)

with 0 ≤ x,y ≤ m− 1, is hard unless one has extra information about m. The
function that finds an eth root modulo m is sometimes called a discrete loga-
rithm.

We explain shortly how to compute xe mod m efficiently using the square and
multiply method also known as repeated squaring.

As to the second claim, actually, no proof has been given yet that this function is
a one-way function but, so far, this has not been refuted either.

Now what’s the trick to make it a trapdoor function?
What we do is to pick two distinct large prime numbers, p and q (say over 200

decimal digits), which are “sufficiently random” and we let

m = pq.

Next, we pick a random e, with 1 < e < (p−1)(q−1), relatively prime to
(p−1)(q−1).

Because gcd(e,(p− 1)(q− 1)) = 1, we know from the discussion just before
Theorem 7.2 that there is some d with 1 < d < (p− 1)(q− 1), such that ed ≡
1 (mod (p−1)(q−1)).

Then we claim that to find x such that

xe ≡ y (mod m),

we simply compute yd mod m, and this can be done easily, as we claimed earlier.
The reason why the above “works” is that

xed ≡ x (mod m), (∗)

for all x ∈ Z, which we prove later.

Setting up RSA
In summary to set up RSA for Albert (A) to receive encrypted messages, perform
the following steps.

1. Albert generates two distinct large and sufficiently random primes, pA and qA.
They are kept secret.

2. Albert computes mA = pAqA. This number called the modulus will be made
public.
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3. Albert picks at random some eA, with 1 < eA < (pA−1)(qA−1), so that
gcd(eA,(pA−1)(qA−1)) = 1. The number eA is called the encryption key and
it will also be public.

4. Albert computes the inverse, dA = e−1
A modulo (pA− 1)(qA− 1), of eA. This

number is kept secret. The pair (dA,mA) is Albert’s private key and dA is called
the decryption key.

5. Albert publishes the pair (eA,mA) as his public key.

Encrypting a Message
Now if Julia wants to send a message, x, to Albert, she proceeds as follows. First, she
splits x into chunks, x1, . . . ,xk, each of length at most mA− 1, if necessary (again,
I assume that x has been converted to an integer in a preliminary step). Then she
looks up Albert’s public key (eA,mA), and she computes

yi = EA(xi) = xeA
i mod mA,

for i = 1, . . . ,k. Finally she sends the sequence y1, . . . ,yk to Albert. This encrypted
message is known as the cyphertext. The function EA is Albert’s encryption function.

Decrypting a Message
In order to decrypt the message y1, . . . ,yk that Julia sent him, Albert uses his private
key (dA,mA) to compute each

xi = DA(yi) = ydA
i mod mA,

and this yields the sequence x1, . . . ,xk. The function DA is Albert’s decryption func-
tion.

Similarly, in order for Julia to receive encrypted messages, she must set her own
public key (eJ ,mJ) and private key (dJ ,mJ) by picking two distinct primes pJ and
qJ and eJ , as explained earlier.

The beauty of the scheme is that the sender only needs to know the public key of
the recipient to send a message but an eavesdropper is unable to decrypt the encoded
message unless he somehow gets his hands on the secret key of the receiver.

Let us give a concrete illustration of the RSA scheme using an example borrowed
from Silverman [13] (Chapter 18). We write messages using only the 26 upper-case
letters A, B, . . . , Z, encoded as the integers A = 11, B = 12, . . . , Z = 36. It would be
more convenient to have assigned a number to represent a blank space but to keep
things as simple as possible we do not do that.

Say Albert picks the two primes pA = 12553 and qA = 13007, so that mA =
pAqA = 163,276,871 and (pA−1)(qA−1) = 163,251,312. Albert also picks eA =
79921, relatively prime to (pA − 1)(qA − 1) and then finds the inverse dA of eA
modulo (pA−1)(qA−1) using the extended Euclidean algorithm (more details are
given in Section 7.7) which turns out to be dA = 145,604,785. One can check that

145,604,785 ·79921−71282 ·163,251,312 = 1,
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which confirms that dA is indeed the inverse of eA modulo 163,251,312.
Now assume that Albert receives the following message, broken in chunks of at

most nine digits, because mA = 163,276,871 has nine digits.

145387828 47164891 152020614 27279275 35356191.

Albert decrypts the above messages using his private key (dA,mA), where dA =
145,604,785, using the repeated squaring method (described in Section 7.7) and
finds that

145387828145,604,785 ≡ 30182523 (mod 163,276,871)

47164891145,604,785 ≡ 26292524 (mod 163,276,871)

152020614145,604,785 ≡ 19291924 (mod 163,276,871)

27279275145,604,785 ≡ 30282531 (mod 163,276,871)

35356191145,604,785 ≡ 122215 (mod 163,276,871)

which yields the message

30182523 26292524 19291924 30282531 122215,

and finally, translating each two-digit numeric code to its corresponding character,
to the message

T H O M P S O N I S I N T R O U B L E

or, in more readable format

Thompson is in trouble

It would be instructive to encrypt the decoded message

30182523 26292524 19291924 30282531 122215

using the public key eA = 79921. If everything goes well, we should get our original
message

145387828 47164891 152020614 27279275 35356191

back.
Let us now explain in more detail how the RSA system works and why it is

correct.
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7.6 Correctness of The RSA System

We begin by proving the correctness of the inversion formula (∗). For this we need
a classical result known as Fermat’s little theorem.

Fig. 7.10 Pierre de Fermat, 1601–1665.

This result was first stated by Fermat in 1640 but apparently no proof was pub-
lished at the time and the first known proof was given by Leibnitz (1646–1716).
This is basically the proof suggested in Problem 7.7. A different proof was given by
Ivory in 1806 and this is the proof that we give here. It has the advantage that it can
be easily generalized to Euler’s version (1760) of Fermat’s little theorem.

Theorem 7.6. (Fermat’s Little Theorem) If p is any prime number, then the follow-
ing two equivalent properties hold.

(1) For every integer, a ∈ Z, if a is not divisible by p, then we have

ap−1 ≡ 1 (mod p).

(2) For every integer, a ∈ Z, we have

ap ≡ a (mod p).

Proof. (1) Consider the integers

a, 2a, 3a, . . . ,(p−1)a

and let
r1, r2, r3, . . . ,rp−1

be the sequence of remainders of the division of the numbers in the first sequence
by p. Because gcd(a, p) = 1, none of the numbers in the first sequence is divisible
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by p, so 1 ≤ ri ≤ p−1, for i = 1, . . . , p−1. We claim that these remainders are all
distinct. If not, then say ri = r j, with 1≤ i < j ≤ p−1. But then because

ai≡ ri (mod p)

and
a j ≡ r j (mod p),

we deduce that
a j−ai≡ r j− ri (mod p),

and because ri = r j, we get,

a( j− i)≡ 0 (mod p).

This means that p divides a( j− i), but gcd(a, p) = 1 so, by Euclid’s lemma (Propo-
sition 7.4), p must divide j− i. However 1≤ j− i < p−1, so we get a contradiction
and the remainders are indeed all distinct.

There are p− 1 distinct remainders and they are all nonzero, therefore we must
have

{r1,r2, . . . ,rp−1}= {1,2, . . . , p−1}.
Using Property (3) of congruences (see Proposition 7.18), we get

a ·2a ·3a · · ·(p−1)a≡ 1 ·2 ·3 · · ·(p−1) (mod p);

that is,
ap−1(1 ·2 ·3 · · ·(p−1))≡ 1 ·2 ·3 · · ·(p−1) (mod p).

By substracting the right-hand side from both sides of the equation we get

(ap−1−1) · (p−1)!≡ 0 (mod p).

Again, p divides (ap−1−1) · (p−1)!, but because p is relatively prime to (p−1)!,
it must divide ap−1−1, as claimed.

(2) If gcd(a, p) = 1, we proved in (1) that

ap−1 ≡ 1 (mod p),

from which we get
ap ≡ a (mod p),

because a≡ a (mod p). If a is divisible by p, then a≡ 0 (mod p), which implies that
a2 = a ·a ≡ 0 ·0 = 0 (mod p) and then by induction that ap ≡ 0 (mod p), and since
a≡ 0 (mod p), by transitivity, we obtain

ap ≡ a (mod p).
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Therefore, (2) holds for all a ∈ Z and we just proved that (1) implies (2). Finally,
if (2) holds and if gcd(a, p) = 1, as p divides ap− a = a(ap−1− 1), it must divide
ap−1−1, which shows that (1) holds and so (2) implies (1). ut

It is now easy to establish the correctness of RSA.

Proposition 7.19. For any two distinct prime numbers p and q, if e and d are any
two positive integers such that

1. 1 < e,d < (p−1)(q−1),
2. ed ≡ 1 (mod (p−1)(q−1)),

then for every x ∈ Z we have

xed ≡ x (mod pq).

Proof. Because p and q are two distinct prime numbers, by Euclid’s lemma (Propo-
sition 7.4) it is enough to prove that both p and q divide xed−x. We show that xed−x
is divisible by p, the proof of divisibility by q being similar.

By Condition (2) we have

ed = 1+(p−1)(q−1)k,

with k ≥ 1, inasmuch as 1 < e,d < (p− 1)(q− 1). Thus if we write h = (q− 1)k,
we have h≥ 1 and

xed− x ≡ x1+(p−1)h− x (mod p)

≡ x((xp−1)h−1) (mod p)

≡ x(xp−1−1)((xp−1)h−1 +(xp−1)h−2 + · · ·+1) (mod p)

≡ (xp− x)((xp−1)h−1 +(xp−1)h−2 + · · ·+1) (mod p)

≡ 0 (mod p),

because xp− x≡ 0 (mod p), by Fermat’s little theorem. ut

Remark: Of course, Proposition 7.19 holds if we allow e = d = 1, but this not in-
teresting for encryption. The number (p− 1)(q− 1) turns out to be the number of
positive integers less than pq that are relatively prime to pq. For any arbitrary posi-
tive integer, m, the number of positive integers less than m that are relatively prime
to m is given by the Euler φ function (or Euler totient), denoted φ (see Problems
7.13 and 7.17 or Niven, Zuckerman, and Montgomery [10], Section 2.1, for basic
properties of φ ).

Fermat’s little theorem can be generalized to what is known as Euler’s formula
(see Problem 7.13): For every integer a, if gcd(a,m) = 1, then

aφ(m) ≡ 1 (mod m).
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Because φ(pq) = (p−1)(q−1), when gcd(x,φ(pq)) = 1, Proposition 7.19 follows
from Euler’s formula. However, that argument does not show that Proposition 7.19
holds when gcd(x,φ(pq))> 1 and a special argument is required in this case.

It can be shown that if we replace pq by a positive integer m that is square-free
(does not contain a square factor) and if we assume that e and d are chosen so that
1 < e,d < φ(m) and ed ≡ 1 (mod φ(m)), then

xed ≡ x (mod m)

for all x ∈ Z (see Niven, Zuckerman, and Montgomery [10], Section 2.5, Problem
4).

We see no great advantage in using this fancier argument and this is why we used
the more elementary proof based on Fermat’s little theorem.

Proposition 7.19 immediately implies that the decrypting and encrypting RSA
functions DA and EA are mutual inverses for any A. Furthermore, EA is easy to
compute but, without extra information, namely, the trapdoor dA, it is practically
impossible to compute DA = E−1

A . That DA is hard to compute without a trapdoor is
related to the fact that factoring a large number, such as mA, into its factors pA and
qA is hard. Today it is practically impossible to factor numbers over 300 decimal
digits long. Although no proof has been given so far, it is believed that factoring
will remain a hard problem. So even if in the next few years it becomes possible
to factor 300-digit numbers, it will still be impossible to factor 400-digit numbers.
RSA has the peculiar property that it depends both on the fact that primality testing
is easy but that factoring is hard. What a stroke of genius!

7.7 Algorithms for Computing Powers and Inverses Modulo m

First we explain how to compute xn mod m efficiently, where n ≥ 1. Let us first
consider computing the nth power xn of some positive integer. The idea is to look at
the parity of n and to proceed recursively. If n is even, say n = 2k, then

xn = x2k = (xk)2,

so, compute xk recursively and then square the result. If n is odd, say n = 2k+ 1,
then

xn = x2k+1 = (xk)2 · x,
so, compute xk recursively, square it, and multiply the result by x.

What this suggests is to write n≥ 1 in binary, say

n = b` ·2`+b`−1 ·2`−1 + · · ·+b1 ·21 +b0,

where bi ∈ {0,1} with b` = 1 or, if we let J = { j | b j = 1}, as
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n = ∑
j∈J

2 j.

Then we have
xn ≡ x∑ j∈J 2 j

= ∏
j∈J

x2 j
mod m.

This suggests computing the residues r j such that

x2 j ≡ r j (mod m),

because then,
xn ≡∏

j∈J
r j (mod m),

where we can compute this latter product modulo m two terms at a time.
For example, say we want to compute 999179 mod 1763. First we observe that

179 = 27 +25 +24 +21 +1,

and we compute the powers modulo 1763:

99921 ≡ 143 (mod 1763)

99922 ≡ 1432 ≡ 1056 (mod 1763)

99923 ≡ 10562 ≡ 920 (mod 1763)

99924 ≡ 9202 ≡ 160 (mod 1763)

99925 ≡ 1602 ≡ 918 (mod 1763)

99926 ≡ 9182 ≡ 10 (mod 1763)

99927 ≡ 102 ≡ 100 (mod 1763).

Consequently,

999179 ≡ 999 ·143 ·160 ·918 ·100 (mod 1763)
≡ 54 ·160 ·918 ·100 (mod 1763)

≡ 1588 ·918 ·100 (mod 1763)
≡ 1546 ·100 (mod 1763)
≡ 1219 (mod 1763),

and we find that
999179 ≡ 1219 (mod 1763).
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Of course, it would be impossible to exponentiate 999179 first and then reduce mod-
ulo 1763. As we can see, the number of multiplications needed is O(log2 n), which
is quite good.

The above method can be implemented without actually converting n to base 2. If
n is even, say n= 2k, then n/2= k, and if n is odd, say n= 2k+1, then (n−1)/2= k,
so we have a way of dropping the unit digit in the binary expansion of n and shifting
the remaining digits one place to the right without explicitly computing this binary
expansion. Here is an algorithm for computing xn mod m, with n ≥ 1, using the
repeated squaring method.

An Algorithm to Compute xn mod m Using Repeated Squaring

begin
u := 1; a := x;
while n > 1 do

if even(n) then e := 0 else e := 1;
if e = 1 then u := a ·u mod m;
a := a2 mod m; n := (n− e)/2

endwhile;
u := a ·u mod m

end

The final value of u is the result. The reason why the algorithm is correct is that
after j rounds through the while loop, a = x2 j

mod m and

u = ∏
i∈J | i< j

x2i
mod m,

with this product interpreted as 1 when j = 0.
Observe that the while loop is only executed n−1 times to avoid squaring once

more unnecessarily and the last multiplication a ·u is performed outside of the while
loop. Also, if we delete the reductions modulo m, the above algorithm is a fast
method for computing the nth power of an integer x and the time speed-up of not
performing the last squaring step is more significant. We leave the details of the
proof that the above algorithm is correct as an exercise.

Let us now consider the problem of computing efficiently the inverse of an integer
a, modulo m, provided that gcd(a,m) = 1.

We mentioned in Section 7.1 how the extended Euclidean algorithm can be used
to find some integers x,y, such that

ax+by = gcd(a,b),

where a and b are any two positive integers. The details are worked out in Problem
7.8 and another version is explored in Problem 7.9. In our situation, a = m and b = a
and we only need to find y (we would like a positive integer).



7.7 Algorithms for Computing Powers and Inverses Modulo m 299

When using the Euclidean algorithm for computing gcd(m,a), with 2 ≤ a < m,
we compute the following sequence of quotients and remainders.

m = aq1 + r1

a = r1q2 + r2

r1 = r2q3 + r3

...
rk−1 = rkqk+1 + rk+1

...
rn−3 = rn−2qn−1 + rn−1

rn−2 = rn−1qn +0,

with n≥ 1, 0< r1 < a, qk ≥ 1, for k = 1, . . . ,n, and 0< rk+1 < rk, for k = 1, . . . ,n−2.
Observe that rn = 0. If n = 1, then r1 = 0 and a divides m. If n = 2, we have just
two divisions,

m = aq1 + r1

a = r1q2 +0,

with 0 < r1 < a, q1,q2 ≥ 1, and r2 = 0. Thus, it is convenient to set r−1 = m and
r0 = a.

In Problem 7.8, it is shown that if we set

x−1 = 1
y−1 = 0

x0 = 0
y0 = 1

xi+1 = xi−1− xiqi+1

yi+1 = yi−1− yiqi+1,

for i = 0, . . . ,n−2, then

mxn−1 +ayn−1 = gcd(m,a) = rn−1,

and so, if gcd(m,a) = 1, then rn−1 = 1 and we have

ayn−1 ≡ 1 (mod m).

Now yn−1 may be greater than m or negative but we already know how to deal with
that from the discussion just before Theorem 7.2. This suggests reducing modulo m
during the recurrence and we are led to the following recurrence.
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y−1 = 0
y0 = 1

zi+1 = yi−1− yiqi+1

yi+1 = zi+1 mod m if zi+1 ≥ 0
yi+1 = m− ((−zi+1)mod m) if zi+1 < 0,

for i = 0, . . . ,n−2.
It is easy to prove by induction that

ayi ≡ ri (mod m)

for i= 0, . . . ,n−1 and thus, if gcd(a,m)> 1, then a does not have an inverse modulo
m, else

ayn−1 ≡ 1 (mod m)

and yn−1 is the inverse of a modulo m such that 1≤ yn−1 < m, as desired. Note that
we also get y0 = 1 when a = 1.

We leave this proof as an exercise (see Problem 7.40). Here is an algorithm ob-
tained by adapting the algorithm given in Problem 7.8.

An Algorithm for Computing the Inverse of a Modulo m
Given any natural number a with 1≤ a < m and gcd(a,m) = 1, the following algo-
rithm returns the inverse of a modulo m as y.

begin
y := 0; v := 1; g := m; r := a;
pr := r; q := bg/prc; r := g− pr q; (divide g by pr, to get g = pr q+ r)
if r = 0 then

y := 1; g := pr
else

r = pr;
while r 6= 0 do

pr := r; pv := v;
q := bg/prc; r := g− pr q; (divide g by pr, to get g = pr q+ r)
v := y− pvq;
if v < 0 then

v := m− ((−v) mod m)
else

v = v mod m
endif
g := pr; y := pv

endwhile;
endif;
inverse(a) := y

end
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For example, we used the above algorithm to find that dA = 145,604,785 is the
inverse of eA = 79921 modulo (pA−1)(qA−1) = 163,251,312.

The remaining issues are how to choose large random prime numbers p,q, and
how to find a random number e, which is relatively prime to (p−1)(q−1). For this,
we rely on a deep result of number theory known as the prime number theorem.

7.8 Finding Large Primes; Signatures; Safety of RSA

Roughly speaking, the prime number theorem ensures that the density of primes is
high enough to guarantee that there are many primes with a large specified number
of digits. The relevant function is the prime counting function π(n).

Definition 7.7. The prime counting function π is the function defined so that

π(n) = number of prime numbers p, such that p≤ n,

for every natural number n ∈ N.

Obviously, π(0) = π(1) = 0. We have π(10) = 4 because the primes no greater
than 10 are 2,3,5,7 and π(20) = 8 because the primes no greater than 20 are
2,3,5,7,11,13, 17,19. The growth of the function π was studied by Legendre,
Gauss, Chebyshev, and Riemann between 1808 and 1859. By then it was conjec-
tured that

π(n)∼ n
ln(n)

,

for n large, which means that

lim
n7→∞

π(n)
/

n
ln(n)

= 1.

However, a rigorous proof was not found until 1896. Indeed, in 1896, Jacques

Fig. 7.11 Pafnuty Lvovich Chebyshev, 1821–1894 (left), Jacques Salomon Hadamard, 1865–1963
(middle), and Charles Jean de la Vallée Poussin, 1866–1962 (right).
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Hadamard and Charles de la Vallée-Poussin independendly gave a proof of this
“most wanted theorem,” using methods from complex analysis. These proofs are dif-
ficult and although more elementary proofs were given later, in particular by Erdös
and Selberg (1949), those proofs are still quite hard. Thus, we content ourselves
with a statement of the theorem.

Fig. 7.12 Paul Erdös, 1913–1996 (left), Atle Selberg, 1917–2007 (right).

Theorem 7.7. (Prime Number Theorem) For n large, the number of primes π(n) no
larger than n is approximately equal to n/ ln(n), which means that

lim
n7→∞

π(n)
/

n
ln(n)

= 1.

For a rather detailed account of the history of the prime number theorem (for
short, PNT), we refer the reader to Ribenboim [11] (Chapter 4).

As an illustration of the use of the PNT, we can estimate the number of primes
with 200 decimal digits. Indeed this is the difference of the number of primes up to
10200 minus the number of primes up to 10199, which is approximately

10200

200ln10
− 10199

199ln10
≈ 1.95 ·10197.

Thus, we see that there is a huge number of primes with 200 decimal digits. The
number of natural numbers with 200 digits is 10200 − 10199 = 9 · 10199, thus the
proportion of 200-digit numbers that are prime is

1.95 ·10197

9 ·10199 ≈ 1
460

.

Consequently, among the natural numbers with 200 digits, roughly one in every 460
is a prime.

� Beware that the above argument is not entirely rigorous because the prime
number theorem only yields an approximation of π(n) but sharper estimates

can be used to say how large n should be to guarantee a prescribed error on the
probability, say 1%.
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The implication of the above fact is that if we wish to find a random prime with
200 digits, we pick at random some natural number with 200 digits and test whether
it is prime. If this number is not prime, then we discard it and try again, and so on.
On the average, after 460 trials, a prime should pop up.

This leads us the question: how do we test for primality?
Primality testing has also been studied for a long time. Remarkably, Fermat’s

little theorem yields a test for nonprimality. Indeed, if p > 1 fails to divide ap−1−1
for some natural number a, where 2 ≤ a ≤ p− 1, then p cannot be a prime. The
simplest a to try is a= 2. From a practical point of view, we can compute ap−1 mod p
using the method of repeated squaring and check whether the remainder is 1.

But what if p fails the Fermat test? Unfortunately, there are natural numbers p,
such that p divides 2p−1−1 and yet, p is composite. For example p = 341 = 11 ·31
is such a number.

Actually, 2340 being quite big, how do we check that 2340−1 is divisible by 341?
We just have to show that 2340 − 1 is divisible by 11 and by 31. We can use

Fermat’s little theorem. Because 11 is prime, we know that 11 divides 210−1. But,

2340−1 = (210)34−1 = (210−1)((210)33 +(210)32 + · · ·+1),

so 2340−1 is also divisible by 11.
As to divisibility by 31, observe that 31 = 25−1, and

2340−1 = (25)68−1 = (25−1)((25)67 +(25)66 + · · ·+1),

so 2340−1 is also divisible by 31.

Definition 7.8. A number p that is not a prime but behaves like a prime in the sense
that p divides 2p−1−1, is called a pseudo-prime.

Unfortunately, the Fermat test gives a “false positive” for pseudo-primes.
Rather than simply testing whether 2p−1− 1 is divisible by p, we can also try

whether 3p−1−1 is divisible by p and whether 5p−1−1 is divisible by p, and so on.
Unfortunately, there are composite natural numbers p, such that p divides ap−1−

1, for all positive natural numbers a with gcd(a, p) = 1. Such numbers are known
as Carmichael numbers.

The smallest Carmichael number is p = 561 = 3 · 11 · 17. The reader should try
proving that, in fact, a560−1 is divisible by 561 for every positive natural number a,
such that gcd(a,561) = 1, using the technique that we used to prove that 341 divides
2340−1.

It turns out that there are infinitely many Carmichael numbers. Again, for a thor-
ough introduction to primality testing, pseudo-primes, Carmichael numbers, and
more, we highly recommend Ribenboim [11] (Chapter 2). An excellent (but more
terse) account is also given in Koblitz [7] (Chapter V).

Still, what do we do about the problem of false positives? The key is to switch to
probabilistic methods. Indeed, if we can design a method that is guaranteed to give a
false positive with probablity less than 0.5, then we can repeat this test for randomly
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Fig. 7.13 Robert Daniel Carmichael, 1879–1967.

chosen as and reduce the probability of false positive considerably. For example, if
we repeat the experiment 100 times, the probability of a false positive is less than
2−100 < 10−30. This is probably less than the probability of hardware failure.

Various probabilistic methods for primality testing have been designed. One of
them is the Miller–Rabin test, another the APR test, and yet another the Solovay–
Strassen test. Since 2002, it has been known that primality testing can be done in
polynomial time. This result is due to Agrawal, Kayal, and Saxena and known as the
AKS test solved a long-standing problem; see Dietzfelbinger [3] and Crandall and
Pomerance [1] (Chapter 4). Remarkably, Agrawal and Kayal worked on this prob-
lem for their senior project in order to complete their bachelor’s degree. It remains
to be seen whether this test is really practical for very large numbers.

A very important point to make is that these primality testing methods do not pro-
vide a factorization of m when m is composite. This is actually a crucial ingredient
for the security of the RSA scheme. So far, it appears (and it is hoped) that factor-
ing an integer is a much harder problem than testing for primality and all known
methods are incapable of factoring natural numbers with over 300 decimal digits (it
would take centuries).

For a comprehensive exposition of the subject of primality-testing, we refer the
reader to Crandall and Pomerance [1] (Chapter 4) and again, to Ribenboim [11]
(Chapter 2) and Koblitz [7] (Chapter V).

Going back to the RSA method, we now have ways of finding the large random
primes p and q by picking at random some 200-digit numbers and testing for pri-
mality. Rivest, Shamir, and Adleman also recommend to pick p and q so that they
differ by a few decimal digits, that both p−1 and q−1 should contain large prime
factors and that gcd(p−1,q−1) should be small. The public key, e, relatively prime
to (p−1)(q−1) can also be found by a similar method: pick at random a number,
e < (p− 1)(q− 1), which is large enough (say, greater than max{p,q}) and test
whether gcd(e,(p−1)(q−1)) = 1, which can be done quickly using the extended
Euclidean algorithm. If not, discard e and try another number, and so on. It is easy
to see that such an e will be found in no more trials than it takes to find a prime;
see Lovász, Pelikán, and Vesztergombi [8] (Chapter 15), which contains one of the
simplest and clearest presentations of RSA that we know of. Koblitz [7] (Chapter
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IV) also provides some details on this topic as well as Menezes, van Oorschot, and
Vanstone’s Handbook [9].

If Albert receives a message coming from Julia, how can he be sure that this mes-
sage does not come from an imposter? Just because the message is signed “Julia”
does not mean that it comes from Julia; it could have been sent by someone else
pretending to be Julia, inasmuch as all that is needed to send a message to Albert
is Albert’s public key, which is known to everybody. This leads us to the issue of
signatures.

There are various schemes for adding a signature to an encrypted message to
ensure that the sender of a message is really who he or she claims to be (with a high
degree of confidence). The trick is to make use of the sender’s keys. We propose
two scenarios.

1. The sender, Julia, encrypts the message x to be sent with her own private key,
(dJ ,mJ), creating the message DJ(x) = y1. Then Julia adds her signature, “Ju-
lia”, at the end of the message y1, encrypts the message “y1 Julia” using Albert’s
public key, (eA,mA), creating the message y2 = EA(y1 Julia), and finally sends
the message y2 to Albert.

When Albert receives the encrypted message y2 claiming to come from Julia,
first he decrypts the message using his private key (dA,mA). He will see an en-
crypted message, DA(y2) = y1 Julia, with the legible signature, Julia. He will
then delete the signature from this message and decrypt the message y1 using
Julia’s public key (eJ ,mJ), getting x = EJ(y1). Albert will know whether some-
one else faked this message if the result is garbage. Indeed, only Julia could have
encrypted the original message x with her private key, which is only known to
her. An eavesdropper who is pretending to be Julia would not know Julia’s pri-
vate key and so, would not have encrypted the original message to be sent using
Julia’s secret key.

2. The sender, Julia, first adds her signature, “Julia”, to the message x to be sent
and then, she encrypts the message “x Julia” with Albert’s public key (eA,mA),
creating the message y1 = EA(x Julia). Julia also encrypts the original message
x using her private key (dJ ,mJ) creating the message y2 = DJ(x), and finally
she sends the pair of messages (y1,y2).
When Albert receives a pair of messages (y1,y2), claiming to have been sent by
Julia, first Albert decrypts y1 using his private key (dA,mA), getting the message
DA(y1) = x Julia. Albert finds the signature, Julia, and then decrypts y2 using
Julia’s public key (eJ ,mJ), getting the message x′=EJ(y2). If x= x′, then Albert
has serious assurance that the sender is indeed Julia and not an imposter.

The last topic that we would like to discuss is the security of the RSA scheme.
This is a difficult issue and many researchers have worked on it. As we remarked
earlier, the security of RSA hinges on the fact that factoring is hard. It has been
shown that if one has a method for breaking the RSA scheme (namely, to find the
secret key d), then there is a probabilistic method for finding the factors p and q,
of m = pq (see Koblitz [7], Chapter IV, Section 2, or Menezes, van Oorschot, and
Vanstone [9], Section 8.2.2). If p and q are chosen to be large enough, factoring
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m = pq will be practically impossible and so it is unlikely that RSA can be cracked.
However, there may be other attacks and, at present, there is no proof that RSA is
fully secure.

Observe that because m = pq is known to everybody, if somehow one can learn
N = (p− 1)(q− 1), then p and q can be recovered. Indeed N = (p− 1)(q− 1) =
pq− (p+q)+1 = m− (p+q)+1 and so,

pq = m

p+q = m−N +1,

and p and q are the roots of the quadratic equation

X2− (m−N +1)X +m = 0.

Thus, a line of attack is to try to find the value of (p− 1)(q− 1). For more on the
security of RSA, see Menezes, van Oorschot, and Vanstone’s Handbook [9].

7.9 Summary

In this chapter, as an application of complete induction on a well-ordered set we
prove the unique prime factorization theorem for the integers. Section 7.3 on Fi-
bonacci and Lucas numbers and the use of Lucas numbers to test a Mersenne num-
ber for primality should be viewed as a lovely illustration of complete induction and
as an incentive for the reader to take a deeper look into the fascinating and myste-
rious world of prime numbers and more generally, number theory. Section 7.5 on
public key cryptography and the RSA system is a wonderful application of the no-
tions presented in Section 7.1, gcd and versions of Euclid’s algorithm, and another
excellent motivation for delving further into number theory. An excellent introduc-
tion to the theory of prime numbers with a computational emphasis is Crandall and
Pomerance [1] and a delightful and remarkably clear introduction to number theory
can be found in Silverman [13].

• We define divisibility on Z (the integers).
• We define ideals and prime ideals of Z.
• We prove that every ideal of Z is a principal ideal.
• We prove the Bézout identity.
• We define greatest common divisors (gcds) and relatively prime numbers.
• We characterize gcds in terms of the Bézout identity.
• We describe the Euclidean algorithm for computing the gcd and prove its cor-

rectness.
• We also describe the extended Euclidean algorithm.
• We prove Euclid’s lemma.
• We prove unique prime factorization in N.
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• We prove Dirichlet’s diophantine approximation theorem, a great application of
the pigeonhole principle

• We define the Fibonacci numbers Fn and the Lucas numbers Ln, and investigate
some of their properties, including explicit formulae for Fn and Ln.

• We state the Zeckendorf representation of natural numbers in terms of Fibonacci
numbers.

• We give various versions of the Cassini identity
• We define a generalization of the Fibonacci and the Lucas numbers and state

some of their properties.
• We define Mersenne numbers and Mersenne primes.
• We state two versions of the Lucas–Lehmer test to check whether a Mersenne

number is a prime.
• We introduce some basic notions of cryptography: encryption, decryption, and

keys.
• We define modular arithmetic in Z/mZ.
• We define the notion of a trapdoor one-way function.
• We claim that exponentiation modulo m is a trapdoor one-way function; its in-

verse is the discrete logarithm.
• We explain how to set up the RSA scheme; we describe public keys and private

keys.
• We describe the procedure to encrypt a message using RSA and the procedure

to decrypt a message using RSA.
• We prove Fermat’s little theorem.
• We prove the correctness of the RSA scheme.
• We describe an algorithm for computing xn mod m using repeated squaring and

give an example.
• We give an explicit example of an RSA scheme and an explicit example of the

decryption of a message.
• We explain how to modify the extended Euclidean algorithm to find the inverse

of an integer a modulo m (assuming gcd(a,m) = 1).
• We define the prime counting function, π(n), and state the prime number theo-

rem (or PNT).
• We use the PNT to estimate the proportion of primes among positive integers

with 200 decimal digits (1/460).
• We discuss briefly primality testing and the Fermat test.
• We define pseudo-prime numbers and Carmichael numbers.
• We mention probabilistic methods for primality testing.
• We stress that factoring integers is a hard problem, whereas primality testing is

much easier and in theory, can be done in polynomial time.
• We discuss briefly scenarios for signatures.
• We briefly discuss the security of RSA, which hinges on the fact that factoring

is hard.
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Problems

7.1. Prove that the set
I= {ha+ kb | h,k ∈ Z}

used in the proof of Corollary 7.1 is indeed an ideal.

7.2. Prove by complete induction that

un = 3(3n−2n)

is the solution of the recurrence relations:

u0 = 0
u1 = 3

un+2 = 5un+1−6un,

for all n≥ 0.

7.3. Consider the recurrence relation

un+2 = 3un+1−2un.

For u0 = 0 and u1 = 1, we obtain the sequence (Un) and for u0 = 2 and u1 = 3, we
obtain the sequence (Vn).

(1) Prove that

Un = 2n−1
Vn = 2n +1,

for all n≥ 0.
(2) Prove that if Un is a prime number, then n must be a prime number.

Hint. Use the fact that

2ab−1 = (2a−1)(1+2a +22a + · · ·+2(b−1)a).

Remark: The numbers of the form 2p−1, where p is prime are known as Mersenne
numbers. It is an open problem whether there are infinitely many Mersenne primes.

(3) Prove that if Vn is a prime number, then n must be a power of 2; that is, n= 2m,
for some natural number m.
Hint. Use the fact that

a2k+1 +1 = (a+1)(a2k−a2k−1 +a2k−2 + · · ·+a2−a+1).

Remark: The numbers of the form 22m
+1 are known as Fermat numbers. It is an

open problem whether there are infinitely many Fermat primes.
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7.4. Find the smallest natural number n such that the remainder of the division of n
by k is k−1, for k = 2,3,4, . . . ,10.

7.5. Prove that if z is a real zero of a polynomial equation of the form

zn +an−1zn−1 + · · ·+a1z+a0 = 0,

where a0,a1, . . . ,an−1 are integers and z is not an integer, then z must be irrational.

7.6. Prove that for every integer k ≥ 2 there is some natural number n so that the k
consecutive numbers, n+1, . . . ,n+ k, are all composite (not prime).
Hint. Consider sequences starting with (k+1)!+2.

7.7. Let p be any prime number. (1) Prove that for every k, with 1≤ k ≤ p−1, the
prime p divides

(p
k

)
.

Hint. Observe that

k
(

p
k

)
= p
(

p−1
k−1

)
.

(2) Prove that for every natural number a, if p is prime then p divides ap−a.
Hint. Use induction on a.

Deduce Fermat’s little theorem: For any prime p and any natural number a, if p
does not divide a, then p divides ap−1−1.

7.8. Let a,b be any two positive integers and assume a ≥ b. When using the Eu-
clidean alorithm for computing the gcd, we compute the following sequence of
quotients and remainders.

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3

...
rk−1 = rkqk+1 + rk+1

...
rn−3 = rn−2qn−1 + rn−1

rn−2 = rn−1qn +0,

with n≥ 1, 0< r1 < b, qk ≥ 1, for k = 1, . . . ,n, and 0< rk+1 < rk, for k = 1, . . . ,n−2.
Observe that rn = 0.

If n = 1, we have a single division,

a = bq1 +0,

with r1 = 0 and q1 ≥ 1 and if n = 2, we have two divisions,
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a = bq1 + r1

b = r1q2 +0

with 0 < r1 < b, q1,q2 ≥ 1 and r2 = 0. Thus, it is convenient to set r−1 = a and
r0 = b, so that the first two divisions are also written as

r−1 = r0q1 + r1

r0 = r1q2 + r2.

(1) Prove (using Proposition 7.2) that rn−1 = gcd(a,b).
(2) Next, we prove that some integers x,y such that

ax+by = gcd(a,b) = rn−1

can be found as follows:
If n = 1, then a = bq1 and r0 = b, so we set x = 1 and y =−(q1−1).
If n≥ 2, we define the sequence (xi,yi) for i = 0, . . . ,n−1, so that

x0 = 0, y0 = 1, x1 = 1, y1 =−q1

and, if n≥ 3, then

xi+1 = xi−1− xiqi+1, yi+1 = yi−1− yiqi+1,

for i = 1, . . . ,n−2.
Prove that if n≥ 2, then

axi +byi = ri,

for i = 0, . . . ,n−1 (recall that r0 = b) and thus, that

axn−1 +byn−1 = gcd(a,b) = rn−1.

(3) When n≥ 2, if we set x−1 = 1 and y−1 = 0 in addition to x0 = 0 and y0 = 1,
then prove that the recurrence relations

xi+1 = xi−1− xiqi+1, yi+1 = yi−1− yiqi+1,

are valid for i = 0, . . . ,n−2.

Remark: Observe that ri+1 is given by the formula

ri+1 = ri−1− riqi+1.

Thus, the three sequences, (ri), (xi), and (yi) all use the same recurrence relation,

wi+1 = wi−1−wiqi+1,
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but they have different initial conditions: The sequence ri starts with r−1 = a,r0 = b,
the sequence xi starts with x−1 = 1,x0 = 0, and the sequence yi starts with y−1 =
0,y0 = 1.

(4) Consider the following version of the gcd algorithm that also computes inte-
gers x,y, so that

mx+ny = gcd(m,n),

where m and n are positive integers.
Extended Euclidean Algorithm

begin
x := 1; y := 0; u := 0; v := 1; g := m; r := n;
if m < n then

t := g; g := r; r := t; (swap g and r)
pr := r; q := bg/prc; r := g− pr q; (divide g by r, to get g = pr q+ r)
if r = 0 then

x := 1; y :=−(q−1); g := pr
else

r = pr;
while r 6= 0 do

pr := r; pu := u; pv := v;
q := bg/prc; r := g− pr q; (divide g by pr, to get g = pr q+ r)
u := x− puq; v := y− pvq;
g := pr; x := pu; y := pv

endwhile;
endif;
gcd(m,n) := g;
if m < n then t := x; x = y; y = t (swap x and y)

end

Prove that the above algorithm is correct, that is it always terminates, and com-
putes x,y so that

mx+ny = gcd(m,n).

7.9. As in Problem 7.8, let a,b be any two positive integers and assume a ≥ b.
Consider the sequence of divisions,

ri−1 = riqi+1 + ri+1,

with r−1 = a, r0 = b, with 0≤ i≤ n−1, n≥ 1, and rn = 0. We know from Problem
7.8 that

gcd(a,b) = rn−1.

In this problem, we give another algorithm for computing two numbers x and y so
that

ax+by = gcd(a,b),
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that proceeds from the bottom up (we proceed by “back-substitution”). Let us illus-
tate this in the case where n = 4. We have the four divisions:

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3

r2 = r3q3 +0,

with r3 = gcd(a,b).
From the third equation, we can write

r3 = r1− r2q3. (3)

From the second equation, we get

r2 = b− r1q2,

and by substituting the right-hand side for r2 in (3), we get

r3 = b− (b− r1q2)q3 =−bq3 + r1(1+q2q3);

that is,
r3 =−bq3 + r1(1+q2q3). (2)

From the first equation, we get

r1 = a−bq1,

and by substituting the right-hand side for r2 in (2), we get

r3 =−bq3 +(a−bq1)(1+q2q3) = a(1+q2q3)−b(q3 +q1(1+q2q3));

that is,
r3 = a(1+q2q3)−b(q3 +q1(1+q2q3)), (1)

which yields x = 1+q2q3 and y = q3 +q1(1+q2q3).
In the general case, we would like to find a sequence si for i = 0, . . . ,n such that

rn−1 = ri−1si+1 + risi, (∗)

for i = n−1, . . . ,0. For such a sequence, for i = 0, we have

gcd(a,b) = rn−1 = r−1s1 + r0s0 = as1 +bs0,

so s1 and s0 are solutions of our problem.
The equation (∗) must hold for i = n−1, namely,

rn−1 = rn−2sn + rn−1sn−1,
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therefore we should set sn = 0 and sn−1 = 1.
(1) Prove that (∗) is satisfied if we set

si−1 =−qisi + si+1,

for i = n−1, . . . ,0.
(2) Write an algorithm computing the sequence (si) as in (1) and compare its

performance with the extended Euclidean algorithm of Problem 7.8. Observe that
the computation of the sequence (si) requires saving all the quotients q1, . . . ,qn−1,
so the new algorithm will require more memory when the number of steps n is large.

7.10. In a paper published in 1841, Binet described a variant of the Euclidean al-
gorithm for computing the gcd which runs faster than the standard algorithm. This
algorithm makes use of a variant of the division algorithm that allows negative re-
mainders. Let a,b be any two positive integers and assume a > b. In the usual divi-
sion, we have

a = bq+ r,

where 0 ≤ r < b; that is, the remainder r is nonnegative. If we replace q by q+ 1,
we get

a = b(q+1)− (b− r),

where 1≤ b− r ≤ b. Now, if r > bb/2c, then b− r < bb/2c, so by using a negative
remainder, we can always write

a = bq± r,

with 0≤ r ≤ bb/2c. The proof of Proposition 7.2 also shows that

gcd(a,b) = gcd(b,r).

As in Problem 7.8 we can compute the following sequence of quotients and remain-
ders:

a = bq′1± r′1
b = r′1q′2± r′2

r′1 = r′2q′3± r′3
...

r′k−1 = r′kq′k+1± r′k+1

...
r′n−3 = r′n−2q′n−1± r′n−1

r′n−2 = r′n−1q′n +0,

with n ≥ 1, 0 < r′1 ≤ bb/2c, q′k ≥ 1, for k = 1, . . . ,n, and 0 < r′k+1 ≤ br′k/2c, for
k = 1, . . . ,n−2. Observe that r′n = 0.
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If n = 1, we have a single division,

a = bq′1 +0,

with r′1 = 0 and q′1 ≥ 1 and if n = 2, we have two divisions,

a = bq′1± r′1
b = r′1q′2 +0

with 0 < r′1 ≤ bb/2c, q′1,q
′
2 ≥ 1, and r′2 = 0. As in Problem 7.8, we set r′−1 = a and

r′0 = b.
(1) Prove that

r′n−1 = gcd(a,b).

(2) Prove that
b≥ 2n−1r′n−1.

Deduce from this that

n≤ log(b)− log(rn−1)

log(2)
+1≤ 10

3
log(b)+1≤ 10

3
δ +1,

where δ is the number of digits in b (the logarithms are in base 10).
Observe that this upper bound is better than Lamé’s bound, n≤ 5δ +1 (see Prob-

lem 7.38).
(3) Consider the following version of the gcd algorithm using Binet’s method.
The input is a pair of positive integers, (m,n).

begin
a := m; b := n;
if a < b then

t := b; b := a; a := t; (swap a and b)
while b 6= 0 do

r := a mod b; (divide a by b to obtain the remainder r)
if 2r > b then r := b− r;
a := b; b := r

endwhile;
gcd(m,n) := a

end

Prove that the above algorithm is correct; that is, it always terminates and it
outputs a = gcd(m,n).

7.11. In this problem, we investigate a version of the extended Euclidean algorithm
(see Problem 7.8) for Binet’s method described in Problem 7.10.

Let a,b be any two positive integers and assume a > b. We define sequences,
qi,ri,q′i, and r′i inductively, where the qi and ri denote the quotients and remainders
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in the usual Euclidean division and the q′i and r′i denote the quotient and remainders
in the modified division allowing negative remainders. The sequences ri and r′i are
defined starting from i = −1 and the sequence qi and q′i starting from i = 1. All
sequences end for some n≥ 1.

We set r−1 = r′−1 = a,r0 = r′0 = b, and for 0≤ i≤ n−1, we have

r′i−1 = r′iqi+1 + ri+1,

the result of the usual Euclidean division, where if n = 1, then r1 = r′1 = 0 and q1 =
q′1 ≥ 1, else if n≥ 2, then 1≤ ri+1 < ri, for i = 0, . . . ,n−2, qi ≥ 1, for i = 1, . . . ,n,
rn = 0, and with

q′i+1 =

{
qi+1 if 2ri+1 ≤ r′i
qi+1 +1 if 2ri+1 > r′i

and

r′i+1 =

{
ri+1 if 2ri+1 ≤ r′i
r′i− ri+1 if 2ri+1 > r′i,

for i = 0, . . . ,n−1.
(1) Check that

r′i−1 =

{
r′iq
′
i+1 + r′i+1 if 2ri+1 ≤ r′i

r′iq
′
i+1− r′i+1 if 2ri+1 > r′i

and prove that
r′n−1 = gcd(a,b).

(2) If n≥ 2, define the sequences, xi and yi inductively as follows:
x−1 = 1,x0 = 0, y−1 = 0,y0 = 1,

xi+1 =

{
xi−1− xiq′i+1 if 2ri+1 ≤ r′i
xiq′i+1− xi−1 if 2ri+1 > r′i

and

yi+1 =

{
yi−1− yiq′i+1 if 2ri+1 ≤ r′i
yiq′i+1− yi−1 if 2ri+1 > r′i,

for i = 0, . . . ,n−2.
Prove that if n≥ 2, then

axi +byi = r′i,

for i =−1, . . . ,n−1 and thus,

axn−1 +byn−1 = gcd(a,b) = r′n−1.

(3) Design an algorithm combining the algorithms proposed in Problems 7.8 and
7.10.

7.12. (1) Let m1,m2 be any two positive natural numbers and assume that m1 and
m2 are relatively prime.
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Prove that for any pair of integers a1,a2 there is some integer x such that the
following two congruences hold simultaneously.

x ≡ a1 (mod m1)

x ≡ a2 (mod m2).

Furthermore, prove that if x and y are any two solutions of the above system, then
x≡ y (mod m1m2), so x is unique if we also require that 0≤ x < m1m2.
Hint. By the Bézout identity (Proposition 7.1), there exist some integers, y1,y2, so
that

m1y1 +m2y2 = 1.

Prove that x = a1m2y2 + a2m1y1 = a1(1− m1y1) + a2m1y1 = a1m2y2 + a2(1−
m2y2) works. For the second part, prove that if m1 and m2 both divide b and if
gcd(m1,m2) = 1, then m1m2 divides b.

(2) Let m1,m2, . . . ,mn be any n≥ 2 positive natural numbers and assume that the
mi are pairwise relatively prime, which means that mi and mi are relatively prime
for all i 6= j.

Prove that for any n integers a1,a2, . . . ,an, there is some integer x such that the
following n congruences hold simultaneously.

x≡ a1 (mod m1)

x≡ a2 (mod m2)

...
x≡ an (mod mn).

Furthermore, prove that if x and y are any two solutions of the above system, then
x≡ y(modm), where m = m1m2 · · ·mn, so x is unique if we also require that 0≤ x <
m. The above result is known as the Chinese remainder theorem.
Hint. Use induction on n. First, prove that m1 and m2 · · ·mn are relatively prime
(because the mi are pairwise relatively prime). By (1), there exists some z1 so that

z1 ≡ 1 (mod m1)

z1 ≡ 0 (mod m2 · · ·mn).

By the induction hypothesis, there exists z2, . . . ,zn, so that

zi ≡ 1 (mod mi)

zi ≡ 0 (mod m j)

for all i = 2, . . . ,n and all j 6= i, with 2≤ j ≤ n; show that

x = a1z1 +a2z2 + · · ·+anzn

works.
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(3) Let m = m1 · · ·mn and let Mi = m/mi = ∏
n
j=1, j 6=i m j, for i = 1, . . . ,n. As in

(2), we know that mi and Mi are relatively prime, thus by Bézout (or the extended
Euclidean algorithm), we can find some integers ui,vi so that

miui +Mivi = 1,

for i = 1, . . . ,n. If we let zi = Mivi = mvi/mi, then prove that

x = a1z1 + · · ·+anzn

is a solution of the system of congruences.

7.13. The Euler φ -function (or totient) is defined as follows. For every positive in-
teger m, φ(m) is the number of integers, n ∈ {1, . . . ,m}, such that m is relatively
prime to n. Observe that φ(1) = 1.

(1) Prove the following fact. For every positive integer a, if a and m are relatively
prime, then

aφ(m) ≡ 1 (mod m);

that is, m divides aφ(m)−1.
Hint. Let s1, . . . ,sk be the integers, si ∈ {1, . . . ,m}, such that si is relatively prime
to m (k = φ(m)). Let r1, . . . ,rk be the remainders of the divisions of s1a,s2a, . . . ,ska
by m (so, sia = mqi + ri, with 0≤ ri < m).

(i) Prove that gcd(ri,m) = 1, for i = 1, . . . ,k.
(ii) Prove that ri 6= r j whenever i 6= j, so that

{r1, . . . ,rk}= {s1, . . . ,sk}.

Use (i) and (ii) to prove that

aks1 · · ·sk ≡ s1 · · ·sk (mod m)

and use this to conclude that

aφ(m) ≡ 1 (mod m).

(2) Prove that if p is prime, then φ(p) = p−1 and thus, Fermat’s little theorem
is a special case of (1).

7.14. Prove that if p is a prime, then for every integer x we have x2 ≡ 1 (mod p) iff
x≡±1 (mod p).

7.15. For any two positive integers a,m prove that gcd(a,m) = 1 iff there is some
integer x so that ax≡ 1 (mod m).

7.16. Prove that if p is a prime, then

(p−1)!≡−1 (mod p).
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This result is known as Wilson’s theorem.
Hint. The cases p = 2 and p = 3 are easily checked, so assume p ≥ 5. Consider
any integer a, with 1 ≤ a ≤ p− 1. Show that gcd(a, p) = 1. Then, by the result of
Problem 7.15, there is a unique integer a such that 1≤ a≤ p−1 and aa≡ 1(mod p).
Furthermore, a is the unique integer such that 1 ≤ a ≤ p− 1 and aa ≡ 1 (mod p).
Thus, the numbers in {1, . . . , p− 1} come in pairs a,a such that aa ≡ 1 (mod p).
However, one must be careful because it may happen that a = a, which is equivalent
to a2 ≡ 1 (mod p). By Problem 7.14, this happens iff a ≡ ±1 (mod p), iff a = 1 or
a = p−1. By pairing residues modulo p, prove that

p−2

∏
a=2

a≡ 1 (mod p)

and use this to prove that

(p−1)!≡−1 (mod p).

7.17. Let φ be the Euler-φ function defined in Problem 7.13.
(1) Prove that for every prime p and any integer k ≥ 1 we have

φ(pk) = pk−1(p−1).
(2) Prove that for any two positive integers m1,m2, if gcd(m1,m2) = 1, then

φ(m1m2) = φ(m1)φ(m2).

Hint. For any integer m≥ 1, let

R(m) = {n ∈ {1, . . . ,m} | gcd(m,n) = 1}.

Let m = m1m2. For every n ∈R(m), if a1 is the remainder of the division of n by
m1 and similarly if a2 is the remainder of the division of n by m2, then prove that
gcd(a1,m1) = 1 and gcd(a2,m2) = 1. Consequently, we get a function θ : R(m)→
R(m1)×R(m1), given by θ(n) = (a1,a2).

Prove that for every pair (a1,a2) ∈R(m1)×R(m1), there is a unique n ∈R(m),
so that θ(n) = (a1,a2) (Use the Chinese remainder theorem; see Problem 7.12).
Conclude that θ is a bijection. Use the bijection θ to prove that

φ(m1m2) = φ(m1)φ(m2).

(3) Use (1) and (2) to prove that for every integer n ≥ 2, if n = pk1
1 · · · pkr

r is the
prime factorization of n, then

φ(n) = pk1−1
1 · · · pkr−1

r (p1−1) · · ·(pr−1) = n
(

1− 1
p1

)
· · ·
(

1− 1
pr

)
.

7.18. Establish the formula
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A =

(
1 1
1 0

)
=

1√
5

(
ϕ −ϕ−1

1 1

)(
ϕ 0
0 −ϕ−1

)(
1 ϕ−1

−1 ϕ

)
with ϕ = (1+

√
5)/2 given in Section 7.3 and use it to prove that(
un+1

un

)
=

1√
5

(
ϕ −ϕ−1

1 1

)(
(ϕ−1u0 +u1)ϕ

n

(ϕu0−u1)(−ϕ−1)n

)
.

7.19. If (Fn) denotes the Fibonacci sequence, prove that

Fn+1 = ϕFn +(−ϕ
−1)n.

7.20. Prove the identities in Proposition 7.7, namely:

F2
0 +F2

1 + · · ·+F2
n = FnFn+1

F0 +F1 + · · ·+Fn = Fn+2−1
F2 +F4 + · · ·+F2n = F2n+1−1

F1 +F3 + · · ·+F2n+1 = F2n+2
n

∑
k=0

kFk = nFn+2−Fn+3 +2

for all n≥ 0 (with the third sum interpreted as F0 for n = 0).

7.21. Prove the Zeckendorf representation of natural numbers, that is, Proposition
7.8.
Hint. For the existence part, prove by induction on k ≥ 2 that a decomposition of
the required type exists for all n ≤ Fk (with n ≥ 1). For the uniqueness part, first
prove that

F(n mod 2)+2 + · · ·+Fn−2 +Fn = Fn+1−1,

for all n≥ 2.

7.22. Prove Proposition 7.9 giving identities relating the Fibonacci numbers and the
Lucas numbers:

Ln = Fn−1 +Fn+1

5Fn = Ln−1 +Ln+1,

for all n≥ 1.

7.23. Prove Proposition 7.10; that is, for any fixed k ≥ 1 and all n≥ 0, we have

Fn+k = FkFn+1 +Fk−1Fn.

Use the above to prove that
F2n = FnLn,
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for all n≥ 1.

7.24. Prove the following identities.

LnLn+2 = L2
n+1 +5(−1)n

L2n = L2
n−2(−1)n

L2n+1 = LnLn+1− (−1)n

L2
n = 5F2

n +4(−1)n.

7.25. (a) Prove Proposition 7.11; that is,

un+1un−1−u2
n = (−1)n−1(u2

0 +u0u1−u2
1).

(b) Prove the Catalan identity,

Fn+rFn−r−F2
n = (−1)n−r+1F2

r , n≥ r.

7.26. Prove that any sequence defined by the recurrence

un+2 = un+1 +un

satisfies the following equation,

ukun+1 +uk−1un = u1un+k +u0un+k−1,

for all k ≥ 1 and all n≥ 0.

7.27. Prove Proposition 7.12; that is,

1. Fn divides Fmn, for all m,n≥ 1.
2. gcd(Fm,Fn) = Fgcd(m,n), for all m,n≥ 1.

Hint. For the first statement, use induction on m ≥ 1. To prove the second statete-
ment, first prove that

gcd(Fn,Fn+1) = 1

for all n≥ 1. Then, prove that

gcd(Fm,Fn) = gcd(Fm−n,Fn).

7.28. Prove the formulae

2Fm+n = FmLn +FnLm

2Lm+n = LmLn +5FmFn.

7.29. Prove that
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L2h+1
n = L(2h+1)n +

(
2h+1

1

)
(−1)nL(2h−1)n +

(
2h+1

2

)
(−1)2nL(2h−3)n + · · ·

+

(
2h+1

h

)
(−1)hnLn.

7.30. Prove that

A =

(
P −Q
1 0

)
=

1
α−β

(
α β

1 1

)(
α 0
0 β

)(
1 −β

−1 α

)
,

where

α =
P+
√

D
2

, β =
P−
√

D
2

and then prove that(
un+1

un

)
=

1
α−β

(
α β

1 1

)(
(−βu0 +u1)α

n

(αu0−u1)β n

)
.

7.31. Prove Proposition 7.15; that is, the sequence defined by the recurrence

un+2 = Pun+1−Qun

(with P2−4Q 6= 0) satisfies the identity:

un+1un−1−u2
n = Qn−1(−Qu2

0 +Pu0u1−u2
1).

7.32. Prove the following identities relating the Un and the Vn;

Vn = Un+1−QUn−1

DUn = Vn+1−QVn−1,

for all n≥ 1. Then, prove that

U2n = UnVn

V2n = V 2
n −2Qn

Um+n = UmUn+1−QUnUm−1

Vm+n = VmVn−QnVm−n.

7.33. Consider the recurrence

Vn+2 = 2Vn+1 +2Vn,

starting from V0 =V1 = 2. Prove that

Vn = (1+
√

3)n +(1−
√

3)n.

7.34. Consider the sequence Sn given by
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Sn+1 = S2
n−2,

starting with S0 = 4. Prove that

V2k = Sk−122k−1
,

for all k ≥ 1 and that
Sk = (2+

√
3)2k

+(2−
√

3)2k
.

7.35. Prove that
n≡ (n mod 2p)+ bn/2pc (mod 2p−1).

7.36. The Cassini identity,

Fn+1Fn−1−F2
n = (−1)n, n≥ 1,

is the basis of a puzzle due to Lewis Carroll. Consider a square chess-board consist-
ing of 8×8 = 64 squares and cut it up into four pieces using the Fibonacci numbers,
3,5,8, as indicated by the bold lines in Figure 7.14 (a). Then, reassamble these four
pieces into a rectangle consisting of 5× 13 = 65 squares as shown in Figure 7.14
(b). Again, note the use of the Fibonacci numbers: 3,5,8,13. However, the original
square has 64 small squares and the final rectangle has 65 small squares. Explain
what’s wrong with this apparent paradox.

1

(a) (b)

Fig. 7.14 (a) A square of 64 small squares. (b) A rectangle of 65 small squares.

7.37. The generating function of a sequence (un) is the power series

F(z) =
∞

∑
n=0

unzn.

If the sequence (un) is defined by the recurrence relation
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un+2 = Pun+1−Qun

then prove that

F(z) =
u0 +(u1−Pu0)z

1−Pz+Qz2 .

For the Fibonacci-style sequence u0 = 0, u1 = 1, so we have

FFib(z) =
z

1−Pz+Qz2

and for the Lucas-style sequence u0 = 2, u1 = 1, so we have

FLuc(z) =
2+(1−2P)z
1−Pz+Qz2 .

If Q 6= 0, prove that

F(z) =
1

α−β

(−βu0 +u1

1−αz
+

αu0−u1

1−β z

)
.

Prove that the above formula for F(z) yields, again,

un =
1

α−β

(
(−βu0 +u1)α

n +(αu0−u1)β
n).

Prove that the above formula is still valid for Q= 0, provided we assume that 00 = 1.

7.38. (1) Prove that the Euclidean algorithm for gcd applied to two consecutive Fi-
bonacci numbers Fn and Fn+1 (with n≥ 2) requires n−1 divisions.

(2) Prove that the Euclidean algorithm for gcd applied to two consecutive Lucas
numbers Ln and Ln+1 (with n≥ 1) requires n divisions.

(3) Prove that if a > b ≥ 1 and if the Euclidean algorithm for gcd applied to a
and b requires n divisions, then a≥ Fn+2 and b≥ Fn+1.

(4) Using the explicit formula for Fn+1 and by taking logarithms in base 10, use
(3) to prove that

n < 4.785δ +1,

where δ is the number of digits in b (Dupré’s bound). This is slightly better than
Lamé’s bound, n≤ 5δ +1.

7.39. (1) Prove the correctness of the algorithm for computing xn mod m using re-
peated squaring.

(2) Use your algorithm to check that the message sent to Albert has been de-
crypted correctly and then encrypt the decrypted message and check that it is iden-
tical to the original message.

7.40. Recall the recurrence relations given in Section 7.5 to compute the inverse
modulo m of an integer a such that 1≤ a < m and gcd(m,a) = 1:



324 7 Unique Prime Factorization in Z and GCDs, RSA

y−1 = 0
y0 = 1

zi+1 = yi−1− yiqi+1

yi+1 = zi+1 mod m if zi+1 ≥ 0
yi+1 = m− ((−zi+1)mod m) if zi+1 < 0,

for i = 0, . . . ,n−2.
(1) Prove by induction that

ayi ≡ ri (mod m)

for i = 0, . . . ,n−1 and thus, that

ayn−1 ≡ 1 (mod m),

with 1≤ yn−1 < m, as desired.
(2) Prove the correctness of the algorithm for computing the inverse of an element

modulo m proposed in Section 7.5.
(3) Design a faster version of this algorithm using “Binet’s trick” (see Problem

7.10 and Problem 7.11).

7.41. Prove that a560− 1 is divisible by 561 for every positive natural number, a,
such that gcd(a,561) = 1.
Hint. Because 561= 3 ·11 ·17, it is enough to prove that 3 | (a560−1) for all positive
integers a such that a is not a multiple of 3, that 11 | (a560−1) for all positive integers
a such that a is not a multiple of 11, and that 17 | (a560−1) for all positive integers
a such that a is not a multiple of 17.

7.42. Prove that 161038 divides 2161038−2, yet 2161037 ≡ 80520 (mod 161038).
This example shows that it would be undesirable to define a pseudo-prime as a

positive natural number n that divides 2n−2.

7.43. (a) Consider the sequence defined recursively as follows.

U0 = 0
U1 = 2

Un+2 = 6Un+1−Un, n≥ 0.

Prove the following identity,

Un+2Un =U2
n+1−4,

for all n≥ 0.
(b) Consider the sequence defined recursively as follows:
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V0 = 1
V1 = 3

Vn+2 = 6Vn+1−Vn, n≥ 0.

Prove the following identity,

Vn+2Vn =V 2
n+1 +8,

for all n≥ 0.
(c) Prove that

V 2
n −2U2

n = 1,

for all n≥ 0.
Hint. Use (a) and (b). You may also want to prove by simultaneous induction that

V 2
n −2U2

n = 1
VnVn−1−2UnUn−1 = 3,

for all n≥ 1.

7.44. Consider the sequences (Un) and (Vn), given by the recurrence relations

U0 = 0
V0 = 1
U1 = y1

V1 = x1

Un+2 = 2x1Un+1−Un

Vn+2 = 2x1Vn+1−Vn,

for any two positive integers x1,y1.
(1) If x1 and y1 are solutions of the (Pell) equation

x2−dy2 = 1,

where d is a positive integer that is not a perfect square, then prove that

V 2
n −dU2

n = 1
VnVn−1−dUnUn−1 = x1,

for all n≥ 1.
(2) Verify that

Un =
(x1 + y1

√
d)n− (x1− y1

√
d)n

2
√

d

Vn =
(x1 + y1

√
d)n +(x1− y1

√
d)n

2
.



326 7 Unique Prime Factorization in Z and GCDs, RSA

Deduce from this that
Vn +Un

√
d = (x1 + y1

√
d)n.

(3) Prove that the Uns and Vns also satisfy the following simultaneous recurrence
relations:

Un+1 = x1Un + y1Vn

Vn+1 = dy1Un + x1Vn,

for all n≥ 0. Use the above to prove that

Vn+1 +Un+1
√

d = (Vn +Un
√

d)(x1 + y1
√

d)

Vn+1−Un+1
√

d = (Vn−Un
√

d)(x1− y1
√

d)

for all n≥ 0 and then that

Vn +Un
√

d = (x1 + y1
√

d)n

Vn−Un
√

d = (x1− y1
√

d)n

for all n ≥ 0. Use the above to give another proof of the formulae for Un and Vn in
(2).

Remark: It can be shown that Pell’s equation,

x2−dy2 = 1,

where d is not a perfect square, always has solutions in positive integers. If (x1,y1) is
the solution with smallest x1 > 0, then every solution is of the form (Vn,Un), where
Un and Vn are defined in (1). Curiously, the “smallest solution” (x1,y1) can involve
some very large numbers. For example, it can be shown that the smallest positive
solution of

x2−61y2 = 1

is (x1,y1) = (1766319049,226153980).
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Chapter 8
An Introduction to Discrete Probability

8.1 Sample Space, Outcomes, Events, Probability

Roughly speaking, probability theory deals with experiments whose outcome are
not predictable with certainty. We often call such experiments random experiments.
They are subject to chance. Using a mathematical theory of probability, we may be
able to calculate the likelihood of some event.

In the introduction to his classical book [1] (first published in 1888), Joseph
Bertrand (1822–1900) writes (translated from French to English):

“How dare we talk about the laws of chance (in French: le hasard)? Isn’t chance
the antithesis of any law? In rejecting this definition, I will not propose any
alternative. On a vaguely defined subject, one can reason with authority. ...”

Of course, Bertrand’s words are supposed to provoke the reader. But it does seem
paradoxical that anyone could claim to have a precise theory about chance! It is not
my intention to engage in a philosophical discussion about the nature of chance.
Instead, I will try to explain how it is possible to build some mathematical tools that
can be used to reason rigorously about phenomema that are subject to chance. These
tools belong to probability theory. These days, many fields in computer science
such as machine learning, cryptography, computational linguistics, computer vision,
robotics, and of course algorithms, rely a lot on probability theory. These fields are
also a great source of new problems that stimulate the discovery of new methods
and new theories in probability theory.

Although this is an oversimplification that ignores many important contributors,
one might say that the development of probability theory has gone through four eras
whose key figures are: Pierre de Fermat and Blaise Pascal, Pierre–Simon Laplace,
and Andrey Kolmogorov. Of course, Gauss should be added to the list; he made
major contributions to nearly every area of mathematics and physics during his life-
time. To be fair, Jacob Bernoulli, Abraham de Moivre, Pafnuty Chebyshev, Alek-
sandr Lyapunov, Andrei Markov, Emile Borel, and Paul Lévy should also be added
to the list.

329
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Fig. 8.1 Pierre de Fermat (1601–1665) (left), Blaise Pascal (1623–1662) (middle left), Pierre–
Simon Laplace (1749–1827) (middle right), Andrey Nikolaevich Kolmogorov (1903–1987) (right).

Before Kolmogorov, probability theory was a subject that still lacked precise def-
initions. In 1933, Kolmogorov provided a precise axiomatic approach to probability
theory which made it into a rigorous branch of mathematics with even more appli-
cations than before!

The first basic assumption of probability theory is that even if the outcome of an
experiment is not known in advance, the set of all possible outcomes of an experi-
ment is known. This set is called the sample space or probability space. Let us begin
with a few examples.

Example 8.1. If the experiment consists of flipping a coin twice, then the sample
space consists of all four strings

Ω = {HH,HT,TH,TT},

where H stands for heads and T stands for tails.
If the experiment consists in flipping a coin five times, then the sample space

Ω is the set of all strings of length five over the alphabet {H,T}, a set of 25 = 32
strings,

Ω = {HHHHH,THHHH,HTHHH,TTHHH, . . . ,TTTTT}.

Example 8.2. If the experiment consists in rolling a pair of dice, then the sample
space Ω consists of the 36 pairs in the set

Ω = D×D,

with
D = {1,2,3,4,5,6},

where the integer i ∈D corresponds to the number (indicated by dots) on the face of
the dice facing up, as shown in Figure 8.2. Here we assume that one dice is rolled
first and then another dice is rolled second.

Example 8.3. In the game of bridge, the deck has 52 cards and each player receives
a hand of 13 cards. Let Ω be the sample space of all possible hands. This time it is
not possible to enumerate the sample space explicitly. Indeed, there are
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Fig. 8.2 Two dice.

(
52
13

)
=

52!
13! ·39!

=
52 ·51 ·50 · · ·40
13 ·12 · · · ·2 ·1 = 635,013,559,600

different hands, a huge number.

Each member of a sample space is called an outcome or an elementary event.
Typically, we are interested in experiments consisting of a set of outcomes. For
example, in Example 8.1 where we flip a coin five times, the event that exactly one
of the coins shows heads is

A = {HTTTT,THTTT,TTHTT,TTTHT,TTTTH}.

The event A consists of five outcomes. In Example 8.2, the event that we get “dou-
bles” when we roll two dice, namely that each dice shows the same value is,

B = {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)},

an event consisting of 6 outcomes.
The second basic assumption of probability theory is that every outcome ω of

a sample space Ω is assigned some probability Pr(ω). Intuitively, Pr(ω) is the
probabilty that the outcome ω may occur. It is convenient to normalize probabilites,
so we require that

0≤ Pr(ω)≤ 1.

If Ω is finite, we also require that

∑
ω∈Ω

Pr(ω) = 1.

The function Pr is often called a probability measure or probability distribution on
Ω . Indeed, it distributes the probability of 1 among the outcomes ω .

In many cases, we assume that the probably distribution is uniform, which means
that every outcome has the same probability.

Example 8.4. For example, if we assume that our coins are “fair,” then when we flip
a coin five times as in Example 8.1, since each outcome in Ω is equally likely, the
probability of each outcome ω ∈Ω is

Pr(ω) =
1

32
.
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If we assume in Example 8.2, that our dice are “fair,” namely that each of the six
possibilities for a particular dice has probability 1/6 , then each of the 36 rolls ω ∈Ω

has probability

Pr(ω) =
1

36
.

Example 8.5. We can also consider “loaded dice” in which there is a different dis-
tribution of probabilities. For example, let

Pr1(1) = Pr1(6) =
1
4

Pr1(2) = Pr1(3) = Pr1(4) = Pr1(5) =
1
8
.

These probabilities add up to 1, so Pr1 is a probability distribution on D. We can
assign probabilities to the elements of Ω = D×D by the rule

Pr11(d,d′) = Pr1(d)Pr1(d′).

We can easily check that
∑

ω∈Ω

Pr11(ω) = 1,

so Pr11 is indeed a probability distribution on Ω . For example, we get

Pr11(6,3) = Pr1(6)Pr1(3) =
1
4
· 1

8
=

1
32

.

Let us summarize all this with the following definition.

Definition 8.1. A finite discrete probability space (or finite discrete sample space)
is a finite set Ω of outcomes or elementary events ω ∈ Ω , together with a function
Pr : Ω → R, called probability measure (or probability distribution) satisfying the
following properties:

0≤ Pr(ω)≤ 1, for all ω ∈Ω .

∑
ω∈Ω

Pr(ω) = 1.

The uniform probability distribution on Ω is the probability measure given by
Pr(ω) = 1/|Ω | for all ω ∈Ω . An event is any subset A of Ω . The probability of an
event A is defined as

Pr(A) = ∑
ω∈A

Pr(ω).

Definition 8.1 immediately implies that

Pr( /0) = 0
Pr(Ω) = 1.
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The event Ω is called the certain event. In general there are other events A such that
Pr(A) = 1.

Remark: Even though the term probability distribution is commonly used, this is
not a good practice because there is also a notion of (cumulative) distribution func-
tion of a random variable (see Section 8.3, Definition 8.6), and this is a very different
object (the domain of the distribution function of a random variable is R, not Ω ).

Example 8.6. For another example, if we consider the event

A = {HTTTT,THTTT,TTHTT,TTTHT,TTTTH}

that in flipping a coin five times, heads turns up exactly once, the probability of this
event is

Pr(A) =
5

32
.

If we use the probability measure Pr on the sample space Ω of pairs of dice, the
probability of the event of having doubles

B = {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)},

is
Pr(B) = 6 · 1

36
=

1
6
.

However, using the probability measure Pr11, we obtain

Pr11(B) =
1

16
+

1
64

+
1

64
+

1
64

+
1
64

+
1
16

=
3
16

>
1
6
.

Loading the dice makes the event “having doubles” more probable.

It should be noted that a definition slightly more general than Definition 8.1 is
needed if we want to allow Ω to be infinite. In this case, the following definition is
used.

Definition 8.2. A discrete probability space (or discrete sample space) is a triple
(Ω ,F ,Pr) consisting of:

1. A nonempty countably infinite set Ω of outcomes or elementary events.
2. The set F of all subsets of Ω , called the set of events.
3. A function Pr : F →R, called probability measure (or probability distribution)

satisfying the following properties:

a. (positivity)
0≤ Pr(A)≤ 1, for all A ∈F .

b. (normalization)
Pr(Ω) = 1.
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c. (additivity and continuity)
For any sequence of pairwise disjoint events E1,E2, . . . ,Ei, . . . in F (which
means that Ei∩E j = /0 for all i 6= j), we have

Pr

(
∞⋃

i=1

Ei

)
=

∞

∑
i=1

Pr(Ei).

The main thing to observe is that Pr is now defined directly on events, since
events may be infinite. The third axiom of a probability measure implies that

Pr( /0) = 0,

because Pr( /0) = Pr( /0∩ /0) = Pr( /0)+Pr( /0).
The notion of a discrete probability space is sufficient to deal with most problems

that a computer scientist or an engineer will ever encounter. However, there are
certain problems for which it is necessary to assume that the family F of events
is a proper subset of the power set of Ω . In this case, F is called the family of
measurable events, and F has certain closure properties that make it a σ -algebra
(also called a σ -field). Some problems even require Ω to be uncountably infinite. In
this case, we drop the word discrete from discrete probability space.

Remark: A σ -algebra is a nonempty family F of subsets of Ω satisfying the fol-
lowing properties:

1. /0 ∈F .
2. For every subset A⊆Ω , if A ∈F then A ∈F .
3. For every countable family (Ai)i≥1 of subsets Ai ∈F , we have

⋃
i≥1 Ai ∈F .

Note that every σ -algebra is a Boolean algebra (see Section 5.6, Definition 5.12),
but the closure property (3) is very strong and adds spice to the story.

In this chapter we deal mostly with finite discrete probability spaces, and occa-
sionally with discrete probability spaces with a countably infinite sample space. In
this latter case, we always assume that F = 2Ω , and for notational simplicity we
omit F (that is, we write (Ω ,Pr) instead of (Ω ,F ,Pr)).

Because events are subsets of the sample space Ω , they can be combined using
the set operations, union, intersection, and complementation. If the sample space
Ω is finite, the definition for the probability Pr(A) of an event A ⊆ Ω given in
Definition 8.1 shows that if A,B are two disjoint events (this means that A∩B = /0),
then

Pr(A∪B) = Pr(A)+Pr(B).

More generally, if A1, . . . ,An are any pairwise disjoint events, then

Pr(A1∪·· ·∪An) = Pr(A1)+ · · ·+Pr(An).

It is natural to ask whether the probabilities Pr(A∪B), Pr(A∩B) and Pr(A) can
be expressed in terms of Pr(A) and Pr(B), for any two events A,B ∈ Ω . In the first
and the third case, we have the following simple answer.
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Proposition 8.1. Given any (finite) discrete probability space (Ω ,Pr), for any two
events A,B⊆Ω , we have

Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B)

Pr(A) = 1−Pr(A).

Furthermore, if A⊆ B, then Pr(A)≤ Pr(B).

Proof. Observe that we can write A∪B as the following union of pairwise disjoint
subsets:

A∪B = (A∩B)∪ (A−B)∪ (B−A).

Then using the observation made just before Proposition 8.1, since we have the dis-
joint unions A = (A∩B)∪ (A−B) and B = (A∩B)∪ (B−A), using the disjointness
of the various subsets, we have

Pr(A∪B) = Pr(A∩B)+Pr(A−B)+Pr(B−A)

Pr(A) = Pr(A∩B)+Pr(A−B)

Pr(B) = Pr(A∩B)+Pr(B−A),

and from these we obtain

Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B).

The equation Pr(A) = 1−Pr(A) follows from the fact that A∩A = /0 and A∪A = Ω ,
so

1 = Pr(Ω) = Pr(A)+Pr(A).

If A ⊆ B, then A∩B = A, so B = (A∩B)∪ (B−A) = A∪ (B−A), and since A and
B−A are disjoint, we get

Pr(B) = Pr(A)+Pr(B−A).

Since probabilities are nonegative, the above implies that Pr(A)≤ Pr(B). ut

Remark: Proposition 8.1 still holds when Ω is infinite as a consequence of axioms
(a)–(c) of a probability measure. Also, the equation

Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B)

can be generalized to any sequence of n events. In fact, we already showed this as
the Principle of Inclusion–Exclusion, Version 2 (Theorem 6.3).

The following proposition expresses a certain form of continuity of the function
Pr.

Proposition 8.2. Given any probability space (Ω ,F ,Pr) (discrete or not), for any
sequence of events (Ai)i≥1, if Ai ⊆ Ai+1 for all i≥ 1, then
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Pr

( ∞⋃
i=1

Ai

)
= lim

n7→∞
Pr(An).

Proof. The trick is to express
⋃

∞
i=1 Ai as a union of pairwise disjoint events. Indeed,

we have

∞⋃
i=1

Ai = A1∪ (A2−A1)∪ (A3−A2)∪·· ·∪ (Ai+1−Ai)∪·· · ,

so by property (c) of a probability measure, since we have a disjoint union Ai+1 =
Ai∪ (Ai+1−Ai),

Pr(Ai+1) = Pr(Ai∪ (Ai+1−Ai)) = Pr(Ai)+Pr(Ai+1−Ai),

so
Pr(Ai+1−Ai) = Pr(Ai+1)−Pr(A),

and then

Pr

( ∞⋃
i=1

Ai

)
= Pr

(
A1∪

∞⋃
i=1

(Ai+1−Ai)

)
= Pr(A1)+

∞

∑
i=1

Pr(Ai+1−Ai)

= Pr(A1)+ lim
n7→∞

n−1

∑
i=1

Pr(Ai+1−Ai)

= Pr(A1)+ lim
n7→∞

n−1

∑
i=1

(Pr(Ai+1)−Pr(Ai))

= lim
n7→∞

Pr(An),

as claimed.

We leave it as an exercise to prove that if Ai+1 ⊆ Ai for all i≥ 1, then

Pr

( ∞⋂
i=1

Ai

)
= lim

n7→∞
Pr(An).

In general, the probability Pr(A∩B) of the event A∩B cannot be expressed in a
simple way in terms of Pr(A) and Pr(B). However, in many cases we observe that
Pr(A∩B) = Pr(A)Pr(B). If this holds, we say that A and B are independent.

Definition 8.3. Given a discrete probability space (Ω ,Pr), two events A and B are
independent if

Pr(A∩B) = Pr(A)Pr(B).

Two events are dependent if they are not independent.
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For example, in the sample space of 5 coin flips, we have the events

A = {HHw | w ∈ {H,T}3}∪{HTw | w ∈ {H,T}3},

the event in which the first flip is H, and

B = {HHw | w ∈ {H,T}3}∪{THw | w ∈ {H,T}3},

the event in which the second flip is H. Since A and B contain 16 outcomes, we have

Pr(A) = Pr(B) =
16
32

=
1
2
.

The intersection of A and B is

A∩B = {HHw | w ∈ {H,T}3},

the event in which the first two flips are H, and since A∩B contains 8 outcomes, we
have

Pr(A∩B) =
8

32
=

1
4
.

Since
Pr(A∩B) =

1
4

and
Pr(A)Pr(B) =

1
2
· 1

2
=

1
4
,

we see that A and B are independent events. On the other hand, if we consider the
events

A = {TTTTT,HHTTT}
and

B = {TTTTT,HTTTT},
we have

Pr(A) = Pr(B) =
2

32
=

1
16

,

and since
A∩B = {TTTTT},

we have
Pr(A∩B) =

1
32

.

It follows that
Pr(A)Pr(B) =

1
16
· 1

16
=

1
256

,

but
Pr(A∩B) =

1
32

,
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so A and B are not independent.

Example 8.7. We close this section with a classical problem in probability known as
the birthday problem. Consider n < 365 individuals and assume for simplicity that
nobody was born on February 29. In this problem, the sample space is the set of
all 365n possible choices of birthdays for n individuals, and let us assume that they
are all equally likely. This is equivalent to assuming that each of the 365 days of
the year is an equally likely birthday for each individual, and that the assignments
of birthdays to distinct people are independent. Note that this does not take twins
into account! What is the probability that two (or more) individuals have the same
birthday?

To solve this problem, it is easier to compute the probability that no two individ-
uals have the same birthday. We can choose n distinct birthdays in

(365
n

)
ways, and

these can be assigned to n people in n! ways, so there are(
365

n

)
n! = 365 ·364 · · ·(365−n+1)

configurations where no two people have the same birthday. There are 365n possible
choices of birthdays, so the probabilty that no two people have the same birthday is

q =
365 ·364 · · ·(365−n+1)

365n =

(
1− 1

365

)(
1− 2

365

)
· · ·
(

1− n−1
365

)
,

and thus, the probability that two people have the same birthday is

p = 1−q = 1−
(

1− 1
365

)(
1− 2

365

)
· · ·
(

1− n−1
365

)
.

In the proof of Proposition 6.15, we showed that x ≤ ex−1 for all x ∈ R, so by
substituting 1− x for x we get 1− x ≤ e−x for all x ∈ R, and we can bound q as
follows:

q =
n−1

∏
i=1

(
1− i

365

)
q≤

n−1

∏
i=1

e−i/365

= e−∑
n−1
i=1

i
365

e−
n(n−1)
2·365 .

If we want the probability q that no two people have the same birthday to be at most
1/2, it suffices to require

e−
n(n−1)
2·365 ≤ 1

2
,

that is, −n(n−1)/(2 ·365)≤ ln(1/2), which can be written as
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n(n−1)≥ 2 ·365ln2.

The roots of the quadratic equation

n2−n−2 ·365ln2 = 0

are

m =
1±
√

1+8 ·365ln2
2

,

and we find that the positive root is approximately m = 23. In fact, we find that if
n = 23, then p = 50.7%. If n = 30, we calculate that p≈ 71%.

What if we want at least three people to share the same birthday? Then n = 88
does it, but this is harder to prove! See Ross [13], Section 3.4.

8.2 Conditional Probability and Independence

In general, the occurrence of some event B changes the probability that another
event A occurs. It is then natural to consider the probability denoted Pr(A | B) that
if an event B occurs, then A occurs. As in logic, if B does not occur not much can be
said, so we assume that Pr(B) 6= 0.

Definition 8.4. Given a discrete probability space (Ω ,Pr), for any two events A and
B, if Pr(B) 6= 0, then we define the conditional probability Pr(A | B) that A occurs
given that B occurs as

Pr(A | B) = Pr(A∩B)
Pr(B)

.

Example 8.8. Suppose we roll two fair dice. What is the conditional probability that
the sum of the numbers on the dice exceeds 6, given that the first shows 3? To solve
this problem, let

B = {(3, j) | 1≤ j ≤ 6}
be the event that the first dice shows 3, and

A = {(i, j) | i+ j ≥ 7,1≤ i, j ≤ 6}

be the event that the total exceeds 6. We have

A∩B = {(3,4),(3,5),(3,6)},

so we get

Pr(A | B) = Pr(A∩B)
Pr(B)

=
3
36

/
6

36
=

1
2
.

The next example is perhaps a little more surprising.
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Example 8.9. A family has two children. What is the probability that both are boys,
given at least one is a boy?

There are four possible combinations of sexes, so the sample space is

Ω = {GG,GB,BG,BB},

and we assume a uniform probability measure (each outcome has probability 1/4).
Introduce the events

B = {GB,BG,BB}
of having at least one boy, and

A = {BB}
of having two boys. We get

A∩B = {BB},
and so

Pr(A | B) = Pr(A∩B)
Pr(B)

=
1
4

/
3
4
=

1
3
.

Contrary to the popular belief that Pr(A | B) = 1/2, it is actually equal to 1/3. Now,
consider the question: what is the probability that both are boys given that the first
child is a boy? The answer to this question is indeed 1/2.

The next example is known as the “Monty Hall Problem,” a standard example of
every introduction to probability theory.

Example 8.10. On the television game Let’s Make a Deal, a contestant is presented
with a choice of three (closed) doors. Behind exactly one door is a terrific prize. The
other doors conceal cheap items. First, the contestant is asked to choose a door. Then
the host of the show (Monty Hall) shows the contestant one of the worthless prizes
behind one of the other doors. At this point, there are two closed doors, and the
contestant is given the opportunity to switch from his original choice to the other
closed door. The question is, is it better for the contestant to stick to his original
choice or to switch doors?

We can analyze this problem using conditional probabilities. Without loss of gen-
erality, assume that the contestant chooses door 1. If the prize is actually behind door
1, then the host will show door 2 or door 3 with equal probability 1/2. However, if
the prize is behind door 2, then the host will open door 3 with probability 1, and if
the prize is behind door 3, then the host will open door 2 with probability 1. Write
Pi for “the prize is behind door i,” with i = 1,2,3, and D j for “the host opens door
D j, ” for j = 2,3. Here it is not necessary to consider the choice D1 since a sensible
host will never open door 1. We can represent the sequences of choices occurring in
the game by a tree known as probability tree or tree of possibilities, shown in Figure
8.3.

Every leaf corresponds to a path associated with an outcome, so the sample space
is

Ω = {P1;D2,P1;D3,P2;D3,P3;D2}.
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P1

P2

P3

D2

D3

D3

D2

1/3

1/3

1/3

1/2

1/2

1

1

Pr(P1; D2) = 1/6

Pr(P1; D3) = 1/6

Pr(P2; D3) = 1/3

Pr(P3; D2) = 1/3

Fig. 8.3 The tree of possibilities in the Monty Hall problem.

The probability of an outcome is obtained by multiplying the probabilities along the
corresponding path, so we have

Pr(P1;D2) =
1
6

Pr(P1;D3) =
1
6

Pr(P2;D3) =
1
3

Pr(P3;D2) =
1
3
.

Suppose that the host reveals door 2. What should the contestant do?
The events of interest are:

1. The prize is behind door 1; that is, A = {P1;D2,P1;D3}.
2. The prize is behind door 3; that is, B = {P3;D2}.
3. The host reveals door 2; that is, C = {P1;D2,P3;D2}.

Whether or not the contestant should switch doors depends on the values of the
conditional probabilities

1. Pr(A |C): the prize is behind door 1, given that the host reveals door 2.
2. Pr(B |C): the prize is behind door 3, given that the host reveals door 2.

We have A∩C = {P1;D2}, so

Pr(A∩C) = 1/6,

and
Pr(C) = Pr({P1;D2,P3;D2}) = 1

6
+

1
3
=

1
2
,

so

Pr(A |C) =
Pr(A∩C)

Pr(C)
=

1
6

/
1
2
=

1
3
.
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We also have B∩C = {P3;D2}, so

Pr(B∩C) = 1/3,

and

Pr(B |C) =
Pr(B∩C)

Pr(C)
=

1
3

/
1
2
=

2
3
.

Since 2/3 > 1/3, the contestant has a greater chance (twice as big) to win the bigger
prize by switching doors. The same probabilities are derived if the host had revealed
door 3.

A careful analysis showed that the contestant has a greater chance (twice as large)
of winning big if she/he decides to switch doors. Most people say “on intuition” that
it is preferable to stick to the original choice, because once one door is revealed,
the probability that the valuable prize is behind either of two remaining doors is
1/2. This is incorrect because the door the host opens depends on which door the
contestant orginally chose.

Let us conclude by stressing that probability trees (trees of possibilities) are very
useful in analyzing problems in which sequences of choices involving various prob-
abilities are made.

The next proposition shows various useful formulae due to Bayes.

Proposition 8.3. (Bayes’ Rules) For any two events A,B with Pr(A)> 0 and Pr(B)>
0, we have the following formulae:

1. (Bayes’ rule of retrodiction)

Pr(B | A) = Pr(A | B)Pr(B)
Pr(A)

.

2. (Bayes’ rule of exclusive and exhaustive clauses) If we also have Pr(A)< 1 and
Pr(B)< 1, then

Pr(A) = Pr(A | B)Pr(B)+Pr(A | B)Pr(B).

More generally, if B1, . . . ,Bn form a partition of Ω with Pr(Bi)> 0 (n≥ 2), then

Pr(A) =
n

∑
i=1

Pr(A | Bi)Pr(Bi).

3. (Bayes’ sequential formula) For any sequence of events A1, . . . ,An, we have

Pr

(
n⋂

i=1

Ai

)
= Pr(A1)Pr(A2 | A1)Pr(A3 | A1∩A2) · · ·Pr

(
An |

n−1⋂
i=1

Ai

)
.

4. (Bayes’ law)
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Pr(B | A) = Pr(A | B)Pr(B)
Pr(A | B)Pr(B)+Pr(A | B)Pr(B) .

Proof. By definition of a conditional probability we have

Pr(A | B)Pr(B) = Pr(A∩B) = Pr(B∩A) = Pr(B | A)Pr(A),

which shows the first formula. For the second formula, observe that we have the
disjoint union

A = (A∩B)∪ (A∩B),

so

Pr(A) = Pr(A∩B)∪Pr(A∩B)

= Pr(A | B)Pr(B)∪Pr(A | B)Pr(B).

We leave the more general rule as an exercise, and the third rule follows by unfolding
definitions. The fourth rule is obtained by combining (1) and (2). ut

Bayes’ rule of retrodiction is at the heart of the so-called Bayesian framework. In
this framework, one thinks of B as an event describing some state (such as having
a certain disease) and of A an an event describing some measurement or test (such
as having high blood pressure). One wishes to infer the a posteriori probability
Pr(B | A) of the state B given the test A, in terms of the prior probability Pr(B) and
the likelihood function Pr(A | B). The likelihood function Pr(A | B) is a measure of
the likelihood of the test A given that we know the state B, and Pr(B) is a measure
of our prior knowledge about the state; for example, having a certain disease. The
probability Pr(A) is usually obtained using Bayes’s second rule because we also
know Pr(A | B).
Example 8.11. Doctors apply a medical test for a certain rare disease that has the
property that if the patient is affected by the disease, then the test is positive in 99%
of the cases. However, it happens in 2% of the cases that a healthy patient tests
positive. Statistical data shows that one person out of 1000 has the disease. What is
the probability for a patient with a positive test to be affected by the disease?

Let S be the event that the patient has the disease, and + and − the events that
the test is positive or negative. We know that

Pr(S) = 0.001
Pr(+ | S) = 0.99

Pr(+ | S) = 0.02,

and we have to compute Pr(S |+). We use the rule

Pr(S |+) =
Pr(+ | S)Pr(S)

Pr(+)
.

We also have
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Pr(+) = Pr(+ | S)Pr(S)+Pr(+ | S)Pr(S),
so we obtain

Pr(S |+) =
0.99×0.001

0.99×0.001+0.02×0.999
≈ 1

20
= 5%.

Since this probability is small, one is led to question the reliability of the test! The
solution is to apply a better test, but only to all positive patients. Only a small portion
of the population will be given that second test because

Pr(+) = 0.99×0.001+0.02×0.999≈ 0.003.

Redo the calculations with the new data

Pr(S) = 0.00001
Pr(+ | S) = 0.99

Pr(+ | S) = 0.01.

You will find that the probability Pr(S |+) is approximately 0.000099, so the chance
of being sick is rather small, and it is more likely that the test was incorrect.

Recall that in Definition 8.3, we defined two events as being independent if

Pr(A∩B) = Pr(A)Pr(B).

Asuming that Pr(A) 6= 0 and Pr(B) 6= 0, we have

Pr(A∩B) = Pr(A | B)Pr(B) = Pr(B | A)Pr(A),

so we get the following proposition.

Proposition 8.4. For any two events A,B such that Pr(A) 6= 0 and Pr(B) 6= 0, the
following statements are equivalent:

1. Pr(A∩B) = Pr(A)Pr(B); that is, A and B are independent.
2. Pr(B | A) = Pr(B).
3. Pr(A | B) = Pr(A).

Remark: For a fixed event B with Pr(B) > 0, the function A 7→ Pr(A | B) satisfies
the axioms of a probability measure stated in Definition 8.2. This is shown in Ross
[12] (Section 3.5), among other references.

The examples where we flip a coin n times or roll two dice n times are examples
of independent repeated trials. They suggest the following definition.

Definition 8.5. Given two discrete probability spaces (Ω1,Pr1) and (Ω2,Pr2), we
define their product space as the probability space (Ω1×Ω2,Pr), where Pr is given
by
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Pr(ω1,ω2) = Pr1(ω1)Pr2(Ω2), ω1 ∈Ω1,ω2 ∈Ω2.

There is an obvious generalization for n discrete probability spaces. In particular, for
any discrete probability space (Ω ,Pr) and any integer n≥ 1, we define the product
space (Ω n,Pr), with

Pr(ω1, . . . ,ωn) = Pr(ω1) · · ·Pr(ωn), ωi ∈Ω , i = 1, . . . ,n.

The fact that the probability measure on the product space is defined as a prod-
uct of the probability measures of its components captures the independence of the
trials.

Remark: The product of two probability spaces (Ω1,F1,Pr1) and (Ω2,F2,Pr2)
can also be defined, but F1×F2 is not a σ -algebra in general, so some serious
work needs to be done.

Next, we define what is perhaps the most important concept in probability: that
of a random variable.

8.3 Random Variables and their Distributions

In many situations, given some probability space (Ω ,Pr), we are more interested
in the behavior of functions X : Ω → R defined on the sample space Ω than in the
probability space itself. Such functions are traditionally called random variables, a
somewhat unfortunate terminology since these are functions. Now, given any real
number a, the inverse image of a

X−1(a) = {ω ∈Ω | X(ω) = a},

is a subset of Ω , thus an event, so we may consider the probability Pr(X−1(a)),
denoted (somewhat improperly) by

Pr(X = a).

This function of a is of great interest, and in many cases it is the function that we
wish to study. Let us give a few examples.

Example 8.12. Consider the sample space of 5 coin flips, with the uniform proba-
bility measure (every outcome has the same probability 1/32). Then the number of
times X(ω) that H appears in the sequence ω is a random variable. We determine
that

Pr(X = 0) =
1

32
Pr(X = 1) =

5
32

Pr(X = 2) =
10
32

Pr(X = 3) =
10
32

Pr(X = 4) =
5

32
Pr(X = 5) =

1
32

.
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The function defined Y such that Y (ω) = 1 iff H appears in ω , and Y (ω) = 0
otherwise, is a random variable. We have

Pr(Y = 0) =
1
32

Pr(Y = 1) =
31
32

.

Example 8.13. Let Ω = D×D be the sample space of dice rolls, with the uniform
probability measure Pr (every outcome has the same probability 1/36). The sum
S(ω) of the numbers on the two dice is a random variable. For example,

S(2,5) = 7.

The value of S is any integer between 2 and 12, and if we compute Pr(S = s) for
s = 2, . . . ,12, we find the following table.

s 2 3 4 5 6 7 8 9 10 11 12
Pr(S = s) 1

36
2

36
3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Here is a “real” example from computer science.

Example 8.14. Our goal is to sort of a sequence S = (x1, . . . ,xn) of n distinct real
numbers in increasing order. We use a recursive method known as quicksort which
proceeds as follows:

1. If S has one or zero elements return S.
2. Pick some element x = xi in S called the pivot.
3. Reorder S in such a way that for every number x j 6= x in S, if x j < x, then x j is

moved to a list S1, else if x j > x then x j is moved to a list S2.
4. Apply this algorithm recursively to the list of elements in S1 and to the list of

elements in S2.
5. Return the sorted list S1,x,S2.

Let us run the algorithm on the input list

S = (1,5,9,2,3,8,7,14,12,10).

We can represent the choice of pivots and the steps of the algorithm by an ordered
binary tree as shown in Figure 8.4. Except for the root node, every node corresponds
to the choice of a pivot, say x. The list S1 is shown as a label on the left of node x,
and the list S2 is shown as a label on the right of node x. A leaf node is a node such
that |S1| ≤ 1 and |S2| ≤ 1. If |S1| ≥ 2, then x has a left child, and if |S2| ≥ 2, then x
has a right child. Let us call such a tree a computation tree. Observe that except for
minor cosmetic differences, it is a binary search tree. The sorted list can be retrieved
using an inorder tree traversal (left subtree, root, right subtree) of the computation
tree and is

(1,2,3,5,7,8,9,10,12,14).
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3

1 8

7 10

12

1/10

1/2 1/7

1/2 1/4

1/2

(1, 5, 9, 2, 3, 8, 7, 14, 12, 10)

(5, 9, 8, 7, 14, 12, 10)(1, 2)

(2)() (9, 14, 12, 10)(5, 7)

()(5) (14, 12)(9)

(14)()

Fig. 8.4 A tree representation of a run of quicksort.

If you run this algorithm on a few more examples, you will realize that the choice
of pivots greatly influences how many comparisons are needed. If the pivot is chosen
at each step so that the size of the lists S1 and S2 is roughly the same, then the number
of comparisons is small compared to n, in fact O(n lnn). On the other hand, with a
poor choice of pivot, the number of comparisons can be as bad as n(n−1)/2.

In order to have a good “average performance,” one can randomize this algorithm
by assuming that each pivot is chosen at random. What this means is that whenever
it is necessary to pick a pivot from some list Y , some procedure is called and this
procedure returns some element chosen at random from Y . How exactly this done is
an interesting topic in itself but we will not go into this. Let us just say that the pivot
can be produced by a random number generator, or by spinning a wheel containing
the numbers in Y on it, or by rolling a dice with as many faces as the numbers in Y .
What we do assume is that the probability measure that a number is chosen from a
list Y is uniform, and that successive choices of pivots are independent. How do we
model this as a probability space?

Here is a way to do it. Use the computation trees defined above! Simply add
to every edge the probability that one of the element of the corresponding list, say
Y , was chosen uniformly, namely 1/|Y |. So given an input list S of length n, the
sample space Ω is the set of all computation trees T with root label S. We assign a
probability to the trees T in Ω as follows: If n= 0,1, then there is a single tree and its
probability is 1. If n≥ 2, for every leaf of T , multiply the probabilities along the path
from the root to that leaf and then add up the probabilities assigned to these leaves.
This is Pr(T ). For example, leaf 1 has probability 1/20, leaf 7 has probability 1/40,
and leaf 12 has probability 1/560, and Pr(T ) = 1/20+ 1/40+ 1/560. We leave it
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as an exercise to prove that the sum of the probabilities of all the trees in Ω is equal
to 1.

A random variable of great interest on (Ω ,Pr) is the number X of comparisons
performed by the algorithm. To analyze the average running time of this algorithm,
it is necessary to determine when the first (or the last) element of a sequence

Y = (yi, . . . ,y j)

is chosen as a pivot. To carry out the analysis further requires the notion of expecta-
tion that has not yet been defined. See Example 8.28 for a complete analysis.

Let us now give an official definition of a random variable.

Definition 8.6. Given a (finite) discrete probability space (Ω ,Pr), a random vari-
able is any function X : Ω →R. For any real numbers a,b∈R, we define Pr(X = a)
as the probability

Pr(X = a) = Pr(X−1(a)) = Pr({ω ∈Ω | X(ω) = a}),

and Pr(X ≤ a), Pr(X ≥ a), Pr(b≥ X ≥ a), as the probabilities

Pr(X ≤ a) = Pr(X−1((−∞,a])) = Pr({ω ∈Ω | X(ω)≤ a})
Pr(X ≥ a) = Pr(X−1([a,+∞))) = Pr({ω ∈Ω | X(ω)≥ a})

Pr(b≥ X ≥ a) = Pr(X−1([a,b])) = Pr({ω ∈Ω | b≥ X(ω)≥ a}).

The function f : R→ [0,1] given by

f (a) = Pr(X = a), a ∈ R

is the probability mass function of X , and the function F : R→ [0,1] given by

F(a) = Pr(X ≤ a), a ∈ R

is the cumulative distribution function of X .

The term probability mass function is abbreviated as p.m.f , and cumulative dis-
tribution function is abbreviated as c.d.f . It is unfortunate and confusing that both
the probability mass function and the cumulative distribution function are often ab-
breviated as distribution function.

The probability mass function f for the sum S of the numbers on two dice from
Example 8.13 is shown in Figure 8.5, and the corresponding cumulative distribution
function F is shown in Figure 8.6.

If Ω is finite, then f only takes finitely many nonzero values; it is very discontin-
uous! The c.d.f F of S shown in Figure 8.6 has jumps (steps). Observe that the size
of the jump at every value a is equal to f (a) = Pr(S = a).

The cumulative distribution function F has the following properties:



8.3 Random Variables and their Distributions 349

Fig. 8.5 The probability mass function for the sum of the numbers on two dice.
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Fig. 8.6 The cumulative distribution function for the sum of the numbers on two dice.

1. We have
lim

x 7→−∞
F(x) = 0, lim

x 7→∞
F(x) = 1.

2. It is monotonic nondecreasing, which means that if a≤ b, then F(a)≤ F(b).
3. It is piecewise constant with jumps, but it is right-continuous, which means that

limh>0,h7→0 F(a+h) = F(a).

For any a ∈ R, because F is nondecreasing, we can define F(a−) by

F(a−) = lim
h↓0

F(a−h) = lim
h>0,h7→0

F(a−h).
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These properties are clearly illustrated by the c.d.f on Figure 8.6.
The functions f and F determine each other, because given the probability mass

function f , the function F is defined by

F(a) = ∑
x≤a

f (x),

and given the cumulative distribution function F , the function f is defined by

f (a) = F(a)−F(a−).

If the sample space Ω is countably infinite, then f and F are still defined as above
but in

F(a) = ∑
x≤a

f (x),

the expression on the righthand side is the limit of an infinite sum (of positive terms).

Remark: If Ω is not countably infinite, then we are dealing with a probability
space (Ω ,F ,Pr) where F may be a proper subset of 2Ω , and in Definition 8.6, we
need the extra condition that a random variable is a function X : Ω → R such that
X−1

(
(−∞,a]

)
= {ω ∈Ω | X(ω)≤ a} ∈F for all a ∈ R. (The function X needs to

be F -measurable.) In particular, we have {ω ∈ Ω | X(ω) ≤ a} ∈F . In this more
general situation, it is still true that

f (a) = Pr(X = a) = F(a)−F(a−),

but F cannot generally be recovered from f .
If the c.d.f F of a random variable X can be expressed as

F(x) =
∫ x

−∞

f (y)dy,

for some nonnegative (Lebesgue) integrable function f , then we say that F and X
are absolutely continuous (please, don’t ask me what type of integral!). The function
f is called a probability density function of X (for short, p.d.f ).

In this case, F is continuous, but more is true. The function F is uniformly con-
tinuous, and it is differentiable almost everywhere, which means that the set of input
values for which it is not differentiable is a set of (Lebesgue) measure zero. Further-
more, F ′ = f almost everywhere.

Random variables whose distributions can be expressed as above in terms of a
density function are often called continuous random variables. In contrast with the
discrete case, if X is a continuous random variable, then

Pr(X = x) = 0 for all x ∈ R.

As a consequence, some of the definitions given in the discrete case in terms of the
probabilities Pr(X = x), for example Definition 8.7, become trivial. These defini-
tions need to be modifed; replacing Pr(X = x) by Pr(X ≤ x) usually works.
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In the general case where the cdf F of a random variable X has discontinuities,
we say that X is a discrete random variable if X(ω) 6= 0 for at most countably many
ω ∈ Ω . Equivalently, the image of X is finite or countably infinite. In this case, the
mass function of X is well defined, and it can be viewed as a discrete version of a
density function.

In the discrete setting where the sample space Ω is finite, it is usually more
convenient to use the probability mass function f , and to abuse language and call it
the distribution of X .

Example 8.15. Suppose we flip a coin n times, but this time, the coin is not neces-
sarily fair, so the probability of landing heads is p and the probability of landing
tails is 1− p. The sample space Ω is the set of strings of length n over the alpha-
bet {H,T}. Assume that the coin flips are independent, so that the probability of an
event ω ∈Ω is obtained by replacing H by p and T by 1− p in ω . Then let X be the
random variable defined such that X(ω) is the number of heads in ω . For any i with
0≤ i≤ n, since there are

(n
i

)
subsets with i elements, and since the probability of a

sequence ω with i occurrences of H is pi(1− p)n−i, we see that the distribution of
X (mass function) is given by

f (i) =
(

n
i

)
pi(1− p)n−i, i = 0, . . . ,n,

and 0 otherwise. This is an example of a binomial distribution.

Example 8.16. As in Example 8.15, assume that we flip a biased coin, where the
probability of landing heads is p and the probability of landing tails is 1− p. How-
ever, this time, we flip our coin any finite number of times (not a fixed number), and
we are interested in the event that heads first turns up. The sample space Ω is the
infinite set of strings over the alphabet {H,T} of the form

Ω = {H,TH,TTH, . . . , TnH, . . . ,}.

Assume that the coin flips are independent, so that the probability of an event ω ∈Ω

is obtained by replacing H by p and T by 1− p in ω . Then let X be the random
variable defined such that X(ω) = n iff |ω| = n, else 0. In other words, X is the
number of trials until we obtain a success. Then it is clear that

f (n) = (1− p)n−1 p, n≥ 1.

and 0 otherwise. This is an example of a geometric distribution.

The process in which we flip a coin n times is an example of a process in which
we perform n independent trials, each of which results in success or failure (such
trials that result exactly two outcomes, success or failure, are known as Bernoulli tri-
als). Such processes are named after Jacob Bernoulli, a very significant contributor
to probability theory after Fermat and Pascal.
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Fig. 8.7 Jacob (Jacques) Bernoulli (1654–1705).

Example 8.17. Let us go back to Example 8.15, but assume that n is large and that
the probability p of success is small, which means that we can write np = λ with λ

of “moderate” size. Let us show that we can approximate the distribution f of X in
an interesting way. Indeed, for every nonnegative integer i, we can write

f (i) =
(

n
i

)
pi(1− p)n−i

=
n!

i!(n− i)!

(
λ

n

)i (
1− λ

n

)n−i

=
n(n−1) · · ·(n− i+1)

ni
λ i

i!

(
1− λ

n

)n(
1− λ

n

)−i

.

Now for n large and λ moderate, we have(
1− λ

n

)n

≈ e−λ ,

(
1− λ

n

)−i

≈ 1,
n(n−1) · · ·(n− i+1)

ni ≈ 1,

so we obtain

f (i)≈ e−λ λ i

i!
, i ∈ N.

The above is called a Poisson distribution with parameter λ . It is named after the
French mathematician Simeon Denis Poisson.

Fig. 8.8 Siméon Denis Poisson (1781–1840).
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It turns out that quite a few random variables occurring in real life obey the
Poisson probability law (by this, we mean that their distribution is the Poisson dis-
tribution). Here are a few examples:

1. The number of misprints on a page (or a group of pages) in a book.
2. The number of people in a community whose age is over a hundred.
3. The number of wrong telephone numbers that are dialed in a day.
4. The number of customers entering a post office each day.
5. The number of vacancies occurring in a year in the federal judicial system.

As we will see later on, the Poisson distribution has some nice mathematical
properties, and the so-called Poisson paradigm which consists in approximating the
distribution of some process by a Poisson distribution is quite useful.

The notion of independence also applies to random variables.

8.4 Independence of Random Variables

Given two random variables X and Y on the same (discrete) probability space, it is
useful to consider their joint distribution (really joint mass function) fX ,Y given by

fX ,Y (a,b) = Pr(X = a and Y = b) = Pr({ω ∈Ω | (X(ω) = a)∧ (Y (ω) = b)}),

for any two reals a,b ∈ R.

Definition 8.7. Two random variables X and Y defined on the same discrete proba-
bility space are independent if

Pr(X = a and Y = b) = Pr(X = a)Pr(Y = b), for all a,b ∈ R.

Remark: If X and Y are two continuous random variables, we say that X and Y are
independent if

Pr(X ≤ a and Y ≤ b) = Pr(X ≤ a)Pr(Y ≤ b), for all a,b ∈ R.

It is easy to verify that if X and Y are discrete random variables, then the above
condition is equivalent to the condition of Definition 8.7.

Example 8.18. If we consider the probability space of Example 8.2 (rolling two
dice), then we can define two random variables S1 and S2, where S1 is the value
on the first dice and S2 is the value on the second dice. Then the total of the two
values is the random variable S = S1 +S2 of Example 8.13. Since

Pr(S1 = a and S2 = b) =
1

36
=

1
6
· 1

6
= Pr(S1 = a)Pr(S2 = b),

the random variables S1 and S2 are independent.
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Example 8.19. Suppose we flip a biased coin (with probability p of success) once.
Let X be the number of heads observed and let Y be the number of tails observed.
The variables X and Y are not independent. For example

Pr(X = 1 and Y = 1) = 0,

yet
Pr(X = 1)Pr(Y = 1) = p(1− p).

Now, if we flip the coin N times, where N has the Poisson distribution with parame-
ter λ , it is remarkable that X and Y are independent; see Grimmett and Stirzaker [7]
(Section 3.2).

The following characterization of independence for two random variables is left
as an exercise.

Proposition 8.5. If X and Y are two random variables on a discrete probability
space (Ω ,Pr) and if fX ,Y is the joint distribution (mass function) of X and Y , fX is
the distribution (mass function) of X and fY is the distribution (mass function) of Y ,
then X and Y are independent iff

fX ,Y (x,y) = fX (x) fY (y), for all x,y ∈ R.

Given the joint mass function fX ,Y of two random variables X and Y , the mass
functions fX of X and fY of Y are called marginal mass functions, and they are
obtained from fX ,Y by the formulae

fX (x) = ∑
y

fX ,Y (x,y), fY (y) = ∑
x

fX ,Y (x,y).

Remark: To deal with the continuous case, it is useful to consider the joint distri-
bution FX ,Y of X and Y given by

FX ,Y (a,b) = Pr(X ≤ a and Y ≤ b) = Pr({ω ∈Ω | (X(ω)≤ a)∧ (Y (ω)≤ b)}),

for any two reals a,b ∈ R. We say that X and Y are jointly continuous with joint
density function fX ,Y if

FX ,Y (x,y) =
∫ x

−∞

∫ y

−∞

fX ,Y (u,v)dudv, for all x,y ∈ R,

for some nonnegative integrable function fX ,Y . The marginal density functions fX
of X and fY of Y are defined by

fX (x) =
∫

∞

−∞

fX ,Y (x,y)dy, fY (y) =
∫

∞

−∞

fX ,Y (x,y)dx.

They correspond to the marginal distribution functions FX of X and FY of Y given
by
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FX (x) = Pr(X ≤ x) = FX ,Y (x,∞), FY (y) = Pr(Y ≤ y) = FX ,Y (∞,y).

For example, if X and Y are two random variables with joint density function
fX ,Y given by

fX ,Y (x,y) =
1
y

e−y− x
y , 0 < x,y < ∞,

then the marginal density function fY of Y is given by

fY (y) =
∫ +∞

−∞

fX ,Y (x,y)dx =
∫

∞

0

1
y

e−y− x
y dx = e−y, y > 0.

It can be shown that X and Y are independent iff

FX ,Y (x,y) = FX (x)FY (y), for all x,y ∈ R,

which, for continuous variables, is equivalent to

fX ,Y (x,y) = fX (x) fY (y), for all x,y ∈ R.

We now turn to one of the most important concepts about random variables, their
mean (or expectation).

8.5 Expectation of a Random Variable

In order to understand the behavior of a random variable, we may want to look at
its “average” value. But the notion of average is ambiguous, as there are different
kinds of averages that we might want to consider. Among these, we have

1. the mean: the sum of the values divided by the number of values.
2. the median: the middle value (numerically).
3. the mode: the value that occurs most often.

For example, the mean of the sequence (3,1,4,1,5) is 2.8; the median is 3, and the
mode is 1.

Given a random variable X , if we consider a sequence of values X(ω1),X(ω2), . . .,
X(ωn), each value X(ω j) = a j has a certain probability Pr(X = a j) of occurring
which may differ depending on j, so the usual mean

X(ω1)+X(ω2)+ · · ·+X(ωn)

n
=

a1 + · · ·+an

n

may not capture well the “average” of the random variable X . A better solution is to
use a weighted average, where the weights are probabilities. If we write a j = X(ω j),
we can define the mean of X as the quantity

a1Pr(X = a1)+a2Pr(X = a2)+ · · ·+anPr(X = an).
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Definition 8.8. Given a finite discrete probability space (Ω ,Pr), for any random
variable X , the mean value or expected value or expectation1 of X is the number
E(X) defined as

E(X) = ∑
x∈X(Ω)

x ·Pr(X = x) = ∑
x| f (x)>0

x f (x),

where X(Ω) denotes the image of the function X and where f is the probability
mass function of X . Because Ω is finite, we can also write

E(X) = ∑
ω∈Ω

X(ω)Pr(ω).

In this setting, the median of X is defined as the set of elements x ∈ X(Ω) such
that

Pr(X ≤ x)≥ 1
2

and Pr(X ≥ x)≥ 1
2
.

Remark: If Ω is countably infinite, then the expectation E(X), if it exists, is given
by

E(X) = ∑
x| f (x)>0

x f (x),

provided that the above sum converges absolutely (that is, the partial sums of abso-
lute values converge). If we have a probability space (X ,F ,Pr) with Ω uncountable
and if X is absolutely continuous so that it has a density function f , then the expec-
tation of X is given by the integral

E(X) =
∫ +∞

−∞

x f (x)dx.

It is even possible to define the expectation of a random variable that is not neces-
sarily absolutely continuous using its cumulative density function F as

E(X) =
∫ +∞

−∞

xdF(x),

where the above integral is the Lebesgue–Stieljes integal, but this is way beyond the
scope of this book.

Example 8.20. Observe that if X is a constant random variable (that is, X(ω) = c for
all ω ∈Ω for some constant c), then

E(X) = ∑
ω∈Ω

X(ω)Pr(ω) = c ∑
ω∈Ω

Pr(ω) = cPr(Ω) = c,

since Pr(Ω) = 1. The mean of a constant random variable is itself (as it should be!).

1 It is amusing that in French, the word for expectation is espérance mathématique. There is hope
for mathematics!
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Example 8.21. Consider the sum S of the values on the dice from Example 8.13. The
expectation of S is

E(S) = 2 · 1
36

+3 · 2
36

+ · · ·+6 · 5
36

+7 · 6
36

+8 · 5
36

+ · · ·+12 · 1
36

= 7.

Example 8.22. Suppose we flip a biased coin once (with probability p of landing
heads). If X is the random variable given by X(H) = 1 and X(T) = 0, the expectation
of X is

E(X) = 1 ·Pr(X = 1)+0 ·Pr(X = 0) = 1 · p+0 · (1− p) = p.

Example 8.23. Consider the binomial distribution of Example 8.15, where the ran-
dom variable X counts the number of heads (success) in a sequence of n trials. Let
us compute E(X). Since the mass function is given by

f (i) =
(

n
i

)
pi(1− p)n−i, i = 0, . . . ,n,

we have

E(X) =
n

∑
i=0

i f (i) =
n

∑
i=0

i
(

n
i

)
pi(1− p)n−i.

We use a trick from analysis to compute this sum. Recall from the binomial theorem
that

(1+ x)n =
n

∑
i=0

(
n
i

)
xi.

If we take derivatives on both sides, we get

n(1+ x)n−1 =
n

∑
i=0

i
(

n
i

)
xi−1,

and by multiplying both sides by x,

nx(1+ x)n−1 =
n

∑
i=0

i
(

n
i

)
xi. (∗)

Let q = 1− p. Now if we set x = p/q, since p+q = 1, we have

x(1+ x)n−1 =
p
q

(
1+

p
q

)n−1

=
p
q

(
p+q

q

)n−1

=
p
qn ,

so (∗) becomes
np
qn =

n

∑
i=0

i
(

n
i

)
pi

qi ,

and multiplying both sides by qn and using the fact that q = 1− p, we get
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n

∑
i=0

i
(

n
i

)
pi(1− p)n−i = np,

and so
E(X) = np.

We record this important result below.

Proposition 8.6. The expectation E(X) of a random variable X with the binomial
distribution of Example 8.15 is given by

E(X) = np.

It should be observed that the expectation of a random variable may be infinite.
For example, if X is a random variable whose probability mass function f is given
by

f (k) =
1

k(k+1)
, k = 1,2, . . . ,

then ∑k∈N−{0} f (k) = 1, since

∞

∑
k=1

1
k(k+1)

=
∞

∑
k=1

(
1
k
− 1

k+1

)
= lim

k 7→∞

(
1− 1

k+1

)
= 1,

but
E(X) = ∑

k∈N−{0}
k f (k) = ∑

k∈N−{0}

1
k+1

= ∞.

Example 8.23 illustrates the fact that computing the expectation of a random
variable X can be quite difficult due the complicated nature of the mass function f .
Therefore it is desirable to know about properties of the expectation that make its
computation simpler. A crucial property of expectation that often allows simplifica-
tions in computing the expectation of a random variable is its linearity.

Proposition 8.7. (Linearity of Expectation) Given two random variables on a dis-
crete probability space, for any real number λ , we have

E(X +Y ) = E(X)+E(Y )

E(λX) = λE(X).

Proof. We have
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E(X +Y ) = ∑
z

z ·Pr(X +Y = z)

= ∑
x

∑
y
(x+ y) ·Pr(X = x and Y = y)

= ∑
x

∑
y

x ·Pr(X = x and Y = y)+∑
x

∑
y

y ·Pr(X = x and Y = y)

= ∑
x

∑
y

x ·Pr(X = x and Y = y)+∑
y

∑
x

y ·Pr(X = x and Y = y)

= ∑
x

x∑
y
Pr(X = x and Y = y)+∑

y
y∑

x
Pr(X = x and Y = y).

Now the events Ax = {x | X = x} form a partition of Ω , which implies that

∑
y
Pr(X = x and Y = y) = Pr(X = x).

Similarly the events By = {y | Y = y} form a partition of Ω , which implies that

∑
x
Pr(X = x and Y = y) = Pr(Y = y).

By substitution, we obtain

E(X +Y ) = ∑
x

x ·Pr(X = x)+∑
y

y ·Pr(Y = y),

proving that E(X +Y ) = E(X)+E(Y ). When Ω is countably infinite, we can per-
mute the indices x and y due to absolute convergence.

For the second equation, if λ 6= 0, we have

E(λX) = ∑
x

x ·Pr(λX = x)

= λ ∑
x

x
λ
·Pr(X = x/λ )

= λ ∑
y

y ·Pr(X = y)

= λE(X).

as claimed. If λ = 0, the equation is trivial. ut

By a trivial induction, we obtain that for any finite number of random variables
X1, . . . ,Xn, we have

E

( n

∑
I=1

Xi

)
=

n

∑
I=1

E(Xi).

It is also important to realize that the above equation holds even if the Xi are not
independent.
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Here is an example showing how the linearity of expectation can simplify calcu-
lations.

Example 8.24. Let us go back to Example 8.23. Define n random variables X1, . . . ,Xn
such that Xi(ω) = 1 iff the ith flip yields heads, otherwise Xi(ω) = 0. Clearly, the
number X of heads in the sequence is

X = X1 + · · ·+Xn.

However, we saw in Example 8.22 that E(Xi) = p, and since

E(X) = E(X1)+ · · ·+E(Xn),

we get
E(X) = np.

The above example suggests the definition of indicator function, which turns out
to be quite handy.

Definition 8.9. Given a discrete probability space with sample space Ω , for any
event A, the indicator function (or indicator variable) of A is the random variable IA
defined such that

IA(ω) =

{
1, if ω ∈ A
0, if ω /∈ A.

Here is the main property of the indicator function.

Proposition 8.8. The expectation E(IA) of the indicator function IA is equal to the
probabilty Pr(A) of the event A.

Proof. We have

E(IA) = ∑
ω∈Ω

IA(ω)Pr(ω) = ∑
ω∈A

Pr(ω) = Pr(A),

as claimed ut

This fact along with the linearity of expectation is often used to compute the
expectation of a random variable, by expressing it as a sum of indicator variables.
We will see how this method is used to compute the expectation of the number of
comparisons in quicksort. But first, we use this method to find the expected number
of fixed points of a random permutation.

Example 8.25. For any integer n ≥ 1, let Ω be the set of all n! permutations of
{1, . . . ,n}, and give Ω the uniform probabilty measure; that is, for every permutation
π , let

Pr(π) =
1
n!
.

We say that these are random permutations. A fixed point of a permutation π is any
integer k such that π(k) = k. Let X be the random variable such that X(π) is the
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number of fixed points of the permutation π . Let us find the expectation of X . To do
this, for every k, let Xk be the random variable defined so that Xk(π) = 1 iff π(k) = k,
and 0 otherwise. Clearly,

X = X1 + · · ·+Xn,

and since
E(X) = E(X1)+ · · ·+E(Xn),

we just have to compute E(Xk). But, Xk is an indicator variable, so

E(Xk) = Pr(Xk = 1).

Now there are (n−1)! permutations that leave k fixed, so Pr(X = 1) = 1/n. There-
fore,

E(X) = E(X1)+ · · ·+E(Xn) = n · 1
n
= 1.

On average, a random permutation has one fixed point.

Definition 8.10. If X is a random variable on a discrete probability space Ω (pos-
sibly countably infinite), for any function g : R→ R, the composition g ◦ X is a
random variable defined by

(g◦X)(ω) = g(X(ω)), ω ∈Ω .

This random variable is usually denoted by g(X).

Given two random variables X and Y , if ϕ and ψ are two functions, we leave it
as an exercise to prove that if X and Y are independent, then so are ϕ(X) and ψ(Y ).

Although computing the mass function of g in terms of the mass function f of X
can be very difficult, there is a nice way to compute its expectation. Here is a second
tool that makes it easier to compute an expectation.

Proposition 8.9. If X is a random variable on a discrete probability space Ω , for
any function g : R→ R, the expectation E(g(X)) of g(X) (if it exists) is given by

E(g(X)) = ∑
x

g(x) f (x),

where f is the mass function of X.

Proof. We have
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E(g(X)) = ∑
y

y ·Pr(g◦X = y)

= ∑
y

y ·Pr({ω ∈Ω | g(X(ω)) = y})

= ∑
y

y∑
x
Pr({ω ∈Ω | g(x) = y X(ω) = x})

= ∑
y

∑
x,g(x)=y

y ·Pr({ω ∈Ω , | X(ω) = x})

= ∑
y

∑
x,g(x)=y

g(x) ·Pr(X = x)

= ∑
x

g(x) ·Pr(X = x)

= ∑
x

g(x) f (x),

as claimed. ut

Given two random variables X and Y on a discrete probability space Ω , for any
function g : R×R→ R, the function g(X ,Y ) is a random variable and it is easy to
show that E(g(X ,Y )) (if it exists) is given by

E(g(X ,Y )) = ∑
x,y

g(x,y) fX ,Y (x,y),

where fX ,Y is the joint mass function of X and Y .
The cases g(X) = Xk, g(X) = zX , and g(X) = etX (for some given reals z and t)

are of particular interest.

Example 8.26. Consider the random variable X of Example 8.23 counting the num-
ber of heads in a sequence of coin flips of length n, but this time, let us try to compute
E(Xk), for k ≥ 2. By Proposition 8.9, we have

E(Xk) =
n

∑
i=0

ik f (i)

=
n

∑
i=0

ik
(

n
i

)
pi(1− p)n−i

=
n

∑
i=1

ik
(

n
i

)
pi(1− p)n−i.

Recall that

i
(

n
i

)
= n
(

n−1
i−1

)
.

Using this, we get
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E(Xk) =
n

∑
i=1

ik
(

n
i

)
pi(1− p)n−i

= np
n

∑
i=1

ik−1
(

n−1
i−1

)
pi−1(1− p)n−i (let j = i−1)

= np
n−1

∑
j=0

( j+1)k−1
(

n−1
j

)
p j(1− p)n−1− j

= npE((Y +1)k−1)

using Proposition 8.9 to establish the last equation, where Y is a random variable
with binomial distribution on sequences of length n−1 and with the same probabil-
ity p of success. Thus, we obtain an inductive method to compute E(Xk). For k = 2,
by Proposition 8.6, we get

E(X2) = npE(Y +1) = np((n−1)p+1).

Here is a third tool to compute expectation. If X only takes nonnegative integer
values, then the following result may be useful for computing E(X).

Proposition 8.10. If X is a random variable that takes on only nonnegative integers,
then its expectation E(X) (if it exists) is given by

E(X) =
∞

∑
i=1

Pr(X ≥ i).

Proof. For any integer n≥ 1, we have

n

∑
j=1

jPr(X = j) =
n

∑
j=1

j

∑
i=1

Pr(X = j) =
n

∑
i=1

n

∑
j=i

Pr(X = j) =
n

∑
i=1

Pr(n≥ X ≥ i).

Then if we let n go to infinity, we get

∞

∑
i=1

Pr(X ≥ i) =
∞

∑
i=1

∞

∑
j=i

Pr(X = j) =
∞

∑
j=1

j

∑
i=1

Pr(X = j) =
∞

∑
j=1

jPr(X = j) = E(X),

as claimed. ut

Proposition 8.10 has the following intuitive geometric interpretation: E(X) is the
area above the graph of the cumulative distribution function F(i) = Pr(X ≤ i) of X
and below the horizontal line F = 1. Here is an application of Proposition 8.10.

Example 8.27. In Example 8.16, we consider finite sequences of flips of a biased
coin, and the random variable of interest is the first occurrence of tails (success).
The distribution of this random variable is the geometric distribution,

f (n) = (1− p)n−1 p, n≥ 1.
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To compute its expectation, let us use Proposition 8.10. We have

Pr(X ≥ i) =
∞

∑
j=i

(1− p)i−1 p

= p(1− p)i−1
∞

∑
j=0

(1− p) j

= p(1− p)i−1 1
1− (1− p)

= (1− p)i−1.

Then we have

E(X) =
∞

∑
i=1

Pr(X ≥ i)

=
∞

∑
i=1

(1− p)i−1.

=
1

1− (1− p)
=

1
p
.

Therefore,

E(X) =
1
p
.

Proposition 8.11. The expectation of the random variable X associated with the
first occurrence of tails when flipping a biased coin (heads with probability p) is

E(X) =
1
p
,

which means that on the average, it takes 1/p flips until heads turns up.

Let us now compute E(X2). By Proposition 8.9, we have

E(X2) =
∞

∑
i=1

i2(1− p)i−1 p

=
∞

∑
i=1

(i−1+1)2(1− p)i−1 p

=
∞

∑
i=1

(i−1)2(1− p)i−1 p+
∞

∑
i=1

2(i−1)(1− p)i−1 p+
∞

∑
i=1

(1− p)i−1 p

=
∞

∑
j=0

j2(1− p) j p+2
∞

∑
j=1

j(1− p) j p+1 (let j = i−1)

= (1− p)E(X2)+2(1− p)E(X)+1.

Since E(X) = 1/p, we obtain
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pE(X2) =
2(1− p)

p
+1

=
2− p

p
,

so
E(X2) =

2− p
p2 .

By the way, the trick of writing i = i− 1+ 1 can be used to compute E(X). Try to
recompute E(X) this way. The expectation E(X) can also be computed using the
derivative technique of Example 8.23, since (d/dt)(1− p)i =−i(p−1)i−1.

Example 8.28. Let us compute the expectation of the number X of comparisons
needed when running the randomized version of quicksort presented in Example
8.14. Recall that the input is a sequence S = (x1, . . . ,xn) of distinct elements, and
that (y1, . . . ,yn) has the same elements sorted in increasing order. In order to com-
pute E(X), we decompose X as a sum of indicator variables Xi, j, with Xi, j = 1 iff yi
and y j are ever compared, and Xi, j = 0 otherwise. Then it is clear that

X =
n

∑
j=2

j−1

∑
i=1

Xi, j,

and

E(X) =
n

∑
j=2

j−1

∑
i=1

E(Xi, j).

Furthermore, since Xi, j is an indicator variable, we have

E(Xi, j) = Pr(yi and y j are ever compared).

The crucial observation is that yi and y j are ever compared iff either yi or y j is chosen
as the pivot when {yi,yi+1, . . . ,y j} is a subset of the set of elements of the (left or
right) sublist considered for the choice of a pivot.

This is because if the next pivot y is larger than y j, then all the elements in
(yi,yi+1, . . . ,y j) are placed in the list to the left of y, and if y is smaller than yi,
then all the elements in (yi,yi+1, . . . ,y j) are placed in the list to the right of y. Conse-
quently, if yi and y j are ever compared, some pivot y must belong to (yi,yi+1, . . . ,y j),
and every yk 6= y in the list will be compared with y. But if the pivot y is distinct from
yi and y j, then yi is placed in the left sublist and y j in the right sublist, so yi and y j
will never be compared.

It remains to compute the probability that the next pivot chosen in the sublist
Yi, j = (yi,yi+1, . . . ,y j) is yi (or that the next pivot chosen is y j, but the two proba-
bilities are equal). Since the pivot is one of the values in (yi,yi+1, . . . ,y j) and since
each of these is equally likely to be chosen (by hypothesis), we have

Pr(yi is chosen as the next pivot in Yi, j) =
1

j− i+1
.
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Consequently, since yi and y j are ever compared iff either yi is chosen as a pivot or
y j is chosen as a pivot, and since these two events are mutally exclusive, we have

E(Xi, j) = Pr(yi and y j are ever compared) =
2

j− i+1
.

It follows that

E(X) =
n

∑
j=2

j−1

∑
i=1

E(Xi, j)

= 2
n

∑
j=2

j

∑
k=2

1
k

(set k = j− i+1)

= 2
n

∑
k=2

n

∑
j=k

1
k

= 2
n

∑
k=2

n− k+1
k

= 2(n+1)
n

∑
k=1

1
k
−4n.

At this stage, we use the result of Problem 6.32. Indeed,

n

∑
k=1

1
k
= Hn

is a harmonic number, and it is shown that

ln(n)+
1
n
≤ Hn ≤ lnn+1.

Therefore, Hn = lnn+Θ(1), which shows that

E(X) = 2n lnn+Θ(n).

Therefore, the expected number of comparisons made by the randomized version of
quicksort is 2n lnn+Θ(n).

Example 8.29. If X is a random variable with Poisson distribution with parameter λ

(see Example 8.17), let us show that its expectation is

E(X) = λ .

Recall that a Poisson distribution is given by

f (i) = e−λ λ i

i!
, i ∈ N,
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so we have

E(X) =
∞

∑
i=0

ie−λ λ i

i!

= λe−λ
∞

∑
i=1

λ i−1

(i−1)!

= λe−λ
∞

∑
j=0

λ j

j!
(let j = i−1)

= λe−λ eλ = λ ,

as claimed. This is consistent with the fact that the expectation of a random variable
with a binomial distribution is np, under the Poisson approximation where λ = np.
We leave it as an exercise to prove that

E(X2) = λ (λ +1).

Although in general E(XY ) 6= E(X)E(Y ), this is true for independent random
variables.

Proposition 8.12. If two random variables X and Y on the same discrete probability
space are independent, then

E(XY ) = E(X)E(Y ).

Proof. We have

E(XY ) = ∑
ω∈Ω

X(ω)Y (ω)Pr(ω)

= ∑
x

∑
y

xy ·Pr(X = x and Y = y)

= ∑
x

∑
y

xy ·Pr(X = x)Pr(Y = y)

=

(
∑
x

x ·Pr(X = x)
)(

∑
y

y ·Pr(Y = y)
)

= E(X)E(Y ),

as claimed. Note that the independence of X and Y was used in going from line 2 to
line 3. ut
Example 8.30. In Example 8.18 (rolling two dice), we defined the random variables
S1 and S2, where S1 is the value on the first dice and S2 is the value on the second
dice. We also showed that S1 and S2 are independent. If we consider the random
variable P = S1S2, then we have

E(P) = E(S1)E(S2) =
7
2
· 7

2
=

49
4
,
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because
E(S1) = E(S2) =

1+2+3+4+5+6
6

=
6×7
2×6

= 7/2,

since all probabilities are equal to 1/6. On the other hand, S and P are not indepen-
dent (check it).

8.6 Variance, Standard Deviation

The mean (expectation) E(X) of a random variable X gives some useful information
about it, but it does not say how X is spread. Another quantity, the variance Var(X),
measure the spread of the distribution by finding the “average” of the square differ-
ence (X−E(X))2, namely

Var(X) = E
(
(X−E(X))2).

Note that computing E(X −E(X)) yields no information, since by linearity of ex-
pectation and since the expectation of a constant is itself,

E(X−E(X)) = E(X)−E(E(X)) = E(X)−E(X) = 0.

Definition 8.11. Given a discrete probability space (Ω ,Pr), for any random variable
X , the variance Var(X) of X (if it exists) is defined as

Var(X) = E
(
(X−E(X))2).

The expectation E(X) of a random variable X is often denoted by µ . The variance
is also denoted V(X), for instance, in Graham, Knuth and Patashnik [6]).

Since the variance Var(X) involves a square, it can be quite large, so it is conve-
nient to take its square root and to define the standard deviation σ of X as

σ =
√

Var(X).

The following result shows that the variance Var(X) can be computed using
E(X2) and E(X).

Proposition 8.13. Given a discrete probability space (Ω ,Pr), for any random vari-
able X, the variance Var(X) of X is given by

Var(X) = E(X2)− (E(X))2.

Consequently, Var(X)≤ E(X2).

Proof. Using the linearity of expectation and the fact that the expectation of a con-
stant is itself, we have



8.6 Variance, Standard Deviation 369

Var(X) = E
(
(X−E(X))2)

= E(X2−2XE(X)+(E(X))2)

= E(X2)−2E(X)E(X)+(E(X))2

= E(X2)− (E(X))2

as claimed. ut

Example 8.31. For example, if we roll a fair dice, we know that the number S1 on
the dice has expectation E(S1) = 7/2 (see Example 8.18 for the Definition of S1 and
Example 8.30 for the fact that E(S1) = 7/2). We also have

E(S2
1) =

1
6
(12 +22 +32 +42 +52 +62) =

91
6
,

so the variance of S1 is

Var(S1) = E(S2
1)− (E(S1))

2 =
91
6
−
(

7
2

)2

=
35
12

.

The quantity E(X2) is called the second moment of X . More generally, we have
the following definition.

Definition 8.12. Given a random variable X on a discrete probability space (Ω ,Pr),
for any integer k ≥ 1, the kth moment µk of X is given by µk = E(Xk), and the kth
central moment σk of X is defined by σk = E((X−µ1)

k).

Typically, only µ = µ1 and σ2 are of interest. As before, σ =
√

σ2. However,
σ3 and σ4 give rise to quantities with exotic names: the skewness (σ3/σ3) and the
kurtosis (σ4/σ4−3).

We can easily compute the variance of a random variable for the binomial distri-
bution and the geometric distribution, since we already computed E(X2).

Example 8.32. In Example 8.26, the case of a binomial distribution, we found that

E(X2) = np((n−1)p+1).

We also found earlier (Example 8.23) that E(X) = np. Therefore, we have

Var(X) = E(X2)− (E(X))2

= np((n−1)p+1)− (np)2

= np(1− p).

Therefore,
Var(X) = np(1− p).

Example 8.33. In Example 8.27, the case of a geometric distribution, we found that
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E(X) =
1
p

E(X2) =
2− p

p2 .

It follows that

Var(X) = E(X2)− (E(X))2

=
2− p

p2 −
1
p2

=
1− p

p2 .

Therefore,

Var(X) =
1− p

p2 .

Example 8.34. In Example 8.29, the case of a Poisson distribution with parameter
λ , we found that

E(X) = λ

E(X2) = λ (λ +1).

It follows that

Var(X) = E(X2)− (E(X))2 = λ (λ +1)−λ
2 = λ .

Therefore, a random variable with a Poisson distribution has the same value for its
expectation and its variance,

E(X) = Var(X) = λ .

In general, if X and Y are not independent variables, Var(X +Y ) 6= Var(X) +
Var(Y ). However, if they are, things are great!

Proposition 8.14. Given a discrete probability space (Ω ,Pr), for any random vari-
able X and Y , if X and Y are independent, then

Var(X +Y ) = Var(X)+Var(Y ).

Proof. Recall from Proposition 8.12 that if X and Y are independent, then E(XY ) =
E(X)E(Y ). Then, we have

E((X +Y )2) = E(X2 +2XY +Y 2)

= E(X2)+2E(XY )+E(Y 2)

= E(X2)+2E(X)E(Y )+E(Y 2).
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Using this, we get

Var(X +Y ) = E((X +Y )2)− (E(X +Y ))2

= E(X2)+2E(X)E(Y )+E(Y 2)− ((E(X))2 +2E(X)E(Y )+(E(Y ))2)

= E(X2)− (E(X))2 +E(Y 2)− (E(Y ))2

= Var(X)+Var(Y ),

as claimed. ut

Example 8.35. As an application of Proposition 8.14, if S1 and S2 are the random
variables defined in Example 8.18 where we consider the event of rolling two dice,
since we showed that the random variables S1 and S2 are independent, we can com-
pute the variance of their sum S = S1 +S2 and we get

Var(S) = Var(S1)+Var(S2) =
35
12

+
35
12

=
35
6
.

Recall from Example 8.21 that E(S) = 7.

The following proposition is also useful.

Proposition 8.15. Given a discrete probability space (Ω ,Pr), for any random vari-
able X, the following properties hold:

1. If X ≥ 0, then E(X)≥ 0.
2. If X is a random variable with constant value λ , then E(X) = λ .
3. For any two random variables X and Y defined on the probability space (Ω ,Pr),

if X ≤ Y , which means that X(ω) ≤ Y (ω) for all ω ∈ Ω , then E(X) ≤ E(Y )
(monotonicity of expectation).

4. For any scalar λ ∈ R, we have

Var(λX) = λ
2Var(X).

Proof. Properties (1) and (2) are obvious. For (3), X ≤Y iff Y −X ≥ 0, so by (1) we
have E(Y −X)≥ 0, and by linearity of expectation, E(Y )≥ E(X). For (4), we have

Var(λX) = E
(
(λX−E(λX))2)

= E
(
λ

2(X−E(X))2)
= λ

2E
(
(X−E(X))2)= λ

2Var(X),

as claimed. ut

Property (4) shows that unlike expectation, the variance is not linear (although
for independent random variables, Var(X +Y ) = Var(X)+Var(Y ). This also holds
in the more general case of uncorrelated random variables; see Proposition 8.16
below).

Here is an application of geometrically distributed random variables.
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Example 8.36. Suppose there are m different types of coupons (or perhaps, the kinds
of cards that kids like to collect), and that each time one obtains a coupon, it is
equally likely to be any of these types. Let X denote the number of coupons one
needs to collect in order to have at least one of each type. What is the expected
value E(X) of X? This problem is usually called a coupon collecting problem.

The trick is to introduce the random variables Xi, where Xi is the number of
additional coupons needed, after i distinct types have been collected, until another
new type is obtained, for i = 0,1, . . . ,m−1. Clearly,

X =
m−1

∑
i=0

Xi,

and each Xi has a geometric distribution, where each trial has probability of success
pi = (m− i)/m. We know (see Example 8.27,) that

E(Xi) =
1
pi

=
m

m− i
.

Consequently,

E(X) =
m−1

∑
i=0

E(Xi) =
m−1

∑
i=0

m
m− i

= m
m

∑
i=1

1
i
.

Once again, the harmonic number

Hm =
m

∑
k=1

1
k

shows up! Since Hn = lnn+Θ(1), we obtain

E(X) = m lnm+Θ(m).

For example, if m = 50, then ln50 = 3.912, and m lnm ≈ 196. If m = 100, then
ln100 = 4.6052, and m lnm ≈ 461. If the coupons are expensive, one begins to see
why the company makes money!

It turns out that using a little bit of analysis, we can compute the variance of X .
This is because it is easy to check that the Xi are independent, so

Var(X) =
m−1

∑
i=0

Var(Xi).

From Example 8.33, we have

Var(Xi) =
1− pi

p2
i

=

(
1− m− i

m

)/
(m− i)2

m2 =
mi

(m− i)2 .

It follows that
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Var(X) =
m−1

∑
i=0

Var(Xi) = m
m−1

∑
i=0

i
(m− i)2 .

To compute this sum, write

m−1

∑
i=0

i
(m− i)2 =

m−1

∑
i=0

m
(m− i)2 −

m−1

∑
i=0

m− i
(m− i)2

=
m−1

∑
i=0

m
(m− i)2 −

m−1

∑
i=0

1
(m− i)

= m
m

∑
j=1

1
j2 −

m

∑
j=1

1
j
.

Now, it is well known from analysis that

lim
m7→∞

m

∑
j=1

1
j2 =

π2

6
,

so we get

Var(X) =
m2π2

6
+Θ(m lnm).

Let us go back to the example about fixed points of random permutations (Ex-
ample 8.25). We found that the expectation of the number of fixed points is µ = 1.
The reader should compute the standard deviation. The difficulty is that the ran-
dom variables Xk are not independent, (for every permutation π , we have Xk(π) = 1
iff π(k) = k, and 0 otherwise). You will find that σ = 1. If you get stuck, look at
Graham, Knuth and Patashnik [6], Chapter 8.

8.7 Covariance, Chebyshev’s Inequality

If X and Y are not independent, we still have

E((X +Y )2) = E(X2 +2XY +Y 2)

= E(X2)+2E(XY )+E(Y 2),

and we get

Var(X +Y ) = E((X +Y )2)− (E(X +Y ))2

= E(X2)+2E(XY )+E(Y 2)− ((E(X))2 +2E(X)E(Y )+(E(Y ))2)

= E(X2)− (E(X))2 +E(Y 2)− (E(Y ))2 +2(E(XY )−E(X)E(Y ))

= Var(X)+Var(Y )+2(E(XY )−E(X)E(Y )).
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The term E(XY )−E(X)E(Y ) has a more convenient form. Indeed, we have

E
(
(X−E(X))(Y −E(Y ))

)
= E

(
XY −XE(Y )−E(X)Y +E(X)E(Y )

)
= E(XY )−E(X)E(Y )−E(X)E(Y )+E(X)E(Y )

= E(XY )−E(X)E(Y ).

In summary we proved that

Var(X +Y ) = Var(X)+Var(Y )+2E
(
(X−E(X))(Y −E(Y ))

)
.

The quantity E
(
(X−E(X))(Y −E(Y ))

)
is well known in probability theory.

Definition 8.13. Given two random variables X and Y , their covariance Cov(X ,Y )
is defined by

Cov(X ,Y ) = E
(
(X−E(X))(Y −E(Y ))

)
= E(XY )−E(X)E(Y ).

If Cov(X ,Y ) = 0 (equivalently, if E(XY ) = E(X)E(Y )), we say that X and Y are
uncorrelated.

Observe that the variance of X is expressed in terms of the covariance of X by

Var(X) = Cov(X ,X).

Let us recap the result of our computation of Var(X +Y ) in terms of Cov(X ,Y ) as
the following proposition.

Proposition 8.16. Given two random variables X and Y , we have

Var(X +Y ) = Var(X)+Var(Y )+2Cov(X ,Y ).

Therefore, if X an Y are uncorrelated (Cov(X ,Y ) = 0), then

Var(X +Y ) = Var(X)+Var(Y ).

In particular, if X and Y are independent, then X and Y are uncorrelated because

Cov(X ,Y ) = E(XY )−E(X)E(Y ) = E(X)E(Y )−E(X)E(Y ) = 0.

This yields another proof of Proposition 8.14.
However, beware that Cov(X ,Y ) = 0 does not necessarily imply that X and Y are

independent. For example, let X and Y be the random variables defined on {−1,0,1}
by

Pr(X = 0) = Pr(X = 1) = Pr(X =−1) =
1
3
,

and

Y =

{
0, if X 6= 0
1, if X = 0 .
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Since XY = 0, we have E(XY ) = 0, and since we also have E(X) = 0, we have

Cov(X ,Y ) = E(XY )−E(X)E(Y ) = 0.

However, the reader will check easily that X and Y are not independent.
A better measure of independence is given by the correlation coefficient ρ(X ,Y )

of X and Y , given by

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X)
√

Var(Y )
,

provided that Var(X) 6= 0 and Var(Y ) 6= 0. It turns out that |ρ(X ,Y )| ≤ 1, which is
shown using the Cauchy–Schwarz inequality.

Proposition 8.17. (Cauchy–Schwarz inequality) For any two random variables X
and Y on a discrete probability space Ω , we have

|E(XY )| ≤
√

E(X2)
√

E(Y 2).

Equality is achieved if and only if there exist some α,β ∈ R (not both zero) such
that E((αX +βY )2) = 0.

Proof. This is a standard argument involving a quadratic equation. For any λ ∈ R,
define the function T (λ ) by

T (λ ) = E((X +λY )2).

We get

T (λ ) = E(X2 +2λXY +λ
2Y 2)

= E(X2)+2λE(XY )+λ
2E(Y 2).

Since E((X+λY )2)≥ 0, we have T (λ )≥ 0 for all λ ∈R. If E(Y 2)= 0, then we must
have E(XY ) = 0, since otherwise we could choose λ so that E(X2)+2λE(XY )< 0.
In this case, the inequality is trivial. If E(Y 2) > 0, then for T (λ ) to be nonnegative
the quadratic equation

E(X2)+2λE(XY )+λ
2E(Y 2) = 0

should have at most one real root, which is equivalent to the well-known condition

4(E(XY ))2−4E(X2)E(Y 2)≤ 0,

which is equivalent to

|E(XY )| ≤
√
E(X2)

√
E(Y 2),

as claimed.
If (E(XY ))2 = E(X2)E(Y 2), then either E(Y 2) = 0, and then with α = 0,β = 1,

we have E((αX +βY )2) = 0, or E(Y 2)> 0, in which case the quadratic equation
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E(X2)+2λE(XY )+λ
2E(Y 2) = 0

has a unique real root λ0, so we have E((X +λ0Y )2) = 0.
Conversely, if E((αX +βY )2) = 0 for some α,β ∈ R, then either E(Y 2) = 0, in

which case we showed that we also have E(XY ) = 0, or the quadratic equation has
some real root, so we must have (E(XY ))2−E(X2)E(Y 2) = 0. In both cases, we
have (E(XY ))2 = E(X2)E(Y 2). ut

It can be shown that for any random variable Z, if E(Z2) = 0, then Pr(Z = 0) =
1; see Grimmett and Stirzaker [7] (Chapter 3, Problem 3.11.2). In fact, this is a
consequence of Proposition 8.2 and Chebyshev’s Inequality (see below), as shown
in Ross [12] (Section 8.2, Proposition 2.3). It follows that if equality is achieved in
the Cauchy–Schwarz inequality, then there are some reals α,β (not both zero) such
that Pr(αX +βY = 0) = 1; in other words, X and Y are dependent with probability
1.

If we apply the Cauchy-Schwarz inequality to the random variables X −E(X)
and Y −E(Y ), we obtain the following result.

Proposition 8.18. For any two random variables X and Y on a discrete probability
space, we have

|ρ(X ,Y )| ≤ 1,

with equality iff there are some real numbers α,β ,γ (with α,β not both zero) such
that Pr(αX +βY = γ) = 1.

As emphasized by Graham, Knuth and Patashnik [6], the variance plays a key
role in an inequality due to Chebyshev (published in 1867) that tells us that a random
variable will rarely be far from its mean E(X) if its variance Var(X) is small.

Fig. 8.9 Pafnuty Lvovich Chebyshev (1821–1894).

Proposition 8.19. (Chebyshev’s Inequality) If X is any random variable, for every
α > 0, we have

Pr
(
(X−E(X))2 ≥ α

)
≤ Var(X)

α
.

Proof. We follow Knuth. We have
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Var(X) = ∑
ω∈Ω

(X(ω)−E(X))2Pr(ω)

≥ ∑
ω∈Ω

(X(ω)−E(X))2≥α

(X(ω)−E(X))2Pr(ω)

≥ ∑
ω∈Ω

(X(ω)−E(X))2≥α

αPr(ω)

= αPr
(
(X−E(X))2 ≥ α

)
,

which yields the desired inequality. ut
The French know this inequality as the Bienaymé–Chebyshev’s Inequality. Bien-

aymé proved this inequality in 1853, before Chebyshev who published it in 1867.
However, it was Chebyshev who recognized its significance.2 Note that if we re-
place α by α2, the condition (X −E(X))2 ≥ α2 is equivalent to |X −E(X | ≥ α , so
Chebyshev’s inequality can also be stated as

Pr
(
|X−E(X)| ≥ α

)
≤ Var(X)

α2 .

It is also convenient to restate the Chebyshev’s inequality in terms of the standard
deviation σ =

√
Var(X) of X , to write E(X) = µ , and to replace α2 by c2Var(X),

and we get: For every c > 0,

Pr(|X−µ| ≥ cσ)≤ 1
c2 ;

equivalently

Pr(|X−µ|< cσ)≥ 1− 1
c2 .

This last inequality says that a random variable will lie within cσ of its mean with
probability at least 1−1/c2. If c= 10, the random variable will lie between µ−10σ

and µ +10σ at least 99% of the time.

Example 8.37. We can apply the Chebyshev inequality to the experiment of Exam-
ple 8.35 where we roll two fair dice. We found that µ = 7 and σ2 = 35/6 (for one
roll). If we assume that we perform n independent trials, then the total value of the
n rolls has expecation 7n and the variance if 35n/6. It follows that the sum will be
between

7n−10

√
35n

6
and 7n+10

√
35n

6

at least 99% of the time. If n = 106 (a million rolls), then the total value will be
between 6.976 million and 7.024 million more than 99% of the time.

Another interesting consequence of the Chebyshev’s inequality is this. Suppose
we have a random variable X on some discrete probability space (Ω ,Pr). For any n,

2 Still, Bienaymé is well loved!
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we can form the product space (Ω n,Pr) as explained in Definition 8.5, with

Pr(ω1, . . . ,ωn) = Pr(ω1) · · ·Pr(ωn), ωi ∈Ω , i = 1, . . . ,n.

Then we define the random variable Xk on the product space by

Xk(ω1, . . . ,ωn) = X(ωk).

It is easy to see that the Xk are independent. Consider the random variable

S = X1 + · · ·+Xn.

We can think of S as taking n independent “samples” from Ω and adding them to-
gether. By our previous discussion, S has mean nµ and standard deviation σ

√
n,

where µ is the mean of X and σ is its standard deviation. The Chebyshev’s inequal-
ity implies that the average

X1 + · · ·+Xn

n

will lie between σ −10σ/
√

n and σ +10σ/
√

n at least 99% of the time. This im-
plies that if we choose n large enough, then the average of n samples will almost
always be very near the expected value µ = E(X).

This concludes our elementary introduction to discrete probability. The reader
should now be well prepared to move on to Grimmett and Stirzaker [3], Ross [4, 5],
Venkatesh [15], Mitzenmacher and Upfal [2], Brémaud [2], and Cinlar [3]. Among
the references listed at the end of this chapter, let us mention the classical volumes
by Feller [4, 5], and Shiryaev [14].

The next three sections are devoted to more advanced topics and are optional.

8.8 Generating Functions; A Glimpse

If a random variable X on some discrete probability space (Ω ,Pr) takes nonnegative
integer values, then we can define a very useful function, the probability generating
function.

Definition 8.14. Let X be a random variable on some discrete probability space
(Ω ,Pr). If X takes nonnegative integer values, then its probability generating func-
tion (for short pgf ) GX (z) is defined by

GX (z) = ∑
k≥0

Pr(X = k)zk == ∑
k≥0

f (k)zk,

where f is the probability mass function from Definition 8.6. The function GX (z)
can also be expressed as

GX (z) = ∑
ω∈Ω

Pr(ω)zX(ω) = E(zX );



8.8 Generating Functions; A Glimpse 379

that is,
GX (z) = E(zX ).

Note that
GX (1) = ∑

ω∈Ω

Pr(ω) = 1,

so the radius of convergence of the power series GX (z) is at least 1. The nicest
property about pgf’s is that they usually simplify the computation of the mean and
variance. For example, we have

E(X) = ∑
k≥0

kPr(X = k)

= ∑
k≥0

Pr(X = k) · kzk−1∣∣
z=1

= G′X (1).

Similarly,

E(X2) = ∑
k≥0

k2Pr(X = k)

= ∑
k≥0

Pr(X = k) · (k(k−1)zk−2 + kzk−1)
∣∣
z=1

= G′′X (1)+G′X (1).

In summary we proved the following results.

Proposition 8.20. If GX is the probability generating function of the random vari-
able X, then we have

E(X) = G′X (1)

Var(X) = G′′X (1)+G′X (1)− (G′1(1))
2.

Remark: The above results assume that G′X (1) and G′′X (1) are well defined, which
is the case if the radius of convergence of the power series GX (z) is greater than 1.
If the radius of convergence of GX (z) is equal to 1 and if limz↑1 G′X (z) exists, then

E(X) = lim
z↑1

G′X (z),

and similarly if limz↑1 G′′X (z) exists, then

E(X2) = lim
z↑1

G′′X (z).

The above facts follow from Abel’s theorem, a result due to N. Abel. Abel’s theorem
states that if G(x) = ∑

∞
n=0 anzn is a real power series with radius of convergence

R = 1 and if the sum ∑
∞
n=0 an exists, which means that
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Fig. 8.10 Niels Henrik Abel (1802–1829).

lim
n7→∞

n

∑
i=0

ai = a

for some a ∈ R, then G(z) can be extended to a uniformly convergent series on
[0,1] such that limz 7→1 GX (z) = a. For details, the reader is referred to Grimmett and
Stirzaker [7] (Chapter 5) and Brémaud [2] (Appendix, Section 1.2).

However, as explained in Graham, Knuth and Patashnik [6], we may run into
unexpected problems in using a closed form formula for GX (z). For example, if X
is a random variable with the uniform distribution of order n, which means that X
takes any value in {0,1, . . . ,n−1} with equal probability 1/n, then the pgf of X is

Un(z) =
1
n
(1+ z+ · · ·+ zn−1) =

1− zn

n(1− z)
.

If we set z = 1 in the closed-form expression on the right, we get 0/0. The computa-
tions of the derivatives U ′X (1) and U ′′X (1) will also be problematic (although we can
resort to L’Hospital’s rule).

Fortunately, there is an easy fix. If G(z) = ∑n≥0 anzn is a power series that con-
verges for some z with |z| > 1, then G′(z) = ∑n≥0 nanzn−1 also has that property,
and by Taylor’s theorem, we can write

G(1+ x) = G(1)+
G′(1)

1!
x+

G′′(1)
2!

x2 +
G′′′(1)

3!
x3 + · · · .

It follows that all derivatives of G(z) at z = 1 appear as coefficients when G(1+ x)
is expanded in powers of x. For example, we have

Un(1+ x) =
(1+ x)n−1

nx

=
1
n

(
n
1

)
+

1
n

(
n
2

)
x+

1
n

(
n
3

)
x2 + · · ·+ 1

n

(
n
n

)
xn−1.

It follows that

Un(1) = 1; U ′n(1) =
n−1

2
; U ′′n (1) =

(n−1)(n−2)
3

.
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Then we find that the mean is given by

µ =
n−1

2
,

and the variance (see Proposition 8.20) by

σ
2 =U ′′n (1)+U ′n(1)− (U ′n(1))

2 =
n2−1

12
.

Another nice fact about pgf’s is that the pdf of the sum X +Y of two independent
variables X and Y is the product their pgf’s.

Proposition 8.21. If X and Y are independent, then

GX+Y (z) = GX (z)GY (z).

Proof. This is because if X and Y are independent, then

Pr(X +Y = n) =
n

∑
k=0

Pr(X = k and Y = n− k)

=
n

∑
k=0

Pr(X = k)Pr(Y = n− k),

a convolution! Therefore, if X and Y are independent, then

GX+Y (z) = GX (z)GY (z),

as claimed. ut

Example 8.38. If we flip a biased coin where the probability of tails is p, then the
pgf for the number of heads after one flip is

H(z) = 1− p+ pz.

If we make n independent flips, then the pgf of the number of heads is

(H(z))n = (1− p+ pz)n.

This allows us to rederive the formulae for the mean and the variance. Writing
Hn(z) = (H(z))n, we get

µ = (Hn(z))′(1) = nH ′(1) = np,

and
σ

2 = n(H ′′(1)+H ′(1)− (H ′(1))2) = n(0+ p− p2) = np(1− p).

Example 8.39. If we flip a biased coin repeatedly until heads first turns up, we saw
that the random variable X that gives the number of trials n until the first occurrence
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of heads has the geometric distribution f (n) = (1− p)n−1 p. It follows that the pgf
of X is

GX (z) = pz+(1− p)pz2 + · · ·+(1− p)n−1 pzn + · · ·= pz
1− (1− p)z

.

Since we are assuming that these trials are independent, the random variables that
tell us that m heads are obtained has pgf

GX (z) =
(

pz
1− (1− p)z

)m

= pmzm
∑
k

(
m+ k−1

k

)
((1− p)z)k

= ∑
j

(
j−1
j−m

)
pm(1− p) j−mz j.

In the above derivation we used the binomial theorem stated in the remark before
Proposition 6.6 to the term (1− (1− p)z)−m (with r =−m), and the formula(−m

k

)
= (−1)k

(
k+m−1

k

)
from the Remark at the end of Section 6.4. We also made the change of variable
j = m+ k.

An an exercise, the reader should check that the pgf of a Poisson distribution with
parameter λ is

GX (z) = eλ (z−1).

More examples of the use of pgf can be found in Graham, Knuth and Patashnik
[6].

Another interesting generating function is the moment generating function MX (t).

Definition 8.15. The moment generating function MX (t) of a random variable X
(not necessarily taking nonnegative integer values) is defined as follows: for any
t ∈ R,

MX (t) = E(etX ) = ∑
x

etx f (x),

where f (x) is the mass function of X . If X is a continuous random variable with
density function f , then MX (t) is given by

MX (t) =
∫

∞

−∞

etx f (x)dx.

The main problem with the moment generating function is that it does not always
converge for all t ∈ R. If MX (t) converges absolutely on some open interval (−r,r)
with r > 0, then its nth derivative for t = 0 is given by
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M(n)(0) = ∑
x

xnetx f (x)
∣∣
t=0 = ∑

x
xn f (x) = E(Xn).

Therefore, the moments of X are all defined and given by

E(Xn) = M(n)(0).

Proposition 8.22. Within the radius of convergence of MX (t), we have the Taylor
expansion

MX (t) =
∞

∑
k=0

E(Xk)

k!
tk.

This shows that MX (t) is the exponential generating function of the sequence
of moments (E(Xn)); see Graham, Knuth and Patashnik [6]. If X is a continuous
random variable, then the function MX (−t) is the Laplace transform of the density
function f .

Proposition 8.23. If X and Y are independent, then

MX+Y (t) = MX (t)MY (t).

Proof. If X and Y are independent, then E(XY ) = E(X)E(Y ), so we have

E
(
(X +Y )n)= n

∑
k=0

(
n
k

)
E(XkY n−k) =

n

∑
k=0

(
n
k

)
E(X)kE(Y )n−k.

By Proposition 8.22, we also have

MX+Y (t) = ∑
n

E
(
(X +Y )n

)
n!

tn

= ∑
n

1
n!

(
n

∑
k=0

(
n
k

)
E(X)kE(Y )n−k

)
tn

= ∑
n

n

∑
k=0

E(X)k

k!
E(Y )n−k

(n− k)!
tn

= ∑
n

n

∑
k=0

E(Xk)

k!
E(Y n−k)

(n− k)!
tn.

But, this last term is the coefficient of tn in MX (t)MY (t). Therefore, as in the case of
pgf’s, if X and Y are independent, then

MX+Y (t) = MX (t)MY (t).

as claimed. ut

Another way to prove the above equation is to use the fact that if X and Y are
independent random variables, then so are etX and etY for any fixed real t. Then
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E(et(X+Y )) = E(etX etY ) = E(etX )E(etY ).

Remark: If the random variable X takes nonnegative integer values, then it is easy
to see that

MX (t) = GX (et),

where GX is the generating function of X , so MX is defined over some open interval
(−r,r) with r > 0 and MX (t)> 0 on this interval. Then the function KX (t)= lnMX (t)
is well defined, and it has a Taylor expansion

KX (t) =
κ1

1!
t +

κ2

2!
t2 +

κ3

3!
t3 + · · ·+ κn

n!
tn + · · · . (∗)

The numbers κn are called the cumulants of X . Since

MX (t) =
∞

∑
n=0

µn

n!
tn,

where µn = E(Xn) is the nth moment of X , by taking exponentials on both sides of
(∗), we get relations between the cumulants and the moments, namely:

κ1 = µ1

κ2 = µ2−µ
2
1

κ3 = µ3−3µ1µ2 +2µ
3
1

κ4 = µ4−4µ1µ4 +12µ
2
1 µ2−3µ

2
2 −6µ

4
1

...

Notice that κ1 is the mean and κ2 is the variance of X . Thus, it appears that the
cumulants are the natural generalization of the mean and variance. Furthermore, be-
cause logs are taken, all cumulants of the sum of two independent random variables
are additive, just as the mean and variance. This property makes cumulants more
important than moments.

The third generating function associated with a random variable X , and the most
important one, is the characteristic function ϕX (t).

Definition 8.16. The characteristic function ϕX (t) of a random variable X is defined
by

ϕX (t) = E(eitX ) = E(cos tX)+ iE(sin tX),

for all t ∈ R. If f is the mass function of X , we have

ϕX (t) = ∑
x

eitx f (x) = ∑
x

cos(tx) f (x)+ i∑
x

sin(tx) f (x),

a complex function of the real variable t.



8.8 Generating Functions; A Glimpse 385

The “innocent” insertion of i in the exponent has the effect that |eitX | = 1, so
ϕX (t) converges absolutely and uniformly for all t ∈ R.

If X is a continuous random variable with density function f , then

ϕX (t) =
∫

∞

−∞

eitx f (x)dx.

Up to sign and to a change of variable, ϕX (t) is basically the Fourier transform of
f . Traditionally, the Fourier transform f̂ of f is given by

f̂ (t) =
∫

∞

−∞

e−2πitx f (x)dx.

Next we summarize some of the most important properties of ϕX without proofs.
Details can be found in Grimmett and Stirzaker [7] (Chapter 5).

Proposition 8.24. The characteristic function ϕX of a random variable X satisfies
the following properties:

1. ϕX (0) = 1, |ϕX (t)| ≤ 1.
2. ϕX is uniformly continuous on R.
3. If ϕ

(n)
X (the nth derivative of ϕX ) exists, then E(|Xk|) is finite if k is even, and

E(|Xk−1|) is finite if k is odd.
4. If X and Y are independent, then

ϕX+Y (t) = ϕX (t)ϕY (t).

The proof is essentially the same as the one we gave for the moment generating
function, modulo powers of i.

5. If X is a random variable, for any two reals a,b,

ϕaX+b(t) = eitb
ϕX (at).

Definition 8.17. Given two random variables X and Y , their joint characteristic
function ϕX ,Y (x,y) is defined by

ϕX ,Y (x,y) = E(eixX eiyY ).

It can be shown that X and Y are independent iff

ϕX ,Y (x,y) = ϕX (x)ϕY (y) for all x,y ∈ R.

In general, if all the moments µn = E(Xn) of a random variable X are defined,
these moments do not uniquely define the distribution F of X . There are examples
of distinct distributions F (for X) and G (for Y ) such that E(Xn) = E(Y n) for all n;
see Grimmett and Stirzaker [7] (Chapter 5).

However, if the moment generating function of X is defined on some open inter-
val (−r,r) with r > 0, then MX (t) defines the distribution F of X uniquely.
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The reason is that in this case, the characteristic function ϕX is holomorphic
on the strip |Im(z)| < r, and then MX can extended on that strip to a holomorphic
function such that ϕX (t) = MX (it). Furthermore, the characteristic function ϕX de-
termines the distribution F of X uniquely. This is a rather deep result which is ba-
sically a version of Fourier inversion. If X is a continuous random variable with
density function f , then

f (x) =
1

2π

∫
∞

−∞

e−itx
ϕX (t)dt,

for every x for which f is differentiable.
If the distribution F is not given as above, it is still possible to prove the following

result (see Grimmett and Stirzaker [7] (Chapter 5)):

Theorem 8.1. Two random variables X and Y have the same characteristic function
iff they have the same distribution.

As a corollary, if the moment generating functions MX and MY are defined on
some interval (−r,r) with r > 0 and if MX = MY , then X and Y have the same
distribution. In computer science, this condition seems to be always satisfied.

If X is a discrete random variable that takes integer values, then

f (k) =
1

2π

∫
π

−π

e−itk
ϕX (t)dt;

see Grimmett and Stirzaker [7] (Chapter 5, Exercise 4).
There are also some useful continuity theorems which can be found in Grimmett

and Stirzaker [7] (Chapter 5).

8.9 Limit Theorems; A Glimpse

The behavior of the average sum of n independent samples described at the end of
Section 8.6 is an example of a weak law of large numbers. A precise formulation
of such a result is shown below. A version of this result was first shown by Jacob
Bernoulli and was published by his nephew Nicholas in 1713. Bernoulli did not have
Chebyshev’s inequality at this disposal (since Chebyshev’s inequality was proven in
1867), and he had to resort to a very ingenious proof.

Theorem 8.2. (Weak Law of Large Numbers (“Bernoulli’s Theorem”)) Let X1,X2,
. . . ,Xn, . . . be a sequence of random variables. Assume that they are independent,
that they all have the same distribution, and let µ be their common mean and σ2 be
their common variance (we assume that both exist). Then for every ε > 0,

lim
n7→∞

Pr

(∣∣∣∣X1 + · · ·+Xn

n
−µ

∣∣∣∣≥ ε

)
= 0.
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Fig. 8.11 Jacob (Jacques) Bernoulli (1654–1705).

Proof. As earlier,

E

(
X1 + · · ·+Xn

n

)
= µ,

and because the Xi are independent,

Var

(
X1 + · · ·+Xn

n

)
=

σ2

n
.

Then we apply Chebyshev’s inequality and we obtain

Pr

(∣∣∣∣X1 + · · ·+Xn

n
−µ

∣∣∣∣≥ ε

)
≤ σ2

nε2 ,

which proves the result. ut

Definition 8.18. The locution independent and identically distributed random vari-
ables is often used to say that some random variables are independent and have the
same distribution. This locution is abbreviated as i.i.d.

Probability books are replete with i.i.d.’s
Another remarkable limit theorem has to do with the limit of the distribution of

the random variable
X1 + · · ·+Xn−nµ

σ
√

n
,

where the Xi are i.i.d random variables with mean µ and variance σ2. Observe that
the mean of X1 + · · ·+Xn is nµ and its variance is nσ2, since the Xi are assumed to
be i.i.d.

We have not discussed a famous distribution, the normal or Gaussian distribution,
only because it is a continuous distribution.

Definition 8.19. The standard normal distribution is the cumulative distribution
function Φ whose density function is given by

f (x) =
1√
2π

e−
1
2 x2

;
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that is,

Φ(x) =
1√
2π

∫ x

−∞

e−
1
2 y2

dy.

More generally, we say that a random variable X is normally distributed with pa-
rameters µ and σ2 (and that X has a normal distribution) if its density function is
the function

f (x) =
1√

2πσ
e−

(x−µ)2

2σ2 .

The function f (x) decays to zero very quickly and its graph has a bell–shape.
Figure 8.12 shows some examples of normal distributions.

Fig. 8.12 Examples of normal distributions.

Using a little bit of calculus, it is not hard to show that if a random variable X
is normally distributed with parameters µ and σ2, then its mean and variance are
given by

E(X) = µ,

Var(X) = σ
2.

See Ross [12], Section 5.4. The normal distribution with parameters µ and σ2 is
often denoted by N (µ,σ2). The standard case corresponds to µ = 0 and σ = 1.

In the special case where µ = 0 and σ = 1, the density function f is even, which
means that f (−y) = f (y), so making the change of variable y 7→ −y, we have

Φ(−x) =
1√
2π

∫ −x

−∞

e−
1
2 y2

dy =− 1√
2π

∫ x

∞

e−
1
2 y2

dy =
1√
2π

∫
∞

x
e−

1
2 y2

dy,

and since

1 =
1√
2π

∫
∞

−∞

e−
1
2 y2

dy =
1√
2π

∫ x

−∞

e−
1
2 y2

dy+
1√
2π

∫
∞

x
e−

1
2 y2

dy,

we get
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1 = Φ(x)+Φ(−x),

that is,
Φ(−x) = 1−Φ(x). (†2)

The following theorem was first proven by de Moivre in 1733 and generalized by
Laplace in 1812. De Moivre introduced the normal distribution in 1733. However, it
was Gauss who showed in 1809 how important the normal distribution (alternatively
Gaussian distribution) really is.

Fig. 8.13 Abraham de Moivre (1667–1754) (left), Pierre–Simon Laplace (1749–1827) (middle),
Johann Carl Friedrich Gauss (1777–1855) (right).

Theorem 8.3. (de Moivre–Laplace Limit Theorem) Consider n repeated indepen-
dent Bernoulli trials (coin flips) Xi, where the probability of success is p. Then for
all a < b,

lim
n7→∞

Pr

(
a≤ X1 + · · ·+Xn−np√

np(1− p)
≤ b
)
= Φ(b)−Φ(a).

Observe that now, we have two approximations for the distribution of a random
variable X = X1 + · · ·+Xn with a binomial distribution. When n is large and p is
small, we have the Poisson approximation. When np(1− p) is large, the normal
approximation can be shown to be quite good.

Theorem 8.3 is a special case of the following important theorem known as cen-
tral limit theorem.

Theorem 8.4. (Central Limit Theorem) Let X1,X2, . . . ,Xn, . . . be a sequence of ran-
dom variables. Assume that they are independent, that they all have the same dis-
tribution, and let µ be their common mean and σ2 be their common variance (we
assume that both exist). Then the distribution of the random variable

X1 + · · ·+Xn−nµ

σ
√

n

tends to the standard normal distribution as n goes to infinity. This means that for
every real a,
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lim
n7→∞

Pr

(
X1 + · · ·+Xn−nµ

σ
√

n
≤ a
)
=

1√
2π

∫ a

−∞

e−
1
2 x2

.

We lack the machinery to prove this theorem. This machinery involves character-
istic functions and various limit theorems. We refer the interested reader to Ross [12]
(Chapter 8), Grimmett and Stirzaker [7] (Chapter 5), Venkatesh [15], and Shiryaev
[14] (Chapter III).

The central limit theorem was originally stated and proven by Laplace but
Laplace’s proof was not entirely rigorous. Laplace expanded a great deal of efforts
in estimating sums of the form

∑
k

k≤np+x
√

np(1−p)

(
n
k

)
pk(1− p)n−k

using Stirling’s formula.
Reading Laplace’s classical treatise [8, 9] is an amazing experience. The intro-

duction to Volume I is 164 pages long! Among other things, it contains some inter-
esting philosophical remarks about the role of probability theory, for example on the
reliability of the testimony of witnesses. It is definitely worth reading. The second
part of Volume I is devoted to the theory of generating functions, and Volume II
to probability theory proper. Laplace’s treatise was written before 1812, and even
though the factorial notation was introduced in 1808, Laplace does not use it, which
makes for complicated expressions. The exposition is clear, but it is difficult to read
this treatise because definitions and theorems are not clearly delineated. A version
of the central limit theorem is proven in Volume II, Chapter III; Page 306 contains
a key formula involving the Gaussian distribution, although Laplace does not refer
to it by any name (not even as normal distribution). Anybody will be struck by the
elegance and beauty of the typesetting. Lyapunov gave the first rigorous proof of the
central limit theorem around 1901.

Fig. 8.14 Pierre–Simon Laplace (1749–1827) (left), Aleksandr Mikhailovich Lyapunov (1857-
1918) (right).

The following example from Ross [12] illustrates how the central limit theorem
can be used.
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Example 8.40. An astronomer is interested in measuring the distance, in light-years,
from his observatory to a distant star. Although the astronomer has a measuring tech-
nique, he knows that, because of changing atmospheric conditions and normal error,
each time a measurement is made it will not be the exact distance, but merely an ap-
proximation. As a result, the astronomer plans to make a series of measurements
and then use the average value of these measurements as his estimated value of the
actual distance.

If the astronomer believes that the values of the measurements are independent
and identically distributed random variables having a common mean d and a com-
mon variance 4 (light-years), how many measurements need he make to be reason-
ably sure that his estimated distance is accurrate to within ±0.5 light-years?

Suppose that the astronomer makes n observations, and let X1, . . . ,Xn be the n
measurements. By the central limit theorem, the random variable

Zn =
X1 + · · ·+Xn−nd

2
√

n

has approximately a normal distribution. Hence, using (†2),

Pr

(
−1

2
≤ X1 + · · ·+Xn

n
−d ≤ 1

2

)
= Pr

(
−1

2

√
n

2
≤ Zn ≤

1
2

√
n

2

)
≈Φ

(√
n

4

)
−Φ

(
−
√

n
4

)
= 2Φ

(√
n

4

)
−1.

If the astronomer wants to be 95% certain that his estimated value is accurrate to
within 0.5 light year, he should make n∗ measurements, where n∗ is given by

2Φ

(√
n∗

4

)
−1 = 0.95,

that is,

Φ

(√
n∗

4

)
= 0.975.

Using tables for the values of the function Φ , we find that
√

n∗

4
= 1.96,

which yields
n∗ ≈ 61.47.

Since n should be an integer, the astronomer should make 62 observations.
The above analysis relies on the assumption that the distribution of Zn is well

approximated by the normal distribution. If we are concerned about this point, we
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can use Chebyshev’s inequality. If we write

Sn =
X1 + · · ·+Xn

n
,

we have
E(Sn) = d and Var(Sn) =

4
n
,

so by Chebyshev’s inequality, we have

Pr

(
|Sn−d|> 1

2

)
≤ 4

n(1/2)2 =
16
n
.

Hence, if we make n = 16/0.05 = 320 observations, we are 95% certain that the
estimate will be accurate to within 0.5 light year.

The method of making repeated measurements in order to “average” errors is
applicable to many different situations (geodesy, astronomy, etc.).

There are generalizations of the central limit theorem to independent but not
necessarily identically distributed random variables. Again, the reader is referred to
Ross [12] (Chapter 8), Grimmett and Stirzaker [7] (Chapter 5), and Shiryaev [14]
(Chapter III).

There is also the famous strong law of large numbers, due to Andrey Kol-
mogorov, proven in 1933 (with an earlier version proved in 1909 by Émile Borel).
In order to state the strong law of large numbers, it is convenient to define various
notions of convergence for random variables.

Fig. 8.15 Félix Edouard Justin Émile Borel (1871–1956) (left), Andrey Nikolaevich Kolmogorov
(1903–1987) (right).

Definition 8.20. Given a sequence of random variable X1,X2, . . . ,Xn, . . ., and some
random variable X (on the same probability space (Ω ,Pr)), we have the following
definitions:

1. We say that Xn converges to X almost surely (abbreviated a.s.), denoted by
Xn

a.s.−→ X , if
Pr({ω ∈Ω | lim

n7→∞
Xn(ω) = X(ω)}) = 1.
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2. We say that Xn converges to X in rth mean, with r ≥ 1, denoted Xn
r−→ X , if

E(|X r
n |) is finite for all n and if

lim
n 7→∞

E
(
|Xn−X |r

)
= 0.

3. We say that Xn converges to X in probability, denoted Xn
P−→ X , if for every

ε > 0,
lim
n 7→∞

Pr(|Xn−X |> ε) = 0.

4. We say that Xn converges to X in distribution, denoted Xn
D−→ X , if

lim
n7→∞

Pr(Xn ≤ x) = Pr(X ≤ x),

for every x ∈ R for which F(x) = Pr(X ≤ x) is continuous.

Convergence of type (1) is also called convergence almost everywhere or conver-
gence with probability 1. Almost sure convergence can be stated as the fact that the
set

{ω ∈Ω | Xn(ω) does not converge to X(ω)}
of outcomes for which convergence fails has probability 0.

It can be shown that convergence almost surely and convergence in rth mean to-
gether imply convergence in probability, which implies convergence in distribution.
All converses are false. Neither convergence almost surely nor convergence in rth
mean imply the other. For proofs, interested readers should consult Grimmett and
Stirzaker [7] (Chapter 7) and Shiryaev [14] (Chapter III).

Observe that the convergence of the weak law of large numbers is convergence in
probability, with X = µ and Xn the sum (1/n)(∑n

i=1 Xi) (sorry for the double use of
the variable Xn), and the convergence of the central limit theorem is convergence in
distribution, with x = a and Xn the expression (1/σ

√
n)(X1 + · · ·+Xn−nµ) (again,

sorry for the double use of the variable Xn).
The following beautiful result was obtained by Kolmogorov (1933).

Theorem 8.5. (Strong Law of Large Numbers, Kolmogorov) Let X1,X2, . . . ,Xn, . . .
be a sequence of random variables. Assume that they are independent, that they all
have the same distribution, and let µ be their common mean and E(X2

1 ) be their
common second moment (we assume that both exist). Then,

X1 + · · ·+Xn

n

converges almost surely and in mean square to µ = E(X1).

The proof is beyond the scope of this book. Interested readers should consult
Grimmett and Stirzaker [7] (Chapter 7), Venkatesh [15], and Shiryaev [14] (Chapter
III). Fairly accessible proofs under the additional assumption that E(X4

1 ) exists can
be found in Brémaud [2], and Ross [12].
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Actually, for almost sure convergence, the assumption that E(X2
1 ) exists is re-

dundant provided that E(|X1|) exists, in which case µ = E(|X1|), but the proof takes
some work; see Brémaud [2] (Chapter 1, Section 8.4) and Grimmett and Stirzaker
[7] (Chapter 7). There are generalizations of the strong law of large numbers where
the independence assumption on the Xn is relaxed, but again, this is beyond the
scope of this book.

In the next section, we use the moment generating function to obtain bounds on
tail distributions.

8.10 Chernoff Bounds

Given a random variable X , it is often desirable to have information about proba-
bilities of the form Pr(X ≥ a) (for some real a). In particular, it may be useful to
know how quickly such a probability goes to zero as a becomes large (in absolute
value). Such probabilities are called tail distributions. It turns out that the moment
generating function MX (if it exists) yields some useful bounds by applying a very
simple inequality to MX known as Markov’s inequality, due to the mathematician
Andrei Markov, a major contributor to probability theory (the inventor of Markov
chains).

Fig. 8.16 Andrei Andreyevich Markov (1856–1922).

Proposition 8.25. (Markov’s Inequality) Let X be a random variable and assume
that X is nonnegative. Then for every a > 0, we have

Pr(X ≥ a)≤ E(X)

a
.

Proof. Let Ia be the random variable defined so that

Ia =

{
1, if X ≥ a
0, otherwise.

Since X ≥ 0, we have
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Ia ≤
X
a
. (∗)

Also, since Ia takes only the values 0 and 1, E(Ia) = Pr(X ≥ a). By taking expecta-
tions in (∗) and using the linearity of expectation (Proposition 8.7), we get

E(Ia)≤
E(X)

a
,

which is the desired inequality since E(Ia) = Pr(X ≥ a). ut

If we apply Markov’s inequality to the moment generating function MX = E(etX )
we obtain exponential bounds known as Chernoff bounds, after Herman Chernoff.

Fig. 8.17 Herman Chernoff (1923–).

Proposition 8.26. (Chernoff Bounds) Let X be a random variable and assume that
the moment generating function MX = E(etX ) is defined. Then for every a > 0, we
have

Pr(X ≥ a)≤min
t>0

e−taMX (t)

Pr(X ≤ a)≤min
t<0

e−taMX (t).

Proof. If t > 0, by Markov’s inequality applied to MX (t) = E(etX ), we get

Pr(X ≥ a) = Pr(etX ≥ eta)

≤ E(etX )e−ta,

and if t < 0, since X ≤ a implies tX ≥ ta, which is equivalent to etx ≥ eta, we get

Pr(X ≤ a) = Pr(etX ≥ eta)

≤ E(etX )e−ta,

which imply both inequalities of the proposition. ut

In order to make good use of the Chernoff bounds, one needs to find for which
values of t the function e−taMX (t) is minimum. Let us give a few examples.
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Example 8.41. If X has a standard normal distribution, then it is not hard to show
that

MX (t) = et2/2;

see Ross [12] (Section 7, Example 7d). Consequently, for any a > 0 and all t > 0,
we get

Pr(X ≥ a)≤ e−taet2/2.

The value t that minimizes et2/2−ta is the value that minimizes t2/2− ta, namely
t = a. Thus, for a > 0, we have

Pr(X ≥ a)≤ e−a2/2.

Similarly, for a < 0, since X ≤ a iff −X ≥−a, we obtain

Pr(X ≤ a)≤ e−a2/2.

The function on the right hand side decays to zero very quickly.

Example 8.42. Let us now consider a random variable X with a Poisson distribution
with parameter λ . It is not hard to show that

M(t) = eλ (et−1);

see Ross [12] (Section 7, Example 7b). Applying the Chernoff bound, for any non-
negative integer k and all t > 0, we get

Pr(X ≥ k)≤ eλ (et−1)e−kt .

Using calculus, we can show that the function on the right hand side has a minimum
when λ (et−1)−kt is minimum, and this is when et = k/λ . If k > λ (so that t > 0)
and if we let et = k/λ in the Chernoff bound, we obtain

Pr(X ≥ k)≤ eλ (k/λ−1)
(

λ

k

)k

,

which is equivalent to

Pr(X ≥ k)≤ e−λ (eλ )k

kk .

Our third example is taken from Mitzenmacher and Upfal [11] (Chapter 4).

Example 8.43. Suppose we have a sequence of n random variables X1,X2, . . . ,Xn,
such that each Xi is a Bernoulli variable (with value 0 or 1) with probability of
success pi, and assume that these variables are independent. Such sequences are
often called Poisson trials. We wish to apply the Chernoff bounds to the random
variable

X = X1 + · · ·+Xn.
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We have

µ = E(X) =
n

∑
i=1

E(Xi) =
n

∑
i=1

pi.

The moment generating function of Xi is given by

MXi(t) = E(etXi)

= piet +(1− pi)

= 1+ pi(et −1).

Using the fact that 1+ x≤ ex for all x ∈ R, we obtain the bound

MXi(t)≤ epi(et−1).

Since the Xi are independent, we know from Section 8.8 that

MX (t) =
n

∏
i=1

MXi(t)

≤
n

∏
i=1

epi(et−1)

= e∑
n
i=1 pi(et−1)

= eµ(et−1).

Therefore,
MX (t)≤ eµ(et−1), for all t.

The next step is to apply the Chernoff bounds. Using a little bit of calculus, we
obtain the following result proven in Mitzenmacher and Upfal [11] (Chapter 4).

Proposition 8.27. Given n independent Bernoulli variables X1, . . . ,Xn with success
probability pi, if we let µ = ∑

n
i=1 pi and X = X1 + · · ·+Xn, then for any δ such that

0 < δ < 1, we have

Pr(|X−µ| ≥ δ µ)≤ 2e−
µδ2

3 .

As an application, if the Xi are independent flips of a fair coin (pi = 1/2), then

µ = n/2, and by picking δ =
( 6lnn

n

)1/2
, it is easy to show that

Pr

(∣∣∣∣X− n
2

∣∣∣∣≥ 1
2

√
6n lnn

)
≤ 2e−

µδ2
3 =

2
n
.

This shows that the concentration of the number of heads around the mean n/2
is very tight. Most of the time, the deviations from the mean are of the order
O(
√

n lnn). Another simple calculation using the Chernoff bounds shows that

Pr

(∣∣∣∣X− n
2

∣∣∣∣≥ n
4

)
≤ 2e−

n
24 .
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This is a much better bound than the bound provided by the Chebyshev inequality:

Pr

(∣∣∣∣X− n
2

∣∣∣∣≥ n
4

)
≤ 4

n
.

Example 8.44. Ross [12] and Mitzenmacher and Upfal [11] consider the situation
where a gambler is equally likely to win or lose one unit on every play. Assuming
that these random variables Xi are independent, and that

Pr(Xi = 1) = Pr(Xi =−1) =
1
2
,

let Sn = ∑
n
i=1 Xi be the gambler’s winning after n plays. It is easy that to see that the

moment generating function of Xi is

MXi(t) =
et + e−t

2
.

Using a little bit of calculus, one finds that

MXi(t)≤ e
t2
2 .

Since the Xi are independent, we obtain

MSn(t) =
n

∏
i=1

MXi(t) = (MXi(t))
n ≤ e

nt2
2 , t > 0.

The Chernoff bound yields

Pr(Sn ≥ a)≤ e
nt2
2 −ta, t > 0.

The minimum is achieved for t = a/n, and assuming that a > 0, we get

P(Sn ≥ a)≤ e−
a2
2n , a > 0.

For example, if a = 6, we get

Pr(S10 ≥ 6)≤ e−
36
20 ≈ 0.1653.

We leave it as exercise to prove that

Pr(Sn ≥ 6) = Pr(gambler wins at least 8 of the first 10 games) =
56

1024
≈ 0.0547.

Other examples of the use of Chernoff bounds can be found in Mitzenmacher
and Upfal [11] and Ross [13]. There are also inequalities giving a lower bound on
the probability Pr(X > 0), where X is a nonnegative random variable; see Ross [13]
(Chapter 3), which contains other techniques to find bounds on probabilities and
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the Poisson paradigm. Probabilistic methods also play a major role in Motwani and
Raghavan [10].

8.11 Summary

This chapter provides an introduction to discrete probability theory. We define prob-
ability spaces (finite and countably infinite) and quickly get to random variables. We
emphasize that random variables are more important than their underlying probabil-
ity spaces. Notions such as expectation and variance help us to analyze the behavior
of random variables even if their distributions are not known precisely. We give a
number of examples of computations of expectations, including the coupon collec-
tor problem and a randomized version of quicksort.

The last three sections of this chapter contain more advanced material and are
optional. The topics of these optional sections are generating functions (including
the moment generating function and the characteristic function), the limit theorems
(weak law of lage numbers, central limit theorem, and strong law of large numbers),
and Chernoff bounds.

• We define a finite discrete probability space (or finite discrete sample space),
outcomes (or elementary events), and events.

• We define a probability measure (or probability distribution) on a sample space.
• We define a discrete probability space.
• We define a σ -algebra.
• We defineindependent events.
• We discuss the birthday problem.
• We give examples of random variables.
• We present a randomized version of the quicksort algorithm.
• We define random variables, and their probability mass functions and cumula-

tive distribution functions.
• We define absolutely continuous random variables and their probability density

functions.
• We give examples of the binomial distribution.
• We give examples of the geometric distribution.
• We show how the Poisson distribution arises as the limit of a binomial distribu-

tion when n is large and p is small.
• We define a conditional probability.
• We present the “Monty Hall Problem.”
• We introduce probability trees (or trees of possibilities).
• We prove several of Bayes’ rules.
• We define: the product of probability spaces.
• independent random variables.
• the joint mass function of two random variables, and the marginal mass func-

tions.
• the expectation (or expected value, or mean) E(X) = µ of a random variable X .
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• We prove the linearity of expectation.
• We introduce indicator functions (indicator variables).
• We define functions of a random variables.
• We compute the expected value of the number of comparsions in the random-

ized version of quicksort.
• We define the variance Var(X) of a random variable X and the standard devia-

tion σ of X by σ =
√

Var(X).
• We prove that Var(X) = E(X2)− (E(X))2.
• We define the moments and the central moments of a random variable.
• We prove that if X and Y are uncorrelated random variables, then Var(X +Y ) =

Var(X)+Var(Y ); in particular, this equation holds if X and Y are independent.
• We prove: the Cauchy-Schwarz inequality for discrete random variables.
• We prove the Cheybyshev’s inequality and give some of its applications.

The next three sections are optional.

• We state the weak law of large numbers (Bernoulli’s theorem).
• We define the normal distribution (or Gaussian distribution).
• We state the central limit theorem and present an application.
• We define various notions of convergence, including almost sure convergence

and convergence in probability.
• We state Kolmogorov’s strong law of large numbers.
• For a random variable that takes nonnegative integer values, we define the prob-

ability generating function, GX (z) = E(zX ). We show how the derivatives of GX
at z = 1 can be used to compute the mean µ and the variance of X .

• If X and Y are independent random variables, then GX+Y = GX GY .
• We define the moment generating function MX (t) = E(etX ) and show that

M(n)
X (0) = E(Xn).

• If X and Y are independent random variables, then MX+Y = MX MY .
• We define the cumulants of X .
• We define the characteristic function ϕX (t) = E(eitX ) of X and discuss some

of its properties. Unlike the moment generating function, ϕX is defined for all
t ∈ R.

• If X and Y are independent random variables, then ϕX+Y = ϕX ϕY . The distribu-
tion of a random variable is uniquely determined by its characteristic function.

• We prove Markov’s inequality.
• We prove the general Chernoff bounds in terms of the moment generating func-

tion.
• We compute Chernoff bound for various distributions, including normal and

Poisson.
• We obtain Chernoff bounds for Poisson trials (independent Bernoulli trials with

success probability pi).
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Problems

8.1. In an experiment, a die is rolled continually until a six appears, at which point
the experiment stops. What is the sample space of this experiment? Denote by En
the event that n rolls are necessary to complete the experiment. What points of the

sample space are contained in En? Determine
(⋃

∞
n=1 En

)
.

8.2. Suppose A and B are mutally exclusive events for which Pr(A) = 0.3 and
Pr(B) = 0.5. Determine the probabilities of the following events:

(a) either A or B occurs.
(b) A occurs but B does not.
(c) Both A and B occur.

8.3. Two cards are randomly selected from an ordinary playing deck. Define a black-
jack as the event that one of the cards is an ace and the other one is either a ten, a
jack, a queen, or a king. What is the probability that the two selected cards form a
blackjack?

8.4. An urn contains n white and m black balls, where m and n are positive integers.

(a) If two balls are randomly withdrawn, what is the probability that they have the
same color?

(b) If a ball is randomly withdrawn and then replaced before the second one is
drawn, what is the probability that the withdrawn balls are the same color?

(c) Show that the probability in Part (b) is always larger than the one in Part (a).

8.5. Two dice are thrown n times in succession. Compute the probability that a dou-
ble 6 appear at least once. How large need n be to make this probability at least
1/2?

8.6. Let S be a nonempty finite set. Recall that a partition of S is a set {S1, . . . ,Sk}
(k ≥ 1) of nonempty pairwise disjoint subsets of S such that

⋃k
i=1 Si = S. Let Tn be

the number of different partitions of the set {1, . . . ,n} (n ≥ 1). Observe that T1 = 1
(the set {1} has the unique partition {{1}}, and T2 = 2 (since {1,2} has the two
partitions {{1,2}} and {{1},{2}}).
(a) Prove that T3 = 5 and T4 = 15 (determine the partitions explicitly).
(b) Prove that

Tn+1 = 1+
n

∑
k=1

(
n
k

)
Tk.

8.7. Prove that

Pr(E ∪F ∪G) = Pr(E)+Pr(F)+Pr(G)

−Pr(E ∩F ∩G)−Pr(E ∩F ∩G)−Pr(E ∩F ∩G)

−2Pr(E ∩F ∩G).
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8.8. Let fn be the number of ways of tossing a coin n times such that successive
heads never appear. Prove that

fn+2 = fn+1 + fn, n≥ 0, with f0 = 1, f1 = 2.

Let Pn denote the probability that successive heads never appear when a coin is
tossed n times. Find Pn in terms of fn when all possible outcomes are assume equally
likely. Compute P10.

8.9. In a certain community, 36 percent of the families own a dog and 22 percent of
the families that own a dog also own a cat. In addition, 30 percent of the families
own a cat. Determine the following:

(a) the probability that a randomly selected family owns both a dog and a cat.
(b) the conditional probability that a randomly selected family owns a dog given

that it owns a cat.

8.10. Suppose that an insurance company classifies people into one of three classes:
good risk, average risk, and bad risk. The company’s record indicates that the proba-
bilities that good, average, and bad-risk persons will be involved in an accident over
a 1-year span are, respectively, 0.05,0.15, and 0.30. If 20 percent of the population
is a good risk, 50 percent an average risk, and 30 percent a bad risk, what proportion
of people have accidents in a fixed year? If policyholder A had no accidents in 2019,
what is the probability that he or she is a good or average risk?

8.11. Prove that if E1,E2, . . . ,En are independent events, then

Pr(E1∪E2∪·· ·∪En) = 1−
n

∏
i=1

(1−Pr(Ei)).

8.12. Recall that independent trials that result in a success with probability p and
failure with probability 1− p are called Bernoulli trials. Let Pn denote the probabil-
ity that n Bernoulli trials result in an even number of successes (0 being considered
even). Prove that

Pn = p(1−Pn−1)+(1− p)Pn−1, n≥ 1.

Use the above formula to prove by induction that

Pn =
1+(1−2p)n

2
.

8.13. Suppose that a die is rolled twice. What are the possible values that the fol-
lowing random variables can take on:

(a) the maximum value to appear in the two rolls;
(b) the minimum value to appear in the two rolls;
(c) the sum of the two rolls;
(d) the value of the first roll minus the value of the second roll.
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8.14. If the die in Problem 8.13 is assumed to be fair, calculate the probabilities
associated with the random variables in Part (a) through (d).

8.15. A box contains 5 red and 5 blue marbles. Two marbles are withdrawn ran-
domly. If they are the same color, then you win $1.10; if they are different colors,
then you win −$1.00 (that is, you lose $1.00). Calculate

(a) the expected value of the amount you win;
(b) the variance of the amount you win.

8.16. If E(X) = 1 and Var(X) = 5, find

(a) E(2+X2);
(b) Var(4+3X).

8.17. If X has distribution function F , what is the distribution function of the random
variable αX +β , where α,β ∈ R, with α 6= 0?

8.18. Let X be a binomial random variable with parameters n and p, which means
that its mass function is given by

f (i) =
(

n
i

)
pi(1− p)n−i, i = 0, . . . ,n,

and 0 otherwise. Prove that

E

[
1

1+X

]
=

1− (1− p)n+1

(n+1)p
.

8.19. Prove that if X is a Poisson random variable with parameter λ , then

E(Xn) = λE[(X +1)n−1].

Use this result to compute E(X3).

8.20. Let X be a Poisson random variable with parameter λ . Prove that

Pr(X is even) =
1
2
(1+ e−2λ )

Hint. Use Problem 8.12 and the relationship between Poisson and binomial random
variables.

8.21. Two fair dice are rolled. Find the joint probability mass function of the random
variables X and Y when

(a) X is the largest value obtained on any die and Y is the sum of the values;
(b) X is the value on the first die and Y is the larger of the two values;
(c) X is the smallest and Y is the largest value obtained on the dice.
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8.22. A bin of five transistors is known to contain two that are defective. The tran-
sistors are to be tested, one at a time, until the defective ones are identified. Denote
by N1 the number of tests made until the first defective is identified and by N2 the
number of additional tests until the second defective is identified. Find the joint
probablity mass function of N1 and N2.

8.23. Choose a number X at random from the set {1,2,3,4,5}. Now choose a num-
ber Y at random from the set {1,2, . . . ,X}.
(a) Find the joint mass function of X and Y .
(b) Are X and Y independent? Why?

8.24. Let X and Y be independent binomial random variables with identical param-
eters p and n (see Problem 8.18). Compute analytically the conditional distribution
of X given that X +Y = m. The result is known as the hypergeometric distribution
and it is of the form (m

i

)(n−m
n−i

)(n
m

) .

8.25. A fair die is rolled 10 times. Calculate the expected sum of the 10 rolls.

8.26. N people arrive separately to a professional dinner. Upon arrival, each person
looks to see if he or she has any friends among those present. That person then sits
either at the table of a friend or at an unoccupied table if none of those present is
a friend. Assuming that each of the

(N
2

)
pairs of people is, independently, a pair of

friends with probability p, find the expected number of occupied tables.

Hint. Let Xi equal 1 or 0, depending on whether the ith arrival sits at a previously
unoccupied table.

8.27. If Xand Y are independent and identically distributed with mean µ and vari-
ance σ2, find

E[(X−Y )2].

8.28. Let X be the number of 1’s and Y the number of 2’s that occur in n rolls of a
fair die. Compute Cov(X ,Y ).

8.29. Let X1, . . . ,Xn, . . . be independent with common mean µ and common variance
σ2, and set Yn = Xn +Xn+1 +Xn+2. For j ≥ 0, find Cov(Yn,Yn+ j).

8.30. A coin having probability p of coming up heads is continually flipped until
both heads and tails have appeared. Find

(a) the expected number of flips;
(b) the probability that the last flip lands on heads.

8.31. Let A1, . . . ,An be arbitrary events, and define Ck = {at least k of the Ai occur}.
Prove that

n

∑
k=1

Pr(Ck) =
n

∑
k=1

Pr(Ak).

Hint. Let X denote the number of the Ai that occur. Show that both sides of the
preceding equation are equal to E(X).
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8.32. The probability generating function of the discrete nonnegative integer valued
random variable X having probability mass function p j ( j ≥ 0), is defined by

ϕ(s) = E(sX ) =
∞

∑
j=0

p js j.

Let Y be a geometric random variable with parameter p = 1− s, where 0 < s < 1.
Prove that if Y is independent of X , then

ϕ(s) = Pr(X < Y ).

8.33. Show how to compute Cov(X ,Y ) from the joint moment generating function
MX ,Y (t1, t2) of X and Y , where

MX ,Y (t1, t2) = E(et1X+t2Y ).

8.34. From past experience, a professor knows that the test score of a student taking
her final examination is a random variable with mean 75.

(a) Give an upper bound for the probability that a student’s test score will exceed
85. Suppose, in addition, that the professor knows that the variance of a student’s
test score is equal to 25.

(b) What can be said about the probability that a student will score between 65 and
85?

(c) How many students would have to take the examination to ensure, with prob-
ability at least 0.9, that the class average would be within 5 of 75? Do not use
the central limit theorem to solve this question.

8.35. Use the central limit theorem to solve Part (c) of Problem 8.34.

8.36. Let X1, . . . ,X20 be independent Poisson variables with mean 1.

(a) Use the Markov inequality to obtain a bound on

Pr

( 20

∑
i=1

Xi > 15
)
.

(b) Use the central limit theorem to approximate

Pr

( 20

∑
i=1

Xi > 15
)
.

8.37. Let X be a Poisson random variable with mean 20.

(a) Use the Markov inequality to obtain an upper bound on

p = Pr(X ≥ 26).

(b) Use the Chebyshev inequality to obtain an upper bound on p.
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(c) Use the Chernoff bound to obtain an upper bound on p.
(d) Approximate p by making use of the central limit theorem.

8.38. Let (Zn)n≥1 be a sequence of random variables and let c ∈ R such that, for
every ε > 0, Pr(|Zn− c| > ε) tends to 0 as n tends to infinity. Prove that for any
bounded continuous function g,

lim
n7→∞

E(g(Zn)) = g(c).

8.39. Let X be a discrete random variable whose possible values are positive inte-
gers. If Pr(X = k) is nonincreasing in k ∈ N−{0}, prove that

Pr(X = k)≤ 2E(X)

k2 .

8.40. If X is a Poisson random variable with mean λ , prove that for all i < λ ,

Pr(X ≤ i)≤ e−λ (eλ )i

ii
.

8.41. Prove the general form of Bayes’ rule (Proposition 8.3(2)). Prove (3) and (4)
of Proposition 8.3.

8.42. In Example 8.14, prove that the sum of the probabilities of all the trees in Ω

is equal to 1.

8.43. Prove the last sentence (about the independence of X and Y ) in Example 8.19.

8.44. Given two random variables X and Y on a discrete probability space Ω , for
any function g : R×R→ R, the function g(X ,Y ) is a random variable. Prove that
E(g(X ,Y )) (if it exists) is given by

E(g(X ,Y )) = ∑
x,y

g(x,y) fX ,Y (x,y),

where fX ,Y is the joint mass function of X and Y .

8.45. Given a Poisson random variable X , prove the formula

E(X2) = λ (λ +1)

stated in Example 8.29.

8.46. Prove that the pgf of a Poisson distribution with parameter λ is

GX (z) = eλ (z−1).

8.47. Prove Proposition 8.24.
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8.48. Consider Example 8.44. Prove that the moment generating function of Xi is

MXi(t) =
et + e−t

2
.

Prove that

Pr(Sn ≥ 6) = Pr(gambler wins at least 8 of the first 10 games) =
56

1024
≈ 0.0547.
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Chapter 9
Graphs, Part I: Basic Notions

9.1 Why Graphs? Some Motivations

Graphs are mathematical structures that have many applications in computer sci-
ence, electrical engineering, and more widely in engineering as a whole, but also
in sciences such as biology, linguistics, and sociology, among others. For example,
relations among objects can usually be encoded by graphs. Whenever a system has
a notion of state and a state transition function, graph methods may be applicable.
Certain problems are naturally modeled by undirected graphs whereas others require
directed graphs. Let us give a concrete example.

Suppose a city decides to create a public transportation system. It would be de-
sirable if this system allowed transportation between certain locations considered
important. Now, if this system consists of buses, the traffic will probably get worse,
so the city engineers decide that the traffic will be improved by making certain
streets one-way streets. The problem then is, given a map of the city consisting of
the important locations and of the two-way streets linking them, finding an orien-
tation of the streets so that it is still possible to travel between any two locations.
The problem requires finding a directed graph, given an undirected graph. Figure
9.1 shows the undirected graph corresponding to the city map and Figure 9.2 shows
a proposed choice of one-way streets. Did the engineers do a good job or are there
locations such that it is impossible to travel from one to the other while respecting
the one-way signs?

The answer to this puzzle is revealed in Section 9.4.
There is a peculiar aspect of graph theory having to do with its terminology.

Indeed, unlike most branches of mathematics, it appears that the terminology of
graph theory is not standardized yet. This can be quite confusing to the beginner
who has to struggle with many different and often inconsistent terms denoting the
same concept, one of the worse being the notion of a path.

Our attitude has been to use terms that we feel are as simple as possible. As a
result, we have not followed a single book. Among the many books on graph the-
ory, we have been inspired by the classic texts, Harary [5], Berge [1], and Bollobas

409
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[2]. This chapter on graphs is heavily inspired by Sakarovitch [6], because we find

1

16 17 18 19

10 11 12 13 14 15

5 6 7 8 9

1 2 3 4

Fig. 9.1 An undirected graph modeling a city map.

1

16 17 18 19

10 11 12 13 14 15

5 6 7 8 9

1 2 3 4

Fig. 9.2 A choice of one-way streets.
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Sakarovitch’s book extremely clear and because it has more emphasis on applica-
tions than the previous two. Another more recent (and more advanced) text which
is also excellent is Diestel [4].

Fig. 9.3 Claude Berge, 1926–2002 (left) and Frank Harary, 1921–2005 (right).

Many books begin by discussing undirected graphs and introduce directed graphs
only later on. We disagree with this approach. Indeed, we feel that the notion of a
directed graph is more fundamental than the notion of an undirected graph. For one
thing, a unique undirected graph is obtained from a directed graph by forgetting the
direction of the arcs, whereas there are many ways of orienting an undirected graph.
Also, in general, we believe that most definitions about directed graphs are cleaner
than the corresponding ones for undirected graphs (for instance, we claim that the
definition of a directed graph is simpler than the definition of an undirected graph,
and similarly for paths). Thus, we begin with directed graphs.

9.2 Directed Graphs

Informally, a directed graph consists of a set of nodes together with a set of oriented
arcs (also called edges) between these nodes. Every arc has a single source (or initial
point) and a single target (or endpoint), both of which are nodes. There are various
ways of formalizing what a directed graph is and some decisions must be made.
Two issues must be confronted:

1. Do we allow “loops,” that is, arcs whose source and target are identical?
2. Do we allow “parallel arcs,” that is, distinct arcs having the same source and

target?

For example, in the graph displayed on Figure 9.4, the edge e5 from v1 to itself
is a loop, and the two edges e1 and e2 from v1 to v2 are parallel edges.

Every binary relation on a set can be represented as a directed graph with loops,
thus our definition allows loops. The directed graphs used in automata theory must
accomodate parallel arcs (usually labeled with different symbols), therefore our def-
inition also allows parallel arcs. Thus we choose a more inclusive definition in order
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v3

v1 v2

e1

e2

e4e3

e5

Fig. 9.4 A directed graph.

to accomodate as many applications as possible, even though some authors place
restrictions on the definition of a graph, for example, forbidding loops and parallel
arcs (we call graphs without parallel arcs simple graphs).

Before giving a formal definition, let us say that graphs are usually depicted by
drawings (graphs!) where the nodes are represented by circles containing the node
name and oriented line segments labeled with their arc name (see Figures 9.4 and
9.5).

It should be emphasized that a directed graph (or any type of graph) is determined
by its edges; the vertices are only needed to anchor each edge by specifying its
source and its target. This can be done by defining two functions s (for source) and
t (for target) that assign a source s(e) and a target t(e) to every edge e. For example,
for the graph in Figure 9.4, edge e1 has source s(e1) = v1 and target t(e1) = v2; edge
e4 has source s(e4) = v2 and target t(e4) = v3, and edge e5 (a loop) has identical
source and target s(e5) = t(e5) = v1.

Definition 9.1. A directed graph (or digraph) is a quadruple G = (V,E,s, t), where
V is a set of nodes or vertices, E is a set of arcs or edges, and s, t : E → V are two
functions, s being called the source function and t the target function. Given an edge
e ∈ E, we also call s(e) the origin or source of e, and t(e) the endpoint or target of
e.

If the context makes it clear that we are dealing only with directed graphs,
we usually say simply “graph” instead of “directed graph.” A directed graph,
G = (V,E,s, t), is finite iff both V and E are finite. In this case, |V |, the number
of nodes of G, is called the order of G.

Example 9.1. Let G1 be the directed graph defined such that
E = {e1,e2,e3,e4,e5,e6,e7,e8,e9},
V = {v1,v2,v3,v4,v5,v6}, and
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s(e1) = v1,s(e2) = v2,s(e3) = v3,s(e4) = v4,

s(e5) = v2,s(e6) = v5,s(e7) = v5,s(e8) = v5,s(e9) = v6

t(e1) = v2, t(e2) = v3, t(e3) = v4, t(e4) = v2,

t(e5) = v5, t(e6) = v5, t(e7) = v6, t(e8) = v6, t(e9) = v4.

The graph G1 is represented by the diagram shown in Figure 9.5.

1

v1 v2

v3

v4

v5 v6

e7

e8

e9

e1

e2

e3

e4

e5

e6

Fig. 9.5 A directed graph G1.

It should be noted that there are many different ways of “drawing” a graph. Ob-
viously, we would like as much as possible to avoid having too many intersecting
arrows but this is not always possible if we insist on drawing a graph on a sheet of
paper (on the plane).

Definition 9.2. Given a directed graph G, an edge e ∈ E such that s(e) = t(e) is
called a loop (or self-loop). Two edges e,e′ ∈ E are said to be parallel edges iff
s(e) = s(e′) and t(e) = t(e′). A directed graph is simple iff it has no parallel edges.

Remarks:

1. The functions s, t need not be injective or surjective. Thus, we allow “isolated
vertices,” that is, vertices that are not the source or the target of any edge.

2. When G is simple, every edge e ∈ E is uniquely determined by the ordered pair
of vertices (u,v), such that u = s(e) and v = t(e). In this case, we may denote
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the edge e by (uv) (some books also use the notation uv). Also, a graph without
parallel edges can be defined as a pair (V,E), with E ⊆ V ×V . In other words,
a simple graph is equivalent to a binary relation on a set (E ⊆ V ×V ). This
definition is often the one used to define directed graphs.

3. Given any edge e ∈ E, the nodes s(e) and t(e) are often called the boundaries
of e and the expression t(e)− s(e) is called the boundary of e.

4. Given a graph G = (V,E,s, t), we may also write V (G) for V and E(G) for
E. Sometimes, we even drop s and t and simply write G = (V,E) instead of
G = (V,E,s, t).

5. Some authors define a simple graph to be a graph without loops and without
parallel edges.

Observe that the graph G1 has the loop e6 and the two parallel edges e7 and e8.
When we draw pictures of graphs, we often omit the edge names (sometimes even
the node names) as illustrated in Figure 9.6.

1

v4

v5 v3

v1 v2

Fig. 9.6 A directed graph G2.

Definition 9.3. Given a directed graph G, for any edge e ∈ E, if u = s(e) and v =
t(e), we say that

(i) The nodes u and v are adjacent.
(ii) The nodes u and v are incident to the arc e.

(iii) The arc e is incident to the nodes u and v.
(iv) Two edges e,e′ ∈ E are adjacent if they are incident to some common node

(that is, either s(e) = s(e′), or t(e) = t(e′), or t(e) = s(e′), or s(e) = t(e′)).

Definition 9.4. Given a directed graph G, for any node u ∈V , set
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(a) d+
G (u) = |{e ∈ E | s(e) = u}| , the outer half-degree or outdegree of u.

(b) d−G (u) = |{e ∈ E | t(e) = u}| , the inner half-degree or indegree of u.
(c) dG(u) = d+

G (u)+d−G (u) , the degree of u.

A graph is regular iff every node has the same degree.

Note that d+
G (respectively, d−G (u)) counts the number of arcs “coming out from

u,” that is, whose source is u (respectively, counts the number of arcs “coming into
u,” i.e., whose target is u).

Example 9.2. In the graph of Example 9.1 shown in Figure 9.5, the nodes v2 and v5
are adjacent, they are incident to the arc e5, and the arc e5 is incident to the nodes v2
and v5. The edges e5 and e8 are adjacent, and so are the edges e4 and e9, and e2 and
e5. In the graph of Figure 9.6, d+

G2
(v1) = 2, d−G2

(v1) = 1, d+
G2
(v5) = 2, d−G2

(v5) = 4,
d+

G2
(v3) = 2, d−G2

(v3) = 2. Neither G1 nor G2 are regular graphs.

The first result of graph theory is the following simple but very useful proposi-
tion.

Proposition 9.1. For any finite graph G = (V,E,s, t), we have

∑
u∈V

d+
G (u) = ∑

u∈V
d−G (u).

Proof. Every arc e ∈ E has a single source and a single target and each side of the
above equations simply counts the number of edges in the graph. ut

Corollary 9.1. For any finite graph G = (V,E,s, t), we have

∑
u∈V

dG(u) = 2|E|;

that is, the sum of the degrees of all the nodes is equal to twice the number of edges.

Corollary 9.2. For any finite graph G= (V,E,s, t), there is an even number of nodes
with an odd degree.

The notion of homomorphism and isomorphism of graphs is fundamental.

Definition 9.5. Given two directed graphs G1 = (V1,E1,s1, t1) and G2 = (V2,E2,s2,
t2), a homomorphism (or morphism) f : G1→G2 from G1 to G2 is a pair f =( f v, f e)
with f v : V1 → V2 and f e : E1 → E2 preserving incidence; that is, for every edge,
e ∈ E1, we have

s2( f e(e)) = f v(s1(e)) and t2( f e(e)) = f v(t1(e)).

These conditions can also be expressed by saying that the following two diagrams
commute:
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E1
f e
//

s1

��

E2

s2

��
V1 f v

// V2

E1
f e
//

t1
��

E2

t2
��

V1 f v
// V2.

Given three graphs G1,G2,G3 and two homomorphisms f : G1→ G2, g : G2→
G3, with f = ( f v, f e) and g = (gv,ge), it is easily checked that (gv ◦ f v,ge ◦ f e) is
a homomorphism from G1 to G3. The homomorphism (gv ◦ f v,ge ◦ f e) is denoted
g◦ f .

Definition 9.6. For any graph G = (V,E,s, t), the map idG = (idV , idE) is a homo-
morphism called the identity homomorphism. Then a homomorphism f : G1→ G2
is an isomorphism iff there is a homomorphism, g : G2→ G1, such that

g◦ f = idG1 and f ◦g = idG2 .

In this case, g is unique and it is called the inverse of f and denoted f−1.

If f = ( f v, f e) is an isomorphism, we see immediately that f v and f e are bijec-
tions. Checking whether two finite graphs are isomorphic is not as easy as it looks.
In fact, no general efficient algorithm for checking graph isomorphism is known
at this time and determining the exact complexity of this problem is a major open
question in computer science.

Example 9.3. The graphs G3 and G4 shown in Figure 9.7 are isomorphic. The bijec-
tion f v is given by f v(vi) = wi, for i = 1, . . . ,6 and the reader will easily figure out
the bijection on arcs. As we can see, isomorphic graphs can look quite different.

Before discussing paths, let us collect various definitions having to do with the
notion of subgraph.

Definition 9.7. Given any two digraphs G = (V,E,s, t) and G′ = (V ′,E ′,s′, t ′), we
say that G′ is a subgraph of G iff V ′ ⊆V , E ′ ⊆ E, s′ is the restriction of s to E ′, and
t ′ is the restriction of t to E ′. If G′ is a subgraph of G and V ′ =V , we say that G′ is
a spanning subgraph of G.

Definition 9.8. Given a digraph G = (V,E,s, t), for any subset V ′ of V , the induced
subgraph G〈V ′〉 of G is the graph (V ′,EV ′ ,s′, t ′) whose set of edges is

EV ′ = {e ∈ E | s(e) ∈V ′; t(e) ∈V ′}.

(Clearly, s′ and t ′ are the restrictions of s and t to EV ′ , respectively.) Given any subset
E ′ ⊆ E, the graph G′ = (V,E ′,s′, t ′), where s′ and t ′ are the restrictions of s and t to
E ′, respectively, is called the partial graph of G generated by E ′.

Observe that if G′ = (V ′,E ′,s′,s′) is a subgraph of G = (V,E,s, t), then E ′ must
be a subset of EV ′ , and so any subgraph of a graph G is obtained as a subgraph of
some induced subgraph G〈V ′〉 of G, for some subset V ′ of V , and some subset E ′ of
EV ′ . For this reason, a subgraph of G is sometimes called a partial subgraph of G.
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Fig. 9.7 Two isomorphic graphs, G3 and G4.

Example 9.4. In Figure 9.8, on the left, the graph displayed in blue with vertex set
V ′ = {v1,v2,v3,v5} and edge set E ′ = {(v2,v5),(v5,v3)} is a subgraph of the graph
G2 (from Figure 9.6). On the right, the graph displayed in blue with edge set E ′ =
{(v2,v5),(v5,v3),(v3,v4),(v5,v1)} is a spanning subgraph of G2.

v4

v5 v3

v1 v2

v4

v5 v3

v1 v2

Fig. 9.8 A subgraph and a spanning subgraph.

Example 9.5. In Figure 9.9, on the left, the graph displayed in blue with vertex set
V ′ = {v2,v3,v5} and edge set E ′ = {(v2,v3),(v2,v5),(v3,v5),(v5,v3)} is the sub-
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graph of G2 induced by V ′. On the right, the graph displayed in blue with edge set
E ′ = {(v2,v5),(v5,v3)} is the partial graph of G2 generated by E ′.

v4

v5 v3

v1 v2

v4

v5 v3

v1 v2

Fig. 9.9 An induced subgraph and a partial graph.

9.3 Paths in Digraphs

Many problems about graphs can be formulated as path existence problems. Given a
directed graph G, intuitively, a path from a node u to a node v is a way to travel from
u in v by following edges of the graph that “link up correctly.” Unfortunately, if we
look up the definition of a path in two different graph theory books, we are almost
guaranteed to find different and usually clashing definitions. This has to do with the
fact that for some authors, a path may not use the same edge more than once and for
others, a path may not pass through the same node more than once. Moreover, when
parallel edges are present (i.e., when a graph is not simple), a sequence of nodes
does not define a path unambiguously.

The terminology that we have chosen may not be standard, but it is used by a
number of authors (some very distinguished, e.g., Jean–Pierre Serre) and we believe
that it is less taxing on one’s memory (however, this point is probably the most
debatable).

Definition 9.9. Given any digraph G=(V,E,s, t), and any two nodes u,v∈V , a path
from u to v is a triple, π = (u,e1 · · ·en,v), where n≥ 1 and e1 · · ·en is a sequence of
edges, ei ∈ E (i.e., a nonempty string in E∗), such that

s(e1) = u; t(en) = v; t(ei) = s(ei+1), 1≤ i≤ n−1.
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We call n the length of the path π and we write |π| = n. When n = 0, we have the
null path (u,ε,u), from u to u (recall, ε denotes the empty string); the null path has
length 0. If u = v, then π is called a closed path, else an open path. The path π =
(u,e1 · · ·en,v) determines the sequence of nodes, nodes(π) = 〈u0, . . . ,un〉, where
u0 = u, un = v and ui = t(ei), for 1≤ i≤ n. We also set nodes((u,ε,u)) = 〈u,u〉.

An important issue is whether a path contains no repeated edges or no repeated
vertices. The following definition spells out the terminology.

Definition 9.10. Given any digraph G = (V,E,s, t), and any two nodes u,v ∈ V , a
path π = (u,e1 · · ·en,v), is edge-simple, for short, e-simple iff ei 6= e j for all i 6= j
(i.e., no edge in the path is used twice).

Definition 9.11. A path π from u to v is simple iff no vertex in nodes(π) occurs
twice, except possibly for u if π is closed. Equivalently, if nodes(π) = 〈u0, . . . ,un〉,
then π is simple iff either

1. ui 6= u j for all i, j with i 6= j and 0 ≤ i, j ≤ n, or π is closed (i.e., u0 = un), in
which case

2. ui 6= u0 (= un) for all i with 1≤ i≤ n−1, and ui 6= u j for all i, j with i 6= j and
1≤ i, j ≤ n−1.

The null path (u,ε,u), is considered e-simple and simple.

Remarks:

1. Other authors (such as Harary [5]) use the term walk for what we call a path. The
term trail is also used for what we call an e-simple path, and the term path for
what we call a simple path. We decided to adopt the term “simple path” because
it is prevalent in the computer science literature. However, note that Berge [1]
and Sakarovitch [6] use the locution elementary path instead of simple path.

2. If a path π from u to v is simple, then every every node in the path occurs once
except possibly u if u = v, so every edge in π occurs exactly once. Therefore,
every simple path is an e-simple path.

3. If a digraph is not simple, then even if a sequence of nodes is of the form
nodes(π) for some path, that sequence of nodes does not uniquely determine
a path.

Example 9.6. In the graph G1 of Figure 9.10 , the sequence 〈v2,v5,v6〉 corresponds
to the two distinct paths (v2,e5e7,v6) and (v2,e5e8,v6).
In the graph G1

(v2,e5e7e9e4e5e8,v6)

is a path from v2 to v6 that is neither e-simple nor simple. The path

(v2,e2e3e4e5,v5)

is an e-simple path from v2 to v5 that is not simple (see Figure 9.11), and
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Fig. 9.10 A path in a directed graph G1.
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Fig. 9.11 An e-simple path in a directed graph G1.
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Fig. 9.12 Simple paths in a directed graph G1.

(v2,e5e7e9,v4), (v2,e5e7e9e4,v2)

are simple paths, the first one open and the second one closed (see Figure 9.12).

Recall the notion of subsequence of a sequence defined just before stating Theo-
rem 3.5.

Definition 9.12. If π = (u,e1 · · ·en,v) is any path from u to v in a digraph G, a
subpath of π is any path π ′ = (u,e′1 · · ·e′m,v) such that e′1, . . . ,e

′
m is a subsequence

of e1, . . . ,en.

The following simple proposition is actually very important.

Proposition 9.2. Let G be any digraph. (a) For any two nodes u,v in G, every non-
null path π from u to v contains a simple nonnull subpath.

(b) If |V | = n, then every open simple path has length at most n− 1, and every
closed simple path has length at most n.

Proof. (a) Let π be any nonnull path from u to v in G and let

S = {k ∈ N | k = |π ′|, π ′ is a nonnull subpath of π}.

The set S ⊆ N is nonempty because |π| ∈ S and as N is well ordered (see Section
5.4 and Theorem 5.3), S has a least element, say m≥ 1. We claim that any subpath
of π of length m is simple. See Figure 9.13 for an illustration of this argument.



422 9 Graphs, Part I: Basic Notions

v1 v2

v3

v4

v5

v6

e

1e

2

3

4

56

7

8

e

e

e

ee

e

v1 v2

v3

v4

v5

v6

e

1e

2

3

4

56

7

8

e

e

e

ee

e

v
1 1e 2e 3e 4e 5e v 3

k = 5

v
1 2e 3e 4e 5e v 3

k = 4

v1 v2

v3

v4

v5

v6

e

1e

2

3

4

56

7

8

e

e

e

ee

e
v

1 1e 2e 3e v 3

k = 3

v1 v2

v3

v4

v5

v6

e

1e

2

3

4

56

7

8

e

e

e

ee

e
v

1 2e 3e v 3

k =2simple subpath

Fig. 9.13 Ilustration of the proof of Proposition 9.2(a).

Consider any such path, say π ′ = (u,e′1 · · ·e′m,v); let

nodes(π ′) = 〈v0, . . . ,vm〉,

with v0 = u and vm = v, and assume that π ′ is not simple. There are two cases:

(1) u 6= v. Then some node occurs twice in nodes(π ′), say vi = v j, with i < j. Then
we can delete the path (vi,e′i+1, . . . ,e

′
j,v j) from π ′ to obtain a nonnull (because

u 6= v) subpath π ′′ of π ′ from u to v with |π ′′|= |π ′|− ( j− i) and because i < j,
we see that |π ′′| < |π ′|, contradicting the minimality of m. Therefore, π ′ is a
nonnull simple subpath of π .

(2) u = v. In this case, some node occurs twice in the sequence 〈v0, . . . ,vm−1〉. Then
as in (1), we can strictly shorten the path from v0 to vm−1. Even though the
resulting path may be the null path, as the edge e′m remains from the original
path π ′, we get a nonnull path from u to u strictly shorter than π ′, contradicting
the minimality of π ′.

(b) As in (a), let π ′ be an open simple path from u to v and let

nodes(π ′) = 〈v0, . . . ,vm〉.
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If m≥ n = |V |, as the above sequence has m+1 > n nodes, by the pigeonhole prin-
ciple, some node must occur twice, contradicting the fact that π ′ is an open simple
path. If π ′ is a nonnull closed path and m≥ n+1, then the sequence 〈v0, . . . ,vm−1〉
has m≥ n+1 nodes and by the pigeonhole principle, some node must occur twice,
contradicting the fact that π ′ is a nonnull simple path. ut

Like strings, paths can be concatenated.

Definition 9.13. Two paths, π = (u,e1 · · ·em,v) and π ′ = (u′,e′1 · · ·e′n,v′), in a di-
graph G can be concatenated iff v = u′, in which case their concatenation ππ ′ is the
path

ππ
′ = (u,e1 · · ·eme′1 · · ·e′n,v′).

We also let
(u,ε,u)π = π = π(v,ε,v).

Example 9.7. In the graph of Figure 9.12, the concatenation of the paths π =
(v2,e5e7,v6) and π ′ = (v6,e9e4,v2) is the path ππ ′ = (v2,e5e7e9e4,v2).

Concatenation of paths is obviously associative and observe that |ππ ′| = |π|+
|π ′|.

Closed e-simple paths also play an important role.

Definition 9.14. Let G = (V,E,s, t) be a digraph. A circuit is a closed e-simple path
(i.e., no edge occurs twice) without a distinguished starting vertex, and a simple
circuit is a simple closed path (without a distinguished starting vertex). Two circuits
or simple circuits obtained form each other by a cyclic permutation of their edge
sequences are said to be equivalent. Every null path (u,ε,u) is a simple circuit.

Example 9.8. In the graph G1 shown in Figure 9.12, the closed path

(v2,e5e7e9e4,v2)

is a circuit, in fact a simple circuit, and all closed paths

(v5,e7e9e4e5,v5), (v6,e9e4e5e7,v6), (v4,e4e5e7e9,v4),

obtained from it by cyclic permutation of the edges in the path are equivalent. For
most purposes, equivalent circuits can be considered to be the same circuit.

Remark: A closed path is sometimes called a pseudo-circuit. In a pseudo-circuit,
some edge may occur more than once.

The significance of simple circuits is revealed by the next proposition.

Proposition 9.3. Let G be any digraph. (a) Every circuit π in G is the union of
pairwise edge-disjoint simple circuits.

(b) A circuit is simple iff it is a minimal circuit, that is, iff it does not contain any
proper circuit.
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Proof. We proceed by induction on the length of π . The proposition is trivially true
if π is the null path. Next, let π = (u,e1 · · ·em,u) be any nonnull circuit and let

nodes(π) = 〈v0, . . . ,vm〉,

with v0 = vm = u. If π is a simple circuit, we are done. Otherwise, some node occurs
twice in the sequence 〈v0, . . . ,vm−1〉. Pick two occurrences of the same node, say
vi = v j, with i < j, such that j− i is minimal. Then due to the minimality of j− i,
no node occurs twice in 〈vi, . . . ,v j−1〉, which shows that π1 = (vi,ei+1 · · ·e j,vi) is a
simple circuit. Now we can write π = π ′π1π ′′, with |π ′π ′′|< |π|. Thus, we can apply
the induction hypothesis to the circuit π ′π ′′, which shows that π ′π ′′ is the union of
simple circuits. Then π itself is the union of the simple circuit π1 and the simple
circuits corresponding to π ′π ′′. All these simple circuits are pairwise edge-disjoint
because π has no repeated edges. The proof is illustrated in Figure 9.14.

(b) This is clear by definition of a simple circuit. ut

In general, a circuit cannot be decomposed as the concatenation of simple cir-
cuits, as shown by the circuit of Figure 9.14.
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Fig. 9.14 Decomposition of a circuit as a union of simple circuits.
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Remarks:

1. If u and v are two nodes that belong to a circuit π in G, (i.e., both u and v are
incident to some edge in π), then there is a path from u to v and there is a path
from v to u. Indeed, u and v are connected by a portion of the circuit π , and v
and u are connected by the complementary portion of the circuit.

2. If π is a pseudo-circuit, the above proof shows that it is still possible to express
π as a union of simple circuits, but it may not be possible to write π as the union
of pairwise edge-disjoint simple circuits.

9.4 Strongly Connected Components (SCC)

Definition 9.15. Let G = (V,E,s, t) be a digraph. We define the binary relation ĈG
on V as follows. For all u,v ∈V ,

uĈGv iff there is a path from u to v and there is a path from v to u.

When uĈGv, we say that u and v are strongly connected.

For example, all the blue nodes in the graph of Figure 9.15 are related in the
relation ĈG.

The relation ĈG is an equivalence relation. The notion of an equivalence relation
was discussed in Chapter 4 (Section 4.1) but because it is a very important concept,
we review its main properties.

Repeating Definition 4.1, a binary relation R on a set X is an equivalence relation
iff it is reflexive, transitive, and symmetric; that is:

(1) (Reflexivity): aRa, for all a ∈ X .
(2) (transitivity): If aRb and bRc, then aRc, for all a,b,c ∈ X .
(3) (Symmetry): If aRb, then bRa, for all a,b ∈ X .

The main property of equivalence relations is that they partition the set X into
nonempty, pairwise disjoint subsets called equivalence classes. For any x ∈ X , the
set

[x]R = {y ∈ X | xRy}
is the equivalence class of x. Each equivalence class [x]R is also denoted xR, and the
subscript R is often omitted when no confusion arises.

For the reader’s convenience, we repeat Proposition 4.1.

Let R be an equivalence relation on a set X. For any two elements x,y ∈ X, we have

xRy iff [x] = [y].

Moreover, the equivalence classes of R satisfy the following properties.

(1) [x] 6= /0, for all x ∈ X.
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(2) If [x] 6= [y] then [x]∩ [y] = /0.
(3) X =

⋃
x∈X [x].

The relation ĈG is reflexive because we have the null path from u to u, symmetric
by definition, and transitive because paths can be concatenated.

Definition 9.16. The equivalence classes of the relation ĈG are called the strongly
connected components of G (SCCs). A graph is strongly connected iff it has a single
strongly connected component.
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Fig. 9.15 A directed graph G1 with two SCCs.

Example 9.9. The graph G1 of Figure 9.15 has two strongly connected components

{v1}, {v2,v3,v4,v5,v6},

inasmuch as there is a closed path

(v4,e4e2e3e4e5e7e9,v4).

The graph G2 of Figure 9.6 is strongly connected.

Let us give a simple algorithm for computing the strongly connected components
of a graph because this is often the key to solving many problems. The algorithm
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works as follows. Given some vertex u ∈ V , the algorithm computes the two sets
X+(u) and X−(u), where

X+(u) = {v ∈V | there exists a path from u to v}
X−(u) = {v ∈V | there exists a path from v to u}.

Then it is clear that the strongly connected component C(u) of u is given by
C(u) = X+(u)∩X−(u).

For simplicity, we assume that X+(u),X−(u) and C(u) are represented by linear
arrays. In order to make sure that the algorithm makes progress, we used a simple
marking scheme. We use the variable total to count how many nodes are in X+(u)
(or in X−(u)), and the variable marked to keep track of how many nodes in X+(u)
(or in X−(u)) have been processed so far. Whenever the algorithm considers some
unprocessed node, the first thing it does is to increment marked by 1. Here is the
algorithm in high-level form.

function strcomp(G: graph; u: node): set
begin

X+(u)[1] := u; X−(u)[1] := u; total := 1; marked := 0;
while marked < total do

marked := marked+1; v := X+(u)[marked];
for each e ∈ E

if (s(e) = v) & (t(e) /∈ X+(u)) then
total := total+1; X+(u)[total] := t(e) endif

endfor
endwhile;
total := 1; marked := 0;
while marked < total do

marked := marked+1; v := X−(u)[marked];
for each e ∈ E

if (t(e) = v) & (s(e) /∈ X−(u)) then
total := total+1; X−(u)[total] := s(e) endif

endfor
endwhile;
C(u) = X+(u)∩X−(u); strcomp :=C(u)

end

If we want to obtain all the strongly connected components (SCCs) of a finite
graph G, we proceed as follows. Set V1 = V , pick any node v1 in V1, and use the
above algorithm to compute the strongly connected component C1 of v1. If V1 =C1,
stop. Otherwise, let V2 = V1−C1. Again, pick any node v2 in V2 and determine the
strongly connected component C2 of v2. If V2 =C2, stop. Otherwise, let V3 =V2−C2,
pick v3 in V3, and continue in the same manner as before. Ultimately, this process
will stop and produce all the strongly connected components C1, . . . ,Ck of G.
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It should be noted that the function strcomp and the simple algorithm that we
just described are “naive” algorithms that are not particularly efficient. Their main
advantage is their simplicity. There are more efficient algorithms, in particular, there
is a beautiful algorithm for computing the SCCs due to Robert Tarjan.

Going back to our city traffic problem from Section 9.1, if we compute the
strongly connected components for the proposed solution shown in Figure 9.2, we
find three SCCs

A = {6,7,8,12,13,14}, B = {11}, C = {1,2,3,4,5,9,10,15,16,17,18,19},

shown in Figure 9.16.

1

16 17 18 19

10 11 12 13 14 15

5 6 7 8 9

1 2 3 4

Fig. 9.16 The strongly connected components of the graph in Figure 9.2.

Therefore, the city engineers did not do a good job. We show after Definition
9.17 how to “fix” this faulty solution.

Note that the problem is that all the edges between the strongly connected com-
ponents A and C go in the wrong direction.

Given a graph G we can form a new and simpler graph from G by connecting the
strongly connected components of G as shown below.

Definition 9.17. Let G= (V,E,s, t) be a digraph. The reduced graph Ĝ is the simple
digraph without loops whose set of nodes V̂ =V/ĈG is the set of strongly connected
components of V and whose set of edges Ê is defined as follows.

(û, v̂) ∈ Ê iff (û 6= v̂)∧ (∃e ∈ E)(s(e) ∈ û and t(e) ∈ v̂),
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where we denote the strongly connected component of u by û.

The reduced graph (DAG) of the graph shown in Figure 9.16 is shown in Figure
9.17, where its SCCs are labeled A, B, and C as shown below:

A = {6,7,8,12,13,14}, B = {11}, C = {1,2,3,4,5,9,10,15,16,17,18,19}.

The locations in the component A are inaccessible. Observe that changing the di-

1

A

B C

Fig. 9.17 The reduced graph of the graph in Figure 9.16.

rection of any street between the strongly connected components A and C yields a
solution, that is, a strongly connected graph. So, the engineers were not too far off
after all.

A solution to our traffic problem obtained by changing the direction of the street
between 13 and 18 is shown in Figure 9.18.

That Ĝ is “simpler” than G is the object of the next proposition.

Proposition 9.4. Let G be any digraph. The reduced graph Ĝ contains no circuits.

Proof. Suppose that u and v are nodes of G and that u and v belong to two disjoint
strongly connected components that belong to a circuit π̂ in Ĝ. Then the circuit π̂

yields a closed sequence of edges e1, . . . ,en between strongly connected components
and we can arrange the numbering so that these components are C0, . . . ,Cn, with
Cn = C0, with ei an edge between s(ei) ∈Ci−1 and t(ei) ∈Ci for 1 ≤ i ≤ n− 1, en
an edge between between s(en) ∈Cn−1 and t(en) ∈C0, û =Cp and v̂ =Cq, for some
p < q. Now we have t(ei) ∈ Ci and s(ei+1) ∈ Ci for 1 ≤ i ≤ n− 1, and t(en) ∈ C0
and s(e1) ∈ C0, and as each Ci is strongly connected, we have simple paths from
t(ei) to s(ei+1) and from t(en) to s(e1). Also, as û =Cp and v̂ =Cq for some p < q,
we have some simple paths from u to s(ep+1) and from t(eq) to v. This situation is
illustrated in Figure 9.19. By concatenating the appropriate paths, we get a circuit
in G containing u and v, showing that u and v are strongly connected, contradicting
that u and v belong to two disjoint strongly connected components. ut

Definition 9.18. A digraph without circuits is called a directed acyclic graph, for
short a DAGs.
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Fig. 9.18 A good choice of one-way streets.
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Fig. 9.19 Illustration of the quotient graph in the proof of Proposition 9.4.
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Such graphs have many nice properties. In particular, it is easy to see that any
finite DAG has nodes with no incoming edges. Then it is easy to see that finite
DAGs are basically collections of trees (see Definition 9.6) with shared nodes.

9.5 Undirected Graphs, Chains, Cycles, Connectivity

The edges of a graph express relationships among its nodes. Sometimes, these re-
lationships are not symmetric, in which case it is desirable to use directed arcs as
we have in the previous sections. However, there is a class of problems where these
relationships are naturally symmetric or where there is no a priori preferred orienta-
tion of the arcs. For example, if V is the population of individuals that were students
at Penn between 1900 until now and if we are interested in the relation where two
people A and B are related iff they had the same professor in some course, then
this relation is clearly symmetric. As a consequence, if we want to find the set of
individuals who are related to a given individual A, it seems unnatural and, in fact,
counterproductive, to model this relation using a directed graph.

As another example suppose we want to investigate the vulnerabilty of an internet
network under two kinds of attacks: (1) disabling a node and (2) cutting a link.
Again, whether a link between two sites is oriented is irrelevant. What is important
is that the two sites are either connected or disconnected.

These examples suggest that we should consider an “unoriented” version of a
graph. How should we proceed?

One way to proceed is to still assume that we have a directed graph but to modify
certain notions such as paths and circuits to account for the fact that such graphs
are really “unoriented.” In particular, we should redefine paths to allow edges to
be traversed in the “wrong direction.” Such an approach is possible but slightly
awkward and ultimately it is really better to define undirected graphs. However,
to show that this approach is feasible, let us give a new definition of a path that
corresponds to the notion of path in an undirected graph.

Definition 9.19. Given any digraph G = (V,E,s, t) and any two nodes u,v ∈ V , a
chain (or walk) from u to v is a sequence π = (u0,e1,u1,e2,u2, . . . ,un−1,en,un),
where n≥ 1; ui ∈V ; e j ∈ E and

u0 = u; un = v and {s(ei), t(ei)}= {ui−1,ui}, 1≤ i≤ n.

We call n the length of the chain π and we write |π| = n. When n = 0, we have
the null chain (u,ε,u), from u to u, a chain of length 0. If u = v, then π is called
a closed chain, else an open chain. The chain π determines the sequence of nodes:
nodes(π) = 〈u0, . . . ,un〉, with nodes((u,ε,u)) = 〈u,u〉.

The following definition is the version of Definition 9.10 for chains that contain
no repeated edges or no repeated vertices.
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Definition 9.20. Given any digraph G = (V,E,s, t) and any two nodes u,v ∈ V , a
chain π is edge-simple, for short, e-simple iff ei 6= e j for all i 6= j (i.e., no edge in the
chain is used twice). A chain π from u to v is simple iff no vertex in nodes(π) occurs
twice, except possibly for u if π is closed. The null chain (u,ε,u) is considered e-
simple and simple.

The main difference between Definition 9.19 and Definition 9.9 is that Definition
9.19 ignores the orientation: in a chain, an edge may be traversed backwards, from
its endpoint back to its source. This implies that the reverse of a chain

π
R = (un,en,un−1, , . . . ,u2,e2,u1,e1,u0)

is a chain from v = un to u = u0. In general, this fails for paths. Note, as before, that
if G is a simple graph, then a chain is more simply defined by a sequence of nodes
(u0,u1, . . . ,un).
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Fig. 9.20 The graphs G5 and G′5.

Example 9.10. In the graph G5 shown in Figure 9.20, we have the chains

(v1,a,v2,d,v4, f ,v5,e,v2,d,v4,g,v3), (v1,a,v2,d,v4, f ,v5,e,v2,c,v3)

and
(v1,a,v2,d,v4,g,v3)

from v1 to v3.
Note that none of these chains are paths. The graph G′5 is obtained from the graph

G5 by reversing the direction of the edges d, f , e, and g, so that the above chains are
actually paths in G′5. The second chain is e-simple and the third is simple.

Chains are concatenated the same way as paths and the notion of subchain is
analogous to the notion of subpath. The undirected version of Proposition 9.2 also
holds. The proof is obtained by changing the word “path” to “chain.”
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Proposition 9.5. Let G be any digraph. (a) For any two nodes u,v in G, every non-
null chain π from u to v contains a simple nonnull subchain.

(b) If |V | = n, then every open simple chain has length at most n−1, and every
closed simple chain has length at most n.

The undirected version of strong connectivity is the following:

Definition 9.21. Let G = (V,E,s, t) be a digraph. We define the binary relation C̃G
on V as follows. For all u,v ∈V ,

uC̃Gv iff there is a chain from u to v.

When uC̃Gv, we say that u and v are connected.

Oberve that the relation C̃G is an equivalence relation. It is reflexive because we
have the null chain from u to u, symmetric because the reverse of a chain is also a
chain, and transitive because chains can be concatenated.

Definition 9.22. The equivalence classes of the relation C̃G are called the connected
components of G (CCs). A graph is connected iff it has a single connected compo-
nent.

Observe that strong connectivity implies connectivity but the converse is false.
For example, the graph G1 of Figure 9.5 is connected but it is not strongly con-
nected. The function strcomp and the method for computing the strongly connected
components of a graph can easily be adapted to compute the connected components
of a graph.

The undirected version of a circuit is the following.

Definition 9.23. Let G = (V,E,s, t) be a digraph. A cycle is a closed e-simple chain
(i.e., no edge occurs twice) without a distinguished starting vertex, and a simple
cycle is a simple closed chain (without a distinguished starting vertex). Two cy-
cles or simple cycle obtained form each other by a cyclic permutation of their edge
sequences are said to be equivalent. Every null chain (u,ε,u) is a simple cycle.

Remark: A closed chain is sometimes called a pseudo-cycle. The undirected ver-
sion of Proposition 9.3 also holds. Again, the proof consists in changing the word
“circuit” to “cycle”.

Proposition 9.6. Let G be any digraph. (a) Every cycle π in G is the union of pair-
wise edge-disjoint simple cycles.

(b) A cycle is simple iff it is a minimal cycle, that is, iff it does not contain any
proper cycle.

The reader should now be convinced that it is actually possible to use the notion
of a directed graph to model a large class of problems where the notion of orientation
is irrelevant. However, this is somewhat unnatural and often inconvenient, so it is
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desirable to introduce the notion of an undirected graph as a “first-class” object.
How should we do that?

We could redefine the set of edges of an undirected graph to be of the form
E+∪E−, where E+ = E is the original set of edges of a digraph and with

E− = {e− | e+ ∈ E+, s(e−) = t(e+), t(e−) = s(e+)},

each edge e− being the “anti-edge” (opposite edge) of e+. Such an approach is
workable but experience shows that it not very satisfactory.

The solution adopted by most people is to relax the condition that every edge
e ∈ E be assigned an ordered pair 〈u,v〉 of nodes (with u = s(e) and v = t(e)) to
the condition that every edge e ∈ E be assigned a set {u,v} of nodes (with u = v
allowed). To this effect, let [V ]2 denote the subset of the power set consisting of all
two-element subsets of V (the notation

(V
2

)
is sometimes used instead of [V ]2):

[V ]2 = {{u,v} ∈ 2V | u 6= v}.

Definition 9.24. A graph is a triple G = (V,E,st) where V is a set of nodes or
vertices, E is a set of arcs or edges, and st : E →V ∪ [V ]2 is a function that assigns
a set of endpoints (or endnodes) to every edge.

When we want to stress that we are dealing with an undirected graph as opposed
to a digraph, we use the locution undirected graph. When we draw an undirected
graph we suppress the tip on the extremity of an arc. For example, the undirected
graph G6 corresponding to the directed graph G5, is shown in Figure 9.21.

1

v4

v5

v1 v2

v3

a

g

b c d

e

f

Fig. 9.21 The undirected graph G6.

Definition 9.25. Given a graph G, an edge e ∈ E such that st(e) ∈V is called a loop
(or self-loop). Two edges e,e′ ∈ E are said to be parallel edges iff st(e) = st(e′). A
graph is simple iff it has no loops and no parallel edges.
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Remarks:

1. The functions st need not be injective or surjective.
2. When G is simple, every edge e∈E is uniquely determined by the set of vertices
{u,v} such that {u,v}= st(e). In this case, we may denote the edge e by {u,v}
(some books also use the notation (uv) or even uv).

3. Some authors call a graph with no loops but possibly parallel edges a multigraph
and a graph with loops and parallel edges a pseudograph. We prefer to use the
term graph for the most general concept.

4. Given an undirected graph G = (V,E,st), we can form directed graphs from
G by assigning an arbitrary orientation to the edges of G. This means that we
assign to every set st(e)= {u,v}, where u 6= v, one of the two pairs (u,v) or (v,u)
and define s and t such that s(e) = u and t(e) = v in the first case or such that
s(e) = v and t(e) = u in the second case (when u = v, we have s(e) = t(e) = u)).

5. When a graph is simple, the function st is often omitted and we simply write
(V,E), with the understanding that E is a set of two-element subsets of V .

6. The concepts or adjacency and incidence transfer immediately to (undirected)
graphs.

It is clear that the definitions of chain, connectivity, and cycle (Definitions 9.19,
9.21, and 9.23) immediately apply to (undirected) graphs. For example, the notion
of a chain in an undirected graph is defined as follows.

Definition 9.26. Given any graph G = (V,E,st) and any two nodes u,v ∈V , a chain
(or walk) from u to v is a sequence π = (u0,e1,u1,e2,u2, . . . ,un−1,en,un), where
n≥ 1; ui ∈V ; ei ∈ E and

u0 = u; un = v and st(ei) = {ui−1,ui}, 1≤ i≤ n.

We call n the length of the chain π and we write |π| = n. When n = 0, we have
the null chain (u,ε,u), from u to u, a chain of length 0. If u = v, then π is called
a closed chain, else an open chain. The chain π determines the sequence of nodes,
nodes(π) = 〈u0, . . . ,un〉, with nodes((u,ε,u)) = 〈u,u〉.

The next definition is the version of Definition 9.20 for undirected graphs.

Definition 9.27. Given any graph G = (V,E,st) and any two nodes u,v ∈V , a chain
π is edge-simple, for short, e-simple iff ei 6= e j for all i 6= j (i.e., no edge in the chain
is used twice). A chain π from u to v is simple iff no vertex in nodes(π) occurs twice,
except possibly for u if π is closed. The null chain (u,ε,u) is considered e-simple
and simple.

An e-simple chain is also called a trail (as in the case of directed graphs). Defi-
nitions 9.21 and 9.23 are adapted to undirected graphs in a similar fashion.

However, only the notion of degree (or valency) of a node applies to undirected
graphs, except for a minor twist. A loop at a vertex u contributes 2 instead of 1 to
the degree of u; see Diestel [4], Section 1.10, Page 29. Without this adjustment, the
version of Corollary 9.1 for undireced graphs with loops fails.
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Definition 9.28. Given any (undirected) graph G = (V,E,st), for every node u ∈V ,
the degree (or valency) of u is given by

dG(u) = |{e ∈ E | u ∈ st(e), |st(e)|= 2}|+2|{e ∈ E | st(e) = {u}}|.

We can check immediately that with the adjusted definition of degree given in
Definition 9.28, Corollary 9.1 and Corollary 9.2 apply to undirected graphs. For the
reader’s convenience, we state these results.

Corollary 9.3. For any finite undirected graph G = (V,E,st), we have

∑
u∈V

dG(u) = 2|E|;

that is, the sum of the degrees of all the nodes is equal to twice the number of edges.

Corollary 9.4. For any finite undirected graph G = (V,E,st), there is an even num-
ber of nodes with an odd degree.

Remark: When it is clear that we are dealing with undirected graphs, we some-
times allow ourselves some abuse of language. For example, we occasionally use
the term path instead of chain.

The notion of homomorphism and isomorphism also makes sense for undirected
graphs. In order to adapt Definition 9.5, observe that any function g : V1 → V2 can
be extended in a natural way to a function from V1∪ [V1]

2 to V2∪ [V2]
2, also denoted

g, so that
g({u,v}) = {g(u),g(v)},

for all {u,v} ∈ [V1]
2.

Definition 9.29. Given two graphs G1 = (V1,E1,st1) and G2 = (V2,E2,st2), a ho-
momorphism (or morphism) f : G1→G2, from G1 to G2 is a pair f = ( f v, f e), with
f v : V1→ V2 and f e : E1→ E2 preserving incidence, that is, for every edge e ∈ E1,
we have

st2( f e(e)) = f v(st1(e)).

These conditions can also be expressed by saying that the following diagram com-
mutes.

E1
f e

//

st1
��

E2

st2
��

V1∪ [V1]
2

f v
// V2∪ [V2]

2

As for directed graphs, we can compose homomorphisms of undirected graphs
and the definition of an isomorphism of undirected graphs is the same as the defi-
nition of an isomorphism of digraphs. Definition 9.7 about various notions of sub-
graphs is immediately adapted to undirected graphs.

An important class of graphs is the class of complete graphs.
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Definition 9.30. We define the complete graph Kn with n vertices (n ≥ 2) as the
simple undirected graph whose edges are all two-element subsets {i, j}, with i, j ∈
{1,2, . . . ,n} and i 6= j.

Even though the structure of complete graphs is quite simple, there are some very
hard combinatorial problems involving them. For example, an amusing but very
difficult problem involving edge colorings is the determination of Ramsey numbers.

A version of Ramsey’s theorem says the following: for every pair (r,s) of positive
natural numbers, there is a least positive natural number R(r,s), such that for every
coloring of the edges of the complete (undirected) graph on R(r,s) vertices using
the colors blue and red, either there is a complete subgraph with r vertices whose
edges are all blue or there is a complete subgraph with s vertices whose edges are
all red.

So R(r,r) is the smallest number of vertices of a complete graph whose edges
are colored either blue or red that must contain a complete subgraph with r vertices
whose edges are all of the same color. It is called a Ramsey number. For details on
Ramsey’s theorems and Ramsey numbers, see Diestel [4], Chapter 9.

The graph shown in Figure 9.22 (left) is a complete graph on five vertices with a
coloring of its edges so that there is no complete subgraph on three vertices whose
edges are all of the same color. Thus, R(3,3)> 5.

1

Fig. 9.22 Left: A 2-coloring of K5 with no monochromatic K3; Right: A 2-coloring of K6 with
several monochromatic K3s.

There are
215 = 32768

2-colored complete graphs on 6 vertices. One of these graphs is shown in Figure
9.22 (right). It can be shown that all of them contain a triangle whose edges have
the same color, so R(3,3) = 6.

The numbers R(r,s) are called Ramsey numbers. It turns out that there are very
few numbers r,s for which R(r,s) is known because the number of colorings of a
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graph grows very fast! For example, there are

243×21 = 2903 > 102490 > 10270

2-colored complete graphs with 43 vertices, a huge number. In comparison, the
universe is only approximately 14 billion years old, namely 14×109 years old.

For example, R(4,4) = 18, R(4,5) = 25, but R(5,5) is unknown, although it can
be shown that 43≤ R(5,5)≤ 49. Finding the R(r,s), or at least some sharp bounds
for them, is an open problem.

We now investigate the properties of a very important subclass of (undirected)
graphs, trees.

9.6 Trees and Forests

In this section, until further notice, we are dealing with undirected graphs. Given
a graph G, edges having the property that their deletion increases the number of
connected components of G play an important role and we would like to characterize
such edges.

Definition 9.31. Given any graph G = (V,E,st), any edge e ∈ E, whose deletion
increases the number of connected components of G (i.e., (V,E−{e},st � (E−{e}))
has more connected components than G) is called a bridge.

For example, the edge (v4v5) in the graph shown in Figure 9.23 is a bridge.

1

v4 v5v1

v2

v3 v6

v7

Fig. 9.23 A bridge in the graph G7.
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Proposition 9.7. Given any graph G = (V,E,st), adjunction of a new edge e be-
tween u and v (this means that st is extended to ste, with ste(e) = {u,v}) to G has
the following effect.

1. Either the number of components of G decreases by 1, in which case the edge e
does not belong to any cycle of G′ = (V,E ∪{e},ste), or

2. The number of components of G is unchanged, in which case the edge e belongs
to some cycle of G′ = (V,E ∪{e},ste).

Proof. Two mutually exclusive cases are possible:

(a) The endpoints u and v (of e) belong to two disjoint connected components of G.
In G′, these components are merged. The edge e can’t belong to a cycle of G′

because the chain obtained by deleting e from this cycle would connect u and v
in G, a contradiction.

(b) The endpoints u and v (of e) belong to the same connected component of G.
Then G′ has the same connected components as G. Because u and v are con-
nected, there is a simple chain from u to v (by Proposition 9.5) and by adding e
to this simple chain, we get a cycle of G′ containing e. ut

Corollary 9.5. Given any graph G = (V,E,st), an edge e ∈ E is a bridge iff it does
not belong to any cycle of G.

Theorem 9.1. Let G be a finite graph and let m = |V | ≥ 1. The following properties
hold.

(i) If G is connected, then |E| ≥ m−1.
(ii) If G has no cycle, then |E| ≤ m−1.

Proof. We can build the graph G progressively by adjoining edges one at a time
starting from the graph (V, /0), which has m connected components.

(i) Every time a new edge is added, the number of connected components de-
creases by at most 1. Therefore, it will take at least m− 1 steps to get a connected
graph.

(ii) If G has no cycle, then every spanning graph has no cycle. Therefore, at every
step, we are in case (1) of Proposition 9.7 and the number of connected components
decreases by exactly 1. As G has at least one connected component, the number of
steps (i.e., of edges) is at most m−1. ut

In view of Theorem 9.1, it makes sense to define the following kind of graphs.

Definition 9.32. A tree is a graph that is connected and acyclic (i.e., has no cycles).
A forest is a graph whose connected components are trees.

The picture of a tree is shown in Figure 9.24.
Our next theorem gives several equivalent characterizations of a tree.

Theorem 9.2. Let G be a finite graph with m = |V | ≥ 2 nodes. The following prop-
erties characterize trees.
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Fig. 9.24 A tree T1.

(1) G is connected and acyclic.
(2) G is connected and minimal for this property (if we delete any edge of G, then

the resulting graph is no longer connected).
(3) G is connected and has m−1 edges.
(4) G is acyclic and maximal for this property (if we add any edge to G, then the

resulting graph is no longer acyclic).
(5) G is acyclic and has m−1 edges.
(6) Any two nodes of G are joined by a unique chain.

Proof. The implications

(1) =⇒ (3),(5)
(3) =⇒ (2)
(5) =⇒ (4)

all follow immediately from Theorem 9.1.
(4) =⇒ (3). If G was not connected, we could add an edge between to disjoint

connected components without creating any cycle in G, contradicting the maximal-
ity of G with respect to acyclicity. By Theorem 9.1, as G is connected and acyclic,
it must have m−1 edges.

(2) =⇒ (6). As G is connected, there is a chain joining any two nodes of G. If,
for two nodes u and v, we had two distinct chains from u to v, deleting any edge
from one of these two chains would not destroy the connectivity of G contradicting
the fact that G is minimal with respect to connectivity.

(6) =⇒ (1). If G had a cycle, then there would be at least two distinct chains
joining two nodes in this cycle, a contradiction.

The reader should then draw the directed graph of implications that we just es-
tablished and check that this graph is strongly connected. Indeed, we have the cycle
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of implications

(1) =⇒ (5) =⇒ (4) =⇒ (3) =⇒ (2) =⇒ (6) =⇒ (1). ut

Remark: The equivalence of (1) and (6) holds for infinite graphs too.

Corollary 9.6. For any tree G adding a new edge e to G yields a graph G′ with a
unique cycle.

Proof. Because G is a tree, all cycles of G′ must contain e. If G′ had two distinct cy-
cles, there would be two distinct chains in G joining the endpoints of e, contradicting
Property (6) of Theorem 9.2. ut

Corollary 9.7. Every finite connected graph possesses a spanning tree.

Proof. This is a consequence of Property (2) of Theorem 9.2. Indeed, if there is
some edge e ∈ E, such that deleting e yields a connected graph G1, we consider G1
and repeat this deletion procedure. Eventually, we get a minimal connected graph
that must be a tree. ut

An example of a spanning tree (shown in thicker lines) in a graph is shown in
Figure 9.25.
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1 2 3

4 5 6 7

8 9 10

11 12

Fig. 9.25 A spanning tree.

Definition 9.33. An endpoint or leaf in a graph is a node of degree 1.



442 9 Graphs, Part I: Basic Notions

Proposition 9.8. Every finite tree with m≥ 2 nodes has at least two endpoints.

Proof. By Theorem 9.2, our tree has m−1 edges and by the version of Proposition
9.1 for undirected graphs,

∑
u∈V

dG(u) = 2(m−1).

If we had dG(u)≥ 2 except for a single node u0, we would have

∑
u∈V

dG(u)≥ 2m−1,

contradicting the above. ut

Proposition 9.9. A forest with m nodes and p connected components has m− p
edges.

Proof. Indeed, if each connected component has mi nodes, then the total number of
edges is

(m1−1)+(m2−1)+ · · ·+(mp−1) = m− p. ut

9.7 Rooted Trees

We now briefly consider directed versions of a tree.

Definition 9.34. Given a digraph G=(V,E,s, t), a node a∈V is a root (respectively,
antiroot) iff for every node u ∈V , there is a path from a to u (respectively, there is a
path from u to a). A digraph with at least two nodes is a rooted tree with root a (or
an arborescence with root a) iff

1. The node a is a root of G.
2. G is a tree (as an undirected graph).

A digraph with at least two nodes is an antiarborescence with antiroot a iff

1. The node a is an antiroot of G.
2. G is a tree (as an undirected graph).

Note that orienting the edges in a tree does not necessarily yield a rooted tree (or
an antiarborescence). Also, if we reverse the orientation of the arcs of a rootred tree
we get an antiarborescence. A rooted tree is shown in Figure 9.26.

If T is an (oriented) rooted tree with root r, then by forgetting the orientation of
the edges, we obtain an undirected tree with some distinguished node r (the root).

Conversely, if T is a finite undirected tree with at least two nodes and if we pick
some node r as being designated, we obtain an (oriented) rooted tree with root r
by orienting the edges of T as follows: For every edge {u,v} in T , since there are
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Fig. 9.26 A rooted tree T2 with root v1.

unique paths from r to u, from r to v, and from u to v, and because T is acyclic,
either u comes before v on the unique path from r to v, or v comes before u on the
unique path from r to u. In the first case, orient the edge {u,v} as (u,v), and the
second case as (v,u).

Therefore, (directed) rooted trees and pairs (T,r), where T is an undirected tree
(with at least two nodes) and r is some distinguished node in T , are equivalent. For
this reason, we often draw a rooted tree as an undirected tree.

Definition 9.35. If T is a rooted tree with root r, a leaf of T is a node u with outde-
gree d+(u) = 0, and the root of T is the only node r with indegree d−(r) = 0.

Because we assume that a rooted tree has at least two nodes, the root node is not
a leaf.

Definition 9.36. Every nonleaf node u in T has some outegree k = d+(u) > 0, and
the set of nodes {v1, . . . ,vk} such that there is an edge (u,vi) in T is called the set
of children or immediate successors of u. The node u is the parent of vi, and vi is a
child of u. Any two nodes in the set {v1, . . . ,vk} of children of u are called siblings.
Any node u on the unique path from the root r to a node v is called an ancestor of
v, and v is called a descendent of u.

Remark: If we view a rooted tree as a pair (T,r), where T is an undirected tree, a
leaf is a node of degree 1 which is not the root r.

Example 9.11. In Figure 9.26, the node v1 is the root of T2, the nodes v4,v7,v8,v5,v9
are the leaves of T2, and the children of v3 are {v7,v8,v6}. The node v2 is an ancestor
of v6, and v5 is a descendent of v2.

Definition 9.37. The height (or depth) of a finite rooted tree T is the length of a
longest path from the root to some leaf. The depth of a node v in T is the length of
the unique path from the root to v.
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Note that the height of a tree is equal to the depth of the deepest leaf.

Example 9.12. The rooted tree of Figure 9.26 has depth 4, both v2 and v4 have depth
1, v3 has depth 2, v6,v7,v8 have depth 3, and v5,v9 have depth 4.

Sometimes, it is convenient to allow a one-node tree to be a rooted tree. In this
case, we consider the single node to be both a root and a leaf.

There is a version of Theorem 9.2 giving several equivalent characterizations of
a rooted tree. The proof of this theorem is left as an exercise to the reader.

Theorem 9.3. Let G be a finite digraph with m = |V | ≥ 2 nodes. The following
properties characterize rooted trees with root a.

(1) G is a tree (as undirected graph) with root a.
(2) For every u ∈V , there is a unique path from a to u.
(3) G has a as a root and is minimal for this property (if we delete any edge of G,

then a is not a root any longer).
(4) G is connected (as undirected graph) and moreover

(∗)
{

d−G (a) = 0
d−G (u) = 1, for all u ∈V, u 6= a.

(5) G is acyclic (as undirected graph) and the properties (∗) are satisfied.
(6) G is acyclic (as undirected graph) and has a as a root.
(7) G has a as a root and has m−1 arcs.

9.8 Ordered Binary Trees; Rooted Ordered Trees

If T is a finite rooted tree with root r, there is no ordering on the siblings of every
nonleaf node, but there are many applications where such an ordering is desirable.
For example the although the two trees T1 and T2 shown in Figure 9.27 seem differ-
ent, they are just two different drawings of the same rooted tree T with set of nodes
{1,2,3,4,5,6,7} and set of edges {(4,2),(4,6),(2,1),(2,3),(6,5),(6,7)}.

1 3 5 7

2 6

4

7 5 1 3

6 2

4

Fig. 9.27 Two drawings of the same rooted tree.
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Yet, if our goal is to use of one these trees for searching, namely to find whether
some positive integer m belongs to such a tree, the tree on the left is more desirable
because we can use a simple recursive method: if m is equal to the root then stop;
else if m is less that the root value, then search recursively the “left”’ subtree, else
search recursively the “right” subtree.

Therefore, we need to define a notion of ordered rooted tree. The idea is that
for every nonleaf node u, we need to define an ordering on the set {v1, . . . ,vk} of
children of u. This can be done in various ways. One method is to assign to every
node v a unique string of positive integers i1i2 . . . im, in such a way that i1i2 . . . im
specifies the path (r,v1, . . . ,vm) to follow from the root to v = vm. So, we go to the
i1th successor v1 of the root, then to the i2th successor of v1, and so on, and finally
we go to the im-th successor of vm−1.

It turns out that it is possible to capture exactly the properties of such sets of
strings defining ordered trees in terms of simple axioms. Such a formalism was
invented by Saul Gorn. However, to make things simpler, let us restrict ourselves to
ordered binary trees. This will also allow us to give a simple recursive definition (to
be accurate, an inductive definition).

The definition has to allow the possibility that a node has no left child or no right
child, as illustrated in Figure 9.28, and for this, we allow the empty tree /0 to be a
tree.

1 3 7

2 6

4

1 3 5

2 6

4

Fig. 9.28 Ordered binary trees with empty subtrees.

We are going to use strings over the alphabet {1,2}. Recall that the empty string
is denoted by ε , and that the concatenation of two strings x and y is denoted by xy.
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Definition 9.38. Given a set of strings D over the alphabet {1,2}, we say that a
string s ∈ D is maximal if neither s1 ∈ D nor s2 ∈ D. Thus, a string in D is not
maximal iff it is a proper prefix of some string in D. For every string s ∈ {1,2}∗, we
define D/s as the set of strings obtained by deleting the prefix s from every string in
D,

D/s = {x ∈ {1,2}∗ | sx ∈ D}.
Note that D/s = /0 if s /∈ D.

For example, if
D = {ε,1,2,11,12,22},

we have D/1 = {ε,1,2}, D/2 = {ε,2} and D/21 = /0. Observe that 11,12 and 22
are maximal.

Definition 9.39. An ordered binary tree T is specified by a triple (D,L, `), where D
is a finite set of strings of 1’s and 2’s called the tree domain, L is a finite nonempty
set of node labels, and ` : D→ L is a function called the labeling function, such that
the following property is satisfied:

(1) The set D is prefix-closed (which means that if xy ∈ D then x ∈ D, for any two
strings x,y in {1,2}∗).

The set of vertices of T is the set of pairs V = {(s, `(s)) | s∈D}, and the set of edges
of T is the set of ordered pairs E = {((s, `(s)),(si, `(si)) | si ∈ D, i ∈ {1,2}}. The
root of T is the node (ε, `(ε)). Every string s in D is called a tree address.

Condition (1) ensures that there is a (unique) path from the root to every node,
so T is indeed a tree. The labeling function need not be injective, so the same label
may appear in different nodes.

Observe that D = /0 is possible, in which case T is the empty tree, which has no
label and is not a root. If D 6= /0, then the node (ε, `(ε)) is the root of T . A leaf of T
is a node (s, `(s)) such that s is maximal in D.

An example of an ordered binary tree is shown in Figure 9.29. Every edge is
tagged with either a 1 or a 2. This is not part of the formal definition but it clarifies
how the children of evey nonleaf are ordered. For example the first (left) successor
of node (ε,4) is (1,2), and the second (right) successor of (ε,4) is (2,6). For every
node (s,u), the string s specifies which path to follow from the root to that node.
For example, if we consider the node (21,5), the string 21 indicates that from the
root, we first have to go to the second child, and then to the first child of that node.
In order to implement such trees, we can replace each nonleaf node (s,u) by a node
(l,r,u), where l is a pointer to the left child (s1,v1) of (s,u) if it exists, r is a pointer
to the right child (s2,v2) of (s,u) if it exists, and otherwise l (or r) is the special
pointer nil (or /0).

Figure 9.30 shows examples of ordered binary trees with some empty subtrees.
An ordered binary tree is a special kind of positional tree for which every nonleaf

node has exactly two successors, one which may be the empty subtree (but not both);
see Cormen, Leiserson, Rivest and Stein [3], Appendix B.5.3.
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11, 1 12, 3 21, 5 22, 7

1, 2 2, 6

ε, 4
1 2

1 2 1 2

Fig. 9.29 An ordered binary tree T .

11, 1 12, 3 22, 7

1, 2 2, 6

ε, 4
1 2

1 2 2

11, 1 12, 3 21, 5

1, 2 2, 6

ε, 4
1 2

1 2 1

Fig. 9.30 Ordered binary trees with some empty subtrees.

One should be aware that defining ordered binary trees requires more than draw-
ing pictures in which some implicit left-to-right ordering is assumed. If we draw
trees upside-down (as is customary) with the root at the top and the leaves at the
bottom, then we can indeed rely on the left-to-right ordering. However, if we draw
trees as they grow in nature (which is the case for proof trees used in logic), with
the root at the bottom and the leaves at the top, then we have rotated our trees by
180 degrees, and left has become right and vice-versa! The definition in terms of
tree addresses does not rely on drawings. By definition, the left child (if it exists) of
a node (s,u) is (s1,v1), and the right child (if it exists) of node (s,u) is (s2,v2).
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Definition 9.40. Given an ordered binary tree T = (D,L, `), if T is not the empty
tree, we define the left subtree T/1 of T and the right subtree T/2 of T as follows:
the domains D/1 and D/2 of T/1 and T/2 are given by

D/1 = {s | 1s ∈ D}
D/2 = {s | 2s ∈ D},

and the labeling functions `/1 and `/2 of T/1 and T/2 are given by

`/1(s) = `(1s) | 1s ∈ D

`/2(s) = `(2s) | 2s ∈ D.

If D/1 = /0, then T/1 is the empty tree, and similarly if D/2 = /0, then T/2 is the
empty tree.

It is easy to check that T/1 and T/2 are ordered binary trees.
In Figure 9.31, we show the left subtree and the right subtree of the ordered

binary tree in Figure 9.29.

1, 1 2, 3

ε, 2
1 2

1, 5 2, 7

ε, 6
1 2

Fig. 9.31 Left and right subtrees of the ordered binary tree in Figure 9.29.

Conversely we have the following construction.

Definition 9.41. Given two ordered binary trees T1 = (D1,L, `1) and T2 = (D2,L, `2)
with the same node label set L, possibly with T1 = /0 or T2 = /0, for any label u ∈ L,
we define the ordered binary tree u(T1,T2) as the tree whose domain is given by

(1) If D1 = /0 and D2 = /0, then
D = {ε},

with labeling function ` is given by

`(ε) = u.

(2) If D1 6= /0 and D2 = /0, then

D = {ε}∪{1s | s ∈ D1},

with labeling function ` is given by
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`(ε) = u, `(1s) = `1(s) | s ∈ D1;

(3) If D1 = /0 and D2 6= /0, then

D = {ε}∪{2s | s ∈ D2},

with labeling function ` is given by

`(ε) = u, `(2s) = `2(s) | s ∈ D2;

(4) If D1 6= /0 and D2 6= /0, then

D = {ε}∪{1s | s ∈ D1}∪{2s | s ∈ D2},

with labeling function ` is given by

`(ε) = u, `(1s) = `1(s) | s ∈ D1, `(2s) = `2(s) | s ∈ D2;

It is easy to check that u(T1,T2) is indeed an ordered binary tree with root (ε,u),
and that the left subtree of u(T1,T2) is T1 and the right subtree of u(T1,T2) is T2.

The above considerations lead to an alternate inductive definition of ordered bi-
nary trees which is often simpler to work with. However, the virtue of Definition
9.39 is that it shows that an ordered binary tree is indeed a special kind of rooted
tree.

Definition 9.42. Given a finite (nonempty) set L of node labels, an ordered binary
tree (for short OBT) T is defined inductively as follows:

(1) The empty tree T = /0 is an OBT without a root.
(2) If T1 and T2 are OBT and u is any label in L, then u(T1,T2) is an OBT with root

u, left subtree T1 and right subtree T2.

The height of an OBT (according to Definition 9.42) is defined recursively as
follows:

height( /0) =−1
height(u(T1,T2)) = 1+max(height(T1),height(T2)).

The reason for assigning −1 as the height of the empty tree is that this way, the
height of an OBT T is the same for both definitions of an OBT. In particular, the
height of a one-node tree is 0.

If T = u(T1,T2) is a nonempty OBT, then observe that

height(T1)< height(u(T1,T2)) and height(T2)< height(u(T1,T2)).

Thus, in order to prove properties of OBTs, we can proceed by induction on
the height of trees, which yields the following extremely useful induction principle
called structural induction principle.
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Structural Induction Principle for OBTs

Let P be a property of OBTs. If

(1) P( /0) holds (base case), and
(2) Whenever P(T1) and P(T2) hold, then P(u(T1,T2)) holds (induction step), then

P(T ) holds for all OBTs T .

The OBTs given by Definition 9.42 are really symbolic representations of the
OBTs given by Definition 9.39. There is a bijective correspondence between the set
of OBTs given by Definition 9.39 and the set of OBTs given by Definition 9.42. To
show this we define two functions E and T . First we define the function E from the
set of OBTs given by Definition 9.39 to the set of OBTs given by Definition 9.42.

Definition 9.43. Given any OBT T given by Definition 9.39, if T = /0, then

E ( /0) = /0,

and for any nonempty OBT T with root (ε,u), if T1 and T2 are the left and right
subtrees of T , then

E (T ) = u(E (T1),E (T2)).

Observe that the one-node rooted ordered tree with node label u is represented by
E (u) = u( /0, /0).

We also define a function T from the set of OBTs given by Definition 9.42 to
the set of OBTs given by Definition 9.39 as follows.

Definition 9.44. Given any ordered binary tree T (with label set L) according to
Definition 9.42, we define the ordered binary tree T (T ) = (D,L, `) as follows: if
T = /0, then T (T ) is also the empty tree /0. Otherwise T = u(T1,T2), and we have
the following cases:

(1) If T1 = /0 and T2 = /0, then
D = {ε},

with labeling function ` is given by

`(ε) = u.

(2) If T1 6= /0 and T2 = /0, then if T (T1) = (D1,L, `1), we have

D = {ε}∪{1s | s ∈ D1},

with labeling function ` is given by

`(ε) = u, `(1s) = `1(s) | s ∈ D1;

(3) If T1 = /0 and T2 6= /0, then if T (T2) = (D2,L, `2), we have
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D = {ε}∪{2s | s ∈ D2},

with labeling function ` is given by

`(ε) = u, `(2s) = `2(s) | s ∈ D2;

(4) If T1 6= /0 and T2 6= /0, then if T (T1) = (D1,L, `1) and T (T2) = (D2,L, `2), we
have

D = {ε}∪{1s | s ∈ D1}∪{2s | s ∈ D2},
with labeling function ` is given by

`(ε) = u, `(1s) = `1(s) | s ∈ D1, `(2s) = `2(s) | s ∈ D2;

Using structural induction, it is not hard to show that E and T are mutual in-
verses. Therefore, E and T are indeed bijections.

When drawing OBTs defined according to Definition 9.42, it is customary to
omit all empty subtrees. The binary ordered tree T shown at the top of Figure 9.32
is mapped to the OBT shown at the bottom of Figure 9.32. Similarly, the binary
ordered tree shown at the top of Figure 9.33 is mapped to the OBT shown at the
bottom of Figure 9.33.

One of the drawbacks of Definition 9.42 is that it does not explicitly use the no-
tion of tree address, so if the same label occurs more than once in an OBT T , there
is no mechanism to refer precisely to distinct occurrences of this label. In particular,
the depth of a label is not well-defined. On the other hand, no such possible ambigu-
ity arises in the tree T (T ), where nodes are associated with unique tree addresses.

If T is an OBT in which all the labels are distinct, then for every label x ∈ L, the
depth of x in T can be defined recursivey as follows: if T = /0, then depth(x, /0) is
undefined, else if T = u(T1,T2), then

(1) If x = u, then depth(x,T ) = 0;
(2) If x ∈ T1, then depth(x,T ) = 1+depth(x,T1);
(3) If x ∈ T2, then depth(x,T ) = 1+depth(x,T2);
(4) If x /∈ T , then depth(x,T ) is undefined.

Definition 9.45. We say that a nonempty OBT T is complete if either T = u( /0, /0),
or T = u(T1,T2) where both T1 and T2 are complete OBTs of the same height.

If T is a nonempty OBT of height h, then it is easy to show that T is complete
iff all leaves are at depth h and if all nonleaf nodes have exactly two children. The
following proposition is easy to show.

Proposition 9.10. For any nonempty OBT T , if T has height h, then

(1) T has at most 2h+1−1 nodes.
(2) T has at most 2h leaves.

Both maxima are achieved by complete OBTs.
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11, 1 12, 3 21, 5 22, 7

1, 2 2, 6

ε, 4
1 2

1 2 1 2

1 3 5 7

2 6

4

Fig. 9.32 An ordered binary tree; top, Definition 9.39; bottom, Definition 9.42.

11, 1 12, 3 21, 5

1, 2 2, 6

ε, 4
1 2

1 2 1

1 3 5

2 6

4

Fig. 9.33 An ordered binary tree; top, Definition 9.39; bottom, Definition 9.42.
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Ordered binary trees can be generalized to positional trees such that every nonleaf
node has exactly k successors, some of which may be the empty subtree (but not all).
Such trees called k-ary trees are defined as follows.

Definition 9.46. A k-ary -tree T is specified by a triple (D,L, `), where D is a finite
set of strings over the alphabet {1,2, . . . ,k} (with k≥ 1) called the tree domain, L is
a finite nonempty set of node labels, and ` : D→ L is a function called the labeling
function, such that the following property is satisfied:

(1) The set D is prefix-closed (which means that if xy ∈ D, then x ∈ D, for any two
strings x,y in {1,2, . . . ,k}∗).

The set of vertices of T is the set of pairs V = {(s, `(s)) | s∈D}, and the set of edges
of T is the set of ordered pairs E = {((s, `(s)),(si, `(si)) | si ∈ D, i ∈ {1,2, . . . ,k}}.
The root of T is the node (ε, `(ε)). Every string s in D is called a tree address.

We leave it as an exercise to give an inductive definition of a k-ary tree gener-
alizing Definition 9.42 and to formulate a structural induction principle for k-ary
trees.

The closely related concept of a rooted ordered tree comes up in algorithm theory
and in formal languages and automata theory; see Cormen, Leiserson, Rivest and
Stein [3], Appendix B.5.2. An ordered tree is a tree such that the children of every
nonleaf node are ordered, but unlike k-ary trees, it is not required that every nonleaf
node has exactly k successors (some of which may be empty). So, as ordered binary
trees, the two trees shown in Figure 9.28 are different, but as ordered trees they are
considered identical. By adding a simple condition to Definition 9.46, we obtain the
following definition of an ordered tree due to Saul Gorn.

Definition 9.47. A rooted ordered tree T is specified by a triple (D,L, `), where D
is a finite set of strings over the alphabet {1,2, . . . ,k} (for some k ≥ 1) called the
tree domain, L is a finite nonempty set of node labels, and ` : D→ L is a function
called the labeling function, such that the following properties are satisfied:

(1) The set D is prefix-closed (which means that if xy ∈ D, then x ∈ D, for any two
strings x,y in {1,2, . . . ,k}∗).

(2) For every string s ∈D, for any i ∈ {1, . . . ,k}, if si ∈D, then s j ∈D for all j with
1≤ j < i.

The set of vertices of T is the set of pairs V = {(s, `(s)) | s∈D}, and the set of edges
of T is the set of ordered pairs E = {((s, `(s)),(si, `(si)) | si ∈ D, i ∈ {1,2, . . . ,k}}.
The root of T is the node (ε, `(ε)). Every string s in D is called a tree address.

Condition (2) ensures that if a node (s, `(s)) has an i-th child, (si, `(si)), then it
must also have all i− 1 children (s j, `(s j)) “to the left” of (s, `(s)). The outdegree
of every node in T is at most k. An example of ordered tree is shown in Figure
9.34. Note that if we change the label of the edge from node (2,6) to (21,8) to 2
and correspondingly change node (21,8) to (22,8), node (211,5) to (221,5), and
node (212,9) to (222,9), we obtain an illegal ordered tree, because node (2,6) has
a second child but it is missing its first child.
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11, 1 12, 3

211, 5 212, 9

1, 2

21, 8

2, 6

ε, 4
1 2

1 2

1 2

1

Fig. 9.34 An ordered tree T .

Ordered trees are the main constituents of data structures caled binomial trees
and binomial heaps.

9.9 Binary Search Trees and Heaps

An important class of ordered binary trees are binary search trees. Such trees are
used as dictionaries or priority queues, which are data structures which support
dynamic-set operations.

The node label set L of a binary search tree is a totally ordered set (see Definition
5.1). Elements of L are called keys. In our examples, we assume that L is a subset
of Z or R. The main property of a binary search tree is that the key of every node is
greater than the key of every node in its left subtree and smaller than every key in
its right subtree.

Definition 9.48. A binary search tree, for short BST , is a rooted ordered binary tree
T with a node label set L that is totally ordered, whose elements are called keys
so that the following property known as the binary-search-tree property holds. For
every node (s,u) in T ,

1. The key v1 of every node in the left subtree of (s,u) is less than u (v1 < u).
2. The key v2 of every node in the right subtree of (s,u) is greater than u (u < v2).

An example of a binary search tree is shown in Figure 9.35.
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One of the main virtues of a binary search tree T is that it is easy to list the
keys in T in sorted (increasing) order by using a very simple recursive tree traversal
known as an inorder tree walk: if T consists of a single node u, then output u; else
if T = u(T1,T2), then

1. List all keys in the left subtree T1 in increasing order.
2. List u.
3. List all keys in the right subtree T2 in increasing order.

Applying this traversal to the binary search tree of Figure 9.35 we get the ordered
sequence

2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20.

2 4 13

17 203 7

18

15

6

9

Fig. 9.35 A binary seach tree.

Other simple queries are easily performed on binary search trees. These are

1. Search for a key.
2. Find the minimum key.
3. Find the maximum key.
4. Find the predecessor of a key (for the total ordering on L).
5. Find the successor of a key (for the total ordering on L).

Given a BST tree T and given a key v, to find whether v is equal to some key in
T we can proceed recursively as follows: if T = u(T1,T2) then

1. If v = u, then return v.
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2. if v 6= u and T1 = T2 = /0, then return v not found.
3. If v 6= u and T1 6= /0 or T2 6= /0, then

a. if v < u then search for v in the left subtree T1,
b. else search for v in the right subtree T2.

It is easy to modify the above function to return the node containing the key v if
v occurs in T .

To find the minimum key in T , recursively follow the left pointer of every node
(that is, recursively go down the left subtree). For example, in the BST of Figure
9.35 following left links starting from the root node 15, we reach the “leftmost” leaf
2.

To find the maximum key in T , recursively follow the right pointer of every node
(that is, recursively go down the right subtree). For example, in the BST of Figure
9.35 following right links starting from the root node 15, we reach the “rightmost”
leaf 20.

In order to find the successor of the key u associated with a node (s,u), we need
to consider two cases:

1. If (s,u) has a nonempty right subtree T2, then the successor of u is the key v of
the leftmost node in the subtree T2, which is found by recursively following the
left links of the root of T2 (as in the case of finding the minimum key).

2. If (s,u) has an empty right subtree, then we need to go up along a path to the
root, and find the lowest ancestor of (s,u) whose left child is also an ancestor of
(s,u).

For example, in the BST of Figure 9.35, the successor of 7 is 9, the successor
of 15 is 17, and the successor of 13 is 15. We leave it as an exercise to prove that
the above method is correct. Finding the predecessor of a key is symmetric to the
method for finding a successor; see Problem 9.21.

Other operations on BST can be easily performed, such as

1. Inserting a node (containing a new key).
2. Deleting a node.

In both cases, we have to make sure that the binary-search-tree property is pre-
served. Inserting a new key is done recursively and easy to do. Deleting a node is
a bit more subtle because it depends on the number of children of the node to be
deleted. These operations are described in any algorithms course and will not be
discussed here.

Of course, as soon as we allow performing insertions of deletions of nodes in a
BST, it is possible to obtain “unbalanced” BSTs (namely, BSTs with large height)
and the cost of performing operations on such unbalanced trees becomes greater.
Therefore, it may be desirable to perform operations to rebalance BSTs known as
rotations. There is a particular class of BSTs known as red-black trees that keep
BSTs well balanced. Again, these are described in any algorithms course. An excel-
lent source is Cormen, Leiserson, Rivest and Stein [3].

Before closing this section, let us mention another kind of data structure using
ordered binary trees, namely a binary heap.
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Definition 9.49. A binary heap is an ordered binary tree, whose set of label is also
totatly ordered, that does not satisfy the binary-search-tree property but instead a
heap property, which is one of the following two properties:

1. The min-heap-property, which says that for every node (s,u) in the heap H, the
key of every descendent of (s,u) is greater than u.

2. The max-heap-property, which says that for every node (s,u) in the heap H, the
key of every descendent of (s,u) is smaller than u.

Thus, in a heap satisfying the min-heap-property, the smallest key is at the root,
and in a heap satisfying the max-heap-property, the largest key is at the root. A
binary heap must be well balanced, which means that if H is a heap of height h≥ 1,
then every node of depth h−1 which is not a leaf has two children except possibly
the rightmost one, and if h ≥ 2, then every node of depth at most h−2 has exactly
two children. It is easy to see that this implies that if a heap has n nodes, then its
height is at most blnnc. A heap satisfying the max-heap property is shown in Figure
9.36.

2 4 1
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16

14

Fig. 9.36 A max-heap.

Binary max-heaps can be used for sorting sequence of elements. Binary heaps
can also be used as priority queues to implement operations on sets, often in con-
junction with graph algorithms. These topics are thoroughly discussed in Cormen,
Leiserson, Rivest and Stein [3].

The heap property is also well-defined for k-ary trees and sets of ordered trees,
and indeed, there are heaps called binomial heaps that consist of certain sets of
ordered trees. There are even heaps consisting of sets of unordered trees (rooted
trees) called Fibonacci heaps. One of the issues in dealing with heaps is to keep
them well balanced and Fibonacci heaps have particularly good properties in this
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respect. We urge the reader who wants to learn more about trees, heaps, and their
uses in the theory of algorithms to consult Cormen, Leiserson, Rivest and Stein [3].

9.10 Minimum (or Maximum) Weight Spanning Trees

For a certain class of problems it is necessary to consider undirected graphs (without
loops) whose edges are assigned a “cost” or “weight.”

Definition 9.50. A weighted graph is a finite graph without loops G = (V,E,st),
together with a function c : E → R, called a weight function (or cost function). We
denote a weighted graph by (G,c). Given any set of edges E ′ ⊆ E, we define the
weight (or cost) of E ′ by

c(E ′) = ∑
e∈E ′

c(e).

Given a weighted graph (G,c), an important problem is to find a spanning tree
T such that c(T ) is maximum (or minimum). This problem is called the maximal
weight spanning tree (respectively, minimal weight spanning tree). Actually, it is
easy to see that any algorithm solving any one of the two problems can be converted
to an algorithm solving the other problem. For example, if we can solve the maximal
weight spanning tree, we can solve the minimal weight spanning tree by replacing
every weight c(e) by −c(e), and by looking for a spanning tree T that is a maximal
spanning tree, because

min
T⊆G

c(T ) =−max
T⊆G
−c(T ).

There are several algorithms for finding such spanning trees, including one due to
Kruskal and another one due to Robert C. Prim. We will present both algorithms
in this section. The fastest known algorithm at present is due to Bernard Chazelle
(1999), but we will not discuss it in this book.

Because every spanning tree of a given graph G = (V,E,st) has the same num-
ber of edges (namely, |V | − 1), adding the same constant to the weight of every
edge does not affect the maximal nature a spanning tree, that is, the set of maximal
weight spanning trees is preserved. Therefore, we may assume that all the weights
are nonnegative.

We now describe in detail Kruskal’s algorithm. In order to justify its correctness,
we need two definitions.

Definition 9.51. Let (G,c) be any connected weighted graph with G = (V,E,st),
and let T be any spanning tree of G. For every edge e ∈ E−T , let Ce be the set of
edges belonging to the Ceunique chain in T joining the endpoints of e (the vertices
in st(e)).

Example 9.13. In the graph shown in Figure 9.37 and with the spanning tree T
shown in Figure 9.25, the set C{8,11} associated with the edge {8,11} (shown as
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a dashed line) corresponds to the following set of edges (shown as red dotted lines)
in T ,

C{8,11} = {{8,5},{5,9},{9,11}}.

1

1 2 3

4 5 6 7

8 9 10

11 12

Fig. 9.37 The set Ce associated with an edge e ∈ G−T .

Also, given any edge e ∈ T , observe that the result of deleting e yields a graph
denoted T − e consisting of two disjoint subtrees of T .

Definition 9.52. Let (G,c) be any connected weighted graph with G = (V,E,st),
and let T be any spanning tree of G. Given any edge e ∈ T , let Ωe be the set of
edges Ωee′ ∈ G− T , such that if st(e′) = {u,v}, then u and v belong to the two
distinct connected components of T −{e}.

Example 9.14. In Figure 9.38, deleting the edge {5,9} yields the set of edges (shown
as dotted lines)

Ω{5,9} = {{1,2},{5,2},{5,6},{8,9},{8,11}}.

Observe that in the first case, deleting any edge from Ce and adding the edge
e ∈ E − T yields a new spanning tree, and in the second case, deleting any edge
e∈ T and adding any edge in Ωe also yields a new spanning tree. These observations
are crucial ingredients in the proof of the following theorem.
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1
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4 5 6 7

8 9 10

11 12

Fig. 9.38 The set Ω{5,9} obtained by deleting the edge {5,9} from the spanning tree.

Theorem 9.4. Let (G,c) be any connected weighted graph and let T be any span-
ning tree of G. (1) The tree T is a maximal weight spanning tree iff any of the
following (equivalent) conditions hold.

(i) For every e ∈ E−T ,
c(e)≤ min

e′∈Ce
c(e′)

(ii) For every e ∈ T ,
c(e)≥ max

e′∈Ωe
c(e′).

(2) The tree T is a minimal weight spanning tree iff any of the following (equiv-
alent) conditions hold.

(i) For every e ∈ E−T ,
c(e)≥ max

e′∈Ce
c(e′)

(ii) For every e ∈ T ,
c(e)≤ min

e′∈Ωe
c(e′).

Proof. (1) First, assume that T is a maximal weight spanning tree. Observe that

(a) For any e∈E−T and any e′ ∈Ce, the graph T ′= (V,(T ∪{e})−{e′}) is acyclic
and has |V |−1 edges, so it is a spanning tree. Then, (i) must hold, as otherwise
we would have c(T ′)> c(T ), contradicting the maximality of T .
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(b) For any e∈ T and any e′ ∈Ωe, the graph T ′ = (V,(T ∪{e′})−{e}) is connected
and has |V |−1 edges, so it is a spanning tree. Then, (ii) must hold, as otherwise
we would have c(T ′)> c(T ), contradicting the maximality of T .
Let us now assume that (i) holds. We proceed by contradiction. Let T be a span-
ning tree satisfying Condition (i) and assume there is another spanning tree T ′

with c(T ′) > c(T ). There are only finitely many spanning trees of G, there-
fore we may assume that T ′ is maximal. Consider any edge e ∈ T ′−T and let
st(e) = {u,v}. In T , there is a unique chain Ce joining u and v, and this chain
must contain some edge e′ ∈ T joining the two connected components of T ′−e;
that is, e′ ∈ Ωe. As (i) holds, we get c(e) ≤ c(e′). However, as T ′ is maximal,
(ii) holds (as we just proved), so c(e)≥ c(e′). Therefore, we get

c(e) = c(e′).

Consequently, if we form the graph T2 = (T ′∪{e′})−{e}), we see that T2 is a
spanning tree having some edge from T and c(T2) = c(T ′). We can repeat this
process of edge substitution with T2 and T and so on. Ultimately, we obtain a
tree Tk equal to the tree T such that c(Tk) = c(T ′). But c(T ) = c(Tk) = c(T ′)>
c(T ), which is absurd. Therefore, T is indeed maximal. This proof is illustrated
in Figure 9.39.
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Fig. 9.39 Illustration of the proof of Theorem 9.4.
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Finally, assume that (ii) holds. The proof is analogous to the previous proof: we
begin by picking some edge e′ ∈ T −T ′, and e is some edge in Ωe′ belonging to the
chain joining the endpoints of e′ in T ′.

(2) The proof of (2) is analogous to the proof of (1) but uses 2(i) and 2(ii) instead
of 1(i) and 1(ii). ut

We are now in the position to present a version of Kruskal’s algorithm and to
prove its correctness.

Here is a version of Kruskal’s algorithm for finding a minimal weight spanning
tree using Criterion 2(i).

Fig. 9.40 Joseph Kruskal, 1928–.

Let n be the number of edges of the weighted graph (G,c), where G = (V,E,st).

function Kruskal((G,c): weighted graph): tree
begin

Sort the edges in nondecreasing order of weights:
c(e1)≤ c(e2)≤ ·· · ≤ c(en);
T := /0;
for i := 1 to n do

if (V,T ∪{ei}) is acyclic then T := T ∪{ei}
endif

endfor;
Kruskal := T

end

We admit that the above description of Kruskal’s algorithm is a bit sketchy as we
have not explicitly specified how we check that adding an edge to a tree preserves
acyclicity. On the other hand, it is quite easy to prove the correctness of the above
algorithm.

It is not difficult to refine the above “naive” algorithm to make it totally explicit
but this involves a good choice of data structures. We leave these considerations to
an algorithms course.

Clearly, the graph T returned by the algorithm is acyclic, but why is it connected?
Well, suppose T is not connected and consider two of its connected components, say
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T1 and T2. Being acyclic and connected, T1 and T2 are trees. Now, as G itself is con-
nected, for any node of T1 and any node of T2, there is some chain connecting these
nodes. Consider such a chain C, of minimal length. Then, as T1 is a tree, the first
edge e j of C cannot belong to T1 because otherwise we would get an even shorter
chain connecting T1 and T2 by deleting e j. Furthermore, e j does not belong to any
other connected component of T , as these connected components are pairwise dis-
joint. But then, T +e j is acyclic, which means that when we considered the addition
of edge e j to the current graph T ( j), the test should have been positive and e j should
have been added to T ( j). Therefore, T is connected and so it is a spanning tree. Now
observe that as the edges are sorted in nondecreasing order of weight, Condition 2(i)
is enforced and by Theorem 9.4, T is a minimal weight spanning tree.

We can easily design a version of Kruskal’s algorithm based on Condition 2(ii).
This time, we sort the edges in nonincreasing order of weights, and starting with G,
we attempt to delete each edge e j as long as the remaining graph is still connected.
We leave the design of this algorithm as an exercise to the reader.

We now turn our attention to Prim’s algorithm. Prim’s algorithm is based on a
rather different observation.

Definition 9.53. For any node v ∈ V , let Uv be the set of edges incident with v that
are not loops,

Uv = {e ∈ E | v ∈ st(e), st(e) ∈ [V ]2}.

Choose in Uv some edge of minimum weight that we (ambiguously) denote by
e(v).

Proposition 9.11. Let (G,c) be a connected weighted graph with G = (V,E,st). For
every vertex v ∈V , there is a minimum weight spanning tree T so that e(v) ∈ T .

Proof. Let T ′ be a minimum weight spanning tree of G, and assume that e(v) /∈ T ′.
Let C be the chain in T ′ that joins the endpoints of e(v) and let e be the edge of C
that is incident with v. Then the graph T ′′ = (V,(T ′ ∪{e(v)})−{e}) is a spanning
tree of weight less than or equal to the weight of T ′ and as T ′ has minimum weight,
so does T ′′. By construction, e(v) ∈ T ′′. ut

Prim’s algorithm uses an edge-contraction operation described below.

Definition 9.54. Let G = (V,E,st) be a graph, and let e∈ E be some edge that is not
a loop; that is, st(e) = {u,v}, with u 6= v. The graph Ce(G) obtained by contracting
the edge e is the graph obtained by merging u and v into a single node and deleting
e. More precisely, Ce(G) = ((V −{u,v})∪{w},E−{e},ste), where w is any new
node not in V and where, for all e′ ∈ E−{e},

1. ste(e′) = st(e′) iff u /∈ st(e′) and v /∈ st(e′).
2. ste(e′) = {w,z} iff st(e′) = {u,z}, with z /∈ st(e).
3. ste(e′) = {z,w} iff st(e′) = {z,v}, with z /∈ st(e).
4. ste(e′) = w iff st(e′) = {u,v}.

Edge contraction is illustrated in Figure 9.41.
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A C

B

u v

D E

G e

A C

B

D E

wC  (G)e

Fig. 9.41 Illustration of the contraction of edge e.

Proposition 9.12. Let G = (V,E,st) be a graph. For any edge e ∈ E, the graph G is
a tree iff Ce(G) is a tree.

Proof. Proposition 9.12 follows from Theorem 9.2. Observe that G is connected iff
Ce(G) is connected. Moreover, if G is a tree, the number of nodes of Ce(G) is ne =
|V |−1, and the number of edges of Ce(G) is me = |E|−1. Because |E|= |V |−1, we
get me = ne−1 and Ce(G) is a tree. Conversely, if Ce(G) is a tree, then me = ne−1,
|V |= ne +1 and |E|= me +1, so m = n−1 and G is a tree. ut

Here is a “naive” version of Prim’s algorithm.

function Prim((G = (V,E,st),c): weighted graph): tree
begin

T := /0;
while |V | ≥ 2 do

pick any vertex v ∈V ;
pick any edge (not a loop), e, in Uv of minimum weight;
T := T ∪{e}; G :=Ce(G)

endwhile;
Prim := T

end

An example of the execution of Prim’s algorithm is shown in Figure 9.42.
The correctness of Prim’s algorithm is an immediate consequence of Proposition

9.11 and Proposition 9.12; the details are left to the reader.
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Since only one edge remains, Prim’s algorithm is done.
The spanning tree is the union of all the red edges.A B
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Fig. 9.42 An example of the execution of Prim’s algorithm.

9.11 Eulerian and Hamiltonian Cycles

In this short section we discuss two classical problems that go back to the very
beginning of graph theory. These problems have to do with the existence of certain
kinds of cycles in graphs. These problems come in two flavors depending on whether
the graphs are directed but there are only minor differences between the two versions
and traditionally the focus is on undirected graphs.

The first problem goes back to Euler and is usually known as the Königsberg
bridge problem. In 1736, the town of Königsberg had seven bridges joining four
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areas of land. Euler was asked whether it were possible to find a cycle that crossed
every bridge exactly once (and returned to the starting point).

Fig. 9.43 Leonhard Euler, 1707–1783.

The graph shown in Figure 9.44 models the Königsberg bridge problem. The
nodes A,B,C,D correspond to four areas of land in Königsberg and the edges to the
seven bridges joining these areas of land.

In fact, the problem is unsolvable, as shown by Euler, because some nodes do
not have an even degree. We now define the problem precisely and give a complete
solution.

Definition 9.55. Given a finite undirected graph G = (V,E) (respectively, a directed
graph G = (V,E,s, t)) an Euler cycle (or Euler tour), (respectively, an Euler circuit)
is a cycle in G that passes through every node and traverses every edge exactly once;
(respectively, a circuit in G that passes through every node and traverses every edge
exactly once). The Eulerian cycle (resp. circuit) problem is the problem: given a
graph G, is there an Eulerian cycle (respectively, circuit) in G?

Note that every edge in an Euler tour (or an Euler circuit) is traversed exactly
once, but a node may be passed through more than once.

Theorem 9.5. (1) An undirected graph G = (V,E) has an Eulerian cycle iff the
following properties hold.

(a1) The graph G is connected.
(b1) Every node has even degree.

(2) A directed graph G= (V,E,s, t) has an Eulerian circuit iff the following prop-
erties hold.

(a2) The graph G is strongly connected.
(b2) Every node has the same number of incoming and outgoing edges; that is,

d+(v) = d−(v), for all v ∈V.

Proof. We prove (1) leaving (2) as an easy exercise (the proof of (2) is very similar
to the proof of (1)). Clearly, if an Euler cycle exists, G is connected and because
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Fig. 9.44 The seven bridges of Königsberg and a graph modeling the Königsberg bridge problem.

every edge is traversed exactly once, every node is entered as many times as it is
exited so the degree of every node is even.

For the converse, observe that G must contain a cycle as otherwise, being con-
nected, G would be a tree but we proved earlier that every tree has some node of
degree 1 (see Proposition 9.8). (If G is directed and strongly connected, then we
know that every edge belongs to a circuit.) Let Γ be any cycle in G. We proceed
by induction on the number of edges in G. If G has a single edge, clearly Γ = G
and we are done. If G has no loops and G has two edges, again Γ = G and we are
done. If G has no loops and no parallel edges and if G has three edges, then again,
Γ = G. Now consider the induction step. Assume Γ 6= G and consider the graph
G′ = (V,E−Γ ). Let G1, . . . ,Gp be the connected components of G′. Pick any con-
nected component Gi of G′. Now, all nodes in Gi have even degree, Gi is connected
and Gi has strictly fewer edges than G, so by the induction hypothesis, Gi contains
a Euler cycle Γi. But then Γ and each Γi share some vertex (because G is connected
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and the Gi are maximal connected components), and we can combine Γ and the Γis
to form an Euler cycle in G. ut

There are iterative algorithms that will find an Euler cycle if one exists. It should
also be noted that testing whether a graph has an Euler cycle is computationally
quite an easy problem. This is not so for the Hamiltonian cycle problem described
next.

A game invented by Sir William Hamilton in 1859 uses a regular solid dodeca-
hedron whose 20 vertices are labeled with the names of famous cities. The player is
challenged to “travel around the world” by finding a circuit along the edges of the
dodecahedron that passes through every city exactly once.

Fig. 9.45 William Hamilton, 1805–1865.

Fig. 9.46 A Voyage Round the World Game and Icosian Game (Hamilton).

In graphical terms, assuming an orientation of the edges between cities, the graph
D shown in Figure 9.47 is a plane projection of a regular dodecahedron, and we
want to know if there is a Hamiltonian cycle in this directed graph (this is a directed
version of the problem).

Finding a Hamiltonian cycle in this graph does not appear to be so easy. A solu-
tion is shown in Figure 9.48 below.

Definition 9.56. Given any undirected graph G (respectively, directed graph G), a
Hamiltonian cycle in G (respectively, Hamiltonian circuit in G) is a cycle that passes
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1

Fig. 9.47 A tour “around the world.”

though every vertex of G exactly once (respectively, a circuit that passes though ev-
ery vertex of G exactly once). The Hamiltonian cycle (respectively, circuit) problem
is to decide whether a graph G has a Hamiltonian cycle (respectively, Hamiltonian
circuit).

Note that a Hamiltonian cycle (or circuit) may not include all the edges of the
graph.

Unfortunately, no theorem analogous to Theorem 9.5 is known for Hamiltonian
cycles. In fact, the Hamiltonian cycle problem is known to be NP-complete and so
far, appears to be a computationally hard problem (of exponential time complexity).
Here is a proposition whose contrapositive may be used to prove that certain graphs
are not Hamiltonian. However, there are graphs satisfying the conclusion of that
proposition that are not Hamiltonian (e.g., Petersen’s graph; see Problem 9.30).

Proposition 9.13. If a graph G = (V,E) possesses a Hamiltonian cycle then, for
every nonempty set S of nodes, if G〈V −S〉 is the induced subgraph of G generated
by V − S and if c(G〈V − S〉) is the number of connected components of G〈V − S〉,
then

c(G〈V −S〉)≤ |S|.
Proof. Let Γ be a Hamiltonian cycle in G and let G̃ be the graph G̃ = (V,Γ ). If we
delete k vertices we can’t cut a cycle into more than k pieces and so
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Fig. 9.48 A Hamiltonian cycle in D.

c(G̃〈V −S〉)≤ |S|.

However, we also have

c(G〈V −S〉)≤ c(G̃〈V −S〉),

which proves the proposition. ut

9.12 Summary

This chapter deals with the concepts of directed and undirected graphs and some
of their basic properties, in particular, connectivity. Trees are characterized in var-
ious ways. Special types of trees where the children of a node are ordered are in-
troduced: ordered binary trees, (positional) k-ary trees, rooted ordered trees, binary
search trees, and heaps. They all play a crucial role in computer science (and the the-
ory of algorithms). Methods for finding (minimal weight) spanning trees are briefly
studied.
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• We begin with a problem motivating the use of directed graphs.
• We define directed graphs using source and taget functions from edges to ver-

tices.
• We define simple directed graphs.
• We define adjacency and incidence.
• We define the outer half-degree, inner half-degree, and the degree of a vertex.
• We define a regular graph.
• We define homomorphisms and isomorphisms of directed graphs.
• We define the notion of (open or closed) path (or walk) in a directed graph.
• We define e-simple paths and simple paths.
• We prove that every nonnull path contains a simple subpath.
• We define the concatenation of paths.
• We define when two nodes are strongly connected and the strongly connected

components (SCCs) of a directed graph. We give a simple algorithm for com-
puting the SCCs of a directed graph.

• We define circuits and simple circuits.
• We prove some basic properties of circuits and simple circuits.
• We define the reduced graph of a directed graph and prove that it contains no

circuits.
• We define subgraphs, induced subgraphs, spanning subgraphs, partial graphs

and partial subgraphs.
• Next, we consider undirected graphs.
• We define a notion of undirected path called a chain.
• We define e-simple chains and simple chains.
• We define when two nodes are connected and the connected components of a

graph.
• We define undirected circuits, called cycles, and simple cycles .
• We define undirected graphs in terms of a function from the set of edges to the

union of the set of vertices and the set of two-element subsets of vertices.
• We revisit the notion of chain in the framework of undirected graphs.
• We define the degree of a node in an undirected graph.
• We define the complete graph Kn on n vertices.
• We state a version of Ramsey’s theorem and define Ramsey numbers.
• We define homomorphisms and isomorphisms of undirected graphs.
• We define the notion of a bridge in an undirected graph and give a characteriza-

tion of a bridge in terms of cycles.
• We prove a basic relationship between the number of vertices and the number

of edges in a finite undirected graph G having to do with the fact that either G
is connected or G has no cycle.

• We define trees and forests.
• We give several characterizations of a tree.
• We prove that every connected graph possesses a spanning tree.
• We define a leaf or endpoint.
• We prove that every tree with at least two nodes has at least two leaves.
• We define a root and an antiroot in a directed graph.
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• We define a rooted tree (or arborescence) (with a root or an antiroot).
• We state a characterization of rooted trees.
• We define rooted binary trees (OBTs) in two ways. The first definition uses

the notion of a tree domain and tree addresses. The second definition, which is
inductive, yields a structural induction principle for ordered binary trees.

• We define k-ary trees. These are positional trees generalizing OBTs.
• We define rooted ordered trees.
• We define binary search trees (BSTs) and discuss some operations on them.
• We define the min-heap-property and the max-heap-property and briefly discuss

binary heaps.
• We define (undirected) weighted graphs.
• We prove a theorem characterizing maximal weight spanning trees (and minimal

weight spanning trees).
• We present Kruskal’s algorithm for finding a minimal weight spanning tree.
• We define edge contraction.
• We present Prim’s algorithm for finding a minimal weight spanning tree.
• We define an Euler cycle and an Euler circuit.
• We prove a simple characterization of the existence of an Euler cycle (or an

Euler circuit).
• We define a Hamiltonian cycle and a Hamiltonian circuit.
• We mention that the Hamiltonian cycle problem is NP-complete.

Problems

9.1. (a) Give the list of all directed simple graphs with two nodes.
(b) Give the list of all undirected simple graphs with two nodes.

9.2. Prove that in a party with an odd number of people, there is always a person
who knows an even number of others. Here we assume that the relation “knowing” is
symmetric (i.e., if A knows B, then B knows A). Also, there may be pairs of people
at the party who don’t know each other or even people who don’t know anybody
else so “even” includes zero.

9.3. What is the maximum number of edges that an undirected simple graph with
10 nodes can have?

9.4. Prove that every undirected simple graph with n≥ 2 nodes and more than
(n−1)(n−2)/2 edges is connected.

9.5. If f : G1→G2 and g : G2→G3 are two graph homomorphisms, prove that their
composition g◦ f : G1→ G3 is also a graph homomorphism.

9.6. Prove that if f = ( f e, f v) is a graph isomorphism, then both f e and f v are
bijections. Assume that f = ( f e, f v) is a graph homomorphism and that both f e and
f v are bijections. Must f be a graph isomorphism?
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9.7. If G1 and G2 are isomorphic finite directed graphs, then prove that for every
k ≥ 0, the number of nodes u in G1 such that d−G1

(u) = k is equal to the number of
nodes v ∈ G2 such that d−G2

(v) = k (respectively, the number of nodes u in G1 such
that d+

G1
(u) = k, is equal to the number of nodes v ∈ G2 such that d+

G2
(v) = k). Give

a counterexample showing that the converse property is false.

9.8. Prove that every undirected simple graph with at least two nodes has two nodes
with the same degree.

9.9. If G = (V,E) is an undirected simple graph, prove that E can be partitioned into
subsets of edges corresponding to simple cycles if and only if every vertex has even
degree.

9.10. Let G = (V,E) be an undirected simple graph. Prove that if G has n nodes and
if |E|> bn2/4c, then G contains a triangle.
Hint. Proceed by contradiction. First, prove that for every edge {u,v} ∈ E,

d(u)+d(v)≤ n,

and use this to prove that
∑
u∈V

d(u)2 ≤ n|E|.

Finally, use the Cauchy–Schwarz inequality.

9.11. Given any undirected simple graph G = (V,E) with at least two vertices, for
any vertex u ∈V , denote by G−u the graph obtained from G by deleting the vertex
u from V and deleting from E all edges incident with u. Prove that if G is connected,
then there are two distinct vertices u,v in V such that G−u and G−v are connected.

9.12. Given any undirected simple graph G = (V,E) with at least one vertex, let

δ (G) = min{d(v) | v ∈V}

be the minimum degree of G, let

ε(G) =
|E|
|V | ,

and let
d(G) =

1
|V | ∑v∈V

d(v)

be the average degree of G. Prove that δ (G)≤ d(G) and

ε(G) =
1
2

d(G).

Prove that if G has at least one edge, then G has a subgraph H such that

δ (H)> ε(H)≥ ε(G).
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9.13. For any undirected simple graph G = (V,E), prove that if δ (G) ≥ 2 (where
δ (G) is the minimun degree of G as defined in Problem 9.12), then G contains a
simple chain of length at least δ (G) and a simple cycle of length at least δ (G)+1.

9.14. An undirected graph G is h-connected (h ≥ 1) iff the result of deleting any
h− 1 vertices and the edges adjacent to these vertices does not disconnect G. An
articulation point u in G is a vertex whose deletion increases the number of con-
nected components. Prove that if G has n ≥ 3 nodes, then the following properties
are equivalent.

(1) G is 2-connected.
(2) G is connected and has no articulation point.
(3) For every pair of vertices (u,v) in G, there is a simple cycle passing through u

and v.
(4) For every vertex u in G and every edge e ∈ G, there is a simple cycle passing

through u containing e.
(5) For every pair of edges (e, f ) in G, there is a simple cycle containing e and f .
(6) For every triple of vertices (a,b,c) in G, there is a chain from a to b passing

through c.
(7) For every triple of vertices (a,b,c) in G, there is a chain from a to b not passing

through c.

9.15. Give an algorithm for finding the connected components of an undirected fi-
nite graph.

9.16. If G = (V,E) is an undirected simple graph, then its complement is the graph
G = (V,E); that is, an edge {u,v} is an edge of G iff it is not an edge of G.

(a) Prove that either G or G is connected.
(b) Give an example of an undirected simple graph with four nodes that is iso-

morphic to its complement.
(c) Give an example of an undirected simple graph with five nodes that is iso-

morphic to its complement.
(d) Give an example of an undirected simple graph with nine nodes that is iso-

morphic to its complement.
(e) Prove that if an undirected simple graph with n nodes is isomorphic to its

complement, then either n≡ 0 (mod 4) or n≡ 1 (mod 4).

9.17. Let G = (V,E) be any undirected simple graph. A clique is any subset S of V
such that any two distinct vertices in S are adjacent; equivalently, S is a clique if the
subgraph of G induced by S is a complete graph. The clique number of G, denoted
by ω(G), is the size of a largest clique. An independent set is any subset S of V such
that no two distinct vertices in S are adjacent; equivalently, S is an independent set
if the subgraph of G induced by S has no edges. The independence number of G,
denoted by α(G), is the size of a largest independent set.

(a) If G is the complement of the graph G (as defined in Problem 9.16), prove
that

ω(G) = α(G), α(G) = ω(G).
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(b) Prove that if V has at least six vertices, then either ω(G)≥ 3 or ω(G)≥ 3.

9.18. Let G = (V,E) be an undirected graph. Let E ′ be the set of edges in any cycle
in G. Then, every vertex of the partial graph (V,E ′) has even degree.

9.19. A directed graph G is quasi-strongly connected iff for every pair of nodes
(a,b), there is some node c in G such that there is a path from c to a and a path from
c to b. Prove that G is quasi-strongly connected iff G has a root.

9.20. A directed graph G = (V,E,s, t) is

1. Injective iff d−G (u)≤ 1, for all u ∈V .
2. Functional iff d+

G (u)≤ 1, for all u ∈V .

(a) Prove that an injective graph is quasi-strongly connected iff it is connected
(as an undirected graph).

(b) Prove that an undirected simple graph G can be oriented to form either an
injective graph or a functional graph iff every connected component of G has at
most one cycle.

9.21. Given a binary seach tree T , prove that the following method for finding the
predecessor of a key u associated with a node (s,u) is correct.

1. If (s,u) has a nonempty left subtree T1, then the predecessor of u is the key v
of the rightmost node in the subtree T1, which is found by recursively following
the right links of the root of T2 (as in the case of finding the maximum key).

2. If (s,u) has an empty left subtree, then we need to go up along a path to the
root, and find the lowest ancestor of (s,u) whose right child is also an ancestor
of (s,u).

9.22. Design a version of Kruskal’s algorithm based on condition 2(ii) of Theorem
9.4.

9.23. (a) List all (unoriented) trees with four nodes and then five nodes.
(b) Recall that the complete graph Kn with n vertices (n≥ 2) is the simple undi-

rected graph whose edges are all two-element subsets {i, j}, with i, j ∈ {1,2, . . . ,n}
and i 6= j. List all spanning trees of the complete graphs K2 (one tree), K3 (3 trees),
and K4 (16 trees).

Remark: The number of spanning trees of Kn is nn−2, a formula due to Cayley
(1889); see Problem 9.24.

9.24. The purpose of this problem is to prove that the number of spanning trees of
the complete graph Kn (defined in Problem 9.23) is nn−2, a formula due to Cayley
(1889).

(a) Let T (n;d1, . . . ,dn) be the number of trees with n≥ 2 vertices, v1, . . . ,vn, and
degrees d(v1) = d1, d(v2) = d2, . . . ,d(vn) = dn, with di ≥ 1. Prove that

T (n;d1, . . . ,dn) =

(
n−2

d1−1,d2−1, . . . ,dn−1

)
.
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Hint. First, show that we must have

n

∑
i=1

di = 2(n−1).

We may assume that d1 ≥ d2 ≥ ·· · ≥ dn, with dn = 1. Prove that

T (n;d1, . . . ,dn) = ∑
i

1≤i≤n
di≥2

T (n−1;d1, . . . ,di−1, . . . ,dn−1).

Then, prove the formula by induction on n.
(b) Prove that d1, . . . ,dn, with di ≥ 1, are degrees of a tree with n nodes iff

n

∑
i=1

di = 2(n−1).

(c) Use (a) and (b) to prove that the number of spanning trees of Kn is nn−2.
Hint. Show that the number of spanning trees of Kn is

∑
d1,...,dn≥1

d1+···+dn=2(n−1)

(
n−2

d1−1,d2−1, . . . ,dn−1

)

and use the multinomial formula.

9.25. Consider the undirected graph (fan) with n+ 1 nodes and 2n− 1 edges, with
n≥ 1, shown in Figure 9.49

1

1 2 3 n − 1 n

0

· · · · · ·

Fig. 9.49 A fan.

The purpose of this problem is to prove that the number of spanning subtrees of
this graph is F2n, the 2nth Fibonacci number.

(1) Prove that
1+F2 +F4 + · · ·+F2n = F2n+1
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for all n ≥ 0, with the understanding that the sum on the left-hand side is 1 when
n = 0 (as usual, Fk denotes the kth Fibonacci number, with F0 = 0 and F1 = 1).

(2) Let sn be the number of spanning trees in the fan on n+ 1 nodes (n ≥ 1).
Prove that s1 = 1 and that s2 = 3.

There are two kinds of spannings trees.

(a) Trees where there is no edge from node n to node 0.
(b) Trees where there is an edge from node n to node 0.

Prove that in case (a), the node n is connected to n−1 and that in this case, there
are sn−1 spanning subtrees of this kind; see Figure 9.50.

1

1 2 3 n − 1 n

0

· · · · · ·

Fig. 9.50 Spanning trees of type (a).

1

1 2 k − 1 k n − 1 n

0

· · ·· · ·

Fig. 9.51 Spanning trees of type (b) when k > 1.

Observe that in case (b), there is some k ≤ n such that the edges between the
nodes n,n− 1, . . . ,k are in the tree, but the edge from k to k− 1 is not in the tree
and that none of the edges from 0 to any node in {n−1, . . . ,k} are in this tree; see
Figure 9.51.

Furthermore, prove that if k = 1, then there is a single tree of this kind (see Figure
9.52), and if k > 1, then there are
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1

1 2 3 n − 1 n

0

· · · · · ·

Fig. 9.52 Spanning tree of type (b) when k = 1.

sn−1 + sn−2 + · · ·+ s1

trees of this kind.
(3) Deduce from (2) that

sn = sn−1 + sn−1 + sn−2 + · · ·+ s1 +1,

with s1 = 1. Use (1) to prove that

sn = F2n,

for all n≥ 1.

9.26. Prove that the graph K5 with the coloring shown on Figure 9.22 (left) does not
contain any complete subgraph on three vertices whose edges are all of the same
color. Prove that for every edge coloring of the graph K6 using two colors (say red
and blue), there is a complete subgraph on three vertices whose edges are all of the
same color.

9.27. Let G be an undirected graph known to have an Euler cycle. The principle of
Fleury’s algorithm for finding an Euler cycle in G is the following.

1. Pick some vertex v as starting point and set k = 1.
2. Pick as the kth edge in the cycle being constructed an edge e adjacent to v whose

deletion does not disconnect G. Update G by deleting edge e and the endpoint
of e different from v and set k := k+1.

Prove that if G has an Euler cycle, then the above algorithm outputs an Euler
cycle.

9.28. Recall that Km denotes the (undirected) complete graph on m vertices.
(a) For which values of m does Km contain an Euler cycle?
Recall that Km,n denotes the (undirected) complete bipartite graph on m+n ver-

tices.
(b) For which values of m and n does Km,n contain an Euler cycle?
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1

Fig. 9.53 A graph with no Hamiltonian.

9.29. Prove that the graph shown in Figure 9.53 has no Hamiltonian.

9.30. Prove that the graph shown in Figure 9.54 and known as Petersen’s graph
satisfies the conclusion of Proposition 9.13, yet this graph has no Hamiltonian.

9.31. Prove that if G is a simple undirected graph with n vertices and if n ≥ 3 and
the degree of every vertex is at least n/2, then G is Hamiltonian (this is known as
Dirac’s Theorem).
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1

Fig. 9.54 Petersen’s graph.



Chapter 10
Graphs, Part II: More Advanced Notions

10.1 Γ -Cycles, Cocycles

In this section, we take a closer look at the structure of cycles in a finite graph G.
It turns out that there is a dual notion to that of a cycle, the notion of a cocycle.
Assuming any orientation of our graph, it is possible to associate a vector space
F with the set of cycles in G, another vector space T with the set of cocycles in
G, and these vector spaces are mutually orthogonal (for the usual inner product).
Furthermore, these vector spaces do not depend on the orientation chosen, up to
isomorphism. In fact, if G has m nodes, n edges, and p connected components, we
prove that dimF = n−m+ p and dimT = m− p. These vector spaces are the
flows and the tensions of the graph G, and these notions are important in combi-
natorial optimization and the study of networks. This chapter assumes some basic
knowledge of linear algebra.

Recall that if G is a directed graph, then a cycle C is a closed e-simple chain,
which means that C is a sequence of the form C = (u0,e1,u1,e2,u2, . . . ,un−1,en,un),
where n≥ 1; ui ∈V ; ei ∈ E and

u0 = un; {s(ei), t(ei)}= {ui−1,ui}, 1≤ i≤ n and ei 6= e j for all i 6= j;

see Definition 9.23.

Definition 10.1. Let G = (V,E,s, t) be a directed graph. A cycle C in G induces
the sets C+ and C−, where C+ consists of the edges whose orientation agrees with
the order of traversal induced by C, and where C− consists of the edges whose
orientation is the inverse of the order of traversal induced by C. More precisely,

C+ = {ei ∈C | s(ei) = ui−1, t(ei) = ui}
C− = {ei ∈C | s(ei) = ui, t(ei) = ui−1}.

Example 10.1. If G = G8 is the graph of Figure 10.1, the cycle

C = (v3,e7,v4,e6,v5,e5,v2,e1,v1,e2,v3)

481
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yields the sets
C+ = {e2,e7}, C− = {e1,e5,e6}.

1

v4

v5

v1 v2

v3

e1

e7

e2 e3 e4

e5

e6

Fig. 10.1 Graph G8.

For the rest of this section, we assume that G is a finite graph and that its edges
are named, e1, . . . ,en

1.

Definition 10.2. Given any finite directed graph G with n edges, with every cycle
C is associated a representative vector γ(C) ∈ Rn, defined so that for every i, with
1≤ i≤ n,

γ(C)i =

+1, if ei ∈C+

−1, if ei ∈C−

0, if ei /∈C.

Example 10.2. If G = G8 is the graph of Figure 10.1, the cycle

C = (v3,e7,v4,e6,v5,e5,v2,e1,v1,e2,v3)

corresponds to the vector

γ(C) = (−1,1,0,0,−1,−1,1).

Observe that distinct cycles may yield the same representative vector unless they
are simple cycles. For example, the (equivalent) cycles

C1 = (v2,e5,v5,e6,v4,e4,v2,e1,v1,e2,v3,e3,v2)

and
C2 = (v2,e1,v1,e2,v3,e3,v2,e5,v5,e6,v4,e4,v2)

1 We use boldface notation for the edges in E in order to avoid confusion with the edges occurring
in a cycle or in a chain; those are denoted in italic.
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yield the same representative vector

γ = γ(C1) = γ(C2) = (−1,1,1,1,1,1,0).

In order to obtain a bijection between representative vectors and “cycles”, we
introduce the notion of a “Γ -cycle” (some authors redefine the notion of cycle and
call “cycle” what we call a Γ -cycle, but we find this practice confusing).

Definition 10.3. Given a finite directed graph G = (V,E,s, t), a Γ -cycle is any set
of edges Γ = Γ + ∪Γ− such that there is some cycle C in G with Γ + = C+ and
Γ− =C−; we say that the cycle C induces the Γ -cycle Γ . The representative vector
γ(Γ ) (for short, γ) associated with Γ is the vector γ(C) from Definition 10.2, where
C is any cycle inducing Γ . We say that a Γ -cycle Γ is a Γ -circuit iff either Γ + = /0
or Γ− = /0 and that Γ is simple iff Γ arises from a simple cycle.

Remarks:

1. Given a Γ -cycle Γ = Γ + ∪Γ−, we have the subgraphs G+ = (V,Γ +,s, t) and
G− = (V,Γ−,s, t). Then, for every u ∈V , we have

d+
G+(u)−d−G+(u)−d+

G−(u)+d−G−(u) = 0.

2. If Γ is a simple Γ -cycle, then every vertex of the graph (V,Γ ,s, t) has degree 0
or 2.

3. When the context is clear and no confusion may arise, we often drop the “Γ ” in
Γ -cycle and simply use the term “cycle”.

Proposition 10.1. If G is any finite directed graph, then any Γ -cycle Γ is the disjoint
union of simple Γ -cycles.

Proof. This is an immediate consequence of Proposition 9.6. ut

Corollary 10.1. If G is any finite directed graph, then any Γ -cycle Γ is simple iff it
is minimal, that is, if there is no Γ -cycle Γ ′ such that Γ ′ ⊆ Γ and Γ ′ 6= Γ .

We now consider a concept that turns out to be dual to the notion of Γ -cycle.

Definition 10.4. Let G be a finite directed graph G = (V,E,s, t) with n edges. For
any subset of nodes Y ⊆V , define the sets of edges Ω+(Y ) and Ω−(Y ) by

Ω
+(Y ) = {e ∈ E | s(e) ∈ Y, t(e) /∈ Y}

Ω
−(Y ) = {e ∈ E | s(e) /∈ Y, t(e) ∈ Y}

Ω(Y ) = Ω
+(Y )∪Ω

−(Y ).

Any set Ω of edges of the form Ω = Ω(Y ), for some set of nodes Y ⊆ V , is called
a cocycle or cutset. With every cocycle Ω we associate the representative vector
ω(Ω) ∈ Rn defined so that
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ω(Ω)i =

+1, if ei ∈Ω+

−1, if ei ∈Ω−

0, if ei /∈Ω ,

with 1≤ i≤ n. We also write ω(Y ) for ω(Ω) when Ω = Ω(Y ). If either Ω+(Y ) = /0
or Ω−(Y ) = /0, then Ω is called a cocircuit, and a simple cocycle (or bond) is a
minimal cocycle (i.e., there is no cocycle Ω ′ such that Ω ′ ⊆Ω and Ω ′ 6= Ω ).

Example 10.3. In the graph G8 of Figure 10.1, the sets Ω+(Y ) and Ω−(Y ) induced
by the set of nodes Y = {v2,v3,v4} are

Ω
+(Y ) = {e5}, Ω

−(Y ) = {e1,e2,e6},

so
Ω = {e5}∪{e1,e2,e6}

is a cocycle induced by the set of nodes Y = {v2,v3,v4}, and it corresponds to the
vector

ω(Ω) = (−1,−1,0,0,1,−1,0).

This is not a simple cocycle because

Ω
′ = {e5}∪{e6}

is also a cocycle (induced by Y ′ = {v1,v2,v3,v4}).

Observe that Ω ′ is a minimal cocycle, so it is a simple cocycle. Observe that the
inner product

γ(C1) ·ω(Ω) = (−1,1,1,1,1,1,0) · (−1,−1,0,0,1,−1,0)
= 1−1+0+0+1−1+0 = 0

is zero.
The key property of orthogonality between cycles and cocycles is shown below.

Proposition 10.2. Given any finite directed graph G = (V,E,s, t), if γ = γ(C) is the
representative vector of any Γ -cycle Γ = Γ (C) and ω = ω(Y ) is the representative
vector of any cocycle, Ω = Ω(Y ), then

γ ·ω =
n

∑
i=1

γiωi = 0;

that is, γ and ω are orthogonal. (Here, |E|= n.)

Proof. Recall that Γ =C+∪C−, where C is a cycle in G, say

C = (u0,e1,u1, . . . ,uk−1,ek,uk), with uk = u0.

Then, by definition, we see that
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γ ·ω = |C+∩Ω
+(Y )|− |C+∩Ω

−(Y )|− |C−∩Ω
+(Y )|+ |C−∩Ω

−(Y )|. (∗)

As we traverse the cycle C, when we traverse the edge ei between ui−1 and ui (1 ≤
i≤ k), we note that

ei ∈ (C+∩Ω
+(Y ))∪ (C−∩Ω

−(Y )) iff ui−1 ∈ Y, ui ∈V −Y

ei ∈ (C+∩Ω
−(Y ))∪ (C−∩Ω

+(Y )) iff ui−1 ∈V −Y, ui ∈ Y.

In other words, every time we traverse an edge coming out from Y , its contribution
to (∗) is +1 and every time we traverse an edge coming into Y its contribution to
(∗) is −1. After traversing the cycle C entirely, we must have come out from Y as
many times as we came into Y , so these contributions must cancel out. ut

Note that Proposition 10.2 implies that |Γ ∩Ω | is even.

10.2 Cutsets and Minimal Cocycles

Observe that a cocycle Ω is the set of edges of G that join the vertices in a set Y to
the vertices in its complement V −Y . Consequently, deletion of all the edges in Ω

increases the number of connected components of G. We say that Ω is a cutset of
G. There is a slight generalization of the notion of cutset given below.

Definition 10.5. A set of edges K ⊆ E is a cutset of a graph G = (V,E,s, t) if the
graph (V,E−K,s, t) has more connected components than G.

It should be noted that a cocycle Ω = Ω(Y ) may not coincide with the set Γ

of edges of some cycle (because the corresponding representative vectors are or-
thogonal), but it may coincide with the union Γ of the set of edges of two disjoint
cycles.

Example 10.4. In the graph shown in Figure 10.2, the cocycle Ω = Ω({1,3,5,7}),
shown in thicker lines, is equal to the union Γ of sets of edges of the two disjoint
cycles

(1,2),(2,3),(3,4),(4,1) and (5,6),(6,7),(7,8),(8,5).

If the edges of the graph are listed in the order

(1,2),(2,3),(3,4),(4,1),(5,6),(6,7),(7,8),(8,5),(1,5),(2,6),(3,7),(4,8),

the reader should check that the vectors

γ)Γ ) = (1,1,1,1,1,1,1,1,0,0,0,0)

and
ω(Ω) = (1,−1,1,−1,1,−1,1,−1,0,0,0,0)

correspond to Γ and Ω , respectively. These vectors are othogonal.
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1

1 2

34

5 6

78

Fig. 10.2 A cocycle Ω equal to the union Γ of the edge sets of two cycles.

We now give several characterizations of simple cocycles.

Proposition 10.3. Given a finite directed graph G = (V,E,s, t), a set of edges S⊆ E
is a simple cocycle iff it is a minimal cutset.

Proof. We already observed that every cocycle is a cutset. Furthermore, we claim
that every cutset contains a cocyle. To prove this, it is enough to consider a minimal
cutset S and to prove the following satement.

Claim. Any minimal cutset S is the set of edges of G that join two nonempty sets
of vertices Y1 and Y2 such that

(i) Y1∩Y2 = /0.
(ii) Y1∪Y2 =C, some connected component of G.

(iii) The subgraphs GY1 and GY2 induced by Y1 and Y2 are connected.

Indeed, if S is a minimal cutset, it disconnects a unique connected component of
G, say C. Let C1, . . . ,Ck be the connected components of the graph C− S obtained
from C by deleting the edges in S. Adding any edge e ∈ S to C− S must connect
two components of C because otherwise S−{e} would disconnect C, contradicting
the minimality of C. Furthermore, k = 2, because otherwise, again, S−{e} would
disconnect C. Then if Y1 is the set of nodes of C1 and Y2 is the set of nodes of C2, it
is clear that the claim holds.

Now, if S is a minimal cutset, the above argument shows that S contains a cocyle
and this cocycle must be simple (i.e., minimal as a cocycle) as it is a cutset. Con-
versely, if S is a simple cocycle (i.e., minimal as a cocycle), it must be a minimal
cutset because otherwise, S would contain a strictly smaller cutset which would then
contain a cocycle strictly contained in S. ut

Proposition 10.4. Given a finite directed graph G = (V,E,s, t), a set of edges S⊆ E
is a simple cocycle iff S is the set of edges of G that join two nonempty sets of vertices
Y1 and Y2 such that
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(i) Y1∩Y2 = /0.
(ii) Y1∪Y2 =C, some connected component of G.

(iii) The subgraphs GY1 and GY2 induced by Y1 and Y2 are connected.

Proof. It is clear that if S satisfies (i)–(iii), then S is a minimal cutset and by Propo-
sition 10.4, it is a simple cocycle.

Let us first assume that G is connected and that S = Ω(Y ) is a simple cocycle;
that is, it is minimal as a cocycle. If we let Y1 = Y and Y2 = X −Y1, it is clear that
(i) and (ii) are satisfied. If GY1 or GY2 is not connected, then if Z is a connected
component of one of these two graphs and if VZ is its set of vertices, we see that
Ω(VZ) is a cocycle strictly contained in S = Ω(Y1), a contradiction. Therefore, (iii)
also holds. If G is not connected, as S is a minimal cocycle it is a minimal cutset,
and so it is contained in some connected component C of G and we apply the above
argument to C. ut

The following proposition is the analogue of Proposition 10.1 for cocycles.

Proposition 10.5. Given a finite directed graph G = (V,E,s, t), every cocycle Ω =
Ω(Y ) is the disjoint union of simple cocycles.

Proof. We give two proofs.
Proof 1: (Claude Berge) Let Y1, . . . ,Yk be the connected components of the subgraph
of G induced by Y . Then it is obvious that

Ω(Y ) = Ω(Y1)∪·· ·∪Ω(Yk),

where the Ω(Yi) are pairwise disjoint. So it is enough to show that each Ω(Yi) is the
union of disjoint simple cycles.

Let C be the connected component of G that contains Yi and let C1, . . . ,Cm be
the connected components of the subgraph C−Yi, obtained from C by deleting the
nodes in Yi and the edges incident to these nodes. Observe that the set of edges that
are deleted when the nodes in Yi are deleted is the union of Ω(Yi) and the edges of
the connected subgraph induced by Yi. As a consequence, we see that

Ω(Yi) = Ω(C1)∪·· ·∪Ω(Cm),

where Ω(Ck) is the set of edges joining Ck and nodes from Yi in the connected
subgraph induced by the nodes in Yi∪

⋃
j 6=k C j. By Proposition 10.4 (where Y1 is Ck

and Y2 is Yi), the set Ω(Ck) is a simple cocycle and it is clear that the sets Ω(Ck) are
pairwise disjoint inasmuch as the Ck are disjoint. This proof is illustrated in Figure
10.3.
Proof 2: (Michel Sakarovitch) Let Ω = Ω(Y ) be a cocycle in G. Now, Ω is a cutset
and we can pick some minimal cocycle Ω1 = Ω(Z) contained in Ω (for some subset
Z of Y ). We proceed by induction on |Ω −Ω1|. If Ω = Ω1, we are done. Otherwise,
we claim that E1 = Ω −Ω1 is a cutset in G. If not, let e be any edge in E1; we may
assume that a = s(e)∈Y and b = t(e)∈V −Y . As E1 is not a cutset, there is a chain
C from a to b in (V,E−E1,s, t) and as Ω is a cutset, this chain must contain some
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Fig. 10.3 Illustration of the first proof.

edge e′ in Ω , so C =C1(x,e′,y)C2, where C1 is a chain from a to x and C2 is a chain
from y to b. Then, because C has its edges in E −E1 and E1 = Ω −Ω1, we must
have e′ ∈Ω1. We may assume that x = s(e′) ∈ Z and y = t(e′) ∈V −Z. But we have
the chain CR

1 (a,e,b)C
R
2 joining x and y in (V,E −Ω1), a contradiction. Therefore,

E1 is indeed a cutset of G. Now, there is some minimal cocycle Ω2 contained in E1.
If Ω2 = E1, we are done. Otherwise, if we let E2 = E1−Ω2, we can show as we just
did that E2 is a cutset of G with |E2| < |E1|. Thus, we finish the proof by applying
the induction hypothesis to E2. The second proof is illustrated in Figure 10.4. ut

Our next goal is to define the vector spaces F (G) and T (G) induced respec-
tively by the cycles and the cocycles of a digraph G. But first, we need a crucial
theorem that also plays an important role in the theory of flows in networks.

10.3 Minty’s Arc Coloring Lemma

Theorem 10.1. (Arc Coloring Lemma; Minty [1960]) Let G = (V,E,s, t) be a finite
directed graph and assume that the edges of G are colored either in black, red,
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Fig. 10.4 Illustration of the second proof.

or green. Pick any edge e colored black. Then exactly one of two possibilities may
occur:

(1) There is a simple cycle containing e whose edges are only red or black with all
the black edges oriented in the same direction (for the orientation in Definition
10.3).

(2) There is a simple cocycle containing e whose edges are only green or black
with all the black edges oriented in the same direction (for the orientation in
Definition 10.4).

Proof. Let a = s(e) and b = t(e). Apply the following procedure for marking nodes.
The function arc(x) records which edge caused node x to have been maked.

Intitially, only b is marked.
while there is some marked node x and some unmarked node y with

either a black edge e′, with (x,y) = (s(e′), t(e′)) or
a red edge e′, with (x,y) = (s(e′), t(e′)) or (x,y) = (t(e′),s(e′))
then mark y; arc(y) = e′

endwhile

When the marking algorithm stops, exactly one of the following two cases oc-
curs.



490 10 Graphs, Part II: More Advanced Notions

(i) Node a has been marked. Let e′ = arc(a) be the edge that caused a to be marked
and let x be the other endpoint of e′. If x = b, we found a simple cycle satisfying
(i). If not, let e′′ = arc(x), and y be the other endpoint of e′′, and continue in the
same manner until we reach b. This procedure will stop with b and yields the
chain C from b to a along which nodes have been marked. This chain must be
simple because every edge in it was used once to mark some node (check that
the set of edges used for the marking is a tree). If we add the edge e to the chain
C, we obtain a simple cycle Γ whose edges are colored black or red and with all
edges colored black oriented in the same direction (with the orientation given by
Γ +) due to the marking scheme. It is impossible to have a cocycle whose edges
are colored black or green containing e because it would have been impossible
to conduct the marking through this cocycle and a would not have been marked.
This case is illustrated in Figure 10.5.
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Step 0: x = b = v   is marked.
Step 1:  v   is marked.
e   := arc (v  ).
Step 2:  v  and v  are marked.
e  := arc(v  ) and e  := arc(v  ).
Step 3:  v   is marked.
e  : = arc(v  ).

1
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Since a = v   is marked, we have the cycle (v  , e   ,v  , e  , v  , e   , v   ).  3 3 3 32 21  1 

Fig. 10.5 Case (i) of the marking algorithm.

(ii) Node a has not been marked. Let Y be the set of unmarked nodes. The set
Ω(Y ) is a cocycle whose edges are colored green or black containing e with
all black edges in Ω+(Y ). This cocycle is the disjoint union of simple cocycles
(by Proposition 10.5) and one of these simple cocycles contains e. If a cycle
with black or red edges containing e with all black edges oriented in the same
direction existed, then a would have been marked, a contradiction. This case is
illustrated in Figure 10.6. ut
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Fig. 10.6 Case (ii) of the marking algorithm.

Note that the simple cycle in (1) and the simple cocycle in (2) are generally not
unique.

Corollary 10.2. Every edge of a finite directed graph G belongs either to a simple
circuit or to a simple cocircuit but not both.

Proof. Color all edges black and apply Theorem 10.1. ut

The reader may also want to apply the marking algorithm to some of the edges
of the graph G8 of Figure 10.1.

Although Minty’s theorem looks more like an amusing fact than a deep result,
it is actually a rather powerful theorem. For example, we show in Section 10.6 that
Minty’s theorem can be used to prove the “hard part” of the max-flow min-cut the-
orem (Theorem 10.6), an important theorem that has many applications. Here are a
few more applications of Theorem 10.1.

Proposition 10.6. Let G be a finite connected directed graph with at least one edge.
Then the following conditions are equivalent.

(i) G is strongly connected.
(ii) Every edge belongs to some circuit.

(iii) G has no cocircuit.

Proof. (i) =⇒ (ii). If x and y are the endpoints of any edge e in G, as G is strongly
connected, there is a simple path from y to x and thus, a simple circuit through e.
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(ii) =⇒ (iii). This follows from Corollary 10.2.
(iii) =⇒ (i). Assume that G is not strongly connected and let Y ′ and Y ′′ be two

strongly connected components linked by some edge e and let a = s(e) and b =
t(e), with a ∈ Y ′ and b ∈ Y ′′. The edge e does not belong to any circuit because
otherwise a and b would belong to the same strongly connected component. Thus,
by Corollary 10.2, the edge e should belong to some cocircuit, a contradiction. ut

We are now ready to define and study the spaces F (G) and T (G) induced re-
spectively by the cycles and the cocycles of a digraph G.

10.4 Flows, Tensions, Cotrees

Definition 10.6. Given any finite digraph G = (V,E,s, t), where E = {e1, . . . ,en},
the subspace F (G) of Rn spanned by all vectors γ(Γ ), where Γ is any Γ -cycle,
is called the cycle space of G or flow space of G, and the subspace T (G) of Rn

spanned by all vectors ω(Ω), where Ω is any cocycle, is called the cocycle space of
G or tension space of G (or cut space of G). Vectors in F (G) are called flows and
vectors flowstensionsin T (G) are called tensions.

When no confusion is possible, we write F for F (G) and T for T (G). Thus, F
is the space consisting of all linear combinations ∑

k
i=1 αiγi of representative vectors

of Γ -cycles γi, and T is the the space consisting of all linear combinations ∑
k
i=1 αiωi

of representative vectors of cocycles ωi with αi ∈ R. Proposition 10.2 says that
the spaces F and T are mutually orthogonal. Observe that Rn is isomorphic to
the vector space of functions f : E → R. Consequently, a vector f = ( f1, . . . , fn) ∈
Rn may be viewed as a function from E = {e1, . . . ,en} to R, and it is sometimes
convenient to write f (ei) instead of fi.

Remark: The seemingly odd terminology “flow space” and “tension space” is ex-
plained later.

Observe that Proposition 10.2 implies that F and T are orthogonal. We can
also reformulate Proposition 10.2 as shown below. This reformulation will be par-
ticularly useful when we deal with channeled flows (see Section 10.10).

Proposition 10.7. Given any finite directed graph G = (V,E,s, t), for any flow f ∈
F , for any coycle Ω(Y ), we have

∑
e∈Ω+(Y )

f (e)− ∑
e∈Ω−(Y )

f (e) = 0. (†Y )

If either Ω+(Y ) = /0 or Ω−(Y ) = /0, we consider that the corresponding sum has
the value 0

Our next goal is be to determine the dimensions of F and T in terms of the
number of edges, the number of nodes, and the number of connected components
of G, and to give a convenient method for finding bases of F and T . For this, we
use spanning trees and their dual, cotrees.
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In order to determine the dimension of the cycle space T , we use spanning trees.
Let us assume that G is connected because otherwise the same reasoning applies to
the connected components of G. If T is any spanning tree of G, we know from
Theorem 9.2, Part (4), that adding any edge e ∈ E−T (called a chord of T ) creates
a (unique) cycle. We show shortly that the vectors associated with these cycles form
a basis of the cycle space. We can find a basis of the cocycle space by considering
sets of edges of the form E−T , where T is a spanning tree. Such sets of edges are
called cotrees.

Definition 10.7. Let G be a finite directed connected graph G = (V,E,s, t). A span-
ning subgraph (V,K,s, t) is a cotree iff (V,E−K,s, t) is a spanning tree.

The notion of cotree is illustrated in Figure 10.7.
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Fig. 10.7 A cotree.

Cotrees are characterized in the following proposition.

Proposition 10.8. Let G be a finite directed connected graph G = (V,E,s, t). If E is
partitioned into two subsets T and K (i.e., T ∪K = E; T ∩K = /0; T,K 6= /0), then
the following conditions ar equivalent.

(1) (V,T,s, t) is tree.
(2) (V,K,s, t) is a cotree.
(3) (V,K,s, t) contains no simple cocycles of G and upon addition of any edge e∈ T ,

it does contain a unique simple cocycle of G.

Proof. By definition of a cotree, (1) and (2) are equivalent, so we prove the equiva-
lence of (1) and (3).
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(1) =⇒ (3). We claim that (V,K,s, t) contains no simple cocycles of G. Other-
wise, K would contain some simple cocycle Ω(A) of G and then no chain in the tree
(V,T,s, t) would connect A and V −A, a contradiction.

Next, for any edge e ∈ T , observe that (V,T −{e},s, t) has two connected com-
ponents, say A and B, and then by Proposition 10.4, Ω(A) is a simple cocycle con-
tained in (V,K∪{e},s, t). Since (V,K,s, t) does not contain any cocycle and a sim-
ple cocycle is a minimal cutset, Ω(A) is the unique simple cocycle contained in
(V,K∪{e},s, t). Therefore, (3) holds

(3) =⇒ (1). We need to prove that (V,T,s, t) is a tree. First, we show that
(V,T,s, t) has no cycles. Let e ∈ T be any edge; color e black; color all edges in
T −{e} red; color all edges in K = E−T green. By (3), by adding e to K, we find
a simple cocycle of black or green edges that contained e. Thus (by Theorem 10.1),
there is no cycle of red or black edges containing e. As e is arbitrary, there are no
cycles in T . This part of the proof is illustrated in Figure 10.8
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Fig. 10.8 Illustration for the proof of Proposition 10.8.

Finally, we prove that (V,T,s, t) is connected. Pick any edge e ∈ K and color it
black; color edges in T red; color edges in K−{e} green. Because G has no cocycle
of black and green edges containing e, by Theorem 10.1, there is a cycle of black
or red edges containing e. Therefore, T ∪{e} has a cycle. Since G is connected, for
any two two nodes u,v ∈ V , either there is a chain in (V,T,s, t) connecting u and
v, or there is a chain involving some edge e ∈ K connecting u and v, and we just
showed that T ∪{e} has a cycle, which means that there is a chain between u and v
in (V,T,s, t). This proof is illustrated in Figure 10.9. ut

We are now ready for the main theorem of this section.
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Fig. 10.9 Illustration for the last part of the proof of Proposition 10.8.

Theorem 10.2. Let G be a finite directed graph G = (V,E,s, t), and assume that
|E|= n, |V |= m, and that G has p connected components. Then, the cycle space F
and the cocycle space T are subspaces of Rn of dimensions dimF = n−m+ p and
dimT = m− p and T = F⊥ is the orthogonal complement of F . Furthermore, if
C1, . . . ,Cp are the connected components of G, bases of F and T can be found as
follows.

(1) Let T1, . . . ,Tp, be any spanning trees in C1, . . . ,Cp. For each spanning tree Ti
form all the simple cycles Γi,e obtained by adding any chord e ∈ Ci− Ti to Ti.
Then the vectors γi,e = γ(Γi,e) form a basis of F .

(2) For any spanning tree Ti as above, let Ki =Ci−Ti be the corresponding cotree.
For every edge e ∈ Ti (called a twig), there is a unique simple cocycle Ωi,e con-
tained in Ki∪{e}. Then the vectors ωi,e = ω(Ωi,e) form a basis of T .

Proof. We know from Proposition 10.2 that F and T are orthogonal. Thus,

dimF +dimT ≤ n.

Let us follow the procedure specified in (1). Let Ci = (Ei,Vi), be the ith connected
component of G and let ni = |Ei| and |Vi| = mi, so that n1 + · · ·+ np = n and m1 +
· · ·+mp = m. For any spanning tree Ti of Ci, recall that Ti has mi−1 edges and so,
|Ei−Ti|= ni−mi +1. If ei,1, . . . ,ei,ni−mi+1 are the edges in Ei−Ti, then the vectors

γi,ei,1 , . . . ,γi,ei,ni−mi+1
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must be linearly independent, because γi,ei, j = γ(Γi,ei, j) and the simple cycle Γi,ei, j

contains the edge ei, j that none of the other Γi,ei,k contain for k 6= j. So, we get

(n1−m1 +1)+ · · ·+(np−mp +1) = n−m+ p≤ dimF .

Let us now follow the procedure specified in (2). For every spanning tree Ti let
ei,1, . . . ,ei,mi−1 be the edges in Ti. We know from Proposition 10.8 that adding any
edge ei, j to Ci−Ti determines a unique simple cocycle Ωi,ei, j containing ei, j and the
vectors

ωi,ei,1 , . . . ,ωi,ei,mi−1

must be linearly independent because the simple cocycle Ωi,ei, j contains the edge
ei, j that none of the other Ωi,ei,k contain for k 6= j. So, we get

(m1−1)+ · · ·+(mp−1) = m− p≤ dimT .

But then n ≤ dimF +dimT , and inasmuch as we also have dimF +dimT ≤ n,
we get

dimF = n−m+ p and dimT = m− p.

The vectors produced in (1) and (2) are linearly independent and in each case, their
number is equal to the dimension of the space to which they belong, therefore they
are bases of these spaces. ut

Because dimF = n−m+ p and dimT = m− p do not depend on the orien-
tation of G, we conclude that the spaces F and T are uniquely determined by G,
independently of the orientation of G, up to isomorphism.

In Diestel [9] (Section 1.9, Theorem 1.9.6), the simple cycles Γi,e are called fun-
damental cycles, and the simple cocycles Ωi,e are called fundamental cuts.

Definition 10.8. The number n−m+ p is called the cyclomatic number of G and
m− p is called the cocyclomatic number of G.

Remarks:

1. Some authors, including Harary [15] and Diestel [9], define the vector spaces
F and T over the two-element field, F2 = {0,1}. The same dimensions are
obtained for F and T , and F and T still orthogonal; see Diestel [9], Theo-
rem 1.9.6. On the other hand, because 1+ 1 = 0, some interesting phenomena
happen. For example, orientation is irrelevant, the sum of two cycles (or co-
cycles) is their symmetric difference, and the space F ∩T is not necessarily
reduced to the trivial space (0). The space F ∩T is called the bicycle space.
The bicycle space induces a partition of the edges of a graph called the prin-
cipal tripartition. For more on this, see Godsil and Royle [12], Sections 14.15
and 14.16 (and Chapter 14).

2. For those who know homology, of course, p = dimH0, the dimension of the
zero-th homology group and n−m + p = dimH1, the dimension of the first
homology group of G viewed as a topological space. Usually, the notation used
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is b0 = dimH0 and b1 = dimH1 (the first two Betti numbers). Then the above
equation can be rewritten as

m−n = b0−b1,

which is just the formula for the Euler–Poincaré characteristic.

Fig. 10.10 Enrico Betti, 1823–1892 (left) and Henri Poincaré, 1854–1912 (right).

Figure 10.11 shows an unoriented graph (a cube) and a cocycle Ω =Ω({1,3,5,7}),
which is also a cycle Γ (over the field F2), shown in thick lines (i.e., a bicycle, over
the field F2).

1

1 2

34

5 6

78

Fig. 10.11 A bicycle in a graph (a cube).

However, as we saw in the example from Figure 10.2, for any orientation of the
cube, the vectors γ and ω corresponding to Γ and Ω are different (and orthogonal).

Let us illustrate the procedures for constructing bases of F and T on the graph
G8.

Example 10.5. Figure 10.12 shows a spanning tree T and a cotree K for G8.
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We have n= 7;m= 5; p= 1, and so, dimF = 7−5+1= 3 and dimT = 5−1=
4. If we successively add the edges e2, e6, and e7 to the spanning tree T , we get the
three simple cycles shown in Figure 10.13 with thicker lines.
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Fig. 10.12 Graph G8; A spanning tree, T ; a cotree, K.
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Fig. 10.13 A cycle basis for G8.

If we successively add the edges e1, e3, e4, and e5 to the cotree K, we get the four
simple cocycles shown in Figures 10.14 and 10.15 with thicker lines.

Given any node v ∈ V in a graph G for simplicity of notation, let us denote
the cocycle Ω({v}) by Ω(v). Similarly, we write Ω+(v) for Ω+({v}); Ω−(v) for
Ω−({v}), and similarly for the the vectors ω({v}), and so on. It turns our that
vectors of the form ω(v) generate the cocycle space and this has important conse-
quences. However, in general, these vectors are not linearly independent.

Proposition 10.9. Given any finite directed graph G = (V,E,s, t), for every cocycle
Ω = Ω(Y ), we have

ω(Y ) = ∑
v∈Y

ω(v).

Consequently, the vectors of the form ω(v), with v ∈V , generate the cocycle space
T .
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Fig. 10.14 A cocycle basis for G8.
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Fig. 10.15 A cocycle basis for G8 (continued).

Proof. For any edge e ∈ E, if a = s(e) and b = t(e), observe that

ω(v)e =

{
+1, if v = a
−1, if v = b
0, if v 6= a,b,

where ω(v)e = ω(v)i is the component of the vector ω(v) corresponding to the edge
e = ei (recall that the set edges {e1, . . . ,en} is totally ordered). As a consequence, if
we evaluate ∑v∈Y ω(v), we find that(

∑
v∈Y

ω(v)

)
e

=

{
+1, if a ∈ Y and b ∈V −Y
−1, if a ∈V −Y and b ∈ Y
0, if a,b ∈ Y or a,b ∈V −Y ,

which is exactly ω(Y )e. ut
An illustration of Proposition 10.9 is shown in Figure 10.16.
Proposition 10.9 allows us to characterize flows (the vectors in F ) in an interest-

ing way which also reveals the reason behind the terminology.

Theorem 10.3. Given any finite directed graph G = (V,E,s, t), a vector f ∈Rn is a
flow in F iff
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Fig. 10.16 An example illustrating Proposition 10.9.

∑
e∈Ω+(v)

f (e)− ∑
e∈Ω−(v)

f (e) = 0, for all v ∈V. (†)

If either Ω+(v) = /0 or Ω−(v) = /0, we consider that the corresponding sum has the
value 0

Proof. By Theorem 10.2, we know that F is the orthogonal complement of T .
Thus, for any f ∈Rn, we have f ∈F iff f ·ω = 0 for all ω ∈T . Moreover, Propo-
sition 10.9 says that T is generated by the vectors of the form ω(v), where v∈V , so
f ∈F iff f ·ω(v) = 0 for all v ∈V . But (†) is exactly the assertion that f ·ω(v) = 0
and the theorem is proved. ut

Equation (†) justifies the terminology of “flow” for the elements of the space F .

Definition 10.9. A (general) flow f in a (directed) graph G = (V,E,s, t), is defined
as a function f : E → R, and we say that a flow is conservative (Kirchhoff’s first
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law) iff for every node v ∈ V , the total flow ∑e∈Ω−(v) f (e) coming into the vertex
v is equal to the total flow ∑e∈Ω+(v) f (e) coming out of that vertex. This is exactly
what equation (†) says.

Example 10.6. For an example of Equation (†), consider the cycle Γ1 = {e1,e3,e2}
of the graph G8 in Figure 10.13, which corresponds to f = (1,−1,−1,0,0,0). We
have

Ω
+(v1) = {e1,e2} Ω

−(v1) = /0

Ω
+(v2) = {e5} Ω

−(v2) = {e1,e3,e4}
Ω

+(v3) = {e3,e7} Ω
−(v3) = {e2}.

Then

∑
e∈Ω+(v1)

f (e)− ∑
e∈Ω−(v1)

f (e) = f (e1)+ f (e2) = 1−1 = 0

∑
e∈Ω+(v2)

f (e)− ∑
e∈Ω−(v2)

f (e) = f (e5)− ( f (e1)+ f (e3)+ f (e4))

= 0− (1+(−1)+0) = 0

∑
e∈Ω+(v3)

f (e)− ∑
e∈Ω−(v3)

f (e) = f (e3)+ f (e7)− f (e2) =−1+0− (−1) = 0.

We can also characterize tensions as follows.

Theorem 10.4. Given any finite simple directed graph G = (V,E,s, t), for any θ ∈
Rn, we have:

(1) The vector θ is a tension in T iff for every simple cycle Γ = Γ +∪Γ− we have

∑
e∈Γ+

θ(e)− ∑
e∈Γ−

θ(e) = 0. (∗)

(2) If G has no loops (and no parallel edges), then θ ∈ Rn is a tension in T iff
the following condition holds. There is a function π : V →R called a “potential
function,” such that

θ(e) = π(t(e))−π(s(e)), (∗∗)
for every e ∈ E.

Proof. (1) The equation (∗) asserts that γ(Γ ) ·θ = 0 for every simple cycle Γ . Every
cycle is the disjoint union of simple cycles, thus the vectors of the form γ(Γ ) gener-
ate the flow space F and by Theorem 10.2, the tension space T is the orthogonal
complement of F , so θ is a tension iff (∗) holds.

(2) Assume a potential function π : V→R exists, and let Γ =(v0,e1,v1, . . . ,vk−1,
ek,vk), with vk = v0, be a simple cycle. For any θ ∈Rn viewed as a function θ : V →
R satisfying (∗∗), by definition of Γ + and Γ−,
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θ(ei) =

{
π(vi)−π(vi−1), if (s(ei), t(ei)) = (vi−1,vi)
π(vi−1)−π(vi), if (s(ei), t(ei)) = (vi,vi−1),

so

∑
e∈Γ+

θ(e)− ∑
e∈Γ−

θ(e) = ∑
ei∈Γ+

(π(vi)−π(vi−1))− ∑
e j∈Γ−

(π(v j−1)−π(v j))

= ∑
ei∈Γ

(π(vi)−π(vi−1)),

and since

∑
ei∈Γ

(π(vi)−π(vi−1)) = π(v1)−π(v0)+π(v2)−π(v1)+ · · ·

+π(vk−1)−π(vk−2)+π(v0)−π(vk−1) = 0,

we get (∗):
∑

e∈Γ+

θ(e)− ∑
e∈Γ−

θ(e) = 0.

By (1), θ is a tension.
Let us now assume that (∗) holds for every simple cycle and let θ ∈ T be any

tension. Consider the following procedure for assigning a value π(v) to every vertex
v∈V , so that (∗∗) is satisfied. Pick any vertex v0, and assign it the value, π(v0) = 0.

Now, for every vertex v ∈ V that has not yet been assigned a value, do the fol-
lowing.

1. If there is an edge e = (u,v) with π(u) already determined, set

π(v) = π(u)+θ(e);

2. If there is an edge e = (v,u) with π(u) already determined, set

π(v) = π(u)−θ(e).

At the end of this process, all the nodes in the connected component of v0 will have
received a value and we repeat this process for all the other connected components
of G, one at a time. In fact, the assignment process ensures that each connected
component created during this process is a tree. We still need to verify that

θ(e) = π(t(e))−π(s(e)), (∗∗)

for every e ∈ E. If (∗∗) does not hold for some edge e ∈ E, then s(e) and t(e) must
belong to the same connected component, a tree Te. Otherwise, since the connected
components of G are processed sequentially, one of s(e) or t(e) is assigned a π-
value first, and then, since e is an edge between s(e) and t(e), the unassigned node
is given a π-value and s(e) and t(e) belong to the same connected component (a
tree). By adding e to this tree Te, we obtain a simple cycle Γ containing e, and since
by hypothesis θ(e) = π(t(e))−π(s(e))+ c for some c 6= 0, and since (1) and (2)
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ensure that θ(e′) = π(t(e′))−π(s(e′)) for all other edges e′ in the tree Te, we obtain

∑
e′′∈Γ+

θ(e′′)− ∑
e′′∈Γ−

θ(e′′) = c 6= 0,

contradicting (∗). ut
For an example of Equation (∗∗), consider the vector θ = (1,1,0,0,0,0,0),

which corresponds to the cocycle Ω({v1}) = {e1,e2} in the graph G8 (in Figure
10.13). The only simple cycle containing both edges e1,e2 is Γ1 = {e1,e3,e2}, with
Γ

+
1 = {e1} and Γ

−
1 = {e3,e2}, and we have

∑
e∈Γ

+
1

θ(e)− ∑
e∈Γ

−
1

θ(e) = θ(e1)− (θ(e3)+θ(e2)) = 1− (0+1) = 0.

Some of these results can be improved in various ways. For example, flows have
what is called a “conformal decomposition.”

Definition 10.10. Given any finite directed graph G = (V,S,s, t), we say that a flow
f ∈F has a conformal decomposition iff there are some cycles Γ1, . . . ,Γk such that
if γi = γ(Γi), then

f = α1γ1 + · · ·+αkγk,

with

1. αi > 0 for i = 1, . . . ,k if f is not the zero flow.
2. For any edge, e∈ E, if f (e)> 0 (respectively, f (e)< 0) and e∈Γj, then e∈Γ

+
j

(respectively, e ∈ Γ
−
j ).

Proposition 10.10. Given any finite directed graph G= (V,S,s, t), every flow f ∈F
has some conformal decomposition. In particular, if f (e)≥ 0 for all e ∈ E, then all
the Γjs are circuits.

Proof. We proceed by induction on the number of nonzero components of f . First,
note that f = 0 has a trivial conformal decomposition. Next, let f ∈F be a flow and
assume that every flow f ′ having at least one more zero component than f has some
conformal decomposition. Let G be the graph obtained by reversing the orientation
of all edges e for which f (e) < 0 and deleting all the edges for which f (e) = 0.
Observe that G has no cocircuit, as the inner product of any simple cocircuit with
any nonzero flow cannot be zero. Hence, by Corollary 10.2, G has some circuit C,
and let Γ be a cycle of G corresponding to C. Let

α = min{min
e∈Γ+

f (e), min
e∈Γ−

− f (e)}> 0.

Then the flow
f ′ = f −αγ(Γ )

has at least one more zero component than f . Thus, f ′ has some conformal decom-
position and, by construction, f = f ′+αγ(Γ ) is a conformal decomposition of f .
ut
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We now take a quick look at various matrices associated with a graph.

10.5 Incidence and Adjacency Matrices of a Graph

In this section we are assuming that our graphs are finite, directed, without loops,
and without parallel edges. More explicitly, these directed graphs G = (V,E) have
the property that E ⊆V ×V , and they have no edges of the form (v,v).

Definition 10.11. Let G = (V,E) be a graph and write V = {v1, . . . ,vm} and E =
{e1, . . . ,en}. The incidence matrix D(G) of G is the m×n-matrix whose entries di j
are

di j =

+1, if vi = s(e j)
−1, if vi = t(e j)
0, otherwise.

Remark: The incidence matrix actually makes sense for a graph G with parallel
edges but without loops.

For simplicity of notation and when no confusion is possible, we write D instead
of D(G).

Because we assumed that G has no loops, observe that every column of D con-
tains exactly two nonzero entries, +1 and −1. Also, the ith row of D is the vector
ω(vi) representing the cocycle Ω(vi).

Example 10.7. The incidence matrix of the graph G8 shown again in Figure 10.17 is
shown below

D(G8) =


1 1 0 0 0 0 0
−1 0 −1 −1 1 0 0
0 −1 1 0 0 0 1
0 0 0 1 0 −1 −1
0 0 0 0 −1 1 0

 .

Recall that the rows correspond to the vertices (v1,v2,v3,v4,v5) and that the
columns correspond to the edges (e1,e2,e3,e4,e5, e6, e7).

Definition 10.12. The incidence matrix D(G) of a graph G represents a linear map
from Rn to Rm called the incidence map (or boundary map) and denoted by D
incidence!mapboundary!map(or ∂ ). For every e ∈ E, we have

D(ej) = s(ej)− t(ej).

Remark: Sometimes it is convenient to consider the vector space C1(G) = RE of
all functions f : E → R, called the edge space of G, and the vector space C0(G) =
RV , of all functions g : V → R, called the vertex space of G. Obviously, C1(G) is
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Fig. 10.17 Graph G8.

isomorphic to Rn and C0(G) is isomorphic to Rm. The transpose D> of D is a linear
map from C0(G) to C1(G) also called the coboundary map and often denoted by δ .
Observe that δ (Y ) = Ω(Y ) (viewing the subset, Y ⊆V , as a vector in C0(G)).

The spaces of flows and tensions can be recovered from the incidence matrix.

Theorem 10.5. Given any finite graph G if D is the incidence matrix of G and F
and T are the spaces of flows and tensions on G, then

(1) F = Ker D.
(2) T = Im D>.

Futhermore, if G has p connected components and m nodes, then

rankD = m− p.

Proof. We already observed that the ith row of D is the vector ω(vi) and we know
from Theorem 10.3 that F is exactly the set of vectors orthogonal to all vectors of
the form ω(vi). Now,for any f ∈ Rn,

D f =

ω(v1) · f
...

ω(vm) · f

 ,

and so, F =Ker D. The vectors ω(vi) generate T , therefore the rows of D generate
T ; that is, T = Im D>.

From Theorem 10.2, we know that

dimT = m− p

and inasmuch as we just proved that T = Im D>, we get

rankD = rankD> = m− p,
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which proves the last part of our theorem. ut

Corollary 10.3. For any graph G = (V,E,s, t) if |V |= m, |E|= n and G has p con-
nected components, then the incidence matrix D of G has rank n (i.e., the columns
of D are linearly independent) iff F = (0) iff n = m− p.

Proof. By Theorem 10.3, we have rankD = m− p. So rankD = n iff n = m− p iff
n−m+ p = 0 iff F = (0) (because dimF = n−m+ p). ut

The incidence matrix of a graph has another interesting property observed by
Poincaré. First, let us define a variant of triangular matrices.

Definition 10.13. An n×n (real or complex) matrix A = (ai j) is said to be pseudo-
triangular and nonsingular iff either

(i) n = 1 and a11 6= 0.
(ii) n≥ 2 and A has some row, say h, with a unique nonzero entry ahk such that the

submatrix B obtained by deleting the hth row and the kth column from A is also
pseudo-triangular and nonsingular.

It is easy to see that a matrix defined as in Definition 10.13 can be transformed
into a usual triangular matrix by permutation of its rows and columns.

Example 10.8. The matrix

A =

1 1 −1
0 1 0
0 −1 1


is pseudo-triangular and nonsingular. By permuting column two and column three
and then row two and and row three, we obtain the upper-triangular matrix

A′ =

1 −1 1
0 1 −1
0 0 1

 .

Proposition 10.11. (Poincaré, 1901) If D is the incidence matrix of a graph, then ev-
ery square k×k nonsingular submatrix2 B of D is pseudo-triangular. Consequently,
det(B) = +1,−1, or 0, for any square k× k submatrix B of D.

Proof. We proceed by induction on k. The result is obvious for k = 1.
Next, assume the induction hypothesis holds for every square nonsingular h×h-

submatrix of D with h < k and k ≥ 2, namely, this matrix is pseudo-triangular. Sup-
pose for the sake of contradiction that B is a square k× k-submatrix of D which is
nonsingular but not pseudo-triangular. By the induction hypothesis, every nonsingu-
lar h×h-submatrix of B is pseudo-triangular if h< k. We know that every column of
B has at most two nonzero entries (because every column of D contains two nonzero

2 Given any m×n matrix A = (ai j), if 1≤ h≤ m and 1≤ k ≤ n, then a h× k-submatrix B of A is
obtained by picking any k columns of A and then any h rows of this new matrix.
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entries: +1 and−1). Also, as B is not pseudo-triangular (but nonsingular) and every
nonsingular h×h-submatrix of B is pseudo-triangular (h < k), every row of B con-
tains at least two nonzero elements (otherwise B would be pseudo-triangular). But
then, no row of B may contain three or more nonzero elements, because the num-
ber of nonzero slots in all columns is at most 2k and by the pigeonhole principle,
we could fit 2k+ 1 objects in 2k slots, which is impossible. Therefore, every row
of B contains exactly two nonzero entries. Again, the pigeonhole principle implies
that every column also contains exactly two nonzero entries. But now, the nonzero
entries in each column are +1 and −1, so if we add all the rows of B, we get the
zero vector, which shows that B is singular, a contradiction. Therefore, B is pseudo-
triangular.

The entries in D are +1,−1,0, therefore using the Laplace expansion rule for
computing a determinant, we deduce that det(B) = +1,−1, or 0 for any square
k× k submatrix B of D, since B is pseudo-triangular. ut

Definition 10.14. A square matrix such as A such that det(B) =+1,−1, or 0 for any
square k× k submatrix B of A det(B)detis said to be totally unimodular.

This is a very strong property of incidence matrices that has far-reaching impli-
cations in the study of optimization problems for networks.

Another important matrix associated with a graph is its adjacency matrix. To
simplify matters, we assume that our graphs (which have no loops and no parallel
edges) also have the property that if (u,v) ∈ E, then (v,u) /∈ E.

Definition 10.15. Let G = (V,E) be a graph with V = {v1, . . . ,vm}. The adjacency
matrix A(G) of G is the m×m-matrix whose entries ai j are

ai j =

{
1, if (∃e ∈ E)({s(e), t(e)}= {vi,v j})
0, otherwise.

When no confusion is possible, we write A for A(G). Note that the matrix A is
symmetric and ai i = 0.

Example 10.9. Here is the adjacency matrix of the graph G8 shown in Figure 10.17:

A =


0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0

 .

We have the following useful relationship between the incidence matrix and the
adjacency matrix of a graph.

Proposition 10.12. Consider any graph G without loops, parallel edges, and such
that if (u,v)∈E, then (v,u) /∈E. Equivalentlly, consider any directed graph obtained
by orienting a simple undirected graph. If D is the incidence matrix of G, A is the
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adjacency matrix of G, and ∆ is the diagonal matrix such that ∆i i = d(vi), the degree
of node vi, then

DD> = ∆ −A.

Consequently, DD> is independent of the orientation of the underlying undirected
graph of G, and ∆ −A is symmetric positive, semidefinite; that is, the eigenvalues
of ∆ −A are real and nonnegative.

Proof. It is well known that DD>i j is the inner product of the ith row di, and the jth
row d j of D. If i = j, then as

di k =

{
+1 if s(ek) = vi
−1 if t(ek) = vi
0 otherwise

we see that di · di = d(vi). If i 6= j, then di · d j 6= 0 iff there is some edge ek with
s(ek) = vi and t(ek) = v j or vice-versa (which are mutually exclusive cases, by
hypothesis on our graphs), in which case, di ·d j =−1. Therefore,

DD> = ∆ −A,

as claimed. Now, DD> is obviously symmetric and it is well known that its eigen-
values are nonnegative (e.g., see Gallier [11], Chapter 12). ut

For example, for the graph G8, we find that L = DD> = ∆ −A is given by

L =


2 −1 −1 0 0
−1 4 −1 −1 −1
−1 −1 3 −1 0
0 −1 −1 3 −1
0 −1 0 −1 2

 .

As pointed out by Evangelos Chatzipantazis, Proposition 10.12 in which G is an
arbitrary simple directed graph with no loops does not hold. The problem is that
such graphs may have both edges (vi,v j) and (v j,vi) between two distinct nodes vi
and v j, and as a consequence, the inner product di ·d j =−2 instead of−1. A simple
counterexample is given by the directed graph with three vertices and four edges
whose incidence matrix is given by

D =

 1 −1 0 −1
−1 1 −1 0
0 0 1 1

 .

We have

DD> =

 3 −2 −1
−2 3 −1
−1 −1 2

 6=
3 0 0

0 3 0
0 0 2

−
0 1 1

1 0 1
1 1 0

= ∆ −A.
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Remarks:

1. The matrix L = DD> = ∆ −A, is known as the Laplacian (matrix) of the graph,
G. Another common notation for the matrix DD> is Q. The columns of D con-
tain exactly the two nonzero entries, +1 and −1, thus we see that the vector 1,
defined such that 1i = 1, is an eigenvector of L for the eigenvalue 0.

2. If G is connected, then D has rank m−1, so the rank of DD> is also m−1 and
the other eigenvalues of DD> besides 0 are strictly positive. The smallest pos-
itive eigenvalue of L = DD> has some remarkable properties. There is an area
of graph theory overlapping (linear) algebra, called spectral graph theory, that
investigates the properties of graphs in terms of the eigenvalues of its Laplacian
matrix but this is beyond the scope of this book. Some good references for al-
gebraic graph theory include Biggs [3], Godsil and Royle [12], and Chung [6]
for spectral graph theory.
One of the classical and surprising results in algebraic graph theory is a formula
that gives the number of spanning trees τ(G) of a connected graph G in terms
of its Laplacian L = DD>. If J denotes the square matrix whose entries are all
1s and if adjL denotes the adjoint matrix of L (the transpose of the matrix of
cofactors of L), that is, the matrix given by

(adjL)i j = (−1)i+ j detL( j, i),

where L( j, i) is the matrix obtained by deleting the jth row and the ith column
of L, then we have

adjL = τ(G)J.

We also have
τ(G) = m−2 det(J+L),

where m is the number of nodes of G. For a proof of these results, see Biggs [3].
3. As we already observed, the incidence matrix also makes sense for graphs with

parallel edges and no loops. But now, in order for the equation DD> = ∆ −A to
hold, we need to define A differently. We still have the same definition as before
for the incidence matrix but we can define the new matrix A such that

Ai j = |{e ∈ E | {s(e), t(e)}= {vi,v j}}|;

that is, Ai j is the total number of edges between vi and v j and between v j and
vi. Then we can check that

DD> = ∆ −A .

For example, if G9 is the graph with three nodes and six edges specified by the
incidence matrix

D =

 1 −1 1 0 0 −1
−1 1 −1 1 1 0
0 0 0 −1 −1 1

 ,
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the adjacency matrix A and the degree matrix ∆ are given by

A =

0 3 1
3 0 2
1 2 0

 , ∆ =

4 0 0
0 5 0
0 0 3

 ,

and we verify that

DD> =

 4 −3 −1
−3 5 −2
−1 −2 3

= ∆ −A ,

as claimed.
4. There are also versions of the adjacency matrix and of the incidence matrix for

undirected graphs. In this case, D is no longer totally unimodular.

10.6 Network Flow Problems

The network flow problem is a perfect example of a problem that is important prac-
tically but also theoretically, because in both cases, it has unexpected applications.
In this section, we solve the network flow problem using some of the notions from
Sections 10.1-10.4. First, let us describe the kinds of graphs that we are dealing
with, usually called networks (or transportation networks or flow networks).

Definition 10.16. A network (or flow network) is a quadruple N = (G,c,vs,st),
where G is a finite digraph G = (V,E,s, t) without loops, c : E → R+ is a func-
tion called a capacity function assigning a capacity c(e) > 0 (or cost or weight) to
every edge e ∈ E, and vs,vt ∈ V are two (distinct) distinguished nodes.3 Moreover,
we assume that there are no edges coming into vs (d−G (vs) = 0), which is called the
source and that there are no outgoing edges from vt (d+

G (vt) = 0), which is called
the terminal (or sink).

An example of a network is shown in Figure 10.18 with the capacity of each edge
within parentheses.

Intuitively, we can think of the edges of a network as conduits for fluid, or wires
for electricity, or highways for vehicle, and so on, and the capacity of each edge is
the maximum amount of “flow” that can pass through that edge. The purpose of a
network is to carry “flow,” defined as follows:

Definition 10.17. Given a network N = (G,c,vs,vt) a flow in N is a function f : E→
R such that the following conditions hold:

3 Most books use the notation s and t for vs and vt . Sorry, s and t are already used in the definition
of a digraph.
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Fig. 10.18 A network N.

(1) (Conservation of flow)

∑
t(e)=v

f (e) = ∑
s(e)=v

f (e), for all v ∈V −{vs,vt}.

(2) (Admissibility of flow)

0≤ f (e)≤ c(e), for all e ∈ E.

Given any two sets of nodes S,T ⊆V , let

f (S,T ) = ∑
e∈E

s(e)∈S, t(e)∈T

f (e) and c(S,T ) = ∑
e∈E

s(e)∈S, t(e)∈T

c(e).

When S = {u} or T = {v}, we write f (u,T ) for f ({u},T ) and f (S,v) for f (S,{v})
(similarly, we write c(u,T ) for c({u},T ) and c(S,v) for c(S,{v})).

Definition 10.18. The net flow out of S is defined as f (S,S)− f (S,S) (where S =
V −S). The value | f | (or v( f )) of the flow f is the quantity

| f |= f (vs,V −{vs}).

Remark: Note that Condition (1) is almost the property of flows stated in Theorem
10.3, but it is fails because of vs and vt . The introduction of the return edge just after
Proposition 10.14 will rectify the situation.

We will see shortly that condition (1) implies that if a network carries some
nonzero flow value | f |, then vs and vt must be conneceted by a chain, and that only
nodes on some chain from vs to vt contribute to the flow value | f |.
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We can now state the following.

Network Flow Problem: Find a flow f in N for which the value | f | is maximum
(we call such a flow a maximum flow).

Example 10.10. Figure 10.19 shows a flow in the network N, with value | f | = 3.
This is not a maximum flow, as the reader should check (the maximum flow value is
4). The capacities on the edges are written within parentheses and the flows without
parentheses.

1

vs

v1

v2

vt

(1)

(4)

(5)

(3)

(2)

1

2

0

3

1

Fig. 10.19 A flow in the network N.

Remarks:

1. For any set of edges E ⊆ E, let

f (E ) = ∑
e∈E

f (e)

c(E ) = ∑
e∈E

c(e).

Then note that the net flow out of S can also be expressed as

f (Ω+(S))− f (Ω−(S)) = f (S,S)− f (S,S).

Now, recall that Ω(S) = Ω+(S)∪Ω−(S) is a cocycle (see Definition 10.4). So
if we define the value f (Ω(S)) of the cocycle Ω(S) to be

f (Ω(S)) = f (Ω+(S))− f (Ω−(S)),

the net flow through S is the value of the cocycle Ω(S).
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2. By definition, c(S,S) = c(Ω+(S)).
3. Because G has no loops, there are no edges from u to itself, so

f (u,V −{u}) = f (u,V ),

and similarly,
f (V −{v},v) = f (V,v).

4. Some authors (e.g., Wilf [22]) do not require the distinguished node vs to be
a source and the distinguished node vt to be a sink. This makes essentially no
difference, but if so, the value of the flow f must be defined as

| f |= f (vs,V −{vs})− f (V −{vs},vs) = f (vs,V )− f (V,vs).

Intuitively, because flow conservation holds for every node except vs and vt , the
net flow f (V,vt) into the sink should be equal to the net flow f (vs,V ) out of the
source vs. This is indeed true and follows from the next proposition.

Proposition 10.13. Given a network N = (G,c,vs,vt), for any flow f in N and for
any subset S⊆V , if vs ∈ S and vt /∈ S, then the net flow out of S has the same value,
namely | f |; that is,

| f |= f (Ω(S)) = f (S,S)− f (S,S)≤ c(S,S) = c(Ω+(S)).

In particular,
| f |= f (vs,V ) = f (V,vt).

Proof. Recall that | f | = f (vs,V −{vs}) = f (vs,V ) (by Remark (3)). Since vt /∈ S,
both vs and vt do not belong to S−{vs}, so by condition (1) of Definition 10.17, the
equation

∑
t(e)=v

f (e) = ∑
s(e)=v

f (e)

holds for all v ∈ S−{vs}, and since vs ∈ S, we have

| f |= f (vs,V ) = ∑
e∈E

s(e)=vs

f (e) = ∑
e∈E

s(e)∈S

f (e)− ∑
e∈E

s(e)∈S−{vs},

f (e)

= f (S,V )− ∑
e∈E

t(e)∈S−{vs},

f (e)

= f (S,V )− f (V,S−{vs}) = f (S,V )− f (V,S),

since there are no incoming edges into vs. However, V = S∪ S and S and S are
disjoint, so
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| f |= f (S,V )− f (V,S)

= f (S,S∪S)− f (S∪S,S)

= f (S,S)+ f (S,S)− f (S,S)− f (S,S)

= f (S,S)− f (S,S),

as claimed. The capacity of every edge is nonnegative, thus it is obvious that

| f |= f (S,S)− f (S,S)≤ f (S,S)≤ c(S,S) = c(Ω+(S)),

inasmuch as a flow is admissible. Finally, if we set S =V −{vt}, we get

f (S,S)− f (S,S) = f (V,vt),

since S = {vt} and since there are no edges with source vt , f (S,S) = f ({vt},S) = /0,
and so, | f |= f (vs,V ) = f (V,vt). ut

Corollary 10.4. Given a network N = (G,c,vs,vt), for any function f : E → R sat-
isfying the conservation of flow property (1) (but not necessarly condition (2) for
admissible flows), the following properties hold.

(1) If | f | 6= 0, then vs and vt must be connected by a chain.
(2) If vs and vt are connected, for any node v distinct from vs and vt , if v does not

belong to the connected component of vs, then the edges incident with v do not
contribute to | f | (this holds even if | f |= 0).

(3) If f also satisfies condition (2) and | f |> 0, then vs and vt must be connected by
a path.

Proof. (1) First assume that there is no chain from vs to vt and let S be the connected
component of vs (here we view G as an undirected graph). Since vt /∈ S, we can apply
Proposition 10.13 to S, and so

| f |= f (S,S)− f (S,S).

Since S is the connected component of vs, there are no edges between any node in
S and any node in S and no edges between any node in S and any node in S, so by
definition, f (S,S) = f (S,S) = 0, and so | f |= 0, a contradiction.

(2) Let U be the set of nodes distinct from vs and vt that do not belong to the
connected component of vs (which contains vt ) and S be the connected component
of vs with vt removed. Then S = U ∪{vt}, and since there are no outgoing edges
from vt , we have f (S,S) = f (U,S) = 0, because there are no edges from U to S by
definition of U . It follows that | f |= f (S,S) = f (S,U ∪{vt}), and since there are no
edges from S to U , we obtain | f |= f (S,{vt}), which shows that the edges incident
to the nodes in U do not contribute to | f |.

(3) Let S be the net of nodes v such that there is a path from vs to v, including vs
itself. If vt /∈ S, as before, | f | = f (S,S)− f (S,S), and there are no edges from S to
S, since otherwise we would have a path from vs to some node in S, contradicting
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the definition of S. Consequently f (S,S) = 0, and | f | = − f (S,S). Since f satisfies
condition (2), we have f (S,S ≥ 0, so | f | ≤ 0, contradicting the assumption that
| f |> 0. ut

In view of the above corollary, we may assume that we restrict our attention to
networks such that there is a path from vs to vt and that every node distinct from vs
and vt belongs to a chain from vs to vt . If we omit condition (2) and allow negative
flows along edges, then there are examples of networks with nonzero flows along
edges and nonzero net flow | f |, such that there is no path from vs to vt and there are
nodes with no incoming edges or no outgoing edges.

Proposition 10.13 shows that the sets of edges Ω+(S) with vs ∈ S and vt /∈ S, play
a very special role. Indeed, as a corollary of Proposition 10.13, we see that the value
of any flow in N is bounded by the capacity c(Ω+(S)) of the set Ω+(S) for any S
with vs ∈ S and vt /∈ S. This suggests the following definition.

Definition 10.19. Given a network N = (G,c,vs,vt), a cut separating vs and vt , for
short a vs-vt -cut, is any subset of edges C = Ω+(W ), where W is a subset of V with
vs ∈W and vt /∈W . The capacity of a vs-vt -cut, C , is

c(C ) = c(Ω+(W )) = ∑
e∈Ω+(W )

c(e).

A vs-vt -cut of minimum capacity is called a minimum vs-vt -cut, for short, a minimum
cut.

Remark: Some authors, including Papadimitriou and Steiglitz [18] and Wilf [22],
define a vs-vt -cut as a pair (W,W ), where W is a subset of V with vs ∈ W and
vt /∈W . This definition is clearly equivalent to our definition above, which is due to
Sakarovitch [21]. We have a slight prerefence for Definition 10.19 because it places
the emphasis on edges as opposed to nodes. Indeed, the intuition behind vs-vt -cuts
is that any flow from vs to vt must pass through some edge of any vs-vt -cut. Thus,
it is not surprising that the capacity of vs-vt -cuts places a restriction on how much
flow can be sent from vs to vt .

We can rephrase Proposition 10.13 as follows.

Proposition 10.14. The maximum value of any flow f in the network N is bounded
by the minimum capacity c(C ) of any vs-vt -cut C in N; that is,

max | f | ≤minc(C ).

Proposition 10.14 is half of the so-called max-flow min-cut theorem. The other
half of this theorem says that the above inequality is indeed an equality. That is,
there is actually some vs-vt -cut C whose capacity c(C ) is the maximum value of
the flow in N.

Example 10.11. An example of a minimum cut is shown in Figure 10.20, where

C = Ω
+({vs,v2}) = {(vsv1),(v2vt)},
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these two edges being shown as thicker lines. The capacity of this cut is 4 and a
maximum flow is also shown in Figure 10.20.

1

vs

v1

v2

vt

(1)

(4)

(5)

(3)

(2)

1

3

1

3

0

Fig. 10.20 A maximum flow and a minimum cut in the network N.

What we intend to do next is to prove the celebrated “max-flow, min-cut theorem”
(due to Ford and Fulkerson, 1957) and then to give an algorithm (also due to Ford
and Fulkerson) for finding a maximum flow, provided some reasonable assumptions
on the capacity function. In preparation for this, we present a handy trick (found
both in Berge [1] and Sakarovitch [21]); the return edge.

Recall that one of the consequences of Proposition 10.13 is that the net flow out
from vs is equal to the net flow into vt .

Definition 10.20. The graph G̃ is obtained from the graph G by adding a new edge
er from vt to vs called the return edge We obtain the network Ñ by assigning to the
return edge er a capacity greater than all of the capacities present in the network.
Technically, we assign +∞ to er.

The graph obtained by adding a return edge to the network of Figure 10.20 is
shown in Figure 10.21.

We see that any flow f in N satisfying Condition (1) of Definition 10.17 yields
a genuine flow f̃ in Ñ (a flow according to Definition 10.6, by Theorem 10.3), such
that f (e)= f̃ (e) for every edge of G and f̃ (er)= | f |. Consequently, the network flow
problem is equivalent to finding a (genuine) flow in Ñ such that f̃ (er) is maximum.
Another advantage of this formulation is that all the results on flows from Sections
10.1-10.4 can be applied directly to Ñ.

To simplify the notation, as f̃ extends f , let us also use the notation f for f̃ . Now
if D is the incidence matrix of G̃ (again, we use the simpler notation D instead of
D̃), we know from Theorem 10.5(1) that f is a flow iff

D f = 0.
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vs vt

v1

v2

er

4

(1)
1

(5)
1

0 (2)

3
(4)

3
(3)

(∞)

Fig. 10.21 Adding a return edge to a network.

Therefore, the network flow problem can be stated as a linear programing problem
as follows:

Maximize z = f (er)

subject to the linear constraints

D f = 0
0≤ f

f ≤ c,

where we view f as a vector in Rn+1, with n = |E(G)|.
Consequently, we obtain the existence of maximal flows, a fact that is not imme-

diately obvious.

Proposition 10.15. Given any network N = (G,c,vs,vt), there is some flow f of
maximum value.

Proof. If we go back to the formulation of the max-flow problem as a linear pro-
gram, we see that the set

C = {x ∈ Rn+1 | 0≤ x≤ c}∩Ker D

is compact, as the intersection of a compact subset and a closed subset of Rn+1 (in
fact, C is also convex) and nonempty, as 0 (the zero vector) is a flow. But then the
projection π : x 7→ x(er) is a continuous function π : C→R on a nonempty compact
subset, so it achieves its maximum value for some f ∈C. Such an f is a flow on Ñ
with maximal value. ut
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10.7 The Max-Flow Min-Cut Theorem

Now that we know that maximum flows exist, it remains to prove that a maximal
flow is realized by some minimal cut to complete the max-flow, min-cut theorem of
Ford and Fulkerson. This can be done in various ways usually using some version of
an algorithm due to Ford and Fulkerson. Such proofs (using some results of linear
programming) can be found in Papadimitriou and Steiglitz [18], Wilf [22], Cameron
[5], and Sakarovitch [21].

Fig. 10.22 Delbert Ray Fulkerson, 1924–1976.

Sakarovitch makes the interesting observation (given as an exercise) that the arc
coloring lemma due to Minty (Theorem 10.1) yields a simple proof of the part of the
max-flow, min-cut theorem that we seek to establish. (See [21], Chapter 4, Exercise
1, page 105.) Therefore, we choose to present such a proof because it is rather
original and quite elegant.

Theorem 10.6. (Max-Flow, Min-Cut Theorem (Ford and Fulkerson)) For any net-
work N = (G,c,vs,vt), the maximum value | f | of any flow f in N is equal to the
minimum capacity c(C ) of any vs-vt -cut C in N.

Proof. By Proposition 10.14, we already have half of our theorem. By Proposition
10.15, we know that some maximum flow, say f , exists. It remains to show that
there is some vs-vt -cut C such that | f |= c(C ).

We proceed as follows.
Form the graph G̃ = (V,E ∪{er},s, t) from G = (V,E,s, t), with s(er) = vt and

t(er) = vs. Then form the graph, Ĝ = (V, Ê, ŝ, t̂), whose edges are defined as follows.

(a) er ∈ Ê; ŝ(er) = s(er), t̂(er) = t(er).
(b) If e ∈ E and 0 < f (e)< c(e), then e ∈ Ê; ŝ(e) = s(e), t̂(e) = t(e).
(c) If e ∈ E and f (e) = 0, then e ∈ Ê; ŝ(e) = s(e), t̂(e) = t(e).
(d) If e ∈ E and f (e) = c(e), then e ∈ Ê, with ŝ(e) = t(e) and t̂(e) = s(e).

In order to apply Minty’s theorem, we color all edges constructed in (a), (c), and
(d) in black and all edges constructed in (b) in red and we pick er as the distinguished
edge; see Figures 10.23 and 10.26. Now apply Minty’s lemma to the black edge er.
We have two possibilities:
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1. There is a simple cycle Γ in Ĝ, with all black edges oriented the same way.
In this case, a = vs ends up being marked. Because er is incoming into vs, the
direction of the cycle is from vs to vt , so er ∈ Γ +. This implies that all edges
e ∈ Ê of type (d), which are marked black, have an orientation consistent with
the direction of the cycle. Now, Γ is also a cycle in G̃, and in G̃, each edge
e ∈ E with f (e) = c(e) is oriented in the inverse direction of the cycle; that is,
e ∈Γ− in G̃. Also, all edges e ∈ Ê of type (c), with f (e) = 0, are oriented in the
direction of the cycle; that is, e ∈ Γ + in G̃. We also have er ∈ Γ + in G̃.

We show that the value of the flow | f | can be increased. This is done in the
graph G̃. The graph Ĝ does not change. Because 0 < f (e)< c(e) for every red
edge, f (e) = 0 for every edge of type (c) in Γ +, f (e) = c(e) for every edge of
type (d) in Γ−, and because all capacities are strictly positive, if we let

δ1 = min
e∈Γ+
{c(e)− f (e)}

δ2 = min
e∈Γ−
{ f (e)}

and
δ = min{δ1,δ2},

then δ > 0. We can increase the flow f in N by adding δ to f (e) for every edge
e ∈ Γ + (including edges of type (c) for which f (e) = 0) and subtracting δ from
f (e) for every edge e ∈Γ− (including edges of type (d) for which f (e) = c(e)),
obtaining a flow f ′ such that

| f ′|= f (er)+δ = | f |+δ > | f |,

as er ∈ Γ +, contradicting the maximality of f . Therefore, we conclude that
alternative (1) is impossible and we must have the second alternative.

2. There is a simple cocycle ΩĜ(W ) in Ĝ with all edges black and oriented in the
same direction (there are no green edges). In this case, vs is not marked and
W consists of unmarked nodes (after running the marking algorithm in Minty’s
lemma). Because er ∈ ΩĜ(W ) and vs /∈W , we have vt ∈W , so er ∈ Ω

+

Ĝ
(W ).

Then consider Ω
−
Ĝ
(W ) = Ω

+

Ĝ
(W ), with vs ∈W . To simplify notation, write Y =

W . Since vs ∈ Y and er ∈ Ω
−
Ĝ
(Y ) and because all edges are black, ΩĜ(Y ) =

Ω
−
Ĝ
(Y ) in Ĝ. However, as every edge e∈ Ê of type (d) corresponds to an inverse

edge e ∈ E, we see that ΩĜ(Y ) defines a cocycle, ΩG̃(Y ) = Ω
+

G̃
(Y )∪Ω

−
G̃
(Y ),

with

Ω
+

G̃
(Y ) = {e ∈ E | s(e) ∈ Y}

Ω
−
G̃
(Y ) = {e ∈ E | t(e) ∈ Y}.

Moreover, by construction, f (e) = c(e) for all e ∈ Ω
+

G̃
(Y ), f (e) = 0 for all

e∈Ω
−
G̃
(Y )−{er}, and f (er) = | f |. We say that the edges of the cocycle ΩG̃(Y )
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are saturated. Consequently, C = Ω
+

G̃
(Y ) is a vs-vt -cut in N with

c(C ) = f (er) = | f |,

establishing our theorem. ut
ut

Case (1) is illustrated in Figures 10.23, 10.24, 10.25. Case (2) is illustrated in Figures
10.26, 10.27, 10.28.
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Fig. 10.23 The graphs G̃ and Ĝ.
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Fig. 10.24 The cycle.
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Fig. 10.25 The new flow.
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Fig. 10.26 The graphs G̃ and Ĝ.
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Fig. 10.27 The cocycle ΩĜ(W ).

It is interesting that the proof in part (1) of Theorem 10.6 contains the main idea
behind the algorithm of Ford and Fulkerson that we now describe.
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Fig. 10.28 A vs-vt -cut.

10.8 Ford and Fulkerson’s Algorithm

The main idea is to look for a (simple) chain from vs to vt so that together with the
return edge er we obtain a cycle Γ such that the edges in Γ satisfy the following
properties:

(1) δ1 = mine∈Γ+{c(e)− f (e)}> 0.
(2) δ2 = mine∈Γ−{ f (e)}> 0.

Such a chain is called a flow augmenting chain. Then if we let δ = min{δ1,δ2},
we can increase the value of the flow by adding δ to f (e) for every edge e ∈ Γ +

(including the edge er, which belongs to Γ +) and subtracting δ from f (e) for all
edges e ∈ Γ−. This way, we get a new flow f ′ whose value is | f ′|= | f |+δ . Indeed,
f ′ = f + δγ(Γ ), where γ(Γ ) is the vector (flow) associated with the cycle Γ . The
algorithm goes through rounds each consisting of two phases. During phase 1, a
flow augmenting chain is found by the procedure findchain; During phase 2, the flow
along the edges of the augmenting chain is increased using the function changeflow.

During phase 1, the nodes of the augmenting chain are saved in the (set) variable
Y , and the edges of this chain are saved in the (set) variable E . We assign the special
capacity value ∞ to er, with the convention that ∞±α = α and that α < ∞ for all
α ∈ R.

procedure findchain(N: network; er: edge; Y : node set; E : edge set;
δ : real; f : flow)

begin
δ := c(ur)− f (ur); Y := {vs};
while (vt /∈ Y )∧ (δ > 0) do

if there is an edge e with s(e) ∈ Y , t(e) /∈ Y and f (e)< c(e) then
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Y := Y ∪{t(e)}; E (t(e)) := e; δ (t(e)) := min{δ (s(e)),c(e)− f (e)}
else

if there is an edge e with t(e) ∈ Y , s(e) /∈ Y and f (e)> 0 then
Y := Y ∪{s(e)}; E (s(e)) := e; δ (s(e)) := min{δ (t(e)), f (e)}

else δ := 0 (no new arc can be traversed)
endif

endif
endwhile;
if vt ∈ Y then δ := δ (vt) endif

end

Here is the procedure to update the flow.

procedure changeflow(N: network; er: edge; E : edge set;
δ : real; f : flow)

begin
u := vt ; f (er) := f (er)+δ ;
while u 6= vs do e := E (u);

if u = t(e) then f (e) := f (e)+δ ; u := s(e);
else f (e) := f (e)−δ ; u = t(e)
endif

endwhile
end

Finally, the algorithm maxflow is given below.

procedure maxflow(N: network; er: edge; Y : set of nodes;
E : set of edges; f : flow)

begin
for each e ∈ E do f (e) := 0 endfor;
c(er) = ∞;
repeat until δ = 0

findchain(N,er,Y,E ,δ , f );
if δ > 0 then

changeflow(N,er,E ,δ , f )
endif

endrepeat
end

Figures 10.29, 10.30 and 10.31 show the result of running the algorithm maxflow
on the network of Figure 10.19 to verify that the maximum flow shown in Figure
10.20 is indeed found, with Y = {vs,v2} when the algorithm stops.

The correctness of the algorithm maxflow is easy to prove.

Theorem 10.7. If the algorithm maxflow terminates and during the last round
through findchain the node vt is not marked, then the flow f returned by the al-
gorithm is a maximum flow.
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Fig. 10.29 Running findchain on the network of Figure 10.19.

Proof. Observe that if Y is the set of nodes returned when maxflow halts, then vs ∈Y ,
vt /∈ Y , and

1. If e ∈ Ω+(Y ), then f (e) = c(e), as otherwise, procedure findchain would have
added t(e) to Y .

2. If e ∈ Ω−(Y ), then f (e) = 0, as otherwise, procedure findchain would have
added s(e) to Y .

But then, as in the end of the proof of Theorem 10.6, we see that the edges of the
cocycle Ω(Y ) are saturated and we know that Ω+(Y ) is a minimal cut and that
| f |= c(Ω+(Y )) is maximal. ut
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Fig. 10.30 Running changeflow on the network of Figure 10.19.

We still have to show that the algorithm terminates, but there is a catch. Indeed,
the version of the Ford and Fulkerson algorithm that we just presented may not
terminate if the capacities are irrational. Moreover, in the limit, the flow found by
the algorithm may not be maximum. An example of this bad behavior due to Ford
and Fulkerson is reproduced in Wilf [22] (Chapter 3, Section 5). However, we can
prove the following termination result which, for all practical purposes, is good
enough, because only rational numbers can be stored by a computer.
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Fig. 10.31 Running maxflow on the network of Figure 10.19.

Theorem 10.8. Given a network N, if all the capacities are integer multiples of
some number λ > 0, then the algorithm maxflow always terminates. In particular,
the algorithm maxflow always terminates if the capacities are rational (or integral).

Proof. The number δ will always be an integer multiple of λ , so f (er) will increase
by at least λ during each iteration. Thus, eventually, the value of a minimal cut,
which is an integer multiple of λ , will be reached. ut

If all the capacities are integers, an easy induction yields the following useful and
nontrivial proposition.
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Proposition 10.16. Given a network N, if all the capacities are integers, then the
algorithm maxflow outputs a maximum flow f : E → N such that the flow in every
edge is an integer.

Remark: Proposition 10.16 only asserts that some maximum flow is of the form
f : E → N. In general, there is more than one maximum flow and other maximum
flows may not have integer values on all edges.

Theorem 10.8 is good news but it is also bad news from the point of view of
complexity. Indeed, the present version of the Ford and Fulkerson algorithm has a
running time that depends on capacities, and so, it can be very bad.

There are various ways of getting around this difficulty to find algorithms that
do not depend on capacities and quite a few researchers have studied this problem.
An excellent discussion of the progress in network flow algorithms can be found in
Wilf [22] (Chapter 3).

10.9 Residual Networks

A fairly simple modification of the Ford and Fulkerson algorithm consists in looking
for flow augmenting chains of shortest length. To explain this algorithm we need the
concept of residual network, which is a useful tool in any case.

Definition 10.21. Given a network N = (G,c,vs,vt) and given any flow f , the resid-
ual network N f = (G f ,c f ,vs,vt) is defined as follows.

1. Vf =V .
2. For every edge, e∈ E, if f (e)< c(e), then e+ ∈ E f , s f (e+) = s(e), t f (e+) = t(e)

and c f (e+) = c(e)− f (e); the edge e+ is called a forward edge.
3. For every edge, e ∈ E, if f (e) > 0, then e− ∈ E f , s f (e−) = t(e), t f (e−) = s(e)

and c f (e−) = f (e); the edge e− is called a backward edge because it has the
inverse orientation of the original edge, e ∈ E.

The capacity c f (eε) of an edge eε ∈E f (with ε =±) is usually called the residual
capacity of eε .

Observe that the same edge e in G, will give rise to two edges e+ and e− (with the
same set of endpoints but with opposite orientations) in G f if 0 < f (e)< c(e). Thus,
G f has at most twice as many edges as G. Also note that every edge e ∈ E which
is saturated (i.e., for which f (e) = c(e)) does not survive in G f . Some examples of
residual networks are shown in Figures 10.32–10.34.

We leave it as an exercise to prove that there is a one-to-one correspondence
between (simple) flow augmenting chains in the original graph G and (simple) flow
augmenting paths in G f . For help, see Kleinberg and Tardos [16], Section 7.1.

In order to check that a simple path π from vs to vt in G f is a flow augmenting
path, all we have to do is to compute
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c f (π) = min
eε∈π
{c f (eε)},

the bottleneck of the path π .
Then, as before, we can update the flow f in N to get the new flow f ′ by setting

f ′(e) = f (e)+ c f (π), if e+ ∈ π

f ′(e) = f (e)− c f (π) if e− ∈ π,

f ′(e) = f (e) if e ∈ E and eε /∈ π,

for every edge e ∈ E. Note that the function fπ : E→ R, defined by

fπ(e) = c f (π), if e+ ∈ π

fπ(e) =−c f (π) if e− ∈ π,

fπ(e) = 0 if e ∈ E and eε /∈ π,

is a flow in N with | fπ | = c f (π) and f ′ = f + fπ is a flow in N, with | f ′| = | f |+
c f (π) (same reasoning as before). Now we can repeat this process. Compute the
new residual graph N f ′ from N and f ′, update the flow f ′ to get the new flow f ′′ in
N, and so on.

The same reasoning as before shows that if we obtain a residual graph with no
flow augmenting path from vs to vt , then a maximum flow has been found.

The new version of Ford and Fulkerson’s algorithm using residual graphs also
proceeeds in two phases. During the first phase, a simple path π from vs to vt is
found in the residual graph G f . Note that this is a path, not a chain, so each edge
is traversed from source to target. Any available method may be used in this first
phase. In the second phase, the flow is augmented along the simple path π found in
the first phase, and at the end of this step, the residual graph is updated according
to Definition 10.21. The algorithm stops when a residual graph is obtained such
that there is no path from vS to vt . The second phase is described by the following
pseudo-code.

Here is the procedure to update the flow.

procedure updateflow(N: network; π: path;
f : flow; G: residual graph)

begin
δ = c f (π); (∗ the bottleneck of π ∗)
for each edge eε ∈ π

if ε =+1 then f (e) := f (e)+δ

else f (e) := f (e)−δ

endif
endfor
G := update residual graph(N, f )

end

The algorithm maxflow2 is given below.
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procedure maxflow2(N: network; f : flow)
begin

for each e ∈ E do f (e) := 0 endfor;
construct initial residual graph G for flow f ;
while there is a simple path π from vs to vt in G

find a simple path π from vs to vt ;
updateflow(N,π, f ,G);

end while
end

Example 10.12. Here is an illustration of the version of Ford and Fulkerson’s algo-
rithm using residual graphs, starting with the network N shown in Figure 10.18. The
sequence of residual network construction and flow augmentation steps is shown in
Figures 10.32–10.34. During the first two rounds, the augmented path chosen is
shown in thicker lines. In the third and final round, there is no path from vs to vt in
the residual graph, indicating that a maximum flow has been found.
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Fig. 10.32 Construction of the residual graph N f from N, round 1.
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Fig. 10.33 Construction of the residual graph N f from N, round 2.
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Fig. 10.34 Construction of the residual graph N f from N, round 3.

It should be noted that a poor choice of augmenting paths may cause the algo-
rithm to perform a lot more steps than necessary. For example, if we consider the
network shown in Figure 10.35, and if we pick the flow augmenting paths in the
residual graphs to be alternatively (vs,v1,v2,vt) and (vs,v2,v1,vt), at each step, we
only increase the flow by 1, so it will take 200 steps to find a maximum flow.

1

vs

v1

v2

vt

(100)

(100)

(100)

(100)

(1)

0

0

0

0

0

Fig. 10.35 A poor choice of augmenting paths yields a slow method.

One of the main advantages of using residual graphs is that they make it conve-
nient to look for better strategies for picking flow augmenting paths. For example,
we can choose a simple flow augmenting path of shortest length (e.g., using breadth-
first search). Then it can be shown that the total number of flow augmentations made
by this revised algorithm is O(|V | · |E|) (see Cormen et al. [7], Section 26.2, Theo-
rem 26.9, and Sakarovitch [21], Chapter 4, Exercise 5). Edmonds and Karp (1972)
designed an algorithm running in time O(|E| · |V |2) using breadth-first search to find
a shortest augmenting path; see [7], Section 26.2.

Another way of selecting “good” augmenting paths, the scaling max-flow algo-
rithm, is described in Kleinberg and Tardos [16] (see Section 7.3).
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Another idea originally due to Dinic (1970) is to use layered networks; see Wilf
[22] (Sections 3.6–3.7) and Papadimitriou and Steiglitz [18] (Chapter 9). An algo-
rithm using layered networks running in time O(V 3) is given in the two references
above.

There are yet other faster algorithms, for instance “preflow-push algorithms” also
called “preflow-push relabel algorithms,” originally due to Goldberg. A preflow is a
function f : E→R that satisfies Condition (2) of Definition 10.17 but which, instead
of satisfying Condition (1), satisfies the inequality

(1′) (Nonnegativity of net flow)

∑
s(e)=v

f (e)≥ ∑
t(e)=v

f (e) for all v ∈V −{vs,vt};

that is, the net flow out of v is nonnegative. Now, the principle of all methods using
preflows is to augment a preflow until it becomes a maximum flow. In order to do
this, a labeling algorithm assigning a height is used. Algorithms of this type are
discussed in Cormen et al. [7], Sections 26.4 and 26.5 and in Kleinberg and Tardos
[16], Section 7.4.

The max-flow, min-cut theorem (Theorem 10.6) is a surprisingly powerful theo-
rem in the sense that it can be used to prove a number of other results whose original
proof is sometimes quite hard. Among these results, let us mention the maximum
matching problem in a bipartite graph, discussed in Wilf [22] (Sections 3.8), Cor-
men et al. [7] (Section 26.3), Kleinberg and Tardos [16] (Section 7.5), and Cameron
[5] (Chapter 11, Section 10), finding the edge connectivity of a graph, discussed in
Wilf [22] (Sections 3.8), and a beautiful theorem of Menger on edge-disjoint paths
and Hall’s marriage theorem, both discussed in Cameron [5] (Chapter 11, Section
10). More problems that can be solved effectively using flow algorithms, including
image segmentation, are discussed in Sections 7.6–7.13 of Kleinberg and Tardos
[16]. We only mention one of Menger’s theorems, as it is particularly elegant.

Fig. 10.36 Karl Menger, 1902–1985.

Theorem 10.9. (Menger) Given any finite digraph G for any two nodes vs and vt ,
the maximum number of pairwise edge-disjoint paths from vs to vt is equal to the
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the minimum number of edges in a vs-vt -separating set. (A vs-vt -separating set in G
is a set of edges C such every path from vs to vt uses some edge in C.)

10.10 Channeled Flows

It is also possible to generalize the basic flow problem, in which our flows f have
the property that 0 ≤ f (e) ≤ c(e) for every edge e ∈ E, to channeled flows. This
generalization consists in adding another capacity function b : E → R, relaxing the
condition that c(e) > 0 for all e ∈ E, and assuming that the following condition
holds:

b(e)≤ c(e), for all e ∈ E.

Flows now satisfy the new version of Condition (2) as stated below.

Definition 10.22. Given a channeled network N =(G,b,c,vs,vt), an admissible flow
in N is a function f : E→ R such that the following conditions hold:

(1) (Conservation of flow)

∑
t(e)=v

f (e) = ∑
s(e)=v

f (e), for all v ∈V −{vs,vt}.

(2′) (Admissibility of flow)

b(e)≤ f (e)≤ c(e), for all e ∈ E.

Given any two sets of nodes S,T ⊆V , as in Definition 10.22, let

f (S,T ) = ∑
e∈E

s(e)∈S, t(e)∈T

f (e) and c(S,T ) = ∑
e∈E

s(e)∈S, t(e)∈T

c(e).

An example of admissible channeled flow in shown in Figure 10.37.
Now, the “flow” f = 0 is no longer necessarily admissible and the channeled flow

problem does not always have a solution. However, it is possible to characterize
when it has a solution.

To do so, it is technically convenient to add a return edge er with source vt and
target vs, as in Definition 10.20. Doing so, if the original channeled network admits
a channeled flow f , then by assigning the flow | f | to the edge er, we obtain a flow f̃
satisfying Theorem 10.3) and Proposition 10.7. We can also extend the functions b
and c so that b(er) and c(er) satisfy the inequalities

b(er)≤ | f | ≤ c(er).

The following theorem provides a necessary and sufficiemt condition for an ad-
missible flow to exist. If such a flow exists, it also gives an algorithm, which, starting
with any flow (not necessarily admissible), constructs an admissible flow. Then, a



534 10 Graphs, Part II: More Advanced Notions

vs vt

v1

v2

(1) (5)

(2)

(4) (3)

f = 1
b = -3 b = -1

f = 1
b =0

f = 0

f = 2
b = 0 f = 3

b = 1

Admissible channeled flow

Fig. 10.37 An admissible channeled flow.

trivial modification of the algorithm using residual networks applied to the return
edge er yields a maximum channeled flow.

Theorem 10.10. (Hoffman) A network N = (G,b,c,vs,vt ,er) augmented with a re-
turn edge er has a channeled flow f iff for every cocycle Ω(Y ) of G, we have

∑
e∈Ω−(Y )

b(e)≤ ∑
e∈Ω+(Y )

c(e). (†)

If a channeled flow f exists, er is assigned the flow | f | and the functions b and c are
extended so that b(er)≤ | f | ≤ c(er).

Proof. Observe that the necessity of the condition of Theorem 10.10 is an immedi-
ate consequence of Proposition 10.7, which can be written as

∑
e∈Ω−(Y )

f (e) = ∑
e∈Ω+(Y )

f (e)

for any flow f and any cocycle Ω(Y ) in the graph augmented with the return edge
er. Since f is a channeled flow, b(e)≤ f (e)≤ c(e) for all e ∈ E, so

∑
e∈Ω−(Y )

b(e)≤ ∑
e∈Ω−(Y )

f (e) = ∑
e∈Ω+(Y )

f (e)≤ ∑
e∈Ω+(Y )

c(e).

That it is sufficient can be proven by modifying the algorithm maxflow or its
version using residual networks. The principle of this method is to start with a flow f
in N that does not necessarily satisfy Condition (2′) and to gradually convert it to an
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admissible flow in N (if one exists) by applying the method for finding a maximum
flow to a modified version Ñ of N in which the capacities have been adjusted so that
f is an admissible flow in Ñ.

Now, if a flow f in N does not satisfy Condition (2′), then there is some of-
fending edge ẽ 6= er for which either f (ẽ) < b(ẽ), which we refer to as Case 1, or
f (ẽ) > c(ẽ), which we refer to as Case 2. The new method makes sure that at the
end of every (successful) round through the basic maxflow algorithm applied to the
modified network Ñ some offending edge of N is no longer offending.

Let f be a flow in N and assume that ẽ is an offending edge (i.e., either f (ẽ) <
b(ẽ) or f (ẽ)> c(ẽ)). Then we construct the network Ñ( f , ẽ) = (G(ẽ), b̃, c̃,vs,vt) as
follows.

The capacity functions b̃ and c̃ are given by

b̃(e) =
{

b(e), if b(e)≤ f (e)
f (e), if f (e)< b(e), which is Case 1,

and

c̃(e) =
{

c(e), if f (e)≤ c(e)
f (e), if f (e)> c(e), which is Case 2.

The graph G(ẽ) is obtained from the graph G by adding one new edge ẽr (a return
edge) whose endpoints and capacities are determined by:

1. (Case 1) If f (ẽ) < b(ẽ), then s(ẽr) = s(ẽ), t(ẽr) = t(ẽ), b̃(ẽr) = 0 and c̃(ẽr) =
b(ẽ)− f (ẽ).

2. (Case 2) If f (ẽ) > c(ẽ), then s(ẽr) = t(ẽ), t(ẽr) = s(ẽ), b̃(ẽr) = 0 and c̃(ẽr) =
f (ẽ)− c(ẽ).

Observe that in Case 1, the return edge ẽr has the same direction as e, and in Case
2, it has the opposite orientation. We write Ẽ = E ∪{ẽr}, the edge set of the graph
G(ẽ).

The original flow f in N is extended by setting f (ẽr) = 0 and this extended flow
is a genuine channeled flow in Ñ( f , ẽ) (i.e., Conditions (1) and (2′) are satisfied).
An example of this construction in shown in Figure 10.38.

Starting from the new network Ñ( f , ẽ), apply the max-flow algorithm, say using
residual graphs, with the following small change in Conditions (2) and (3) of the
construction of the residual graph in Definition 10.21.

1. For every edge e∈ Ẽ, if f (e)< c̃(e), then e+ ∈ Ẽ f , s f (e+) = s(e), t f (e+) = t(e)
and c f (e+) = c̃(e)− f (e); the edge e+ is called a forward edge.

2. For every edge e∈ Ẽ, if f (e)> b̃(e), then e− ∈ Ẽ f , s f (e−) = t(e), t f (e−) = s(e)
and c f (e−) = f (e)− b̃(e); the edge e− is called a backward edge.

Now we consider augmenting paths from t(ẽr) to s(ẽr), the target and the source
of the new edge ẽr.

Observe that if f (ẽ)> c(ẽ), then s(ẽr) = t(ẽ) and t(ẽr) = s(ẽ), so our augmenting
path goes from s(ẽ) to t(ẽ). In constructing the residual graph, since c̃(ẽ) = f (ẽ),
no forward edge from s(ẽ) to t(ẽ) arises, and the backward edge can’t involved in
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Fig. 10.38 Example of construction of Ñ( f , ẽ).

a simple path from s(ẽ) to t(ẽ). Since b̃(ẽr) = f (ẽr) = 0, no backward edge from
s(ẽ) to t(ẽ) arises, and the forward edge can’t be involved in a simple path from
s(ẽ) to t(ẽ). Therefore, the edges ẽ and ẽr need not be considered in constructing the
residual graph.

Similarly, if f (ẽ) < b(ẽ), then s(ẽr) = s(ẽ) and t(ẽr) = t(ẽ), so our augmenting
path goes from t(ẽ) to s(ẽ). In constructing the residual graph, since b̃(ẽ) = f (ẽ), no
backward edge from t(ẽ) to s(ẽ) arises, and the forward edge can’t be involved in a
simple path from t(ẽ) to s(ẽ). Since b̃(ẽr) = f (ẽr) = 0, no backward edge from t(ẽ)
to s(ẽ) arises, and the forward edge can’t be involved in a simple path from t(ẽ) to
s(ẽ). Therefore, as in the previous case, the edges ẽ and ẽr need not be considered
in constructing the residual graph.
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For any simple path π from t(ẽr) to s(ẽr) in the residual graph Ñ( f , ẽ) f , as before
we compute

c f (π) = min
eε∈π
{c f (eε)},

the bottleneck of the path π , and then

δ = min(c̃(ẽr)− f̃ (ẽr),c f (π)),

to ensure that the flow updating procedure produces an admissible flow f̃ (that is,
f̃ (ẽr) ≤ c̃(ẽr)). We say that π is a flow augmenting path if δ > 0. Then we can
update the flow f in Ñ( f , ẽ) to get the new flow f ′ by setting

f ′(e) = f (e)+δ , if e+ ∈ π,

f ′(e) = f (e)−δ , if e− ∈ π,

f ′(e) = f (e), if e ∈ Ẽ and eε /∈ π,

for every edge e ∈ Ẽ. We also update f (ẽr) by

f ′(ẽr) = f (ẽr)+δ ,

since ẽr plays the role of a return edge. Every time the flow of an edge with source
t(ẽr) increases by δ , we need to increase the flow along ẽr by δ to maintain the
balance equation of flows at t(ẽr). However, note that the flow along the edge ẽ does
not change; f ′(ẽ) = f (ẽ).

The new flow updating procedure updateflow3 is shown below.

procedure updateflow3(N: network; π: path;
f : flow; δ : real; er: edge; G: residual graph)

begin
δ := min(δ ,c f (π)); (∗ c f (π) is the bottleneck of π ∗)
f (er) = f (er)+δ ;
for each edge eε ∈ π

if ε =+1 then f (e) := f (e)+δ

else f (e) := f (e)−δ

endif
endfor
δ := c(er)− f (er);
G := update residual graph(N, f )

end

Here is the new flow augmenting procedure maxflow3.

procedure maxflow3(Ñ( f , ẽ): network; f : flow)
begin

construct initial residual graph G for flow f and network Ñ( f , ẽ);
while there is a simple path π from t(ẽ) to s(ẽ) in G and δ > 0
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find a simple path π from t(ẽ) to s(ẽ) in G;
updateflow3(Ñ( f ,δ , ẽ),π, f , ẽ,G);

end while
end
We run the procedure maxflow3 on Ñ( f , ẽ) and f until it terminates with a maxi-

mum channeled flow f̃ . If we recall that the offending edge is ẽ, then there are four
cases, and the statement δ = min(c(er),δ ) in updateflow3 insures that maxflow3
terminates with a flow f̃ whose value f̃ (ẽr) satisfies the inequality f̃ (ẽr) ≤ c̃(ẽr).
The following four cases arise.

1. (Case 2) f (ẽ)> c(ẽ).

a. When the max-flow algorithm terminates, f̃ (ẽr) = c̃(ẽr) = f (ẽ)− c(ẽ),
namely the return edge is saturated. If so, define f̂ as follows.

f̂ (e) =
{

f̃ (ẽ)− f̃ (ẽr), if e = ẽ
f̃ (e), if e 6= ẽ.

(∗)

It is clear that f̂ is a flow in N, and since f̃ (ẽ) = f (ẽ), we have f̂ (ẽ) =
f̃ (ẽ)− f̃ (ẽr) = f (ẽ)− ( f (ẽ)−c(ẽ)) = c(ẽ). But then, ẽ is not an offending
edge for f̂ . If there is no offending edge in the network N( f , ẽ) for the new
flow f̂ , then stop, f̂ is a maximal flow for the original network N. Other-
wise, pick a new offending edge ẽ′, construct the new network N( f̂ , ẽ′), and
call procedure maxflow3 with N( f̂ , ẽ′) and f̂ . See Figures 10.39-10.41. To
obtain Figure 10.41, we followed the simple path (vs,v2,v1) in the resid-
ual graph of Figure 10.40, we found that δ = 1, so the positive edges have
their flow increased by 1, the negative edges have their flow decreased by
1, and the flow of the red edge ẽr is increased by 1. This new flow is now
1 = c̃(ẽr), so the adjusted flow f̂ has the value 2−1 = 1 on ẽ.

b. When the max-flow algorithm terminates, f̃ (ẽr) < c̃(ẽr). The flow f̂ de-
fined in (∗) above is still a flow, but the max-flow algorithm maxflow3
must have terminated with a residual graph with no flow augmenting path
from s(ẽ) to t(ẽ). Then there is a set of nodes Y with s(ẽ) ∈Y and t(ẽ) /∈Y .
Moreover, the way the max-flow algorithm is designed implies that

f̂ (ẽ)> c(ẽ)

f̂ (e) = c̃(e)≥ c(e), if e ∈Ω
+(Y )−{ẽ}

f̂ (e) = b̃(e)≤ b(e), if e ∈Ω
−(Y ).

Since f̃ is a channeled flow, by Proposition 10.7 we have

∑
e∈Ω−(Y )

f̃ (e) = ∑
e∈Ω+(Y )

f̃ (e).

As f̂ also satisfies (∗) above, using the inequalities above, we get
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∑
e∈Ω+(Y )

c(e) = ∑
e∈(Ω+(Y )−{ẽ})

c(e)+ c(ẽ)

< ∑
e∈(Ω+(Y )−{ẽ})

f̂ (e)+ f̂ (ẽ)≤ ∑
e∈(Ω+(Y )−{ẽ})

f̃ (e)+ f̃ (ẽ)

= ∑
e∈Ω+(Y )

f̃ (e) = ∑
e∈Ω−(Y )

f̃ (e) = ∑
e∈Ω−(Y )

f̂ (e)≤ ∑
e∈Ω−(Y )

b(e),

which shows that the cocycle Condition (†) of Theorem 10.10 fails for
Ω(Y ). The algorithm terminates with failure.

2. (Case 1) f (ẽ)< b(ẽ).

a. When the max-flow algorithm terminates, f̃ (ẽr) = c̃(ẽr) = b(ẽ)− f (ẽ),
namely the return edge is saturated. If so, define f̂ as follows.

f̂ (e) =
{

f̃ (ẽ)+ f̃ (ẽr),

if e = ẽ f̃ (e), if e 6= ẽ.
(∗∗)

It is clear that f̂ is a flow in N and since f̃ (ẽ) = f (ẽ), we have f̂ (ẽ) =
f̃ (ẽ)+ f̃ (ẽr) = f (ẽ)+ b(ẽ)− f (ẽ) = b(ẽ). But then, ẽ is not an offending
edge for f̂ . If there is no offending edge in the network N( f , ẽ) for the new
flow f̂ , then stop, f̂ is a maximal flow for the original network N. Other-
wise, pick a new offending edge ẽ′, construct the new network N( f̂ , ẽ′), and
call procedure maxflow3 with N( f̂ , ẽ′) and f̂ . An illustration of this case is
shown in Figures 10.42-10.44. To obtain Figure 10.44, we followed the
simple path (v1,vt ,v2,vs) in the residual graph of Figure 10.43, we found
that δ = 2, so the positive edges have their flow increased by 2, the nega-
tive edges have their flow decreased by 2, and the flow of the red edge ẽr is
increased by 2. This new flow is now 2 = c̃(ẽr), so the adjusted flow f̂ has
the value 2+1 = 3 on ẽ.

b. When the max-flow algorithm terminates, f̃ (ẽr) < c̃(ẽr). The flow f̂ de-
fined in (∗∗) above is still a flow, but the max-flow algorithm maxflow3
must have terminated with a residual graph with no flow augmenting path
from t(ẽ) to s(ẽ). Then, as in the case where f (ẽ) > c(ẽ), there is a set
of nodes Y with t(ẽ) ∈ Y and s(ẽ) /∈ Y , and as in 1(b), we can show that
the cocycle Condition (†) of Theorem 10.10 fails for Ω(Y ). The algorithm
terminates with failure.

Therefore, if the algorithm does not fail during every round through the max-flow
algorithm maxflow3 applied to a modified network Ñ( f , ẽ), which, as we observed,
is the case if Condition (†) holds, then a channeled flow f̂ will be produced. This
proves the converse of Theorem 10.10. ut

Using this channeled flow (if it exists), we can now find a maximal channeled
flow by running the algorithm maxflow2 with input the admissible flow just found
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rather than the zero flow and procedure updateflow using residual graphs, with the
construction of the residual graph modified as above.

The max-flow, min-cut theorem can also be generalized to channeled flows as
follows.

Theorem 10.11. For any network N = (G,b,c,vs,vt) (augmented with a return edge
er from vt to vs) if a flow exists in N, then the maximum value | f | of any flow f in N
is equal to the minimum capacity c(Ω(Y )) = c(Ω+(Y ))− b(Ω−(Y )) of any vs-vt -
cocycle in N (this means that vs ∈ Y and vt /∈ Y ).

The proof of Theorem 10.11 is left as an (easy) exercise.
If the capacity functions b and c have the property that b(e)< 0 and c(e)> 0 for

all e ∈ E, then the condition of Theorem 10.10 is trivially satisfied. Furthermore, in
this case, the flow f = 0 is admissible, Proposition 10.15 holds, and we can apply
directly the construction of the residual network N f described above.
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(4) (3)
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f = 1
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f = 0

f = 2
b = 0

f = 3
b = 1
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b = 1
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e~

e~

(1)
r

Fig. 10.39 Step 1: construction of Ñ( f , ẽ), Case 2.

A variation of our last problem appears in Cormen et al. [7] (Chapter 26). In this
version, the underlying graph G of the network N is assumed to have no parallel
edges (and no loops), so that every edge e can be identified with the pair (u,v) of its
endpoints (so, E ⊆ V ×V ). A flow f in N is a function f : V ×V → R, where it is
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Fig. 10.40 Step 2: construction of the residual graph, Case 2.
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Fig. 10.41 Step 3: construction of f̂ , Case 2.
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Fig. 10.42 Step 1: construction of Ñ( f , ẽ), Case 1.

not necessarily the case that f (u,v)≥ 0 for all (u,v), but there is a capacity function
c : V ×V → R such that c(u,v)≥ 0, for all (u,v) ∈V ×V and it is required that

f (v,u) =− f (u,v) and
f (u,v)≤ c(u,v),

for all (u,v) ∈V ×V . Moreover, in view of the skew symmetry condition ( f (v,u) =
− f (u,v)), the equations of conservation of flow are written as

∑
(u,v)∈E

f (u,v) = 0,

for all u 6= vs,vt .
We can reduce this last version of the flow problem to our previous setting by

noticing that in view of skew symmetry, the capacity conditions are equivalent to
having capacity functions b′ and c′, defined such that

b′(u,v) =−c(v,u)

c′(u,v) = c(u,v),
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Fig. 10.43 Step 2: construction of the residual graph, Case 1.
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Fig. 10.44 Step 3: construction of f̂ , Case 1.
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for every (u,v) ∈ E and f must satisfy

b′(u,v)≤ f (u,v)≤ c′(u,v),

for all (u,v)∈E. Since by hypothesis, c(u,v)≥ 0, we have b′(u,v)=−c(v,u)≤ 0, so
the zero flow is admissible. However, we must also have f (v,u) = − f (u,v), which
is an additional constraint in case G has both edges (u,v) and (v,u). This point
may be a little confusing because in our previous setting, f (u,v) and f (v,u) are
independent values. However, this new problem is solved essentially as the previous
one. In Cormen et al. [7] (Chapter 26), the residual graph is constructed so that there
is a forward edge from u to v if f (u,v) < c(u,v), with new capacity c f (u,v) given
by

c f (u,v) = c(u,v)− f (u,v).

There is a backward edge from v to u in the residual graph iff there is an edge from
v to u in the network and if f (v,u)< c(v,u), and then

c f (v,u) = c(v,u)− f (v,u),

which is equivalent to −c(v,u)<− f (v,u), namely b′(u,v)< f (u,v), and then

c f (v,u) = f (u,v)−b′(u,v),

which are precisely the rules for constructing the residual graph in the case of chan-
neled flows. The basic Ford and Fulkerson algorithm given in Cormen et al. [7]
(Chapter 26) uses a flow updating method equivalent to updateflow, because they
set

f ′(u,v) = f (u,v)+ c f (π),

so in the case of a backward edge from v to u in the residual graph, which corre-
sponds to an edge from v to u in the network,

f ′(v,u) = f (v,u)+ c f (π),

which is equivalent to

− f ′(u,v) =− f (u,v)+ c f (π),

and also to
f ′(u,v) = f (u,v)− c f (π),

which is the rule used in updateflow. They also force f ′(v,u) = − f ′(u,v) to hold
for edges (u,v) along the path during this step. For details, the reader is referred to
Cormen et al. [7], Chapter 26.

More could be said about flow problems but we believe that we have covered the
basics satisfactorily and we refer the reader to the various references mentioned in
this section for more on this topic.
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10.11 Bipartite Graphs, Colorings

In this section and the next two, we will deal with finite undirected graphs without
parallel edges and loops. In this case, the set E of edges consists of sets of ver-
tices {u,v}, with u 6= v. We begin with a motivational problem which illustrates the
importance of matchings in bipartite graphs.

Consider the following problem. We have a set of m machines, M1, . . . ,Mm, and
a set of n tasks, T1, . . . ,Tn. Furthermore, each machine Mi is capable of performing
a subset of tasks Si ⊆ {T1, . . . ,Tn}. Then the problem is to find a set of assign-
ments {(Mi1 ,Tj1), . . . ,(Mip ,Tjp)}, with {i1, . . . , ip} ⊆ {1, . . . ,m} and { j1, . . . , jp} ⊆
{1, . . . ,n}, such that

(1) Tjk ∈ Sik , 1≤ k ≤ p.
(2) p is maximum.

The problem we just described is called a maximum matching problem. A con-
venient way to describe this problem is to build a graph G (undirected), with
m + n nodes partitioned into two subsets X and Y , with X = {x1, . . . ,xm} and
Y = {y1, . . . ,yn}, and with an edge between xi and y j iff Tj ∈ Si, that is, if machine
Mi can perform task Tj. Such a graph G is called a bipartite graph (see Definition
10.23). An example of a bipartite graph is shown in Figure 10.45.

1

x1

x2

x3

x4

y1

y2

y3

y4

y5

Fig. 10.45 A bipartite graph G and a maximum matching in G.

Now our matching problem is to find an edge set of maximum size M, such
that no two edges share a common endpoint or, equivalently, such that every node
belongs to at most one edge of M. Such a set of edges is called a maximum matching
in G. A maximum matching whose edges are shown as thicker lines is shown in
Figure 10.45.

The maximum matching problem in a bipartite graph can be nicely solved using
the methods of Section 10.6 for finding max-flows. Indeed, our matching problem
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is equivalent to finding a maximum flow in the network N constructed from the
bipartite graph G as follows.

1. Add a new source vs and a new sink vt .
2. Add an oriented edge (vs,u) for every u ∈ X .
3. Add an oriented edge (v,vt) for every v ∈ Y .
4. Orient every edge e ∈ E from X to Y .
5. Define the capacity function c so that c(e) = 1, for every edge of this new graph.

The network corresponding to the bipartite graph of Figure 10.45 is shown in
Figure 10.46.

1

vs vt

x1

x2

x3

x4

y1

y2

y3

y4

y5

Fig. 10.46 The network associated with a bipartite graph.

Now, it is very easy to check that there is a matching M containing p edges
iff there is a flow of value p. Thus, there is a one-to-one correspondence between
maximum matchings and maximum integral flows. As we know that the algorithm
maxflow (actually, its various versions) produces an integral solution when run on
the zero flow, this solution yields a maximum matching.

Definition 10.23. A graph G=(V,E) is a bipartite graph iff its set of edges V can be
partitioned into two nonempty disjoint sets V1,V2, so that of every edge e = {v1,v2},
either v1 ∈V1 and v2 ∈V2, or v2 ∈V1 and v1 ∈V2.

Note that in a bipartite graph, there are no edges linking nodes in V1 (or nodes in
V2). Thus, there are no loops.

Remark: The complete bipartite graph for which |V1|=m and |V2|= n is the bipar-
tite graph that has all edges (i, j), with i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}. This graph
is denoted Km,n. The complete bipartite graph K3,3 plays a special role; namely, it is
not a planar graph, which means that it is impossible to draw it on a plane without
avoiding that two edges (drawn as continuous simple curves) intersect. A picture of
K3,3 is shown in Figure 10.47.



10.11 Bipartite Graphs, Colorings 547

1

x1

x2

x3

y1

y2

y3

Fig. 10.47 The bipartite graph K3,3.

The notion of graph coloring is also important and has bearing on the notion of
bipartite graph. It will provide an alternative characterization of bipartite graphs.

Definition 10.24. Given a graph G= (V,E), a k-coloring of G is a partition of V into
k pairwise disjoint nonempty subsets V1, . . . ,Vk so that no two vertices in any subset
Vi are adjacent (i.e., the endpoints of every edge e ∈ E must belong to Vi and Vj, for
some i 6= j). If a graph G admits a k-coloring, we say that that G is k-colorable. The
chromatic number γ(G) (or χ(G)) of a graph G is the minimum k for which G is
k-colorable.

A 3-coloring of a graph known as the Petersen graph is shown in Figure 10.48.
It can be shown that this graph has no 2-coloring.

Fig. 10.48 A 3-coloring of the Petersen graph.
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Remark: Although the notation χ(G) for the chromatic number of a graph is often
used in the graph theory literature, it is an unfortunate choice because it can be
confused with the Euler characteristic of a graph (see Theorem 10.19). We use the
notation γ(G). Other notations for the chromatic number include ν(G) and chr(G).

The following theorem gives some useful characterizations of bipartite graphs.
First, we define the notion of incidence matrix of an unoriented graph G.

Definition 10.25. Assume that the (unoriented) graph G has edges e1, . . . ,en and
vertices v1, . . . ,vm. The incidence matrix A of G is the m× n matrix whose entries
are given by

ai j =

{
1, if vi ∈ st(e j)
0, otherwise.

Note that, unlike the incidence matrix of a directed graph, the incidence matrix of
an undirected graph only has nonnegative entries. As a consequence, these matrices
are not necessarily totally unimodular. For example, the reader should check that
for any simple cycle C of odd length, the incidence matrix A of C has a determinant
whose value is ±2. However, the next theorem shows that the incidence matrix of a
bipartite graph is totally unimodular and in fact, this property characterizes bipartite
graphs.

In order to prove part of the next theorem we need the notion of distance in a
graph, an important concept in any case.

Definition 10.26. If G is a connected graph, for any two nodes u and v of G, the
length of a chain π from u to v is the number of edges in π and the distance d(u,v)
from u to v is the minimum length of all chains from u to v. Of course, u = v iff
d(u,v) = 0.

Theorem 10.12. Given any graph G = (V,E) the following properties are equiva-
lent.

(1) G is bipartite.
(2) γ(G) = 2.
(3) G has no simple cycle of odd length.
(4) G has no cycle of odd length.
(5) The incidence matrix of G is totally unimodular.

Proof. The equivalence (1)⇐⇒ (2) is clear by definition of the chromatic number.
(3)⇐⇒ (4) holds because every cycle is the concatenation of simple cycles. So,

a cycle of odd length must contain some simple cycle of odd length.
(1) =⇒ (4). This is because the vertices of a cycle belong alternatively to V1 and

V2. So, there must be an even number of them.
(4) =⇒ (2). Clearly, a graph is k-colorable iff all its connected components are

k-colorable, so we may assume that G is connected. Pick any node v0 in G and let
V1 be the subset of nodes whose distance from v0 is even and V2 be the subset of
nodes whose distance from v0 is odd. We claim that any two nodes u and v in V1
(respectively, V2) are not adjacent. Otherwise, by going up the chain from v0 to u,
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then following the edge from u to v, and then the chain from v back to v0, we would
obtain a cycle of odd length, a contradiction. Therefore, G is 2-colorable.

(1) =⇒ (5). Orient the edges of G so that for every e∈ E, s(e)∈V1 and t(e)∈V2.
Then we know from Proposition 10.11 that the incidence matrix D of the oriented
graph G is totally unimodular. However, because G is bipartite, D is obtained from
A by multiplying all the rows corresponding to nodes in V2 by −1 and so, A is also
totally unimodular.

(5) =⇒ (3). Let us prove the contrapositive. If G has a simple cycle C of odd
length, then we observe that the submatrix of A corresponding to C has determinant
±2. ut

10.12 Matchings, Alternating Chains, Line Covers

The notion of a matching can be defined for graphs that are not necessarily bipartite
(but still without parallel edges and loops). A kind of dual notion, the concept of a
line cover, can also be defined. Theorem 10.14 shows that maximum matchings and
minimal line covers are closely related. There are also notions applying to subsets of
vertices as opposed to sets of edges, namely independent sets and point covers. Our
goal is to describe another algorithm for finding a maximum matching in a bipartite
graph based on the characterziation of a maximum matching in terms of alternating
chains. The proof of correctness of this algorithm uses alternating chains and point
covers.

Definition 10.27. Given a graph G = (V,E) a matching M in G is a subset of edges
so that any two distinct edges in M have no common endpoint (are not adjacent)
or equivalently, so that every vertex v ∈ V is incident to at most one edge in M. A
vertex v ∈V is matched iff it is incident to some edge in M and otherwise it is said
to be unmatched. A matching M is a perfect matching iff every node is matched. A
matching is a maximal matching if no edge can be added to this matching and still
have a matching.

Example 10.13. A perfect matching M = {(ab),(cd),(e f )} is shown in Figure 10.49
with the edges of the matching indicated in thicker lines. The pair {(bc),(ed)} is
also a matching, in fact, a maximal matching (no edge can be added to this matching
and still have a matching).

It is possible to characterize maximum matchings in terms of certain types of
chains called alternating chains defined below.

Definition 10.28. Given a graph G = (V,E) and a matching M in G, a simple chain
is an alternating chain w.r.t. M iff the edges in this chain belong alternately to M
and E−M.

For example, the simple chain ((ac),(cd),(d f ),( f e),(eb),(ba)) in the graph of
Figure 10.49 is an alternating chain.
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1

a

c

b

d

e

f

Fig. 10.49 A perfect matching in a graph.

Theorem 10.13. (Berge) Given any graph G = (V,E), a matching M in G is a max-
imum matching iff there are no alternating chains w.r.t. M whose endpoints are
unmatched.

Proof. First assume that M is a maximum matching and that C is an alternating
chain w.r.t. M whose enpoints u and v are unmatched. As an example, consider the
alternating chain shown in Figure 10.50, where the edges in C∩M are indicated in
thicker lines.

1

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

Fig. 10.50 An alternating chain in G.

We can form the set of edges

M′ = (M− (C∩M))∪ (C∩ (E−M)),
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which consists in deleting the edges in M from C and adding the edges from C not
in M. It is immediately verified that M′ is still a matching but |M′| = |M|+ 1 (see
Figure 10.50), contradicting the fact that M is a maximum matching. Therefore,
there are no alternating chains w.r.t. M whose endpoints are unmatched.

Conversely, assume that G has no alternating chains w.r.t. M whose endpoints
are unmatched and let M′ be another matching with |M′| > |M| (i.e., M is not a
maximum matching). Consider the spanning subgraph H of G, whose set of edges
is

(M−M′)∪ (M′−M).

As M and M′ are matchings, the connected components of H are either isolated
vertices, or simple cycles of even length, or simple chains, and in these last two
cases, the edges in these cycles or chains belong alternately to M and M′; this is
because dH(u)≤ 2 for every vertex u∈V and if dH(u) = 2, then u is adjacent to one
edge in M and one edge in M′.

Now H must possess a connected component that is a chain C whose endpoints
are in M′, as otherwise we would have |M′| ≤ |M|, contradicting the assumption
|M′| > |M|. However, C is an alternating chain w.r.t. M whose endpoints are un-
matched, a contradiction. ut

The proof of Theorem 10.13 is illustrated in Figure 10.51.
A notion closely related to the concept of a matching but, in some sense, dual, is

the notion of a line cover.

Definition 10.29. Given any graph G = (V,E) without loops or isolated vertices, a
line cover (or line covering) of G is a set of edges C ⊆ E so that every vertex u ∈V
is incident to some edge in C . A minimum line cover C is a line cover of minimum
size.

Example 10.14. The maximum matching M in the graph of Figure 10.49 is also a
minimum line cover. The set {(ab),(bc),(de),(e f )} is also a line cover but it is not
minimum, although minimal, which means that no proper subset is a line cover.

The relationship between maximum matchings and minimum line covers is given
by the following theorem.

Theorem 10.14. Given any graph G = (V,E without isolated vertices, with |V | =
n, let M be a maximum matching and let C be a minimum line cover. Then the
following properties hold.

(1) If we associate with every unmatched vertex of V some edge incident to this
vertex and add all such edges to M, then we obtain a minimum line cover, CM .
See Figure 10.52.

(2) Every maximum matching M′ of the spanning subgraph (V,C ) is a maximum
matching of G. See Figure 10.53.

(3) |M|+ |C |= n.
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Fig. 10.51 An Illustration of the proof of Theorem 10.13.
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Fig. 10.52 Illustration of Part (1) of Theorem 10.14.
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Fig. 10.53 Illustration of Part (2) of Theorem 10.14.

Proof. It is clear that CM is a line cover. As the number of vertices unmatched by M
is n−2|M| (as each edge in M matches exactly two vertices), we have

|CM|= |M|+n−2|M|= n−|M|. (∗)

Furthermore, as C is a minimum line cover, the spanning subgraph (V,C ) does not
contain any cycle or chain of length greater than or equal to 2. Consequently, each
edge e ∈ C −M′ corresponds to a single vertex unmatched by M′. Thus,

|C |− |M′|= n−2|M′|;

that is,
|C |= n−|M′|. (∗∗)

As M is a maximum matching of G,

|M′| ≤ |M|

and so, using (∗) and (∗∗), we get

|CM|= n−|M| ≤ n−|M′|= |C |;
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that is, |CM| ≤ |C |. However, C is a minimum matching, so |C | ≤ |CM|, which
proves that

|C |= |CM|.
The last equation proves the remaining claims. ut

There are also notions analogous to matchings and line covers but applying to
vertices instead of edges.

Definition 10.30. Let G = (V,E) be any graph. A set U ⊆V of nodes is independent
(or stable) iff no two nodes in U are adjacent (there is no edge having these nodes
as endpoints). A maximum independent set is an independent set of maximum size.
A set U ⊆ V of nodes is a point cover or vertex cover (or transversal) iff every
edge of E is incident to some node in U . A minimum point cover is a point cover
of minimum size.

Example 10.15. The set {a,b,c,d, f} is a point cover of the graph of Figure 10.49.
The subsets {a,e} and {a, f} are maximun independent sets.

The following simple proposition holds.

Proposition 10.17. Let G = (V,E) be any graph, U be any independent set, C be
any line cover, U be any point cover, and M be any matching. Then we have the
following inequalities.

(1) |U | ≤ |C |.
(2) |M| ≤ |U |.
(3) U is an independent set of nodes iff V −U is a point cover.

Proof. (1) Because U is an independent set of nodes, every edge in C is incident
with at most one vertex in U , so |U | ≤ |C |.

(2) Because M is a matching, every vertex in U is incident to at most one edge
in M, so |M| ≤ |U |.

(3) Clear from the definitions. ut
It should be noted that the inequalities of Proposition 10.17 can be strict. For

example, if G is a simple cycle with 2k+1 edges, the reader should check that both
inequalities are strict.

10.13 Alternating Chain Matching Algorithm for Bipartite
Graphs

We now go back to bipartite graphs and give an algorithm which, given a bipartite
graph G = (V1∪V2,E), will decide whether a matching M is a maximum matching
in G. This algorithm, shown in Figure 10.54, will mark the nodes with one of the
three tags, +, −, or 0.

Running the procedure marking is illustrated in Figures 10.55 and 10.56.
The following theorem tells us the behavior of the procedure marking.
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procedure marking(G,M,mark)
begin

for each u ∈V1∪V2 do mark(u) := 0 endfor;
while ∃u ∈V1∪V2 with mark(u) = 0 and u not matched by M do

pick such a u; mark(u) :=+;
while ∃v ∈V1∪V2 with mark(v) = 0 and v adjacent to w with mark(w) = + do

pick such a v; mark(v) :=−;
if v is not matched by M then exit (α)
(∗ an alternating chain has been found ∗)
else let w ∈V1∪V2 so that (vw) ∈M; mark(w) :=+
endif

endwhile
endwhile;
for each u ∈V1 with mark(u) = 0 do mark(u) :=+ endfor;
for each u ∈V2 with mark(u) = 0 do mark(u) :=− endfor (β )

end

Fig. 10.54 Procedure marking

Matching in red
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u = +

Step 1

chosen node #1
1

Fig. 10.55 Running procedure marking. Step 1.

Theorem 10.15. Given any bipartite graph as input, the procedure marking always
terminates in one of the following two (mutually exclusive) situations.

(a) The algorithm finds an alternating chain w.r.t. M whose endpoints are un-
matched.
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Fig. 10.56 Running procedure marking. Step 2.

(b) The algorithm finds a point cover U with |U | = |M|, which shows that M is a
maximum matching. This alternative is illustrated in Figure 10.57.

Proof. Nodes keep being marked, therefore the algorithm obviously terminates.
There are no pairs of adjacent nodes both marked + because, as soon as a node
is marked +, all of its adjacent nodes are labeled −. Consequently, if the algorithm
ends in (β ), those nodes marked − form a point cover.

We also claim that the endpoints u and v of any edge in the matching can’t both be
marked −. Otherwise, by following backward the chains that allowed the marking
of u and v, we would find an odd cycle, which is impossible in a bipartite graph.
Thus, if we end in (β ), each node marked − is incident to exactly one edge in M.
This shows that the set U of nodes marked − is a point cover with |U | = |M|.
By Proposition 10.17, we see that U is a minimum point cover and that M is a
maximum matching.

If the algorithm ends in (α), by tracing the chain starting from the unmatched
node u, marked − back to the node marked + causing u to be marked, and so on,
we find an alternating chain w.r.t. M whose endpoints are not matched. ut

The following important corollaries follow immediately from Theorem 10.15.

Corollary 10.5. In a bipartite graph, the size of a minimum point cover is equal to
the size of maximum matching.
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Fig. 10.57 Case (b) of Theorem 10.15.

Corollary 10.6. In a bipartite graph, the size of a maximum independent set is equal
to the size of a minimum line cover.

Proof. We know from Proposition 10.17 that the complement of a point cover is an
independent set. Consequently, by Corollary 10.5, the size of a maximum indepen-
dent set is n−|M|, where M is a maximum matching and n is the number of vertices
in G. Now, from Theorem 10.14 (3), for any maximum matching M and any mini-
mal line cover C we have |M|+ |C |= n and so, the size of a maximum independent
set is equal to the size of a minimal line cover. ut

We can derive more classical theorems from the above results.

Definition 10.31. Given any graph G = (V,E,st) for any subset of nodes U ⊆V , let

NG(U) = {v ∈V −U | (∃u ∈U)(∃e ∈ E)(st(e) = {u,v})},

be the set of neighbours of U , that is, the set of vertices not in U and adjacent to
vertices in U .

Example 10.16. If we consider the graph of Figure 10.49, for U = {a,b,c}, we have
NG(U) = {d,e}.

Theorem 10.16. (König (1931)) For any bipartite graph G = (V1∪V2,E) the max-
imum size of a matching is given by
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min
U⊆V1

(|V1−U |+ |NG(U)|).

Proof. This theorem follows from Corollary 10.5 if we can show that every mini-
mum point cover is of the form (V1−U)∪NG(U), for some subset U of V1. However,
a moment of reflection shows that this is indeed the case. ut

Theorem 10.16 implies another classical result:

Theorem 10.17. (König–Hall) For any bipartite graph G = (V1 ∪V2,E) there is a
matching M such that all nodes in V1 are matched iff

|NG(U)| ≥ |U | for all U ⊆V1.

Proof. By Theorem 10.16, there is a matching M in G with |M|= |V1| iff

|V1|= min
U⊆V1

(|V1−U |+ |NG(U)|) = min
U⊆V1

(|V1|+ |NG(U)|− |U |),

that is, iff |NG(U)|− |U | ≥ 0 for all U ⊆V1. ut

Now it is clear that a bipartite graph has a perfect matching (i.e., a matching such
that every vertex is matched, M, iff |V1|= |V2| and M matches all nodes in V1. So, as
a corollary of Theorem 10.17, we see that a bipartite graph has a perfect matching
iff |V1|= |V2| and if

|NG(U)| ≥ |U | for all U ⊆V1.

As an exercise, the reader should show the following.

Marriage Theorem (Hall, 1935) Every k-regular bipartite graph with k ≥ 1 has a
perfect matching (a graph is k-regular iff every node has degree k).

For more on bipartite graphs, matchings, covers, and the like, the reader should
consult Diestel [9] (Chapter 2), Berge [1] (Chapter 7), and also Harary [15] and
Bollobas [4].

10.14 Plane Graphs and Planar Graphs

Suppose we have a graph G and that we want to draw it “nicely” on a piece of paper,
which means that we draw the vertices as points and the edges as line segments
joining some of these points, in such a way that no two edges cross each other,
except possibly at common endpoints. We have more flexibility and still have a nice
picture if we allow each abstract edge to be represented by a continuous simple curve
(a curve that has no self-intersection), that is, a subset of the plane homeomorphic
to the closed interval [0,1] (in the case of a loop, a subset homeomorphic to the
circle, S1). If a graph can be drawn in such a fashion, it is called a planar graph. For
example, consider the graph depicted in Figure 10.58.
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Fig. 10.58 A graph G drawn with intersecting edges.

If we look at Figure 10.58, we may believe that the graph G is not planar, but this
is not so. In fact, by moving the vertices in the plane and by continuously deforming
some of the edges, we can obtain a planar drawing of the same graph, as shown in
Figure 10.59.
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Fig. 10.59 The graph G drawn as a plane graph.

However, we should not be overly optimistic. Indeed, if we add an edge from
node 5 to node 4, obtaining the graph known as K5 shown in Figure 10.60, it can be
shown that there is no way to move the nodes around and deform the edge continu-
ously to obtain a planar graph (we prove this a little later using the Euler formula).
Another graph that is nonplanar is the bipartite grapk K3,3. The two graphs, K5 and
K3,3 play a special role with respect to planarity. Indeed, a famous theorem of Ku-
ratowski says that a graph is planar if and only if it does not contain K5 or K3,3 as a
minor (we explain later what a minor is).
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Fig. 10.60 The complete graph K5, a nonplanar graph.

Remark: Given n vertices, say {1, . . . ,n}, the graph whose edges are all subsets
{i, j}, with i, j ∈ {1, . . . ,n} and i 6= j, is the complete graph on n vertices and is
denoted by Kn (but Diestel uses the notation Kn).

In order to give a precise definition of a planar graph, let us review quickly some
basic notions about curves.

Definition 10.32. A simple curve (or Jordan curve) is any injective continuous func-
tion, γ : [0,1]→ R2. Because [0,1] is compact and γ is continuous, it is well known
that the inverse f−1 : γ([0,1])→ [0,1] of f is also continuous. So, γ is a homeo-
morphism between [0,1] and its image γ([0,1]). With a slight abuse of language
we also call the image γ([0,1]) of γ a simple curve. This image is a connected and
compact subset of R2. The points a = γ(0) and b = γ(1) are called the boundaries
or endpoints of γ (and γ([0,1])). The open subset γ([0,1])−{γ(0),γ(1)} is called
the interior of γ([0,1]) and is denoted

◦
γ .

Definition 10.33. A continuous function γ : [0,1]→R2 such that γ(0) = γ(1) and γ

is injective on [0,1) is called a simple closed curve or simple loop or closed Jordan
curve. Again, by abuse of language, we call the image γ([0,1]) of γ a simple closed
curve, and so on. Equivalently, if S1 = {(x,y)∈R2 | x2+y2 = 1} is the unit circle in
R2, a simple closed curve is any subset of R2 homeomorphic to S1. In this case, we
call γ(0) = γ(1) the boundary or base point of γ . The open subset γ([0,1])−{γ(0)}
is called the interior of γ([0,1]) and is also denoted

◦
γ .

Remark: The notions of simple curve and simple closed curve also make sense if
we replace R2 by any topological space X , in particular, a surface (In this case, a
simple (closed) curve is a continuous injective function γ : [0,1]→ X etc.).

We can now define plane graphs as follows.

Definition 10.34. A plane graph is a pair G =(V,E), where V is a finite set of points
in R2, E is a finite set of simple curves, and closed simple curves in R2, called edges
and loops, respectively, and satisfying the following properties.
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(i) The endpoints of every edge in E are vertices in V and the base point of every
loop is a vertex in V .

(ii) The interior of every edge contains no vertex and the interiors of any two distinct
edges are disjoint. Equivalently, every edge contains no vertex except for its
boundaries (base point in the case of a loop) and any two distinct edges intersect
only at common boundary points.

We say that G is a simple plane graph if it has no loops and if different edges have
different sets of endpoints

Obviously, a plane graph G = (V,E) defines an “abstract undirected graph” G =
(V,E,st) such that

(a) For every simple curve γ ,

st(γ) = {γ(0),γ(1)}.

(b) For every simple closed curve γ ,

st(γ) = {γ(0)}.

For simplicity of notation, we usually write G for both the plane graph and the
abstract graph associated with G .

Definition 10.35. Given an abstract graph G, we say that G is a planar graph iff
there is some plane graph G and an isomorphism ϕ : G→ G between G and the
abstract graph associated with G . We call ϕ an embedding of G in the plane or a
planar embedding of G.

The graph shown in Figure 10.58 is a planar graph and the graph shown in Figure
10.59 is a plane graph isomorphic to it.

Remarks:

1. If G is a simple planar graph, then by a theorem of Fary, G can be drawn as a
plane graph in such a way that the edges are straight line segments (see Gross
and Tucker [13], Section 1.6, Theorem 1.6.5, Theorem 1.6.8, and its corollary).

2. In view of the remark just before Definition 10.34, given any topological space
X for instance, a surface, we can define a graph on X as a pair (V,E) where V
is a finite set of points in X and E is a finite set of simple (closed) curves on X
satisfying the conditions of Definition 10.34. We say that a graph G is embedded
in the topological space X (typically a surface) if it is isomorphic to the abstract
graph associated with a pair (V,E) as above.

3. Recall the stereographic projection (from the north pole), σN : (S2−{N})→
R2, from the sphere, S2 = {(x,y,z) ∈ R3 | x2 + y2 + z2 = 1} onto the equatorial
plane, z = 0, with N = (0,0,1) (the north pole), given by

σN(x,y,z) =
(

x
1− z

,
y

1− z

)
.
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See Figure 10.61. We know that σN is a homeomorphism, so if ϕ is a planar
embedding of a graph G into the plane, then σ

−1
N ◦ϕ is an embedding of G into

the sphere. Conversely, if ψ is an embedding of G into the sphere, then σN ◦ψ

is a planar embedding of G. Therefore, a graph can be embedded in the plane
iff it can be embedded in the sphere. One of the nice features of embedding in
the sphere is that the sphere is compact (closed and bounded), so the faces (see
below) of a graph embedded in the sphere are all bounded.

4. The ability to embed a graph in a surface other than the sphere broadens the
class of graphs that can be drawn without pairs of intersecting edges (except at
endpoints). For example, it is possible to embed K5 and K3,3 (which are known
not to be planar) into a torus (try it). It can be shown that for every (finite)
graph G there is some surface X such that G can be embedded in X . Intuitively,
whenever two edges cross on a sphere, by lifting one of the two edges a little bit
and adding a “handle” on which the lifted edge lies we can avoid the crossing.
An excellent reference on the topic of graphs on surfaces is Gross and Tucker
[13].

Z = (  x  , x  , x  )1 2 3

( u , v,  0 )

Fig. 10.61 Stereographic projection from the north pole.

One of the new ingredients of plane graphs is that the notion of a face makes
sense.

Definition 10.36. Given any nonempty open subset Ω of the plane R2, we say that
two points a,b ∈ Ω are arcwise connected iff there is a simple curve γ such that
γ(0) = a and γ(1) = b.

In topology, a space is connected iff it cannot be expressed as the union of two
nonempty disjoint open subsets. For open subsets of Rn, connectedness is equivalent
to arc connectedness so we will use the shorter term connected instead of arcwise
connected.
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Definition 10.37. Given any nonempty open subset Ω of the plane, being connected
is an equivalence relation and the equivalence classes of Ω w.r.t. connectivity are
called the connected components (or regions) of Ω .

Each region is maximally connected and open. In fact, each region is homeomor-
phic to an open disc (see Gross and Tucker [13], Section 1.4.3).

Definition 10.38. If R is any region of Ω and if we denote the closure of R (i.e., the
smallest closed set containing R) by R, then the set ∂R = R−R is also a closed set
called the boundary (or frontier) of R.

Now, given a plane graph G , if we let |G | be the the subset of R2 consisting of the
union of all the vertices and edges of G , then this is a closed set and its complement
Ω = R2−|G | is an open subset of R2.

Definition 10.39. Given any plane graph G the regions of Ω = R2−|G | are called
the faces of G .

As expected, for every face F of G , the boundary ∂F of F is the subset |H |
associated with some subgraph H of G . However, one should observe that the
boundary of a face may be disconnected and may have several “holes”. The reader
should draw lots of plane graphs to understand this phenomenon. Also, because we
are considering finite graphs, the set |G | is bounded and thus, every plane graph has
exactly one unbounded face.

Example 10.17. Figure 10.62 shows a planar graph and its faces. Observe that there
are five faces, where A is bounded by all the edges except the loop around E and the
rightmost edge from 7 to 8; B is bounded by the triangle (4,5,6); the outside face
C is bounded by the two edges from 8 to 2; the loop around node 2; the two edges
from 2 to 7; and the outer edge from 7 to 8; D is bounded by the two edges between
7 and 8; and E is bounded by the loop around node 2.

It is a little tricky to define rigorously the number of sides sF of a face F because
the boundary of a face may not be homeomorphic to a circle. For example, the
boundary of face A is not homeomorphic to a circle. This can be done by considering
a shortest cycle in the boundary of F passing through all the edges. The number sF of
edges in this cycle is declared to be the number of sides of the face F . For example,
face A has 10 sides, even though the boundary only has 9 nine edges. The edge
{3,4} has to be traversed twice to form a cycle. With this definition of the number
of sides of a face, for a conneced graph we have the equation

2n1 = ∑
F

sF ,

where n1 is the number of edges and F ranges over the faces of G. For example, for
the graph of Figure 10.62, A has 10 sides, B has 3 sides, C (the exterior face) has 6
sides, D has 2 sides, E has 1 side, and there are 11 edges. Indeed

22 = 2×11 = 10+3+6+2+1.
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Fig. 10.62 A plane graph and its faces.

For more on this topic we refer the curious reader to Gross and Tucker [13], Section
1.4.3.

Remarks:

1. Using (inverse) stereographic projection, we see that all the faces of a graph
embedded in the sphere are bounded.

2. If a graph G is embedded in a surface S, then the notion of face still makes sense.
Indeed, the faces of G are the regions of the open set Ω = S−|G|.

Actually, one should be careful (as usual) not to rely too much on intuition when
dealing with planar graphs. Although certain facts seem obvious, they may turn out
to be false after closer scrutiny and when they are true, they may be quite hard to
prove. One of the best examples of an “obvious” statement whose proof is much less
trivial than one might expect is the Jordan curve theorem which is actually needed
to justify certain “obvious” facts about faces of plane graphs.

Theorem 10.18. (Jordan Curve Theorem) Given any simple closed curve γ in R, the
complement R2− γ([0,1]), of γ([0,1]) consists of exactly two regions both having
γ([0,1]) as boundary.

Proof. There are several proofs all using machinery (such as homology or differen-
tial topology) beyond the scope of these notes. A proof using the notion of winding
number is given in Guillemin and Pollack [14] (Chapter 2, Section 5) and another
proof using homology can be found in Munkres [17] (Chapter 4, Section 36). ut

Using Theorem 10.18, the following properties can be proven.
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Fig. 10.63 Camille Jordan, 1838–1922.

Proposition 10.18. Let G = (V,E) be any plane graph and let e ∈ E be any edge of
G . Then the following properties hold.

(1) For any face F of G , either e⊆ ∂F or ∂F ∩ ◦e= /0.
(2) If e lies on a cycle C of G , then e lies on the boundary of exactly two faces of G

and these are contained in distinct faces of C.
(3) If e does not lie on any cycle, then e lies on the boundary of exactly one face of

G .

Proof. See Diestel [9], Section 4.2. ut

As corollaries, we also have the following.

Proposition 10.19. Let G = (V,E) be any plane graph and let F be any face of G .
Then, the boundary ∂F of F is a subgraph of G (more accurately, ∂F = |H |, for
some subgraph H of G ).

Proposition 10.20. Every plane forest has a single face.

One of the main theorems about planar graphs is the so-called Euler formula.

10.15 Euler’s Formula for Plane Graphs and its
Consequences

Theorem 10.19. (Euler’s formula) Let G be any connected plane graph with n0
vertices, n1 edges, and n2 faces. Then we have

n0−n1 +n2 = 2.

Proof. We proceed by induction on n1. If n1 = 0, the formula is trivially true, as
n0 = n2 = 1. Assume the theorem holds for any n < n1, and let G be a connected
planar graph with n1 edges. If G has no cycle, then as it is connected, it is a tree,
n0 = n1+1 and n2 = 1, so n0−n1+n2 = n1+1−n1+1 = 2, as desired. Otherwise,
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let e be some edge of G belonging to a cycle. Consider the graph G′ = (V,E−{e});
it is still a connected planar graph. Therefore, by the induction hypothesis,

n0− (n1−1)+n′2 = 2.

However, by Proposition 10.18, as e lies on exactly two faces of G, we deduce that
n2 = n′2 +1. Consequently

2 = n0− (n1−1)+n′2 = n0−n1 +1+n2−1 = n0−n1 +n2,

establishing the induction hypothesis. ut

Remarks:

1. Euler’s formula was already known to Descartes in 1640 but the first proof was
given by Euler in 1752. Poincaré generalized it to higher-dimensional polytopes.

2. The numbers n0, n1, and n2 are often denoted by nv, ne, and n f (v for vertex, e
for edge and f for face).

3. The quantity n0 − n1 + n2 is called the Euler–Poincaré characteristic of the
graph G, and it is usually denoted by χG.

4. If a connected graph G is embedded in a surface (orientable) S, then we still
have an Euler formula of the form

n0−n1 +n2 = χ(S) = 2−2g,

where χ(S) is a number depending only on the surface S, called the Euler–
Poincaré characteristic of the surface and g is called the genus of the surface.
It turns out that g ≥ 0 is the number of “handles” that need to be glued to the
surface of a sphere to get a homeomorphic copy of the surface S. For more on
this fascinating subject, see Gross and Tucker [13].

Fig. 10.64 René Descartes, 1596–1650 (left) and Leonhard Euler, 1707–1783 (right).

It is really remarkable that the quantity n0− n1 + n2 is independent of the way
a plane graph is drawn on a sphere (or in the plane). A neat application of Euler’s
formula is the proof that there are only five regular convex polyhedra (the so-called
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platonic solids). Such a proof can be found in many places, for instance, Berger [2]
and Cromwell [8].

It is easy to generalize Euler’s formula to planar graphs that are not necessarily
connected.

Theorem 10.20. Let G be any plane graph with n0 vertices, n1 edges, n2 faces, and
c connected components. Then we have

n0−n1 +n2 = c+1.

Proof. Reduce the proof of Theorem 10.20 to the proof of Theorem 10.19 by adding
vertices and edges between connected components to make G connected. Details are
left as an exercise. ut

Using the Euler formula we can now prove rigorously that K5 and K3,3 are not
planar graphs. For this, we need the following fact.

Proposition 10.21. If G is any simple, connected, plane graph with n0 ≥ 3 vertices,
n1 edges and n2 faces, then

2n1 ≥ 3n2.

Proof. Let F(G) be the set of faces of G. Because G is connected, by Proposition
10.18 (2) and (3), every edge belongs to at most two faces. Thus, if bF is the number
of edges in the boundary of a face F of G, we have

∑
F∈F(G)

bF ≤ 2n1.

If G is a tree with at least n0 ≥ 3 nodes, then there is one face (the exterior face) and
n0−1 edges, so 2(n0−1)≥ 3, namely 2n0 ≥ 5, which holds since n0 ≥ 3.

If G is not a tree, since G has no loops, no parallel edges, and n0≥ 3, the boundary
of every face has at least three edges; that is, bF ≥ 3. It follows that

2n1 ≥ ∑
F∈F(G)

bF ≥ 3n2,

as claimed. ut

The proof of Proposition 10.21 shows that if G is not a tree, the crucial constant
3 on the right-hand side of the inequality is the minimum length of all cycles in G.

Definition 10.40. Given a graph G, the minimum length of all cycles in G girthis
called the girth of the graph G.

The girth of a graph with a loop is 1 and the girth of a graph with parallel edges
is 2. The girth of a tree is undefined (or infinite). Therefore, we actually proved the
next proposition.
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Proposition 10.22. If G is any connected simple plane graph with n1 edges and n2
faces and G is not a tree, then

2n1 ≥ girth(G)n2.

Corollary 10.7. If G is any simple, connected, plane graph with n ≥ 3 nodes then
G has at most 3n−6 edges and 2n−4 faces.

Proof. By Proposition 10.21, we have 2n1 ≥ 3n2, where n1 is the number of edges
and n2 is the number of faces. So n2 ≤ 2

3 n1, and by Euler’s formula

n−n1 +n2 = 2,

we get

n−n1 +
2
3

n1 ≥ 2;

that is,

n− 1
3

n1 ≥ 2,

namely n1 ≤ 3n−6. Using n2 ≤ 2
3 n1, we get n2 ≤ 2n−4. ut

Corollary 10.8. The graphs K5 and K3,3 are not planar.

Proof. We proceed by contradiction. If K5 and K3,3 are planar graphs, they are iso-
morphic to plane graphs so we may assume that K5 and K3,3 are plane graphs. First,
consider K5. We have n0 = 5, and K5 has n1 = 10 edges. On the other hand, by
Corollary 10.7, K5 should have at most 3× 5− 6 = 15− 6 = 9 edges, which is
absurd.

Next consider K3,3. We have n0 = 6, and K3,3 has n1 = 9 edges. By the Euler
formula, we should have

n2 = 9−6+2 = 5.

Now, as K3,3 is bipartite, it does not contain any cycle of odd length, and so each
face has at least four sides, which implies that

2n1 ≥ 4n2

(because the girth of K3,3 is 4.) So we should have

18 = 2 ·9≥ 4 ·5 = 20,

which is absurd. ut

Another important property of simple planar graphs is the following.

Proposition 10.23. If G is any simple plane graph, then there is a vertex u such that
dG(u)≤ 5.
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Proof. If the property holds for any connected component of G, then it holds for G,
so we may assume that G is connected. We already know from Proposition 10.21
that 2n1 ≥ 3n2; that is,

n2 ≤
2
3

n1. (∗)

If dG(u)≥ 6 for every vertex u, as ∑u∈V dG(u) = 2n1, then 6n0 ≤ 2n1; that is, n0 ≤
n1/3. By Euler’s formula, we would have

n2 = n1−n0 +2≥ n1−
1
3

n1 +2 >
2
3

n1,

contradicting (∗). ut

Remarkably, Proposition 10.23 is the key ingredient in the proof that every planar
graph is 5-colorable.

Theorem 10.21. (5-Color Theorem, Heawood, 1890) Every planar graph G is 5-
colorable.

Proof. Here is the proof from Gross and Tucker [13] (Theorem 5.1.4). Since G is
planar, it is isomorphic to a plane graph, so we may assume that G is a plane graph.
Clearly, parallel edges and loops play no role in finding a coloring of the vertices of
G, so we may assume that G is a simple graph. Also, the property of being vertex
colorable is clear for graphs with less than 5 vertices. We proceed by induction on
the number of vertices m. By Proposition 10.23, the graph G has some vertex u0
with dG(u)≤ 5. By the induction hypothesis, we can color the subgraph G′ induced
by V −{u0} with 5 colors. If d(u0) < 5, we can color u0 with one of the colors
not used to color the nodes adjacent to u0 (at most 4) and we are done. So assume
dG(u0) = 5, and let v1, . . . ,v5 be the nodes adjacent to u0 and encountered in this
order when we rotate counterclockwise around u0 (see Figure 10.65). If v1, . . . ,v5
are not colored with different colors, then two of the vi would be assigned the same
color, so some color j would not be assigned to v1, . . . ,v5 and we could assign it to
u0.

Otherwise, by the induction hypothesis, let {X1, . . . ,X5} be a coloring of G′

(where Xi is the subset of vertices colored with color i) and, by renaming the Xis
if necessary, assume that vi ∈ Xi, for i = 1, . . . ,5. There are two cases.

(1) There is no chain from v1 to v3 whose nodes belong alternately to X1 and X3.
If so, v1 and v3 must belong to different connected components of the subgraph
H ′ of G′ induced by X1 ∪X3. Then we can permute the colors 1 and 3 in the
connected component of H ′ that contains v3 and color u0 with color 3.

(2) There is a chain from v1 to v3 whose nodes belong alternately to X1 and X3.
In this case, as G is a planar graph, there can’t be any chain from v2 to v4
whose nodes belong alternately to X2 and X4. So v2 and v4 do not belong to the
same connected component of the subgraph H ′′ of G′ induced by X2 ∪X4 (by
the Jordan curve theorem). But then we can permute the colors 2 and 4 in the
connected component of H ′′ that contains v4 and color u0 with color 4. ut
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1

v2

v3 v4

v5

v1

u0

Fig. 10.65 The five nodes adjacent to u0.

Theorem 10.21 raises a very famous problem known as the four-color problem:
Can every planar graph be colored with four colors?

This question was apparently first raised by Francis Guthrie in 1850, commu-
nicated to De Morgan by Guthrie’s brother Frederick in 1852, and brought to the
attention of a wider public by Cayley in 1878. In the next hundred years, several in-
correct proofs were proposed and this problem became known as the four-color con-
jecture. Finally, in 1977, Appel and Haken gave the first “proof” of the four-color
conjecture. However, this proof was somewhat controversial for various reasons,
one of the reasons being that it relies on a computer program for checking a large
number of unavoidable configurations. Appel and Haken subsequently published
a 741-page paper correcting a number of errors and addressing various criticisms.
More recently (1997) a much shorter proof, still relying on a computer program, but
a lot easier to check (including the computer part of it) has been given by Robert-
son, Sanders, Seymour, and Thomas [19]. For more on the four-color problem, see
Diestel [9], Chapter 5, and the references given there.

10.16 Criteria for Planarity

Let us now go back to Kuratowski’s criterion for nonplanarity. For this it is useful
to introduce the notion of edge contraction in a graph.

Definition 10.41. Let G = (V,E,st) be any graph and let e be any edge of G which
not a loop. The graph obtained by contracting the edge e into a new vertex ve is
the graph G/e = (V ′,E ′,st ′) with V ′ = (V − st(e))∪{ve}, where ve is a new node
(ve /∈V ); E ′ = E−{e}; and with
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st ′(e′) =


st(e′) if st(e′)∩ st(e) = /0
{ve} if st(e′) = st(e)
{u,ve} if st(e′)∩ st(e) = {z} and st(e′) = {u,z} with u 6= z
{ve} if st(e′) = {x} or st(e′) = {y} with st(e) = {x,y}.

Case (2) turns an edge parallel to e into a loop around ve, and Case (4) makes a loop
at either endpoint of e into a loop around ve.

If G is a simple graph, then only Cases (1)-(3) apply, but we need to eliminate
loops and parallel edges. If e= {x,y}, this is equivalent to defining G/e=(V ′,E ′,st)
so that V ′ = (V −{x,y})∪{ve}, where ve is a new node and

E ′ = {{u,v} | {u,v}∩{x,y}= /0}
∪{{u,ve} | {u,x} ∈ E−{e} or {u,y} ∈ E−{e}}.

Example 10.18. Figure 10.66 shows the result of contracting the upper edge {2,4}
(shown as a thicker line) in the graph shown on the left, which is not a simple graph.
Observe how the lower edge {2,4} becomes a loop around 7 and the two edges
{5,2} and {5,4} become parallel edges between 5 and 7.

1

1 2

3

4

5 6

1 7

3 5 6

Fig. 10.66 Edge contraction in a graph.

Example 10.19. Figure 10.67 shows the result of contracting edge {2,4} (shown as
a thicker line) in the simple graph shown on the left. This time, the two edges {5,2}
and {5,4} become a single edge and there is no loop around 7 as the contracted
edge is deleted.

Now given a graph G, we can repeatedly contract edges. We can also take a
subgraph of a graph G and then perform some edge contractions. We obtain what is
known as a minor of G.

Definition 10.42. Given any graph G, a graph H is a minor of G if there is a se-
quence of graphs H0,H1, . . . ,Hn (n≥ 1), such that

(1) H0 = G; Hn = H.
(2) Either Hi+1 is obtained from Hi by deleting some edge or some node of Hi and

all the edges incident with this node.
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Fig. 10.67 Edge contraction in a simple graph.

(3) Or Hi+1 is obtained from Hi by edge contraction,

with 0 ≤ i ≤ n− 1. If G is a simple graph, we require that edge contractions be of
the second type described in Definition 10.41, so that H is a simple graph.

Remark: In Diestel [4] (see the definition at the top of Page 20) a minor of a graph
Y is a graph X obtained from Y by first picking a subgraph G of Y and then perform-
ing some edge contractions on G. However, it is not hard to show that the relation
“X is a minor of Y ” is transtitive, so as observed by Diestel, his definition of a mi-
nor is equivalent to Definition 10.42. It is easily shown that the minor relation is a
partial order on graphs (and simple graphs). Now the following remarkable theorem
originally due to Kuratowski characterizes planarity in terms of the notion of minor.

Fig. 10.68 Kazimierz Kuratowski, 1896–1980.

Theorem 10.22. (Kuratowski, 1930) For any graph G, the following assertions are
equivalent.

(1) G is planar.
(2) G contains neither K5 nor K3,3 as a minor.

Proof. The proof is quite involved. The first step is to prove the theorem for 3-
connected graphs. (A graph G= (V,E) is h-connected iff |V |> h and iff every graph
obtained by deleting any set S ⊆ V of nodes with |S| < h and the edges incident to
these node is still connected. So, a 1-connected graph is just a connected graph.) We
refer the reader to Diestel [9], Section 4.4, for a complete proof. ut
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Another way to state Kuratowski’s theorem involves edge subdivision, an oper-
ation of independent interest. Given a graph G = (V,E,st) possibly with loops and
parallel edges, the result of subdividing an edge e consists in creating a new vertex
ve, deleting the edge e, and adding two new edges from ve to the old endpoints of e
(possibly the same point). Formally, we have the following definition.

Definition 10.43. Given any graph G = (V,E,st), for any edge e ∈ E, the result of
subdividing the edge e is the graph G′ = (V ∪{ve},(E−{e})∪{e1,e2},st ′), where
ve is a new vertex and e1,e2 are new edges, st ′(e′) = st(e′) for all e′ ∈ E−{e} and
if st(e) = {u,v} (u = v is possible), then st ′(e1) = {ve,u} and st ′(e2) = {ve,v}. If
a graph G′ is obtained from a graph G by a sequence of edge subdivisions, we say
that G′ is a subdivision of G.

Observe that by repeatedly subdividing edges, any graph can be transformed into
a simple graph.

Definition 10.44. Given two graphs G and H, we say that G and H are homeomor-
phic iff they have respective subdivisions G′ and H ′ that are isomorphic graphs.

The idea is that homeomorphic graphs “look the same,” viewed as topological
spaces.

Example 10.20. Figure 10.69 shows an example of two homeomorphic graphs.

1

Fig. 10.69 Two homeomorphic graphs.

Definition 10.45. A graph H that has a subdivision H ′, which is a subgraph of some
graph G, is called a topological minor of G.

Then it is not hard to show (see Diestel [9], Chapter 4, or Gross and Tucker [13],
Chapter 1) that Kuratowski’s theorem is equivalent to the statement

A graph G is planar iff it does not contain any subgraph homeomorphic to either
K5 or K3,3, or equivalently, if it has has neither K5 nor K3,3 as a topological minor.

Another somewhat surprising characterization of planarity involving the concept
of cycle space over F2 (see Definition 10.6 and the Remarks after Theorem 10.2)
and due to MacLane is the following.
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Fig. 10.70 Saunders Mac Lane, 1909–2005.

Theorem 10.23. (MacLane, 1937) A graph G is planar iff its cycle space F over
F2 has a basis such that every edge of G belongs to at most two cycles of this basis.

Proof. See Diestel [9], Section 4.4. ut

Besides the four-color “conjecture,” the other most famous theorem of graph
theory is the graph minor theorem, due to Roberston and Seymour and we can’t
resist stating this beautiful and amazing result. For this, we need to explain what is a
well quasi-order (for short, a w.q.o.). Recall that a partial order on a set X is a binary
relation ≤, that is reflexive, symmetric, and anti-symmetric.

Definition 10.46. A quasi-order (or preorder) is a relation which is reflexive and
transitive (but not necessarily anti-symmetric). A well quasi-order is a quasi-order
with the following property:

For every infinite sequence (xn)n≥1 of elements xi ∈ X , there exist some indices
i, j, with 1≤ i < j, so that xi ≤ x j.

Now we know that being a minor of another graph is a partial order and thus, a
quasi-order. Here is Robertson and Seymour’s theorem:

Fig. 10.71 Paul D. Seymour, 1950– (left) and G Neil Robertson, 1938– (right).

Theorem 10.24. (Graph Minor Theorem, Robertson and Seymour, 1985–2004) The
minor relation on finite graphs is a well quasi-order.
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Remarkably, the proof of Theorem 10.24 is spread over 20 journal papers (un-
der the common title, Graph Minors) written over nearly 18 years and taking well
over 500 pages! Many original techniques had to be invented to come up with this
proof, one of which is a careful study of the conditions under which a graph can be
embedded in a surface and a “Kuratowski-type” criterion based on a finite family of
“forbidden graphs.” The interested reader is urged to consult Chapter 12 of Diestel
[9] and the references given there.

A precursor of the graph minor theorem is a theorem of Kruskal (1960) that
applies to trees. Although much easier to prove than the graph minor theorem, the
proof of Kruskal’s theorem is very ingenious. It turns out that there are also some
interesting connections between Kruskal’s theorem and proof theory, due to Harvey
Friedman. A survey on this topic can be found in Gallier [10].

10.17 Dual Graph of a Plane Graph

We conclude this section on planarity with a brief discussion of the dual graph of
a plane graph, a notion originally due to Poincaré. Duality can be generalized to
simplicial complexes and relates Voronoi diagrams and Delaunay triangulations,
two very important tools in computational geometry.

Given a plane graph G = (V,E), let F(G) be the set of faces of G. The crucial
point is that every edge of G is part of the boundary of at most two faces. A dual
graph G∗ = (V ∗,E∗) of G is a graph whose nodes are in one-to-one correspondence
with the faces of G, whose faces are in one-to-one correspondence with the nodes of
G, and whose edges are also in one-to-one correspondence with the the edges of G.
For any edge e ∈ E, a dual edge e∗ links the two nodes vF1 and vF2 associated with
the faces F1 and F2 adjacent to e, or e∗ is a loop from vF to itself if e is adjacent to a
single face. Here is the precise definition.

Definition 10.47. Let G = (V,E) be a plane graph and let F(G) be its set of faces.
A dual graph of G is a graph G∗ = (V ∗,E∗), where

(1) V ∗ = {vF | F ∈ F(G)}, where vF is a point chosen in the (open) face F of G.
(2) E∗ = {e∗ | e ∈ E}, where e∗ is a simple curve from vF1 to vF2 crossing e, if e

is part of the boundary of two faces F1 and F2, or else a closed simple curve
crossing e from vF to itself, if e is part of the boundary of exactly one face F .

(3) For each e ∈ E, we have e∗∩G = e∩G∗ =
◦
e ∩

◦
e∗, a one-point set.

Example 10.21. An example of a dual graph is shown in Figure 10.72. The graph
G has four faces, a,b,c,d and the dual graph G∗ has nodes also denoted a,b,c,d
enclosed in a small circle, with the edges of the dual graph shown with thicker lines.

Note how the edge {5,6} gives rise to the loop from d to itself and that there are
parallel edges between d and a and between d and c. Thus, even if we start with a
simple graph, a dual graph may have loops and parallel edges.
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Actually, it is not entirely obvious that a dual of a plane graph is a plane graph but
this is not difficult to prove. It is also important to note that a given plane graph G
does not have a unique dual because the vertices and the edges of a dual graph can
be chosen in infinitely different ways in order to satisfy the conditions of Definition
10.47. However, given a plane graph G, if H1 and H2 are two dual graphs of G, then
it is easy to see that H1 and H2 are isomorphic. Therefore, with a slight abuse of
language, we may refer to “the” dual graph of a plane graph. Also observe that even
if G is not connected, its dual G∗ is always connected.

� The notion of dual graph applies to a plane graph and not to a planar graph.
Indeed, the graphs G∗1 and G∗2 associated with two different embeddings G1 and

G2 of the same abstract planar graph G may not be isomorphic, even though G1 and
G2 are isomorphic as abstract graphs. For example, the two plane graphs G1 and G2
shown in Figure 10.73 are isomorphic but their dual graphs G∗1 and G∗2 are not, as
the reader should check (one of these two graphs has a node of degree 7 but for the
other graph all nodes have degree at most 6).

1

1

2

3

4

5

66

a

b

c

d

Fig. 10.72 A graph and its dual graph.

The dual of the graph shown on the left of Figure 10.73 is shown in Figure 10.74
and the dual of the graph shown on the right of Figure 10.73 is shown in Figure
10.75

Remark: If a graph G is embedded in a surface S, then the notion of dual graph
also makes sense. For more on this, see Gross and Tucker [13].
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Fig. 10.73 Two isomorphic plane graphs whose dual graphs are not isomorphic.
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Fig. 10.74 The dual of the graph on the left of Figure 10.73.
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Fig. 10.75 The dual of the graph on the right of Figure 10.73.
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In the following proposition, we summarize some useful properties of dual
graphs.

Proposition 10.24. The dual G∗ of any plane graph is connected. Furthermore, if G
is a connected plane graph, then G∗∗ is isomorphic to G.

Proof. Left as an exercise. ut

With a slight abuse of notation we often write G∗∗ = G (when G is connected). A
plane graph G whose dual G∗ is equal to G (i.e., isomorphic to G) is called self-dual.
For example, the plane graph shown in Figure 10.76 (the projection of a tetrahedron
on the plane) is self-dual, and its dual is shown in Figure 10.77.

1

1

2 3

4

Fig. 10.76 A self-dual graph.

Dual graph is in red.

Fig. 10.77 The dual of the graph of Figure 10.76.
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The duality of plane graphs is also reflected algebraically as a duality between
their cycle spaces and their cut spaces (over F2).

Proposition 10.25. If G is any connected plane graph G, then the following proper-
ties hold.

(1) A set of edges C⊆ E is a cycle in G iff C∗ = {e∗ ∈ E∗ | e∈C} is a minimal cutset
in G∗. This is illustrated in Figure 10.78.

1 2

3 4

5

6

A

B C

A cycle of G (in purple) corresponds to a minimal cut set of G* (in hot pink).

Fig. 10.78 Case (1) of Proposition 10.25.

(2) If F (G) and T (G∗) denote the cycle space of G over F2 and the cut space of
G∗ over F2, respectively, then the dual F ∗(G) of F (G) (as a vector space) is
equal to the cut space T (G∗) of G∗; that is,

F ∗(G) = T (G∗).

(3) If T is any spanning tree of G, then (V ∗,(E−E(T ))∗) is a spanning tree of G∗

(Here, E(T ) is the set of edges of the tree T .) This is illustrated in Figure 10.79.

Proof. See Diestel [9], Section 4.6. ut

The interesting problem of finding an algorithmic test for planarity has received
quite a bit of attention. Hopcroft and Tarjan have given an algorithm running in lin-
ear time in the number of vertices. For more on planarity, the reader should consult
Diestel [9], Chapter 4, or Harary [15], Chapter 11.
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The relationship between a spanning tree for G (in blue) and a spanning tree for G* (in orange).

Fig. 10.79 Case (3) of Proposition 10.25.

10.18 Summary

This chapter delves more deeply into graph theory. We begin by defining two fun-
damental vector spaces associated with a finite directed graph G, the cycle space
or flow space F (G), and the cocycle space or tension space (or cut space) T (G).
These spaces turn out to be orthogonal. We explain how to find bases of these spaces
in terms of spanning trees and cotrees and we determine the dimensions of these
spaces in terms of the number of edges, the number of vertices, and the number
of connected components of the graph. A pretty lemma known as the arc coloring
lemma (due to Minty) plays a crucial role in the above presentation which is heavily
inspired by Berge [1] and Sakarovitch [20]. We discuss the incidence matrix and the
adjacency matrix of a graph and explain how the spaces of flows and tensions can be
recovered from the incidence matrix. We also define the Laplacian of a graph. We
devote five sections to flow problems and in particular to the max-flow min-cut the-
orem and some of its variants. The proof of the max-flow min-cut theorem uses the
arc-coloring lemma in an interesting way, as indicated by Sakarovitch [20]. Match-
ings, coverings, and bipartite graphs are briefly treated. We conclude this chapter
with a discussion of planar graphs. Finally, we mention two of the most famous
theorems of graph theory: the four color-conjecture (now theorem, or is it?) and the
graph minor theorem, due to Robertson and Seymour.

• We define the representative vector of a cycle and then the notion of Γ -cycle Γ ,
representative vector of a Γ -cycle γ(Γ ), a Γ -circuit, and a simple Γ -cycle.



10.18 Summary 581

• Next, we define a cocycle (or cutset) Ω , its representative vector ω(Ω), a co-
circuit, and a simple cocycle.

• We define a cutset.
• We prove several characterizations of simple cocycles.
• We prove the fundamental fact that the representative vectors of Γ -cycles and

cocycles are orthogonal.
• We define the cycle space or flow space F (G) and the cocycle space or tension

space (or cut space) T (G).
• We prove a crucial technical result: the arc coloring lemma (due to Minty).
• We derive various consequences of the arc-coloring lemma, including the fact

that every edge of a finite digraph either belongs to a simple circuit or a simple
cocircuit but not both.

• We define a cotree and give a useful characterization of them.
• We prove the main theorem of Section 10.1 (Theorem 10.2), namely, we com-

pute the dimensions of the spaces F (G) and T (G), and we explain how to
compute bases of these spaces in terms of spanning trees and cotrees.

• We define the cyclomatic number and the cocyclomatic number of a (di)graph.
• We remark that the dimension of F (G) is the dimension of the first homol-

ogy group of the graph and that the Euler–Poincaré characteristic formula is a
consequence of the formulae for the dimensions of F (G) and T (G).

• We give some useful characterizations of flows and tensions.
• We define the incidence matrix D(G) of a directed graph G (without parallel

edges or loops).
• We characterize F (G) and T (G) in terms of the incidence matrix.
• We prove a theorem of Poincaré about nonsingular submatrices of D which

shows that D is totally unimodular.
• We define the adjacency matrix A(G) of a graph.
• We prove that DD> = ∆ −A, where ∆ is the diagonal matrix consisting of the

degrees of the vertices.
• We define DD> as the Laplacian of the graph.
• The study of the matrix DD>, especially its eigenvalues, is an active area of

research called spectral graph theory.
• We define a network (or flow network), a digraph together with a capacity func-

tion (or cost function).
• We define the notion of flow, value of a flow, and state the network flow problem.

• We define the notion of vs-vt -cut and of capacity of a vs-vt -cut.
• We prove a basic result relating the maximum value of a flow to the minimum

capacity of a vs-vt -cut.
• We define a minimum vs-vt -cut or minimum cut.
• We prove that in any network there is a flow of maximum value.
• We prove the celebrated max-flow min-cut theorem due to Ford and Fulkerson

using the arc coloring lemma.
• We define a flow augmenting chain.
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• We describe the algorithm maxflow and prove its correctness (provided that it
terminates).

• We give a sufficient condition for the termination of the algorithm maxflow (all
the capacities are multiples of some given number).

• The above criterion implies termination of maxflow if all the capacities are inte-
gers and that the algorithm will output some maximum flow with integer capac-
ities.

• In order to improve the complexity of the algorithm maxflow we define a resid-
ual network.

• We briefly discuss faster algorithms for finding a maximum flow. We define a
preflow and mention “preflow-push relabel algorithms.”

• We present a few applications of the max-flow min-cut theorem, such as a the-
orem due to Menger on edge-disjoint paths.

• We discuss channeled flows and state a theorem due to Hoffman that character-
izes when a channeled flow exists.

• We define a bottleneck and give an algorithm for finding a channeled flow.
• We state a max-flow min-cut theorem for channeled flows.
• We conclude with a discussion of a variation of the max flow problem consid-

ered in Cormen et al. [7] (Chapter 26).
• We define a bipartite graph and a maximum matching.
• We define the complete bipartite graphs Km,n.
• We explain how the maxflow algorithm can be used to find a maximum match-

ing.
• We define a k-coloring of a graph, when a graph is k-colorable, and the chro-

matic number of a graph.
• We define the incidence matrix of a nonoriented graph and we characterize a

bipartite graph in terms of its incidence matrix.
• We define a matching in a graph, a matched vertex, and a perfect matching.
• We define an alternating chain.
• We characterize a maximal matching in terms of alternating chains.
• We define a line cover and a minimum line cover.
• We prove a relationship between maximum matchings and minimum line cov-

ers.
• We define an independent (or stable) set of nodes and a maximum independent

set.
• We define a point cover (or transversal) and a minimum point cover.
• We go back to bipartite graphs and describe a marking procedure that decides

whether a matching is a maximum matching.
• As a corollary, we derive some properties of minimum point covers, maximum

matchings, maximum independent sets, and minimum line covers in a bipartite
graph.

• We also derive two classical theorems about matchings in a bipartite graph due
to König and König–Hall and we state the marriage theorem (due to Hall).

• We introduce the notion of a planar graph.
• We define the complete graph on n vertices Kn.



10.18 Problems 583

• We define a Jordan curve (or a simple curve), endpoints (or boundaries) of a
simple curve, a simple loop or closed Jordan curve, a base point and the interior
of a closed Jordan curve.

• We define rigorously a plane graph and a simple plane graph.
• We define a planar graph and a planar embedding.
• We define the stereographic projection onto the sphere. A graph can be embed-

ded in the plane iff it can be embedded in the sphere.
• We mention the possibility of embedding a graph into a surface.
• We define the connected components (or regions) of an open subset of the plane

as well as its boundary.
• We define the faces of plane graph.
• We state the Jordan curve theorem
• We prove Euler’s formula for connected plane graphs and talk about the Euler–

Poincaré characteristic of a plane graph.
• We generalize Euler’s formula to plane graphs that are not necessarily con-

nected.
• We define the girth of a graph and prove an inequality involving the girth for

connected plane graphs.
• As a consequence, we prove that K5 and K3,3 are not planar.
• We prove that every planar graph is 5-colorable.
• We mention the four-color conjecture.
• We define edge contraction and define a minor of a graph.
• We state Kuratowski’s theorem characterizing planarity of a graph in terms of

K3 and K3,3.
• We define edge subdivision and state another version of Kuratowski’s theorem

in terms of minors.
• We state MacLane’s criterion for planarity of a graph in terms of a property of

its cycle space over F2.
• We define the dual graph of a plane graph and state some results relating the

dual and the bidual of a graph to the original graph.
• We define a self-dual graph.
• We state a theorem relating the flow and tension spaces of a plane graph and its

dual.
• We discuss the graph minor theorem.
• We define a quasi-order and a well quasi-order.
• We state the graph minor theorem due to Robertson and Seymour.

Problems

10.1. Recall from Problem 9.14 that an undirected graph G is h-connected (h ≥ 1)
iff the result of deleting any h− 1 vertices and the edges adjacent to these vertices
does not disconnect G. Prove that if G is an undirected graph and G is 2-connected,
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then there is an orientation of the edges of G for which G (as an oriented graph) is
strongly connected.

10.2. Given a directed graph G = (V,E,s, t), prove that a necessary and sufficient
condition for a subset of edges E ′ ⊆ E to be a cocycle of G is that it is possible to
color the vertices of G with two colors so that:

1. The endpoints of every edge in E ′ have different colors.
2. The endpoints of every edge in E−E ′ have the same color.

Under which condition do the edges of the graph consitute a cocycle? If the graph
is connected (as an undirected graph), under which condition is E ′ a simple cocycle?

10.3. Prove that if G is a strongly connected graph, then its flow space F (G) has a
basis consisting of representative vectors of circuits.
Hint. Use induction on the number of vertices.

10.4. Prove that if the graph G has no circuit, then its tension space T (G) has a
basis consisting of representative vectors of cocircuits.
Hint. Use induction on the number of vertices.

10.5. Let V be a subspace of Rn. The support of a vector v ∈V is defined by

S(v) = {i ∈ {1, . . . ,n} | vi 6= 0}.

A vector v ∈V is said to be elementary iff it has minimal support, which means that
for any v′ ∈V , if S(v′)⊆ S(v) and S(v′) 6= S(v), then v′ = 0.

(a) Prove that if any two elementary vectors of V have the same support, then
they are collinear.

(b) Let f be an elementary vector in the flow space F (G) of G (respectively, τ

be an elementary vector in the tension space T (G) of G). Prove that

f = λγ, (respectively, τ = µω),

with λ ,µ ∈ R and γ (respectively, ω) is the representative vector of a simple cycle
(respectively, of a simple cocycle) of G.

(c) For any m×n matrix, A, let V be the subspace given by

V = {x ∈ Rn | Ax = 0}.

Prove that the following conditions are equivalent.

(i) A is totally unimodular.
(ii) For every elementary vector x ∈V , whenever xi 6= 0 and x j 6= 0, then |xi|= |x j|.

10.6. Given two m×m matrices with entries either 0 or 1, define A+B as the matrix
whose (i, j)th entry is the Boolean sum ai j ∨bi j and AB as the matrix whose (i, j)th
entry is given by

(ai1∧b1 j)∨ (ai2∧b2 j)∨·· ·∨ (aim∧bm j);
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that is, interpret 0 as false, 1 as true, + as or, and · as and.
(i) Prove that

Ak
i j =

{
1, iff there is a path of length k from vi to v j
0, otherwise.

(ii) Let
Bk = A+A2 + · · ·+Ak.

Prove that there is some k0 so that

Bn+k0 = Bk0 ,

for all n≥ 1. Describe the graph associated with Bk0 .

10.7. Find a minimum cut separating vs and vt in the network shown in Figure 10.80.

1

vs

1

2 3

4

vt1

2

3

3

5

3 2

1

1

4

4

er

Fig. 10.80 A network.

10.8. Consider the sequence (un) defined by the recurrence

u0 = 0

u1 =

√
5−1
2

un+2 = −un+1 +un.

If we let r = u1 = (
√

5−1)/2, then prove that
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un = rn.

Let S = ∑
∞
k=0 rn = 1/(1− r). Construct a network (V,E,c) as follows.

• V = {vs,vt ,x1,x2,x3,x4,y1,y2,y3,y4}
• E1 = {e1 = (x1,y1),e2 = (x2,y2),e3 = (x3,y3),e4 = (x4,y4)}
• E2 = {(vs,xi),(yi,vt),1≤ i≤ 4}
• E3 = {(xi,y j),(yi,y j),(yi,x j),1≤ i, j ≤ 4, i 6= j}
• E = E1∪E2∪E3∪{(vt ,vs)}
• c(e) = ri−1 iff e = ei ∈ E1, else c(e) = S iff e ∈ E−E1.

Prove that it is possible to choose at every iteration of the Ford and Fulkerson
algorithm the chains that allow marking vt from vs in such a way that at the kth
iteration the flow has value δ = rk−1. Deduce from this that the algorithm does not
terminate and that it converges to a flow of value S even though the capacity of a
minimum cut separating vs from vt is 4S.

10.9. Let E = {e1, . . . ,em} be a finite set and let S = {S1, . . . ,Sn} be a family of finite
subsets of E. A set T = {ei1 , . . . ,ein} of distinct elements of E is a transversal for S
(also called a system of distinct representatives for S) iff

ei j ∈ S j, j = 1, . . . ,n.

Hall’s theorem states that the family S has a transversal iff for every subset I ⊆
{1, . . . ,n} we have

|I| ≤
∣∣∣∣∣⋃
i∈I

Si

∣∣∣∣∣ .
(a) Prove that the above condition is necessary.
(b) Associate a bipartite graph with S and T and use Theorem 10.17 to prove that
the above condition is indeed sufficient.

10.10. Let G be a directed graph without any self-loops or any cicuits (G is acyclic).
Two vertices u,v, are independent (or incomparable) iff they do not belong to any
path in G. A set of paths (possibly consisting of a single vertex) covers G iff every
vertex belongs to one of these paths.

Dilworth’s theorem states that in an acyclic directed graph, there is some set
of pairwise independent vertices (an antichain) and a covering family of pairwise
(vertex-)disjoint paths whose cardinalities are the same.

Two independent vertices can’t belong to the same path, thus it is clear that the
cardinality of any antichain is smaller than or equal to the cardinality of a path cover.
Therefore, in Dilworth’s theorem, the antichain has maximum size and the covering
family of paths has minimum size.

Given a directed acyclic graph G = (V,E) as above, we construct an undirected
bipartite graph H = (V1∪V2,EH) such that:

• There are bijections, hi : Vi→V , for i = 1,2.
• There is an edge, (v1,v2) ∈ EH , iff there is a path from h1(v1) to h2(v2) in G.
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(a) Prove that for every matching U of H there is a family C of paths covering G
so that |C |+ |U |= |V |.

(b) Use (a) to prove Dilworth’s theorem.

10.11. Let G = (V,E) be an undirected graph and pick vs,vt ∈V .
(a) Prove that the maximum number of pairwise edge-disjoint chains from vs to

vt is equal to the minimum number of edges whose deletion yields a graph in which
vs and vt belong to disjoint connected components.

(b) Prove that the maximum number of pairwise (intermediate vertex)-disjoint
chains from vs to vt is equal to the minimum number of vertices in a subset U of V
so that in the subgraph induced by V −U , the vertices vs and vt belong to disjoint
connected components.

Remark: The results stated in (a) and (b) are due to Menger.

10.12. Let G = (V,E) be any undirected graph. A subset U ⊆ V is a clique iff the
subgraph induced by U is complete. Prove that the cardinality of any matching is at
most the number of cliques needed to cover all the vertices in G.

10.13. Given a graph G = (V,E), for any subset of vertices S ⊆ V , let p(S) be the
number of connected components of the subgraph of G induced by V −S having an
odd number of vertices.

(a) Prove that if there is some S⊆V such that p(S)> |S|, then G does not admit
a perfect matching.

(b) From now on, we assume that G satisfies the condition

p(S)≤ |S|, for all S⊆V. (C)

Prove that if Condition (C) holds, then G has an even number of vertices (set
S = /0) and that |S| and p(S) have the same parity. Prove that if the condition

p(S)< |S|, for all S⊆V (C’)

is satisfied, then there is a perfect matching in G containing any given edge of G
(use induction of the number of vertices).

(c) Assume that Condition (C) holds but that Condition (C’) does not hold and
let S be maximal so that p(S) = |S|.

Prove that the subgraph of G induced by V − S does not have any connected
component with an even number of vertices.

Prove that there cannot exist a family of k connected components of the subgraph
of G induced by V −S connected to a subset T of S with |T |< k. Deduce from and
the theorem of König–Hall (Theorem 10.17) that it is possible to assign a vertex of
S to each connected component of the subgraph induced by V −S.

Prove that if Condition (C) holds, then G admits a perfect matching. (This is a
theorem due to Tutte.)

10.14. The chromatic index of a graph G is the minimum number of colors so that
we can color the edges of G in such a way that any two adjacent edges have different
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colors. A simple unoriented graph whose vertices all have degree 3 is called a cubic
graph.

(a) Prove that every cubic graph has an even number of vertices. What is the
number of edges of a cubic graph with 2k vertices? Prove that for all k ≥ 1, there is
at least some cubic graph with 2k vertices.

(b) Let G be a cubic bipartite graph with 2k vertices. What is the number of
vertices in each of the two disjoint classes of vertices making G bipartite? Prove
that all k ≥ 1; there is at least some cubic bipartite graph with 2k vertices.

(c) Prove that the chromatic index of Petersen’s graph (see Problem 9.30) is at
least four.

(d) Prove that if the chromatic index of a cubic graph G = (V,E) is equal to three,
then

(i) G admits a perfect matching, E ′ ⊆ E.
(ii) Every connected component of the partial graph induced by E−E ′ has an even

number of vertices.

Prove that if Conditions (i) and (ii) above hold, then the chromatic index of G is
equal to three.

(e) Prove that a necessary and sufficient condition for a cubic graph G to have a
chromatic index equal to three is that G possesses a family of disjoint even cycles
such that every vertex of G belongs to one and only one of these cycles.

(f) Prove that Petersen’s graph is the cubic graph of chromatic index 4 with the
minimum number of vertices.

10.15. Let G=(V1∪V2,E) be a regular bipartite graph, which means that the degree
of each vertex is equal to some given k ≥ 1 (where V1 and V2 are the two disjoint
classes of nodes making G bipartite).

(a) Prove that |V1|= |V2|.
(b) Prove that it is possible to color the edges of G with k colors in such a way

that any two edges colored identically are not adjacent.

10.16. Prove that if a graph G has the property that for G itself and for all of its par-
tial subgraphs, the cardinality of a minimum point cover is equal to the cardinality
of a maximum matching (or equivalently, the cardinality of a maximum independent
set is equal to the cardinality of a minimum line cover), then G is bipartite.

10.17. Let G = (V1 ∪V2,E) be a bipartite graph such that every vertex has degree
at least 1. Let us also assume that no maximum matching is a perfect matching. A
subset A⊆V1 is called a basis iff there is a matching of G that matches every node
of V1 and if A is maximal for this property.

(a) Prove that if A is any basis, then for every v′ /∈ A we can find some v′′ ∈ A so
that

(A∪{v′})−{v′′}
is also a basis.

(b) Prove that all bases have the same cardinality.
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(c) Assume some function l : V1→ R+ is given. Design an algorithm (similar to
Kruskal’s algorithm) to find a basis of maximum weight, that is, a basis A, so that
the sum of the weights of the vertices in A is maximum. Justify the correctness of
this algorithm.

10.18. Prove that every undirected graph can be embedded in R3 in such a way that
all edges are line segments.

10.19. A finite set T of triangles in the plane is a triangulation of a region of the
plane iff whenever two triangles in T intersect, then their intersection is either a
common edge or a common vertex. A triangulation in the plane defines an obvious
plane graph.

Prove that the subgraph of the dual of a triangulation induced by the vertices
corresponding to the bounded faces of the triangulation is a forest (a set of disjoint
trees).

10.20. Let G = (V,E) be a connected planar graph and set

χG = v− e+ f ,

where v is the number of vertices, e is the number of edges, and f is the number of
faces.

(a) Prove that if G is a triangle, then χG = 2.
(b) Explain precisely how χG changes under the following operations:

1. Deletion of an edge e belonging to the boundary of G.
2. Contraction of an edge e that is a bridge of G.
3. Contraction of an edge e having at least some endpoint of degree 2.

Use (a) and (b) to prove Euler’s formula: χG = 2.

10.21. Prove that every simple planar graph with at least four vertices possesses at
least four vertices of degree at most 5.

10.22. A simple planar graph is said to be maximal iff adding some edge to it yields
a nonplanar graph. Prove that if G is a maximal simple planar graph, then

(a) G is 3-connected.
(b) The boundary of every face of G is a cycle of length 3.
(c) G has 3v−6 edges (where |V |= v).

10.23. Prove Proposition 10.24.

10.24. Assume G = (V,E) is a connected plane graph. For any dual graph G∗ =
(V ∗,E∗) of G, prove that

|V ∗| = |E|− |V |+2
|V | = |E∗|− |V ∗|+2.

Prove that G is a dual of G∗.
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10.25. Let G = (V,E) be a finite planar graph with v = |V | and e = |E| and set

ρ = 2e/v, ρ
∗ = 2e/ f .

(a) Use Euler’s formula (v− e+ f = 2) to express e,v, f in terms of ρ and ρ∗.
Prove that

(ρ−2)(ρ∗−2)< 4.

(b) Use (a) to prove that if G is a simple graph, then G has some vertex of degree
at most 5.

(c) Prove that there are exactly five regular convex polyhedra in R3 and describe
them precisely (including their number of vertices, edges, and faces).

(d) Prove that there are exactly three ways of tiling the plane with regular poly-
gons.
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Chapter 11
Mathematical Reasoning And Logic, A Deeper
View

11.1 Introduction

This chapter is a more advanced and more formal version of Chapter 1. The reader
should review Chapter 1 before reading this chapter which relies rather heavily on
it.

As in Chapter 1 , the goal of this chapter is to provide an answer to the question,
“What is a proof?” We do so by formalizing the basic rules of reasoning that we use,
most of the time subconsciously, in a certain kind of formalism known as a natural
deduction system. We give a (very) quick introduction to mathematical logic, with a
very deliberate proof-theoretic bent, that is, neglecting almost completely all seman-
tic notions, except at a very intuitive level. We still feel that this approach is fruitful
because the mechanical and rules-of-the-game flavor of proof systems is much more
easily grasped than semantic concepts. In this approach, we follow Peter Andrews’
motto [1]:

“To truth through proof.”
We present various natural deduction systems due to Prawitz and Gentzen (in

more modern notation), both in their intuitionistic and classical version. The adop-
tion of natural deduction systems as proof systems makes it easy to question the
validity of some of the inference rules, such as the principle of proof by contradic-
tion. In brief, we try to explain to our readers the difference between constructive
and classical (i.e., not necessarily constructive) proofs. In this respect, we plant the
seed that there is a deep relationship between constructive proofs and the notion of
computation (the “Curry–Howard isomorphism” or “formulae-as-types principle,”
see Section 11.13 and Howard [14]).

593
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11.2 Logical Connectives and Propositions

In this section we review some basic proof principles and attempt to clarify, at least
informally, what constitutes a mathematical proof.

In order to define the notion of proof rigorously, we would have to define a formal
language in which to express statements very precisely and we would have to set up
a proof system in terms of axioms and proof rules (also called inference rules). We
do not go into this as this would take too much time. Instead, we content ourselves
with an intuitive idea of what a statement is and focus on stating as precisely as
possible the rules of logic that are used in constructing proofs. Readers who really
want to see a thorough (and rigorous) introduction to logic are referred to Gallier [4],
van Dalen [24], or Huth and Ryan [15], a nice text with a computer science flavor.
A beautiful exposition of logic (from a proof-theoretic point of view) is also given
in Troelstra and Schwichtenberg [23], but at a more advanced level. Frank Pfenning
has also written an excellent and more extensive introduction to constructive logic.
This is available on the web at

http://www.andrew.cmu.edu/course/15-317/handouts/logic.pdf
We also highly recommend the beautifully written little book by Timothy Gowers

(Fields Medalist, 1998) [11] which, among other things, discusses the notion of
proof in mathematics (as well as the necessity of formalizing proofs without going
overboard).

In mathematics and computer science, we prove statements. Recall that state-
ments may be atomic or compound, that is, built up from simpler statements using
logical connectives, such as implication (if–then), conjunction (and), disjunction
(or), negation (not), and (existential or universal) quantifiers.

As examples of atomic statements, we have:

1. “A student is eager to learn.”
2. “The product of two odd integers is odd.”

Atomic statements may also contain “variables” (standing for arbitrary objects).
For example

1. human(x): “x is a human.”
2. needs-to-drink(x): “x needs to drink.”

An example of a compound statement is

human(x)⇒ needs-to-drink(x).

In the above statement,⇒ is the symbol used for logical implication. If we want to
assert that every human needs to drink, we can write

∀x(human(x)⇒ needs-to-drink(x));

this is read: “For every x, if x is a human, then x needs to drink.”



11.2 Logical Connectives and Propositions 595

If we want to assert that some human needs to drink we write

∃x(human(x)⇒ needs-to-drink(x));

this is read: “There is some x such that if x is a human, then x needs to drink.”
We often denote statements (also called propositions or (logical) formulae) us-

ing letters such as A,B,P,Q, and so on, typically upper-case letters (but sometimes
Greek letters ϕ , ψ , etc.).

Recall from Section 1.2 that compound statements are defined as follows. If P
and Q are statements, then

1. the conjunction of P and Q is denoted P∧Q (pronounced P and Q),
2. the disjunction of P and Q is denoted P∨Q (pronounced P or Q),
3. the implication of P and Q is denoted by P⇒ Q (pronounced if P then Q, or P

implies Q).

Instead of using the symbol ⇒, some authors use the symbol → and write an
implication as P→ Q. We do not like to use this notation because the symbol→ is
already used in the notation for functions ( f : A→ B). The symbol ⊃ is sometimes
used instead of⇒. We mostly use the symbol⇒.

We also have the atomic statement ⊥ (falsity), think of it as the statement that is
false no matter what; and the atomic statement> (truth), think of it as the statement
that is always true.

The constant ⊥ is also called falsum or absurdum. It is a formalization of the
notion of absurdity inconsistency (a state in which contradictory facts hold).

Given any proposition P it is convenient to define

4. the negation ¬P of P (pronounced not P) as P⇒⊥. Thus, ¬P (sometimes de-
noted ∼ P) is just a shorthand for P⇒⊥. We write ¬P≡ (P⇒⊥).

The intuitive idea is that ¬P≡ (P⇒⊥) is true if and only if P is false. Actually,
because we don’t know what truth is, it is “safer” (and more constructive) to say
that ¬P is provable if and only if for every proof of P we can derive a contradiction
(namely,⊥ is provable). In particular, P should not be provable. For example, ¬(Q∧
¬Q) is provable (as we show later, because any proof of Q∧¬Q yields a proof of
⊥). However, the fact that a proposition P is not provable does not imply that ¬P is
provable. There are plenty of propositions such that both P and ¬P are not provable,
such as Q⇒ R, where Q and R are two unrelated propositions (with no common
symbols).

Whenever necessary to avoid ambiguities, we add matching parentheses: (P∧Q),
(P∨Q), (P⇒Q). For example, P∨Q∧R is ambiguous; it means either (P∨(Q∧R))
or ((P∨Q)∧R).

Another important logical operator is equivalence.
If P and Q are statements, then

5. the equivalence of P and Q is denoted P≡Q (or P⇐⇒Q); it is an abbreviation
for (P⇒Q)∧ (Q⇒ P). We often say “P if and only if Q,” or even “P iff Q” for
P≡ Q.
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To prove a logical equivalence P≡Q, we have to prove both implications P⇒Q
and Q⇒ P.

As discussed in Sections 1.2 and 1.3, the meaning of the logical connectives
(∧,∨,⇒,¬,≡) is intuitively clear. This is certainly the case for and (∧), since a
conjunction P∧Q is true if and only if both P and Q are true (if we are not sure
what “true” means, replace it by the word “provable”). However, for or (∨), do we
mean inclusive or or exclusive or? In the first case, P∨Q is true if both P and Q
are true, but in the second case, P∨Q is false if both P and Q are true (again, in
doubt change “true” to “provable”). We always mean inclusive or. The situation is
worse for implication (⇒). When do we consider that P⇒Q is true (provable)? The
answer is that it depends on the rules! The “classical” answer is that P⇒ Q is false
(not provable) if and only if P is true and Q is false.

Of course, there are problems with the above paragraph. What does truth have to
do with all this? What do we mean when we say, “P is true”? What is the relationship
between truth and provability?

These are actually deep (and tricky) questions whose answers are not so obvious.
One of the major roles of logic is to clarify the notion of truth and its relationship
to provability. We avoid these fundamental issues by dealing exclusively with the
notion of proof. So, the big question is: what is a proof?

An alternative view (that of intuitionistic logic) of the meaning of implication is
that any proof of P⇒Q can be used to construct a proof of Q given any proof of P.
As a consequence of this interpretation, we show later that if ¬P is provable, then
P⇒ Q is also provable (instantly) whether or not Q is provable. In such a situation,
we often say that P⇒ Q is vacuously provable.

11.3 Proof Rules, Deductions and Proof Trees for Implication

During the process of constructing a proof, it may be necessary to introduce a list of
hypotheses, also called premises (or assumptions), which grows and shrinks during
the proof. When a proof is finished, it should have an empty list of premises. As we
show shortly, this amounts to proving implications of the form

(P1∧P2∧·· ·∧Pn)⇒ Q.

However, there are certain advantages in defining the notion of proof (or deduction)
of a proposition from a set of premises. Sets of premises are usually denoted using
upper-case Greek letters such as Γ or ∆ .

Roughly speaking, a deduction of a proposition Q from a multiset of premises Γ

is a finite labeled tree whose root is labeled with Q (the conclusion), whose leaves
are labeled with premises from Γ (possibly with multiple occurrences), and such
that every interior node corresponds to a given set of proof rules (or inference rules).
In Chapter 1, proof rules were called proof templates. Certain simple deduction trees
are declared as obvious proofs, also called axioms. The process of managing the list
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of premises during a proof is a bit technical and can be achieved in various ways.
We will present a method due to Prawitz and another method due to Gentzen.

There are many kinds of proof systems: Hilbert-style systems, natural-deduction
systems, Gentzen sequents systems, and so on. We describe a so-called natural de-
duction system invented by G. Gentzen in the early 1930s (and thoroughly investi-
gated by D. Prawitz in the mid 1960s).

Fig. 11.1 David Hilbert, 1862–1943 (left and middle), Gerhard Gentzen, 1909–1945 (middle
right), and Dag Prawitz, 1936– (right)

The major advantage of this system is that it captures quite nicely the “natural”
rules of reasoning that one uses when proving mathematical statements. This does
not mean that it is easy to find proofs in such a system or that this system is indeed
very intuitive. We begin with the inference rules for implication and first consider
the following question.

How do we proceed to prove an implication, A⇒ B? The proof rule corresponds
to Proof Template 1.2 (Implication–Intro) and the reader may want to first review
the examples discussed in Section 1.3. The rule, called ⇒-intro, is: assume that A
has already been proven and then prove B, making as many uses of A as needed.

An important point is that a proof should not depend on any “open” assumptions
(premises), and to address this problem we introduce a mechanism of “discharging”
or “closing” premises, as we discussed in Section 1.3.

What this means is that certain rules of our logic are required to discard (the usual
terminology is “discharge”) certain occurrences of premises so that the resulting
proof does not depend on these premises.

Technically, there are various ways of implementing the discharging mechanism
but they all involve some form of tagging (with a “new” variable). For example, the
rule formalizing the process that we have just described to prove an implication,
A⇒ B, known as⇒-introduction, uses a tagging mechanism described precisely in
Definition 11.1.

Now the rule that we have just described is not sufficient to prove certain propo-
sitions that should be considered provable under the “standard” intuitive meaning
of implication. For example, after a moment of thought, I think most people would
want the proposition P⇒ ((P⇒ Q)⇒ Q) to be provable. If we follow the proce-
dure that we have advocated, we assume both P and P⇒ Q and we try to prove Q.
For this, we need a new rule, namely:
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If P and P⇒ Q are both provable, then Q is provable.
The above rule is known as the⇒-elimination rule (or modus ponens) and it is

formalized in tree-form in Definition 11.1. It corresponds to Proof Template 1.3.
We now make the above rules precise and for this, we represent proofs and de-

ductions as certain kinds of trees and view the logical rules (inference rules) as tree-
building rules. In the definition below, the expression Γ ,P stands for the multiset
obtained by adding one more occurrence of P to Γ . More precisely, the expression

Γ ,P is an abbreviation for the multiset Γ ,

k︷ ︸︸ ︷
P, . . . ,P, with k≥ 1. So P may already be-

long to Γ . Similarly, if Γ and ∆ are two multisets of propositions, then Γ ,∆ denotes
the union of Γ and ∆ as a multiset, which means that if P occurs k1 times in Γ and
P occurs k2 times in ∆ , then P occurs k1 + k2 times in Γ ,∆ (k1,k2 ∈ N).

A picture such as

∆

D

P

represents a deduction tree D whose root is labeled with P and whose leaves are
labeled with propositions from the multiset ∆ (a set possibly with multiple occur-
rences of its members). Some of the propositions in ∆ may be tagged by variables.
The list of untagged propositions in ∆ is the list of premises of the deduction tree.
We often use an abbreviated version of the above notation where we omit the de-
duction D , and simply write

∆

P.

For example, in the deduction tree below (where all rules that implication elimi-
nations rules),

P⇒ (R⇒ S) P

R⇒ S

Q⇒ R

P⇒ Q P

Q

R

S

no leaf is tagged, so the premises form the multiset

∆ = {P⇒ (R⇒ S),P,Q⇒ R,P⇒ Q,P},

with two occurrences of P, and the conclusion is S.
As we saw in our earlier example, certain inferences rules have the effect that

some of the original premises may be discarded; the traditional jargon is that some
premises may be discharged (or closed). This is the case for the inference rule whose
conclusion is an implication. When one or several occurrences of some proposition
P are discharged by an inference rule, these occurrences (which label some leaves)
are tagged with some new variable not already appearing in the deduction tree. If x
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is a new tag, the tagged occurrences of P are denoted Px and we indicate the fact that
premises were discharged by that inference by writing x immediately to the right of
the inference bar. For example,

Px,Q

Q
x

P⇒ Q

is a deduction tree in which the premise P is discharged by the inference rule. This
deduction tree only has Q as a premise, inasmuch as P is discharged.

What is the meaning of the horizontal bars? Actually, nothing really. Here, we
are victims of an old habit in logic. Observe that there is always a single proposition
immediately under a bar but there may be several propositions immediately above a
bar. The intended meaning of the bar is that the proposition below it is obtained as
the result of applying an inference rule to the propositions above it. For example, in

Q⇒ R Q

R

the proposition R is the result of applying the ⇒-elimination rule (see Definition
11.1 below) to the two premises Q⇒ R and Q. Thus, the use of the bar is just a
convention used by logicians going back at least to the 1900s. Removing the bar
everywhere would not change anything in our trees, except perhaps reduce their
readability. Most logic books draw proof trees using bars to indicate inferences.
Therefore, we also use bars in depicting our proof trees.

Because propositions do not arise from the vacuum but instead are built up from
a set of atomic propositions using logical connectives (here,⇒), we assume the ex-
istence of an “official set of atomic propositions,” or set of propositional symbols,
PS = {P1,P2,P3, . . .}. So, for example, P1 ⇒ P2 and P1 ⇒ (P2 ⇒ P1) are propo-
sitions. Typically, we use upper-case letters such as P,Q,R,S,A,B,C, and so on, to
denote arbitrary propositions formed using atoms from PS.

Definition 11.1. The axioms, inference rules, and deduction trees for implicational
logic are defined as follows.

Axioms.
(i) Every one-node tree labeled with a single proposition P is a deduction tree for

P with set of premises {P}.
(ii) The tree

Γ ,P

P

is a deduction tree for the proposition P, with multiset set of premises Γ ,P.

The above is a concise way of denoting a two-node tree with its leaf labeled with
the multiset consisting of the proposition P and the propositions in Γ , each of these
propositions (including P) having possibly multiple occurrences but at least one,
and whose root is labeled with P. A more explicit form is
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k1︷ ︸︸ ︷
P1, · · · ,P1, · · · ,

ki︷ ︸︸ ︷
Pi, · · · ,Pi, · · · ,

kn︷ ︸︸ ︷
Pn, · · · ,Pn ,

Pi

where k1, . . . ,kn ≥ 1 and n≥ 1. This axiom says that we always have a deduction of
Pi from any set of premises including Pi. They correspond to the Proof Template 1.1
(Trivial Deduction).

The⇒-introduction rule.
If D is a deduction tree for Q from the premises in Γ and one or more occurrences

of the proposition P, then

Γ ,Px

D

Q
x

P⇒ Q

is a deduction tree for P⇒ Q from Γ .
This proof rule is a formalization of Proof Template 1.2 (Implication–Intro). This

rule is described more accurately as

Γ ,

k︷ ︸︸ ︷
Px, . . . ,Px

D

Q
x

P⇒ Q

Note that this inference rule has the additional effect of discharging a nonempty
multiset of k ≥ 1 occurrences of the premise P, which label distinct leaves of the
deduction D . These occurrences are tagged with a new variable x, and the tag x is
also placed immediately to the right of the inference bar. This is a reminder that the
deduction tree whose conclusion is P⇒ Q no longer has the k occurrences of P
labeled with x as premises. The new multiset of premises of this deduction tree for
P⇒ Q is Γ , which may contain occurrences of P.

The⇒-elimination rule.
If D1 is a deduction tree for P⇒ Q from the premises Γ and D2 is a deduction

for P from the premises ∆ , then

Γ

D1

P⇒ Q

∆

D2

P

Q

is a deduction tree for Q from the premises in the multiset Γ ,∆ . This rule is also
known as modus ponens. This proof rule is a formalization of Proof Template 1.3
(Implication–Elim).
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In the above axioms and rules, Γ or ∆ may be empty; P,Q denote arbitrary propo-
sitions built up from the atoms in PS; and D ,D1, and D2 denote deductions, possibly
a one-node tree.

Definition 11.2. A deduction tree is either a one-node tree labeled with a single
proposition or a tree constructed using the above axioms and rules. A proof tree is
a deduction tree such that all its premises are discharged. The above proof system
is denoted N ⇒

m (here, the subscript m stands for minimal, referring to the fact that
this a bare-bones logical system).

Observe that a proof tree has at least two nodes. A proof tree Π for a proposition
P may be denoted

Π

P

with an empty set of premises (we don’t display /0 on top of Π ). We tend to denote
deductions by the letter D and proof trees by the letter Π , possibly subscripted.

We emphasize that the⇒-introduction rule says that in order to prove an impli-
cation P⇒ Q from a set of premises Γ , we assume that P has already been proven,
add P to the premises in Γ , and then prove Q from Γ and P. Once this is done, the
premise P is deleted.

This rule formalizes the kind of reasoning that we all perform whenever we prove
an implication statement. In that sense, it is a natural and familiar rule, except that
we perhaps never stopped to think about what we are really doing. However, the
business about discharging the premise P when we are through with our argument
is a bit puzzling. Most people probably never carry out this “discharge step” con-
sciously, but such a process does take place implicitly.

Remarks:

1. Only the leaves of a deduction tree may be discharged. Interior nodes, including
the root, are never discharged.

2. Once a set of leaves labeled with some premise P marked with the label x has
been discharged, none of these leaves can be discharged again. So, each label
(say x) can only be used once. This corresponds to the fact that some leaves of
our deduction trees get “killed off” (discharged).

3. A proof is a deduction tree whose leaves are all discharged (Γ is empty). This
corresponds to the philosophy that if a proposition has been proven, then the
validity of the proof should not depend on any assumptions that are still active.
We may think of a deduction tree as an unfinished proof tree.

4. When constructing a proof tree, we have to be careful not to include (acci-
dentally) extra premises that end up not being discharged. If this happens, we
probably made a mistake and the redundant premises should be deleted. On the
other hand, if we have a proof tree, we can always add extra premises to the
leaves and create a new proof tree from the previous one by discharging all the
new premises.
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5. Beware, when we deduce that an implication P⇒ Q is provable, we do not
prove that P and Q are provable; we only prove that if P is provable, then Q is
provable.

The ⇒-elimination rule formalizes the use of auxiliary lemmas, a mechanism
that we use all the time in making mathematical proofs. Think of P⇒Q as a lemma
that has already been established and belongs to some database of (useful) lemmas.
This lemma says if I can prove P then I can prove Q. Now, suppose that we manage
to give a proof of P. It follows from the⇒-elimination rule that Q is also provable.

Observe that in an introduction rule, the conclusion contains the logical connec-
tive associated with the rule, in this case, ⇒; this justifies the terminology “intro-
duction”. On the other hand, in an elimination rule, the logical connective associated
with the rule is gone (although it may still appear in Q). The other inference rules
for ∧, ∨, and the like, follow this pattern of introduction and elimination.

11.4 Examples of Proof Trees

(a) Here is a proof tree for P⇒ P.

Px

P
x

P⇒ P

So, P⇒ P is provable; this is the least we should expect from our proof system!
Note that

Px
x

P⇒ P

is also a valid proof tree for P⇒ P, because the one-node tree labeled with P is a
deduction tree.

(b) Here is a proof tree for (P⇒ Q)⇒ ((Q⇒ R)⇒ (P⇒ R)):

(Q⇒ R)y

(P⇒ Q)z Px

Q

R
x

P⇒ R
y

(Q⇒ R)⇒ (P⇒ R)
z

(P⇒ Q)⇒ ((Q⇒ R)⇒ (P⇒ R))

In order to better appreciate the difference between a deduction tree and a proof
tree, consider the following two examples.
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Example 11.1. The tree below is a deduction tree because two of its leaves are la-
beled with the premises P⇒Q and Q⇒R, that have not been discharged yet. So this
tree represents a deduction of P⇒ R from the set of premises Γ = {P⇒Q,Q⇒ R}
but it is not a proof tree because Γ 6= /0. However, observe that the original premise
P, labeled x, has been discharged.

Q⇒ R

P⇒ Q Px

Q

R
x

P⇒ R

Example 11.2. The next tree was obtained from the previous one by applying the
⇒-introduction rule which triggered the discharge of the premise Q⇒ R labeled y,
which is no longer active. However, the premise P⇒ Q is still active (has not been
discharged yet), so the tree below is a deduction tree of (Q⇒ R)⇒ (P⇒ R) from
the set of premises Γ = {P⇒ Q}. It is not yet a proof tree inasmuch as Γ 6= /0.

(Q⇒ R)y

P⇒ Q Px

Q

R
x

P⇒ R
y

(Q⇒ R)⇒ (P⇒ R)

Finally, one more application of the⇒-introduction rule discharged the premise
P⇒ Q, at last, yielding the proof tree in (b).

(c) This example illustrates the fact that different proof trees may arise from the
same set of premises {P,Q}. For example, here are proof trees for Q⇒ (P⇒ P)
and P⇒ (Q⇒ P):

Px,Qy

P
x

P⇒ P
y

Q⇒ (P⇒ P)

and

Px,Qy

P
y

Q⇒ P
x

P⇒ (Q⇒ P)

Similarly, there are six proof trees with a conclusion of the form
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A⇒ (B⇒ (C⇒ P))

begining with the deduction

Px,Qy,Rz

P

where A,B,C correspond to the six permutations of the premises P,Q,R.
Note that we would not have been able to construct the above proofs if Axiom

(ii),

Γ ,P
,

P

were not available. We need a mechanism to “stuff” more premises into the leaves of
our deduction trees in order to be able to discharge them later on. We may also view
Axiom (ii) as a weakening rule whose purpose is to weaken a set of assumptions.
Even though we are assuming all of the propositions in Γ and P, we only use the
assumption P. The necessity of allowing multisets of premises is illustrated by the
following proof of the proposition P⇒ (P⇒ (Q⇒ (Q⇒ (P⇒ P)))).

Pu,Pv,Py,Qw,Qx

P
y

P⇒ P
x

Q⇒ (P⇒ P)
w

Q⇒ (Q⇒ (P⇒ P))
v

P⇒ (Q⇒ (Q⇒ (P⇒ P)))
u

P⇒ (P⇒ (Q⇒ (Q⇒ (P⇒ P))))

(d) In the next example which shows a proof of(
A⇒ (B⇒C)

)
⇒
(
(A⇒ B)⇒ (A⇒C)

)
,

the two occurrences of A labeled x are discharged simultaneously.

(A⇒ (B⇒C))z Ax

B⇒C

(A⇒ B)y Ax

B

C
x

A⇒C
y

(A⇒ B)⇒ (A⇒C)
z(

A⇒ (B⇒C)
)
⇒
(
(A⇒ B)⇒ (A⇒C)

)
(e) In contrast to Example (d), in the proof tree below with conclusion
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A⇒
((

A⇒ (B⇒C)
)
⇒
(
(A⇒ B)⇒ (A⇒C)

))
,

the two occurrences of A are discharged separately. To this effect, they are labeled
differently.

(A⇒ (B⇒C))z Ax

B⇒C

(A⇒ B)y At

B

C
x

A⇒C
y

(A⇒ B)⇒ (A⇒C)
z(

A⇒ (B⇒C)
)
⇒
(
(A⇒ B)⇒ (A⇒C)

)
t

A⇒
((

A⇒ (B⇒C)
)
⇒
(
(A⇒ B)⇒ (A⇒C)

))
How do we find these proof trees? Well, we could try to enumerate all possible

proof trees systematically and see if a proof of the desired conclusion turns up.
Obviously, this is a very inefficient procedure and moreover, how do we know that
all possible proof trees will be generated and how do we know that such a method
will terminate after a finite number of steps (what if the proposition proposed as a
conclusion of a proof is not provable)?

Finding an algorithm to decide whether a proposition is provable is a very diffi-
cult problem and for sets of propositions with enough “expressive power” (such as
propositions involving first-order quantifiers), it can be shown that there is no pro-
cedure that will give an answer in all cases and terminate in a finite number of steps
for all possible input propositions. We come back to this point in Section 11.13.
However, for the system N ⇒

m , such a procedure exists but it is not easy to prove
that it terminates in all cases and in fact, it can take a very long time.

What we did, and we strongly advise our readers to try it when they attempt to
construct proof trees, is to construct the proof tree from the bottom up, starting from
the proposition labeling the root, rather than top-down, that is, starting from the
leaves. During this process, whenever we are trying to prove a proposition P⇒ Q,
we use the ⇒-introduction rule backward, that is, we add P to the set of active
premises and we try to prove Q from this new set of premises. At some point, we
get stuck with an atomic proposition, say R. Call the resulting deduction Dbu; note
that R is the only active (undischarged) premise of Dbu and the node labeled R
immediately below it plays a special role; we call it the special node of Dbu.

Here is an illustration of this method for Example (d). At the end of the bottom-
up process, we get the deduction tree Dbu.
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(A⇒ (B⇒C))z (A⇒ B)y Ax C

C
x

A⇒C
y

(A⇒ B)⇒ (A⇒C)
z(

A⇒ (B⇒C)
)
⇒
(
(A⇒ B)⇒ (A⇒C)

)
In the above deduction tree the proposition R = C is the only active (undis-

charged) premise. To turn the above deduction tree into a proof tree we need to
construct a deduction of C from the premises other than C. This is a more creative
step which can be quite difficult. The trick is now to switch strategies and start
building a proof tree top-down, starting from the leaves, using the ⇒-elimination
rule. If everything works out well, we get a deduction with root R, say Dtd , and then
we glue this deduction Dtd to the deduction Dbu in such a way that the root of Dtd
is identified with the special node of Dbu labeled R.

We also have to make sure that all the discharged premises are linked to the
correct instance of the⇒-introduction rule that caused them to be discharged. One
of the difficulties is that during the bottom-up process, we don’t know how many
copies of a premise need to be discharged in a single step. We only find out how
many copies of a premise need to be discharged during the top-down process.

Going back to our example, at the end of the top-down process, we get the de-
duction tree Dtd .

A⇒ (B⇒C) A

B⇒C
A⇒ B A

B

C

Finally, after gluing Dtd on top of Dbu (which has the correct number of premises
to be discharged), we get our proof tree.

(A⇒ (B⇒C))z Ax

B⇒C

(A⇒ B)y Ax

B

C
x

A⇒C
y

(A⇒ B)⇒ (A⇒C)
z(

A⇒ (B⇒C)
)
⇒
(
(A⇒ B)⇒ (A⇒C)

)
(f) The following example shows that proofs may be redundant. The proposition

P⇒ ((P⇒ Q)⇒ Q) has the following proof.
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(P⇒ Q)x Py

Q
x

(P⇒ Q)⇒ Q
y

P⇒ ((P⇒ Q)⇒ Q)

Now say P is the proposition R⇒ R, which has the proof

Rz

R
z

R⇒ R

Using⇒-elimination, we obtain a proof of ((R⇒ R)⇒ Q)⇒ Q from the proof
of (R⇒ R)⇒ (((R⇒ R)⇒ Q)⇒ Q) and the proof of R⇒ R shown above.

((R⇒ R)⇒ Q)x (R⇒ R)y

Q
x

((R⇒ R)⇒ Q)⇒ Q
y

(R⇒ R)⇒ (((R⇒ R)⇒ Q)⇒ Q)

Rz

R
z

R⇒ R

((R⇒ R)⇒ Q)⇒ Q

Note that the above proof is redundant. The deduction tree shown in blue has
the proposition ((R⇒ R)⇒ Q)⇒ Q as conclusion but the proposition R⇒ R is
introduced in the step labeled y and immediately eliminated in the next step. A more
direct proof can be obtained as follows. Undo the last⇒-introduction (involving the
the proposition R⇒ R and the tag y) in the proof of (R⇒ R)⇒ (((R⇒ R)⇒Q)⇒
Q) obtaining the deduction tree shown in blue above

((R⇒ R)⇒ Q)x R⇒ R

Q
x

((R⇒ R)⇒ Q)⇒ Q

and then glue the proof of R⇒ R on top of the leaf R⇒ R, obtaining the desired
proof of ((R⇒ R)⇒ Q)⇒ Q.

((R⇒ R)⇒ Q)x

Rz

R
z

R⇒ R

Q
x

((R⇒ R)⇒ Q)⇒ Q

In general, one has to exercise care with the label variables. It may be necessary to
rename some of these variables to avoid clashes. What we have above is an example
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of proof substitution also called proof normalization. We come back to this topic in
Section 11.13.

11.5 A Gentzen-Style System for Natural Deduction

The process of discharging premises when constructing a deduction is admittedly a
bit confusing. Part of the problem is that a deduction tree really represents the last
of a sequence of stages (corresponding to the application of inference rules) during
which the current set of “active” premises, that is, those premises that have not yet
been discharged (closed, cancelled) evolves (in fact, shrinks). Some mechanism is
needed to keep track of which premises are no longer active and this is what this
business of labeling premises with variables achieves. Historically, this is the first
mechanism that was invented. However, Gentzen (in the 1930s) came up with an
alternative solution that is mathematically easier to handle. Moreover, it turns out
that this notation is also better suited to computer implementations, if one wishes to
implement an automated theorem prover.

The point is to keep a record of all undischarged assumptions at every stage of
the deduction. Thus, a deduction is now a tree whose nodes are labeled with pairs
of the form 〈Γ ,P〉, where P is a proposition, and Γ is a record of all undischarged
assumptions at the stage of the deduction associated with this node.

Instead of using the notation 〈Γ ,P〉, which is a bit cumbersome, Gentzen used
expressions of the form Γ → P, called sequents

It should be noted that the symbol→ is used as a separator between the left-hand
side Γ , called the antecedent, and the right-hand side P, called the conclusion (or
succedent) and any other symbol could be used. Of course→ is reminiscent of im-
plication but we should not identify→ and⇒. Still, it turns out that a sequent Γ → P
is provable if and only if (P1∧·· ·∧Pm)⇒ P is provable, where Γ = (P1, . . . ,Pm).

During the construction of a deduction tree, it is necessary to discharge packets
of assumptions consisting of one or more occurrences of the same proposition. To
this effect, it is convenient to tag packets of assumptions with labels, in order to
discharge the propositions in these packets in a single step. We use variables for the
labels, and a packet labeled with x consisting of occurrences of the proposition P is
written as x : P.

Definition 11.3. A sequent is an expression Γ → P, where Γ is any finite set of the
form {x1 : P1, . . . ,xm : Pm} called a context, where the xi are pairwise distinct (but
the Pi need not be distinct). Given Γ = {x1 : P1, . . . ,xm : Pm}, the notation Γ ,x : P is
only well defined when x 6= xi for all i, 1 ≤ i ≤ m, in which case it denotes the set
{x1 : P1, . . . ,xm : Pm,x : P}. Given two contexts Γ and ∆ , the context Γ ∪∆ is the
union of the sets of pairs (xi : Pi) in Γ and the set of pairs (yk : Q j) in ∆ , provided
that if x : P ∈ Γ and x : Q ∈ ∆ for the same variable x, then P = Q. In this case we
say that Γ and ∆ are consistent. So if x : P occurs both in Γ and ∆ , then x : P also
occurs in Γ ∪∆ (once).
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One can think of a context Γ = {x1 : P1, . . . ,xm : Pm} as a set of type declarations
for the variables x1, . . . ,xm (xi has type Pi). It should be noted that in the Prawitz-style
formalism for proof trees, premises are treated as multisets, but in the Gentzen-style
formalism, premises are sets of tagged pairs.

Using sequents, the axioms and rules of Definition 11.4 are now expressed as
follows.

Definition 11.4. The axioms and inference rules of the system N G⇒m (implica-
tional logic, Gentzen-sequent style (the G in N G stands for Gentzen)) are listed
below.

Γ ,x : P→ P (Axioms)

Γ ,x : P→ Q
Γ → P⇒ Q

(⇒-intro)

Γ → P⇒ Q ∆ → P
Γ ∪∆ → Q

(⇒-elim)

In an axiom or the rule (⇒-intro), it is assumed that x : P /∈ Γ . In an application
of the rule (⇒-intro), in the lower sequent, the proposition P labeled x is deleted
from the list of premises occurring on the left-hand side of the arrow in the upper
sequent. We say that the proposition P that appears as a hypothesis of the deduction
is discharged (or closed). In the rule (⇒-elim), it is assumed that Γ and ∆ are
consistent contexts. A deduction tree is either a one-node tree labeled with an axiom
or a tree constructed using the above inference rules. A proof tree is a deduction tree
whose conclusion is a sequent with an empty set of premises (a sequent of the form
→ P).

It is important to note that the ability to label packets consisting of occurrences
of the same proposition with different labels is essential in order to be able to have
control over which groups of packets of assumptions are discharged simultaneously.
Equivalently, we could avoid tagging packets of assumptions with variables if we
assume that in a sequent Γ →C, the expression Γ is a multiset of propositions.

Let us display the proof tree for the second proof tree in Example (c) in our new
Gentzen-sequent system. The orginal proof tree is

Px,Qy

P
y

Q⇒ P
x

P⇒ (Q⇒ P)

and the corresponding proof tree in our new system is

x : P,y : Q→ P

x : P→ Q⇒ P

→ P⇒ (Q⇒ P)
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Below we show a proof of the first proposition of Example (d) given above in
our new system.

z : A⇒ (B⇒C)→ A⇒ (B⇒C) x : A→ A

z : A⇒ (B⇒C),x : A→ B⇒C

y : A⇒ B→ A⇒ B x : A→ A

y : A⇒ B,x : A→ B

z : A⇒ (B⇒C),y : A⇒ B,x : A→C

z : A⇒ (B⇒C),y : A⇒ B→ A⇒C

z : A⇒ (B⇒C)→ (A⇒ B)⇒ (A⇒C)

→
(
A⇒ (B⇒C)

)
⇒
(
(A⇒ B)⇒ (A⇒C)

)
It is not hard to design an algorithm that converts a deduction tree (or a proof

tree) in the system N ⇒
m into a deduction tree (or a proof tree) in the system N G⇒m ,

and vice-versa. In both cases the underlying tree is exactly the same and there is a
bijection between the sets of undischarged premises in both representations.

After experimenting with the construction of proofs, one gets the feeling that
every proof can be simplified to a “unique minimal” proof, if we define “minimal”
in a suitable sense, namely, that a minimal proof never contains an elimination rule
immediately following an introduction rule (for more on this, see Section 11.13).
Then it turns out that to define the notion of uniqueness of proofs, the second version
is preferable. However, it is important to realize that in general, a proposition may
possess distinct minimal proofs.

In principle, it does not matter which of the two systems N ⇒
m or N G⇒m we use to

construct deductions; it is basically a matter of taste. The Prawitz-style system N ⇒
m

produces proofs that are closer to the informal proofs that humans construct. One
the other hand, the Gentzen-style system N G⇒m is better suited for implementing
theorem provers. My experience is that I make fewer mistakes with the Gentzen-
sequent style system N G⇒m .

We now describe the inference rules dealing with the connectives ∧, ∨ and ⊥.

11.6 Adding ∧, ∨, ⊥; The Proof Systems N ⇒,∧,∨,⊥
c and

N G⇒,∧,∨,⊥
c

In this section we describe the proof rules for all the connectives of propositional
logic both in Prawitz-style and in Gentzen-style. As we said earlier, the rules of the
Prawitz-style system are closer to the rules that human use informally, and the rules
of the Gentzen-style system are more convenient for computer implementations of
theorem provers.

The rules involving ⊥ are not as intuitively justifed as the other rules. In fact,
in the early 1900s, some mathematicians especially L. Brouwer (1881–1966), ques-
tioned the validity of the proof-by-contradiction rule, among other principles. This
led to the idea that it may be useful to consider proof systems of different strength.
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The weakest (and considered the safest) system is called minimal logic. This system
rules out the ⊥-elimination rule (the ability to deduce any proposition once a con-
tradiction has been established) and the proof–by–contradiction rule. Intuitionistic
logic rules out the proof–by–contradiction rule, and classical logic allows all the
rules. Most people use classical logic, but intuitionistic logic is an interesting alter-
native because it is more constructive. We will elaborate on this point later. Minimal
logic is just too weak.

Recall that ¬P is an abbreviation for P⇒⊥.

Definition 11.5. The axioms, inference rules, and deduction trees for (proposi-
tional) classical logic are defined as follows. In the axioms and rules below, Γ ,∆ ,
or Λ may be empty; P,Q,R denote arbitrary propositions built up from the atoms
in PS; D , D1, D2 denote deductions, possibly a one-node tree; and all the premises
labeled x or y are discharged.

Axioms:
(i) Every one-node tree labeled with a single proposition P is a deduction tree for

P with set of premises {P}.
(ii) The tree

Γ ,P

P

is a deduction tree for P with multiset of premises Γ ,P.
The⇒-introduction rule:
If D is a deduction of Q from the premises in Γ and one or more occurrences of

the proposition P, then

Γ ,Px

D

Q
x

P⇒ Q

is a deduction tree for P⇒ Q from Γ . As in Definition 11.1, recall that Γ ,P is

an abbreviation for the multiset Γ ,

k︷ ︸︸ ︷
P, . . . ,P, with k ≥ 1. This inference rule has the

additional effect of discharging a nonempty multiset of occurrences of the premise
P (which label leaves of the deduction D). These occurrences are tagged with a new
variable x, and the tag x is also placed immediately to the right of the inference bar.
This proof rule corresponds to Proof Template 1.2 (Implication–Intro).

The⇒-elimination rule (or modus ponens):
If D1 is a deduction tree for P⇒ Q from the premises Γ , and D2 is a deduction

for P from the premises ∆ , then

Γ

D1

P⇒ Q

∆

D2

P

Q
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is a deduction tree for Q from the premises in the multiset Γ ,∆ . This proof rule
corresponds to Proof Template 1.3 (Implication–Elim).

The ∧-introduction rule:
If D1 is a deduction tree for P from the premises Γ , and D2 is a deduction for Q

from the premises ∆ , then

Γ

D1

P

∆

D2

Q

P∧Q

is a deduction tree for P∧Q from the premises in the multiset Γ ,∆ . This proof rule
corresponds to Proof Template 1.8 (And–Intro).

The ∧-elimination rule:
If D is a deduction tree for P∧Q from the premises Γ , then

Γ

D

P∧Q

P

Γ

D

P∧Q

Q

are deduction trees for P and Q from the premises Γ . This proof rule corresponds to
Proof Template 1.9 (And–elim).

The ∨-introduction rule:
If D is a deduction tree for P or for Q from the premises Γ , then

Γ

D

P

P∨Q

Γ

D

Q

P∨Q

are deduction trees for P∨Q from the premises in Γ . This proof rule corresponds to
Proof Template 1.10 (Or–Intro).

The ∨-elimination rule:
If D1 is a deduction tree for P∨Q from the premises Γ , D2 is a deduction for R

from the premises in the multiset ∆ and one or more occurrences of P, and D3 is a
deduction for R from the premises in the multiset Λ and one or more occurrences of
Q, then

Γ

D1

P∨Q

∆ ,Px

D2

R

Λ ,Qy

D3

R
x,y

R

is a deduction tree for R from the premises in the multiset Γ ,∆ ,Λ . A nonempty set
of premises P in D2 labeled x and a nonempty set of premises Q in D3 labeled y are
discharged. This proof rule corresponds to Proof Template 1.11 (Or–Elim).
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The ⊥-elimination rule:
If D is a deduction tree for ⊥ from the premises Γ , then

Γ

D

⊥
P

is a deduction tree for P from the premises Γ , for any proposition P. This proof rule
corresponds to Proof Template 1.6 (Perp–Elim).

The proof–by–contradiction rule (also known as reductio ad absurdum rule,
for short RAA):

If D is a deduction tree for ⊥ from the premises in the multiset Γ and one or
more occurrences of ¬P, then

Γ ,¬Px

D

⊥
x

P

is a deduction tree for P from the premises Γ . A nonempty set of premises ¬P
labeled x are discharged. This proof rule corresponds to Proof Template 1.7 (Proof–
By–Contradiction Principle).

Because ¬P is an abbreviation for P⇒⊥, the ¬-introduction rule is a special case
of the⇒-introduction rule (with Q =⊥). However, it is worth stating it explicitly.

The ¬-introduction rule:
If D is a deduction tree for ⊥ from the premises in the multiset Γ and one or

more occurrences of P, then

Γ ,Px

D

⊥
x

¬P

is a deduction tree for ¬P from the premises Γ . A nonempty set of premises
P labeled x are discharged. This proof rule corresponds to Proof Template 1.4
(Negation–Intro).

The above rule can be viewed as a proof–by–contradiction principle applied to
negated propositions.

Similarly, the ¬-elimination rule is a special case of⇒-elimination applied to
¬P (= P⇒⊥) and P.

The ¬-elimination rule:
If D1 is a deduction tree for ¬P from the premises Γ , and D2 is a deduction for

P from the premises ∆ , then
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Γ

D1

¬P

∆

D2

P

⊥
is a deduction tree for ⊥ from the premises in the multiset Γ ,∆ . This proof rule
corresponds to Proof Template 1.5 (Negation–Elim).

A deduction tree is either a one-node tree labeled with a single proposition or
a tree constructed using the above axioms and inference rules. A proof tree is a
deduction tree such that all its premises are discharged. The above proof system is
denoted N ⇒,∧,∨,⊥

c (here, the subscript c stands for classical).

Definition 11.6. The system obtained by removing the proof–by–contradiction (RAA)
rule is called (propositional) intuitionistic logic and is denoted N ⇒,∧,∨,⊥

i . The sys-
tem obtained by deleting both the⊥-elimination rule and the proof–by–contradiction
rule is called (propositional) minimal logic and is denoted N ⇒,∧,∨,⊥

m

The version of N ⇒,∧,∨,⊥
c in terms of Gentzen sequents is the following.

Definition 11.7. The axioms and inference rules of the system N G⇒,∧,∨,⊥
c (of

propositional classical logic, Gentzen-sequent style) are listed below.

Γ ,x : P→ P (Axioms)

Γ ,x : P→ Q
Γ → P⇒ Q

(⇒-intro)

Γ → P⇒ Q ∆ → P
Γ ∪∆ → Q

(⇒-elim)

Γ → P ∆ → Q
Γ ∪∆ → P∧Q

(∧-intro)

Γ → P∧Q
Γ → P

(∧-elim)
Γ → P∧Q

Γ → Q
(∧-elim)

Γ → P
Γ → P∨Q

(∨-intro)
Γ → Q

Γ → P∨Q
(∨-intro)

Γ → P∨Q ∆ ,x : P→ R Λ ,y : Q→ R
Γ ∪∆ ∪Λ → R

(∨-elim)

Γ →⊥
Γ → P

(⊥-elim)

Γ ,x : ¬P→⊥
Γ → P

(by-contra)
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Γ ,x : P→⊥
Γ →¬P

(¬-introduction)

Γ →¬P ∆ → P
Γ ∪∆ →⊥ (¬-elimination)

The following restrictions apply. In the axioms and the rule (⇒-intro), x : P /∈ Γ ;
in the rule (∨-elim), x : P /∈ ∆ and y : Q /∈Λ ; in the rule (by-contra), x : ¬P /∈Γ ; and
in the rule (¬-introduction), x : P /∈ Γ .

A deduction tree is either a one-node tree labeled with an axiom or a tree con-
structed using the above inference rules. A proof tree is a deduction tree whose
conclusion is a sequent with an empty set of premises (a sequent of the form /0→ P).

The rule (⊥-elim) is trivial (does nothing) when P =⊥. Therefore, from now,
on we assume that P 6=⊥. Propositional minimal logic, denoted N G⇒,∧,∨,⊥

m , is
obtained by dropping the (⊥-elim) and (by-contra) rules. Propositional intuitionistic
logic, denoted N G⇒,∧,∨,⊥

i , is obtained by dropping the (by-contra) rule.

Definition 11.8. When we say that a proposition P is provable from Γ , we mean that
we can construct a proof tree whose conclusion is P and whose set of premises is Γ ,
in one of the systems N ⇒,∧,∨,⊥

c or N G⇒,∧,∨,⊥
c . Therefore, when we use the word

“provable” unqualified, we mean provable in classical logic. If P is provable from
Γ in one of the intuitionistic systems N ⇒,∧,∨,⊥

i or N G⇒,∧,∨,⊥
i , then we say intu-

itionistically provable (and similarly, if P is provable from Γ in one of the systems
N ⇒,∧,∨,⊥

m or N G⇒,∧,∨,⊥
m , then we say provable in minimal logic).

When P is provable from Γ , most people write Γ ` P, or ` Γ → P, sometimes
with the name of the corresponding proof system tagged as a subscript on the sign
` if necessary to avoid ambiguities. When Γ is empty, we just say P is provable
(provable in intuitionistic logic, and so on) and write ` P.

We treat logical equivalence as a derived connective; that is, we view P ≡ Q as
an abbreviation for (P⇒Q)∧ (Q⇒ P). In view of the inference rules for ∧, we see
that to prove a logical equivalence P ≡ Q, we just have to prove both implications
P⇒ Q and Q⇒ P.

Since the only difference between the proof systems N ⇒,∧,∨,⊥
m and N G⇒,∧,∨,⊥

m
is the way in which they perform the bookkeeping of premises, it is intuitively
clear that they are equivalent. However, they produce different kinds of proof so
to be rigorous we must check that the proof systems N ⇒,∧,∨,⊥

m and N G⇒,∧,∨,⊥
m ,

as well as the systems N ⇒,∧,∨,⊥
i and N G⇒,∧,∨,⊥

i and the systems N ⇒,∧,∨,⊥
c and

N G⇒,∧,∨,⊥
c , are equivalent. This is not hard to show but is a bit tedious; see Prob-

lem 11.14.
In view of the ¬-elimination rule, we may be tempted to interpret the provability

of a negation ¬P as “P is not provable.” Indeed, if ¬P and P were both provable,
then⊥would be provable. So, P should not be provable if ¬P is. However, if P is not
provable, then ¬P is not provable in general. There are plenty of propositions such
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that neither P nor ¬P is provable (for instance, P, with P an atomic proposition).
Thus, the fact that P is not provable is not equivalent to the provability of ¬P and
we should not interpret ¬P as “P is not provable.”

Let us now make some (much-needed) comments about the above inference
rules. There is no need to repeat our comments regarding the⇒-rules.

(1) The ∨-introduction rule says that if P (or Q) has been proved from Γ , then P∨Q
is also provable from Γ . Again, this makes sense intuitively as P∨Q is “weaker”
than P and Q.

(2) The ∨-elimination rule formalizes the proof–by–cases method. It is a more sub-
tle rule. The idea is that if we know that in the case where P is already as-
sumed to be provable and similarly in the case where Q is already assumed to
be provable that we can prove R (also using premises in Γ ), then if P∨Q is
also provable from Γ , as we have “covered both cases,” it should be possible to
prove R from Γ only (i.e., the premises P and Q are discarded). For example,
if remain1(n) is the proposition that asserts n is a natural number of the form
4k+1 and remain3(n) is the proposition that asserts n is a natural number of the
form 4k+3 (for some natural number k), then we can prove the implication

(remain1(n)∨ remain3(n))⇒ odd(n),

where odd(n) asserts that n is odd, namely, that n is of the form 2h+1 for some
h.
To prove the above implication we first assume the premise, remain1(n) ∨
remain3(n). Next we assume each of the alternatives in this proposition. When
we assume remain1(n), we have n = 4k+1 = 2(2k)+1 for some k, so n is odd.
When we assume remain3(n), we have n = 4k+ 3 = 2(2k+ 1)+ 1, so again,
n is odd. By ∨-elimination, we conclude that odd(n) follows from the premise
remain1(n)∨ remain3(n), and by⇒-introduction, we obtain a proof of our im-
plication.

(3) The ⊥-elimination rule formalizes the principle that once a false statement has
been established, then anything should be provable.

(4) The¬-introduction rule is a proof–by–contradiction principle applied to negated
propositions. In order to prove ¬P, we assume P and we derive a contradiction
(⊥). It is a more restrictive principle than the classical proof–by–contradiction
rule (RAA). Indeed, if the proposition P to be proven is not a negation (P is not
of the form ¬Q), then the ¬-introduction rule cannot be applied. On the other
hand, the classical proof-by-contradiction rule can be applied but we have to
assume ¬P as a premise. For further comments on the difference between the
¬-introduction rule and the classical proof–by–contradiction rule, see Section
11.8.

(5) The proof–by–contradiction rule formalizes the method of proof by contradic-
tion. That is, in order to prove that P can be deduced from some premises Γ ,
one may assume the negation ¬P of P (intuitively, assume that P is false) and
then derive a contradiction from Γ and ¬P (i.e., derive falsity). Then P actually
follows from Γ without using ¬P as a premise, that is, ¬P is discharged. For
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example, let us prove by contradiction that if n2 is odd, then n itself must be
odd, where n is a natural number.
According to the proof–by–contradiction rule, let us assume that n is not odd,
which means that n is even. (Actually, in this step we are using a property of
the natural numbers that is proven by induction but let’s not worry about that
right now. A proof is given in Section 11.19. ) But to say that n is even means
that n = 2k for some k and then n2 = 4k2 = 2(2k2), so n2 is even, contradicting
the assumption that n2 is odd. By the proof–by–contradiction rule, we conclude
that n must be odd.

Remark: If the proposition P to be proven is of the form ¬Q, then if we use the
proof-by-contradiction rule, we have to assume the premise ¬¬Q and then derive a
contradiction. Because we are using classical logic, we often make implicit use of
the fact that ¬¬Q is equivalent to Q (see Proposition 11.2) and instead of assuming
¬¬Q as a premise, we assume Q as a premise. But then, observe that we are really
using ¬-introduction.

In summary, when trying to prove a proposition P by contradiction, proceed as
follows.

(1) If P is a negated formula (P is of the form ¬Q), then use the ¬-introduction rule;
that is, assume Q as a premise and derive a contradiction.

(2) If P is not a negated formula, then use the the proof-by-contradiction rule; that
is, assume ¬P as a premise and derive a contradiction.

11.7 Constructivism Versus Classical Logic

Most people, I believe, will be comfortable with the rules of minimal logic and
will agree that they constitute a “reasonable” formalization of the rules of reasoning
involving ⇒, ∧, and ∨. Indeed, these rules seem to express the intuitive meaning
of the connectives ⇒, ∧, and ∨. However, some may question the two rules ⊥-
elimination and proof-by-contradiction. Indeed, their meaning is not as clear and,
certainly, the proof-by-contradiction rule introduces a form of indirect reasoning
that is somewhat worrisome.

The problem has to do with the meaning of disjunction and negation and more
generally, with the notion of constructivity in mathematics. In fact, in the early
1900s, some mathematicians, especially L. Brouwer (1881–1966), questioned the
validity of the proof-by-contradiction rule, among other principles.

Two specific cases illustrate the problem, namely, the propositions

P∨¬P and ¬¬P⇒ P.

As we show shortly, the above propositions are both provable in classical logic; see
Proposition 11.1 and Proposition 11.2.
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Fig. 11.2 L. E. J. Brouwer, 1881–1966

Now Brouwer and some mathematicians belonging to his school of thought (the
so-called “intuitionists” or “constructivists”) advocate that in order to prove a dis-
junction P∨Q (from some premises Γ ) one has to either exhibit a proof of P or a
proof or Q (from Γ ). However, it can be shown that this fails for P∨¬P. The fact
that P∨¬P is provable (in classical logic) does not imply (in general) that either
P is provable or that ¬P is provable. That P∨¬P is provable is sometimes called
the principle (or law) of the excluded middle. In intuitionistic logic, P∨¬P is not
provable (in general). Of course, if one gives up the proof-by-contradiction rule,
then fewer propositions become provable. On the other hand, one may claim that
the propositions that remain provable have more constructive proofs and thus feel
on safer grounds.

A similar controversy arises with the proposition ¬¬P⇒ P (double-negation
rule) If we give up the proof-by-contradiction rule, then this formula is no longer
provable (i.e., ¬¬P is no longer equivalent to P). Perhaps this relates to the fact that
if one says “I don’t have no money,” then this does not mean that this person has
money. (Similarly with “I can’t get no satisfaction.”) However, note that one can
still prove P⇒ ¬¬P in minimal logic (try doing it). Even stranger, ¬¬¬P⇒ ¬P
is provable in intuitionistic (and minimal) logic, so ¬¬¬P and ¬P are equivalent
intuitionistically.

Remark: Suppose we have a deduction

Γ ,¬P

D

⊥
as in the proof-by-contradiction rule. Then by ¬-introduction, we get a deduction of
¬¬P from Γ :

Γ ,¬Px

D

⊥
x

¬¬P
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So, if we knew that ¬¬P was equivalent to P (actually, if we knew that ¬¬P⇒ P
is provable), then the proof-by-contradiction rule would be justified as a valid rule
(it follows from modus ponens). We can view the proof-by-contradiction rule as a
sort of act of faith that consists in saying that if we can derive an inconsistency (i.e.,
chaos) by assuming the falsity of a statement P, then P has to hold in the first place.
It not so clear that such an act of faith is justified and the intuitionists refuse to take
it.

Constructivity in mathematics is a fascinating subject but it is a topic that is really
outside the scope in this book. What we hope is that our brief and very incomplete
discussion of constructivity issues made the reader aware that the rules of logic are
not cast in stone and that, in particular, there isn’t only one logic.

We feel safe in saying that most mathematicians work with classical logic and
only a few of them have reservations about using the proof-by-contradiction rule.
Nevertheless, intuitionistic logic has its advantages, especially when it comes to
proving the correctess of programs (a branch of computer science). We come back
to this point several times in this book.

In the rest of this section we make further useful remarks about (classical) logic
and give some explicit examples of proofs illustrating the inference rules of classical
logic. We begin by proving that P∨¬P is provable in classical logic.

Proposition 11.1. The proposition P∨¬P is provable in classical logic.

Proof. We prove that P∨ (P⇒⊥) is provable by using the proof-by-contradiction
rule as shown below.

((P∨ (P⇒⊥))⇒⊥)y

((P∨ (P⇒⊥))⇒⊥)y

Px
∨-intro

P∨ (P⇒⊥)
⊥

x (¬-intro)
P⇒⊥ ∨-intro

P∨ (P⇒⊥)
⊥

y (by-contra)
P∨ (P⇒⊥)

ut

Next, we consider the equivalence of P and ¬¬P.

Proposition 11.2. The proposition P ⇒ ¬¬P is provable in minimal logic. The
proposition ¬¬P⇒ P is provable in classical logic. Therefore, in classical logic,
P is equivalent to ¬¬P.

Proof. We leave that P⇒¬¬P is provable in minimal logic as an exercise. Below
is a proof of ¬¬P⇒ P using the proof-by-contradiction rule.
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((P⇒⊥)⇒⊥)y (P⇒⊥)x

⊥
x (by-contra)

P
y

((P⇒⊥)⇒⊥)⇒ P
ut

The next proposition shows why⊥ can be viewed as the “ultimate” contradiction.

Proposition 11.3. In intuitionistic logic, the propositions ⊥ and P∧¬P are equiv-
alent for all P. Thus, ⊥ and P∧¬P are also equivalent in classical propositional
logic

Proof. We need to show that both ⊥⇒ (P∧¬P) and (P∧¬P)⇒⊥ are provable in
intuitionistic logic. The provability of ⊥⇒ (P∧¬P) is an immediate consequence
or ⊥-elimination, with Γ = /0. For (P∧¬P)⇒⊥, we have the following proof.

(P∧¬P)x

¬P

(P∧¬P)x

P

⊥
x

(P∧¬P)⇒⊥
ut

So, in intuitionistic logic (and also in classical logic), ⊥ is equivalent to P∧¬P
for all P. This means that ⊥ is the “ultimate” contradiction; it corresponds to total
inconsistency. By the way, we could have the bad luck that the system N ⇒,∧,∨,⊥

c

(or N ⇒,∧,∨,⊥
i or even N ⇒,∧,∨,⊥

m ) is inconsistent, that is, that ⊥ is provable. For-
tunately, this is not the case, although this is hard to prove. (It is also the case that
P∨¬P and ¬¬P⇒ P are not provable in intuitionistic logic, but this too is hard to
prove.)

11.8 Clearing Up Differences Among ¬-Introduction,
⊥-Elimination, and RAA

The differences between the rules, ¬-introduction,⊥-elimination, and the proof-by-
contradiction rule (RAA) are often unclear to the uninitiated reader and this tends
to cause confusion. In this section we try to clear up some common misconceptions
about these rules.

Confusion 1. Why is RAA not a special case of ¬-introduction?

Γ ,Px

D

⊥
x (¬-intro)

¬P

Γ ,¬Px

D

⊥
x (RAA)

P
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The only apparent difference between ¬-introduction (on the left) and RAA (on the
right) is that in RAA, the premise P is negated but the conclusion is not, whereas in
¬-introduction the premise P is not negated but the conclusion is.

The important difference is that the conclusion of RAA is not negated. If we had
applied ¬-introduction instead of RAA on the right, we would have obtained

Γ ,¬Px

D

⊥
x (¬-intro)

¬¬P

where the conclusion would have been ¬¬P as opposed to P. However, as we al-
ready said earlier, ¬¬P⇒ P is not provable intuitionistically. Consequently, RAA
is not a special case of ¬-introduction. On the other hand, one may view ¬-
introduction as a “constructive” version of RAA applying to negated propositions
(propositions of the form ¬P).

Confusion 2. Is there any difference between ⊥-elimination and RAA?

Γ

D

⊥ (⊥-elim)
P

Γ ,¬Px

D

⊥
x (RAA)

P

The difference is that ⊥-elimination does not discharge any of its premises. In fact,
RAA is a stronger rule that implies ⊥-elimination as we now demonstate.

RAA implies ⊥-Elimination
Suppose we have a deduction

Γ

D

⊥
Then for any proposition P, we can add the premise ¬P to every leaf of the above
deduction tree and we get the deduction tree

Γ ,¬P

D ′

⊥
We can now apply RAA to get the following deduction tree of P from Γ (because
¬P is discharged) which simulates ⊥-elimination.

Γ ,¬Px

D ′

⊥
x (RAA)

P
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The above considerations also show that RAA is obtained from ¬-introduction
by adding the new rule of ¬¬-elimination (also called double-negation elimination):

Γ

D

¬¬P (¬¬-elimination)
P

Indeed we now have the following deduction which is equivalen to RAA.

Γ ,¬Px

D

⊥
x (¬-intro)

¬¬P (¬¬-elimination)
P

Some authors prefer adding the ¬¬-elimination rule to intuitionistic logic instead
of RAA in order to obtain classical logic. As we just demonstrated, the two additions
are equivalent: by adding either RAA or ¬¬-elimination to intuitionistic logic, we
get classical logic.

There is another way to obtain RAA from the rules of intuitionistic logic, this
time using the propositions of the form P∨¬P. We saw in Proposition 11.1 that all
formulae of the form P∨¬P are provable in classical logic (using RAA).

Confusion 3. Are propositions of the form P ∨ ¬P provable in intuitionistic
logic?
The answer is no, which may be disturbing to some readers. In fact, it is quite diffi-
cult to prove that propositions of the form P∨¬P are not provable in intuitionistic
logic. One method consists in using the fact that intuitionistic proofs can be normal-
ized (see Section 11.13 for more on normalization of proofs). Another method uses
Kripke models (see Section 11.12 and van Dalen [24]).

Part of the difficulty in understanding at some intuitive level why propositions
of the form P∨¬P are not provable in intuitionistic logic is that the notion of truth
based on the truth values true and false is deeply rooted in all of us. In this frame
of mind, it seems ridiculous to question the provability of P∨¬P, because its truth
value is true whether P is assigned the value true or false. Classical two-valued
truth value semantics is too crude for intuitionistic logic.

Another difficulty is that it is tempting to equate the notion of truth and the notion
of provability. Unfortunately, because classical truth values semantics is too crude
for intuitionistic logic, there are propositions that are universally true (i.e., they eval-
uate to true for all possible truth assignments of the atomic letters in them) and yet
they are not provable intuitionistically. The propositions P∨¬P and ¬¬P⇒ P are
such examples.

One of the major motivations for advocating intuitionistic logic is that it yields
proofs that are more constructive than classical proofs. For example, in classical
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logic, when we prove a disjunction P∨Q, we generally can’t conclude that either P
or Q is provable, as exemplified by P∨¬P. A more interesting example involving a
nonconstructive proof of a disjunction is given in Section 11.9. But in intuitionistic
logic, from a proof of P∨Q, it is possible to extract either a proof of P or a proof of
Q (and similarly for existential statements; see Section 11.16). This property is not
easy to prove. It is a consequence of the normal form for intuitionistic proofs (see
Section 11.13).

In brief, besides being a fun intellectual game, intuitionistic logic is only an in-
teresting alternative to classical logic if we care about the constructive nature of
our proofs. But then we are forced to abandon the classical two-valued truth values
semantics and adopt other semantics such as Kripke semantics. If we do not care
about the constructive nature of our proofs and if we want to stick to two-valued
truth values semantics, then we should stick to classical logic. Most people do that,
so don’t feel bad if you are not comfortable with intuitionistic logic.

One way to gauge how intuitionisic logic differs from classical logic is to ask
what kind of propositions need to be added to intuitionisic logic in order to get clas-
sical logic. It turns out that if all the propositions of the form P∨¬P are considered
to be axioms, then RAA follows from some of the rules of intuitionistic logic.

RAA Holds in Intuitionistic Logic + All Axioms P∨¬P.
The proof involves a subtle use of the ⊥-elimination and ∨-elimination rules which
may be a bit puzzling. Assume, as we do when we use the proof-by-contradiction
rule (RAA) that we have a deduction

Γ ,¬P

D

⊥
Here is the deduction tree demonstrating that RAA is a derived rule.

P∨¬P
Px

P

Γ ,¬Py

D

⊥ (⊥-elim)
P

x,y (∨-elim)
P

At first glance, the rightmost subtree

Γ ,¬Py

D

⊥ (⊥-elim)
P

appears to use RAA and our argument looks circular. But this is not so because
the premise ¬P labeled y is not discharged in the step that yields P as conclusion;
the step that yields P is a ⊥-elimination step. The premise ¬P labeled y is actually
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discharged by the ∨-elimination rule (and so is the premise P labeled x). So our
argument establishing RAA is not circular after all.

In conclusion, intuitionistic logic is obtained from classical logic by taking away
the proof-by-contradiction rule (RAA). In this more restrictive proof system, we
obtain more constructive proofs. In that sense, the situation is better than in classical
logic. The major drawback is that we can’t think in terms of classical truth values
semantics anymore.

Conversely, classical logic is obtained from intuitionistic logic in at least three
ways:

1. Add the proof-by-contradiction rule (RAA).
2. Add the ¬¬-elimination rule.
3. Add all propositions of the form P∨¬P as axioms.

11.9 De Morgan Laws and Other Rules of Classical Logic

In Section 1.7 we discussed the de Morgan laws. Now that we also know about
intuitionistic logic we revisit these laws.

Proposition 11.4. The following equivalences (de Morgan laws) are provable in
classical logic.

¬(P∧Q)≡ ¬P∨¬Q

¬(P∨Q)≡ ¬P∧¬Q.

In fact, ¬(P∨Q)≡¬P∧¬Q and (¬P∨¬Q)⇒¬(P∧Q) are provable in intuition-
istic logic. The proposition (P∧¬Q)⇒¬(P⇒Q) is provable in intuitionistic logic
and ¬(P⇒ Q)⇒ (P∧¬Q) is provable in classical logic. Therefore, ¬(P⇒ Q)
and P∧¬Q are equivalent in classical logic. Furthermore, P⇒ Q and ¬P∨Q are
equivalent in classical logic and (¬P∨Q)⇒ (P⇒ Q) is provable in intuitionistic
logic.

Proof. We only prove the very last part of Proposition 11.4 leaving the other parts
as a series of exercises. Here is an intuitionistic proof of (¬P∨Q)⇒ (P⇒ Q).

(¬P∨Q)w

¬Pz Px

⊥
Q

x

P⇒ Q

Py Qt

Q
y

P⇒ Q
z,t

P⇒ Q
w

(¬P∨Q)⇒ (P⇒ Q)

Here is a classical proof of (P⇒ Q)⇒ (¬P∨Q).
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(¬(¬P∨Q))y

(P⇒ Q)z

(¬(¬P∨Q))y

¬Px

¬P∨Q

⊥
x RAA

P

Q

¬P∨Q

⊥
y RAA

¬P∨Q
z

(P⇒ Q)⇒ (¬P∨Q)

The other proofs are left as exercises.

Propositions 11.2 and 11.4 show a property that is very specific to classical logic,
namely, that the logical connectives ⇒,∧,∨,¬ are not independent. For example,
we have P∧Q ≡ ¬(¬P∨¬Q), which shows that ∧ can be expressed in terms of ∨
and ¬. In intuitionistic logic, ∧ and ∨ cannot be expressed in terms of each other
via negation.

The fact that the logical connectives⇒,∧,∨,¬ are not independent in classical
logic suggests the following question. Are there propositions, written in terms of⇒
only, that are provable classically but not provable intuitionistically?

The answer is yes. For instance, the proposition ((P⇒ Q)⇒ P)⇒ P (known as
Peirce’s law) is provable classically (do it), but it can be shown that it is not provable
intuitionistically.

In addition to the proof-by-cases method and the proof-by-contradiction method,
we also have the proof-by-contrapositive method valid in classical logic:

Proof-by-contrapositive rule:

Γ ,¬Qx

D

¬P
x

P⇒ Q

This rule says that in order to prove an implication P⇒ Q (from Γ ), one may
assume ¬Q as proven, and then deduce that ¬P is provable from Γ and ¬Q. This
inference rule is valid in classical logic because we can construct the following
deduction.
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Γ ,¬Qx

D

¬P Py

⊥
x (RAA)

Q
y

P⇒ Q

As as example of the proof-by-contrapositive method, we prove that if an integer
n2 is even, then n must be even.

Observe that if an integer is not even, then it is odd (and vice versa). This fact
may seem quite obvious but to prove it actually requires using induction (which we
haven’t officially met yet). A rigorous proof is given in Section 11.19.

Now the contrapositive of our statement is: if n is odd, then n2 is odd. Here P is
“n2 si even” and Q is n is even. But to say that n is odd is to say that n = 2k+1 and
then n2 = (2k+1)2 = 4k2 +4k+1 = 2(2k2 +2k)+1, which shows that n2 is odd.

As it is, because the above proof uses the proof-by-contrapositive method, it is
not constructive. Thus, the question arises, is there a constructive proof of the above
fact?

Indeed there is a constructive proof if we observe that every integer n is either
even or odd but not both. Now one might object that we just relied on the law of the
excluded middle but there is a way to circumvent this problem by using induction;
see Section 11.19 for a rigorous proof.

Now because an integer is odd iff it is not even, we may proceed to prove that
if n2 is even, then n is not odd, by using our constructive version of the proof-by-
contradiction principle, namely, ¬-introduction.

Proof. Therefore, assume that n2 is even and that n is odd. Then n = 2k+1, which
implies that n2 = 4k2 +4k+1 = 2(2k2 +2k)+1, an odd number, contradicting the
fact that n2 is assumed to be even.

The next proposition collects a list of equivalences involving conjunction and dis-
junction that are used all the time. Proofs of these propositions are left as exercises
(see the problems).

Proposition 11.5. All the propositions below are provable intuitionistically:

P∨P≡ P

P∧P≡ P

P∨Q≡ Q∨P

P∧Q≡ Q∧P.

The last two assert the commutativity of ∨ and ∧. We have distributivity of ∧ over ∨
and of ∨ over ∧:
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P∧ (Q∨R)≡ (P∧Q)∨ (P∧R)

P∨ (Q∧R)≡ (P∨Q)∧ (P∨R).

We have associativity of ∧ and ∨:

P∧ (Q∧R)≡ (P∧Q)∧R

P∨ (Q∨R)≡ (P∨Q)∨R.

11.10 Formal Versus Informal Proofs

As we said before, it is practically impossible to write formal proofs (i.e., proofs
written as proof trees using the rules of one of the systems presented earlier) of
“real” statements that are not “toy propositions.” This is because it would be ex-
tremely tedious and time-consuming to write such proofs and these proofs would be
huge and thus very hard to read.

What we do instead is to construct “informal” proofs in which we still make use
of the logical rules that we have presented but we take shortcuts and sometimes
we even omit proof steps (some elimination rules, such as ∧-elimination and some
introduction rules, such as ∨-introduction) and we use a natural language (here,
presumably, English) rather than formal symbols (we say “and” for ∧, “or” for ∨,
etc.). We refer the readetr to Section 1.8 for a discussion of these issues. We also
urge our reader to read Chapter 3 of Gowers [11] which contains very illuminating
remarks about the notion of proof in mathematics.

Here is a concrete example illustrating the usefulnes of auxiliary lemmas in con-
structing informal proofs.

Say we wish to prove the implication

¬(P∧Q)⇒
(
(¬P∧¬Q)∨ (¬P∧Q)∨ (P∧¬Q)

)
. (∗)

It can be shown that the above proposition is not provable intuitionistically, so we
have to use the proof-by-contradiction method in our proof. One quickly realizes
that any proof ends up re-proving basic properties of ∧ and ∨, such as associativity,
commutativity, idempotence, distributivity, and so on, some of the de Morgan laws,
and that the complete proof is very large. However, if we allow ourselves to use the
de Morgan laws as well as various basic properties of ∧ and ∨, such as distributivity,

(A∧B)∨C ≡ (A∧C)∨ (B∧C),

commutativity of ∧ and ∨ (A∧B≡ B∧A, A∨B≡ B∨A), associativity of ∧ and ∨
(A∧ (B∧C) ≡ (A∧B)∧C, A∨ (B∨C) ≡ (A∨B)∨C), and the idempotence of ∧
and ∨ (A∧A≡ A, A∨A≡ A), then we get
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(¬P∧¬Q)∨ (¬P∧Q)∨ (P∧¬Q)

≡ (¬P∧¬Q)∨ (¬P∧¬Q)∨ (¬P∧Q)∨ (P∧¬Q)

≡ (¬P∧¬Q)∨ (¬P∧Q)∨ (¬P∧¬Q)∨ (P∧¬Q)

≡ (¬P∧ (¬Q∨Q))∨ (¬P∧¬Q)∨ (P∧¬Q)

≡ ¬P∨ (¬P∧¬Q)∨ (P∧¬Q)≡ ¬P∨ ((¬P∨P)∧¬Q)≡ ¬P∨¬Q,

where we make implicit uses of commutativity and associativity, and the fact that
R∧ (P∨¬P)≡ R, and by de Morgan,

¬(P∧Q)≡ ¬P∨¬Q,

using auxiliary lemmas, we end up proving (∗) without too much pain.

11.11 Truth Value Semantics for Classical Logic
Soundness and Completeness

In Section 1.9 we introduced the truth value semantics for classical propositional
logic. The logical connectives ⇒, ∧, ∨, ¬ and ≡ can be interpreted as Boolean
functions, that is, functions whose arguments and whose values range over the set
of truth values,

BOOL = {true, false}.
These functions are given by the following truth tables.

P Q P⇒ Q P∧Q P∨Q ¬P P≡ Q
true true true true true false true
true false false false true false false
false true true false true true false
false false true false false true true

Now any proposition P built up over the set of atomic propositions PS (our propo-
sitional symbols) contains a finite set of propositional letters, say

{P1, . . . ,Pm}.

If we assign some truth value (from BOOL) to each symbol Pi then we can “com-
pute” the truth value of P under this assignment by using recursively using the truth
tables above.

For example, the proposition P1⇒ (P1⇒P2), under the truth assignment v given
by

P1 = true, P2 = false,

evaluates to false; see Section 1.9.
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The values of a proposition can be determined by creating a truth table, in which
a proposition is evaluated by computing recursively the truth values of its subex-
pressions. See Section 1.9.

The truth table of a proposition containing m variables has 2m rows. When m is
large, 2m is very large, and computing the truth table of a proposition P may not be
practically feasible. Even the problem of finding whether there is a truth assignment
that makes P true is hard.

Definition 11.9. We say that a proposition P is satisfiable iff it evaluates to true
for some truth assignment (taking values in BOOL) of the propositional symbols
occurring in P, and otherwise we say that it is unsatisfiable. A proposition P is valid
(or a tautology) iff it evaluates to true for all truth assignments of the propositional
symbols occurring in P.

Observe that a proposition P is valid if in the truth table for P all the entries in
the column corresponding to P have the value true. The proposition P is satisfiable
if some entry in the column corresponding to P has the value true.

The problem of deciding whether a proposition is satisfiable is called the satisfia-
bility problem and is sometimes denoted by SAT. The problem of deciding whether
a proposition is valid is called the validity problem.

Example 11.3. For example, the proposition

P = (P1∨¬P2∨¬P3)∧ (¬P1∨¬P3)∧ (P1∨P2∨P4)∧ (¬P3∨P4)∧ (¬P1∨P4)

is satisfiable because it evaluates to true under the truth assignment P1 = true,
P2 = false, P3 = false, and P4 = true.

Example 11.4. On the other hand, the proposition

Q = (P1∨P2∨P3)∧ (¬P1∨P2)∧ (¬P2∨P3)∧ (P1∨¬P3)∧ (¬P1∨¬P2∨¬P3)

is unsatisfiable as one can verify by trying all eight truth assignments for P1, P2, P3.

The reader should also verify that the proposition

R = (¬P1∧¬P2∧¬P3)∨ (P1∧¬P2)∨ (P2∧¬P3)∨ (¬P1∧P3)∨ (P1∧P2∧P3)

is valid (observe that the proposition R is the negation of the proposition Q).
The satisfiability problem is a famous problem in computer science because of

its complexity. Try it; solving it is not as easy as you think. The difficulty is that if
a proposition P contains n distinct propositional letters, then there are 2n possible
truth assignments and checking all of them is practically impossible when n is large.

In fact, the satisfiability problem turns out to be an NP-complete problem, a very
important concept that you will learn about in a course on the theory of compu-
tation and complexity. Very good expositions of this kind of material are found in
Hopcroft, Motwani, and Ullman [13] and Lewis and Papadimitriou [17]. The valid-
ity problem is also important and it is related to SAT. Indeed, it is easy to see that a
proposition P is valid iff ¬P is unsatisfiable.
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What’s the relationship between validity and provability in the system N ⇒,∧,∨,⊥
c

(or N G⇒,∧,∨,⊥
c )?

Remarkably, in classical logic, validity and provability are equivalent.
In order to prove the above claim, we need to do two things:

(1) Prove that if a proposition P is provable in the system N ⇒,∧,∨,⊥
c (or the system

N G⇒,∧,∨,⊥
c ), then it is valid. This is known as soundness or consistency (of the

proof system).
(2) Prove that if a proposition P is valid, then it has a proof in the system N ⇒,∧,∨,⊥

c
(or N G⇒,∧,∨,⊥

c ). This is known as the completeness (of the proof system).

In general, it is relatively easy to prove (1). but proving (2) can be quite com-
plicated. In fact, some proof systems are not complete with respect to certain
semantics. For instance, the proof system for intuitionistic logic N ⇒,∧,∨,⊥

i (or
N G⇒,∧,∨,⊥

i ) is not complete with respect to truth value semantics. As an exam-
ple, ((P⇒ Q)⇒ P)⇒ P (known as Peirce’s law), is valid but it can be shown that
it cannot be proven in intuitionistic logic.

In this book we content ourselves with soundness.

Proposition 11.6. (Soundness of N ⇒,∧,∨,⊥
c and N G⇒,∧,∨,⊥

c ) If a proposition P is
provable in the system N ⇒,∧,∨,⊥

c (or N G⇒,∧,∨,⊥
c ), then it is valid (according to the

truth value semantics).

Proof (Sketch of Proof). It is enough to prove that if there is a deduction of a propo-
sition P from a set of premises Γ then for every truth assignment for which all the
propositions in Γ evaluate to true, then P evaluates to true. However, this is clear
for the axioms and every inference rule preserves that property.

Now if P is provable, a proof of P has an empty set of premises and so P evaluates
to true for all truth assignments, which means that P is valid.

Theorem 11.1. (Completeness of N ⇒,∧,∨,⊥
c and N G⇒,∧,∨,⊥

c ) If a proposition P
is valid (according to the truth value semantics), then P is provable in the system
N ⇒,∧,∨,⊥

c (or N G⇒,∧,∨,⊥
c ).

Proofs of completeness for classical logic can be found in van Dalen [24] or
Gallier [4] (but for a different proof system).

Soundness (Proposition 11.6) has a very useful consequence: in order to prove
that a proposition P is not provable, it is enough to find a truth assignment for which
P evaluates to false. We say that such a truth assignment is a counterexample for
P (or that P can be falsified). For example, no propositional symbol Pi is provable
because it is falsified by the truth assignment Pi = false.

The soundness of the proof system N ⇒,∧,∨,⊥
c (or N G⇒,∧,∨,⊥

c ) also has the ex-
tremely important consequence that⊥ cannot be proven in this system, which means
that contradictory statements cannot be derived.

This is by no means obvious at first sight, but reassuring. It is also possible to
prove that the proof system N ⇒,∧,∨,⊥

c is consistent (i.e., ⊥ cannot be proven) by
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purely proof-theoretic means involving proof normalization (See Section 11.13),
but this requires a lot more work.

Note that completeness amounts to the fact that every unprovable formula has a
counterexample. Also, in order to show that a proposition is classically provable, it
suffices to compute its truth table and check that the proposition is valid. This may
still be a lot of work, but it is a more “mechanical” process than attempting to find a
proof.

Example 11.5. For example, here is a truth table showing that
(P1⇒ P2)≡ (¬P1∨P2) is valid.

P1 P2 P1⇒ P2 ¬P1∨P2 (P1⇒ P2)≡ (¬P1∨P2)

true true true true true
true false false false true
false true true true true
false false true true true

Remark: Truth value semantics is not the right kind of semantics for intuitionistic
logic; it is too coarse. A more subtle kind of semantics is required. Among the
various semantics for intuitionistic logic, one of the most natural is the notion of the
Kripke model. Then again, soundness and completeness hold for intuitionistic proof
systems (see Section 11.12 and van Dalen [24]).

11.12 Kripke Models for Intuitionistic Logic; Soundness and
Completeness

In this section, we briefly describe the semantics of intuitionistic propositional logic
in terms of Kripke models.

This section has been included to quench the thirst of those readers who can’t
wait to see what kind of decent semantics can be given for intuitionistic proposi-
tional logic and it can be safely omitted. We recommend reviewing the material of
Section 5.1 before reading this section.

In classical truth value semantics based on BOOL = {true, false}, we might say
that truth is absolute. The idea of Kripke semantics is that there is a set of worlds (or
states) W together with a partial ordering ≤ on W , and that truth depends on which
world we are in. Furthermore, as we “go up” from a world u to a world v with u≤ v,
truth “can only increase,” that is, whatever is true in world u remains true in world
v. Also, the truth of some propositions, such as P⇒ Q or ¬P, depends on “future
worlds.” With this type of semantics, which is no longer absolute, we can capture
exactly the essence of intuitionistic logic. We now make these ideas precise.

Definition 11.10. A Kripke model for intuitionistic propositional logic is a pair
K = (W,ϕ), where W is a partially ordered (nonempty) set called a set of worlds
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Fig. 11.3 Saul Kripke, 1940–

and ϕ is a function ϕ : W → BOOLPS such that for every u ∈ W , the function
ϕ(u) : PS→ BOOL is an assignment of truth values to the propositional symbols
in PS satisfying the following property. For all u,v ∈W , for all Pi ∈ PS,

if u≤ v and ϕ(u)(Pi) = true, then ϕ(v)(Pi) = true.

As we said in our informal comments, truth can’t decrease when we move from a
world u to a world v with u≤ v but truth can increase; it is possible that ϕ(u)(Pi) =
false and yet, ϕ(v)(Pi) = true.

Example 11.6. If W = {0,1} ordered so that 0≤ 1 and if ϕ is given by

ϕ(0)(Pi) = false
ϕ(1)(Pi) = true,

then Kbad = (W,ϕ) is a Kripke structure.

We use Kripke models to define the semantics of propositions as follows.

Definition 11.11. Given a Kripke model K = (W,ϕ), for every u∈W and for every
proposition P we say that P is satisfied by K at u and we write ϕ(u)(P) = true iff

(a) If P = Pi ∈ PS, then ϕ(u)(Pi) = true.
(b) If P = Q∧R, then ϕ(u)(Q) = true and ϕ(u)(R) = true.
(c) If P = Q∨R, then ϕ(u)(Q) = true or ϕ(u)(R) = true.
(d) If P = Q⇒ R, then for all v such that u≤ v, if ϕ(v)(Q) = true,

then ϕ(v)(R) = true.
(e) If P = ¬Q, then for all v such that u≤ v, ϕ(v)(Q) = false,
(f) ϕ(u)(⊥) = false; that is, ⊥ is not satisfied by K at u (for any K and any u).

In the above definition, “and” and “or” have their standard classical meaning as
specified in the truth table given in Section 11.11. We say that P is valid in K (or
that K is a model of P) iff P is satisfied by K = (W,ϕ) at u for all u ∈W , and we
say that P is intuitionistically valid iff P is valid in every Kripke model K . When P
is satisfied by K at u we also say that P is true at u in K .
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Note that the truth at u ∈W of a proposition of the form Q⇒ R or ¬Q depends
on the truth of Q and R at all “future worlds” v ∈W , with u≤ v. In the special case
of (d) where R =⊥, namely P = Q⇒⊥, we see that for any u ∈W , ϕ(u)(Q⇒⊥) =
true iff ϕ(u)(¬Q) = true, so ¬Q and Q⇒⊥ are indeed semantically equivalent. In
particular, for any u ∈W , we have ϕ(u)(¬Q) = false iff there is some v ∈W such
that u≤ v and ϕ(v)(Q) = true.

Also observe that classical truth value semantics corresponds to the special case
where W consists of a single element (a single world).

Example 11.7. Given the Kripke structure Kbad defined earlier, the reader should
check that the proposition P=(Pi∨¬Pi) has the value false at 0 because ϕ(0)(Pi)=
false, but ϕ(1)(Pi) = true, so clause (e) fails for ¬Pi at u = 0. Therefore, P =
(Pi∨¬Pi) is not valid in Kbad and thus, it is not intuitionistically valid. We escaped
the classical truth value semantics by using a universe with two worlds.

The reader should also check that

ϕ(u)(¬¬P) = true iff for all v such that u≤ v

there is some w with v≤ w so that ϕ(w)(P) = true.

This shows that in Kripke semantics, ¬¬P is weaker than P, in the sense that
ϕ(u)(¬¬P) = true does not necessarily imply that ϕ(u)(P) = true. The reader
should also check that the proposition ¬¬Pi⇒ Pi is not valid in the Kripke structure
Kbad.

As we said in the previous section, Kripke semantics is a perfect fit to intuition-
istic provability in the sense that soundness and completeness hold.

Proposition 11.7. (Soundness of N ⇒,∧,∨,⊥
i and N G⇒,∧,∨,⊥

i ) If a proposition P is
provable in the system N ⇒,∧,∨,⊥

i (or N G⇒,∧,∨,⊥
i ), then it is valid in every Kripke

model, that is, it is intuitionistically valid.

Proposition 11.7 is not hard to prove. We consider any deduction of a proposition
P from a set of premises Γ and we prove that for every Kripke model K = (W,ϕ),
for every u ∈W , if every premise in Γ is satisfied by K at u, then P is also satisfied
by K at u. This is obvious for the axioms and it is easy to see that the inference
rules preserve this property.

Completeness also holds, but it is harder to prove (see van Dalen [24]).

Theorem 11.2. (Completeness of N ⇒,∧,∨,⊥
i and N G⇒,∧,∨,⊥

i ) If a proposition P is
intuitionistically valid, then P is provable in the system N ⇒,∧,∨,⊥

i (or N G⇒,∧,∨,⊥
i ).

Another proof of completeness for a different proof system for propositional in-
tuitionistic logic (a Gentzen-sequent calculus equivalent to N G⇒,∧,∨,⊥

i ) is given in
Takeuti [22]. We find this proof more instructive than van Dalen’s proof. This proof
also shows that if a proposition P is not intuitionistically provable, then there is a
Kripke model K where W is a finite tree in which P is not valid. Such a Kripke
model is called a counterexample for P.
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Several times in this chapter we have claimed that certain formulae are not prov-
able in some logical system. What kind of reasoning do we use to validate such
claims? In the next section we briefly address this question as well as related ones.

11.13 Decision Procedures, Proof Normalization

In the previous sections we saw how the rules of mathematical reasoning can be
formalized in various natural deduction systems and we defined a precise notion of
proof. We observed that finding a proof for a given proposition was not a simple
matter, nor was it to acertain that a proposition is unprovable. Thus, it is natural to
ask the following question.

The Decision Problem: Is there a general procedure that takes any arbitrary
proposition P as input, always terminates in a finite number of steps, and tells us
whether P is provable?

Clearly, it would be very nice if such a procedure existed, especially if it also
produced a proof of P when P is provable.

Unfortunately, for rich enough languages, such as first-order logic (discussed in
Section 11.16) it is impossible to find such a procedure. This deep result known as
the undecidability of the decision problem or Church’s theorem was proven by A.
Church in 1936 (actually, Church proved the undecidability of the validity problem
but, by Gödel’s completeness theorem, validity and provability are equivalent).

Fig. 11.4 Alonzo Church, 1903–1995 (left) and Alan Turing, 1912–1954 (right)

Proving Church’s theorem is hard and a lot of work. One needs to develop a good
deal of what is called the theory of computation. This involves defining models of
computation such as Turing machines and proving other deep results such as the
undecidability of the halting problem and the undecidability of the Post correspon-
dence problem, among other things; see Hopcroft, Motwani, and Ullman [13] and
Lewis and Papadimitriou [17].

So our hopes to find a “universal theorem prover” are crushed. However, if we
restrict ourselves to propositional logic, classical or intuitionistic, it turns out that
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procedures solving the decision problem do exist and they even produce a proof of
the input proposition when that proposition is provable.

Unfortunately, proving that such procedures exist, and are correct in the proposi-
tional case is rather difficult, especially for intuitionistic logic. The difficulties have
a lot to do with our choice of a natural deduction system. Indeed, even for the sys-
tem N ⇒

m (or N G⇒m ), provable propositions may have infinitely many proofs. This
makes the search process impossible; when do we know how to stop, especially if
a proposition is not provable. The problem is that proofs may contain redundancies
(Gentzen said “detours”). A typical example of redundancy is when an elimination
immediately follows an introduction, as in the following example in which we ab-
breviate (R⇒ R) as P.

y : (P⇒ Q)→ (P⇒ Q) x : P→ P

x : (R⇒ R),y : ((R⇒ R)⇒ Q)→ Q

x : (R⇒ R)→ ((R⇒ R)⇒ Q)⇒ Q

→ (R⇒ R)⇒ (((R⇒ R)⇒ Q)⇒ Q)

z : R→ R

→ R⇒ R

→ ((R⇒ R)⇒ Q)⇒ Q

The blue deduction already has ((R⇒ R)⇒ Q)⇒ Q as conclusion but it is not
a proof because the assumption x : (R⇒ R) is present. However we have a proof of
R⇒ R, namely

z : R→ R

→ R⇒ R

We can obtain a proof of ((R⇒ R)⇒ Q)⇒ Q from the blue deduction tree
by replacing the leaf labeled x : (R⇒ R)→ (R⇒ R) by the proof tree for R⇒ R,
obtaining

y : ((R⇒ R)⇒ Q)→ ((R⇒ R)⇒ Q)

z : R→ R

→ R⇒ R

x : (R⇒ R),y : ((R⇒ R)⇒ Q)→ Q

x : (R⇒ R)→ ((R⇒ R)⇒ Q)⇒ Q

The above is not quite a proof tree, but it becomes one if we delete the premise
x : (R⇒ R) which is now redundant.

y : ((R⇒ R)⇒ Q)→ ((R⇒ R)⇒ Q)

z : R→ R

→ R⇒ R

y : ((R⇒ R)⇒ Q)→ Q

→ ((R⇒ R)⇒ Q)⇒ Q

The procedure that we just described for eliminating a redundancy can be gen-
eralized. Consider the deduction tree below in which D1 denotes a deduction with
conclusion Γ ,x : A→ B and D2 denotes a deduction with conclusion ∆ → A.
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D1

Γ ,x : A→ B

Γ → A⇒ B

D2

∆ → A

Γ ∪∆ → B

It should be possible to construct a deduction for Γ → B from the two deductions
D1 and D2 without using at all the hypothesis x : A. This is indeed the case. If we
look closely at the deduction D1, from the shape of the inference rules, assumptions
are never created, and the leaves must be labeled with expressions of the form either

(1) Γ ,Λ ,x : A→ A, or
(2) Γ ′,Λ ,x : A,y : C→C if Γ = Γ ′,y : C and y 6= x, or
(3) Γ ,Λ ,x : A,y : C→C if y : C /∈ Γ and y 6= x.

We can form a new deduction for Γ → B as follows. In D1, wherever a leaf of
the form Γ ,Λ ,x : A→ A occurs, replace it by the deduction obtained from D2 by
adding Λ to the premise of each sequent in D2.

In our previous example, we have A = (R ⇒ R), B = ((R ⇒ R) ⇒ Q) ⇒ Q,
C = (R⇒ R)⇒ Q, Γ = ∆ = Λ = /0.

Actually, one should be careful to first make a fresh copy of D2 by renaming
all the variables so that clashes with variables in D1 are avoided. Finally, delete the
assumption x : A from the premise of every sequent in the resulting proof. The result-
ing deduction is obtained by a kind of substitution and may be denoted as D1[D2/x],
with some minor abuse of notation. Note that the assumptions x : A occurring in the
leaves of type (2) or (3) were never used anyway. The step that consists in trans-
forming the above redundant proof figure into the deduction D1[D2/x] is called a
reduction step or normalization step.

The idea of proof normalization goes back to Gentzen ([8], 1935). Gentzen noted
that (formal) proofs can contain redundancies, or “detours,” and that most complica-
tions in the analysis of proofs are due to these redundancies. Thus, Gentzen had the
idea that the analysis of proofs would be simplified if it were possible to show that
every proof can be converted to an equivalent irredundant proof, a proof in normal
form. Gentzen proved a technical result to that effect, the “cut-elimination theorem,”
for a sequent-calculus formulation of first-order logic [8]. Cut-free proofs are direct,
in the sense that they never use auxiliary lemmas via the cut rule.

Remark: It is important to note that Gentzen’s result gives a particular algorithm to
produce a proof in normal form. Thus we know that every proof can be reduced to
some normal form using a specific strategy, but there may be more than one normal
form, and certain normalization strategies may not terminate.

About 30 years later, Prawitz ([18], 1965) reconsidered the issue of proof nor-
malization, but in the framework of natural deduction rather than the framework of
sequent calculi.1 Prawitz explained very clearly what redundancies are in systems of

1 This is somewhat ironical, inasmuch as Gentzen began his investigations using a natural deduc-
tion system, but decided to switch to sequent calculi (known as Gentzen systems) for technical
reasons.
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natural deduction, and he proved that every proof can be reduced to a normal form.
Furthermore, this normal form is unique. A few years later, Prawitz ([19], 1971)
showed that in fact, every reduction sequence terminates, a property also called
strong normalization.

A remarkable connection between proof normalization and the notion of compu-
tation must also be mentioned. Curry (1958) made the remarkably insightful obser-
vation that certain typed combinators can be viewed as representations of proofs (in
a Hilbert system) of certain propositions. (See in Curry and Feys [2] (1958), Chapter
9E, Pages 312–315.)

Fig. 11.5 Haskell B. Curry, 1900–1982

Building up on this observation, Howard ([14], 1969) described a general cor-
respondence among propositions and types, proofs in natural deduction and cer-
tain typed λ -terms, and proof normalization and β -reduction (The simply typed λ -
calculus was invented by Church, 1940). This correspondence, usually referred to
as the Curry–Howard isomorphism or formulae-as-types principle, is fundamental
and very fruitful.

Let us elaborate on this correspondence.

11.14 The Simply-Typed λ -Calculus

First we need to define the simply-typed λ -calculus and the first step is to define
simple types. We assume that we have a countable set {T0,T1, . . . ,Tn, . . .} of base
types (or atomic types).

For example, the base types may include types such as Nat for the natu-
ral numbers, Bool for the booleans, String for strings, Tree for trees, etc. In
the Curry–Howard isomorphism, they correspond to the propositional symbols
{P0,P1, . . . ,Pn, . . .}.

Definition 11.12. The simple types σ are defined inductively as follows.

(1) If Ti is a base type, then Ti is a simple type.
(2) If σ and τ are simple types, then (σ → τ) is a simple type.
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Thus (T1→ T1), (T1→ (T2→ T1)), ((T1→ T2)→ T1), are simple types.
The standard abbreviation for (σ1→ (σ2→ (· · ·→ σn))) is σ1→ σ2→·· ·→ σn.
There is obviously a bijection between propositions and simple types. Every

propositional symbol Pi can be viewed as a base type, and the proposition (P⇒ Q)
corresponds to the simple type (P→ Q). The only difference is that the custom is
to use⇒ to denote logical implication and→ for simple types. The reason is that
intuitively a simple type (σ → τ) corresponds to a set of functions from a domain
of type σ to a range of type τ .

The next crucial step is to define simply-typed λ -terms. This is done in two
stages. First we define raw simply-typed λ -terms. They have a simple inductive
definition but they do not necessarily type-check so we define some type-checking
rules that turn out to be the Gentzen-style deduction proof rules annotated with
simply-typed λ -terms. These simply-typed λ -terms are representations of natural
deductions.

We have a countable set of variables {x0,x1, . . . ,xn . . .} that correspond to the
atomic raw λ -terms. These are also the variables that are used for tagging assump-
tions when constructing deductions.

Definition 11.13. The raw simply-typed λ -terms (for short raw terms or λ -terms)
M are defined inductively as follows.

(1) If xi is a variable, then xi is a raw term.
(2) If M and N are raw terms, then (MN) is a raw term called an application.
(3) If M is a raw term, σ is a simple type, and x is a variable, then the expression

(λx : σ .M) is a raw term called a λ -abstraction.

Matching parentheses may be dropped or added for convenience.

Definition 11.14. In a raw λ -term M, a variable x appearing in an expression λx : σ

is said to be bound in M. The other variables in M (if any) are said to be free in M.
A λ -term M is closed if it has no free variables.

Example 11.8. For example, in the term λx : σ .(yx), the variable x is bound and the
variable y is free. This term is not closed.

The term λy : σ → σ .(λx : σ .(yx)) is closed.

The intuition is that a term of the form λx : σ .M represents a function. How such
a function operates will be defined in terms of β -reduction.

Definition 11.15. The depth d(M) of a raw λ -term M is defined inductively as fol-
lows.

1. If M is a variable x, then d(x) = 0.
2. If M is an application (M1M2), then d(M) = max{d(M1),d(M2)}+1.
3. If M is a λ -abstraction (λx : σ .M1), then d(M) = d(M1)+1.

It is pretty clear that raw λ -terms have representations as (ordered) labeled trees.
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Definition 11.16. Given a raw λ -term M, the tree tree(M) representing M is defined
inductively as follows.

1. If M is a variable x, then tree(M) is the one-node tree labeled x.
2. If M is an application (M1M2), then tree(M) is the tree with a binary root node

labeled . and with a left subtree tree(M1) and a right subtree tree(M2).
3. If M is a λ -abstraction (λx : σ .M1), then tree(M) is the tree with a unary root

node labeled λx : σ and with one subtree tree(M1).

Definition 11.16 is illustrated in Figure 11.6.

x
M = x

tree (M)
1 2M = ( M  M  ) •

M1
M2

tree(M)
M = λx:σ • M λx: σ

tree(M)

M1

tree(    )
tree(     )

tree(      )

1

Fig. 11.6 The tree tree(M) associated with a raw λ -term M.

Obviously, the depth d(M) of raw λ -term is the depth of its tree representation
tree(M).

Definition 11.16 could be used to deal with bound variables. For every leaf la-
beled with a bound variable x, we draw a backpointer to an ancestor of x determined
as follows. Given a leaf labeled with a bound variable x, climb up to the closest an-
cestor labeled λx : σ , and draw a backpointer to this node. Then all bound variables
can be erased. See Figure 11.7 for an example.

Definition 11.13 allows the construction of undesirable terms such as (xx) or
(λx : σ .(xx))(λx : σ .(xx)) because no type-checking is done. Part of the problem
is that the variables occurring in a raw term have not been assigned types. This can
be done using a context (or type assignment).

Definition 11.17. A context (or type assignment) is a set of pairs Γ = {x1 : σ1, . . .,
xn : σn}, where the σi are simple types and the variables xi are pairwise distinct.



640 11 Mathematical Reasoning And Logic, A Deeper View

λx: σ

x

x

Fig. 11.7 Using backpointers to deal with bound variables.

Once a type assignment has been provided, the type-checking rules are basically
the proof rules of natural deduction in Gentzen-style.

Definition 11.18. The fact that a raw term M has type σ given a type assignment Γ

that assigns types to all the free variables in M is written as

Γ . M : σ .

Such an expression is called a judgement. The symbol . is used instead of the sym-
bol→ because→ occurs in simple types.

Here are the typing-checking rules.

Definition 11.19. The type-checking rules of the simply-typed λ -calculus λ→ are
listed below:

Γ ,x : σ . x : σ (axioms)

Γ ,x : σ . M : τ

Γ . (λx : σ .M) : σ → τ
(abstraction)

Γ . M : σ → τ ∆ . N : σ

Γ ∪∆ . (MN) : τ
(application)

In the axioms and in the (abstraction) rule, it is assumed that x : σ /∈ Γ . In the
(application) rule, it is assumed that Γ and ∆ are consistent, which means that if
x : σ1 ∈ Γ and x : σ2 ∈ ∆ , then σ1 = σ2.

We write ` Γ . M : σ to express that the judgement Γ . M : σ is provable. Given
a raw simply-typed λ -term M, if there is a type-assigment Γ and a simple type σ

such that the judgement Γ . M : σ is provable, we say that M type-checks with type
σ .
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It can be shown by induction on the depth of raw terms that for a fixed type-
assigment Γ , if a raw simply-typed λ -term M type-checks with some simple type
σ , then σ is unique.

The correspondence between proofs in natural deduction and simply-typed λ -
terms (the Curry/Howard isomorphism) is now clear: the abstraction rule corre-
sponds to implication-introduction, the application rule corresponds to implication
elimination, and the blue term is a representation of the deduction of the sequents
Γ ,x : σ → σ , Γ → σ ⇒ τ , and Γ ∪∆ → τ , with the types σ ,σ → τ and τ viewed
as propositions. Note that proofs correspond to closed λ -terms.

Example 11.9. For example, we have the type-checking proof

y : ((R→ R)→ Q). y : ((R→ R)→ Q)

z : R. z : R

.λ z : R.z : R→ R

y : ((R→ R)→ Q). y(λ z : R.z) : Q

.λy : ((R→ R)→ Q).y(λ z : R.z) : ((R→ R)→ Q)→ Q

which shows that the simply-typed λ -term

M = λy : ((R→ R)→ Q).y(λ z : R.z)

represents the proof

y : ((R⇒ R)⇒ Q)→ ((R⇒ R)⇒ Q)

z : R→ R

→ R⇒ R

y : ((R⇒ R)⇒ Q)→ Q

→ ((R⇒ R)⇒ Q)⇒ Q

The proposition ((R⇒ R)⇒Q)⇒Q being proven correspond to the type ((R→
R)→ Q)→ Q of the λ -term M.

The tree representing the λ -term M = λy : ((R⇒ R)⇒ Q).y(λ z : R.z) is shown
in Figure 11.8.

Furthermore, and this is the deepest aspect of the Curry/Howard isomorphism,
proof normalization corresponds to β -reduction in the simply-typed λ -calculus.

The notion of β -reduction is defined in terms of substitutions.

Definition 11.20. A substitution ϕ is a finite set of pairs ϕ = {(x1,N1), . . . ,(xn,Nn)},
where the xi are distinct variables and the Ni are raw λ -terms. We write

ϕ = [N1/x1, . . . ,Nn/xn] or ϕ = [x1 := N1, . . . ,xn := Nn].

The second notation indicates more clearly that each term Ni is substituted for the
variable xi and it seems to have been almost universally adopted.

Given a substitution ϕ = [x1 := N1, . . . ,xn := Nn], for any variable xi, we denote
by ϕ−xi the new substitution where the pair (xi,Ni) is replaced by the pair (xi,xi)
(that is, the new substitution leaves xi unchanged).
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λy: ( (R0R)0Q)

•

y
λz : R

z

Tree(M)

Fig. 11.8 The tree representation of the λ -term M.

Definition 11.21. Given any raw λ -term M and any substitution ϕ = [x1 := N1, . . .,
xn := Nn], we define the raw λ -term M[ϕ], the result of applying the substitution ϕ

to M, as follows:

(1) If M = y, with y 6= xi for i = 1, . . . ,n, then M[ϕ] = y = M.
(2) If M = xi for some i ∈ {1, . . . ,n}, then M[ϕ] = Ni.
(3) If M = (PQ), then M[ϕ] = (P[ϕ]Q[ϕ]).
(4) If M = λx : σ .N and x 6= xi for i = 1, . . . ,n, then M[ϕ] = λx : σ .N[ϕ].
(5) If M = λx : σ .N and x = xi for some i ∈ {1, . . . ,n}, then

M[ϕ] = λx : σ .N[ϕ]−xi .

There is a problem with the present definition of a substitution in Cases (4) and
(5), which is that the result of substituting a term Ni containing the free variable x
causes this variable to become bound after the substitution. We say that x is cap-
tured.

To remedy this problem, Church defined α-conversion.

Definition 11.22. The idea of α-conversion is that in a raw term M, any subterm of
the form λx : σ .P can be replaced by the subterm λ z : σ .P[x := z] where z is a new
variable not occurring at all (free or bound) in M to obtain a new term M′. We write
M ≡α M′ and we view M and M′ as equivalent.

Example 11.10. For example, λx : σ .yx≡α λ z : σ .yz and

λy : σ → σ .(λx : σ .yx)≡α λw : σ → σ .(λ z : σ .wz).

The variables x and y are just place-holders.
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Then, given a raw λ -term M and a substitution ϕ = [x1 := N1, . . . ,xn := Nn],
before applying ϕ to M we first apply some α-conversion to rename all bound vari-
ables in M obtaining M′ ≡α M so that they do not occur in any of the Ni, and then
safely apply the substitution ϕ to M′ without any capture of variables. We say that
the term M′ is safe for the substitution ϕ .

The details are a bit tedious and we omit them. We refer the interested reader to
Gallier [5] for a comprehensive discussion.

The following result shows that substitutions behave well with respect to type-
checking. Given a context Γ = {x1 : σ1, . . . ,xn : σn}, we let Γ (xi) = σi.

Proposition 11.8. For any raw λ -term M and any substitution ϕ = [x1 := N1, . . .,
xn := Nn], whose domain contains the set of free variables of M, if the judgement
Γ . M : τ is provable for some context Γ and some simple type τ , and if there is some
context ∆ such that for every free variable x j in M the judgement ∆ . N j : Γ (x j) is
provable, then there some M′≡α M such that the judgment ∆ .M′[ϕ] : τ is provable.

Finally we define β -reduction and β -conversion as follows.

Definition 11.23. The relation −→β , called immediate β -reduction, is the smallest
relation satisfying the following properties for all raw λ -terms M,N,P,Q:

(λx : σ .M)N −→β M[x := N]

provided that M is safe for [x := N];

M −→β N

MQ−→β NQ

M −→β N

PM −→β PN
, for all P,Q (congruence)

M −→β N

λx : σ .M −→β λx : σ .N
, for all σ . (ξ )

The transitive closure of −→β is denoted by +−→β , the reflexive and transi-
tive closure of −→β is denoted by ∗−→β , and we define β -conversion, denoted by
∗←→β , as the smallest equivalence relation ∗←→β = (−→β ∪ −→−1

β
)∗ containing

−→β .

Example 11.11. For example, we have

(λu : σ .(vu))
(
(λx : σ → σ .(xy))(λ z : σ .z)

)
−→β

(λu : σ .(vu))(λx : σ → σ .(xy))[x := (λ z : σ .z)] = (λu : σ .(vu))
(
(λ z : σ .z)y

)
−→β (λu : σ .(vu))z[z := y] = (λu : σ .(vu))y−→β (vu)[u := y] = vy.

In the above, β -reduction steps are applied to the blue subterms.

The following result shows that β -reduction (and β -conversion) behave well with
respect to type-checking.
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Proposition 11.9. For any two raw λ -terms M and N, if there is a proof of the
judgement Γ . M : σ for some context Γ and some simple type σ , and if M +−→β N
(or M ∗←→β N), then the judgement Γ . N : σ is provable. Thus β -reduction and
β -conversion preserve type-checking.

Definition 11.24. We say that a λ -term M is β -irreducible or a β -normal form if
there is no term N such that M −→β N.

The fundamental result about the simply-typed λ -calculus is this.

Theorem 11.3. For every raw λ -term M, if M type-checks, which means that there
a provable judgement Γ . M : σ for some context Γ and some simple type σ , then
the following results hold.

(1) If M ∗−→β M1 and M ∗−→β M2, then there is some M3 such that M1
∗−→β M3

and M2
∗−→β M3. We say that ∗−→β is confluent.

(2) Every reduction sequence M +−→β N is finite. We that that the simply-typed λ -
calculus is strongly normalizing (for short, SN).

As a consequence of (1) and (2), there is a unique β -irreducible term N (called a
β -normal form) such that M ∗−→β N.

A proof of Theorem 11.3 can be found in Gallier [7]. See also Gallier [5] which
contains a thorough discussion of the techniques involved in proving these results.

In Theorem 11.3, the fact that the term M type-checks is crucial. Indeed the term

(λx.(xx))(λx.(xx)),

which does not type-check (we omitted the type tags σ of the variable x since they
do not play any role), gives rise to an infinite β -reduction sequence!

In summary, the correspondence between proofs in intuitionistic logic and typed
λ -terms on one hand and between proof normalization and β -reduction, can be used
to translate results about typed λ -terms into results about proofs in intuitionistic
logic. These results can be generalized to typed λ -calculi with product types and
union types; see Gallier [7].

Using some suitable intuitionistic sequent calculi and Gentzen’s cut elimination
theorem or some suitable typed λ -calculi and (strong) normalization results about
them, it is possible to prove that there is a decision procedure for propositional
intuitionistic logic. However, it can also be shown that the time-complexity of any
such procedure is very high. As a matter of fact, it was shown by Statman (1979)
that deciding whether a proposition is intuitionisticaly provable is P-space complete
[20]. Here, we are alluding to complexity theory, another active area of computer
science, Hopcroft, Motwani, and Ullman [13] and Lewis and Papadimitriou [17].

Readers who wish to learn more about these topics can read the two survey papers
Gallier [7] (On the Correspondence Between Proofs and λ -Terms) and Gallier [6]
(A Tutorial on Proof Systems and Typed λ -Calculi), both available on the website
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http://www.cis.upenn.edu/̃ jean/gbooks/logic.html and the excellent introduction to
proof theory by Troelstra and Schwichtenberg [23].

Anybody who really wants to understand logic should of course take a look at
Kleene [16] (the famous “I.M.”), but this is not recommended to beginners.

Fig. 11.9 Stephen C. Kleene, 1909–1994

11.15 Completeness and Counter-Examples

Let us return to the question of deciding whether a proposition is not provable. To
simplify the discussion, let us restrict our attention to propositional classical logic.
So far, we have presented a very proof-theoretic view of logic, that is, a view based
on the notion of provability as opposed to a more semantic view of based on the
notions of truth and models. A possible excuse for our bias is that, as Peter Andrews
(from CMU) puts it, “truth is elusive.” Therefore, it is simpler to understand what
truth is in terms of the more “mechanical” notion of provability. (Peter Andrews
even gave the subtitle

To Truth Through Proof

to his logic book Andrews [1].)

Fig. 11.10 Peter Andrews, 1937–

However, mathematicians are not mechanical theorem provers (even if they prove
lots of stuff). Indeed, mathematicians almost always think of the objects they deal
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with (functions, curves, surfaces, groups, rings, etc.) as rather concrete objects (even
if they may not seem concrete to the uninitiated) and not as abstract entities solely
characterized by arcane axioms.

It is indeed natural and fruitful to try to interpret formal statements semantically.
For propositional classical logic, this can be done quite easily if we interpret atomic
propositional letters using the truth values true and false, as explained in Section
11.11. Then, the crucial point is that every provable proposition (say in N G⇒,∨,∧,⊥

c )
has the value true no matter how we assign truth values to the letters in our propo-
sition. In this case, we say that P is valid.

The fact that provability implies validity is called soundness or consistency of
the proof system. The soundness of the proof system N G⇒,∨,∧,⊥

c is easy to prove,
as sketched in Section 11.11.

We now have a method to show that a proposition P is not provable: find some
truth assignment that makes P false.

Such an assignment falsifying P is called a counterexample. If P has a counterex-
ample, then it can’t be provable because if it were, then by soundness it would be
true for all possible truth assignments.

But now, another question comes up. If a proposition is not provable, can we
always find a counterexample for it? Equivalently, is every valid proposition prov-
able? If every valid proposition is provable, we say that our proof system is complete
(this is the completeness of our system).

The system N G⇒,∨,∧,⊥
c is indeed complete. In fact, all the classical systems that

we have discussed are sound and complete. Completeness is usually a lot harder
to prove than soundness. For first-order classical logic, this is known as Gödel’s
completeness theorem (1929). Again, we refer our readers to Gallier [4], van Dalen
[24], or Huth and Ryan [15] for a thorough discussion of these matters. In the first-
order case, one has to define first-order structures (or first-order models).

What about intuitionistic logic?
Well, one has to come up with a richer notion of semantics because it is no longer

true that if a proposition is valid (in the sense of our two-valued semantics using
true, false), then it is provable. Several semantics have been given for intuitionistic
logic. In our opinion, the most natural is the notion of the Kripke model, presented
in Section 11.12. Then, again, soundness and completeness hold for intuitionistic
proof systems, even in the first-order case (see Section 11.12 and van Dalen [24]).

In summary, semantic models can be used to provide counterexamples of un-
provable propositions. This is a quick method to establish that a proposition is not
provable.

We close this section by repeating something we said earlier: there isn’t just one
logic but instead, many logics. In addition to classical and intuitionistic logic (propo-
sitional and first-order), there are modal logics, higher-order logics, and linear logic,
a logic due to Jean-Yves Girard, attempting to unify classical and intuitionistic logic
(among other goals).

An excellent introduction to these logics can be found in Troelstra and Schwicht-
enberg [23]. We warn our readers that most presentations of linear logic are (very)
difficult to follow. This is definitely true of Girard’s seminal paper [10]. A more ap-
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Fig. 11.11 Jean-Yves Girard, 1947–

proachable version can be found in Girard, Lafont, and Taylor [9], but most readers
will still wonder what hit them when they attempt to read it.

In computer science, there is also dynamic logic, used to prove properties of
programs and temporal logic and its variants (originally invented by A. Pnueli), to
prove properties of real-time systems. So logic is alive and well.

We now add quantifiers to our language and give the corresponding inference
rules.

11.16 Adding Quantifiers; First-Order Languages

As we mentioned in Section 11.1, atomic propositions may contain variables. The
intention is that such variables correspond to arbitrary objects. An example is

human(x)⇒ needs-to-drink(x).

Now in mathematics, we usually prove universal statements, that is statements that
hold for all possible “objects,” or existential statements, that is, statements asserting
the existence of some object satisfying a given property. As we saw earlier, we assert
that every human needs to drink by writing the proposition

∀x(human(x)⇒ needs-to-drink(x)).

Observe that once the quantifier ∀ (pronounced “for all” or “for every”) is applied
to the variable x, the variable x becomes a placeholder and replacing x by y or any
other variable does not change anything. What matters is the locations to which the
outer x points in the inner proposition. We say that x is a bound variable (sometimes
a “dummy variable”).

If we want to assert that some human needs to drink we write

∃x(human(x)⇒ needs-to-drink(x));

again, once the quantifier ∃ (pronounced “there exists”) is applied to the variable x,
the variable x becomes a placeholder. However, the intended meaning of the second
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proposition is very different and weaker than the first. It only asserts the existence
of some object satisfying the statement

human(x)⇒ needs-to-drink(x).

Statements may contain variables that are not bound by quantifiers.

Example 11.12. For example, in

∃x parent(x,y)

the variable x is bound but the variable y is not. Here the intended meaning of
parent(x,y) is that x is a parent of y, and the intended meaning of ∃x parent(x,y)
is that any given y has some parent x.

Variables that are not bound are called free. The proposition

∀y∃x parent(x,y),

which contains only bound variables is meant to assert that every y has some par-
ent x. Typically, in mathematics, we only prove statements without free variables.
However, statements with free variables may occur during intermediate stages of a
proof.

The intuitive meaning of the statement ∀xP is that P holds for all possible objects
x, and the intuitive meaning of the statement ∃xP is that P holds for some object x.
Thus, we see that it would be useful to use symbols to denote various objects.

Example 11.13. For example, if we want to assert some facts about the “parent”
predicate, we may want to introduce some constant symbols (for short, constants)
such as “Jean,” “Mia,” and so on and write

parent(Jean,Mia)

to assert that Jean is a parent of Mia.

Often we also have to use function symbols (or operators, constructors), for in-
stance, to write a statement about numbers: +, ∗, and so on. Using constant symbols,
function symbols, and variables, we can form terms, such as

(x∗ x+1)∗ (3∗ y+2).

In addition to function symbols, we also use predicate symbols, which are names
for atomic properties. We have already seen several examples of predicate symbols:
“human,” “parent.” So, in general, when we try to prove properties of certain classes
of objects (people, numbers, strings, graphs, and so on), we assume that we have a
certain alphabet consisting of constant symbols, function symbols, and predicate
symbols. Using these symbols and an infinite supply of variables (assumed distinct
from the variables we use to label premises) we can form terms and predicate terms.
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We say that we have a (logical) language. Using this language, we can write com-
pound statements.

Let us be a little more precise.

Definition 11.25. In a first-order language L in addition to the logical connectives
⇒,∧,∨,¬,⊥, ∀, and ∃, we have a set L of nonlogical symbols consisting of

(i) A set CS of constant symbols, c1,c2, . . . ,.
(ii) A set FS of function symbols, f1, f2, . . . ,. Each function symbol f has a rank

n f ≥ 1, which is the number of arguments of f .
(iii) A set PS of predicate symbols, P1,P2, . . . ,. Each predicate symbol P has a rank

nP ≥ 0, which is the number of arguments of P. Predicate symbols of rank 0 are
propositional symbols as in earlier sections.

(iv) The equality predicate = is added to our language when we want to deal with
equations.

(v) First-order variables t1, t2, . . . used to form quantified formulae.

The difference between function symbols and predicate symbols is that function
symbols are interpreted as functions defined on a structure (e.g., addition, +, on N),
whereas predicate symbols are interpreted as properties of objects, that is, they take
the value true or false.

Example 11.14. An example is the language of Peano arithmetic, L = {0,S,+,∗,=
}, where 0 is a constant symbol, S is a function symbol with one argument, and +,∗
are function symbols with two arguments. Here, the intended structure is N, 0 is of
course zero, S is interpreted as the function S(n) = n+1, the symbol + is addition,
∗ is multiplication, and = is equality.

Using a first-order language L, we can form terms, predicate terms, and formulae.

Definition 11.26. The terms over L are the following expressions.

(i) Every variable t is a term.
(ii) Every constant symbol c ∈ CS, is a term.

(iii) If f ∈ FS is a function symbol taking n arguments and τ1, . . . ,τn are terms
already constructed, then f (τ1, . . . ,τn) is a term.

Definition 11.27. The predicate terms over L are the following expressions.

(i) If P ∈ PS is a predicate symbol taking n arguments and τ1, . . . ,τn are terms al-
ready constructed, then P(τ1, . . . ,τn) is a predicate term. When n = 0, the pred-
icate symbol P is a predicate term called a propositional symbol.

(ii) When we allow the equality predicate, for any two terms τ1 and τ2, the expres-
sion τ1 = τ2 is a predicate term. It is usually called an equation.

Definition 11.28. The (first-order) formulae over L are the following expressions.

(i) Every predicate term P(τ1, . . . ,τn) is an atomic formula. This includes all
propositional letters. We also view ⊥ (and sometimes >) as an atomic formula.
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(ii) When we allow the equality predicate, every equation τ1 = τ2 is an atomic
formula.

(iii) If P and Q are formulae already constructed, then P⇒Q, P∧Q, P∨Q, ¬P are
compound formulae. We treat P≡Q as an abbreviation for (P⇒Q)∧(Q⇒P),
as before.

(iv) If P is a formula already constructed and t is any variable, then ∀tP and ∃tP are
quantified compound formulae.

All this can be made very precise but this is quite tedious. Our primary goal is
to explain the basic rules of logic and not to teach a full-fledged logic course. We
hope that our intuitive explanations will suffice, and we now come to the heart of the
matter, the inference rules for the quantifiers. Once again, for a complete treatment,
readers are referred to Gallier [4], van Dalen [24], or Huth and Ryan [15].

Unlike the rules for ⇒,∨,∧ and ⊥, which are rather straightforward, the rules
for quantifiers are more subtle due to the presence of variables (occurring in terms
and predicates). We have to be careful to forbid inferences that would yield “wrong”
results and for this we have to be very precise about the way we use free variables.
More specifically, we have to exercise care when we make substitutions of terms for
variables in propositions.

Example 11.15. For example, say we have the predicate “odd,” intended to express
that a number is odd. Now we can substitute the term (2y+1)2 for x in odd(x) and
obtain

odd((2y+1)2).

Definition 11.29. More generally, if P(t1, t2, . . . , tn) is a statement containing the
free variables t1, . . . , tn and if τ1, . . . ,τn are terms, we can form the new statement

P[τ1/t1, . . . ,τn/tn]

obtained by substituting the term τi for all free occurrences of the variable ti, for
i = 1, . . . ,n.

By the way, we denote terms by the Greek letter τ because we use the letter t for
a variable and using t for both variables and terms would be confusing.

However, if P(t1, t2, . . . , tn) contains quantifiers, some bad things can happen;
namely, some of the variables occurring in some term τi may become quantified
when τi is substituted for ti.

Example 11.16. For example, consider

∀x∃yP(x,y,z)

which contains the free variable z and substitute the term x+ y for z; we get

∀x∃yP(x,y,x+ y).

We see that the variables x and y occurring in the term x+y become bound variables
after substitution. We say that there is a “capture of variables.”
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This is not what we intended to happen. To fix this problem, we recall that bound
variables are really place holders, so they can be renamed without changing any-
thing. Therefore, we can rename the bound variables x and y in ∀x∃yP(x,y,z) to u
and v, getting the statement ∀u∃vP(u,v,z) and now, the result of the substitution is

∀u∃vP(u,v,x+ y).

Again, all this needs to be explained very carefuly but this can be done.
Finally, here are the inference rules for the quantifiers, first stated in a natural

deduction style and then in sequent style.

11.17 The Proof Systems N ⇒,∧,∨,∀,∃,⊥
c and N G⇒,∧,∨,∀,∃,⊥

c

It is assumed that we use two disjoint sets of variables for labeling premises (x,y, . . .)
and free variables (t,u,v, . . .). As we show, the ∀-introduction rule and the ∃-
elimination rule involve a crucial restriction on the occurrences of certain variables.
Remember, variables are terms.

Definition 11.30. The inference rules for the quantifiers are

∀-introduction:
If D is a deduction tree for P[u/t] from the premises Γ , then

Γ

D

P[u/t]

∀tP
is a deduction tree for ∀tP from the premises Γ . Here, u must be a variable that does
not occur free in any of the propositions in Γ or in ∀tP. The notation P[u/t] stands
for the result of substituting u for all free occurrences of t in P.

Recall that Γ denotes the multiset of premises of the deduction tree D , so if D
only has one node, then Γ = {P[u/t]} and t should not occur in P. See Example
11.18 which illustrates why this restriction is necessary.

∀-elimination:
If D is a deduction tree for ∀tP from the premises Γ , then

Γ

D

∀tP
P[τ/t]

is a deduction tree for P[τ/t] from the premises Γ . Here τ is an arbitrary term and it
is assumed that bound variables in P have been renamed so that none of the variables
in τ are captured after substitution.
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∃-introduction:
If D is a deduction tree for P[τ/t] from the premises Γ , then

Γ

D

P[τ/t]

∃tP
is a deduction tree for ∃tP from the premises Γ . As in ∀-elimination, τ is an arbitrary
term and the same proviso on bound variables in P applies (no capture of variables
when τ is substituted).

∃-elimination:
If D1 is a deduction tree for ∃tP from the premises Γ , and if D2 is a deduction

tree for C from the premises in the multiset ∆ and one or more occurrences of P[u/t],
then

Γ

D1

∃tP

∆ ,P[u/t]x

D2

C
x

C

is a deduction tree of C from the set of premises in the multiset Γ ,∆ . Here, u must
be a variable that does not occur free in any of the propositions in ∆ , ∃tP, or C, and
all premises P[u/t] labeled x are discharged.

In the ∀-introduction and the ∃-elimination rules, the variable u is called the
eigenvariable of the inference.

In the above rules, Γ or ∆ may be empty; P,C denote arbitrary propositions
constructed from a first-order language L; D ,D1,D2 are deductions, possibly a one-
node tree; and t is any variable.

Definition 11.31. The system of first-order classical logic N ⇒,∨,∧,⊥,∀,∃
c is obtained

by adding the above rules to the system of propositional classical logic N ⇒,∨,∧,⊥
c .

The system of first-order intuitionistic logic N ⇒,∨,∧,⊥,∀,∃
i is obtained by adding the

above rules to the system of propositional intuitionistic logic N ⇒,∨,∧,⊥
i . Deduction

trees and proof trees are defined as in the propositional case except that the quantifier
rules are also allowed.

Using sequents, the quantifier rules in first-order logic are expressed as follows:

Definition 11.32. The inference rules for the quantifiers in Gentzen-sequent style
are

Γ → P[u/t]
Γ →∀tP (∀-intro)

Γ →∀tP
Γ → P[τ/t]

(∀-elim),

where in (∀-intro), u does not occur free in Γ or ∀tP;
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Γ → P[τ/t]
Γ →∃tP (∃-intro)

Γ →∃tP z : P[u/t],∆ →C
Γ ∪∆ →C

(∃-elim),

where in (∃-elim), z : P[u/t] /∈ ∆ , and u does not occur free in Γ , ∃tP, or C. Again,
t is any variable.

The variable u is called the eigenvariable of the inference.

Definition 11.33. The systems N G⇒,∨,∧,⊥,∀,∃
c and N G⇒,∨,∧,⊥,∀,∃

i are defined from
the systems N G⇒,∨,∧,⊥

c and N G⇒,∨,∧,⊥
i , respectively, by adding the above rules.

As usual, a deduction tree is a either a one-node tree or a tree constructed using the
above rules and a proof tree is a deduction tree whose conclusion is a sequent with
an empty set of premises (a sequent of the form /0→ P).

When we say that a proposition P is provable from Γ we mean that we can
construct a proof tree whose conclusion is P and whose set of premises is Γ in
one of the systems N ⇒,∧,∨,⊥,∀,∃

c or N G⇒,∧,∨,⊥,∀,∃
c . Therefore, as in propositional

logic, when we use the word “provable” unqualified, we mean provable in classical
logic. Otherwise, we say intuitionistically provable.

It is not hard to show that the proof systems N ⇒,∧,∨,⊥,∀,∃
c and N G⇒,∧,∨,⊥,∀,∃

c

are equivalent (and similarly for N ⇒,∧,∨,⊥,∀,∃
i and N G⇒,∧,∨,⊥,∀,∃

i ). We leave the
details as Problem 11.16.

A first look at the above rules shows that universal formulae ∀tP behave some-
what like infinite conjunctions and that existential formulae ∃tP behave somewhat
like infinite disjunctions.

The ∀-introduction rule looks a little strange but the idea behind it is actually
very simple: because u is totally unconstrained, if P[u/t] is provable (from Γ ), then
intuitively P[u/t] holds of any arbitrary object, and so, the statement ∀tP should also
be provable (from Γ ). Note that the tree

P[u/t]

∀tP
is generally not a deduction, because the deduction tree above ∀tP is a one-node
tree consisting of the single premise P[u/t], and u occurs in P[u/t] unless t does not
occur in P.

The meaning of the ∀-elimination is that if ∀tP is provable (from Γ ), then P
holds for all objects and so, in particular for the object denoted by the term τ; that
is, P[τ/t] should be provable (from Γ ).

The ∃-introduction rule is dual to the ∀-elimination rule. If P[τ/t] is provable
(from Γ ), this means that the object denoted by τ satisfies P, so ∃tP should be
provable (this latter formula asserts the existence of some object satisfying P, and τ

is such an object).
The ∃-elimination rule is reminiscent of the∨-elimination rule and is a little more

tricky. It goes as follows. Suppose that we proved ∃tP (from Γ ). Moreover, suppose
that for every possible case P[u/t] we were able to prove C (from Γ ). Then as we
have “exhausted” all possible cases and as we know from the provability of ∃tP that
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some case must hold, we can conclude that C is provable (from Γ ) without using
P[u/t] as a premise.

Like the ∨-elimination rule, the ∃-elimination rule is not very constructive. It
allows making a conclusion (C) by considering alternatives without knowing which
one actually occurs.

Remark: Analogously to disjunction, in (first-order) intuitionistic logic, if an exis-
tential statement ∃tP is provable, then from any proof of ∃tP, some term τ can be
extracted so that P[τ/t] is provable. Such a term τ is called a witness. The witness
property is not easy to prove. It follows from the fact that intuitionistic proofs have
a normal form (see Section 11.13). However, no such property holds in classical
logic.

We can illustrate, again, the fact that classical logic allows for nonconstructive
proofs by re-examining the example at the end of Section 11.6.

There we proved that if
√

2
√

2
is rational, then a =

√
2 and b =

√
2 are both

irrational numbers such that ab is rational, and if
√

2
√

2
is irrational, then a =

√
2
√

2

and b =
√

2 are both irrational numbers such that ab is rational. By ∃-introduction,

we deduce that if
√

2
√

2
is rational, then there exist some irrational numbers a,b so

that ab is rational, and if
√

2
√

2
is irrational, then there exist some irrational numbers

a,b so that ab is rational. In classical logic, as P∨¬P is provable, by ∨-elimination,
we just proved that there exist some irrational numbers a and b so that ab is rational.

However, this argument does not give us explicitly numbers a and b with the
required properties. It only tells us that such numbers must exist. Now it turns out

that
√

2
√

2
is indeed irrational (this follows from the Gel’fond–Schneider theorem,

a hard theorem in number theory). Furthermore, there are also simpler explicit so-
lutions such as a =

√
2 and b = log2 9, as the reader should check.

The following proposition lists some basic properties of substitutions. The easy
proof is left as an exercise.

Proposition 11.10. The following properties of substitution in a first-order formula
hold.

(P∧Q)[τ/t] = P[τ/t]∧Q[τ/t]

(P∨Q)[τ/t] = P[τ/t]∨Q[τ/t]

(P⇒ Q)[τ/t] = P[τ/t]⇒ Q[τ/t]

(¬P)[τ/t] = ¬P[τ/t]

(∀sP)[τ/t] = ∀sP[τ/t]

(∃sP)[τ/t] = ∃sP[τ/t],

for any term τ such that no variable in τ is captured during the substitution (in
particular, in the last two cases, the variable s does not occur in τ).
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Example 11.17. Here is an example of a proof in the system N ⇒,∨,∧,⊥,∀,∃
c (actually,

in the system N ⇒,∨,∧,⊥,∀,∃
i ) of the formula ∀t(P∧Q)⇒∀tP∧∀tQ.

∀t(P∧Q)x

P[u/t]∧Q[u/t]

P[u/t]

∀tP

∀t(P∧Q)x

P[u/t]∧Q[u/t]

Q[u/t]

∀tQ
∀tP∧∀tQ

x

∀t(P∧Q)⇒∀tP∧∀tQ
In the above proof, u is a new variable, that is, a variable that does not occur free in
P or Q.

The reader should show that ∀tP∧∀tQ⇒∀t(P∧Q) is also provable in the system
N ⇒,∨,∧,⊥,∀,∃

i . However, in general, one can’t just replace ∀ by ∃ (or ∧ by ∨) and
still obtain provable statements. For example, ∃tP∧∃tQ⇒∃t(P∧Q) is not provable
at all. We leave it as an exercise to find an interpretation of the predicate symbols P
and Q that yields a counter-example.

Example 11.18. Here is an example in which the ∀-introduction rule is applied il-
legally, and thus, yields a statement that is actually false (not provable). In the in-
correct “proof” below, P is an atomic predicate symbol taking two arguments (e.g.,
“parent”) and 0 is a constant denoting zero.

P(u,0)x

illegal step!
∀tP(t,0)

Implication-Intro x

P(u,0)⇒∀tP(t,0)
Forall-Intro

∀s(P(s,0)⇒∀tP(t,0))
Forall-Elim

P(0,0)⇒∀tP(t,0)
The problem is that the variable u occurs free in the premise P[u/t,0] = P(u,0)

and therefore, the application of the ∀-introduction rule in the first step is illegal.
However, note that this premise is discharged in the second step and so, the appli-
cation of the ∀-introduction rule in the third step is legal. The (false) conclusion of
this faulty proof is that P(0,0)⇒ ∀tP(t,0) is provable. Indeed, there are plenty of
properties such that the fact that the single instance P(0,0) holds does not imply that
P(t,0) holds for all t.

Remark: The above example shows why it is desirable to have premises that are
universally quantified. A premise of the form ∀tP can be instantiated to P[u/t], using
∀-elimination, where u is a brand new variable. Later on, it may be possible to use ∀-
introduction without running into trouble with free occurrences of u in the premises.
But we still have to be very careful when we use ∀-introduction or ∃-elimination.
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Here are some useful equivalences involving quantifiers. The first two are analo-
gous to the de Morgan laws for ∧ and ∨.

Proposition 11.11. The following equivalences are provable in classical first-order
logic.

¬∀tP≡ ∃t¬P

¬∃tP≡ ∀t¬P

∀t(P∧Q)≡ ∀tP∧∀tQ
∃t(P∨Q)≡ ∃tP∨∃tQ.

In fact, the last three and ∃t¬P⇒ ¬∀tP are provable intuitionistically. Moreover,
the formulae

∃t(P∧Q)⇒∃tP∧∃tQ and ∀tP∨∀tQ⇒∀t(P∨Q)

are provable in intuitionistic first-order logic (and thus, also in classical first-order
logic).

Proof. Left as an exercise to the reader.

Before concluding this section, let us give a few more examples of proofs using
the rules for the quantifiers.

11.18 Examples of First-Order Proof Trees

First let us prove that
∀tP≡ ∀uP[u/t],

where u is any variable not free in ∀tP and such that u is not captured during the
substitution. This rule allows us to rename bound variables (under very mild condi-
tions). We have the proofs

(∀tP)α

P[u/t]

∀uP[u/t]
α

∀tP⇒∀uP[u/t]

and

(∀uP[u/t])α

P[u/t]

∀tP
α

∀uP[u/t]⇒∀tP
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Here is now a proof (intuitionistic) of

∃t(P⇒ Q)⇒ (∀tP⇒ Q),

where t does not occur (free or bound) in Q.

(∃t(P⇒ Q))z

(P[u/t]⇒ Q)x

(∀tP)y

P[u/t]

Q
x (∃-elim)

Q
y

∀tP⇒ Q
z

∃t(P⇒ Q)⇒ (∀tP⇒ Q)

In the above proof, u is a new variable that does not occur in Q, ∀tP, or ∃t(P⇒
Q). Because t does not occur in Q, we have

(P⇒ Q)[u/t] = P[u/t]⇒ Q.

The converse requires (RAA) and is a bit more complicated. Here is a classical proof
in which (P⇒ Q) is abbreviated as A.

(¬∃tA)y

P[u/t]α ,Qβ

Q
α

P[u/t]⇒ Q

∃t(P⇒ Q)

⊥
β

¬Q

(∀tP⇒ Q)x

(¬∃tA)y

¬P[u/t]δ P[u/t]γ

⊥
Q

γ

P[u/t]⇒ Q

∃t(P⇒ Q)

⊥
δ (RAA)

P[u/t]

∀tP
Q

⊥
y (RAA)

∃t(P⇒ Q)
x

(∀tP⇒ Q)⇒∃t(P⇒ Q)

Next, we give intuitionistic proofs of

(∃tP∧Q)⇒∃t(P∧Q)

and
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∃t(P∧Q)⇒ (∃tP∧Q),

where t does not occur (free or bound) in Q.
Here is an intuitionistic proof of the first implication.

(∃tP∧Q)x

∃tP

P[u/t]y
(∃tP∧Q)x

Q

P[u/t]∧Q

∃t(P∧Q)
y (∃-elim)

∃t(P∧Q)
x

(∃tP∧Q)⇒∃t(P∧Q)

In the above proof, u is a new variable that does not occur in ∃tP or Q. Because
t does not occur in Q, we have

(P∧Q)[u/t] = P[u/t]∧Q.

Here is an intuitionistic proof of the converse in which (P∧Q) is abbreviated as A.

(∃tA)x

(P[u/t]∧Q)y

P[u/t]

∃tP
y (∃-elim)

∃tP
(∃tA)x

(P[u/t]∧Q)z

Q
z (∃-elim)

Q

∃tP∧Q
x

∃t(P∧Q)⇒ (∃tP∧Q)

Finally, we give a proof (intuitionistic) of

(∀tP∨Q)⇒∀t(P∨Q),

where t does not occur (free or bound) in Q.

(∀tP∨Q)z

(∀tP)x

P[u/t]

P[u/t]∨Q

∀t(P∨Q)

Qy

P[u/t]∨Q

∀t(P∨Q)
x,y (∨-elim)

∀t(P∨Q)
z

(∀tP∨Q)⇒∀t(P∨Q)

In the above proof, u is a new variable that does not occur in ∀tP or Q. Because
t does not occur in Q, we have
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(P∨Q)[u/t] = P[u/t]∨Q.

The converse requires (RAA).
The useful above equivalences (and more) are summarized in the following

propositions.

Proposition 11.12. (1) The following equivalences are provable in classical first-
order logic, provided that t does not occur (free or bound) in Q.

∀tP∧Q ≡ ∀t(P∧Q)

∃tP∨Q ≡ ∃t(P∨Q)

∃tP∧Q ≡ ∃t(P∧Q)

∀tP∨Q ≡ ∀t(P∨Q).

Furthermore, the first three are provable intuitionistically and so is (∀tP∨Q)⇒
∀t(P∨Q).

(2) The following equivalences are provable in classical logic, provided that t
does not occur (free or bound) in P.

∀t(P⇒ Q) ≡ (P⇒∀tQ)

∃t(P⇒ Q) ≡ (P⇒∃tQ).

Furthermore, the first one is provable intuitionistically and so is ∃t(P⇒Q)⇒ (P⇒
∃tQ).

(3) The following equivalences are provable in classical logic, provided that t
does not occur (free or bound) in Q.

∀t(P⇒ Q) ≡ (∃tP⇒ Q)

∃t(P⇒ Q) ≡ (∀tP⇒ Q).

Furthermore, the first one is provable intuitionistically and so is ∃t(P ⇒ Q) ⇒
(∀tP⇒ Q).

Proofs that have not been supplied are left as exercises.
Obviously, every first-order formula that is provable intuitionistically is also

provable classically and we know that there are formulae that are provable clas-
sically but not provable intuitionistically. Therefore, it appears that classical logic
is more general than intuitionistic logic. However, this is not quite so because there
is a way of translating classical logic into intuitionistic logic. To be more precise,
every classical formula A can be translated into a formula A∗, where A∗ is classically
equivalent to A and A is provable classically iff A∗ is provable intuitionistically. Var-
ious translations are known, all based on a “trick” involving double-negation (This
is because ¬¬¬A and ¬A are intuitionistically equivalent). Translations were given
by Kolmogorov (1925), Gödel (1933), and Gentzen (1933).

For example, Gödel used the following translation.
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Fig. 11.12 Andrey N. Kolmogorov, 1903–1987 (left) and Kurt Gödel, 1906–1978 (right)

A∗ = ¬¬A, if A is atomic
(¬A)∗ = ¬A∗

(A∧B)∗ = (A∗∧B∗)

(A⇒ B)∗ = ¬(A∗∧¬B∗)

(A∨B)∗ = ¬(¬A∗∧¬B∗)

(∀xA)∗ = ∀xA∗

(∃xA)∗ = ¬∀x¬A∗.

Actually, if we restrict our attention to propositions (i.e., formulae without quan-
tifiers), a theorem of V. Glivenko (1929) states that if a proposition A is provable
classically, then ¬¬A is provable intuitionistically. In view of these results, the pro-
ponents of intuitionistic logic claim that classical logic is really a special case of
intuitionistic logic. However, the above translations have some undesirable proper-
ties, as noticed by Girard. For more details on all this; see Gallier [6].

11.19 First-Order Theories; Peano Arithmetic

The way we presented deduction trees and proof trees may have given our readers
the impression that the set of premises Γ was just an auxiliary notion. Indeed, in
all of our examples, Γ ends up being empty. However, nonempty Γ s are crucially
needed if we want to develop theories about various kinds of structures and objects,
such as the natural numbers, groups, rings, fields, trees, graphs, sets, and the like.
Indeed, we need to make definitions about the objects we want to study and we need
to state some axioms asserting the main properties of these objects. We do this by
putting these definitions and axioms in Γ .

Actually, we have to allow Γ to be infinite but we still require that our deduction
trees be finite; they can only use finitely many of the formulae in Γ .

Definition 11.34. Given a (possibly infinite) set of premises Γ , the set of all formu-
lae P such that ∆ → P is provable, where ∆ is any finite subset of Γ , is called a
theory (or first-order theory).
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Of course we have the usual problem of consistency: if we are not careful, our
theory may be inconsistent, that is, it may consist of all formulae.

Let us give two examples of theories.
Our first example is the theory of equality. Indeed, our readers may have noticed

that we have avoided dealing with the equality relation. In practice, we can’t do that.

Example 11.19. Given a language L with a given supply of constant, function, and
predicate symbols, the theory of equality consists of the following formulae taken
as axioms.

∀x(x = x)

∀x1 · · ·∀xn∀y1 · · ·∀yn[(x1 = y1∧·· ·∧ xn = yn)

⇒ f (x1, . . . ,xn) = f (y1, . . . ,yn)]

∀x1 · · ·∀xn∀y1 · · ·∀yn[(x1 = y1∧·· ·∧ xn = yn)∧P(x1, . . . ,xn)

⇒ P(y1, . . . ,yn)],

for all function symbols (of n arguments) and all predicate symbols (of n arguments),
including the equality predicate, =, itself.

It is not immediately clear from the above axioms that = is symmetric and tran-
sitive but this can be shown easily.

Example 11.20. Our second example is the first-order theory of the natural numbers
known as Peano arithmetic (for short, PA). In this case the language L consists of the
nonlogical symbols {0,S,+,∗,=}. Here, we have the constant 0 (zero), the unary
function symbol S (for successor function; the intended meaning is S(n)= n+1) and
the binary function symbols + (for addition) and ∗ (for multiplication). In addition
to the axioms for the theory of equality we have the following axioms:

∀x¬(S(x) = 0)
∀x∀y(S(x) = S(y)⇒ x = y)

∀x(x+0 = x)

∀x∀y(x+S(y) = S(x+ y))

∀x(x∗0 = 0)
∀x∀y(x∗S(y) = x∗ y+ x)

[A(0)∧∀x(A(x)⇒ A(S(x)))]⇒∀nA(n),

where A is any first-order formula with one free variable.
This last axiom is the induction axiom. Observe how + and ∗ are defined re-

cursively in terms of 0 and S and that there are infinitely many induction axioms
(countably many).

Many properties that hold for the natural numbers (i.e., are true when the symbols
0,S,+,∗ have their usual interpretation and all variables range over the natural num-
bers) can be proven in this theory (Peano arithmetic), but not all. This is another very
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Fig. 11.13 Giuseppe Peano, 1858–1932

famous result of Gödel known as Gödel’s incompleteness theorem (1931). However,
the topic of incompleteness is definitely outside the scope in this book, so we do not
say any more about it.

Fig. 11.14 Kurt Gödel with Albert Einstein

However, we feel that it should be intructive for the reader to see how simple
properties of the natural numbers can be derived (in principle) in Peano arithmetic.

First it is convenient to introduce abbreviations for the terms of the form Sn(0)
(where Sn denotes the n-fold composition of S with itself) which represent the nat-
ural numbers. Thus, we add a countable supply of constants, 0,1,2,3, . . . , to denote
the natural numbers and add the axioms

n = Sn(0),

for all natural numbers n. We also write n+1 for S(n).
Let us illustrate the use of the quantifier rules involving terms (∀-introduction,

∀-elimination and ∃-introduction) by proving some simple properties of the natural
numbers, namely, being even or odd. We also prove a property of the natural number
that we used before (in the proof that

√
2 is irrational), namely, that every natural

number is either even or odd. For this, we add the predicate symbols “even” and
“odd” to our language, and assume the following axioms defining these predicates:
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∀n(even(n)≡ ∃k(n = 2∗ k))

∀n(odd(n)≡ ∃k(n = 2∗ k+1)).

Consider the term, 2∗(m+1)∗(m+2)+1, where m is any given natural number.
We need a few preliminary results.

Proposition 11.13. The statement odd(2 ∗ (m + 1) ∗ (m + 2) + 1) is provable in
Peano arithmetic.

As an auxiliary lemma, we first prove

Proposition 11.14. The formula

∀xodd(2∗ x+1)

is provable in Peano arithmetic.

Proof. Let p be a variable not occurring in any of the axioms of Peano arithmetic
(the variable p stands for an arbitrary natural number). From the axiom,

∀n(odd(n)≡ ∃k(n = 2∗ k+1)),

by ∀-elimination where the term 2∗ p+1 is substituted for the variable n we get

odd(2∗ p+1)≡ ∃k(2∗ p+1 = 2∗ k+1). (∗)

Now we can think of the provable equation 2∗ p+1 = 2∗ p+1 as

(2∗ p+1 = 2∗ k+1)[p/k],

so by ∃-introduction, we can conclude that

∃k(2∗ p+1 = 2∗ k+1),

which, by (∗), implies that
odd(2∗ p+1).

But now, because p is a variable not occurring free in the axioms of Peano arith-
metic, by ∀-introduction, we conclude that

∀xodd(2∗ x+1),

as claimed.

Proof (Proof of Proposition 11.13.). If we use ∀-elimination in formula of Proposi-
tion 11.14 where we substitute the term τ = (m+1)∗ (m+2) for x, we get

odd(2∗ (m+1)∗ (m+2)+1),

as claimed
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Now we wish to prove

Proposition 11.15. The formula

∀n(even(n)∨odd(n))

is provable in Peano arithmetic.

Proof. We use the induction principle of Peano arithmetic with

A(n) = even(n)∨odd(n).

For the base case, n = 0, because 0 = 2∗0 (which can be proven from the Peano
axioms), we see that even(0) holds and so even(0)∨odd(0) is proven.

For n = 1, because 1 = 2∗0+1 (which can be proven from the Peano axioms),
we see that odd(1) holds and so even(1)∨odd(1) is proven.

For the induction step, we may assume that A(n) has been proven and we need
to prove that A(n+1) holds.

So, assume that even(n)∨odd(n) holds. We do a proof by cases.
(a) If even(n) holds, by definition this means that n = 2k for some k and then,

n+1 = 2k+1, which again, by definition means that odd(n+1) holds and thus,
even(n+1)∨odd(n+1) holds.

(b) If odd(n) holds, by definition this means that n = 2k+1 for some k and then,
n+1 = 2k+2 = 2(k+1), which again, by definition means that even(n+1) holds
and thus, even(n+1)∨odd(n+1) holds.

By ∨-elimination, we conclude that even(n+1)∨odd(n+1) holds, establishing
the induction step.

Therefore, using induction, we have proven that

∀n(even(n)∨odd(n)),

as claimed.

Actually, we can show that even(n) and odd(n) are mutually exclusive as we now
prove.

Proposition 11.16. The formula

∀n¬(even(n)∧odd(n))

is provable in Peano arithmetic.

Proof. We prove this by induction. For n = 0, the statement odd(0) means that
0 = 2k+1 = S(2k), for some k. However, the first axiom of Peano arithmetic states
that S(x) 6= 0 for all x, so we get a contradiction.

For the induction step, assume that ¬(even(n)∧odd(n)) holds. We need to prove
that ¬(even(n+1)∧odd(n+1)) holds, and we can do this by using our constructive
proof-by-contradiction rule. So, assume that even(n+1)∧odd(n+1) holds. At this
stage, we realize that if we could prove that



11.19 First-Order Theories; Peano Arithmetic 665

∀n(even(n+1)⇒ odd(n)) (∗)

and
∀n(odd(n+1)⇒ even(n)), (∗∗)

then even(n+1)∧odd(n+1) would imply even(n)∧odd(n), contradicting the as-
sumption ¬(even(n)∧odd(n)). Therefore, the proof is complete if we can prove (∗)
and (∗∗).

Let’s consider the implication (∗) leaving the proof of (∗∗) as an exercise.
Assume that even(n+1) holds. Then n+1 = 2k, for some natural number k. We

can’t have k = 0 because otherwise we would have n+1 = 0, contradicting one of
the Peano axioms. But then k is of the form k = h+1 for some natural number h, so

n+1 = 2k = 2(h+1) = 2h+2 = (2h+1)+1.

By the second Peano axiom, we must have

n = 2h+1,

which proves that n is odd, as desired.
In that last proof, we made implicit use of the fact that every natural number n

different from zero is of the form n = m+ 1, for some natural number m which is
formalized as

∀n((n 6= 0)⇒∃m(n = m+1)).

This is easily proven by induction.
Having done all this work, we have finally proven (∗) and after proving (∗∗), we

will have proven that
∀n¬(even(n)∧odd(n)),

as claimed.

It is also easy to prove that

∀n(even(n)∨odd(n))

and
∀n¬(even(n)∧odd(n))

together imply that

∀n(even(n)≡ ¬odd(n)) and ∀n(odd(n)≡ ¬even(n))

are provable, facts that we used several times in Section 11.10. This is because, if

∀x(P∨Q) and ∀x¬(P∧Q)

can be deduced intuitionistically from a set of premises Γ , then

∀x(P≡ ¬Q) and ∀x(Q≡ ¬P)
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can also be deduced intuitionistically from Γ . In this case it also follows that
∀x(¬¬P≡ P) and ∀x(¬¬Q≡ Q) can be deduced intuitionistically from Γ .

Remark: Even though we proved that every nonzero natural number n is of the
form n = m+ 1, for some natural number m, the expression n− 1 does not make
sense because the predecessor function n 7→ n− 1 has not been defined yet in our
logical system. We need to define a function symbol “pred” satisfying the axioms

pred(0) = 0
∀n(pred(n+1) = n).

For simplicity of notation, we write n−1 instead of pred(n). Then we can prove that
if k 6= 0, then 2k− 1 = 2(k− 1)+ 1 (which really should be written as pred(2k) =
2pred(k) + 1). This can indeed be done by induction; we leave the details as an
exercise. We can also define substraction, −, as a function sastisfying the axioms

∀n(n−0 = n)

∀n∀m(n− (m+1) = pred(n−m)).

It is then possible to prove the usual properties of subtraction (by induction).
These examples of proofs in the theory of Peano arithmetic illustrate the fact that

constructing proofs in an axiomatized theory is a very laborious and tedious process.
Many small technical lemmas need to be established from the axioms, which renders
these proofs very lengthy and often unintuitive. It is therefore important to build up a
database of useful basic facts if we wish to prove, with a certain amount of comfort,
properties of objects whose properties are defined by an axiomatic theory (such as
the natural numbers). However, when in doubt, we can always go back to the formal
theory and try to prove rigorously the facts that we are not sure about, even though
this is usually a tedious and painful process. Human provers navigate in a “spectrum
of formality,” most of the time constructing informal proofs containing quite a few
(harmless) shortcuts, sometimes making extra efforts to construct more formalized
and rigorous arguments if the need arises.

Now what if the theory of Peano arithmetic were inconsistent! How do know that
Peano arithmetic does not imply any contradiction? This is an important and hard
question that motivated a lot of the work of Gentzen. An easy answer is that the
standard model N of the natural numbers under addition and multiplication validates
all the axioms of Peano arithmetic. Therefore, if both P and ¬P could be proven
from the Peano axioms, then both P and ¬P would be true in N, which is absurd. To
make all this rigorous, we need to define the notion of truth in a structure, a notion
explained in every logic book. It should be noted that the constructivists will object
to the above method for showing the consistency of Peano arithmetic, because it
assumes that the infinite set N exists as a completed entity. Until further notice, we
have faith in the consistency of Peano arithmetic (so far, no inconsistency has been
found).

Another very interesting theory is set theory. There are a number of axiomatiza-
tions of set theory and we discuss one of them (ZFC) very in Section 11.20.
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11.20 Basics Concepts of Set Theory

This section takes the very “naive” point of view that a set is an unordered collection
of objects, without duplicates, the collection being regarded as a single object. Hav-
ing first-order logic at our disposal, we could formalize set theory very rigorously
in terms of axioms. This was done by Zermelo first (1908) and in a more satisfac-
tory form by Zermelo and Fraenkel in 1921, in a theory known as the “Zermelo–
Fraenkel” (ZF) axioms. Another axiomatization was given by John von Neumann
in 1925 and later improved by Bernays in 1937. A modification of Bernay’s axioms
was used by Kurt Gödel in 1940. This approach is now known as “von Neumann–
Bernays” (VNB) or “Gödel–Bernays” (GB) set theory. There are many books that
give an axiomatic presentation of set theory. Among them we recommend Ender-
ton [3], which we find remarkably clear and elegant, Suppes [21] (a little more
advanced), and Halmos [12], a classic (at a more elementary level).

Fig. 11.15 Ernst F. Zermelo, 1871–1953 (left), Adolf A. Fraenkel, 1891–1965 (middle left), John
von Neumann, 1903–1957 (middle right) and Paul I. Bernays, 1888–1977 (right)

However, it must be said that set theory was first created by Georg Cantor (1845–
1918) between 1871 and 1879. However, Cantor’s work was not unanimously well
received by all mathematicians.

Fig. 11.16 Georg F. L. P. Cantor, 1845–1918

Cantor regarded infinite objects as objects to be treated in much the same way
as finite sets, a point of view that was shocking to a number of very prominent
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mathematicians who bitterly attacked him (among them, the powerful Kronecker).
Also, it turns out that some paradoxes in set theory popped up in the early 1900s, in
particular, Russell’s paradox.

Fig. 11.17 Bertrand A. W. Russell, 1872–1970

Russell’s paradox (found by Russell in 1902) has to to with the
“set of all sets that are not members of themselves,”

which we denote by
R = {x | x /∈ x}.

(In general, the notation {x | P} stand for the set of all objects satisfying the property
P.)

Now classically, either R ∈ R or R /∈ R. However, if R ∈ R, then the definition of
R says that R /∈ R; if R /∈ R, then again, the definition of R says that R ∈ R.

So we have a contradiction and the existence of such a set is a paradox. The
problem is that we are allowing a property (here, P(x) = x /∈ x), which is “too wild”
and circular in nature. As we show, the way out, as found by Zermelo, is to place a
restriction on the property P and to also make sure that P picks out elements from
some already given set (see the subset axioms below).

The apparition of these paradoxes prompted mathematicians, with Hilbert among
its leaders, to put set theory on firmer ground. This was achieved by Zermelo,
Fraenkel, von Neumann, Bernays, and Gödel, to name only the major players.

In what follows, we are assuming that we are working in classical logic. The
language L of set theory consists of the symbols { /0,∈,=}, where /0 is a constant
symbol (corresponding to the empty set) and ∈ is binary predicate symbol (denoting
set membership).

In set theory formalized in first-order logic, every object is a set. Instead of writ-
ing the membership relation as ∈ (X ,Y ), we write X ∈ Y , which expresses that the
set X belongs to the set Y . To reduce the level of formality, we often denote sets
using capital letters and members of sets using lower-case letters, and so we wite
a ∈ A for a belongs to the set A (even though a is also a set). Instead of ¬(a ∈ A),
we write

a /∈ A.
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We introduce various operations on sets using definitions involving the logical
connectives ∧, ∨, ¬, ∀, and ∃.

In order to ensure the existence of some of these sets requires some of the axioms
of set theory, but we are rather casual about that.

When are two sets A and B equal? This corresponds to the first axiom of set
theory, called the

Extensionality Axiom
Two sets A and B are equal iff they have exactly the same elements; that is

∀x(x ∈ A⇒ x ∈ B)∧∀x(x ∈ B⇒ x ∈ A).

The above says: every element of A is an element of B and conversely.
There is a special set having no elements at all, the empty set, denoted /0. This is

the following.

Empty Set Axiom
There is a set having no members. This set is denoted /0 and it is characterized by
the property

∀x(x /∈ /0).

Remark: Beginners often wonder whether there is more than one empty set. For
example, is the empty set of professors distinct from the empty set of potatoes?

The answer is, by the extensionality axiom, there is only one empty set.
Given any two objects a and b, we can form the set {a,b} containing exactly

these two objects. Amazingly enough, this must also be an axiom.

Pairing Axiom
Given any two objects a and b (think sets), there is a set {a,b} having as members
just a and b.

Observe that if a and b are identical, then we have the set {a,a}, which is denoted
by {a} and is called a singleton set (this set has a as its only element).

To form bigger sets, we use the union operation. This too requires an axiom.

Union Axiom (Version 1)
For any two sets A and B, there is a set A∪B called the union of A and B defined by

x ∈ A∪B iff (x ∈ A)∨ (x ∈ B).

This reads x is a member of A∪B if either x belongs to A or x belongs to B (or both).
We also write

A∪B = {x | x ∈ A or x ∈ B}.
Using the union operation, we can form bigger sets by taking unions with singletons.
For example, we can form

{a,b,c}= {a,b}∪{c}.
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Remark: We can systematically construct bigger and bigger sets by the following
method. Given any set A let

A+ = A∪{A}.
If we start from the empty set, we obtain sets that can be used to define the natural
numbers and the + operation corresponds to the successor function on the natural
numbers (i.e., n 7→ n+1).

Another operation is the power set formation. It is indeed a “powerful” operation,
in the sense that it allows us to form very big sets. For this, it is helpful to define the
notion of inclusion between sets.

Definition 11.35. Given any two sets A and B, we say that A is a subset of B (or that
A is included in B), denoted A ⊆ B, iff every element of A is also an element of B,
that is,

∀x(x ∈ A⇒ x ∈ B).

We say that A is a proper subset of B iff A ⊆ B and A 6= B. This implies that that
there is some b ∈ B with b /∈ A. We usually write A⊂ B.

Observe that the equality of two sets can be expressed by

A = B iff A⊆ B and B⊆ A.

Power Set Axiom
Given any set A, there is a set P(A) (also denoted 2A), called the power set of A
whose members are exactly the subsets of A; that is,

X ∈P(A) iff X ⊆ A.

For example, if A = {a,b,c}, then

P(A) = { /0,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}},

a set containing eight elements. Note that the empty set and A itself are always
members of P(A).

Remark: If A has n elements, it is not hard to show that P(A) has 2n elements.
For this reason, many people, including us, prefer the notation 2A for the power set
of A.

At this stage, we define intersection and complementation. For this, given any
set A and given a property P (specified by a first-order formula) we need to be able
to define the subset of A consisting of those elements satisfying P. This subset is
denoted by

{x ∈ A | P}.
Unfortunately, there are problems with this construction. If the formula P is some-
how a circular definition and refers to the subset that we are trying to define, then
some paradoxes may arise.
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The way out is to place a restriction on the formula used to define our subsets,
and this leads to the subset axioms, first formulated by Zermelo. These axioms are
also called comprehension axioms or axioms of separation.

Subset Axioms
For every first-order formula P we have the axiom

∀A∃X∀x(x ∈ X iff (x ∈ A)∧P),

where P does not contain X as a free variable. (However, P may contain x free.)
The subset axioms says that for every set A, there is a set X consisting exactly of

those elements of A so that P holds. For short, we usually write

X = {x ∈ A | P}.

As an example, consider the formula

P(B,x) = x ∈ B.

Then the subset axiom says

∀A∃X∀x(x ∈ A∧ x ∈ B),

which means that X is the set of elements that belong both to A and B.
This is called the intersection of A and B, denoted by A∩B. Note that

A∩B = {x | x ∈ A and x ∈ B}.

We can also define the relative complement of B in A, denoted A−B, given by
the formula P(B,x) = x /∈ B, so that

A−B = {x | x ∈ A and x /∈ B}.

In particular, if A is any given set and B is any subset of A, the set A−B is also
denoted B and is called the complement of B.

The algebraic properties of union, intersection, and complementation are inher-
ited from the properties of disjunction, conjunction, and negation. The following
proposition lists some of the most important properties of union, intersection, and
complementation.

Proposition 11.17. The following equations hold for all sets A,B,C.
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A∪ /0 = A

A∩ /0 = /0
A∪A = A

A∩A = A

A∪B = B∪A

A∩B = B∩A.

The last two assert the commutativity of ∪ and ∩. We have distributivity of ∩ over ∪
and of ∪ over ∩.

A∩ (B∪C) = (A∩B)∪ (A∩C)

A∪ (B∩C) = (A∪B)∩ (A∪C).

We have associativity of ∩ and ∪:

A∩ (B∩C) = (A∩B)∩C

A∪ (B∪C) = (A∪B)∪C.

Proof. Use Proposition 11.5.

Because ∧,∨, and ¬ satisfy the de Morgan laws (remember, we are dealing with
classical logic), for any set X , the operations of union, intersection, and complemen-
tation on subsets of X satisfy the de Morgan laws.

Proposition 11.18. For every set X and any two subsets A,B of X, the following
identities (de Morgan laws) hold.

A = A

(A∩B) = A∪B

(A∪B) = A∩B.

So far, the union axiom only applies to two sets but later on we need to form
infinite unions. Thus, it is necessary to generalize our union axiom as follows.

Union Axiom (Final Version)
Given any set X (think of X as a set of sets), there is a set

⋃
X defined so that

x ∈
⋃

X iff ∃B(B ∈ X ∧ x ∈ B).

This says that
⋃

X consists of all elements that belong to some member of X .
If we take X = {A,B}, where A and B are two sets, we see that⋃

{A,B}= A∪B,

and so, our final version of the union axiom subsumes our previous union axiom
which we now discard in favor of the more general version.
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Observe that ⋃
{A}= A,

⋃
{A1, . . . ,An}= A1∪·· ·∪An.

and in particular,
⋃

/0 = /0.
Using the subset axioms, we can also define infinite intersections. For every

nonempty set X , there is a set
⋂

X defined by

x ∈
⋂

X iff ∀B(B ∈ X ⇒ x ∈ B).

The existence of
⋂

X is justified as follow.: Because X is nonempty, it contains
some set, A; let

P(X ,x) = ∀B(B ∈ X ⇒ x ∈ B).

Then, the subset axioms asserts the existence of a set Y so that for every x,

x ∈ Y iff x ∈ A and P(X ,x),

which is equivalent to
x ∈ Y iff P(X ,x).

Therefore, the set Y is our desired set,
⋂

X .
Observe that⋂

{A,B}= A∩B,
⋂
{A1, . . . ,An}= A1∩·· ·∩An.

Note that
⋂

/0 is not defined. Intuitively, it would have to be the set of all sets, but
such a set does not exist, as we now show. This is basically a version of Russell’s
paradox.

Theorem 11.4. (Russell) There is no set of all sets, that is, there is no set to which
every other set belongs.

Proof. Let A be any set. We construct a set B that does not belong to A. If the
set of all sets existed, then we could produce a set that does not belong to it, a
contradiction. Let

B = {a ∈ A | a /∈ a}.
We claim that B /∈ A. We proceed by contradiction, so assume B ∈ A. However, by
the definition of B, we have

B ∈ B iff B ∈ A and B /∈ B.

Because B ∈ A, the above is equivalent to

B ∈ B iff B /∈ B,

which is a contradiction. Therefore, B /∈ A and we deduce that there is no set of all
sets.
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Remarks:

(1) We should justify why the equivalence B ∈ B iff B /∈ B is a contradiction. What
we mean by “a contradiction” is that if the above equivalence holds, then we
can derive ⊥ (falsity) and thus, all propositions become provable. This is be-
cause we can show that for any proposition P if P≡ ¬P is provable, then every
proposition is provable. We leave the proof of this fact as an easy exercise for
the reader. By the way, this holds classically as well as intuitionistically.

(2) We said that in the subset axioms, the variable X is not allowed to occur free in
P. A slight modification of Russell’s paradox shows that allowing X to be free
in P leads to paradoxical sets. For example, pick A to be any nonempty set and
set P(X ,x) = x /∈ X . Then, look at the (alleged) set

X = {x ∈ A | x /∈ X}.

As an exercise, the reader should show that X is empty iff X is nonempty,

This is as far as we can go with the elementary notions of set theory that we
have introduced so far. In order to proceed further, we need to define relations and
functions, as we did in Chapter 2.

The reader may also wonder why we have not yet discussed infinite sets. This
is because we don’t know how to show that they exist. Again, perhaps surprisingly,
this takes another axiom, the axiom of infinity. We also have to define when a set is
infinite. However, we do not go into this right now. Instead, we accept that the set of
natural numbers N exists and is infinite. Once we have the notion of a function, we
are able to show that other sets are infinite by comparing their “size” with that of N;
see Chapter 3. (This is the purpose of cardinal numbers, but this would lead us too
far afield).

Remark: In an axiomatic presentation of set theory, the natural numbers can be
defined from the empty set using the operation A 7→ A+ = A∪{A} introduced just
after the union axiom. The idea due to von Neumann is that the natural numbers,
0,1,2,3, . . . , can be viewed as concise notations for the following sets.

0 = /0

1 = 0+ = { /0}= {0}
2 = 1+ = { /0,{ /0}}= {0,1}
3 = 2+ = { /0,{ /0},{ /0,{ /0}}}= {0,1,2}

...

n+1 = n+ = {0,1,2, . . . ,n}
...

However, the above subsumes induction. Thus, we have to proceed in a different
way to avoid circularities.
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Fig. 11.18 John von Neumann

Definition 11.36. We say that a set X is inductive iff

(1) /0 ∈ X .
(2) For every A ∈ X , we have A+ ∈ X .

Axiom of Infinity
There is some inductive set.

Having done this, we make the following.

Definition 11.37. A natural number is a set that belongs to every inductive set.

Using the subset axioms, we can show that there is a set whose members are
exactly the natural numbers. The argument is very similar to the one used to prove
that arbitrary intersections exist. By the axiom of infinity, there is some inductive
set, say A. Now consider the property P(x) which asserts that x belongs to every
inductive set. By the subset axioms applied to P, there is a set N, such that

x ∈ N iff x ∈ A and P(x),

and because A is inductive and P says that x belongs to every inductive set, the above
is equivalent to

x ∈ N iff P(x);

that is, x ∈ N iff x belongs to every inductive set. Therefore, the set of all natural
numbers N does exist. The set N is also denoted ω . We can now easily show the
following.

Theorem 11.5. The set N is inductive and it is a subset of every inductive set.

Proof. Recall that /0 belongs to every inductive set; so /0 is a natural number (0).
As N is the set of natural numbers, /0 (= 0) belongs to N. Secondly, if n ∈ N, this
means that n belongs to every inductive set (n is a natural number), which implies
that n+ = n+ 1 belongs to every inductive set, which means that n+ 1 is a natural
number, that is, n+ 1 ∈ N. Because N is the set of natural numbers and because
every natural number belongs to every inductive set, we conclude that N is a subset
of every inductive set.
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� It would be tempting to view N as the intersection of the family of inductive
sets, but unfortunately this family is not a set; it is too “big” to be a set.

As a consequence of the above fact, we obtain the following.

Induction Principle for N: Any inductive subset of N is equal to N itself.
Now, in our setting, 0 = /0 and n+ = n+1, so the above principle can be restated

as follows.

Induction Principle for N (Version 2): For any subset, S⊆N, if 0∈ S and n+1∈ S
whenever n ∈ S, then S = N.

We showed how to rephrase this induction principle a little more conveniently in
terms of the notion of function in Section 2.3.

Remark: Zermelo–Fraenkel set theory (+ Choice) has three more axioms. The ax-
iom of choice, the replacement axioms, and the regularity axiom. For our purposes,
only the axiom of choice is needed, and we introduced it in Chapter 2.

The replacement axioms are needed to deal with ordinals and cardinals. The
intuition behind these axioms is that the image of a set under a functional relation
should be a set. Given any set A, if ϕ(x,y) is a first-order formula, we say that ϕ is
functional on A if

(∀x ∈ A)∀y1∀y2
(
ϕ(x,y1)∧ϕ(x,y2)⇒ y1 = y2

)
.

The following question arises: is

B = {y | (∃x ∈ A)ϕ(x,y)},

intuitively the image of A by ϕ , a set?
With the axioms introduced so far, it can be proven that the answer is no; see

Enderton [3], Chapter 9.
The axioms of replacement fix this problem by declaring that B is a set. This

implies that
H = {(x,y) | (x ∈ A)∧ϕ(x,y)}

is a subset of A×B. Without these axioms, this can’t be proven.
The replacement axioms are used to prove the validity of transfinite recursion. In

turn, transfinite recursion is used to define the ordinals; see Enderton [3], Chapter 7.
The regularity axiom (also known as foundation axiom) states that for any

nonempty set A, there is some element m ∈ A such that m∩A = /0.
The regularity axiom prevents certain undesirable properties. Among other things,

no set can be a member of itself, and there are no sets A and B such that A ∈ B and
B ∈ A.

But this axiom goes beyond. It is possible to define a hierarchy of sets Vα indexed
by the ordinals, and the axiom of regularity is equivalent to the fact that for every
set A, there is some α such that A ⊆ Vα . We say that every set is grounded. See
Enderton [3], Chapter 7.
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As we said at the beginning of this section, set theory can be axiomatized in first-
order logic. To illustrate the generality and expressiveness of first-order logic, we
conclude this section by stating nine (out of ten) of the axioms of Zermelo–Fraenkel
set theory (for short, ZFC) as first-order formulae. The language of Zermelo–
Fraenkel set theory consists of the constant /0 (for the empty set), the equality sym-
bol, and of the binary predicate symbol ∈ for set membership. It is convenient to
abbreviate ¬(x = y) as x 6= y and ¬(x ∈ y) as x /∈ y. The axioms are the equality
axioms, the axiom of choice, and the following nine axioms.

(1) ∀A∀B(∀x(x ∈ A≡ x ∈ B)⇒ A = B)

(2) ∀x(x /∈ /0)
(3) ∀a∀b∃Z∀x(x ∈ Z ≡ (x = a∨ x = b))

(4) ∀X∃Y∀x(x ∈ Y ≡ ∃B(B ∈ X ∧ x ∈ B))

(5) ∀A∃Y∀X(X ∈ Y ≡ ∀z(z ∈ X ⇒ z ∈ A))

(6) ∀A∃X∀x(x ∈ X ≡ (x ∈ A)∧P)

(7) ∃X( /0 ∈ X ∧∀y(y ∈ X ⇒ y∪{y} ∈ X))

(8) ∀t1 · · ·∀tk∀A[(∀x ∈ A)∀y1∀y2
(
ϕ(x,y1)∧ϕ(x,y2)⇒ y1 = y2

)
⇒∃B∀y(y ∈ B≡ (∃x ∈ A)ϕ(x,y))]

(9) (∀A)
(
(A 6= /0)⇒ (∃m ∈ A)(m∩A = /0)

)
,

where P is any first-order formula that does not contain X free and ϕ(x,y) is any
first-order formula whose free variables are x,y, t1, . . . , tk and does not contain B
free.

• Axiom (1) is the extensionality axiom.
• Axiom (2) is the empty set axiom.
• Axiom (3) asserts the existence of a set Y whose only members are a and b. By

extensionality, this set is unique and it is denoted {a,b}. We also denote {a,a}
by {a}.

• Axiom (4) asserts the existence of set Y which is the union of all the sets that
belong to X . By extensionality, this set is unique and it is denoted

⋃
X . When

X = {A,B}, we write
⋃{A,B}= A∪B.

• Axiom (5) asserts the existence of set Y which is the set of all subsets of A (the
power set of A). By extensionality, this set is unique and it is denoted P(A) or
2A.

• Axioms (6) are the subset axioms (or axioms of separation).
• Axiom (7) is the infinity axiom, stated using the abbreviations introduced above.
• Axioms (8) are replacement axioms.
• Axiom (9) is the regularity (or foundation) axiom.

For a comprehensive treatment of axiomatic set theory, see Enderton [3] and
Suppes [21].
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11.21 Summary

The main goal of this chapter is to describe precisely the logical rules used in mathe-
matical reasoning and the notion of a mathematical proof. A brief introduction to set
theory is also provided. We decided to describe the rules of reasoning in a formal-
ism known as a natural deduction system because the logical rules of such a system
mimic rather closely the informal rules that (nearly) everybody uses when construct-
ing a proof in everyday life. Another advantage of natural deduction systems is that
it is very easy to present various versions of the rules involving negation and thus,
to explain why the “proof-by-contradiction” proof rule or the “law of the excluded
middle” allow for the derivation of “nonconstructive” proofs. This is a subtle point
often not even touched in traditional presentations of logic. However, inasmuch as
most of our readers write computer programs and expect that their programs will
not just promise to give an answer but will actually produce results, we feel that
they will grasp rather easily the difference between constructive and nonconstruc-
tive proofs and appreciate the former, even if they are harder to find.

• We describe the syntax of propositional logic.
• The proof rules for implication are defined in a natural deduction system

(Prawitz-style).
• Deductions proceed from assumptions (or premises) using inference rules.
• The process of discharging (or closing) a premise is explained. A proof is a

deduction in which all the premises have been discharged.
• We explain how we can search for a proof using a combined bottom-up and

top-down process.
• We propose another mechanism for decribing the process of discharging a

premise and this leads to a formulation of the rules in terms of sequents and
to a Gentzen system.

• We introduce falsity ⊥ and negation ¬P as an abbrevation for P⇒⊥. We de-
scribe the inference rules for conjunction, disjunction, and negation, in both
Prawitz style and Gentzen-sequent style natural deduction systems

• One of the rules for negation is the proof-by-contradiction rule (also known as
RAA).

• We define intuitionistic and classical logic.
• We introduce the notion of a constructive (or intuitionistic) proof and discuss

the two nonconstructive culprits: P∨¬P (the law of the excluded middle) and
¬¬P⇒ P (double-negation rule).

• We show that P∨¬P and ¬¬P⇒ P are provable in classical logic
• We clear up some potential confusion involving the various versions of the rules

regarding negation.

1. RAA is not a special case of ¬-introduction.
2. RAA is not equivalent to ⊥-elimination; in fact, it implies it.
3. Not all propositions of the form P∨¬P are provable in intuitionistic logic.

However, RAA holds in intuitionistic logic plus all propositions of the form
P∨¬P.
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4. We define double-negation elimination.

• We present the de Morgan laws and prove their validity in classical logic.
• We present the proof-by-contrapositive rule and show that it is valid in classical

logic.
• We give some examples of proofs of “real” statements.
• We give an example of a nonconstructive proof of the statement: there are two

irrational numbers, a and b, so that ab is rational.
• We explain the truth-value semantics of propositional logic.
• We define the truth tables for the propositional connectives
• We define the notions of satisfiability, unsatisfiability, validity, and tautology.
• We define the satisfiability problem and the validity problem (for classical

propositional logic).
• We mention the NP-completeness of satisfiability.
• We discuss soundness (or consistency) and completeness.
• We state the soundness and completeness theorems for propositional classical

logic formulated in natural deduction.
• We explain how to use counterexamples to prove that certain propositions are

not provable.
• We give a brief introduction to Kripke semantics for propositional intuitionistic

logic.
• We define Kripke models (based on a set of worlds).
• We define validity in a Kripke model.
• We state the the soundness and completeness theorems for propositional intu-

itionistic logic formulated in natural deduction.
• We add first-order quantifiers (“for all” ∀ and “there exists” ∃) to the language

of propositional logic and define first-order logic.
• We describe free and bound variables.
• We give inference rules for the quantifiers in Prawitz-style and Gentzen sequent-

style natural deduction systems.
• We explain the eigenvariable restriction in the ∀-introduction and ∃-elimination

rules.
• We prove some “de Morgan”-type rules for the quantified formulae valid in

classical logic.
• We discuss the nonconstructiveness of proofs of certain existential statements.
• We explain briefly how classical logic can be translated into intuitionistic logic

(the Gödel translation).
• We define first-order theories and give the example of Peano arithmetic.
• We revisit the decision problem and mention the undecidability of the decision

problem for first-order logic (Church’s theorem).
• We discuss the notion of detours in proofs and the notion of proof normaliza-

tion.
• We mention strong normalization.
• We mention the correspondence between propositions and types and proofs and

typed λ -terms (the Curry–Howard isomorphism).
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• We mention Gödel’s completeness theorem for first-order logic.
• Again, we mention the use of counterexamples.
• We mention Gödel’s incompleteness theorem.
• We present informally the axioms of Zermelo–Fraenkel set theory (ZFC).
• We present Russell’s paradox, a warning against “self-referential” definitions of

sets.
• We define the empty set /0, the set {a,b} whose elements are a and b, the union

A∪B of two sets A and B, and the power set 2A of A.
• We state carefully Zermelo’s subset axioms for defining the subset {x ∈ A | P}

of elements of a given set A satisfying a property P.
• Then, we define the intersection A∩B and the relative complement A−B of two

sets A and B.
• We also define the union

⋃
A and the intersection

⋂
A of a set of sets A.

• We show that one should avoid sets that are “too big”; in particular, we prove
that there is no set of all sets.

• We define the natural numbers “a la Von Neumann.”
• We define inductive sets and state the axiom of infinity.
• We show that the natural numbers form an inductive set N, and thus, obtain an

induction principle for N.
• We summarize the axioms of Zermelo–Fraenkel set theory in first-order logic.

11.22 Problems

11.1. (a) Give a proof of the proposition P⇒ (Q⇒ P) in the system N ⇒
m .

(b) Prove that if there are deduction trees of P⇒ Q and Q⇒ R from the set of
premises Γ in the system N ⇒

m , then there is a deduction tree for P⇒ R from Γ in
N ⇒

m .

11.2. Give a proof of the proposition (P⇒ Q)⇒ ((P⇒ (Q⇒ R))⇒ (P⇒ R)) in
the system N ⇒

m .

11.3. (a) Prove the “de Morgan” laws in classical logic:

¬(P∧Q)≡ ¬P∨¬Q

¬(P∨Q)≡ ¬P∧¬Q.

(b) Prove that ¬(P∨Q)≡ ¬P∧¬Q is also provable in intuitionistic logic.
(c) Prove that the proposition (P∧¬Q)⇒¬(P⇒Q) is provable in intuitionistic

logic and ¬(P⇒ Q)⇒ (P∧¬Q) is provable in classical logic.

11.4. (a) Show that P⇒¬¬P is provable in intuitionistic logic.
(b) Show that ¬¬¬P and ¬P are equivalent in intuitionistic logic.
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11.5. Recall that an integer is even if it is divisible by 2, that is, if it can be written
as 2k, where k ∈ Z. An integer is odd if it is not divisible by 2, that is, if it can be
written as 2k+1, where k ∈ Z. Prove the following facts.

(a) The sum of even integers is even.
(b) The sum of an even integer and of an odd integer is odd.
(c) The sum of two odd integers is even.
(d) The product of odd integers is odd.
(e) The product of an even integer with any integer is even.

11.6. (a) Show that if we assume that all propositions of the form

P⇒ (Q⇒ R)

are axioms (where P,Q,R are arbitrary propositions), then every proposition is prov-
able.

(b) Show that if P is provable (intuitionistically or classically), then Q⇒ P is
also provable for every proposition Q.

11.7. (a) Give intuitionistic proofs for the equivalences listed below.

P∨P≡ P

P∧P≡ P

P∨Q≡ Q∨P

P∧Q≡ Q∧P.

(b) Give intuitionistic proofs for the equivalences listed below.

P∧ (P∨Q)≡ P

P∨ (P∧Q)≡ P.

11.8. Give intuitionistic proofs for the propositions listed below.

P⇒ (Q⇒ (P∧Q))

(P⇒ Q)⇒ ((P⇒¬Q)⇒¬P)

(P⇒ R)⇒ ((Q⇒ R)⇒ ((P∨Q)⇒ R)).

11.9. Prove that the following equivalences are provable intuitionistically.

P∧ (P⇒ Q) ≡ P∧Q

Q∧ (P⇒ Q) ≡ Q(
P⇒ (Q∧R)

)
≡
(
(P⇒ Q)∧ (P⇒ R)

)
.

11.10. Give intuitionistic proofs for
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(P⇒ Q)⇒¬¬(¬P∨Q)

¬¬(¬¬P⇒ P).

11.11. Give an intuitionistic proof for ¬¬(P∨¬P).

11.12. Give intuitionistic proofs for the propositions

(P∨¬P)⇒ (¬¬P⇒ P) and (¬¬P⇒ P)⇒ (P∨¬P).

Hint. For the second implication, you may want to use Problem 11.11.

11.13. Give intuitionistic proofs for the propositions

(P⇒ Q)⇒¬¬(¬P∨Q) and (¬P⇒ Q)⇒¬¬(P∨Q).

11.14. (1) Design an algorithm for converting a deduction of a proposition P in the
system N ⇒,∧,∨,⊥

i into a deduction in the system N G⇒,∧,∨,⊥
i .

(2) Design an algorithm for converting a deduction of a proposition P in the
system N ⇒,∧,∨,⊥

c into a deduction in the system N G⇒,∧,∨,⊥
c .

(3) Design an algorithm for converting a deduction of a proposition P in the
system N G⇒,∧,∨,⊥

i into a deduction in the system N ⇒,∧,∨,⊥
i .

(4) Design an algorithm for converting a deduction of a proposition P in the
system N G⇒,∧,∨,⊥

c into a deduction in the system N ⇒,∧,∨,⊥
c .

Hint. Use induction on deduction trees.

11.15. Prove that the following version of the ∨-elimination rule formulated in
Gentzen-sequent style is a consequence of the rules of intuitionistic logic.

Γ ,x : P→ R Γ ,y : Q→ R
Γ ,z : P∨Q→ R

Conversely, if we assume that the above rule holds, then prove that the ∨-
elimination rule

Γ → P∨Q Γ ,x : P→ R Γ ,y : Q→ R
Γ → R

(∨-elim)

follows from the rules of intuitionistic logic (of course, excluding the ∨-elimination
rule).

11.16. (1) Give algorithms for converting a deduction in N ⇒,∧,∨,⊥,∀,∃
c to a deduc-

tion in N G⇒,∧,∨,⊥,∀,∃
c and vice-versa.

(2) Give algorithms for converting a deduction in N ⇒,∧,∨,⊥,∀,∃
i to a deduction in

N G⇒,∧,∨,⊥,∀,∃
i and vice-versa.

11.17. (a) Give intuitionistic proofs for the distributivity of ∧ over ∨ and of ∨ over
∧:
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P∧ (Q∨R)≡ (P∧Q)∨ (P∧R)

P∨ (Q∧R)≡ (P∨Q)∧ (P∨R).

(b) Give intuitionistic proofs for the associativity of ∧ and ∨:

P∧ (Q∧R)≡ (P∧Q)∧R

P∨ (Q∨R)≡ (P∨Q)∨R.

11.18. Recall that in Problem 11.1 we proved that if P⇒Q and Q⇒ R are provable,
then P⇒ R is provable. Deduce from this fact that if P ≡ Q and Q ≡ R hold, then
P≡ R holds (intuitionistically or classically).

Prove that if P ≡ Q holds then Q ≡ P holds (intuitionistically or classically).
Finally, check that P≡ P holds (intuitionistically or classically).

11.19. Prove (intuitionistically or classically) that if P1⇒ Q1 and P2⇒ Q2, then

1. (P1∧P2)⇒ (Q1∧Q2)
2. (P1∨P2)⇒ (Q1∨Q2).

(b) Prove (intuitionistically or classically) that if Q1⇒ P1 and P2⇒ Q2, then

1. (P1⇒ P2)⇒ (Q1⇒ Q2)
2. ¬P1⇒¬Q1.

(c) Prove (intuitionistically or classically) that if P⇒ Q, then

1. ∀tP⇒∀tQ
2. ∃tP⇒∃tQ.

(d) Prove (intuitionistically or classically) that if P1 ≡ Q1 and P2 ≡ Q2, then

1. (P1∧P2)≡ (Q1∧Q2)
2. (P1∨P2)≡ (Q1∨Q2)
3. (P1⇒ P2)≡ (Q1⇒ Q2)
4. ¬P1 ≡ ¬Q1
5. ∀tP1 ≡ ∀tQ1
6. ∃tP1 ≡ ∃tQ1.

11.20. Show that the following are provable in classical first-order logic:

¬∀tP≡ ∃t¬P

¬∃tP≡ ∀t¬P

∀t(P∧Q)≡ ∀tP∧∀tQ
∃t(P∨Q)≡ ∃tP∨∃tQ.

(b) Moreover, show that the propositions ∃t(P∧Q)⇒∃tP∧∃tQ and
∀tP∨∀tQ⇒∀t(P∨Q) are provable in intuitionistic first-order logic (and thus, also
in classical first-order logic).

(c) Prove intuitionistically that
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∃x∀yP⇒∀y∃xP.

Give an informal argument to the effect that the converse, ∀y∃xP⇒ ∃x∀yP, is
not provable, even classically.

11.21. (a) Assume that Q is a formula that does not contain the variable t (free or
bound). Give a classical proof of

∀t(P∨Q)⇒ (∀tP∨Q).

(b) If P is a proposition, write P(x) for P[x/t] and P(y) for P[y/t], where x and y are
distinct variables that do not occur in the orginal proposition P. Give an intuitionistic
proof for

¬∀x∃y(¬P(x)∧P(y)).

(c) Give a classical proof for

∃x∀y(P(x)∨¬P(y)).

Hint. Negate the above, then use some identities we’ve shown (such as de Morgan)
and reduce the problem to Part (b).

11.22. (a) Let X = {Xi | 1≤ i≤ n} be a finite family of sets. Prove that if Xi+1 ⊆ Xi
for all i, with 1≤ i≤ n−1, then ⋂

X = Xn.

Prove that if Xi ⊆ Xi+1 for all i, with 1≤ i≤ n−1, then⋃
X = Xn.

(b) Recall that N+ =N−{0}= {1,2,3, . . . ,n, . . .}. Give an example of an infinite
family of sets X = {Xi | i ∈ N+}, such that

1. Xi+1 ⊆ Xi for all i≥ 1.
2. Xi is infinite, for every i≥ 1.
3.
⋂

X has a single element.

(c) Give an example of an infinite family of sets, X = {Xi | i ∈ N+}, such that

1. Xi+1 ⊆ Xi for all i≥ 1.
2. Xi is infinite, for every i≥ 1.
3.
⋂

X = /0.

11.23. Prove that the following propositions are provable intuitionistically:

(P⇒¬P)≡ ¬P, (¬P⇒ P)≡ ¬¬P.

Use these to conlude that if the equivalence P ≡ ¬P is provable intuitionistically,
then every proposition is provable (intuitionistically).
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11.24. (1) Prove that if we assume that all propositions of the form

((P⇒ Q)⇒ P)⇒ P

are axioms (Peirce’s law), then ¬¬P⇒ P becomes provable in intuitionistic logic.
Thus, another way to get classical logic from intuitionistic logic is to add Peirce’s
law to intuitionistic logic.
Hint. Pick Q in a suitable way and use Problem 11.23.

(2) Prove ((P⇒ Q)⇒ P)⇒ P in classical logic.
Hint. Use the de Morgan laws.

11.25. Let A be any nonempty set. Prove that the definition

X = {a ∈ A | a /∈ X}

yields a “set” X , such that X is empty iff X is nonempty and therefore does not
define a set, after all.

11.26. Prove the following fact: if

Γ

D1

P∨Q
and

Γ ,R

D2

Q

are deduction trees provable intuitionistically, then there is a deduction tree

Γ ,P⇒ R

D

Q

for Q from the premises in Γ ∪{P⇒ S}.

11.27. Recall that the constant > stands for true. So, we add to our proof systems
(intuitionistic and classical) all axioms of the form

k1︷ ︸︸ ︷
P1, . . . ,P1, . . . ,

ki︷ ︸︸ ︷
Pi, . . . ,Pi, . . . ,

kn︷ ︸︸ ︷
Pn, . . . ,Pn

>
where ki ≥ 1 and n≥ 0; note that n = 0 is allowed, which amounts to the one-node
tree >.

(a) Prove that the following equivalences hold intuitionistically.

P ∨>≡>
P ∧>≡ P.

Prove that if P is intuitionistically (or classically) provable, then P ≡ > is also
provable intuitionistically (or classically). In particular, in classical logic, P∨¬P≡
>. Also prove that
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P ∨ ⊥≡ P

P ∧ ⊥≡⊥

hold intuitionistically.
(b) In the rest of this problem, we are dealing only with classical logic. The

connective exclusive or, denoted ⊕, is defined by

P⊕Q≡ (P∧¬Q)∨ (¬P∧Q).

In solving the following questions, you will find that constructing proofs using the
rules of classical logic is very tedious because these proofs are very long. Instead,
use some identities from previous problems.

Prove the equivalence
¬P≡ P⊕>.

(c) Prove that

P⊕P≡⊥
P⊕Q≡ Q⊕P

(P⊕Q)⊕R≡ P⊕ (Q⊕R).

(d) Prove the equivalence

P∨Q≡ (P∧Q)⊕ (P⊕Q).

11.28. Give a classical proof of

¬(P⇒¬Q)⇒ (P∧Q).

11.29. (a) Prove that the rule

Γ

D1

P⇒ Q

∆

D2

¬Q

¬P

can be derived from the other rules of intuitionistic logic.
(b) Give an intuitionistic proof of ¬P from Γ = {¬(¬P∨Q),P⇒ Q} or equiva-

lently, an intuitionistic proof of(
¬(¬P∨Q)∧ (P⇒ Q)

)
⇒¬P.

11.30. (a) Give intuitionistic proofs for the equivalences

∃x∃yP≡ ∃y∃xP and ∀x∀yP≡ ∀y∀xP.

(b) Give intuitionistic proofs for
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(∀tP∧Q)⇒∀t(P∧Q) and ∀t(P∧Q)⇒ (∀tP∧Q),

where t does not occur (free or bound) in Q.
(c) Give intuitionistic proofs for

(∃tP∨Q)⇒∃t(P∨Q) and ∃t(P∨Q)⇒ (∃tP∨Q),

where t does not occur (free or bound) in Q.

11.31. An integer n ∈ Z is divisible by 3 iff n = 3k, for some k ∈ Z. Thus (by
the division theorem), an integer n ∈ Z is not divisible by 3 iff it is of the form
n = 3k+1,3k+2, for some k ∈ Z (you don’t have to prove this).

Prove that for any integer n ∈ Z, if n2 is divisible by 3, then n is divisible by 3.

Hint. Prove the contrapositive. If n of the form n = 3k+1,3k+2, then so is n2 (for
a different k).

11.32. Use Problem 11.31 to prove that
√

3 is irrational, that is,
√

3 can’t be written
as
√

3 = p/q, with p,q ∈ Z and q 6= 0.

11.33. Give an intuitionistic proof of the proposition(
(P⇒ R)∧ (Q⇒ R)

)
≡
(
(P∨Q)⇒ R

)
.

11.34. Give an intuitionistic proof of the proposition(
(P∧Q)⇒ R

)
≡
(
P⇒ (Q⇒ R)

)
.

11.35. (a) Give an intuitionistic proof of the proposition
(P∧Q)⇒ (P∨Q).

(b) Prove that the proposition (P∨Q)⇒ (P∧Q) is not valid, where P,Q, are
propositional symbols.

(c) Prove that the proposition (P∨Q)⇒ (P∧Q) is not provable in general and
that if we assume that all propositions of the form (P∨Q)⇒ (P∧Q) are axioms,
then every proposition becomes provable intuitionistically.

11.36. Give the details of the proof of Proposition 11.6; namely, if a proposition P
is provable in the system N ⇒,∧,∨,⊥

c (or N G⇒,∧,∨,⊥
c ), then it is valid (according to

the truth value semantics).

11.37. Give the details of the proof of Theorem 11.7; namely, if a proposition P is
provable in the system N ⇒,∧,∨,⊥

i (or N G⇒,∧,∨,⊥
i ), then it is valid in every Kripke

model; that is, it is intuitionistically valid.

11.38. Prove that b = log2 9 is irrational. Then prove that a =
√

2 and b = log2 9 are
two irrational numbers such that ab is rational.

11.39. (1) Prove that if ∀x¬(P∧Q) can be deduced intuitionistically from a set of
premises Γ , then ∀x(P⇒¬Q) and ∀x(Q⇒¬P) can also be deduced intuitionisti-
cally from Γ .
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(2) Prove that if ∀x(P ∨ Q) can be deduced intuitionistically from a set of
premises Γ , then ∀x(¬P⇒ Q) and ∀x(¬Q⇒ P) can also be deduced intuitionis-
tically from Γ .

Conclude that if
∀x(P∨Q) and ∀x¬(P∧Q)

can be deduced intuitionistically from a set of premises Γ , then

∀x(P≡ ¬Q) and ∀x(Q≡ ¬P)

can also be deduced intuitionistically from Γ .
(3) Prove that if ∀x(P ⇒ Q) can be deduced intuitionistically from a set of

premises Γ , then ∀x(¬Q⇒¬P) can also be deduced intuitionistically from Γ . Use
this to prove that if

∀x(P≡ ¬Q) and ∀x(Q≡ ¬P)

can be deduced intuitionistically from a set of premises Γ , then the formulae
∀x(¬¬P≡ P) and ∀x(¬¬Q≡ Q) can be deduced intuitionistically from Γ .

11.40. Prove that the formula
∀xeven(2∗ x)

is provable in Peano arithmetic. Prove that

even(2∗ (n+1)∗ (n+3))

is provable in Peano arithmetic for any natural number n.

11.41. A first-order formula A is said to be in prenex-form if either

(1) A is a quantifier-free formula.
(2) A = ∀tB or A = ∃tB, where B is in prenex-form.

In other words, a formula is in prenex form iff it is of the form

Q1t1Q2t2 · · ·Qmtm P,

where P is quantifier-free and where Q1Q2 · · ·Qm is a string of quantifiers, Qi ∈
{∀,∃}.

Prove that every first-order formula A is classically equivalent to a formula B in
prenex form.

11.42. Let A and be B be any two sets of sets.
(1) Prove that (⋃

A
)
∪
(⋃

B
)
=
⋃
(A∪B).

(2) Assume that A and B are nonempty. Prove that(⋂
A
)
∩
(⋂

B
)
=
⋂
(A∪B).
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(3) Assume that A and B are nonempty. Prove that⋃
(A∩B)⊆

(⋃
A
)
∩
(⋃

B
)
,

and give a counterexample of the inclusion(⋃
A
)
∩
(⋃

B
)
⊆
⋃
(A∩B).

Hint. Reduce the above questions to the provability of certain formulae that you
have already proved in a previous assignment (you need not re-prove these formu-
lae).

11.43. A set A is said to be transitive iff for all a ∈ A and all x ∈ a, then x ∈ A, or
equivalently, for all a ∈ A,

a ∈ A⇒ a⊆ A.

(1) Check that a set A is transitive iff⋃
A⊆ A

iff
A⊆ 2A.

(2) Recall the definition of the von Neumann successor of a set A given by

A+ = A∪{A}.

Prove that if A is a transitive set, then⋃
(A+) = A.

(3) Recall the von Neumann definition of the natural numbers. Check that for
every natural number m

m ∈ m+ and m⊆ m+.

Prove that every natural number is a transitive set.
Hint. Use induction.

(4) Prove that for any two von Neumann natural numbers m and n, if m+ = n+,
then m = n.

(5) Prove that the set N of natural numbers is a transitive set.
Hint. Use induction.

11.44. Even though natural deduction proof systems for classical propositional logic
are complete (with respect to the truth value semantics), they are not adequate for
designing algorithms searching for proofs (because of the amount of nondetermin-
ism involved).

Gentzen designed a different kind of proof system using sequents (later refined
by Kleene, Smullyan, and others) that is far better suited for the design of automated
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theorem provers. Using such a proof system (a sequent calculus), it is relatively easy
to design a procedure that terminates for all input propositions P and either certifies
that P is (classically) valid or else returns some (or all) falsifying truth assignment(s)
for P. In fact, if P is valid, the tree returned by the algorithm can be viewed as a proof
of P in this proof system.

For this miniproject, we describe a Gentzen sequent-calculus G′ for propositional
logic that lends itself well to the implementation of algorithms searching for proofs
or falsifying truth assignments of propositions.

Such algorithms build trees whose nodes are labeled with pairs of sets called
sequents. A sequent is a pair of sets of propositions denoted by

P1, . . . ,Pm→ Q1, . . . ,Qn,

with m,n≥ 0. Symbolically, a sequent is usally denoted Γ → ∆ , where Γ and ∆ are
two finite sets of propositions (not necessarily disjoint).

For example,

→ P⇒ (Q⇒ P), P∨Q→, P,Q→ P∧Q

are sequents. The sequent→, where both Γ = ∆ = /0 corresponds to falsity.
The choice of the symbol→ to separate the two sets of propositions Γ and ∆ is

commonly used and was introduced by Gentzen but there is nothing special about
it. If you don’t like it, you may replace it by any symbol of your choice as long as
that symbol does not clash with the logical connectives (⇒,∧,∨,¬). For example,
you could denote a sequent

P1, . . . ,Pm;Q1, . . . ,Qn,

using the semicolon as a separator.
Given a truth assignment v to the propositional letters in the propositions Pi and

Q j, we say that v satisfies the sequent P1, . . . ,Pm→ Q1, . . . ,Qn iff

v((P1∧·· ·∧Pm)⇒ (Q1∨·· ·∨Qn)) = true,

or equivalently, v falsifies the sequent P1, . . . ,Pm→ Q1, . . . ,Qn iff

v(P1∧·· ·∧Pm∧¬Q1∧·· ·∧¬Qn) = true,

iff
v(Pi) = true, 1≤ i≤ m, and v(Q j) = false, 1≤ j ≤ n.

A sequent is valid iff it is satisfied by all truth assignments iff it cannot be falsified.
Note that a sequent P1, . . . ,Pm→ Q1, . . . ,Qn can be falsified iff some truth as-

signment satisfies all of P1, . . . ,Pm and falsifies all of Q1, . . . ,Qn. In particular,
if {P1, . . . ,Pm} and {Q1, . . . ,Qn} have some common proposition (they have a
nonempty intersection), then the sequent P1, . . . ,Pm→ Q1, . . . ,Qn is valid. On the
other hand if all the Pis and Q js are propositional letters and {P1, . . . ,Pm} and
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{Q1, . . . ,Qn} are disjoint (they have no symbol in common), then the sequent
P1, . . . ,Pm→ Q1, . . . ,Qn is falsified by the truth assignment v where v(Pi) = true,
for i = 1, . . .m, and v(Q j) = false, for j = 1, . . . ,n.

The main idea behind the design of the proof system G′ is to systematically try
to falsify a sequent. If such an attempt fails, the sequent is valid and a proof tree is
found. Otherwise, all falsifying truth assignments are returned. In some sense

failure to falsify is success (in finding a proof).

The rules of G′ are designed so that the conclusion of a rule is falsified by a truth
assignment v iff its single premise of one of its two premises is falsified by v. Thus,
these rules can be viewed as two-way rules that can either be read bottom-up or
top-down.

Here are the axioms and the rules of the sequent calculus G′:
Axioms: Γ ,P→ P,∆
Inference rules:

Γ ,P,Q,∆ →Λ

Γ ,P∧Q,∆ →Λ
∧: left

Γ → ∆ ,P,Λ Γ → ∆ ,Q,Λ

Γ → ∆ ,P∧Q,Λ
∧: right

Γ ,P,∆ →Λ Γ ,Q,∆ →Λ

Γ ,P∨Q,∆ →Λ
∨: left

Γ → ∆ ,P,Q,Λ

Γ → ∆ ,P∨Q,Λ
∨: right

Γ ,∆ → P,Λ Q,Γ ,∆ →Λ

Γ ,P⇒ Q,∆ →Λ
⇒: left

P,Γ → Q,∆ ,Λ

Γ → ∆ ,P⇒ Q,Λ
⇒: right

Γ ,∆ → P,Λ
Γ ,¬P,∆ →Λ

¬: left
P,Γ → ∆ ,Λ

Γ → ∆ ,¬P,Λ
¬: right

where Γ ,∆ ,Λ are any finite sets of propositions, possibly the empty set.
A deduction tree is either a one-node tree labeled with a sequent or a tree con-

structed according to the rules of system G′. A proof tree (or proof ) is a deduction
tree whose leaves are all axioms. A proof tree for a proposition P is a proof tree for
the sequent→ P (with an empty left-hand side).

For example,
P,Q→ P

is a proof tree.
Here is a proof tree for (P⇒ Q)⇒ (¬Q⇒¬P):
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P,¬Q→ P

¬Q→¬P,P

→ P,(¬Q⇒¬P)

Q→ Q,¬P

¬Q,Q→¬P

Q→ (¬Q⇒¬P)

(P⇒ Q)→ (¬Q⇒¬P)

→ (P⇒ Q)⇒ (¬Q⇒¬P)

The following is a deduction tree but not a proof tree

P,R→ P

R→¬P,P

→ P,(R⇒¬P)

R,Q,P→
R,Q→¬P

Q→ (R⇒¬P)

(P⇒ Q)→ (R⇒¬P)

→ (P⇒ Q)⇒ (R⇒¬P)

because its rightmost leaf, R,Q,P→, is falsified by the truth assignment v(P) =
v(Q) = v(R) = true, which also falsifies (P⇒ Q)⇒ (R⇒¬P).

Let us call a sequent P1, . . . ,Pm→ Q1, . . . ,Qn finished if either it is an axiom
(Pi = Q j for some i and some j) or all the propositions Pi and Q j are atomic and
{P1, . . . ,Pm}∩{Q1, . . . ,Qn} = /0. We also say that a deduction tree is finished if all
its leaves are finished sequents.

The beauty of the system G′ is that for every sequent P1, . . . ,Pm→ Q1, . . . ,Qn,
the process of building a deduction tree from this sequent always terminates with a
tree where all leaves are finished independently of the order in which the rules are
applied. Therefore, we can apply any strategy we want when we build a deduction
tree and we are sure that we will get a deduction tree with all its leaves finished. If
all the leaves are axioms, then we have a proof tree and the sequent is valid, or else
all the leaves that are not axioms yield a falsifying assignment, and all falsifying
assignments for the root sequent are found this way.

If we only want to know whether a proposition (or a sequent) is valid, we can
stop as soon as we find a finished sequent that is not an axiom because in this case,
the input sequent is falsifiable.

(1) Prove that for every sequent P1, . . . ,Pm→ Q1, . . . ,Qn, any sequence of ap-
plications of the rules of G′ terminates with a deduction tree whose leaves are all
finished sequents (a finished deduction tree).
Hint. Define the number of connectives c(P) in a proposition P as follows.

(1) If P is a propositional symbol, then

c(P) = 0.

(2) If P = ¬Q, then
c(¬Q) = c(Q)+1.

(3) If P = Q∗R, where ∗ ∈ {⇒,∨,∧}, then
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c(Q∗R) = c(Q)+ c(R)+1.

Given a sequent,
Γ → ∆ = P1, . . . ,Pm→ Q1, . . . ,Qn,

define the number of connectives, c(Γ → ∆), in Γ → ∆ by

c(Γ → ∆) = c(P1)+ · · ·+ c(Pm)+ c(Q1)+ · · ·+ c(Qn).

Prove that the application of every rule decreases the number of connectives in the
premise(s) of the rule.

(2) Prove that for every sequent P1, . . . ,Pm→ Q1, . . . ,Qn, for every finished de-
duction tree T constructed from P1, . . . ,Pm→ Q1, . . . ,Qn using the rules of G′, ev-
ery truth assignment v satisfies P1, . . . ,Pm→ Q1, . . . ,Qn iff v satisfies every leaf of
T . Equivalently, a truth assignment v falsifies P1, . . . ,Pm→ Q1, . . . ,Qn iff v falsifies
some leaf of T .

Deduce from the above that a sequent is valid iff all leaves of every finished
deduction tree T are axioms. Furthermore, if a sequent is not valid, then for ev-
ery finished deduction tree T , for that sequent, every falsifying assignment for that
sequent is a falsifying assignment of some leaf of the tree T .

(3) Programming Project:
Design an algorithm taking any sequent as input and constructing a finished deduc-
tion tree. If the deduction tree is a proof tree, output this proof tree in some fashion
(such a tree can be quite big so you may have to find ways of “flattening” these
trees). If the sequent is falsifiable, stop when the algorithm encounters the first leaf
that is not an axiom and output the corresponding falsifying truth assignment.

I suggest using a depth-first expansion strategy for constructing a deduction tree.
What this means is that when building a deduction tree, the algorithm will proceed
recursively as follows. Given a nonfinished sequent

A1, . . . ,Ap→ B1, . . . ,Bq,

if Ai is the leftmost nonatomic proposition if such proposition occurs on the left, or
if B j is the leftmost nonatomic proposition if all the Ais are atomic, then

(1) The sequent is of the form
Γ ,Ai,∆ →Λ ,

with Ai the leftmost nonatomic proposition. Then either

(a) Ai = Ci ∧Di or Ai = ¬Ci, in which case either we recursively construct a
(finished) deduction tree

D1

Γ ,Ci,Di,∆ →Λ

to get the deduction tree



694 11 Mathematical Reasoning And Logic, A Deeper View

D1

Γ ,Ci,Di,∆ →Λ
,

Γ ,Ci∧Di,∆ →Λ

or we recursively construct a (finished) deduction tree

D1

Γ ,∆ →Ci,Λ

to get the deduction tree

D1

Γ ,∆ →Ci,Λ ,
Γ ,¬Ci,∆ →Λ

or
(b) Ai =Ci∨Di or Ai =Ci⇒ Di, in which case either we recursively construct

two (finished) deduction trees

D1

Γ ,Ci,∆ →Λ and

D2

Γ ,Di,∆ →Λ

to get the deduction tree

D1

Γ ,Ci,∆ →Λ

D2

Γ ,Di,∆ →Λ
,

Γ ,Ci∨Di,∆ →Λ

or we recursively construct two (finished) deduction trees

D1

Γ ,∆ →Ci,Λ and

D2

Di,Γ ,∆ →Λ

to get the deduction tree

D1

Γ ,∆ →Ci,Λ

D2

Di,Γ ,∆ →Λ
.

Γ ,Ci⇒ Di,∆ →Λ

(2) The nonfinished sequent is of the form

Γ → ∆ ,B j,Λ ,

with B j the leftmost nonatomic proposition. Then either

(a) B j =C j∨D j or B j =C j⇒D j, or B j = ¬C j, in which case either we recur-
sively construct a (finished) deduction tree

D1

Γ → ∆ ,C j,D j,Λ
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to get the deduction tree

D1

Γ → ∆ ,C j,D j,Λ
,

Γ → ∆ ,C j ∨D j,Λ

or we recursively construct a (finished) deduction tree

D1

C j,Γ → D j,∆ ,Λ

to get the deduction tree

D1

C j,Γ → D j,∆ ,Λ
,

Γ → ∆ ,C j⇒ D j,Λ

or we recursively construct a (finished) deduction tree

D1

C j,Γ → ∆ ,Λ

to get the deduction tree

D1

C j,Γ → ∆ ,Λ
,

Γ → ∆ ,¬C j,Λ

or
(b) B j =C j ∧D j, in which case we recursively construct two (finished) deduc-

tion trees
D1

Γ → ∆ ,C j,Λ and

D2

Γ → ∆ ,D j,Λ

to get the deduction tree

D1

Γ → ∆ ,C j,Λ

D2

Γ → ∆ ,D j,Λ
.

Γ → ∆ ,C j ∧D j,Λ

If you prefer, you can apply a breadth-first expansion strategy for constructing a
deduction tree.
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ĈG, 425
(0,1), 127
(Ai)i∈I , 123
(G,b,c,vs,vt), 534
(G,c), 458
(G,c,vs,st), 510
(MN), 638
(V,E), 414
(V,E,s, t), 412, 486, 493, 510
(V,E,st), 434
(V,K,s, t), 493
(W,ϕ), 631
(Ω ,F ,Pr), 333
(a+b)n, 195
(a+b)r , 196
(a), 260
(a,b), 261
(a1 + · · ·+am)

n, 203
(dA,mA), 291
(eA,mA), 291
( f v, f e), 415
(u,e1 · · ·en,v), 418
(u0,e1,u1,e2,u2, . . . ,un−1,en,un), 431
(xn), 124
(xn)n∈N, 124
0, 172, 649
1, 172
2A, 44, 131, 670
<, 148
=, 649
A−B, 42, 671
A≈ B, 108
A∩B, 41
A∪B, 41, 669
A≺ B, 108
A� B, 108
A

f−→ B, 60

A×B×C, 57
A×B, 56
A, 507
A(G), 507
A∩B, 671
A⊂ B, 41, 670
A⊆ B, 41, 670
A+, 43, 670, 674
AA, 131
A1×A2×·· ·×An, 57
BA, 60, 186
Bk, 250
Bk(x), 251
C(u), 427
C+, 481
C−, 481
Ce(G), 463
Cn, 245
D, 130, 504
D(G), 504
DD>, 508
DA, 291
EA, 291
F(a−), 349
Fn, 67, 101, 210, 241, 273
G/e, 570
G〈V ′〉, 416
G∗, 575
GX (z), 378
G f , 528
Hn, 247, 254
J(m,n), 108, 127
K, 128
K5, 568, 572, 573
KX (t), 384
Kn, 437, 560
K3,3, 568, 572, 573
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Km,n, 546
L, 128, 509
Lg, 104
Ln, 273
M[ϕ], 642
M[x := N], 643
MX (t), 382
Mn, 286
NG(U), 557
N f , 528
O(g), 187
P(τ1, . . . ,τn), 649
P[τ/t], 651
P[τ1/t1, . . . ,τn/tn], 35, 650
P[u/t], 651
P≡ Q, 649
P⇒ Q, 3, 595, 649
P∧Q, 3, 595, 649
P∨Q, 3, 595, 649
Pn, 102
Pn p, 236
Q, 509
R⊆ A×B, 57
R(r,s), 437
R◦S, 70
R∗, 142
R+, 142
Rn, 142
R−1, 77
R f , 103
S, 649
S(v), 584
S1, 560
S2, 561
Sn(0), 662
Sk(n), 250, 251, 253
Sn p, 197, 224, 234
Tn, 101
X/R, 138
X ∈ Y , 668
X+(u), 427
X−(u), 427
[0,1], 123, 127
[0,1]× [0,1], 123
[V ]2, 434
[n], 78, 108
[x], 138, 425
[x]R, 138, 425
[x1 := N1, . . . ,xn := Nn], 642
Cov(X ,Y ), 374
∆ , 508, 601
∆n, 65
e, 187
e−t2/(m−t+1), 216

Γ , 483, 599, 601
Γ (C), 482
Γ ,P, 598, 599
Γ ,Px, 600
Γ ` P, 615
Γ +, 483
Γ−, 483
Im( f ), 59
Ω , 484
Ω(Y ), 483
Ω(g), 187
Ω+(W ), 515
Ω+(Y ), 483
Ω−(Y ), 483
Φ(x), 387
Π , 601
Π(R), 139
Pr, 332
Pr(A), 332
Pr(A | B, 339
Pr(X = a), 348
Pr(X ≤ a), 348
Pr(ω), 332
Σ , 87
Θ(g), 188
Var(X), 368
ℵ0, 118
≈, 108⋂

, 45, 672⋂
X , 45, 672⋂
i∈I Ai, 124⋃
, 45, 672⋃
X , 45, 672⋃
i∈I Ai, 124∨
A, 153∧
A, 153(2m

m

)
, 216( n

k1,...,km

)
, 199, 200(n

k

)
, 190, 191, 234(r

k

)
, 193

∩, 41, 671
χ(G), 547
χ(S), 566
χA, 110
χG, 566
◦, 70
∗←→β , 643

cosh, 252
coth, 252
∪, 41, 669
δ (G), 473
det, 506, 507, 509
det(B), 506, 507
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/0, 41, 669
ε(G), 473
≡, 4, 24, 595, 615
≡T , 176, 179
≡ f , 138, 140
≡α , 642
∃, 3, 33, 595, 647, 651
∃tP, 649
∀, 3, 33, 594, 647, 651
∀tP, 649
γ , 249
γ(G), 547
γ(Γ ), 483
↪→, 78
idA, 57
I, 259
⇒, 3, 30, 594, 595, 600, 611, 628
−→β , 643
∈, 40, 668, 669, 676
Z, 26
◦
A, 180
Γ . M : σ , 640
κn, 384
〈A,R,B〉, 57
〈X ,≤〉, 148
〈a,b〉, 56
〈a1, . . . ,an〉, 57
λx : σ .M, 638
∧, 3, 30, 595, 612, 628
≤, 148
bxc, 128
∨, 3, 30, 595, 612, 628
ϕ(u) : PS→ BOOL, 632
c : E→ R+, 510
f : A→ B, 58
f : G1→ G2, 415, 436
F2, 496, 574
BOOL, 30, 628
BT , 176
CS, 648
FS, 648
HT , 180
L, 648
PS, 6, 599, 648
ei, 482, 504
false, 3, 30, 595, 628
true, 3, 30, 595, 628
vi, 504
dom(R), 57
dom( f ), 58
graph( f ), 58
range(R), 57
range( f ), 58
Aut(A), 131

Equiv(X), 140
Part(X), 140
Prov, 55
adj, 509
card(A), 118
dim, 481, 495, 496, 505, 506
gcd, 261, 263–265, 270, 280, 290, 291, 293,

296, 298–300, 303
gcd(a,b), 261, 298
girth(G), 568
mod, 137, 139, 166, 267, 268, 286, 288, 290,

291, 293, 295, 296, 298, 300
pred, 665
µ , 230
µk, 369
N, 26
N+, 149
¬, 3, 30, 595, 613, 628
¬P, 3, 595, 649
ω(Ω), 484
⊕, 685
A, 671
G, 474
a, 173, 177
x, 138
xR, 138, 425
∂F , 563
∂R, 563
⊥, 3, 595, 613, 649
E(X), 356
E(X2), 364
E(Xk), 369
E(eitX ), 384
E(etX ), 382
E(g(X)), 361
φ , 295, 318
φ(pq) = (p−1)(q−1), 296
π , 109
π(n), 301
≺, 108
�, 108, 109, 123, 149
∏i∈I Ai, 124
Q, 27
R, 27
R+, 226

+−→β , 643
∗−→β , 643

�, 82
ρ , 590
ρ∗, 590
→, 177
C , 515
D , 598, 600
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D1[D2/x], 636
F , 481, 492, 495, 499, 505
F (G), 492
N G⇒,∧,∨,⊥

c , 614
N G⇒,∧,∨,⊥

i , 615, 633
N G⇒,∧,∨,⊥

m , 615
N G⇒,∨,∧,⊥,∀,∃

c , 652
N G⇒,∨,∧,⊥,∀,∃

i , 652
N G⇒m , 609
N (µ,σ2), 388
N ⇒,∧,∨,⊥

c , 614
N ⇒,∧,∨,⊥

i , 614, 633
N ⇒,∧,∨,⊥

m , 614
N ⇒,∨,∧,⊥,∀,∃

c , 652
N ⇒,∨,∧,⊥,∀,∃

i , 652
N ⇒

m , 601
P(A), 44, 670
R(Π), 140
T , 481, 492, 495, 501, 505
T (G), 492
P1, . . . ,Pm→ Q1, . . . ,Qn, 689
Γ → P, 609, 614
Γ → ∆ , 689
σN , 129, 562
σS, 129
σk, 369
sinh, 252√

2, 28
D−→, 393
P−→, 393

a.s.−→, 392
r−→, 393{n
p

}
, 197, 236

⊂, 41, 670
⊆, 41, 670
τ(G), 509
τ1 = τ2, 649
τN , 129
τS, 129
×, 56
>, 3, 595, 649, 685
ϕ , 274
ϕX (t), 384
` P, 615
` Γ . M : σ , 640
` Γ → P, 615
Ĝ, 428
C̃G, 433
ζ , 248, 253
{a,b}, 669
{a}, 669
{x | x /∈ x}, 668

{x ∈ A | P}, 670, 671
a < b, 148
a = bq+ r, 165
a≤ b, 148
a | b, 259
a mod b, 166
a ∈ A, 40, 668, 669
a∧b, 155
a� b, 169
a∨b, 155
a /∈ A, 40, 668
a→ b, 177
ab, 29
addm, 73
bn, 198
c(S,T ), 511
c(S,v), 511
c(T ), 458
c(E ), 512
c(n,k), 239
c(u,T ), 511
d(G), 473
d+(v), 466
d−(v), 466
dA, 291
dG(u), 415, 436
d+

G (u), 415
d−G (u), 415
eA, 291
er , 516
f = 〈A,G,B〉, 58
f (A), 83
f (S,T ), 511
f (S,v), 511
f (E ), 512
f (τ1, . . . ,τn), 649
f (a), 58
f (u,T ), 511
f : A ↪→ B, 78
f−1, 76
f−1(B), 83
f−1(b), 60, 81
g, 566
g◦ f , 71
g � A, 82
m(A), 226
mA = pAqA, 290
mA, 290
multm, 73
n≡ m (mod p), 267
n!, 54, 78, 185, 187, 234
n+, 674
nn−2, 475
n0−n1 +n2, 565, 567
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o(g), 188
p(S), 587
pA, 290
pn, 224, 241
pr1, 56, 60
pr2, 56, 60
pri, 125
qA, 290
rk, 239
rk, 193
s(e), 412
s(k, i), 194
t(e), 412
uĈGv, 425
uC̃Gv, 433

u · v, 88
ua+ vb = d, 260
uv, 88
vs, 510
vt , 510
x 7→ f (x), 53
x2−dy2 = 1, 326
xe mod m, 290
xn mod m, 296
|A|, 118
|M|, 125
|π|, 419
|G |, 563
| f |, 511, 540
|u|, 87
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5-color theorem, 569
Γ -circuit, 483, 580
Γ -cycle, 483, 580
α-conversion, 642
β -conversion, 643
β -normal form, 644
β -reduction, 643

immediate, 643
∃-elimination, 652
∃-introduction, 651
∀-elimination, 651
∀-introduction, 651
⇒-elimination rule, 598, 600, 611
⇒-introduction rule, 598, 600, 611
λ -abstraction, 638
λ -calculus, 637

simply-typed, 637, 640
λ -term, 638

β -irreducible, 644
closed, 638
raw, 638
raw simply-typed, 638
simply-typed, 638
∧-elimination rule, 612
∧-introduction rule, 612
∨-elimination rule, 612
∨-introduction rule, 612
¬-elimination rule, 613
¬-introduction rule, 613, 620
¬¬-elimination rule, 621
⊥-elimination rule, 613, 621
σ -algebra, 334
e-simple, 419, 471, 481

chain, 432, 471
graph, 435
path, 419

h-connected, 474, 572, 583

k-ary tree, 453
k-colorable, 547
k-coloring, 547, 582
k-cycle, 145, 240
n-tuples, 57
vs-vt -cut, 515, 581
“big oh” notation, 187
“big omega” notation, 187
“big theta” notation, 187
“little oh” notation, 188

A Voyage Round the World Game, 468
Abel’s theorem, 379
Abel, N., 379
absolutely continuous, 350
absorption, 155

identity, 211
absurdity, 3, 595
absurdum, 3, 595
Ackermann’s function, 170, 182
acyclic, 440
adjacency matrix, 507, 581
adjacent, 414

edges, 414
nodes, 414, 471

adjoint matrix, 509
Adleman, L., 288
admissible flow, 533
AKS test, 304
algorithm, 426

to compute the SCCs, 426
alphabet, 34, 87, 648
alternating chains, 549, 555, 582
ancestor, 443
And–Elim, 17
And–Intro, 17
Andrews, P., 593, 645
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antichain, 148, 586
antireflexive, 148
antiroot, 442, 471
antisymmetric, 148
antisymmetry, 148
Appel and Haken, 570
application, 638
APR test, 304
arborescence, 442, 472

with antiroot, 442
with root, 442

arc coloring lemma, 488, 518, 580, 581
arcs, 411, 412, 434
arcwise connected, 562
articulation point, 474
associative, 71, 88
associativity, 25, 43, 50, 99, 155, 627, 672, 683
assumption, 8, 596
atomic propositions, 6, 599
authors, 458, 459, 507
auxiliary lemmas, 8, 26, 602, 627, 636
axiom of choice, 81, 98, 119, 120, 676

graph version, 81
product version, 125

axiom of infinity, 674, 675, 680
axioms, 1, 8, 596, 599, 611, 691

of separation, 671
of set theory, 669

Bézout identity, 260, 262, 306
Bézout, E., 260, 261
backward edge, 528, 535
base

cases, 168
point, 560, 583
step, 62

bases, 495, 581
basis, 495, 588

of the cocycle space, 495
of the cycle space, 495

Bayes, 342
rule, 342

Bayesian framework, 343
bell curve, 218
Bell numbers, 198, 233, 239
Bell, E., 198
Berge, C., 410, 487, 550
Bernays, P., 667
Bernoulli

numbers, 250, 252
polynomial, 251
trial, 351

Bernoulli’s formula, 251
Bernoulli, D., 275

Bernoulli, J., 250, 351
Bernoulli, N., 220
Bernstein, F., 121
Bertrand, J., 329
Betti numbers, 497
Betti, E., 497
bicycle space, 496
Bienaymé, J., 377
bijection, 107
bijective, 78, 98

function, 78
binary

heap, 457
relation, 57
search tree, 346, 454

binary-search-tree property, 454
Binet, J., 187, 264, 275, 313, 314, 324
binomial, 190

coefficients, 190, 207, 233
generalized, 194

formula, 194, 233
heaps, 454, 457
theorem, 194

Newton’s generalized, 196
trees, 454

bipartite graph, 545, 546, 554, 582
Birkhoff, G., 154, 161
blackjack, 401
block, 139, 144
Bollobas, B., 410
bond, 484
Boole, G., 175
Boolean

algebra, 175, 182
lattice, 174, 182

Borel, E., 121, 392
bottleneck, 537, 582
bound variable, 33, 647
boundaries, 414
boundary, 414, 560, 563, 583
bounded lattice, 173
bridge, 438, 471

in a graph, 438
Brouwer, L., 617
BST, 454

c.d.f, 348
canonical projection, 138, 144
Cantor’s theorem, 109
Cantor, G., 109, 121, 667
capacity, 510, 581

function, 510, 581
of a vs-vt -cut, 515, 581

capture of variables, 35, 650
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cardinal, 118
number, 118, 674

cardinal comparability, 123, 127
cardinality, 118, 127

of a finite multiset, 125
of a finite set, 118

Carmichael numbers, 303, 307
Cartesian product, 56
Cassini identity, 278, 307
Cassini, J.D., 278
Catalan numbers, 245
Catalan’s identity, 278, 320
Catalan, E., 278
Cauchy’s formula, 241
Cauchy, A., 241
Cauchy–Schwarz inequality, 375
Cayley, A., 475
central limit theorem, 389
chain, 148, 181, 431, 435, 440, 471, 481

in a graph, 431
channeled flows, 533, 582
characteristic function, 110, 126, 384
Chazelle, B., 458
Chebyshev’s Inequality, 376
Chebyshev, P., 301, 376
Chernoff Bounds, 395
Chernoff, H., 395
child, 443
children, 443
Chinese remainder theorem, 316
choice function, 120
chord, 493
chromatic

index, 588
number, 547, 582

Chung, F., 509
Church’s theorem, 55, 634, 679
Church, A., 634, 637
circuit, 423, 471
classical logic, 176, 615
classical propositional logic, 24
clique, 474

number, 474
closed, 598

chain, 431, 435
Jordan curve, 560, 583
path, 419, 471

coboundary map, 505
cocircuit, 484, 491, 581
cocycle, 481, 483, 581

space, 492, 580, 581
of G, 492

cocyclomatic number, 496, 581
codomain, 58

coin problem, 113
coloring, 547
combinatorics, 185, 229, 232
commutativity, 155
complement, 173, 671

of a graph, 474
of a set, 42

complemented lattice, 173, 182
complete

bipartite graph, 546, 582
graph, 437, 471, 475, 560, 582
induction, 67, 162, 168, 181
lattice, 154, 156, 181

complete induction principle
for N, 67, 97, 162
on a well-founded set, 168, 182

completeness, 32, 48, 177, 180, 630, 633, 646,
679

complexity, 1
theory, 644

composite, 6
composition, 70, 97

of functions, 71
of partial functions, 71
of relations, 70

compound statement, 3, 595
comprehension axioms, 671
compression, 89
computability, 55
computation, 593, 637
computing the inverse of a modulo m, 300
concatenation, 88

of paths, 423, 471
conclusion, 8
conditional probability, 339
confluence, 644
conformal decomposition, 503
congruence, 267

modulo p, 137, 139
congruent, 288
conjunction, 2, 3, 594, 595
connected, 425, 440

components, 433, 471, 563, 583
graph, 433, 471
nodes, 433
strongly, 425

consistency, 32, 48, 155, 630, 646, 666, 679
consistent contexts, 608
constant symbols, 34, 648
constructivists, 617
constructivity, 617
context, 608, 609, 639
continued fractions, 273
convergence
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almost surely, 392
in rth mean, 393
in distribution, 393
in probability, 393

converse, 77, 98
of a relation, 77

Conway, J., 66, 255
correlation coefficient, 375
correspondence, 57
cost, 458, 510

function, 458
of set of edges, 458

cotree, 493, 581
countable, 108

set, 108
counterexample, 32, 48, 630, 633, 646, 679
counting problems, 185, 232
coupon collecting problem, 372
covariance, 374
cross-product, 56
cross-section, 81
cryptography, 287, 307
cubic graph, 588
cumulant, 384
cumulative distribution function, 348
Curry, H., 637
Curry–Howard isomorphism, 637, 679
cut separating vs and vt , 515
cut space, 492, 580, 581

of G, 492
cut-elimination theorem, 636
cutset, 483, 485, 581
cycle, 433, 439, 471, 481

in a graph, 433
in a permutation, 145, 240
space, 492, 574, 580, 581

of G, 492
cyclic permutation, 145, 240
cyclomatic number, 496, 581
cyphertext, 291

DAGs, 429
de la Vallée Poussin, C., 302
de Moivre, A., 220, 275, 389
de Morgan laws, 20, 24, 48, 49, 172, 624, 672,

679, 680
for quantifiers, 39, 656

de Morgan, A., 172
decision problem, 634
decrypt, 287, 307
decryption, 307

function, 291
key, 291

Dedekind, R., 121, 154, 155, 259, 272

deduction, 1, 8, 48, 596, 678, 691
tree, 601, 609, 614, 615, 653

definition, 5
degree, 435, 471

average, 473
minimum, 473
of a node, 415, 435

denumerable, 108
set, 108

depth, 443
derangements, 224, 233, 241
derivation, 1
descendent, 443
diagonal argument, 109
Diestel, R., 411, 437, 496
difference

of multisets, 126
digraph, 412, 442, 471
Dilworth’s theorem, 586
dimension, 495, 581

of the cocycle space, 495, 581
of the cycle space, 495, 581

Dirac’s theorem, 479
direct image, 83, 98

of a subset, 83
directed

acyclic graph, 429
graph, 412, 471

Dirichlet’s box principle, 112, 270
Dirichlet’s diophantine approximation

theorem, 270, 307
Dirichlet, J., 112, 270
discharged, 598, 601, 609, 614, 678
discrete

logarithm, 290, 307
random variable, 350

disjoint sets, 42
disjunction, 2, 3, 594, 595
distance, 548
distribution, 332

binomial, 351
geometric, 351
hypergeometric, 404
normal, 388
Poisson, 352
uniform, 332

distribution function, 348
distributive lattice, 171, 178, 182
distributivity, 25, 43, 50, 626, 672, 682
divides, 259
divisibility, 149, 164, 306

ordering, 149
divisible, 164
division, 165
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divisor, 5
domain, 53, 57, 97

of a cylic permutation, 145, 240
of a partial function, 53
of a relation, 57

dominated, 108
dominates, 126
double-negation

elimination, 621, 679
rule, 618, 678
translation, 659

dual graph, 575, 583
duality, 155, 181
Dupré, A., 264, 323
dynamic logic, 647

edge
colorings, 437
connectivity, 532
contraction, 463, 472, 570, 583
space, 504
subdivision, 573, 583

edge-simple, 419
chain, 432
graph, 435
path, 419

edges, 411, 412, 434, 560
eigenvariable, 652, 653

restriction, 679
elementary

path, 419
vector, 584

embedding, 561
empty, 41, 669

function, 60
relation, 57
set, 41, 669, 680
set axiom, 669
string, 87

encrypt, 287, 307
encryption, 307

function, 291
key, 291

Enderton, H., 72, 118, 122, 123, 148, 161, 667,
676

endnode, 434
endpoint, 412, 434, 471, 560

in a graph, 441
equality predicate, 649
equation, 649
equatorial plane, 129
equinumerous, 108, 126
equivalence, 425

class, 138, 144

classes, 425
logical, 4, 24, 176, 595, 615
relation, 137, 144, 147, 176, 425

Equivalence–Intro, 24
Erdös and Szekeres, 116
Erdös, P., 302
Euclid, 267
Euclid’s lemma, 266, 306
Euclidean algorithm

for finding the gcd, 263
Euclidean division lemma for Z, 165
Euler

φ function, 228, 295, 317, 318
circuit, 466, 472
cycle, 466, 472, 478
totient, 228, 295, 317, 318
tour, 466, 472

Euler’s
constant, 249
formula, 295, 565, 583

Euler, L., 228, 249, 252, 253, 275, 293, 317,
465

Euler–Mascheroni number, 249
Euler–Poincaré characteristic, 497, 566, 581,

583
Eulerian

circuit problem, 466
cycle problem, 466

even, 5, 415, 662, 681
function, 251

event, 332
elementary, 332, 333

exclusive or, 686
Exist–Elim, 36
Exist–Intro, 36
expectation, 356
expected value, 356
exponential generating function, 383
exponentiation modulo m, 290, 307
extended Euclidean algorithm, 265, 311
extensionality, 40
extensionality axiom, 40, 669
extention, 82

of a function, 82

faces, 563, 583
factor, 164
factorial, 54, 185, 191, 233, 234

function, 185
factoring, 304, 307
falling

factorial, 193, 233, 237
power, 193

falsity, 3, 595
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falsum, 3, 595
family, 123

of sets, 123
fan, 476
faulty induction proof, 68
Fermat

numbers, 308
test, 303

Fermat’s little theorem, 293, 295, 307, 309,
317

Fermat, P., 293, 329
Fibonacci

numbers, 67, 69, 97, 210, 241, 264, 273,
277, 307, 476

prime, 280
sequence, 67, 101, 273

Fibonacci, L., 67, 273
fibre, 60, 82
field, 289
finite, 108, 126

graph, 412
multiset, 125
set, 108, 119, 120
tree, 633

first projection, 56, 60
first-order, 648

classical logic, 652
formulae, 649
intuitionistic logic, 652
language, 648
logic, 48, 679
structures, 646
theories, 679
theory, 660
variables, 649

fixed point, 144, 157, 181, 360
of a permutation, 145, 240

fixpoint, 157
Fleury’s algorithm, 478
floor function, 128
flow, 510, 581

augmenting chain, 523, 581
network, 510, 581
space, 492, 580, 581

of G, 492
flows, 481, 499, 505

conservative, 500
Forall–Elim, 35
Forall–Intro, 35
Ford and Fulkerson, 518, 581

algorithm, 523
forest, 439, 471
formula, 34
formulae-as-types principle, 637

forward edge, 528
foundation axiom, 676
four-color

conjecture, 570, 583
problem, 570

Fourier transform, 385
Fourier, J., 385
Fraenkel, A., 667
free variable, 33, 648
Frobenius number, 115
Frobenius, F., 115
frontier, 563
function, 53

operator, 34, 648
symbols, 34, 648
undefined, 60
with domain A, 59

functional, 58, 97
graph, 475
relation, 58

Gödel’s completeness theorem, 646, 680
Gödel’s incompleteness theorem, 662, 680
Gödel, K., 659
Gallier, J., 32, 575, 594, 630, 644, 646, 650,

660
Gauss, C.F., 267, 301, 329, 389
Gaussian

curve, 218
distribution, 218, 387, 389

GB, 667
gcd, 29, 261, 263, 280, 306, 314
general, 191, 230, 492, 504, 567
general position, 255
generating function, 322
generator, 260
Gentzen

sequent, 608, 614, 689
sequent-calculus, 690
system, 678

Gentzen, G., 597, 608, 636, 659, 689
genus, 566
Girard, J.Y., 646, 660
girth, 583
Glivenko, V., 660
golden ratio, 274
Gorn, Saul, 445, 453
Gowers, T., 26, 594, 627
graph, 55, 97, 409, 412, 434, 471, 481

k-colorable, 547, 582
bipartite, 545, 546, 582
cubic, 588
directed, 409, 411–413, 442, 471
minor, 571, 583
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of a function, 55, 58, 70
of a partial function, 58
planar, 558
self-dual, 578, 583
theory, 409
undirected, 409, 431, 434, 438, 471
weighted, 458

graph minor theorem, 574, 580, 583
greatest

common divisor, 154, 261, 306
element, 152, 181
fixed point, 157, 181
lower bound, 152, 181

Guy, R., 255

HA-valid, 180, 182
Haar

basis, 92
transform, 89
wavelets, 94

Haar transform, 98
Hadamard, J., 302
Hall’s

marriage theorem, 532
theorem, 586

Hall, P., 558
Halmos, P., 667
Hamilton, W., 468
Hamiltonian

circuit, 468, 472
circuit problem, 469
cycle, 468, 472
cycle problem, 469

hanldes, 566
Harary, F., 410, 496
harmonic, 247

numbers, 247, 254, 366, 372
Hasse diagram, 150, 181, 182
heap, 457

property, 457
Heegner number, 69
height, 443, 532
Heyting

algebra, 177, 178, 181, 182
lattice, 177, 182

Heyting, A., 177
Hilbert curve, 85
Hilbert’s space-filling curve, 98
Hilbert, D., 85, 597, 668
homeomorphic, 573

graphs, 573
homology group, 496
homomorphism, 415, 471

of directed graphs, 415

of undirected graphs, 436
Howard, W., 637
hyperbolic tangent, 252
hypotheses, 1, 8, 596

i.i.d., 387
ideal, 259, 306, 308

generated by S, 261
principal, 260

idempotence, 155
identity

homomorphism, 416
relation, 57, 137

if and only if, 4, 595
iff, 4, 595
image, 58, 83

of a function, 58
of a subset, 83
of an element, 58

immediate
predecessor, 150, 181
successor, 150, 181, 443

implication, 2, 3, 48, 594, 595, 678
Implication–Elim, 8
Implication–Intro, 8
implicational logic, 599
incidence

matrix, 504, 548, 581, 582
incident, 414

nodes, 471
to a node, 414
to an arc, 414

inclusion function, 140
inclusion–exclusion, 220
incomparable, 148
inconsistent, 620
indegree, 415
independence number, 474
independent, 554, 582

events, 344
random variables, 353
set, 148, 474
set of nodes, 554

index set, 123
indexed families, 123
indicator

function, 360
variable, 360

induced subgraph, 471
induction, 28, 162, 626

axiom, 661
hypothesis, 62, 168
step, 62, 168

induction principle, 46, 676
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for N, 46, 48, 61, 62, 97, 676, 680
inductive, 45, 675

set, 45, 162, 675, 680
inference rules, 2, 48, 594, 596, 678, 691

for the quantifiers, 651
for the quantifiers in Gentzen-sequent style,

652
infinite, 107, 108, 126, 127

intersections, 45, 673
sequence, 124
set, 108, 118, 120–122

injections
number of, 196

injective, 75, 78, 98
function, 75, 78
graph, 475

injectivity, 78
inner half-degree, 415, 471
inorder tree walk, 455
input domain, 53, 58
integer, 26
interior, 560, 583
intersection, 41, 671, 680

of a family, 124
of sets, 41, 671

intuitionistic logic, 614, 622
intuitionistically

provable, 615, 653
valid, 632

intuitionists, 617
inverse, 77, 98, 289, 416

image, 60, 83, 97, 98
of a subset, 83

modulo p, 268
of a relation, 77

invertible, 76, 98
function, 76

irrational, 27, 28, 270
number, 27

irreducible element, 269
isolated vertices, 413
isomorphism, 416, 471

of graphs, 416
of undirected graphs, 436

join, 141, 144, 153, 154, 181
joint

characteristic function, 385
density function, 354
distribution, 353, 354
mass function, 353

jointly continuous, 354
Jordan

curve, 560, 583

Jordan curve theorem, 564, 583
Jordan, C., 564
judgement, 640

König’s theorem, 557
König–Hall’s theorem, 558
Königsberg bridge problem, 465
key, 287, 307, 454
Kleene, S., 644
Kleinberg, J., 531, 532
Knaster, B., 157
Knuth, D., 198, 210, 281
Koblitz, N., 288, 303
Kolmogorov, A., 329, 392, 659
Kripke, 622

models, 622, 623, 631, 632, 646, 679
semantics, 623, 631

Kripke, S., 631
Kruskal’s algorithm, 462, 472, 475
Kruskal, J., 458, 459
Kuratowski

criterion for nonplanarity, 572, 573, 583
Kuratowski, K., 56, 98, 572

Lévy, P., 329
labeling function, 446, 453
Lamé, G., 264, 314, 323
language, 89
Laplace, P.-S., 329, 389
Laplacian, 509, 581

matrix, 509, 581
largest

element, 152
lattice, 154, 181
law of the excluded middle, 618, 678
layered networks, 532
leaf, 441, 471

in a graph, 441
least

common multiple, 154
element, 152, 181
fixed point, 157, 181
upper bound, 152, 181

Lebesgue, H., 350, 356
left inverse, 74, 79, 97
left subtree, 448
Lehmer, D., 285
lemniscate of Bernoulli, 61
length, 87

of a chain, 431, 435
of a path, 419
of a string, 87

Lewis Carroll, 322
puzzle, 322



Index 711

lexicographic ordering, 149, 182
on pairs, 169

likelihood function, 343
Lindenbaum algebra, 176, 180, 182
line

cover, 551, 582
covering, 551

linear
algebra, 273, 481
logic, 646
order, 148
ordering, 148
programing, 517

problem, 517
Linearity

of Expectation, 358
logarithms, 214
logic

classical, 614, 623, 652, 653
intuitionistic, 177, 179, 614, 615, 652, 653
mathematical, 593

logical
connectives, 2, 594
equivalence, 24, 615
formula, 3, 595
language, 34, 648

loop, 411, 413, 434, 560
lower bound, 152, 181
Lucas

generalized sequences, 282
numbers, 273, 277, 307
prime, 280
sequence, 273

Lucas, E., 273, 282
Lucas–Lehmer test, 285, 286, 307
Lyapunov, A., 390

Möbius function, 230
Möbius inversion, 230

formula, 231
MacLane, S., 573, 583
map, 60
maps a to b, 60
marginal

density functions, 354
distribution functions, 354
mass functions, 354

Markov’s inequality, 394
Markov, A., 394
marriage theorem, 558, 582
matched, 549

vertex, 549, 582
matching, 549, 582

maximal, 549

mathematical, 1
max-flow min-cut theorem, 515, 518, 580, 581
max-heap-property, 457
maximal, 152

element, 150, 152, 181
matching, 582
weight spanning tree, 458, 472

maximum, 152
flow, 512
independent set, 554, 557, 582
matching, 545, 551, 554, 556, 582
matching problem, 532, 545

mean, 355
value, 356

measurable, 334, 350
event, 334

measure, 226
of a set, 226
zero, 350

median, 355, 356
meet, 141, 153, 154, 181
Menger, K., 532, 582
Mersenne

numbers, 273, 282, 284, 286, 307, 308
prime, 282, 284, 307

Mersenne, M., 282, 284
Miller–Rabin test, 304
min-heap-property, 457
minimal, 152

cutset, 486
element, 150, 152, 167, 181
line cover, 551, 582
logic, 601, 614
weight spanning tree, 458, 472

minimum, 152
vs-vt -cut, 515, 581
cut, 515, 581
line cover, 551, 557
point cover, 554, 556, 582

minor, 571, 583
topological, 573

mode, 355
modular arithmetic, 288, 289, 307
modulus, 290
modus ponens, 8, 26, 598, 600, 611
moment, 369

central, 369
second , 369

monotonic, 154, 181
nondecreasing, 348

Monty Hall Problem, 340
morphism, 415

of directed graphs, 415
of undirected graphs, 436
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multigraph, 435
multinomial, 199

coefficients, 199, 202, 233
formula, 203, 233, 476

multiple, 5, 149, 259
multiplicity, 125
multiresolution analysis, 90
multiset, 125, 127, 204, 598, 609
multivalued function, 54

natural
deduction, 24, 678
deduction system, 593, 597, 678
numbers, 26, 674, 675, 680, 689

negating the upper index, 212, 244
negation, 2, 3, 594, 595
Negation–Elim, 12
Negation–Intro, 12
net flow out of S, 511
network, 510, 581
network flow problem, 512, 581
node label, 446, 453
nodes, 411, 412, 434, 471
nonconstructive proofs, 30, 39, 622, 654
nonlogical symbols, 648
normal distribution, 218
normal form, 623, 636, 637
normalization step, 636
NP-complete, 469, 472, 629
NP-completeness, 679
null

chain, 431, 435
ideal, 260
path, 419
string, 87

number
even, 5, 7
odd, 5, 7

OBT, 449
odd, 5, 415, 662, 681
offending edges, 535
one-to-one, 78

function, 78
one-way streets, 409
onto, 78

function, 78
open

chain, 431, 435
path, 419, 471
subset, 180
unit disc, 130

Or–Elim, 19
Or–Intro, 19

orbit, 145, 240
order, 148, 412

of a graph, 412
order preserving, 154
ordered

binary tree, 446, 449
pair, 56, 97

of nodes, 434
partitions, 199

ordering, 147, 148, 181
on N, 148
on strings, 149

ordinal, 118
orientation, 409

of the edges, 409
origin, 412
orthogonal, 484, 581

complement, 495
orthogonality, 484
outcome, 332, 333
outedegree, 415
outer half-degree, 415, 471
output domain, 53, 58
overhang, 253

largest possible, 253

p.d.f, 350
p.m.f, 348
PA, 661
pair, 56
pairing axiom, 669
Papadimitriou, C., 515
parallel

arc, 411
edges, 413, 434
summation formula, 210

parent, 443
partial

function, 53, 58
graph, 416, 471
order, 147, 148, 181
ordering, 148
subgraph, 416, 471

partially ordered set, 148
partition, 139, 144, 401
Pascal’s

recurrence formula, 191, 236
triangle, 191, 202

Pascal, B., 191, 329
path, 409, 418, 419

in a directed graph, 418
Peano arithmetic, 649, 661, 679, 688
Peano, G., 85, 661
Peirce’s law, 625, 630, 685
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Peirce, C.S., 154
Pell’s equation, 273, 326
pentatope numbers, 102
perfect matching, 549, 582
permutation, 78, 144, 185, 233, 240, 241
Perp–Elim, 13
Petersen’s graph, 469, 479
pgf, 378
PID, 260
pigeonhole principle, 111, 121, 126, 270, 307

for finite sets, 111
generalized, 117

plain text, 287
planar, 558

embedding, 561, 583
graph, 558, 561, 568, 576, 582, 583

plane graph, 560, 576, 583
platonic solids, 567
PNT, 302, 307
Pochhammer symbol, 193
Poincaré, H., 220, 497, 506, 575
point cover, 554, 582
Poisson

trials, 396
Poisson, D., 352
pole, 129

north, 129
south, 129

poset, 148, 150, 181
positional tree, 446
potential function, 501
power set, 44, 110, 131, 670, 680
power set axiom, 670
Prawitz, D., 597, 636
predicate, 5

symbols, 34, 648
terms, 34, 648, 649

prefix, 88
preflow, 532, 582
preflow-push

relabel algorithms, 532
algorithms, 532

preimage, 60, 83, 97
of a subset, 83

premise, 8
premises, 1, 8, 48, 596, 598, 678

closed, 598
discharged, 598, 601

prenex-form, 688
preorder, 574
Prim’s algorithm, 464, 472
Prim, R., 458, 463
primality testing, 303, 304, 307
prime, 6, 68, 164, 262

counting function, 301, 307
decomposition, 164
number, 68, 164, 181

prime number theorem, 302, 307
primitive recursion, 72
principal ideal, 260, 306

domain, 260
principal tripartition, 496
principle, 1

of proof by contradiction, 593
of the excluded middle, 618
reasoning, 1

principle of inclusion–exclusion, 222, 226, 233
private keys, 288, 291, 307
probabilistic methods, 303, 307
probability, 329

a posteriori, 343
conditional, 339
density function, 350
distribution, 332, 333
function, 332, 333
generating function, 378
mass function, 348
prior, 343
space, 332, 333
theory, 329
tree, 340

probability space
discrete, 332

finite, 332
product of a family, 124

of sets, 124, 127
product space, 344
projection, 138

function, 125
proof, 1, 8, 678, 691

by smallest counterexample, 182
by-contrapositive rule, 48, 625, 679
checkers, 1
classical, 593, 678
constructive, 593, 618, 622, 678
direct, 6
formal, 2, 25, 627
indirect, 6
informal, 2, 25, 627
intuitionistic, 678
mathematical, 1
minimal, 610
nonconstructive, 30, 39, 48, 622, 654, 678,

679
normalization, 608, 631, 636, 637, 679
principles, 594
rules, 2, 594, 596
substitution, 608
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system, 2, 594, 597
template, 6
templates, 1, 47
tree, 601, 609, 614, 615, 653

proof–by–cases, 19, 616
proof–by–contradiction, 48, 678

for negated propositions, 16
rule, 13, 613

Proof–By–Contradiction Principle, 13
proof–by–contrapositive, 23

principle, 23
proper, 88

prefix, 88
subset, 41, 670
substring, 88
suffix, 88

property of the natural numbers, 62
propositional

intuitionistic logic, 615
logic, 48, 678
minimal logic, 615
symbols, 6, 599, 649

propositions, 3, 6, 595, 599
atomic, 6, 599

provability, 596
provable, 615

in classical logic, 653
pseudo-circuit, 423
pseudo-complement, 177
pseudo-cycle, 433
pseudo-prime, 303, 307, 324
pseudo-triangular, 506
pseudograph, 435
public keys, 288, 291, 307

cryptosystems, 288
pullback, 84
push-forward, 84

quantified formulae, 649
quantifier

existential, 33
universal, 33

quantifiers, 2, 33, 594, 647
quasi-order, 574, 583
quasi-strongly connected, 475
quicksort, 346, 365
quotient, 149, 165

of X by R, 138
of X modulo R, 138
set, 138, 144

RAA, 13, 48, 613, 620, 621, 623, 678
Ramsey numbers, 437, 471
Ramsey’s theorem, 437, 471

random, 329
permutation, 360
variable, 348

range, 57, 97
of a relation, 57

rank, 648, 649
rational, 27

number, 27
real, 27

number, 27
recursion, 97
recursion theorem, 72, 120, 167
recursive definition, 72
reduced graph, 428, 471
reductio ad absurdum rule, 13, 613
reduction step, 636
refinement, 141, 144
refines, 141
reflexive, 137, 148, 425

closure, 141, 144
reflexive and transitive closure, 142, 144
reflexivity, 137, 148, 425
regions, 255, 563, 583

inside a circle, 255
regular, 415, 588

graph, 415
regularity axiom, 676
regularity axioms, 676
relation, 57, 147
relative complement, 42, 671, 680
relatively prime, 29, 261, 306
remainder, 165
repeated squaring, 290, 298, 307, 323
replacement axioms, 676
representative vector, 482, 483, 580, 581
residual
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network, 528, 582

residue, 165
modulo p, 267

restriction, 82, 98
of a function, 82

retraction, 82, 98
of an injection, 82

return edge, 516, 535
Ribenboim, P., 280, 302, 303
Riemann’s zeta function, 248, 253
Riemann, B., 248, 301
right inverse, 75, 79, 97
right subtree, 448
right-continuous, 349
ring, 289
rising

factorial, 239
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root, 442, 446, 471
rooted

ordered tree, 453
tree, 442, 472

rotations, 456
RSA, 267, 288, 290, 307

correctness, 295, 307
cryptosystem, 288
scheme, 290, 307
security, 305, 307
signature schemes, 305
signatures, 307

rules, 1, 600
logical, 1, 678
of logic, 1

Russell’s paradox, 109, 668, 680
Russell, B., 668, 673

Sakarovitch, M., 410, 487
sample space, 332, 333
SAT, 629
satisfiability, 679

problem, 629, 679
satisfiable, 629
saturated, 528

node, 528
scaling max-flow algorithm, 531
SCC, 426, 471
Schröder, E., 121, 175
Schröder–Bernstein theorem, 121, 127, 157,

159, 181
Schur, I., 115
second projection, 56, 60
section, 81, 98

of a surjection, 81
Selberg, A., 302
self-dual, 578, 583
self-loop, 413, 434
semantics, 30, 628

of classical logic, 176, 182
of intuitionistic logic, 179, 182
truth-value, 30, 48, 628, 679

sequence, 124
sequent, 608

Gentzen, 609
sequents, 678, 689, 690
set, 40, 669

of integers, 4
of natural numbers, 4
of nodes, 434
of worlds, 632
theory, 666, 667

set theory, 668
first-order theory, 668

Seymour, P., 575, 583
Shamir, A., 288
siblings, 443
Sierpinski, W., 85
sieve formula, 228, 234
Silverman, J., 269, 273
simple, 413, 471

Γ -cycle, 483, 580
chain, 432, 435, 471
circuit, 423, 471
closed curve, 560
cocycle, 484, 486, 581
curve, 560, 583
cycle, 433, 471
graph, 413, 434, 471
loop, 560, 583
path, 419
plane graph, 561, 583

singleton set, 669
sink, 510
smallest

element, 152
equivalence relation, 143

Solovay–Strassen test, 304
soundness, 32, 48, 177, 180, 630, 633, 646,

679
source, 412, 510

function, 412
space-filling, 85

curves, 85
functions, 85

spanning
subgraph, 416, 471
tree, 441, 476, 495, 509, 581

spectral graph theory, 509, 581
stable, 554, 582

set, 148
set of nodes, 554

standard
deviation, 368
normal distribution, 387

standard model, 666
statements, 2, 594

atomic, 2, 594
compound, 2, 594

Statman, R., 644
Steiglitz, K., 515
stereographic projection, 129, 561, 583
Stirling numbers, 197

of the first kind, 194, 233, 237
signless, 239, 240

of the second kind, 197, 233, 236, 238
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Stirling’s formula, 186, 214, 233, 253
Stirling, J., 186, 197
strict order, 148, 181
strictly dominated, 108
string, 87, 98

over an alphabet, 87
strong

induction, 67, 162
normalization, 637, 679

strong law of large numbers, 393
strongly connected, 425, 426, 471, 491

components, 426, 471
directed graph, 425
nodes, 425

strongly normalizing, 644
structural induction, 168, 449

principle, 449
subdivision, 573
subgraph, 416, 471

induced , 416
submultiset, 126
subpath, 421
subsequence, 116

decreasing, 116
increasing, 116

subset, 41, 670
axioms, 671, 680
ordering, 148

substitution, 35, 641, 650
safe, 643

substring, 88
suffix, 88
Suppes, P., 667
support, 584

of as vector, 584
surjections

number of, 197, 223, 234
surjective, 75, 78, 98

function, 75, 78
surjectivity, 78
Sylvester’s formula, 223, 226, 234
Sylvester, J., 220, 226
symbols, 87
symmetric, 137, 425

closure, 143
symmetry, 137, 425
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tail distributions, 394
Takeuti, G., 633
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target, 412

function, 412
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Tarski’s fixed-point theorem, 157, 181
Tarski, A., 121, 157
tautology, 32, 48, 629, 679
temporal logic, 647
tension space, 492, 580, 581

of G, 492
tensions, 481, 501, 505
terminal, 510
terms, 34, 648, 649
tetrahedral numbers, 101
theorem provers, 1, 634
theory, 660

of computation, 634
of equality, 661

topological space, 180, 182
topology, 180
total

function, 59
order, 148, 162, 181
ordering, 148

totally unimodular, 507, 581, 584
trail, 419
transfinite induction, 168
transitive, 137, 148, 425

closure, 142, 144
set, 689

transitivity, 137, 148, 425
transposition, 145
transversal, 554, 582, 586
trapdoor, 290

one-way functions, 290, 307
travel around the world, 468
tree, 439, 471, 598

address, 446, 453
domain, 446, 453
of possibilities, 340

trial, 435
triangular numbers, 65, 101
triangulation, 589
trinomial revision, 211
triples, 57
triplets, 57
truth, 3, 30, 595, 596, 628

assignment, 176, 180
tables, 30, 31, 48, 628, 629, 679
value, 30, 628

of a proposition, 30, 628
truth-value semantics, 48, 679
truth-values semantics, 176, 179, 182
Turing machines, 634
Turing, A., 634
twig, 495
type, 637

atomic, 637
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simple, 637

type-assignment, 639
type-checking, 640

rules, 640

UFD, 269
umatched

vertex, 549
uncorrelated random variables, 374
undecidability, 634

of the decision problem, 634, 679
of the halting problem, 634
of the Post correspondence problem, 634

undefined, 60
function, 60

undirected graph, 431, 434
union, 41, 669, 680

of a family, 124
of multisets, 125
of sets, 41, 669

union axiom, 669, 672
unique factorization domain, 269
unique prime factorization in N, 268, 306
unmatched, 549
unsatisfiability, 679
unsatisfiable, 629
upper bound, 152, 181
upper summation formula, 208

valency, 435
valid, 32, 629

classically, 177
in a Heyting algebra, 180
intuitionistically, 180

validity, 48, 679
problem, 629, 679

value of a flow, 511, 581
van Dalen, D., 32, 594, 622, 630, 631, 633,

646, 650
Vandermonde convolution, 211
variable, 638

bound, 638
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free, 638
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bound, 48, 679
free, 48, 679

variance, 368
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cover, 554
space, 504

vertices, 412, 434, 471
VNB, 667
von Neumann, J., 667, 674, 689

w.q.o., 574
walk, 419, 431, 435, 471

in a graph, 431
wavelets, 89
weak law of large numbers, 386
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weight, 226, 234, 458, 510

function, 458
of a set of edges, 458

weighted graph, 458, 472
Weil, A., 269
well

ordered set, 162
ordering, 162
quasi-order, 574, 583

well-founded, 166
order, 166
orderings, 166, 181

well-order, 162, 181
well-ordering

of N, 47, 162
theorem, 123
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Wilson’s theorem, 318
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Zeckendorf representation, 277, 307, 319
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Zermelo–Fraenkel set theory, 667, 677, 680
ZF, 667, 680
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Zorn’s lemma, 122, 127, 153, 181
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