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Abstract. The purpose of this paper is to present simple and fast methods for computing
control points for polynomial curves and polynomial surfaces given explicitly in terms of
polynomials (written as sums of monomials). We give recurrence formulae w.r.t. arbitrary
affine frames. As a corollary, it is amusing that we can also give closed-form expressions in
the case of the frame (r, s) for curves, and the frame ((1, 0, 0), (0, 1, 0), (0, 0, 1) for surfaces.
Our methods have the same low polynomial (time and space) complexity as the other best
known algorithms, and are very easy to implement.
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1 Introduction

Polynomial curves and surfaces are used extensively in geometric modeling and computer
aided geometric design (CAGD) in particular (see Ramshaw [10], Farin [3, 2], Hoschek and
Lasser [7], or Piegl and Tiller [9]). One of the main reasons why polynomial curves and
surfaces are used so extensively in CAGD, is that there is a very powerful and versatile
algorithm to recursively approximate a curve or a surface using repeated affine interpolation,
the de Casteljau algorithm. However, the de Casteljau algorithm applies to curves and
surfaces only if they are defined in terms of control points . There are situations where a
curve or a surface is defined explicitly in terms of polynomials. For example, the following
polynomials define a surface known as the Enneper surface:

x(u, v) = u − u3

3
+ uv2

y(u, v) = v − v3

3
+ u2v

z(u, v) = u2 − v2.

Thus, the problem of computing control points from polynomials (defined as sums of mono-
mials) arises. If control points can be computed quickly from polynomials, all the tools
available in CAGD for drawing curves and surfaces can be applied. This could be very use-
ful in problems where a curve of a surface is obtained analytically in terms of polynomials
or rational functions, for example, problems involving generalizations of Voronoi diagrams,
or motion planning problems. When dealing which such problems, it is often necessary to
decide whether curves segments or surface patches intersect or not. As is well known (for
example, see [3, 2]), there are effective methods based on subdivision (exploiting the fact
that a Bézier curve or surface patch is contained within the convex hull of its control points)
for deciding whether Bézier curve segments or surface patches intersect. Simple and fast
methods for computing control points might also be also useful to teach say, Math students,
to learn computational tools for drawing interesting curves and surfaces. Now, it turns out
that the problem of computing control points can be viewed as a change of polynomial ba-
sis, more specifically as a change of basis from the monomial basis to bases of Bernstein
polynomials. Algorithms for performing such changes of basis have been given by Piegl
and Tiller [9]. More general algorithms for performing changes of bases between progressive
bases and Pólya bases are presented in Goldman and Barry [5] and Lodha and Goldman
[8]. These algorithms compute certain triangles or tetrahedras whose nodes are labeled with
certain multisets, and are generalizations of the de Casteljau and the de Boor algorithm.
In this paper, we present alternate and more direct methods for computing control points
from polynomial definitions (in monomial form) that run in the same low time complexity
as the above algorithms (O(m2) for curves of degree m, O(p2q2) for rectangular surfaces of
bidegree 〈p, q〉, and O(m3) for triangular surfaces of total degree m). Our algorithms are
not as general as those of Goldman and Barry [5] and Lodha and Goldman [8], but they are
more direct and very easy to implement.
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The paper is organized as follows. In section 2, we review briefly the relationship between
polynomial definitions and control points. We begin with the polarization of polynomials in
one or two variables, and then we show how polynomial curves and surfaces are completely
determined by sets of control points. In the case of surfaces, depending on the mode of
polarization, we get two kinds of surfaces, bipolynomial surfaces (or rectangular patches)
and total degree surfaces (or triangular patches). Efficient methods for computing control
points are given in the next three section: polynomial curves in section 3, bipolynomial
surfaces in section 4, and polynomial total degree surfaces in section 5. Some examples are
given in section 6.

2 Control Points

2.1 Polynomial Curves

The deep reason why polynomial curves and surfaces can be handled in terms of control
points is that polynomials in one or several variables can be polarized . This means that
every polynomial function arises from a unique symmetric multiaffine map. A detailed
treatment of this approach can be found in Ramshaw [10], Farin [3, 2], Hoschek and Lasser
[7], or Gallier [4]. We simply review what is needed to explain our algorithms.

Recall that a map f : Rd → R
n is affine if

f((1 − λ)a + λb) = (1 − λ)f(a) + λf(b),

for all a, b ∈ R
d, and all λ ∈ R. A map f : Rd × · · · × R

d︸ ︷︷ ︸
m

→ R
n is multiaffine if it is affine in

each of its arguments, and a map f : Rd × · · · × R
d︸ ︷︷ ︸

m

→ R
n is symmetric if it does not depend

on the order of its arguments, i.e., f(aπ(1), . . . , aπ(m)) = f(a1, . . . , am) for all a1, . . . , am, and
all permutations π. We also say that a map f : Rp × R

q → R
d is 〈p, q〉-symmetric if it is

symmetric separately in its first p arguments and in its last q arguments.

Let us first treat the case of polynomials in one variable, which corresponds to the case
of curves. Given a (plane) polynomial curve F : R → R

2 of degree m,

x(t) = F1(t),

y(t) = F2(t),

where F1(t) and F2(t) are polynomials of degree ≤ m, it turns out that F : R → R
2 comes

from a unique symmetric multiaffine map f : Rm → R
2, the polar form of F , such that

F (t) = f(t, . . . , t︸ ︷︷ ︸
m

), for all t ∈ R.
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Furthermore, given any interval (r, s) (affine frame), the map f : Rm → R
2 is determined

by the sequence (b0, . . . , bm) of m + 1 control points

bi = f(r, . . . , r︸ ︷︷ ︸
m−i

, s, . . . , s︸ ︷︷ ︸
i

),

where 0 ≤ i ≤ m. Using linearity, in order to polarize a polynomial of one variable t, it is

enough to polarize a monomial tk. Since there are

(
m
k

)
terms in the sum

∑
I⊆{1,...,m}

|I|=k

(∏
i∈I

ti

)
,

the polar form fm
k (t1, . . . , tm) of the monomial tk with respect to the degree m (where k ≤ m)

is given by

fm
k (t1, . . . , tm) =

1(
m
k

) ∑
I⊆{1,...,m}

|I|=k

(∏
i∈I

ti

)
.

2.2 Polynomial Surfaces Polarization

Given a polynomial surface F : R2 → R
3, there are two natural ways to polarize the polyno-

mials defining F .

The first way is to polarize separately in u and v. If p is the highest degree in u and q is
the highest degree in v, we get a unique 〈p, q〉-symmetric degree (p + q) multiaffine map

f : Rp × R
q → R

3,

such that
F (u, v) = f(u, . . . , u︸ ︷︷ ︸

p

; v, . . . , v︸ ︷︷ ︸
q

).

We get what is traditionally called a tensor product surface, or as we prefer to call it, a
bipolynomial surface of bidegree 〈p, q〉 (or a rectangular surface patch).

The second way to polarize is to treat the variables u and v as a whole. This way, if F
is a polynomial surface such that the maximum total degree of the monomials is m, we get
a unique symmetric degree m multiaffine map

f : (R2)m → R
3,

such that
F (u, v) = f((u, v), . . . , (u, v)︸ ︷︷ ︸

m

).
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We get what is called a total degree surface (or a triangular surface patch).

Using linearity, it is clear that all we have to do is to polarize a monomial uhvk.

It is easily verified that the unique 〈p, q〉-symmetric multiaffine polar form of degree p+q

fp,q
h,k(u1, . . . , up; v1, . . . , vq)

of the monomial uhvk is given by

fp,q
h,k(u1, . . . , up; v1, . . . , vq) =

1(
p
h

)(
q
k

) ∑
I⊆{1,...,p},|I|=h
J⊆{1,...,q},|J|=k

(∏
i∈I

ui

)(∏
j∈J

vj

)
.

The denominator

(
p
h

)(
q
k

)
is the number of terms in the above sum.

It is also easily verified that the unique symmetric multiaffine polar form of degree m

fm
h,k((u1, v1), . . . , (um, vm))

of the monomial uhvk is given by

fm
h,k((u1, v1), . . . , (um, vm)) =

1(
m
h

)(
m − h

k

) ∑
I∪J⊆{1,...,m}

|I|=h,|J|=k,I∩J=∅

(∏
i∈I

ui

)(∏
j∈J

vj

)
.

The denominator

(
m
h

)(
m − h

k

)
=

(
m

h k (m − h − k)

)
is the number of terms in

the above sum.

2.3 Control Points For Polynomial Surfaces

Let ∆m = {(i, j, k) ∈ N
3 | i + j + k = m}. Given an affine frame ∆rst in the plane (where

r, s, t ∈ R
2 are affinely independent points), a polynomial surface F : R2 → R

3 of total degree
m specified by the symmetric multiaffine map

f : (R2)m → R
3

is completely determined by the family of (m+1)(m+2)
2

points in R
3

bi, j, k = f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where (i, j, k) ∈ ∆m.
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These points are called control points , and the family {bi, j, k | (i, j, k) ∈ ∆m} is called a
triangular control net .

Let (r1, s1) and (r2, s2) be any two affine frames for the affine line R. A bipolynomial
surface F : R2 → R

3 of bidegree 〈p, q〉 specified by the 〈p, q〉-symmetric multiaffine map

f : Rp × R
q → R

3,

is completely determined by the family of (p + 1)(q + 1) points in R
3

bi, j = f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

),

where 0 ≤ i ≤ p and 0 ≤ j ≤ q.

These points are called control points , and the family {bi, j | 0 ≤ i ≤ p, 0 ≤ j ≤ q} is
called a rectangular control net .

Thus, to compute control points, in principle, we need to compute the polar forms of
polynomials. However, this method requires polarization, which is very expensive. In the
following sections, we give recurrence formulae for computing control points efficiently. As
a corollary, in the case of any affine frame (r, s) or of the affine frame ((1, 0), (0, 1), (0, 0)),
it is possible to give closed-form formulae for calculating control points in terms of binomial
coefficients.

3 Computing Control Points For Curves

We saw in section 2 that the polar form of a monomial tk with respect to the degree m is

fm
k (t1, . . . , tm) =

1(
m
k

) ∑
I⊆{1,...,m}

|I|=k

(∏
i∈I

ti

)
.

Letting σm
k =

(
m
k

)
fm

k , it is easily verified that we have the following recurrence

equations:

σm
k =

{
σm−1

k + tmσm−1
k−1 if 1 ≤ k ≤ m;

1 if k = 0 and m ≥ 0;
0 otherwise.

The above formulae can be used to compute inductively the polar values

fm
k (t1, . . . , tm) =

1(
m
k

)σm
k (t1, . . . , tm).
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The computation is reminiscent of the Pascal triangle. Alternatively, we can compute
fm

k directly using the recurrence formula

fm
k =

(m − k)

m
fm−1

k +
k

m
tm fm−1

k−1 ,

where 1 ≤ k ≤ m. When writing computer programs implementing these recurrence equa-

tions, we observed that computing σm
k and dividing by

(
m
k

)
is faster than computing fm

k

directly using the above formula. This is because the second method requires more divisions.

Given (t1, . . . , tm), computing all the scaled polar values σi
k(t1, . . . , ti), where 1 ≤ k ≤

i and 1 ≤ i ≤ m, requires time O(m2). The naive method using polarization requires
computing

∑m
i=0 2i = 2m+1 − 1 terms. To compute the coordinates of control points, we

simply combine the σm
k . Specifically, the coordinate value of the control point bj contributed

by the polynomial
∑n

k=0 akt
k (where n ≤ m) is

n∑
k=0

ak

(
m
k

)−1

σm
k (r, . . . , r︸ ︷︷ ︸

m−j

, s, . . . , s︸ ︷︷ ︸
j

),

where (r, s) is an affine frame. Given (t1, . . . , tm), our algorithm computes the table of values
σi

k(t1, . . . , ti), where 1 ≤ k ≤ i and 1 ≤ i ≤ m, and thus, it is very cheap to compute these
sums.

Remark: Given a polynomial curve F of degree m specified by the sequence of control
points (b0, . . . , bm) over (0, 1), it is well known (see Farin [3, 2], Hoschek and Lasser [7],
or Piegl and Tiller [9]) that F (t) can be expressed in terms of the Bernstein polynomials

Bm
k (t) =

(
m
k

)
(1 − t)m−ktk as

F (t) = Bm
0 (t) b0 + · · · + Bm

m(t) bm.

It is also well known that the Bernstein polynomials Bm
0 (t), . . ., Bm

m(t) form a basis of the
vector space of polynomials of degree ≤ m. Thus, it is also possible to compute the control
points of F by expressing the polynomials involved in the explicit polynomial definition of
F in term of the basis Bernstein polynomials. Such algorithms were given by Goldman and
Barry [5]. Our algorithm has the same complexity and is more direct.

It is also easy to derive closed-form formulae for any affine frame (r, s).

Theorem 3.1 If the total degree is m and there are r occurrences where t = p and s occur-
rences where t = q, then

fm
k =

(
p
k

)
rk +

(
p

k − 1

)(
q
1

)
rk−1s +

(
p

k − 2

)(
q
2

)
rk−2s2+, . . . , +

(
q
k

)
sk

(
m
k

) .

Proof . It can be shown by induction using the above recurrence equations.
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4 Computing Rectangular Control Nets

As we saw in section 2, the polar form of the monomial uhvk with respect to (p, q) is

fp,q
h,k(u1, . . . , up; v1, . . . , vq) =

1(
p
h

)(
q
k

) ∑
I⊆{1,...,p},|I|=h
J⊆{1,...,q},|J|=k

(∏
i∈I

ui

)(∏
j∈J

vj

)
.

Letting σp,q
h,k =

(
p
h

)(
q
k

)
fp,q

h,k, it is easily verified that we have the following recurrence

equations:

σp,q
h,k =




σp−1,q−1
h,k + upσ

p−1,q−1
h−1,k + vqσ

p−1,q−1
h,k−1 + upvqσ

p−1,q−1
h−1,k−1 if 1 ≤ h ≤ p and 1 ≤ k ≤ q,

σp,q−1
0,k + vqσ

p,q−1
0,k−1 if h = 0 ≤ p and 1 ≤ k ≤ q,

σp−1,q
h,0 + upσ

p−1,q
h−1,0 if 1 ≤ h ≤ p and k = 0 ≤ q,

1 if h = k = 0, p ≥ 0, and q ≥ 0;
0 otherwise.

Observe that the recurrence formula is a sort of generalization of the Pascal triangle.
Alternatively, prove that fp,q

h,k can be computed directly using the recurrence formula

fp,q
h,k =

(p − h)(q − k)

pq
fp−1,q−1

h,k +
h(q − k)

pq
up fp−1,q−1

h−1,k +
(p − h)k

pq
vq fp−1,q−1

h,k−1 +
hk

pq
upvq fp−1,q−1

h−1,k−1,

where 1 ≤ h ≤ p and 1 ≤ k ≤ q,

fp,q
0,k =

(q − k)

q
fp,q−1

0,k +
k

q
vq fp,q−1

0,k−1 ,

where h = 0 ≤ p and 1 ≤ k ≤ q, and

fp,q
h,0 =

(p − h)

p
fp−1,q

h,0 +
h

p
up fp−1,q

h−1,0 ,

where 1 ≤ h ≤ p and k = 0 ≤ q. As in section 3, we found that computing σp,q
h,k and dividing

by

(
p
h

)(
q
k

)
is faster than computing fp,q

h,k directly.

Given (u1, . . . , up; v1, . . . , vq), using the recurrence equations, computing all the scaled
polar values

σi,j
h,k(u1, . . . , ui; v1, . . . , vj),

where 1 ≤ h ≤ i, 1 ≤ k ≤ j, 1 ≤ i ≤ p, and 1 ≤ j ≤ q, can be done in time O(p2q2). The
naive method using polarization requires computing

∑p
i=0

∑q
j=0 2i+j = 2p+q+1 − 1 terms.
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To compute the coordinates of control points, we combine the σp,q
h,k. Specifically, the

coordinate value of the control point bi,j contributed by the polynomial
∑m

h=0

∑n
k=0 ah,ku

hvk

(where m ≤ p and n ≤ q) is

m∑
h=0

n∑
k=0

ah,k

(
p
h

)−1(
q
k

)−1

σp,q
h,k(r1, . . . , r1︸ ︷︷ ︸

p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

),

where (r1, s1) and (r2, s2) are affine frames. Our algorithm computes the table of values
σm,n

h,k (u1, . . . , um; v1, . . . , vn), and thus, it is very cheap to compute these sums.

When the affine frames (0, 1) are used, the following theorem gives closed-form formulae
for the polar values with respect to the bidegree (p, q).

Theorem 4.1 If there are s occurrences where u = 0, r occurrences where v = 0, and all
the other occurrences of u and v have the value 1, then

fp,q
h,k(u1, u2, . . . , up; v1, v2, . . . , vq) =

(
p − s

h

)(
q − r

k

)
(

p
h

)(
q
k

)
.

Proof . It can be shown by induction using the above recurrence equations.

It is well known that F can be expressed in terms of control points and (products of)
Bernstein polynomials (see Farin [3, 2], Hoschek and Lasser [7], or Piegl and Tiller [9]). As
in the case of curves, the methods of Lodha and Goldman [8] have the same complexity as
ours, but our method is more direct.

5 Computing Triangular Control Nets

As we saw in section 2, the polar form of the monomial uhvk with respect to the total degree
m is

fm
h,k((u1, v1), . . . , (um, vm)) =

1(
m
h

)(
m − h

k

) ∑
I∪J⊆{1,...,m}

|I|=h,|J|=k,I∩J=∅

(∏
i∈I

ui

)(∏
j∈J

vj

)
.

Letting σm
h,k =

(
m
h

)(
m − h

k

)
fm

h,k, it is easily verified that we have the following

recurrence equations:

σm
h,k =

{
σm−1

h,k + umσm−1
h−1,k + vmσm−1

h,k−1 if h, k ≥ 0 and 1 ≤ h + k ≤ m,
1 if h = k = 0 and m ≥ 0;
0 otherwise.
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The above formulae can be used to compute inductively the polar values

1(
m
h

)(
m − h

k

)σm
h,k((u1, v1), . . . , (um, vm)).

The computation consists in building a tetrahedron of values reminiscent of the Pascal tri-
angle (but 3-dimensional). Alternatively, we can compute fm

h,k directly using the recurrence
formula

fm
h,k =

(m − h − k)

m
fm−1

h,k +
h

m
um fm−1

h−1,k +
k

m
vm fm−1

h,k−1,

where h, k ≥ 0 and 1 ≤ h + k ≤ m. Again, we found that computing σm
h,k and dividing by(

m
h

)(
m − h

k

)
is faster than computing fm

h,k directly.

Given ((u1, v1), . . . , (um, vm)), using the recurrence equations, computing all the scaled
polar values

σi
h,k((u1, v1), . . . , (ui, vi)),

where h, k ≥ 0, 1 ≤ h + k ≤ i, and 1 ≤ i ≤ m, can be done in time O(m3). The naive
method using polarization requires computing

∑m
i=0 3i = (3m+1−1)/2 terms. To compute the

coordinates of control points, we simply combine the σm
h,k. Specifically, the coordinate value

of the control point bi,j,k (where i+j+k = m) contributed by the polynomial
∑

h+l≤n ah,lu
hvl

(where n ≤ m) is

∑
h+l≤n

ah,l

(
m

h l d

)−1

σm
h,l(r, . . . , r︸ ︷︷ ︸

i

, s, . . . , s︸ ︷︷ ︸
j

; t, . . . , t︸ ︷︷ ︸
k

),

where d = m−k− l and r = (r1, r2), s = (s1, s2) and t = (t1, t2) are the vertices of the affine
frame. Our algorithm computes the table of values σi

h,l((u1, v1), . . . , (ui, vi)), and thus, it is
very cheap to compute these sums.

When the affine frame ((1, 0), (0, 1), (0, 0)) is used, the following theorem gives closed-
form formulae for the polar values with respect to the total degree m.

Theorem 5.1 Assume that m = r + s + t, with r occurrences of (1, 0), s occurrences of
(0, 1), and t occurrences of (0, 0) (and no occurrences of (1, 1)). Then

fm
h,k((u1, v1), . . . , (um, vm)) =

(
r
h

)(
s
k

)
(

m
h

)(
m − h

k

)
.
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Proof . It can be shown by induction using the above recurrence equations.

As in the previous case, it is well known that F can be expressed in terms of control
points and (trivariate) Bernstein polynomials (see Farin [3, 2], Hoschek and Lasser [7], or
Piegl and Tiller [9]). The methods of Lodha and Goldman [8] have the same complexity as
ours, but our method is more direct and very easy to implement.

6 Examples

We wrote an implementation in Mathematica of a program computing polar values for curves,
using the recurrence equations of section 3. It works for an arbitrary affine frame (r, s).

As an example, consider the curve of degree 10 given by

x =
4t(1 − t2)2(1 − 14t2 + t4)

(1 + t2)5
,

y =
8t2(1 − t2)(3 − 10t2 + 3t4)

(1 + t2)5
.

Using the above program, the following control polygon w.r.t. [0, 1] is obtained:

rcpoly = {{0, 0, 1}, {2/5, 0, 1}, {18/25, 12/25, 10/9}, {1/2, 6/5, 4/3},

{-14/45, 71/45, 12/7}, {-45/37, 45/37, 148/63}, {-71/45, 14/45, 24/7},

{-6/5, -1/2, 16/3}, {-12/25, -18/25, 80/9}, {0, -2/5, 16}, {0, 0, 32}};

Note that the control points also contain weights, since there are denominators (see
Ramshaw [10], Farin [3, 2], Hoschek and Lasser [7], or Gallier [4]). Here is the rational
curve.
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Figure 1: A rose

We also wrote an implementation in Mathematica of a program computing polar values
for triangular surface patches, using the recurrence equations of section 5. This algorithm
works for any affine frame (r, s, t).

In Hilbert and Cohn-Vossen [6] (and also do Carmo [1]), an interesting map H from R
3

to R
4 is defined as

(x, y, z) �→ (xy, yz, xz, x2 − y2).

This map has the remarkable property that when restricted to the sphere S2, we have
H(x, y, z) = H(x′, y′, z′) iff (x′, y′, z′) = (x, y, z) or (x′, y′, z′) = (−x,−y,−z). In other words,
the inverse image of every point in H(S2) consists of two antipodal points. Thus, the map H
induces an injective map from the projective plane onto H(S2), which is obviously continuous,
and since the projective plane is compact, it is a homeomorphism. Thus, the map H allows
us to realize concretely the projective plane in R

4, by choosing any parameterization of the
sphere S2, and applying the map H to it. For example, the following parametric definition
specifies the entire projective plane over [−1, 1] × [−1, 1]:

x =
16uv2(1 − u2)

(u2 + 1)2(v2 + 1)2
,

y =
8uv(u2 + 1)(v2 − 1)

(u2 + 1)2(v2 + 1)2
,
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z =
4v(1 − u4)(v2 − 1)

(u2 + 1)2(v2 + 1)2
,

t =
4v2(u4 − 6u2 + 1)

(u2 + 1)2(v2 + 1)2
.

Using our algorithm, the following net of degree 8 over the affine frame ((1, 0, 0), (0, 1, 0),
(0, 0, 1)) is obtained:

proj8net =

{{0, 0, 0, 0, 1}, {0, 0, -1/2, 0, 1}, {0, 0, -14/15, 2/15, 15/14},

{0, 0, -20/17, 6/17, 17/14}, {0, 0, -120/101, 60/101, 101/70},

{0, 0, -1, 4/5, 25/14}, {0, 0, -11/16, 15/16, 16/7}, {0, 0, -1/3, 1, 3},

{0, 0, 0, 1, 4}, {0, 0, 0, 0, 1}, {0, -1/7, -1/2, 0, 1},

{4/45, -4/15, -14/15, 2/15, 15/14}, {4/17, -28/85, -20/17, 6/17, 17/14},

{40/101, -32/101, -120/101, 60/101, 101/70},

{8/15, -6/25, -1, 4/5, 25/14}, {5/8, -1/8, -11/16, 15/16, 16/7},

{2/3, 0, -1/3, 1, 3}, {0, 0, 0, 0, 15/14}, {0, -4/15, -7/15, 0, 15/14},

{20/121, -60/121, -105/121, 9/121, 121/105},

{10/23, -14/23, -25/23, 9/46, 46/35},

{240/331, -192/331, -360/331, 108/331, 331/210},

{80/83, -36/83, -75/83, 36/83, 83/42}, {10/9, -2/9, -11/18, 1/2, 18/7},

{0, 0, 0, 0, 17/14}, {0, -32/85, -7/17, 0, 17/14},

{9/46, -16/23, -35/46, -1/46, 46/35},

{27/53, -89/106, -50/53, -3/53, 53/35},

{36/43, -100/129, -40/43, -4/43, 129/70},

{12/11, -6/11, -25/33, -4/33, 33/14}, {0, 0, 0, 0, 101/70},

{0, -48/101, -34/101, 0, 101/70},

{56/331, -288/331, -204/331, -40/331, 331/210},

{56/129, -44/43, -98/129, -40/129, 129/70},

{16/23, -144/161, -120/161, -80/161, 23/10}, {0, 0, 0, 0, 25/14},

{0, -14/25, -6/25, 0, 25/14}, {8/83, -84/83, -36/83, -16/83, 83/42},

{8/33, -38/33, -6/11, -16/33, 33/14}, {0, 0, 0, 0, 16/7},

{0, -5/8, -1/8, 0, 16/7}, {0, -10/9, -2/9, -2/9, 18/7}, {0, 0, 0, 0, 3},

{0, -2/3, 0, 0, 3}, {0, 0, 0, 0, 4}};

Note that the control points also contain weights, since there are denominators. If we
project the real projective plane onto a hyperplane in R

4, either from a center or parallel to
a direction, we can see a “3D shadow” of the real projective plane in R

3. For example, one
of the projections is the cross-cap, whose control net is

projnet4 =

{{0, 0, 0, 1}, {0, 0, 0, 1}, {0, 0, 2/15, 15/14}, {0, 0, 6/17, 17/14},

{0, 0, 60/101, 101/70}, {0, 0, 4/5, 25/14}, {0, 0, 15/16, 16/7},
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{0, 0, 1, 3}, {0, 0, 1, 4}, {0, 0, 0, 1}, {0, -1/7, 0, 1},

{4/45, -4/15, 2/15, 15/14}, {4/17, -28/85, 6/17, 17/14},

{40/101, -32/101, 60/101, 101/70}, {8/15, -6/25, 4/5, 25/14},

{5/8, -1/8, 15/16, 16/7}, {2/3, 0, 1, 3}, {0, 0, 0, 15/14},

{0, -4/15, 0, 15/14}, {20/121, -60/121, 9/121, 121/105},

{10/23, -14/23, 9/46, 46/35}, {240/331, -192/331, 108/331, 331/210},

{80/83, -36/83, 36/83, 83/42}, {10/9, -2/9, 1/2, 18/7}, {0, 0, 0, 17/14},

{0, -32/85, 0, 17/14}, {9/46, -16/23, -1/46, 46/35},

{27/53, -89/106, -3/53, 53/35}, {36/43, -100/129, -4/43, 129/70},

{12/11, -6/11, -4/33, 33/14}, {0, 0, 0, 101/70}, {0, -48/101, 0, 101/70},

{56/331, -288/331, -40/331, 331/210}, {56/129, -44/43, -40/129, 129/70},

{16/23, -144/161, -80/161, 23/10}, {0, 0, 0, 25/14},

{0, -14/25, 0, 25/14}, {8/83, -84/83, -16/83, 83/42},

{8/33, -38/33, -16/33, 33/14}, {0, 0, 0, 16/7}, {0, -5/8, 0, 16/7},

{0, -10/9, -2/9, 18/7}, {0, 0, 0, 3}, {0, -2/3, 0, 3}, {0, 0, 0, 4}}

The cross-cap is shown below.
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Figure 2: The cross-cap surface
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