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While interacting with a subdivision surface or a B-spline surface for the purposes of
editing, rendering, or physical simulation, one uses the "control mesh" as an interface.
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The User Perspective
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The User Perspective

More specifically, the user assumes that there is a one-to-one correspondence be-
tween the control mesh and the surface. So, each point in the control mesh corre-
sponds to a point in the surface, and thus the control mesh is viewed as a parameter
space.



Parametric Pseudo-Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 4

The User Perspective

In reality, each point on the surface is the image of a (parameter) point in a triangle
in E2.

E2
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The User Perspective

E2

But, since we can relate the triangle in E2 with a triangle of the control mesh (via a
barycentric mapping), the user "illusion" works fine. We will use a similar mecha-
nism here.



K
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The User Perspective

Here, the control mesh is the underlying surface, |K|, of the input simplicial surface,

K.

Let σ be a triangle in K and let p be any point in σ.

σ

p
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The User Perspective

Map the point p to a point q belonging to the equilateral triangle, � ⊂ E2, with
vertices

(0, 0) , (1, 0) , and (1/2,
√

3/2) .

p q
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The User Perspective

We can do that by using the barycentric map that takes the vertices v, u, and w of σ
to the vertices (0, 0), (1, 0), and (1/2,

√
3/2) of �, respectively. So, if p = λ · v + µ ·

u + ν · w, where λ, µ, ν ∈ R, λ, µ, ν ≥ 0, and λ + µ + ν = 1, the coordinates of q are
given by

q = λ · (0, 0) + µ · (1, 0) + ν · (1/2,
√

3/2) .
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gv(Ωv − {(0, 0)})
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The User Perspective

Now, we can map q to the p-domain Ωv using the map r−1
vu ◦ g−1

v whenever the distance
from q to (0, 0) is smaller than cos(π/6), which is the radius of the circle corresponding
to

gv(Ωv − {(0, 0)}) .
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The User Perspective

If this is not the case, then we compute the distance from q to (1, 0). If this dis-

tance is smaller than cos(π/6), we map q to Ωu. Otherwise, the distance from q to

(1/2,
√

3/2) has to be smaller than cos(π/6) — why is that so?, and thus we map q to

Ωw.
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The User Perspective

u
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To map q to Ωu, we use r−1
uv ◦ g−1

u ◦ h. In turn, we use r−1
wv ◦ g−1

w ◦ h ◦ r− π
3

to map q to
Ωw.
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The User Perspective
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Regardless of the p-domain where q will be mapped to, the important point is that q
will be mapped to some p-domain, establishing a correspondence between |K| and
the PPS.



Ku

rv,σ

Kv

rv,σ

Kw
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The User Perspective
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vu ◦ g−1
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The User Perspective

KEEP IN MIND:
the user does not have to know about the existence of gluing data and parametriza-
tions. All the user needs to interact with the PPS is a triangle, σ, in K and a point p
in σ.

Let us now demo the code and discuss the implementation...

Once σ and p are given, we can take p to some p-domain and then to the image, S, of

the PPS using the approach we just saw. So, all the user sees is still a "control mesh"

(i.e., |K|).
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A Construction for Quadrilateral Meshes

A quadrilateral mesh, K, in E3 is a set consisting of a finite number of (convex or non-
convex) quadrilaterals, along with their edges and vertices, such that if σ1 and σ2 are
any two quadrilaterals in K, then σ1 ∩ σ2 is either empty or a vertex or edge of both
σ1 and σ2.

Here, we assume that the quadrilaterals of K are planar objects. This allows us to

define the underlying space, |K|, of K just like we did for simplicial complexes: the

union

|K| =
�

σ∈K
σ .

Now, we assume that we are given a quadrilateral surface mesh, K.
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A Construction for Quadrilateral Meshes

The notions of star and link of a vertex in K can be defined for quadrilateral meshes
as well.

If σ is a vertex in K, then the star, st(σ,K), of σ in K is the set of quadrilaterals that
contain σ as a vertex, along with their edges and vertices. In turn, the link, lk(σ,K),
of σ in K is the set of edges in st(σ,K) that do not contain σ as a vertex, along with
their vertices.
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A Construction for Quadrilateral Meshes

The underlying space, |K|, of a quadrilateral surface mesh, K, is a topological surface
in E3.

If every edge of K is incident with exactly two quadrilaterals of K, and if the under-
lying space of lk(σ,K) is homeomorphic to the unit circle S1 = {x ∈ E2 | �x� = 1},
for every vertex σ in K, then we say that K is a quadrilateral surface mesh (without
boundary).
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A Construction for Quadrilateral Meshes

We can now discuss the construction devised by Ying and Zorin (SIGGRAPH, 2003).

We start by the definition of the gluing data,

G =
�
(Ωi)i∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K

�
.

We let I be the set of vertices of K, as we assign a (distinct) p-domain to each vertex
of K.

Let v be any vertex of K, and let nv be the number of vertices of lk(v,K).
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A Construction for Quadrilateral Meshes

Recall that
zn = rn · (cos (n · θ) + i sin (n · θ)) ,

is the polar form of the complex number, z = x + i y, where x = r cos(θ) and y =
r sin(θ).

Let L be the square with vertices (0, 0), (
√

2/2,−
√

2/2), (
√

2, 0), and (
√

2/2,
√

2/2).

(0, 0)

�√2
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A Construction for Quadrilateral Meshes

If we apply the map f (z) = z
4

nv to L we obtain a "curved" quadrilateral (e.g., for
nv = 6):

f (z) = z
4
6

As usual, the parameter nv is the degree of the vertex v in K. For a quadrilateral
surface mesh, the value of nv is half the number of vertices in the link, lk(v,K), of v
in K.
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A Construction for Quadrilateral Meshes

nv = 3 nv = 4 nv = 6

We define the p-domain, Ωv, as the interior of the union set

nv−1�

k=0

�
r (2k+1)·π

nv
◦ f

�
(L) ,

where r (2k+1)·π
nv

is a counterclockwise rotation around the origin by the angle (2k+1)·π
nv

.
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A Construction for Quadrilateral Meshes

v

v0

v1

v2 v3

v4

v5

Fix a counterclockwise enumeration, v0, v1, . . . , v2·nv−1, of the vertices in lk(v,K).

We can then identify v with the point v� = (0, 0) of Ωv.

v�
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A Construction for Quadrilateral Meshes

v

v0

v1

v2 v3

v4

v5

v�

For each i = 0, 1, . . . , 2 · nv − 1, we can also identify the point vi with the point

v�i =
�

r (i+1)·π
nv

◦ f
� �√

2
2

,−
√

2
2

�

if i is even; otherwise, we identify vi with the point

v�i =
�

r (i+1)·π
nv

◦ f
�

(
√

2, 0) .

v�
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5
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A Construction for Quadrilateral Meshes

The aforementioned identification can be represented by a function, which we name
fv.

v

v0

v1

v2 v3

v4

v5

v�
0

v�
1

v�
2

v�
3

v�
4

v�
5

So, v� = fv(v), v�
0 = fv(v0), v�

1 = fv(v1), and so on so forth.
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A Construction for Quadrilateral Meshes

Suppose that v and u, with v �= u, are the vertices of an edge, [v, u], of K. Then,
the sets st(v,K) and st(u,K) share exactly two quadrilaterals, which in turn share an
edge.

v

w

u

x
y

t
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A Construction for Quadrilateral Meshes

v

w

u

x
y

t

Let v, x, y, u, w, and t be the vertices of these two adjacent quadrilaterals.

We define Ωvu as the subset of Ωv corresponding to the interior of the union of the
two "curved" quadrilaterals defined by the vertices fv(v), fv(x), fv(y), fv(u), fv(w),
and fv(t).
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A Construction for Quadrilateral Meshes

v

w

u

x
y

t

fv(v) fv(u)

fv(w)
fv(t)

fv(x)
fv(y)
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A Construction for Quadrilateral Meshes

v

w

u

x
y

t

We define Ωuv in a similar fashion.
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A Construction for Quadrilateral Meshes

v

w

u

x
y

t

fv(v) fv(u)

fv(w)
fv(t)

fv(x)
fv(y)

fu(u)
fu(v)

fu(x)

fu(y)

fu(w)

fu(t)
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A Construction for Quadrilateral Meshes

Suppose that v and w, with v �= w, are the vertices of a quadrilateral of K, but not
vertices of an edge of K. Then, the sets st(v,K) and st(w,K) share exactly one quad-
rilateral.

v

w

u

t
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A Construction for Quadrilateral Meshes

Let v, u, t, and w be the vertices of the common quadrilateral.

We define the gluing domain, Ωvw, as the subset of Ωv corresponding to the interior
of the "curved" quadrilateral defined by the vertices fv(v), fv(u), fv(w), and fv(t).

v

w

u

t
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A Construction for Quadrilateral Meshes

v

w

u

t

fv(v) fv(u)

fv(w)
fv(t)
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A Construction for Quadrilateral Meshes

v

w

u

t

We define Ωwv in a similar fashion.
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A Construction for Quadrilateral Meshes

v

w

u

t

fv(v) fv(u)

fv(w)
fv(t)

fw(w)

fw(v)fw(u)

fw(t)
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A Construction for Quadrilateral Meshes

So, there are two types of gluing domains (the single and the double curved quadri-
lateral).

We notice that a point in a p-domain can be identified either with no other p-domain
(this is the case for the point located at (0, 0) only), with two p-domains, or with four
p-domains.

one p-domain four p-domains

two p-domains
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A Construction for Quadrilateral Meshes

How can we define the transition functions?

v

w

u

t
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A Construction for Quadrilateral Meshes

v

w

u

t

Ωt

Ωv
Ωu

Ωw



Ωu

Ωv
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A Construction for Quadrilateral Meshes

Consider the transition function ϕuv : Ωvu → Ωuv and let p be a point in Ωvu.

p
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A Construction for Quadrilateral Meshes

Ωv

p
Ωv

p

v�
i

v�

r−i· π
nv

Since [v, u] is an edge of K, we rotate Ωv by an angle, θ, that makes [ fv(v), fv(u)]
coincide with the x axis. If fv(u) = v�i, for some i = 0, 1, . . . , 2 · nv − 1, with i even,
then

θ = −i · π

nv
.
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A Construction for Quadrilateral Meshes

Ql

Qu

Ωv
p

We then take the set r−i· π
nv

(Ωvu) onto a canonical set, say Q, which is the union of
two squares:

Ql = [(0, 0), (0,−1), (1,−1), (1, 0)] and Qu = [(0, 0), (1, 0), (1, 1), (0, 1)] .
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A Construction for Quadrilateral Meshes

This is done in a piecewise manner. More specifically, the upper curved quadrilateral
of r−i· π

nv
(Ωvu) is mapped onto Qu using the composition map r π

4
◦ z

nv
4 ◦ r− π

nv
. So, we

get
r π

4
◦ z

nv
4 ◦ r−(i+1)· π

nv
.

Similarly, the lower curved quadrilateral of Ωvu is mapped onto Ql using the com-
position

r− π
4
◦ z

nv
4 ◦ r−(i−1)· π

nv
.

r− π
nv z

nv
4

r π
4
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A Construction for Quadrilateral Meshes

Next, we apply a double reflection, h1(x, y) = (1− x,−y), to Q, which is a reflection
with respect to the vertical line x = 0.5 followed by a reflection with respect to the x
axis.

Ql

Qu

h1
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A Construction for Quadrilateral Meshes

Ql

Qu

Finally, we map the interior of Q to Ωu using the corresponding inverse functions.
The interior of Qu is mapped to the interior of the upper curved quadrilateral of Ωu

by
r(j+1)· π

nu
◦ z

4
nu ◦ r− π

4
.

Similarly,
r(j−1)· π

nu
◦ z

4
nu ◦ r π

4

is the map that takes the interior of Ql to the interior of the lower curved quadrilat-
eral of Ωu.

Ωu

v�
j = fu(v)
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A Construction for Quadrilateral Meshes

Ωu

Ωv
p

Ql

Qu

So,
ϕuv(p) =

�
r(j−1)· π

nu
◦ z

4
nu ◦ r π

4
◦ h1 ◦ r π

4
◦ z

nv
4 ◦ r−(i+1)· π

nv

�
(p)

if p belongs to the upper curved quadrilateral of Ωvu; otherwise, the transition func-
tion is

ϕuv(p) =
�

r(j+1)· π
nu
◦ z

4
nu ◦ r− π

4
◦ h1 ◦ r− π

4
◦ z

nv
4 ◦ r−(i−1)· π

nv

�
(p) .
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A Construction for Quadrilateral Meshes

v

w

u

t

Ωt

Ωv
Ωu

Ωw



Ωw
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A Construction for Quadrilateral Meshes

Now, consider the transition function ϕwv : Ωvw → Ωwv and let p be a point in Ωvw.

Ωv

p
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A Construction for Quadrilateral Meshes

Since [v, w] is not an edge of K, we rotate Ωv by an angle, θ, that makes [ fv(v), fv(w)]
coincide with the x axis. If fv(w) = v�i, for some i = 0, 1, . . . , 2 · nv − 1, with i odd,
then

θ = −i · π

nv
.

Ωv

p

r−i· π
nv

Ωv

p

v�
i v�
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A Construction for Quadrilateral Meshes

We then take the set r−i· π
nv

(Ωvw) onto the canonical quadrilateral, L, where

L =

�
(0, 0), (

√
2, 0),

�√
2

2
,−
√

2
2

�
,

�√
2

2
,
√

2
2

��
.

Ωv

p L
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A Construction for Quadrilateral Meshes

We use the map z
nv
4 to take r−i· π

nv
(Ωvw) onto L:

z
nv
4
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A Construction for Quadrilateral Meshes

z
nv
4

h2

Next, we apply a double reflection, h2(x, y) = (
√

2− x,−y), to L, which is a double
reflection: a reflection w.r.t the line x =

√
2/2 followed by a reflection w.r.t the y axis:
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A Construction for Quadrilateral Meshes

z
nv
4

h2

Next, we apply the map z
4

nw to h2 ◦ z
nv
4 ◦ r−i· π

nv
(Ωvw):

z
4

nw
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A Construction for Quadrilateral Meshes

Finally, we apply a rotation, rj· π
nw

, to the set z
4

nw ◦ h2 ◦ z
nv
4 ◦ r−i· π

nv
(Ωvw):

Ωw rj· π
nw
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A Construction for Quadrilateral Meshes

So,
ϕwv(p) =

�
rj· π

nw
◦ z

4
nw ◦ h2 ◦ z

nv
4 ◦ r−i· π

nv

�
(p) .

ΩwΩv

p

ϕwv(p)
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A Construction for Quadrilateral Meshes

What about geometry?

The idea is to uniformly sample the canonical quadrilateral corresponding to each
quadrilateral face of the input mesh. This is done for each face of the input mesh at
a time.

�
i
4 , j

4

�
=

�
1
4 , 3

4

�
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A Construction for Quadrilateral Meshes

For each parameter point in the canonical quadrilateral, we compute the correspond-
ing 3D point on the Catmull-Clark subdivision surface defined from the input mesh.

�
i
4 , j

4

�
=

�
1
4 , 3

4

�

Use Jos Stam’s work!



Ωv

v
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A Construction for Quadrilateral Meshes

Finally, we map the points in the canonical quads to the p-domains. If nv is the
degree of v, then we map 12 · nv + 1 points to Ωv. These are the parameter points
which can be viewed as being inside the underlying space of the star, st(v,K), of v in
K.
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A Construction for Quadrilateral Meshes

To map the points from the canonical quadrilateral to Ωv, we use the composite map
ri· π

nv
◦ z

4
nv ◦ r− π

4
, where i identifies the curved quadrilateral in Ωv that will contain

the point.

Ωv

v

p

(r3· π
nv
◦ z

4
nv ◦ r− π

4
)(p)

i = 1i = 3

i = 5 i = 7



Parametric Pseudo-Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 58

A Construction for Quadrilateral Meshes

For every point p� = (ri· π
nv

◦ z
4

nv ◦ r− π
4
)(p) in Ωv, we define a pair of points, (p�, q),

where q is the point on the Catmull-Clark subdivision surface associated with the
point p.

Ωv

q

p

p� = (r3· π
nv

◦ z
4

nv ◦ r− π
4
)(p)
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A Construction for Quadrilateral Meshes

We are now in a position to compute the parametrization, θv : Ωv → E3, associated
with v.

The polynomial ψv is the shape function associated with v. Note that these functions
do not necessarily satisfy the convex hull property, as the Bézier patches we used
before.

In order to do so, Ying and Zorin defined a basis of monomials, (xrys)r,s, of total
degree, r + s, at most d = min{14, nv + 1}. Using this basis, they define a polynomial,
ψv(x, y), of degree at most d whose coefficients are computed by minimizing the
differences

�ψv(p�)− q�

in the least-squares sense, where (p�, q) are the pairs of points we just computed
before.
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A Construction for Quadrilateral Meshes

Finally, we define
θv : Ωv → E3

as

θv(p) =
∑z∈Jv(p)(ψz ◦ ϕzv)(p) · (γz ◦ ϕzv)(p)

∑z∈Jv(p)(γz ◦ ϕzv)(p)

for every p ∈ Ωv, where
Jv(p) = {u ∈ I | p ∈ Ωvu}

and γv : Ωv → R is a bump function. The set Jv(p) has at least one vertex and at
most 4.

Note that θv is defined as a convex combination of the values of (ψz ◦ ϕzv)(p)
weighted by (γz ◦ ϕzv)(p), which can be thought as the influence of (ψz ◦ ϕzv)(p)
on θv(p).
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A Construction for Quadrilateral Meshes

The bump function, γz, is defined as a composition of a few maps. First, the point
ϕzv(p) is taken to the canonical domain using the map r π

4
◦ z

nz
4 ◦ r−i· π

nz
, where i iden-

tifies the curved quadrilateral of Ωz that contains the point ϕzv(p) in the p-domain
Ωz.

r π
4
◦ z

nz
4 ◦ r−3· π

nz

Ωz

(x, y)

ϕzv(p)

Let (x, y) be the coordinates of the point (r π
4
◦ z

nz
4 ◦ r−i· π

nz
◦ ϕzv)(p) in the canonical

quad.

i = 1

i = 3

i = 5
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A Construction for Quadrilateral Meshes

We compute the product ξ(x) · ξ(y), where ξ : [0, 1] → R is the function defined
in the previous lecture. So, putting everything together, we define γz : Ωz → R as
follows:

γz(x, y) =
�

η ◦ r π
4
◦ z

nz
4 ◦ r−i· π

nz

�
(x, y) ,

where η : [0, 1]2 → R is given by

η(x, y) = ξ(x) · ξ(y) .


