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Abstract: One of the main goals of these notes is to explain how rotations in Rn are induced
by the action of a certain group Spin(n) on Rn, in a way that generalizes the action of the
unit complex numbers U(1) on R2, and the action of the unit quaternions SU(2) on R3

(i.e., the action is defined in terms of multiplication in a larger algebra containing both the
group Spin(n) and Rn). The group Spin(n), called a spinor group, is defined as a certain
subgroup of units of an algebra Cln, the Clifford algebra associated with Rn.

Since the spinor groups are certain well chosen subgroups of units of Clifford algebras,
it is necessary to investigate Clifford algebras to get a firm understanding of spinor groups.
These notes provide a tutorial on Clifford algebra and the groups Spin and Pin, including a
study of the structure of the Clifford algebra Clp,q associated with a nondegenerate symmetric
bilinear form of signature (p, q) and culminating in the beautiful “8-periodicity theorem” of
Elie Cartan and Raoul Bott (with proofs).
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Chapter 1

Clifford Algebras, Clifford Groups,
and the Groups Pin(n) and Spin(n)

1.1 Introduction: Rotations As Group Actions

The main goal of this chapter is to explain how rotations in Rn are induced by the action
of a certain group Spin(n) on Rn, in a way that generalizes the action of the unit complex
numbers U(1) on R2, and the action of the unit quaternions SU(2) on R3 (i.e., the action
is defined in terms of multiplication in a larger algebra containing both the group Spin(n)
and Rn). The group Spin(n), called a spinor group, is defined as a certain subgroup of units
of an algebra Cln, the Clifford algebra associated with Rn. Furthermore, for n ≥ 3, we are
lucky, because the group Spin(n) is topologically simpler than the group SO(n). Indeed, for
n ≥ 3, the group Spin(n) is simply connected (a fact that it not so easy to prove without
some machinery), whereas SO(n) is not simply connected. Intuitively speaking, SO(n) is
more twisted than Spin(n). In fact, we will see that Spin(n) is a double cover of SO(n).

Since the spinor groups are certain well chosen subroups of units of Clifford algebras, it is
necessary to investigate Clifford algebras to get a firm understanding of spinor groups. This
chapter provides a tutorial on Clifford algebra and the groups Spin and Pin, including a
study of the structure of the Clifford algebra Clp,q associated with a nondegenerate symmetric
bilinear form of signature (p, q) and culminating in the beautiful “8-periodicity theorem” of
Elie Cartan and Raoul Bott (with proofs). We also explain when Spin(p, q) is a double-
cover of SO(p, q). The reader should be warned that a certain amount of algebraic (and
topological) background is expected. This being said, perseverant readers will be rewarded
by being exposed to some beautiful and nontrivial concepts and results, including Elie Cartan
and Raoul Bott “8-periodicity theorem.”

Going back to rotations as transformations induced by group actions, recall that if V is
a vector space, a linear action (on the left) of a group G on V is a map α : G × V → V
satisfying the following conditions, where, for simplicity of notation, we denote α(g, v) by
g · v:
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(1) g · (h · v) = (gh) · v, for all g, h ∈ G and v ∈ V ;

(2) 1 · v = v, for all v ∈ V , where 1 is the identity of the group G;

(3) The map v 7→ g · v is a linear isomorphism of V for every g ∈ G.

For example, the (multiplicative) group U(1) of unit complex numbers acts on R2 (by
identifying R2 and C) via complex multiplication: For every z = a + ib (with a2 + b2 = 1),
for every (x, y) ∈ R2 (viewing (x, y) as the complex number x+ iy),

z · (x, y) = (ax− by, ay + bx).

Now, every unit complex number is of the form cos θ + i sin θ, and thus the above action of
z = cos θ+ i sin θ on R2 corresponds to the rotation of angle θ around the origin. In the case
n = 2, the groups U(1) and SO(2) are isomorphic, but this is an exception.

To represent rotations in R3 and R4, we need the quaternions. For our purposes, it is
convenient to define the quaternions as certain 2× 2 complex matrices. Let 1, i, j,k be the
matrices

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
,

and let H be the set of all matrices of the form

X = a1 + bi + cj + dk, a, b, c, d ∈ R.

Thus, every matrix in H is of the form

X =

(
a+ ib c+ id
−(c− id) a− ib

)
, a, b, c, d ∈ R.

The quaternions 1, i, j,k satisfy the famous identities discovered by Hamilton:

i2 = j2 = k2 = ijk = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

As a consequence, it can be verified that H is a skew field (a noncommutative field) called
the quaternions . It is also a real vector space of dimension 4 with basis (1, i, j,k); thus as a
vector space, H is isomorphic to R4. The unit quaternions are the quaternions such that

det(X) = a2 + b2 + c2 + d2 = 1.

Given any quaternion X = a1 + bi + cj + dk, the conjugate X of X is given by

X = a1− bi− cj− dk.
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It is easy to check that the matrices associated with the unit quaternions are exactly the
matrices in SU(2). Thus, we call SU(2) the group of unit quaternions.

Now we can define an action of the group of unit quaternions SU(2) on R3. For this, we
use the fact that R3 can be identified with the pure quaternions in H, namely, the quaternions
of the form x1i + x2j + x3k, where (x1, x2, x3) ∈ R3. Then, we define the action of SU(2)
over R3 by

Z ·X = ZXZ−1 = ZXZ,

where Z ∈ SU(2) and X is any pure quaternion. Now, it turns out that the map ρZ (where
ρZ(X) = ZXZ) is indeed a rotation, and that the map ρ : Z 7→ ρZ is a surjective homomor-
phism ρ : SU(2)→ SO(3) whose kernel is {−1,1}, where 1 denotes the multiplicative unit
quaternion. (For details, see Gallier [16], Chapter 8).

We can also define an action of the group SU(2)×SU(2) over R4, by identifying R4 with
the quaternions. In this case,

(Y, Z) ·X = Y XZ,

where (Y, Z) ∈ SU(2)×SU(2) andX ∈ H is any quaternion. Then, the map ρY,Z is a rotation

(where ρY,Z(X) = Y XZ), and the map ρ : (Y, Z) 7→ ρY,Z is a surjective homomorphism
ρ : SU(2)×SU(2)→ SO(4) whose kernel is {(1,1), (−1,−1)}. (For details, see Gallier [16],
Chapter 8).

Thus, we observe that for n = 2, 3, 4, the rotations in SO(n) can be realized via the
linear action of some group (the case n = 1 is trivial, since SO(1) = {1,−1}). It is also the
case that the action of each group can be somehow be described in terms of multiplication in
some larger algebra “containing” the original vector space Rn (C for n = 2, H for n = 3, 4).
However, these groups appear to have been discovered in an ad hoc fashion, and there does
not appear to be any universal way to define the action of these groups on Rn. It would
certainly be nice if the action was always of the form

Z ·X = ZXZ−1(= ZXZ).

A systematic way of constructing groups realizing rotations in terms of linear action, using
a uniform notion of action, does exist. Such groups are the spinor groups, to be described
in the following sections.

1.2 Clifford Algebras

We explained in Section 1.1 how the rotations in SO(3) can be realized by the linear action of
the group of unit quaternions SU(2) on R3, and how the rotations in SO(4) can be realized
by the linear action of the group SU(2)× SU(2) on R4.

The main reasons why the rotations in SO(3) can be represented by unit quaternions are
the following:
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(1) For every nonzero vector u ∈ R3, the reflection su about the hyperplane perpendicular
to u is represented by the map

v 7→ −uvu−1,

where u and v are viewed as pure quaternions in H (i.e., if u = (u1, u2, u2), then view
u as u1i + u2j + u3k, and similarly for v).

(2) The group SO(3) is generated by the reflections.

As one can imagine, a successful generalization of the quaternions, i.e., the discovery
of a group G inducing the rotations in SO(n) via a linear action, depends on the ability
to generalize properties (1) and (2) above. Fortunately, it is true that the group SO(n) is
generated by the hyperplane reflections. In fact, this is also true for the orthogonal group
O(n), and more generally for the group of direct isometries O(Φ) of any nondegenerate
quadratic form Φ, by the Cartan-Dieudonné theorem (for instance, see Bourbaki [6], or
Gallier [16], Chapter 7, Theorem 7.2.1). In order to generalize (2), we need to understand
how the group G acts on Rn. Now, the case n = 3 is special, because the underlying space
R3 on which the rotations act can be embedded as the pure quaternions in H. The case
n = 4 is also special, because R4 is the underlying space of H. The generalization to n ≥ 5
requires more machinery, namely, the notions of Clifford groups and Clifford algebras.

As we will see, for every n ≥ 2, there is a compact, connected (and simply connected when
n ≥ 3) group Spin(n), the “spinor group,” and a surjective homomorphism ρ : Spin(n) →
SO(n) whose kernel is {−1, 1}. This time, Spin(n) acts directly on Rn, because Spin(n) is
a certain subgroup of the group of units of the Clifford algebra Cln, and Rn is naturally a
subspace of Cln.

The group of unit quaternions SU(2) turns out to be isomorphic to the spinor group
Spin(3). Because Spin(3) acts directly on R3, the representation of rotations in SO(3)
by elements of Spin(3) may be viewed as more natural than the representation by unit
quaternions. The group SU(2) × SU(2) turns out to be isomorphic to the spinor group
Spin(4), but this isomorphism is less obvious.

In summary, we are going to define a group Spin(n) representing the rotations in SO(n),
for any n ≥ 1, in the sense that there is a linear action of Spin(n) on Rn which induces a
surjective homomorphism ρ : Spin(n) → SO(n) whose kernel is {−1, 1}. Furthermore, the
action of Spin(n) on Rn is given in terms of multiplication in an algebra Cln containing
Spin(n), and in which Rn is also embedded.

It turns out that as a bonus, for n ≥ 3, the group Spin(n) is topologically simpler
than SO(n), since Spin(n) is simply connected, but SO(n) is not. By being astute, we
can also construct a group Pin(n) and a linear action of Pin(n) on Rn that induces a
surjective homomorphism ρ : Pin(n) → O(n) whose kernel is {−1, 1}. The difficulty here
is the presence of the negative sign in (2). We will see how Atiyah, Bott and Shapiro
circumvent this problem by using a “twisted adjoint action,” as opposed to the usual adjoint
action (where v 7→ uvu−1).
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Our presentation is heavily influenced by Bröcker and tom Dieck [7] (Chapter 1, Section
6), where most details can be found. This Chapter is almost entirely taken from the first 11
pages of the beautiful and seminal paper by Atiyah, Bott and Shapiro [3], Clifford Modules,
and we highly recommend it. Another excellent (but concise) exposition can be found in
Kirillov [18]. A very thorough exposition can be found in two places:

1. Lawson and Michelsohn [20], where the material on Pin(p, q) and Spin(p, q) can be
found in Chapter I.

2. Lounesto’s excellent book [21].

One may also want to consult Baker [4], Curtis [12], Porteous [24], Fulton and Harris (Lecture
20) [15], Choquet-Bruhat [11], Bourbaki [6], and Chevalley [10], a classic. The original source
is Elie Cartan’s book (1937) whose translation in English appears in [8].

We begin by recalling what is an algebra over a field. Let K denote any (commutative)
field, although for our purposes we may assume that K = R (and occasionally, K = C).
Since we will only be dealing with associative algebras with a multiplicative unit, we only
define algebras of this kind.

Definition 1.1. Given a field K, a K-algebra is a K-vector space A together with a bilinear
operation · : A × A → A, called multiplication, which makes A into a ring with unity 1
(or 1A, when we want to be very precise). This means that · is associative and that there
is a multiplicative identity element 1 so that 1 · a = a · 1 = a, for all a ∈ A. Given two
K-algebras A and B, a K-algebra homomorphism h : A → B is a linear map that is also a
ring homomorphism, with h(1A) = 1B.

For example, the ring Mn(K) of all n× n matrices over a field K is a K-algebra.

There is an obvious notion of ideal of a K-algebra: An ideal A ⊆ A is a linear subspace
of A that is also a two-sided ideal with respect to multiplication in A. If the field K is
understood, we usually simply say an algebra instead of a K-algebra.

We will also need a quick review of tensor products. The basic idea is that tensor products
allow us to view multilinear maps as linear maps. The maps become simpler, but the spaces
(product spaces) become more complicated (tensor products). For more details, see Atiyah
and Macdonald [2].

Definition 1.2. Given two K-vector spaces E and F , a tensor product of E and F is a pair
(E ⊗ F, ⊗), where E ⊗ F is a K-vector space and ⊗ : E × F → E ⊗ F is a bilinear map, so
that for every K-vector space G and every bilinear map f : E × F → G, there is a unique
linear map f⊗ : E ⊗ F → G with

f(u, v) = f⊗(u⊗ v) for all u ∈ E and all v ∈ V ,
as in the diagram below:

E × F ⊗ //

f
%%LL

LLL
LLL

LLL
E ⊗ F

f⊗
��
G
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The vector space E ⊗ F is defined up to isomorphism. The vectors u⊗ v, where u ∈ E
and v ∈ F , generate E ⊗ F .

Remark: We should really denote the tensor product of E and F by E ⊗K F , since it
depends on the field K. Since we usually deal with a fixed field K, we use the simpler
notation E ⊗ F .

We have natural isomorphisms

(E ⊗ F )⊗G ≈ E ⊗ (F ⊗G) and E ⊗ F ≈ F ⊗ E.

Given two linear maps f : E → F and g : E ′ → F ′, we have a unique bilinear map
f × g : E × E ′ → F × F ′ so that

(f × g)(a, a′) = (f(a), g(a′)) for all a ∈ E and all a′ ∈ E ′.

Thus, we have the bilinear map ⊗ ◦ (f × g) : E × E ′ → F ⊗ F ′, and so, there is a unique
linear map f ⊗ g : E ⊗ E ′ → F ⊗ F ′ so that

(f ⊗ g)(a⊗ a′) = f(a)⊗ g(a′) for all a ∈ E and all a′ ∈ E ′.

Let us now assume that E and F are K-algebras. We want to make E ⊗ F into a K-
algebra. Since the multiplication operations mE : E × E → E and mF : F × F → F are
bilinear, we get linear maps m′E : E⊗E → E and m′F : F ⊗F → F , and thus the linear map

m′E ⊗m′F : (E ⊗ E)⊗ (F ⊗ F )→ E ⊗ F.

Using the isomorphism τ : (E ⊗ E)⊗ (F ⊗ F )→ (E ⊗ F )⊗ (E ⊗ F ), we get a linear map

mE⊗F : (E ⊗ F )⊗ (E ⊗ F )→ E ⊗ F,

which defines a multiplication m on E ⊗ F (namely, m(u, v) = mE⊗F (u ⊗ v)). It is easily
checked that E ⊗ F is indeed a K-algebra under the multiplication m. Using the simpler
notation · for m, we have

(a⊗ a′) · (b⊗ b′) = (ab)⊗ (a′b′)

for all a, b ∈ E and all a′, b′ ∈ F .

Given any vector space V over a field K, there is a special K-algebra T (V ) together
with a linear map i : V → T (V ), with the following universal mapping property: Given any
K-algebra A, for any linear map f : V → A, there is a unique K-algebra homomorphism
f : T (V )→ A so that

f = f ◦ i,
as in the diagram below:

V
i //

f ""E
EE

EE
EE

EE
T (V )

f
��
A
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The algebra T (V ) is the tensor algebra of V . The algebra T (V ) may be constructed as the
direct sum

T (V ) =
⊕
i≥0

V ⊗i,

where V 0 = K, and V ⊗i is the i-fold tensor product of V with itself. For every i ≥ 0, there
is a natural injection ιn : V ⊗n → T (V ), and in particular, an injection ι0 : K → T (V ). The
multiplicative unit 1 of T (V ) is the image ι0(1) in T (V ) of the unit 1 of the field K. Since
every v ∈ T (V ) can be expressed as a finite sum

v = v1 + · · ·+ vk,

where vi ∈ V ⊗ni and the ni are natural numbers with ni 6= nj if i 6= j, to define multiplication
in T (V ), using bilinearity, it is enough to define the multiplication V ⊗m×V ⊗n −→ V ⊗(m+n).
Of course, this is defined by

(v1 ⊗ · · · ⊗ vm) · (w1 ⊗ · · · ⊗ wn) = v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wn.

(This has to be made rigorous by using isomorphisms involving the associativity of tensor
products; for details, see see Atiyah and Macdonald [2].) The algebra T (V ) is an example
of a graded algebra, where the homogeneous elements of rank n are the elements in V ⊗n.

Remark: It is important to note that multiplication in T (V ) is not commutative. Also, in
all rigor, the unit 1 of T (V ) is not equal to 1, the unit of the field K. However, in view
of the injection ι0 : K → T (V ), for the sake of notational simplicity, we will denote 1 by 1.
More generally, in view of the injections ιn : V ⊗n → T (V ), we identify elements of V ⊗n with
their images in T (V ).

Most algebras of interest arise as well-chosen quotients of the tensor algebra T (V ). This
is true for the exterior algebra

∧• V (also called Grassmann algebra), where we take the
quotient of T (V ) modulo the ideal generated by all elements of the form v⊗ v, where v ∈ V ,
and for the symmetric algebra Sym V , where we take the quotient of T (V ) modulo the ideal
generated by all elements of the form v ⊗ w − w ⊗ v, where v, w ∈ V .

A Clifford algebra may be viewed as a refinement of the exterior algebra, in which we take
the quotient of T (V ) modulo the ideal generated by all elements of the form v⊗ v−Φ(v) · 1,
where Φ is the quadratic form associated with a symmetric bilinear form ϕ : V × V → K,
and · : K × T (V ) → T (V ) denotes the scalar product of the algebra T (V ). For simplicity,
let us assume that we are now dealing with real algebras.

Definition 1.3. Let V be a real finite-dimensional vector space together with a symmetric
bilinear form ϕ : V × V → R and associated quadratic form Φ(v) = ϕ(v, v). A Clifford
algebra associated with V and Φ is a real algebra Cl(V,Φ) together with a linear map iΦ : V →
Cl(V,Φ) satisfying the condition (iΦ(v))2 = Φ(v) · 1 for all v ∈ V , and so that for every real
algebra A and every linear map f : V → A with

(f(v))2 = Φ(v) · 1 for all v ∈ V ,
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there is a unique algebra homomorphism f : Cl(V,Φ)→ A so that

f = f ◦ iΦ,

as in the diagram below:

V
iΦ//

f $$I
II

II
II

II
I Cl(V,Φ)

f
��
A

We use the notation λ ·u for the product of a scalar λ ∈ R and of an element u in the algebra
Cl(V,Φ), and juxtaposition uv for the multiplication of two elements u and v in the algebra
Cl(V,Φ).

By a familiar argument, any two Clifford algebras associated with V and Φ are isomorphic.
We often denote iΦ by i.

To show the existence of Cl(V,Φ), observe that T (V )/A does the job, where A is the
ideal of T (V ) generated by all elements of the form v⊗ v−Φ(v) · 1, where v ∈ V . The map
iΦ : V → Cl(V,Φ) is the composition

V
ι1−→ T (V )

π−→ T (V )/A,

where π is the natural quotient map. We often denote the Clifford algebra Cl(V,Φ) simply
by Cl(Φ).

Remark: Observe that Definition 1.3 does not assert that iΦ is injective or that there is
an injection of R into Cl(V,Φ), but we will prove later that both facts are true when V is
finite-dimensional. Also, as in the case of the tensor algebra, the unit of the algebra Cl(V,Φ)
and the unit of the field R are not equal.

Since
Φ(u+ v)− Φ(u)− Φ(v) = 2ϕ(u, v)

and
(i(u+ v))2 = (i(u))2 + (i(v))2 + i(u)i(v) + i(v)i(u),

using the fact that
i(u)2 = Φ(u) · 1,

we get
i(u)i(v) + i(v)i(u) = 2ϕ(u, v) · 1.

As a consequence, if (u1, . . . , un) is an orthogonal basis w.r.t. ϕ (which means that
ϕ(uj, uk) = 0 for all j 6= k), we have

i(uj)i(uk) + i(uk)i(uj) = 0 for all j 6= k.
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Remark: Certain authors drop the unit 1 of the Clifford algebra Cl(V,Φ) when writing the
identities

i(u)2 = Φ(u) · 1
and

2ϕ(u, v) · 1 = i(u)i(v) + i(v)i(u),

where the second identity is often written as

ϕ(u, v) =
1

2
(i(u)i(v) + i(v)i(u)).

This is very confusing and technically wrong, because we only have an injection of R into
Cl(V,Φ), but R is not a subset of Cl(V,Φ).

� We warn the readers that Lawson and Michelsohn [20] adopt the opposite of our sign
convention in defining Clifford algebras, i.e., they use the condition

(f(v))2 = −Φ(v) · 1 for all v ∈ V .

The most confusing consequence of this is that their Cl(p, q) is our Cl(q, p).

Observe that when Φ ≡ 0 is the quadratic form identically zero everywhere, then the
Clifford algebra Cl(V, 0) is just the exterior algebra

∧• V .

Example 1.1. Let V = R, e1 = 1, and assume that Φ(x1e1) = −x2
1. Then, Cl(Φ) is spanned

by the basis (1, e1). We have
e2

1 = −1.

Under the bijection
e1 7→ i,

the Clifford algebra Cl(Φ), also denoted by Cl1, is isomorphic to the algebra of complex
numbers C.

Now, let V = R2, (e1, e2) be the canonical basis, and assume that Φ(x1e1 + x2e2) =
−(x2

1 + x2
2). Then, Cl(Φ) is spanned by the basis (1, e1, e2, e1e2). Furthermore, we have

e2e1 = −e1e2, e2
1 = −1, e2

2 = −1, (e1e2)2 = −1.

Under the bijection
e1 7→ i, e2 7→ j, e1e2 7→ k,

it is easily checked that the quaternion identities

i2 = j2 = k2 = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j,

hold, and thus the Clifford algebra Cl(Φ), also denoted by Cl2, is isomorphic to the algebra
of quaternions H.
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Our prime goal is to define an action of Cl(Φ) on V in such a way that by restricting
this action to some suitably chosen multiplicative subgroups of Cl(Φ), we get surjective
homomorphisms onto O(Φ) and SO(Φ), respectively. The key point is that a reflection in
V about a hyperplane H orthogonal to a vector w can be defined by such an action, but
some negative sign shows up. A correct handling of signs is a bit subtle and requires the
introduction of a canonical anti-automorphism t, and of a canonical automorphism α, defined
as follows:

Proposition 1.1. Every Clifford algebra Cl(Φ) possesses a canonical anti-automorphism
t : Cl(Φ)→ Cl(Φ) satisfying the properties

t(xy) = t(y)t(x), t ◦ t = id, and t(i(v)) = i(v),

for all x, y ∈ Cl(Φ) and all v ∈ V . Furthermore, such an anti-automorphism is unique.

Proof. Consider the opposite algebra Cl(Φ)o, in which the product of x and y is given by
yx. It has the universal mapping property. Thus, we get a unique isomorphism t, as in the
diagram below:

V
i //

i ##G
GG

GG
GG

GG
G Cl(V,Φ)

t
��

Cl(Φ)o

We also denote t(x) by xt. When V is finite-dimensional, for a more palatable description
of t in terms of a basis of V , see the paragraph following Theorem 1.4.

The canonical automorphism α is defined using the proposition

Proposition 1.2. Every Clifford algebra Cl(Φ) has a unique canonical automorphism
α : Cl(Φ)→ Cl(Φ) satisfying the properties

α ◦ α = id, and α(i(v)) = −i(v),

for all v ∈ V .

Proof. Consider the linear map α0 : V → Cl(Φ) defined by α0(v) = −i(v), for all v ∈ V . We
get a unique homomorphism α as in the diagram below:

V
i //

α0 ##G
GG

GG
GG

GG
G Cl(V,Φ)

α

��
Cl(Φ)

Furthermore, every x ∈ Cl(Φ) can be written as

x = x1 · · · xm,

with xj ∈ i(V ), and since α(xj) = −xj, we get α ◦ α = id. It is clear that α is bijective.
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Again, when V is finite-dimensional, a more palatable description of α in terms of a basis
of V can be given. If (e1, . . . , en) is a basis of V , then the Clifford algebra Cl(Φ) consists of
certain kinds of “polynomials,” linear combinations of monomials of the form

∑
J λJeJ , where

J = {i1, i2, . . . , ik} is any subset (possibly empty) of {1, . . . , n}, with 1 ≤ i1 < i2 · · · < ik ≤ n,
and the monomial eJ is the “product” ei1ei2 · · · eik . The map α is the linear map defined on
monomials by

α(ei1ei2 · · · eik) = (−1)kei1ei2 · · · eik .
For a more rigorous explanation, see the paragraph following Theorem 1.4.

We now show that if V has dimension n, then i is injective and Cl(Φ) has dimension 2n.
A clever way of doing this is to introduce a graded tensor product.

First, observe that
Cl(Φ) = Cl0(Φ)⊕ Cl1(Φ),

where
Cli(Φ) = {x ∈ Cl(Φ) | α(x) = (−1)ix}, where i = 0, 1.

We say that we have a Z/2-grading , which means that if x ∈ Cli(Φ) and y ∈ Clj(Φ), then
xy ∈ Cli+j (mod 2)(Φ).

When V is finite-dimensional, since every element of Cl(Φ) is a linear combination of the
form

∑
J λJeJ as explained earlier, in view of the description of α given above, we see that

the elements of Cl0(Φ) are those for which the monomials eJ are products of an even number
of factors, and the elements of Cl1(Φ) are those for which the monomials eJ are products of
an odd number of factors.

Remark: Observe that Cl0(Φ) is a subalgebra of Cl(Φ), whereas Cl1(Φ) is not.

Given two Z/2-graded algebras A = A0 ⊕ A1 and B = B0 ⊕ B1, their graded tensor
product A ⊗̂B is defined by

(A ⊗̂B)0 = (A0 ⊗B0)⊕ (A1 ⊗B1),

(A ⊗̂B)1 = (A0 ⊗B1)⊕ (A1 ⊗B0),

with multiplication
(a′ ⊗ b)(a⊗ b′) = (−1)ij(a′a)⊗ (bb′),

for a ∈ Ai and b ∈ Bj. The reader should check that A ⊗̂B is indeed Z/2-graded.

Proposition 1.3. Let V and W be finite dimensional vector spaces with quadratic forms Φ
and Ψ. Then, there is a quadratic form Φ⊕Ψ on V ⊕W defined by

(Φ + Ψ)(v, w) = Φ(v) + Ψ(w).

If we write i : V → Cl(Φ) and j : W → Cl(Ψ), we can define a linear map

f : V ⊕W → Cl(Φ) ⊗̂ Cl(Ψ)
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by

f(v, w) = i(v)⊗ 1 + 1⊗ j(w).

Furthermore, the map f induces an isomorphism (also denoted by f)

f : Cl(V ⊕W )→ Cl(Φ) ⊗̂ Cl(Ψ).

Proof. See Bröcker and tom Dieck [7], Chapter 1, Section 6, page 57.

As a corollary, we obtain the following result:

Theorem 1.4. For every vector space V of finite dimension n, the map i : V → Cl(Φ) is
injective. Given a basis (e1, . . . , en) of V , the 2n − 1 products

i(ei1)i(ei2) · · · i(eik), 1 ≤ i1 < i2 · · · < ik ≤ n,

and 1 form a basis of Cl(Φ). Thus, Cl(Φ) has dimension 2n.

Proof. The proof is by induction on n = dim(V ). For n = 1, the tensor algebra T (V ) is just
the polynomial ring R[X], where i(e1) = X. Thus, Cl(Φ) = R[X]/(X2 − Φ(e1)), and the
result is obvious. Since

i(ej)i(ek) + i(ek)i(ej) = 2ϕ(ei, ej) · 1,

it is clear that the products

i(ei1)i(ei2) · · · i(eik), 1 ≤ i1 < i2 · · · < ik ≤ n,

and 1 generate Cl(Φ). Now, there is always a basis that is orthogonal with respect to ϕ (for
example, see Artin [1], Chapter 7, or Gallier [16], Chapter 6, Problem 6.14), and thus, we
have a splitting

(V,Φ) =
n⊕
k=1

(Vk,Φk),

where Vk has dimension 1. Choosing a basis so that ek ∈ Vk, the theorem follows by induction
from Proposition 1.3.

Since i is injective, for simplicity of notation, from now on we write u for i(u). Theorem
1.4 implies that if (e1, . . . , en) is an orthogonal basis of V , then Cl(Φ) is the algebra presented
by the generators (e1, . . . , en) and the relations

e2
j = Φ(ej) · 1, 1 ≤ j ≤ n, and

ejek = −ekej, 1 ≤ j, k ≤ n, j 6= k.
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If V has finite dimension n and (e1, . . . , en) is a basis of V , by Theorem 1.4, the maps t
and α are completely determined by their action on the basis elements. Namely, t is defined
by

t(ei) = ei

t(ei1ei2 · · · eik) = eikeik−1
· · · ei1 ,

where 1 ≤ i1 < i2 · · · < ik ≤ n, and of course, t(1) = 1. The map α is defined by

α(ei) = −ei
α(ei1ei2 · · · eik) = (−1)kei1ei2 · · · eik

where 1 ≤ i1 < i2 · · · < ik ≤ n, and of course, α(1) = 1. Furthermore, the even-graded
elements (the elements of Cl0(Φ)) are those generated by 1 and the basis elements consisting
of an even number of factors ei1ei2 · · · ei2k , and the odd-graded elements (the elements of
Cl1(Φ)) are those generated by the basis elements consisting of an odd number of factors
ei1ei2 · · · ei2k+1

.

We are now ready to define the Clifford group and investigate some of its properties.

1.3 Clifford Groups

First, we define conjugation on a Clifford algebra Cl(Φ) as the map

x 7→ x = t(α(x)) for all x ∈ Cl(Φ).

Observe that
t ◦ α = α ◦ t.

If V has finite dimension n and (e1, . . . , en) is a basis of V , in view of previous remarks,
conjugation is defined by

ei = −ei
ei1ei2 · · · eik = (−1)keikeik−1

· · · ei1

where 1 ≤ i1 < i2 · · · < ik ≤ n, and of course, 1 = 1. Conjugation is an anti-automorphism.

The multiplicative group of invertible elements of Cl(Φ) is denoted by Cl(Φ)∗. Observe
that for any x ∈ V , if Φ(x) 6= 0, then x is invertible because x2 = Φ(x); that is, x ∈ Cl(Φ)∗.

We would like Cl(Φ)∗ to act on V via

x · v = α(x)vx−1,

where x ∈ Cl(Φ)∗ and v ∈ V . In general, there is no reason why α(x)vx−1 should be in V or
why this action defines an automorphism of V , so we restrict this map to the subset Γ(Φ)
of Cl(Φ)∗ as follows.
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Definition 1.4. Given a finite dimensional vector space V and a quadratic form Φ on V ,
the Clifford group of Φ is the group

Γ(Φ) = {x ∈ Cl(Φ)∗ | α(x)vx−1 ∈ V for all v ∈ V }.

The map N : Cl(Q)→ Cl(Q) given by

N(x) = xx

is called the norm of Cl(Φ).

For any x ∈ Γ(Φ), let ρx : V → V be the map defined by

v 7→ α(x)vx−1, v ∈ V.

It is not entirely obvious why the map ρ : Γ(Φ)→ GL(V ) given by x 7→ ρx is a linear action,
and for that matter, why Γ(Φ) is a group. This is because V is finite-dimensional and α is
an automorphism.

Proof. For any x ∈ Γ(Φ), the map ρx from V to V defined by

v 7→ α(x)vx−1

is clearly linear. If α(x)vx−1 = 0, since by hypothesis x is invertible and since α is an
automorphism α(x) is also invertible, so v = 0. Thus our linear map is injective, and since
V has finite dimension, it is bijective. To prove that x−1 ∈ Γ(Φ), pick any v ∈ V . Since
the linear map ρx is bijective, there is some w ∈ V such that ρx(w) = v, which means that
α(x)wx−1 = v. Since x is invertible and α is an automorphism, we get

α(x−1)vx = w,

so α(x−1)vx ∈ V ; since this holds for any v ∈ V , we have x−1 ∈ Γ(Φ). Since α is an
automorphism, if x, y ∈ Γ(Φ), for any v ∈ V we have

ρy(ρx(v)) = α(y)α(x)vx−1y−1 = α(yx)v(yx)−1 = ρyx(v),

which shows that ρyx is a linear automorphism of V , so yx ∈ Γ(Φ) and ρ is a homomorphism.
Therefore, Γ(Φ) is a group and ρ is a linear representation.

We also define the group Γ+(Φ), called the special Clifford group, by

Γ+(Φ) = Γ(Φ) ∩ Cl0(Φ).

Observe that N(v) = −Φ(v) · 1 for all v ∈ V . Also, if (e1, . . . , en) is a basis of V , we leave it
as an exercise to check that

N(ei1ei2 · · · eik) = (−1)kΦ(ei1)Φ(ei2) · · ·Φ(eik) · 1.
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Remark: The map ρ : Γ(Φ) → GL(V ) given by x 7→ ρx is called the twisted adjoint rep-
resentation. It was introduced by Atiyah, Bott and Shapiro [3]. It has the advantage of
not introducing a spurious negative sign, i.e., when v ∈ V and Φ(v) 6= 0, the map ρv is the
reflection sv about the hyperplane orthogonal to v (see Proposition 1.6). Furthermore, when
Φ is nondegenerate, the kernel Ker (ρ) of the representation ρ is given by Ker (ρ) = R∗ · 1,
where R∗ = R− {0}. The earlier adjoint representation (used by Chevalley [10] and others)
is given by

v 7→ xvx−1.

Unfortunately, in this case, ρx represents −sv, where sv is the reflection about the hyperplane
orthogonal to v. Furthermore, the kernel of the representation ρ is generally bigger than R∗·1.
This is the reason why the twisted adjoint representation is preferred (and must be used for
a proper treatment of the Pin group).

Proposition 1.5. The maps α and t induce an automorphism and an anti-automorphism
of the Clifford group, Γ(Φ).

Proof. It is not very instructive; see Bröcker and tom Dieck [7], Chapter 1, Section 6, page
58.

The following proposition shows why Clifford groups generalize the quaternions.

Proposition 1.6. Let V be a finite dimensional vector space and Φ a quadratic form on
V . For every element x of the Clifford group Γ(Φ), if x ∈ V and Φ(x) 6= 0, then the map
ρx : V → V given by

v 7→ α(x)vx−1 for all v ∈ V

is the reflection about the hyperplane H orthogonal to the vector x.

Proof. Recall that the reflection s about the hyperplane H orthogonal to the vector x is
given by

s(u) = u− 2
ϕ(u, x)

Φ(x)
· x.

However, we have

x2 = Φ(x) · 1 and ux+ xu = 2ϕ(u, x) · 1.
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Thus, we have

s(u) = u− 2
ϕ(u, x)

Φ(x)
· x

= u− 2ϕ(u, x) ·
(

1

Φ(x)
· x
)

= u− 2ϕ(u, x) · x−1

= u− 2ϕ(u, x) · (1x−1)

= u− (2ϕ(u, x) · 1)x−1

= u− (ux+ xu)x−1

= −xux−1

= α(x)ux−1,

since α(x) = −x, for x ∈ V .

Recall that the linear representation

ρ : Γ(Φ)→ GL(V )

is given by
ρx(v) = α(x)vx−1,

for all x ∈ Γ(Φ) and all v ∈ V . We would like to show that ρ is a surjective homomorphism
from Γ(Φ) onto O(ϕ), and a surjective homomorphism from Γ+(Φ) onto SO(ϕ). For this,
we will need to assume that ϕ is nondegenerate, which means that for every v ∈ V , if
ϕ(v, w) = 0 for all w ∈ V , then v = 0. For simplicity of exposition, we first assume that Φ
is the quadratic form on Rn defined by

Φ(x1, . . . , xn) = −(x2
1 + · · ·+ x2

n).

Let Cln denote the Clifford algebra Cl(Φ) and Γn denote the Clifford group Γ(Φ). The
following lemma plays a crucial role:

Lemma 1.7. The kernel of the map ρ : Γn → GL(n) is R∗ · 1, the multiplicative group of
nonzero scalar multiples of 1 ∈ Cln.

Proof. If ρx = id, then
α(x)v = vx for all v ∈ Rn. (1)

Since Cln = Cl0n ⊕ Cl1n, we can write x = x0 + x1, with xi ∈ Clin for i = 0, 1. Then, equation
(1) becomes

x0v = vx0 and − x1v = vx1 for all v ∈ Rn. (2)

Using Theorem 1.4, we can express x0 as a linear combination of monomials in the canonical
basis (e1, . . . , en), so that

x0 = a0 + e1b
1, with a0 ∈ Cl0n, b

1 ∈ Cl1n,
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where neither a0 nor b1 contains a summand with a factor e1. Applying the first relation in
(2) to v = e1, we get

e1a
0 + e2

1b
1 = a0e1 + e1b

1e1. (3)

Now, the basis (e1, . . . , en) is orthogonal w.r.t. Φ, which implies that

ejek = −ekej for all j 6= k.

Since each monomial in a0 is of even degree and contains no factor e1, we get

a0e1 = e1a
0.

Similarly, since b1 is of odd degree and contains no factor e1, we get

e1b
1e1 = −e2

1b
1.

But then, from (3), we get

e1a
0 + e2

1b
1 = a0e1 + e1b

1e1 = e1a
0 − e2

1b
1,

and so, e2
1b

1 = 0. However, e2
1 = −1, and so, b1 = 0. Therefore, x0 contains no monomial

with a factor e1. We can apply the same argument to the other basis elements e2, . . . , en,
and thus, we just proved that x0 ∈ R · 1.

A similar argument applying to the second equation in (2), with x1 = a1 +e1b
0 and v = e1

shows that b0 = 0. We also conclude that x1 ∈ R · 1. However, R · 1 ⊆ Cl0n, and so x1 = 0.
Finally, x = x0 ∈ (R · 1) ∩ Γn = R∗ · 1.

Remark: If Φ is any nondegenerate quadratic form, we know (for instance, see Artin [1],
Chapter 7, or Gallier [16], Chapter 6, Problem 6.14) that there is an orthogonal basis
(e1, . . . , en) with respect to ϕ (i.e. ϕ(ej, ek) = 0 for all j 6= k). Thus, the commutation
relations

e2
j = Φ(ej) · 1, with Φ(ej) 6= 0, 1 ≤ j ≤ n, and

ejek = −ekej, 1 ≤ j, k ≤ n, j 6= k

hold, and since the proof only rests on these facts, Lemma 1.7 holds for any nondegenerate
quadratic form.

� However, Lemma 1.7 may fail for degenerate quadratic forms. For example, if Φ ≡ 0,
then Cl(V, 0) =

∧• V . Consider the element x = 1 + e1e2. Clearly, x−1 = 1− e1e2. But
now, for any v ∈ V , we have

α(1 + e1e2)v(1 + e1e2)−1 = (1 + e1e2)v(1− e1e2) = v.

Yet, 1 + e1e2 is not a scalar multiple of 1.
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The following proposition shows that the notion of norm is well-behaved.

Proposition 1.8. If x ∈ Γn, then N(x) ∈ R∗ · 1.

Proof. The trick is to show that N(x) is in the kernel of ρ. To say that x ∈ Γn means that

α(x)vx−1 ∈ Rn for all v ∈ Rn.

Applying t, we get
t(x)−1vt(α(x)) = α(x)vx−1,

since t is the identity on Rn. Thus, we have

v = t(x)α(x)v(t(α(x))x)−1 = α(xx)v(xx)−1,

so xx ∈ Ker (ρ). By Proposition 1.5, we have x ∈ Γn, and so, xx = xx ∈ Ker (ρ).

Remark: Again, the proof also holds for the Clifford group Γ(Φ) associated with any non-
degenerate quadratic form Φ. When Φ(v) = −‖v‖2, where ‖v‖ is the standard Euclidean
norm of v, we have N(v) = ‖v‖2 · 1 for all v ∈ V . However, for other quadratic forms, it is
possible that N(x) = λ · 1 where λ < 0, and this is a difficulty that needs to be overcome.

Proposition 1.9. The restriction of the norm N to Γn is a homomorphism N : Γn → R∗ ·1,
and N(α(x)) = N(x) for all x ∈ Γn.

Proof. We have
N(xy) = xyy x = xN(y)x = xxN(y) = N(x)N(y),

where the third equality holds because N(x) ∈ R∗ · 1. We also have

N(α(x)) = α(x)α(x) = α(xx) = α(N(x)) = N(x).

Remark: The proof also holds for the Clifford group Γ(Φ) associated with any nondegen-
erate quadratic form Φ.

Proposition 1.10. We have Rn − {0} ⊆ Γn and ρ(Γn) ⊆ O(n).

Proof. Let x ∈ Γn and v ∈ Rn, with v 6= 0. We have

N(ρx(v)) = N(α(x)vx−1) = N(α(x))N(v)N(x−1) = N(x)N(v)N(x)−1 = N(v),

since N : Γn → R∗ · 1. However, for v ∈ Rn, we know that

N(v) = −Φ(v) · 1.

Thus, ρx is norm-preserving, and so, ρx ∈ O(n).

Remark: The proof that ρ(Γ(Φ)) ⊆ O(Φ) also holds for the Clifford group Γ(Φ) associated
with any nondegenerate quadratic form Φ. The first statement needs to be replaced by the
fact that every non-isotropic vector in Rn (a vector is non-isotropic if Φ(x) 6= 0) belongs to
Γ(Φ). Indeed, x2 = Φ(x) · 1, which implies that x is invertible.

We are finally ready for the introduction of the groups Pin(n) and Spin(n).
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1.4 The Groups Pin(n) and Spin(n)

Definition 1.5. We define the pinor group Pin(n) as the kernel Ker (N) of the homomor-
phism N : Γn → R∗ · 1, and the spinor group Spin(n) as Pin(n) ∩ Γ+

n .

Observe that if N(x) = 1, then x is invertible, and x−1 = x since xx = N(x) = 1. Thus,
we can write

Pin(n) = {x ∈ Cln | α(x)vx−1 ∈ Rn for all v ∈ Rn, N(x) = 1}
= {x ∈ Cln | α(x)vx ∈ Rn for all v ∈ Rn, xx = 1},

and

Spin(n) = {x ∈ Cl0n | xvx−1 ∈ Rn for all v ∈ Rn, N(x) = 1}
= {x ∈ Cl0n | xvx ∈ Rn for all v ∈ Rn, xx = 1}

Remark: According to Atiyah, Bott and Shapiro, the use of the name Pin(k) is a joke due
to Jean-Pierre Serre (Atiyah, Bott and Shapiro [3], page 1).

Theorem 1.11. The restriction of ρ : Γn → O(n) to the pinor group Pin(n) is a surjective
homomorphism ρ : Pin(n) → O(n) whose kernel is {−1, 1}, and the restriction of ρ to the
spinor group Spin(n) is a surjective homomorphism ρ : Spin(n) → SO(n) whose kernel is
{−1, 1}.

Proof. By Proposition 1.10, we have a map ρ : Pin(n)→ O(n). The reader can easily check
that ρ is a homomorphism. By the Cartan-Dieudonné theorem (see Bourbaki [6], or Gallier
[16], Chapter 7, Theorem 7.2.1), every isometry f ∈ SO(n) is the composition f = s1◦· · ·◦sk
of hyperplane reflections sj. If we assume that sj is a reflection about the hyperplane Hj

orthogonal to the nonzero vector wj, by Proposition 1.6, ρ(wj) = sj. Since N(wj) = ‖wj‖2 ·1,
we can replace wj by wj/ ‖wj‖, so that N(w1 · · ·wk) = 1, and then

f = ρ(w1 · · ·wk),

and ρ is surjective. Note that

Ker (ρ | Pin(n)) = Ker (ρ) ∩ ker(N) = {t ∈ R∗ · 1 | N(t) = 1} = {−1, 1}.

As to Spin(n), we just need to show that the restriction of ρ to Spin(n) maps Γn into
SO(n). If this was not the case, there would be some improper isometry f ∈ O(n) so that
ρx = f , where x ∈ Γn∩Cl0n. However, we can express f as the composition of an odd number
of reflections, say

f = ρ(w1 · · ·w2k+1).

Since
ρ(w1 · · ·w2k+1) = ρx,
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we have x−1w1 · · ·w2k+1 ∈ Ker (ρ). By Lemma 1.7, we must have

x−1w1 · · ·w2k+1 = λ · 1

for some λ ∈ R∗, and thus
w1 · · ·w2k+1 = λ · x,

where x has even degree and w1 · · ·w2k+1 has odd degree, which is impossible.

Let us denote the set of elements v ∈ Rn with N(v) = 1 (with norm 1) by Sn−1. We have
the following corollary of Theorem 1.11:

Corollary 1.12. The group Pin(n) is generated by Sn−1, and every element of Spin(n) can
be written as the product of an even number of elements of Sn−1.

Example 1.2. The reader should verify that

Pin(1) ≈ Z/4Z, Spin(1) = {−1, 1} ≈ Z/2Z,

and also that

Pin(2) ≈ {ae1 + be2 | a2 + b2 = 1} ∪ {c1 + de1e2 | c2 + d2 = 1}, Spin(2) = U(1).

We may also write Pin(2) = U(1) + U(1), where U(1) is the group of complex numbers
of modulus 1 (the unit circle in R2). It can also be shown that Spin(3) ≈ SU(2) and
Spin(4) ≈ SU(2) × SU(2). The group Spin(5) is isomorphic to the symplectic group
Sp(2), and Spin(6) is isomorphic to SU(4) (see Curtis [12] or Porteous [24]).

Let us take a closer look at Spin(2). The Clifford algebra Cl2 is generated by the four
elements

1, e1, e2, , e1e2,

and they satisfy the relations

e2
1 = −1, e2

2 = −1, e1e2 = −e2e1.

The group Spin(2) consists of all products

2k∏
i=1

(aie1 + bie2)

consisting of an even number of factors and such that a2
i + b2

i = 1. In view of the above
relations, every such element can be written as

x = a1 + be1e2,
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where x satisfies the conditions that xvx−1 ∈ R2 for all v ∈ R2, and N(x) = 1. Since

X = a1− be1e2,

we get
N(x) = a2 + b2,

and the condition N(x) = 1 is simply a2 + b2 = 1.

We claim that if x ∈ Cl02, then xvx−1 ∈ R2. Indeed, since x ∈ Cl02 and v ∈ Cl12, we have
xvx−1 ∈ Cl12, which implies that xvx−1 ∈ R2, since the only elements of Cl12 are those in
R2. Then, Spin(2) consists of those elements x = a1 + be1e2 so that a2 + b2 = 1. If we let
i = e1e2, we observe that

i2 = −1,

e1i = −ie1 = −e2,

e2i = −ie2 = e1.

Thus, Spin(2) is isomorphic to U(1). Also note that

e1(a1 + bi) = (a1− bi)e1.

Let us find out explicitly what is the action of Spin(2) on R2. Given X = a1 + bi, with
a2 + b2 = 1, for any v = v1e1 + v2e2, we have

α(X)vX−1 = X(v1e1 + v2e2)X−1

= X(v1e1 + v2e2)(−e1e1)X

= X(v1e1 + v2e2)(−e1)(e1X)

= X(v11 + v2i)Xe1

= X2(v11 + v2i)e1

= (((a2 − b2)v1 − 2abv2)1 + (a2 − b2)v2 + 2abv1)i)e1

= ((a2 − b2)v1 − 2abv2)e1 + (a2 − b2)v2 + 2abv1)e2.

Since a2 + b2 = 1, we can write X = a1+ bi = (cos θ)1+(sin θ)i, and the above derivation
shows that

α(X)vX−1 = (cos 2θv1 − sin 2θv2)e1 + (cos 2θv2 + sin 2θv1)e2.

This means that the rotation ρX induced by X ∈ Spin(2) is the rotation of angle 2θ around
the origin. Observe that the maps

v 7→ v(−e1), X 7→ Xe1

establish bijections between R2 and Spin(2) ' U(1). Also, note that the action of X =
cos θ+ i sin θ viewed as a complex number yields the rotation of angle θ, whereas the action



28 CHAPTER 1. CLIFFORD ALGEBRAS, CLIFFORD GROUPS, PIN AND SPIN

of X = (cos θ)1 + (sin θ)i viewed as a member of Spin(2) yields the rotation of angle 2θ.
There is nothing wrong. In general, Spin(n) is a two–to–one cover of SO(n).

Next, let us take a closer look at Spin(3). The Clifford algebra Cl3 is generated by the
eight elements

1, e1, e2, , e3, , e1e2, e2e3, e3e1, e1e2e3,

and they satisfy the relations

e2
i = −1, ejej = −ejei, 1 ≤ i, j ≤ 3, i 6= j.

The group Spin(3) consists of all products

2k∏
i=1

(aie1 + bie2 + cie3)

consisting of an even number of factors and such that a2
i + b2

i + c2
i = 1. In view of the above

relations, every such element can be written as

x = a1 + be2e3 + ce3e1 + de1e2,

where x satisfies the conditions that xvx−1 ∈ R3 for all v ∈ R3, and N(x) = 1. Since

X = a1− be2e3 − ce3e1 − de1e2,

we get
N(x) = a2 + b2 + c2 + d2,

and the condition N(x) = 1 is simply a2 + b2 + c2 + d2 = 1.

It turns out that the conditions x ∈ Cl03 and N(x) = 1 imply that xvx−1 ∈ R3 for all
v ∈ R3. To prove this, first observe that N(x) = 1 implies that x−1 = ±x, and that v = −v
for any v ∈ R3, and so,

xvx−1 = −xvx−1.

Also, since x ∈ Cl03 and v ∈ Cl13, we have xvx−1 ∈ Cl13. Thus, we can write

xvx−1 = u+ λe1e2e3, for some u ∈ R3 and some λ ∈ R.

But
e1e2e3 = −e3e2e1 = e1e2e3,

and so,
xvx−1 = −u+ λe1e2e3 = −xvx−1 = −u− λe1e2e3,

which implies that λ = 0. Thus, xvx−1 ∈ R3, as claimed. Then, Spin(3) consists of those
elements x = a1 + be2e3 + ce3e1 + de1e2 so that a2 + b2 + c2 + d2 = 1. Under the bijection

i 7→ e2e3, j 7→ e3e1, k 7→ e1e2,
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we can check that we have an isomorphism between the group SU(2) of unit quaternions
and Spin(3). If X = a1 + be2e3 + ce3e1 + de1e2 ∈ Spin(3), observe that

X−1 = X = a1− be2e3 − ce3e1 − de1e2.

Now, using the identification

i 7→ e2e3, j 7→ e3e1, k 7→ e1e2,

we can easily check that

(e1e2e3)2 = 1,

(e1e2e3)i = i(e1e2e3) = −e1,

(e1e2e3)j = j(e1e2e3) = −e2,

(e1e2e3)k = k(e1e2e3) = −e3,

(e1e2e3)e1 = −i,

(e1e2e3)e2 = −j,

(e1e2e3)e3 = −k.

Then, if X = a1 + bi + cj + dk ∈ Spin(3), for every v = v1e1 + v2e2 + v3e3, we have

α(X)vX−1 = X(v1e1 + v2e2 + v3e3)X−1

= X(e1e2e3)2(v1e1 + v2e2 + v3e3)X−1

= (e1e2e3)X(e1e2e3)(v1e1 + v2e2 + v3e3)X−1

= −(e1e2e3)X(v1i + v2j + v3k)X−1.

This shows that the rotation ρX ∈ SO(3) induced by X ∈ Spin(3) can be viewed as the
rotation induced by the quaternion a1+bi+cj+dk on the pure quaternions, using the maps

v 7→ −(e1e2e3)v, X 7→ −(e1e2e3)X

to go from a vector v = v1e1 + v2e2 + v3e3 to the pure quaternion v1i + v2j + v3k, and back.

We close this section by taking a closer look at Spin(4). The group Spin(4) consists of
all products

2k∏
i=1

(aie1 + bie2 + cie3 + die4)

consisting of an even number of factors and such that a2
i + b2

i + c2
i + d2

i = 1. Using the
relations

e2
i = −1, ejej = −ejei, 1 ≤ i, j ≤ 4, i 6= j,

every element of Spin(4) can be written as

x = a11 + a2e1e2 + a3e2e3 + a4e3e1 + a5e4e3 + a6e4e1 + a7e4e2 + a8e1e2e3e4,
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where x satisfies the conditions that xvx−1 ∈ R4 for all v ∈ R4, and N(x) = 1. Let

i = e1e2, j = e2e3, k = 33e1, i′ = e4e3, j′ = e4e1, k′ = e4e2,

and I = e1e2e3e4. The reader will easily verify that

ij = k

jk = i

ki = j

i2 = −1, j2 = −1, k2 = −1

iI = Ii = i′

jI = Ij = j′

kI = Ik = k′

I2 = 1, I = I.

Then, every x ∈ Spin(4) can be written as

x = u+ Iv, with u = a1 + bi + cj + dk and v = a′1 + b′i + c′j + d′k,

with the extra conditions stated above. Using the above identities, we have

(u+ Iv)(u′ + Iv′) = uu′ + vv′ + I(uv′ + vu′).

As a consequence,

N(u+ Iv) = (u+ Iv)(u+ Iv) = uu+ vv + I(uv + vu),

and thus, N(u+ Iv) = 1 is equivalent to

uu+ vv = 1 and uv + vu = 0.

As in the case n = 3, it turns out that the conditions x ∈ Cl04 and N(x) = 1 imply that
xvx−1 ∈ R4 for all v ∈ R4. The only change to the proof is that xvx−1 ∈ Cl14 can be written
as

xvx−1 = u+
∑
i,j,k

λi,j,keiejek, for some u ∈ R4, with {i, j, k} ⊆ {1, 2, 3, 4}.

As in the previous proof, we get λi,j,k = 0. Then, Spin(4) consists of those elements u+ Iv
so that

uu+ vv = 1 and uv + vu = 0,

with u and v of the form a1 + bi + cj + dk. Finally, we see that Spin(4) is isomorphic to
Spin(3)× Spin(3) under the isomorphism

u+ vI 7→ (u+ v, u− v).
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Indeed, we have
N(u+ v) = (u+ v)(u+ v) = 1,

and
N(u− v) = (u− v)(u− v) = 1,

since
uu+ vv = 1 and uv + vu = 0,

and

(u+ v, u− v)(u′ + v′, u′ − v′) = (uu′ + vv′ + uv′ + vu′, uu′ + vv′ − (uv′ + vu′)).

Remark: It can be shown that the assertion if x ∈ Cl0n and N(x) = 1, then xvx−1 ∈ Rn for
all v ∈ Rn, is true up to n = 5 (see Porteous [24], Chapter 13, Proposition 13.58). However,
this is already false for n = 6. For example, if X = 1/

√
2(1 + e1e2e3e4e5e6), it is easy to see

that N(X) = 1, and yet, Xe1X
−1 /∈ R6.

1.5 The Groups Pin(p, q) and Spin(p, q)

For every nondegenerate quadratic form Φ over R, there is an orthogonal basis with respect
to which Φ is given by

Φ(x1, . . . , xp+q) = x2
1 + · · ·+ x2

p − (x2
p+1 + · · ·+ x2

p+q),

where p and q only depend on Φ. The quadratic form corresponding to (p, q) is denoted Φp,q

and we call (p, q) the signature of Φp,q. Let n = p + q. We define the group O(p, q) as the
group of isometries w.r.t. Φp,q, i.e., the group of linear maps f so that

Φp,q(f(v)) = Φp,q(v) for all v ∈ Rn

and the group SO(p, q) as the subgroup of O(p, q) consisting of the isometries f ∈ O(p, q)
with det(f) = 1. We denote the Clifford algebra Cl(Φp,q) where Φp,q has signature (p, q) by
Clp,q, the corresponding Clifford group by Γp,q, and the special Clifford group Γp,q ∩Cl0p,q by
Γ+
p,q. Note that with this new notation, Cln = Cl0,n.

� As we mentioned earlier, since Lawson and Michelsohn [20] adopt the opposite of our
sign convention in defining Clifford algebras; their Cl(p, q) is our Cl(q, p).

As we mentioned in Section 1.3, we have the problem that N(v) = −Φ(v) · 1, but −Φ(v)
is not necessarily positive (where v ∈ Rn). The fix is simple: Allow elements x ∈ Γp,q with
N(x) = ±1.

Definition 1.6. We define the pinor group Pin(p, q) as the group

Pin(p, q) = {x ∈ Γp,q | N(x) = ±1},

and the spinor group Spin(p, q) as Pin(p, q) ∩ Γ+
p,q.
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Remarks:

(1) It is easily checked that the group Spin(p, q) is also given by

Spin(p, q) = {x ∈ Cl0p,q | xvx ∈ Rn for all v ∈ Rn, N(x) = ±1}.

This is because Spin(p, q) consists of elements of even degree.

(2) One can check that if N(x) 6= 0, then

α(x)vx−1 = xvt(x)/N(x).

Thus, we have

Pin(p, q) = {x ∈ Clp,q | xvt(x)N(x) ∈ Rn for all v ∈ Rn, N(x) = ±1}
= {x ∈ Clp,q | xvx ∈ Rn for all v ∈ Rn, N(x) = ±1}

When Φ(x) = −‖x‖2, we have N(x) = ‖x‖2, and

Pin(n) = {x ∈ Cln | xvt(x) ∈ Rn for all v ∈ Rn, N(x) = 1}.

Theorem 1.11 generalizes as follows:

Theorem 1.13. The restriction of ρ : Γp,q → GL(n) to the pinor group Pin(p, q) is a
surjective homomorphism ρ : Pin(p, q)→ O(p, q) whose kernel is {−1, 1}, and the restriction
of ρ to the spinor group Spin(p, q) is a surjective homomorphism ρ : Spin(p, q)→ SO(p, q)
whose kernel is {−1, 1}.

Proof. The Cartan-Dieudonné also holds for any nondegenerate quadratic form Φ, in the
sense that every isometry in O(Φ) is the composition of reflections defined by hyperplanes
orthogonal to non-isotropic vectors (see Dieudonné [13], Chevalley [10], Bourbaki [6], or
Gallier [16], Chapter 7, Problem 7.14). Thus, Theorem 1.11 also holds for any nondegenerate
quadratic form Φ. The only change to the proof is the following: Since N(wj) = −Φ(wj) · 1,
we can replace wj by wj/

√
|Φ(wj)|, so that N(w1 · · ·wk) = ±1, and then

f = ρ(w1 · · ·wk),

and ρ is surjective.

If we consider Rn equipped with the quadratic form Φp,q (with n = p+ q), we denote the
set of elements v ∈ Rn with N(v) = 1 by Sn−1

p,q . We have the following corollary of Theorem
1.13 (generalizing Corollary 1.14):

Corollary 1.14. The group Pin(p, q) is generated by Sn−1
p,q , and every element of Spin(p, q)

can be written as the product of an even number of elements of Sn−1
p,q .



1.6. PERIODICITY OF THE CLIFFORD ALGEBRAS CLP,Q 33

Example 1.3. The reader should check that

Cl0,1 ≈ C, Cl1,0 ≈ R⊕ R.

We also have
Pin(0, 1) ≈ Z/4Z, Pin(1, 0) ≈ Z/2Z× Z/2Z,

from which we get Spin(0, 1) = Spin(1, 0) ≈ Z/2Z. Also, show that

Cl0,2 ≈ H, Cl1,1 ≈M2(R), Cl2,0 ≈M2(R),

where Mn(R) denotes the algebra of n × n matrices. One can also work out what are
Pin(2, 0), Pin(1, 1), and Pin(0, 2); see Choquet-Bruhat [11], Chapter I, Section 7, page 26.
Show that

Spin(0, 2) = Spin(2, 0) ≈ U(1),

and
Spin(1, 1) = {a1 + be1e2 | a2 − b2 = ±1}.

Observe that Spin(1, 1) is not connected.

More generally, it can be shown that Cl0p,q and Cl0q,p are isomorphic, from which it follows
that Spin(p, q) and Spin(q, p) are isomorphic, but Pin(p, q) and Pin(q, p) are not isomorphic
in general, and in particular, Pin(p, 0) and Pin(0, p) are not isomorphic in general (see
Choquet-Bruhat [11], Chapter I, Section 7). However, due to the “8-periodicity” of the
Clifford algebras (to be discussed in the next section), it follows that Clp,q and Clq,p are
isomorphic when |p− q| = 0 mod 4.

1.6 Periodicity of the Clifford Algebras Clp,q

It turns out that the real algebras Clp,q can be build up as tensor products of the basic
algebras R, C, and H. As pointed out by Lounesto (Section 23.16 [21]), the description of
the real algebras Clp,q as matrix algebras and the 8-periodicity was first observed by Elie
Cartan in 1908; see Cartan’s article, Nombres Complexes, based on the original article in
German by E. Study, in Molk [23], article I-5 (fasc. 3), pages 329-468. These algebras are
defined in Section 36 under the name “‘Systems of Clifford and Lipschitz,” page 463-466.
Of course, Cartan used a very different notation; see page 464 in the article cited above.
These facts were rediscovered independently by Raoul Bott in the 1960’s (see Raoul Bott’s
comments in Volume 2 of his Collected papers.).

We will use the notation R(n) (resp. C(n)) for the algebra Mn(R) of all n × n real
matrices (resp. the algebra Mn(C) of all n×n complex matrices). As mentioned in Example
1.3, it is not hard to show that

Cl0,1 = C Cl1,0 = R⊕ R
Cl0,2 = H Cl2,0 = R(2),
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and
Cl1,1 = R(2).

The key to the classification is the following lemma:

Lemma 1.15. We have the isomorphisms

Cl0,n+2 ≈ Cln,0 ⊗ Cl0,2

Cln+2,0 ≈ Cl0,n ⊗ Cl2,0

Clp+1,q+1 ≈ Clp,q ⊗ Cl1,1,

for all n, p, q ≥ 0.

Proof. Let Φ0,n(x) = −‖x‖2, where ‖x‖ is the standard Euclidean norm on Rn+2, and let
(e1, . . . , en+2) be an orthonormal basis for Rn+2 under the standard Euclidean inner product.
We also let (e′1, . . . , e

′
n) be a set of generators for Cln,0 and (e′′1, e

′′
2) be a set of generators

for Cl0,2. We can define a linear map f : Rn+2 → Cln,0 ⊗ Cl0,2 by its action on the basis
(e1, . . . , en+2) as follows:

f(ei) =

{
e′i ⊗ e′′1e′′2 for 1 ≤ i ≤ n
1⊗ e′′i−n for n+ 1 ≤ i ≤ n+ 2.

Observe that for 1 ≤ i, j ≤ n, we have

f(ei)f(ej) + f(ej)f(ei) = (e′ie
′
j + e′je

′
i)⊗ (e′′1e

′′
e)

2 = −2δij1⊗ 1,

since e′′1e
′′
2 = −e′′2e′′1, (e′′1)2 = −1, and (e′′2)2 = −1, and e′ie

′
j = −e′je′i, for all i 6= j, and

(e′i)
2 = 1, for all i with 1 ≤ i ≤ n. Also, for n+ 1 ≤ i, j ≤ n+ 2, we have

f(ei)f(ej) + f(ej)f(ei) = 1⊗ (e′′i−ne
′′
j−n + e′′j−ne

′′
i−n) = −2δij1⊗ 1,

and
f(ei)f(ek) + f(ek)f(ei) = 2e′i ⊗ (e′′1e

′′
2e
′′
k−n + e′′k−ne

′′
1e
′′
2) = 0,

for 1 ≤ i, j ≤ n and n+ 1 ≤ k ≤ n+ 2 (since e′′k−n = e′′1 or e′′k−n = e′′2). Thus, we have

f(x)2 = −‖x‖2 · 1⊗ 1 for all x ∈ Rn+2,

and by the universal mapping property of Cl0,n+2, we get an algebra map

f̃ : Cl0,n+2 → Cln,0 ⊗ Cl0,2.

Since f̃ maps onto a set of generators, it is surjective. However

dim(Cl0,n+2) = 2n+2 = 2n · 2 = dim(Cln,0)dim(Cl0,2) = dim(Cln,0 ⊗ Cl0,2),

and f̃ is an isomorphism.
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The proof of the second identity is analogous. For the third identity, we have

Φp,q(x1, . . . , xp+q) = x2
1 + · · ·+ x2

p − (x2
p+1 + · · ·+ x2

p+q),

and let (e1, . . . , ep+1, ε1, . . . , εq+1) be an orthogonal basis for Rp+q+2 so that Φp+1,q+1(ei) = +1
and Φp+1,q+1(εj) = −1 for i = 1, . . . , p+1 and j = 1, . . . , q+1. Also, let (e′1, . . . , e

′
p, ε
′
1, . . . , ε

′
q)

be a set of generators for Clp,q and (e′′1, ε
′′
1) be a set of generators for Cl1,1. We define a linear

map f : Rp+q+2 → Clp,q ⊗ Cl1,1 by its action on the basis as follows:

f(ei) =

{
e′i ⊗ e′′1ε′′1 for 1 ≤ i ≤ p
1⊗ e′′1 for i = p+ 1,

and

f(εj) =

{
ε′j ⊗ e′′1ε′′1 for 1 ≤ j ≤ q
1⊗ ε′′1 for j = q + 1.

We can check that

f(x)2 = Φp+1,q+1(x) · 1⊗ 1 for all x ∈ Rp+q+2,

and we finish the proof as in the first case.

To apply this lemma, we need some further isomorphisms among various matrix algebras.

Proposition 1.16. The following isomorphisms hold:

R(m)⊗ R(n) ≈ R(mn) for all m,n ≥ 0

R(n)⊗R K ≈ K(n) for K = C or K = H and all n ≥ 0

C⊗R C ≈ C⊕ C
C⊗R H ≈ C(2)

H⊗R H ≈ R(4).

Proof. Details can be found in Lawson and Michelsohn [20]. The first two isomorphisms are
quite obvious. The third isomorphism C⊕ C→ C⊗ C is obtained by sending

(1, 0) 7→ 1

2
(1⊗ 1 + i⊗ i), (0, 1) 7→ 1

2
(1⊗ 1− i⊗ i).

The field C is isomorphic to the subring of H generated by i. Thus, we can view H as a
C-vector space under left scalar multiplication. Consider the R-bilinear map
π : C×H→ HomC(H,H) given by

πy,z(x) = yxz,

where y ∈ C and x, z ∈ H. Thus, we get an R-linear map π : C ⊗R H → HomC(H,H).
However, we have HomC(H,H) ≈ C(2). Furthermore, since

πy,z ◦ πy′,z′ = πyy′,zz′ ,
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the map π is an algebra homomorphism

π : C×H→ C(2).

We can check on a basis that π is injective, and since

dimR(C×H) = dimR(C(2)) = 8,

the map π is an isomorphism. The last isomorphism is proved in a similar fashion.

We now have the main periodicity theorem.

Theorem 1.17. (Cartan/Bott) For all n ≥ 0, we have the following isomorphisms:

Cl0,n+8 ≈ Cl0,n ⊗ Cl0,8

Cln+8,0 ≈ Cln,0 ⊗ Cl8,0.

Furthermore,
Cl0,8 = Cl8,0 = R(16).

Proof. By Lemma 1.15 we have the isomorphisms

Cl0,n+2 ≈ Cln,0 ⊗ Cl0,2

Cln+2,0 ≈ Cl0,n ⊗ Cl2,0,

and thus,

Cl0,n+8 ≈ Cln+6,0 ⊗Cl0,2 ≈ Cl0,n+4 ⊗Cl2,0 ⊗Cl0,2 ≈ · · · ≈ Cl0,n ⊗Cl2,0 ⊗Cl0,2 ⊗Cl2,0 ⊗Cl0,2.

Since Cl0,2 = H and Cl2,0 = R(2), by Proposition 1.16, we get

Cl2,0 ⊗ Cl0,2 ⊗ Cl2,0 ⊗ Cl0,2 ≈ H⊗H⊗ R(2)⊗ R(2) ≈ R(4)⊗ R(4) ≈ R(16).

The second isomorphism is proved in a similar fashion.

From all this, we can deduce the following table:

n 0 1 2 3 4 5 6 7 8
Cl0,n R C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)
Cln,0 R R⊕ R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)

A table of the Clifford groups Clp,q for 0 ≤ p, q ≤ 7 can be found in Kirillov [18], and for
0 ≤ p, q ≤ 8, in Lawson and Michelsohn [20] (but beware that their Clp,q is our Clq,p). It can
also be shown that

Clp+1,q ≈ Clq+1,p

Clp,q ≈ Clp−4,q+4



1.7. THE COMPLEX CLIFFORD ALGEBRAS CL(N,C) 37

with p ≥ 4 in the second identity (see Lounesto [21], Chapter 16, Sections 16.3 and 16.4).
Using the second identity, if |p−q| = 4k, it is easily shown by induction on k that Clp,q ≈ Clq,p,
as claimed in the previous section.

We also have the isomorphisms

Clp,q ≈ Cl0p,q+1,

frow which it follows that
Spin(p, q) ≈ Spin(q, p)

(see Choquet-Bruhat [11], Chapter I, Sections 4 and 7). However, in general, Pin(p, q) and
Pin(q, p) are not isomorphic. In fact, Pin(0, n) and Pin(n, 0) are not isomorphic if n 6= 4k,
with k ∈ N (see Choquet-Bruhat [11], Chapter I, Section 7, page 27).

1.7 The Complex Clifford Algebras Cl(n,C)

One can also consider Clifford algebras over the complex field C. In this case, it is well-known
that every nondegenerate quadratic form can be expressed by

ΦC
n(x1, . . . , xn) = x2

1 + · · ·+ x2
n

in some orthonormal basis. Also, it is easily shown that the complexification C ⊗R Clp,q of
the real Clifford algebra Clp,q is isomorphic to Cl(ΦC

n). Thus, all these complex algebras are
isomorphic for p+q = n, and we denote them by Cl(n,C). Theorem 1.15 yields the following
periodicity theorem:

Theorem 1.18. The following isomorphisms hold:

Cl(n+ 2,C) ≈ Cl(n,C)⊗C Cl(2,C),

with Cl(2,C) = C(2).

Proof. Since Cl(n,C) = C⊗R Cl0,n = C⊗R Cln,0, by Lemma 1.15, we have

Cl(n+ 2,C) = C⊗R Cl0,n+2 ≈ C⊗R (Cln,0 ⊗R Cl0,2) ≈ (C⊗R Cln,0)⊗C (C⊗R Cl0,2).

However, Cl0,2 = H, Cl(n,C) = C ⊗R Cln,0, and C ⊗R H ≈ C(2), so we get Cl(2,C) = C(2)
and

Cl(n+ 2,C) ≈ Cl(n,C)⊗C C(2),

and the theorem is proved.

As a corollary of Theorem 1.18, we obtain the fact that

Cl(2k,C) ≈ C(2k) and Cl(2k + 1,C) ≈ C(2k)⊕ C(2k).
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The table of the previous section can also be completed as follows:

n 0 1 2 3 4 5 6 7 8
Cl0,n R C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)
Cln,0 R R⊕ R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)

Cl(n,C) C 2C C(2) 2C(2) C(4) 2C(4) C(8) 2C(8) C(16).

where 2C(k) is an abbrevation for C(k)⊕ C(k).

1.8 The Groups Pin(p, q) and Spin(p, q) as double covers

of O(p, q) and SO(p, q)

It turns out that the groups Pin(p, q) and Spin(p, q) have nice topological properties w.r.t.
the groups O(p, q) and SO(p, q). To explain this, we review the definition of covering maps
and covering spaces (for details, see Fulton [14], Chapter 11). Another interesting source is
Chevalley [9], where is is proved that Spin(n) is a universal double cover of SO(n) for all
n ≥ 3.

Since Cp,q is an algebra of dimension 2p+q, it is a topological space as a vector space
isomorphic to V = R2p+q

. Now, the group C∗p,q of units of Cp,q is open in Cp,q, because
x ∈ Cp,q is a unit if the linear map y 7→ xy is an isomorphism, and GL(V ) is open in
End(V ), the space of endomorphisms of V . Thus, C∗p,q is a Lie group, and since Pin(p, q)
and Spin(p, q) are clearly closed subgroups of C∗p,q, they are also Lie groups.

Definition 1.7. Given two topological spaces X and Y , a covering map is a continuous
surjective map p : Y → X with the property that for every x ∈ X, there is some open subset
U ⊆ X with x ∈ U , so that p−1(U) is the disjoint union of open subsets Vα ⊆ Y , and the
restriction of p to each Vα is a homeomorphism onto U . We say that U is evenly covered
by p. We also say that Y is a covering space of X. A covering map p : Y → X is called
trivial if X itself is evenly covered by p (i.e., Y is the disjoint union of open subsets Yα each
homeomorphic to X), and nontrivial otherwise. When each fiber p−1(x) has the same finite
cardinaly n for all x ∈ X, we say that p is an n-covering (or n-sheeted covering).

Note that a covering map p : Y → X is not always trivial, but always locally trivial (i.e.,
for every x ∈ X, it is trivial in some open neighborhood of x). A covering is trivial iff Y
is isomorphic to a product space of X × T , where T is any set with the discrete topology.
Also, if Y is connected, then the covering map is nontrivial.

Definition 1.8. An isomorphism ϕ between covering maps p : Y → X and p′ : Y ′ → X is a
homeomorphism ϕ : Y → Y ′ so that p = p′ ◦ ϕ.

Typically, the space X is connected, in which case it can be shown that all the fibers
p−1(x) have the same cardinality.

One of the most important properties of covering spaces is the path–lifting property, a
property that we will use to show that Spin(n) is path-connected.
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Proposition 1.19. (Path lifting) Let p : Y → X be a covering map, and let γ : [a, b] → X
be any continuous curve from xa = γ(a) to xb = γ(b) in X. If y ∈ Y is any point so that
p(y) = xa, then there is a unique curve γ̃ : [a, b]→ Y so that y = γ̃(a) and

p ◦ γ̃(t) = γ(t) for all t ∈ [a, b].

Proof. See Fulton [15], Chapter 11, Lemma 11.6.

Many important covering maps arise from the action of a group G on a space Y . If Y
is a topological space, an action (on the left) of a group G on Y is a map α : G × Y → Y
satisfying the following conditions, where for simplicity of notation, we denote α(g, y) by
g · y:

(1) g · (h · y) = (gh) · y, for all g, h ∈ G and y ∈ Y ;

(2) 1 · y = y, for all ∈ Y , where 1 is the identity of the group G;

(3) The map y 7→ g · y is a homeomorphism of Y for every g ∈ G.

We define an equivalence relation on Y as follows: x ≡ y iff y = g · x for some g ∈ G
(check that this is an equivalence relation). The equivalence class G · x = {g · x | g ∈ G} of
any x ∈ Y is called the orbit of x. We obtain the quotient space Y/G and the projection
map p : Y → Y/G sending every y ∈ Y to its orbit. The space Y/G is given the quotient
topology (a subset U of Y/G is open iff p−1(U) is open in Y ).

Given a subset V of Y and any g ∈ G, we let

g · V = {g · y | y ∈ V }.

We say that G acts evenly on Y if for every y ∈ Y , there is an open subset V containing y
so that g · V and h · V are disjoint for any two distinct elements g, h ∈ G.

The importance of the notion a group acting evenly is that such actions induce a covering
map.

Proposition 1.20. If G is a group acting evenly on a space Y , then the projection map
p : Y → Y/G is a covering map.

Proof. See Fulton [15], Chapter 11, Lemma 11.17.

The following proposition shows that Pin(p, q) and Spin(p, q) are nontrivial covering
spaces, unless p = q = 1.

Proposition 1.21. For all p, q ≥ 0, the groups Pin(p, q) and Spin(p, q) are double covers of
O(p, q) and SO(p, q), respectively. Furthermore, they are nontrivial covers unless p = q = 1.
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Proof. We know that kernel of the homomorphism ρ : Pin(p, q) → O(p, q) is Z2 = {−1, 1}.
If we let Z2 act on Pin(p, q) in the natural way, then O(p, q) ≈ Pin(p, q)/Z2, and the reader
can easily check that Z2 acts evenly. By Proposition 1.20, we get a double cover. The
argument for ρ : Spin(p, q)→ SO(p, q) is similar.

Let us now assume that p 6= 1 or q 6= 1. In order to prove that we have nontrivial
covers, it is enough to show that −1 and 1 are connected by a path in Pin(p, q) (If we had
Pin(p, q) = U1 ∪ U2 with U1 and U2 open, disjoint, and homeomorphic to O(p, q), then −1
and 1 would not be in the same Ui, and so, they would be in disjoint connected components.
Thus, −1 and 1 can’t be path–connected, and similarly with Spin(p, q) and SO(p, q).) Since
(p, q) 6= (1, 1), we can find two orthogonal vectors e1 and e2 so that Φp,q(e1) = Φp,q(e2) = ±1.
Then,

γ(t) = ± cos(2t) 1 + sin(2t) e1e2 = (cos t e1 + sin t e2)(sin t e2 − cos t e1),

for 0 ≤ t ≤ π, defines a path in Spin(p, q), since

(± cos(2t) 1 + sin(2t) e1e2)−1 = ± cos(2t) 1− sin(2t) e1e2,

as desired.

In particular, if n ≥ 2, since the group SO(n) is path-connected, the group Spin(n) is
also path-connected. Indeed, given any two points xa and xb in Spin(n), there is a path
γ from ρ(xa) to ρ(xb) in SO(n) (where ρ : Spin(n) → SO(n) is the covering map). By
Proposition 1.19, there is a path γ̃ in Spin(n) with origin xa and some origin x̃b so that
ρ(x̃b) = ρ(xb). However, ρ−1(ρ(xb)) = {−xb, xb}, and so x̃b = ±xb. The argument used in
the proof of Proposition 1.21 shows that xb and −xb are path-connected, and so, there is a
path from xa to xb, and Spin(n) is path-connected.

In fact, for n ≥ 3, it turns out that Spin(n) is simply connected. Such a covering space
is called a universal cover (for instance, see Chevalley [9]).

This last fact requires more algebraic topology than we are willing to explain in detail,
and we only sketch the proof. The notions of fibre bundle, fibration, and homotopy sequence
associated with a fibration are needed in the proof. We refer the perseverant readers to Bott
and Tu [5] (Chapter 1 and Chapter 3, Sections 16–17) or Rotman [25] (Chapter 11) for a
detailed explanation of these concepts.

Recall that a topological space is simply connected if it is path connected and if π1(X) =
(0), which means that every closed path in X is homotopic to a point. Since we just proved
that Spin(n) is path connected for n ≥ 2, we just need to prove that π1(Spin(n)) = (0) for
all n ≥ 3. The following facts are needed to prove the above assertion:

(1) The sphere Sn−1 is simply connected for all n ≥ 3.

(2) The group Spin(3) ' SU(2) is homeomorphic to S3, and thus, Spin(3) is simply
connected.
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(3) The group Spin(n) acts on Sn−1 in such a way that we have a fibre bundle with fibre
Spin(n− 1):

Spin(n− 1) −→ Spin(n) −→ Sn−1.

Fact (1) is a standard proposition of algebraic topology, and a proof can found in many
books. A particularly elegant and yet simple argument consists in showing that any closed
curve on Sn−1 is homotopic to a curve that omits some point. First, it is easy to see that
in Rn, any closed curve is homotopic to a piecewise linear curve (a polygonal curve), and
the radial projection of such a curve on Sn−1 provides the desired curve. Then, we use the
stereographic projection of Sn−1 from any point omitted by that curve to get another closed
curve in Rn−1. Since Rn−1 is simply connected, that curve is homotopic to a point, and so is
its preimage curve on Sn−1. Another simple proof uses a special version of the Seifert—van
Kampen’s theorem (see Gramain [17]).

Fact (2) is easy to establish directly, using (1).

To prove (3), we let Spin(n) act on Sn−1 via the standard action: x ·v = xvx−1. Because
SO(n) acts transitively on Sn−1 and there is a surjection Spin(n) −→ SO(n), the group
Spin(n) also acts transitively on Sn−1. Now, we have to show that the stabilizer of any
element of Sn−1 is Spin(n− 1). For example, we can do this for e1. This amounts to some
simple calculations taking into account the identities among basis elements. Details of this
proof can be found in Mneimné and Testard [22], Chapter 4. It is still necessary to prove that
Spin(n) is a fibre bundle over Sn−1 with fibre Spin(n − 1). For this, we use the following
results whose proof can be found in Mneimné and Testard [22], Chapter 4:

Lemma 1.22. Given any topological group G, if H is a closed subgroup of G and the pro-
jection π : G→ G/H has a local section at every point of G/H, then

H −→ G −→ G/H

is a fibre bundle with fibre H.

Lemma 1.22 implies the following key proposition:

Proposition 1.23. Given any linear Lie group G, if H is a closed subgroup of G, then

H −→ G −→ G/H

is a fibre bundle with fibre H.

Now, a fibre bundle is a fibration (as defined in Bott and Tu [5], Chapter 3, Section 16,
or in Rotman [25], Chapter 11). For a proof of this fact, see Rotman [25], Chapter 11, or
Mneimné and Testard [22], Chapter 4. So, there is a homotopy sequence associated with
the fibration (Bott and Tu [5], Chapter 3, Section 17, or Rotman [25], Chapter 11, Theorem
11.48), and in particular, we have the exact sequence

π1(Spin(n− 1)) −→ π1(Spin(n)) −→ π1(Sn−1).
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Since π1(Sn−1) = (0) for n ≥ 3, we get a surjection

π1(Spin(n− 1)) −→ π1(Spin(n)),

and so, by induction and (2), we get

π1(Spin(n)) ≈ π1(Spin(3)) = (0),

proving that Spin(n) is simply connected for n ≥ 3.

We can also show that π1(SO(n)) = Z/2Z for all n ≥ 3. For this, we use Theorem 1.11
and Proposition 1.21, which imply that Spin(n) is a fibre bundle over SO(n) with fibre
{−1, 1}, for n ≥ 2:

{−1, 1} −→ Spin(n) −→ SO(n).

Again, the homotopy sequence of the fibration exists, and in particular we get the exact
sequence

π1(Spin(n)) −→ π1(SO(n)) −→ π0({−1,+1}) −→ π0(SO(n)).

Since π0({−1,+1}) = Z/2Z, π0(SO(n)) = (0), and π1(Spin(n)) = (0), when n ≥ 3, we get
the exact sequence

(0) −→ π1(SO(n)) −→ Z/2Z −→ (0),

and so, π1(SO(n)) = Z/2Z. Therefore, SO(n) is not simply connected for n ≥ 3.

Remark: Of course, we have been rather cavalier in our presentation. Given a topological
space X, the group π1(X) is the fundamental group of X, i.e. the group of homotopy classes
of closed paths in X (under composition of loops). But π0(X) is generally not a group!
Instead, π0(X) is the set of path-connected components of X. However, when X is a Lie
group, π0(X) is indeed a group. Also, we have to make sense of what it means for the
sequence to be exact. All this can be made rigorous (see Bott and Tu [5], Chapter 3, Section
17, or Rotman [25], Chapter 11).

1.9 More on the Topology of O(p, q) and SO(p, q)

It turns out that the topology of the group O(p, q) is completely determined by the topology
of O(p) and O(q). This result can be obtained as a simple consequence of some standard
Lie group theory. The key notion is that of a pseudo-algebraic group.

Consider the group GL(n,C) of invertible n × n matrices with complex coefficients. If
A = (akl) is such a matrix, denote by xkl the real part (resp. ykl, the imaginary part) of akl
(so, akl = xkl + iykl).

Definition 1.9. A subgroup G of GL(n,C) is pseudo-algebraic iff there is a finite set of
polynomials in 2n2 variables with real coefficients {Pi(X1, . . . , Xn2 , Y1, . . . , Yn2)}ti=1, so that

A = (xkl + iykl) ∈ G iff Pi(x11, . . . , xnn, y11, . . . , ynn) = 0, for i = 1, . . . , t.
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Recall that if A is a complex n × n-matrix, its adjoint A∗ is defined by A∗ = (A)>.
Also, U(n) denotes the group of unitary matrices, i.e., those matrices A ∈ GL(n,C) so
that AA∗ = A∗A = I, and H(n) denotes the vector space of Hermitian matrices, i.e., those
matrices A so that A∗ = A. Then, we have the following theorem which is essentially a
refined version of the polar decomposition of matrices:

Theorem 1.24. Let G be a pseudo-algebraic subgroup of GL(n,C) stable under adjunction
(i.e., we have A∗ ∈ G whenever A ∈ G). Then, there is some integer d ∈ N so that G is
homeomorphic to (G ∩U(n))× Rd. Moreover, if g is the Lie algebra of G, the map

(U(n) ∩G)× (H(n) ∩ g) −→ G, given by (U,H) 7→ UeH ,

is a homeomorphism onto G.

Proof. A proof can be found in Knapp [19], Chapter 1, or Mneimné and Testard [22], Chapter
3.

We now apply Theorem 1.24 to determine the structure of the space O(p, q). Let Jp,q be
the matrix

Jp,q =

(
Ip 0
0 −Iq

)
.

We know that O(p, q) consists of the matrices A in GL(p+ q,R) such that

A>Jp,qA = Jp,q,

and so O(p, q) is clearly pseudo-algebraic. Using the above equation, it is easy to determine
the Lie algebra, o(p, q), of O(p, q). We find that o(p, q) is given by

o(p, q) =

{(
X1 X2

X>2 X3

) ∣∣∣∣ X>1 = −X1, X
>
3 = −X3, X2 arbitrary

}
,

where X1 is a p× p matrix, X3 is a q× q matrix, and X2 is a p× q matrix. Consequently, it
immediately follows that

o(p, q) ∩H(p+ q) =

{(
0 X2

X>2 0

) ∣∣∣∣ X2 arbitrary

}
,

a vector space of dimension pq.

Some simple calculations also show that

O(p, q) ∩U(p+ q) =

{(
X1 0
0 X2

) ∣∣∣∣ X1 ∈ O(p), X2 ∈ O(q)

}
∼= O(p)×O(q).

Therefore, we obtain the structure of O(p, q):
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Proposition 1.25. The topological space O(p, q) is homeomorphic to O(p)×O(q)× Rpq.

Since O(p) has two connected components when p ≥ 1, we see that O(p, q) has four
connected components when p, q ≥ 1. It is also obvious that

SO(p, q) ∩U(p+ q) =

{(
X1 0
0 X2

) ∣∣∣∣ X1 ∈ O(p), X2 ∈ O(q), det(X1) det(X2) = 1

}
.

This is a subgroup of O(p)×O(q) that we denote S(O(p)×O(q)). Furthermore, it is easy
to show that so(p, q) = o(p, q). Thus, we also have

Proposition 1.26. The topological space SO(p, q) is homeomorphic to S(O(p)×O(q))×Rpq.

Note that SO(p, q) has two connected components when p, q ≥ 1. The connected
component of Ip+q is a group denoted SO0(p, q). This latter space is homeomorphic to
SO(p)× SO(q)× Rpq.

As a closing remark observe that the dimension of all these spaces depends only on p+ q:
It is (p+ q)(p+ q − 1)/2.
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