
Introduction to Computational 
Manifolds and Applications 

Prof. Marcelo Ferreira Siqueira

Departmento de Informática e Matemática Aplicada 
Universidade Federal do Rio Grande do Norte

Natal, RN, Brazil

IMPA - Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil

Part 1 - Constructions 

mfsiqueira@dimap.ufrn.br



Parametric Pseudo-Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 2

Building Parametrizations

M

En

ϕij

ϕji

Ωi Ωj

θi θj

Ωji

θj(Ωj)
θi(Ωi)

Ed

Ωij

Recall the big picture...
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Building Parametrizations
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We’ve learned how to build a set of gluing data using distinct choices of transition
maps.

gluing data



GIVEN

Our goal now is to learn how to build a family, (θi)i∈I , of parametrizations.
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Building Parametrizations
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We’ll define the parametrizations for one set of gluing data showed in the previous
lecture.
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Building Parametrizations
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Building Parametrizations

To define (θv)v∈I , we specify a family of shape functions and a family of bump func-
tions: �

ψv
�

v∈I and
�
γv

�
v∈I .

More specifically, for each v ∈ I, we define the shape function,

ψv : �v ⊆ E2 → E3 ,

associated with Ωv, as the Bézier (surface) patch of bi-degree (m, n) given by the expres-
sion

ψv(p) = ∑
0≤j≤m

∑
0≤k≤n

Bm
j (x) · Bn

k (y) · bv
j,k ,

where
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Building Parametrizations

• �v = [−Lv,−Lv]× [Lv, Lv], with Lv = cos
�

π
nv

�
,

Ωv

Lv = cos
�

π

nv

�
(0, 0)

(−Lv,−Lv)

(Lv,−Lv) (Lv, Lv)

(Lv,−Lv)
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Building Parametrizations

Ωv

Lv = cos
�

π

nv

�
(0, 0)

(−Lv,−Lv)

(Lv,−Lv) (Lv, Lv)

(Lv,−Lv)

p = (x, y)

• (x, y) are the coordinates of a point p in the local coordinates system of �v ,
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Building Parametrizations

• (bv
j,k) ⊂ E3 are the control points of ψv, with 0 ≤ j ≤ m and 0 ≤ k ≤ n ,

Ex: m = 2 and n = 2

p0,0

p0,1

p0,2

p1,1
p2,1

p1,2 p2,2

p1,0 p2,0

E2

b0,0 b1,0 b2,0

b0,1 b1,1 b2,1

b0,2 b1,2 b2,2

E3
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Building Parametrizations

• and

Bl
i (t) =

�
l
i

�
·
�

r− t
r− s

�l−i
·
�

t− s
r− s

�i

is the i-th Bernstein polynomial of degree l over the affine frame [s, r] such that

s = −Lv and r = Lv ,

for every i ∈ {0, 1, . . . , l}, and

∑
0≤j≤m

∑
0≤k≤n

Bm
j (x) · Bn

k (y) = 1 ,

for every x, y ∈ [s, r].



Parametric Pseudo-Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 12

Building Parametrizations

So, ψv(p) is a convex combination of the control points, bv
j,k.
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Building Parametrizations

How can we define the control points of ψv?

We currently use a least squares fitting procedure.

The idea is to compute a large collection, (pj, p�j)j∈J , of pairs of parameter points and
sample points, respectively, where the first element, pj, is in E2 and the second, p�j, is
in E3.

We view p�j as the image of pj under a given function, β : E2 → E3, we wish to locally
approximate using the ψv’s. As we shall see, there are many choices for the function
β.
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Building Parametrizations

fv(u)

fv(w)

fv(v)

pj

u

v

w

st(v,K)

However, one of the simplest choices for the function β could be a barycentric map
that takes each parameter point, pj, in Ωv to a sample point, p�

j, in the star, st(v,K),

of v in K.

β p�
j = β(p�

j)
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Building Parametrizations

More precisely,

p�
j = β(pj) = β(λ · fv(v) + µ · fv(u) + ν · fv(w)) = λ · v + µ · u + ν · w ,

where (λ, µ, ν) are the barycentric coordinates of the point pj w.r.t the affine frame

[ fv(v), fv(u), fv(w)] .
fv(u)

fv(w)

fv(v)

pj

u

v

w

st(v,K)
β p�

j = β(p�
j)
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Building Parametrizations

fv(u)

fv(w)

fv(v)

pj

u

v

w

st(v,K)
β p�

j = β(p�
j)

Note that β must be piecewise defined in |Ku| (i.e., it varies in each triangle of Ku).
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Building Parametrizations

fv(u)

fv(w)

fv(v)

pj

u

v

w

st(v,K)
β p�

j = β(p�
j)

We then assemble three linear equation systems, AX = Bl , with l = 1, 2, 3, each of
which has exactly Ev equations in (m + 1)× (n + 1) unknowns, where m = n = nv.



Parametric Pseudo-Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 18

Building Parametrizations

fv(u)

fv(w)

fv(v)

pj

u

v

w

st(v,K)
β p�

j = β(p�
j)

In our current implementation, we set Ev = (2 · nv + 1)2. Observe that the value of

Ev is, in general, not the same for any two p-domains, as it is expressed in terms of

nv.
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Building Parametrizations

The linear equations of the systems AX = Bl , for l = 1, 2, 3, come from the equalities

p�j = ψv(pj) =⇒ (x�j, y�j, z�j) = ∑
0≤j≤m

∑
0≤k≤n

Bm
j (xj) · Bn

k (yj) · (xv
j,k, yv

j,k, zv
j,k) ,

for all j ∈ J, where (xj, yj), (x�j, y�j, z�j), and (xv
j,k, yv

j,k, zv
j,k) are the coordinates of pj, p�j,

and bv
j,k.
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Building Parametrizations

So, AX = B1 consists of Ev linear equations of the form

x�j = ∑
0≤j≤m

∑
0≤k≤n

Bm
j (xj) · Bn

k (yj) · xv
j,k ,

AX = B2 consists of Ev linear equations of the form

y�j = ∑
0≤j≤m

∑
0≤k≤n

Bm
j (xj) · Bn

k (yj) · yv
j,k ,

and AX = B3 consists of Ev linear equations of the form

z�j = ∑
0≤j≤m

∑
0≤k≤n

Bm
j (xj) · Bn

k (yj) · zv
j,k .

Each equation has (nv + 1)2 unknowns. So, A has Ev rows and (nv + 1)2 columns.
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Building Parametrizations

At AX = AtB1 admits a unique solution iff At A has rank (nv + 1)2.

We can proceed in a similar fashion to solve AX = B2 and AX = B3.

Once we solve AX = Bl , for l = 1, 2, 3, we have the control points bv
j,k, and thus ψv.

Note that the (nv + 1)2 unknowns of AX = Bl are the l-th coordinates of the bv
j,k’s.

Since Ev > (nv + 1)2, the system AX = B1 has more equations than unknowns. So,
we compute the normal equations, At AX = AtB1, and then solve At AX = AtB1 for
X.
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Building Parametrizations

Ultimately, we want to compute θv:

GIVEN

M

En

ϕij

ϕji

Ωi Ωj

θi θj

Ωji

θj(Ωj)
θi(Ωi)

Ed

Ωij
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Building Parametrizations

Why not let θv = ψv?

The main issue here is that θv(p) must be the same point as θu(q) whenever q =
ϕuv(p).

However, it is extremely unlikely that ψv(p) = ψu(q) whenever q = ϕuv(p).

The reason is that the control points of ψv and ψu are computed independently.



rv,σ

Kw

rv,σ

Ku Kv
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Building Parametrizations

ϕwv(p)

p

ψv(p)
(ψu ◦ ϕuv)(p)

(ψw ◦ ϕwv)(p)

u

vw

ϕuv(p)
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Building Parametrizations

So, what can we do?

We will use the same resource we used for the one-dimensional case: partition of
unity.

For each v ∈ I, we define the bump function, γv : E2 → R, associated with Ωv such
that

γv(p) = γv(x, y) = ξ

��
x2 + y2

�
,

for every p = (x, y) ∈ E2, and ξ : R → R is the same map ξ of the one-dimensional
case.
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Building Parametrizations
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Building Parametrizations

For every t ∈ R, we define
ξ : R → R

as

ξ(t) =






1 if t ≤ H1

0 if t ≥ H2

1/(1 + e
2·s) otherwise

where H1, H2 are constant, with 0 < H1 < H2 < 1,

s =
�

1√
1− H

�
−

�
1√
H

�
and H =

�
t− H1

H2 − H1

�
.

Recall...
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Building Parametrizations

HEURISTIC!

H2 = cos(π/nv)

Ωv

H1 = 0.25 · H2
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Building Parametrizations

Jv(p) has at least one vertex (i.e., v) and at most 3 (i.e., v plus one or two others).

We can show that θv(p) = (θu ◦ ϕuv)(p) = (θw ◦ ϕwv)(p) whenever p ∈ (Ωvu ∩Ωvw).

Finally, we define
θv : Ωv → E3

as

θv(p) =
∑z∈Jv(p)(ψz ◦ ϕzv)(p) · (γz ◦ ϕzv)(p)

∑z∈Jv(p)(γz ◦ ϕzv)(p)
,

for every p ∈ Ωv, where

Jv(p) = {u ∈ I | p ∈ Ωvu} .
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Building Parametrizations

rv,σ

Kw

rv,σ

Ku Kv

ϕwv(p)

p

u

vw

ϕuv(p)

Jv(p) = {v, u, w}

θv(p) = (θu ◦ ϕuv)(p) = (θw ◦ ϕwv)(p)
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Building Parametrizations

If Jv(p) = {v} then

θv(p) =
∑z∈Jv(p)(ψz ◦ ϕzv)(p) · (γz ◦ ϕzv)(p)

∑z∈Jv(p)(γz ◦ ϕzv)(p)

=
(ψv ◦ ϕvv)(p) · (γv ◦ ϕvv)(p)

(γv ◦ ϕvv)(p)

= (ψv ◦ ϕvv)(p)

= (ψv ◦ idΩv)(p)

= ψv(p) .
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Building Parametrizations

If Jv(p) = {v, u} then

θv(p) =
∑z∈Jv(p)(ψz ◦ ϕzv)(p) · (γz ◦ ϕzv)(p)

∑z∈Jv(p)(γz ◦ ϕzv)(p)

=
(ψv ◦ ϕvv)(p) · (γv ◦ ϕvv)(p) + (ψu ◦ ϕuv)(p) · (γu ◦ ϕuv)(p)

(γv ◦ ϕvv)(p) + (γu ◦ ϕuv)(p)

=
(ψv ◦ idΩv)(p) · (γv ◦ idΩv)(p) + (ψu ◦ ϕuv)(p) · (γu ◦ ϕuv)(p)

(γv ◦ idΩv)(p) + (γu ◦ ϕuv)(p)

=
ψv(p) · γv(p) + (ψu ◦ ϕuv)(p) · (γu ◦ ϕuv)(p)

γv(p) + (γu ◦ ϕuv)(p)
.
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Building Parametrizations

If Jv(p) = {v, u, w} then

θv(p) =
∑z∈Jv(p)(ψz ◦ ϕzv)(p) · (γz ◦ ϕzv)(p)

∑z∈Jv(p)(γz ◦ ϕzv)(p)

=
(ψv ◦ ϕvv)(p) · (γv ◦ ϕvv)(p) + (ψu ◦ ϕuv)(p) · (γu ◦ ϕuv)(p) + (ψw ◦ ϕwv)(p) · (γw ◦ ϕwv)(p)

(γv ◦ ϕvv)(p) + (γu ◦ ϕuv)(p) + (γw ◦ ϕwv)(p)

=
(ψv ◦ idΩv)(p) · (γv ◦ idΩv)(p) + (ψu ◦ ϕuv)(p) · (γu ◦ ϕuv)(p) + (ψw ◦ ϕwv)(p) · (γw ◦ ϕwv)(p)

(γv ◦ idΩv)(p) + (γu ◦ ϕuv)(p) + (γw ◦ ϕwv)(p)

=
ψv(p) · γv(p) + (ψu ◦ ϕuv)(p) · (γu ◦ ϕuv)(p) + (ψw ◦ ϕwv)(p) · (γw ◦ ϕwv)(p)

γv(p) + (γu ◦ ϕuv)(p) + (γw ◦ ϕwv)(p)
.
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Building Parametrizations

All functions involved in the definition of θv are C∞.

Finally, our surface is defined as
�

v∈I θv(Ωv).

A key observation for the proof of consistency: if w ∈ Jv(p) then Jw(ϕwv(p)) = Jv(p).

In

θv(p) =
∑z∈Jv(p)(ψz ◦ ϕzv)(p) · (γz ◦ ϕzv)(p)

∑z∈Jv(p)(γz ◦ ϕzv)(p)
,

the term
(ψz ◦ ϕzv)(p)

can be viewed as the contribution of ψz to θv(p), which is weighted by (γz ◦ ϕzv)(p).
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Building Parametrizations

There is only one issue with the construction of S: the sample points, p�
j, were located

in the surface |K|, which is piecewise-linear. As a result, S will look piecewise-linear
too!

To improve the visual quality of S, we define the parametrization θv as a local ap-
proximation for a "curved" geometry. In order to do so, we assume that a parametric
surface, say S�, has been defined over the simplicial surface, K. There are many
choices!

Two simple choices are:

• PN triangles

• Subdivision surfaces
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Building Parametrizations

E2

�

bσ(�)
σ

E3

bσ(�)

Regardless of the choice of S�, we assume that S� is a union of parametric patches
given by

bσ : � ⊂ E2 → E3 ,

where each bσ is associated with a triangle σ of K and is defined on a triangle, � ⊂
E2; i.e,

S� =
�

σ∈K(2)

bσ(�) .
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Building Parametrizations

Suppose that σ = [v, u, w].

u

vw

σ

Kv

fv(u)

fv(v)

fv(w)
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Building Parametrizations

Kv

fv(u)

fv(v)

fv(w)

pj
�

b(pj)

Kv

fv(u)

fv(v)

fv(w)

After sampling Ωv, we map the points pj inside the triangle [ fv(v), fv(u), fv(w)] to
the triangle � using a barycentric map, say b, and then we compute the points p�j =
(bσ ◦ b)(pj).
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Building Parametrizations

After sampling Ωv, we map the points pj inside the triangle [ fv(v), fv(u), fv(w)] to
the triangle � using a barycentric map, say b, and then we compute the points p�j =
(bσ ◦ b)(pj).

�

b(pj)

p�
j = (bσ ◦ b)(pj)

bσ(�)
σ

bσ

So, our given function β can be piecewise defined as β = bσ ◦ b in each p-domain.
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Building Parametrizations

Once we have the pairs (pj, p�
j) for each p-domain Ωv, we can proceed as before

to compute the control points of ψv, which is a Bézier surface patch of bi-degree

(nv, nv).

However, since we locally approximate the shape of a "curved" geometry (i.e., the

surface S� =
�

σ∈K(2) bσ(�)), our surface, S =
�

v∈I θv(Ωv), has a curved geometry

too.

More specifically, the shape of S is very similar to the shape of S�, but S is smooth
(i.e., C∞) regardless of the degree of smoothness of the surface S�, which should be
at least C0.

Let us see some examples...
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Examples

simplicial surface K
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Examples

PN triangle
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Examples

surface S
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Examples

Loop subdivision surface
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Examples

surface S
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Examples

simplicial surface K
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Examples

PN triangle
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Examples

surface S
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Examples

Loop subdivision surface
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Examples

surface S
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Examples

simplicial surface K
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Examples

PN triangle
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Examples

surface S
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Examples

Loop subdivision surface
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Examples

surface S
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Examples

simplicial surface K
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Examples

PN triangle
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Examples

surface S
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Examples

Loop subdivision surface
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Examples

surface S
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Concluding Remarks

We can also use another kind of parametric surface for defining the ψv’s. We opted
for the simplest maps that could give us a C∞-surface. Depending on the pur-
pose, there may be better options, such as B-splines, beta-splines, box-splines, polar
splines, etc.

We can play with many choices for the function β = bσ ◦ b. But, keep in mind that we
can only do so because the manifold-based approach for surface construction allows
us to explicitly separate topology (i.e., gluing data) from geometry (i.e., parametriza-
tions).

Some of the above choices for the map ψv may yield Ck-surfaces only, for a small pos-
itive integer k, which may be enough for many applications you might be interested
in.
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Pause for a Commercial

http://www.cis.upenn.edu/~jean/geomcs-v2.pdf


