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Origins of Manifolds

In a famous paper published in 1888, Dyck already uses the term manifold (in Ger-
man).

In the early 1900’s, Dehn, Heegaard, Veblen, and Alexander routinely used the term

manifold.

Hermann Weyl was among the first to give a rigorous definition (1913).

Around 1860, Mobius, Jordan, and Dyck studied the topology of surfaces.
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Origins of Manifolds

Georg Friedrich Bernhard Riemann
1828-1866
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Origins of Manifolds

Hermann Klaus Hugo Weyl

1885-1955
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Origins of Manifolds

Hermann Weyl (again)
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Origins of Manifolds

Hassler Whitney

1907-1989
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Origins of Manifolds

This is the image to have. However we should not think of a manifold as always
sitting inside a fixed Euclidean space, but rather as a space of its own. Let us see

how...

We’ve seen that manifolds are generalizations of surfaces to arbitrary dimensions.
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Formal Definition

Given a set E, a topology on E (or a topological structure on E), is defined as a family O

of subsets of E called open sets, and satisfying the following three properties:

(1) For every finite family (Ui)1≤i≤n of sets Ui ∈ O, we have U1 ∩ · · · ∩Un ∈ O,
i.e., O is closed under finite intersections.

(2) For every arbitrary family (U)i∈I of sets Ui ∈ O, we have
�

i∈I Ui ∈ O, i.e., O
is closed under arbitrary unions.

(3) ∅ ∈ O, and E ∈ O, i.e., ∅ and E belong to O.

A set E together with a topologyO on E is called a topological space. Given a topolog-
ical space (E,O), a subset F of E is a closed set if F = E−U for some open set U ∈ O,
i.e., F is the complement of some open set.
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Formal Definition

Given Rn, recall that the projection functions, pri : Rn → R, are defined by

pri(x1, . . . , xn) = xi , 1 ≤ i ≤ n .

The inverse, (Ω, ϕ−1), of a chart is called a local parametrization.

Definition 5.1. Given a topological space, M, a chart (or local coordinate map) is a pair,
(U, ϕ), where U is an open subset of M and ϕ : U → Ω is a homeomorphism onto an
open subset, Ω = ϕ(U), of Enϕ (for some nϕ ≥ 1). For any p ∈ M, a chart, (U, ϕ), is
a chart at p iff p ∈ U. If (U, ϕ) is a chart, then the functions xi = pri ◦ ϕ are called local
coordinates and for every p ∈ U, the tuple (x1(p), . . . , xn(p)) is the set of coordinates
of p w.r.t. the chart.
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Formal Definition

U

Ω

M

Enϕ

ϕ

homeomorphism

open sets

chart

(U, ϕ)

ϕ(U) = Ω ⊆ Enϕ



Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 11

Formal Definition

U

Ω

M

Enϕ

homeomorphism

open sets

ϕ−1
parametrization

(U, ϕ−1)
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Formal Definition

Observe that the transition maps ϕji (resp. ϕij) are maps between open subsets of

En.

Definition 5.2. Given any two charts, (Ui, ϕi) and (Uj, ϕj), if Ui ∩Uj �= ∅, we define
the transition maps,

ϕji : ϕi(Ui ∩Uj) → ϕj(Ui ∩Uj) and ϕij : ϕj(Ui ∩Uj) → ϕi(Ui ∩Uj) ,

as
ϕji = ϕj ◦ ϕ−1

i and ϕij = ϕi ◦ ϕ−1
j .

Clearly, ϕji = (ϕij)−1.
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Formal Definition

M

U1 U2

U1 ∩U2

Ω1
Ω2

ϕ1 ϕ2

Enϕ1 Enϕ2

ϕ21 = ϕ2 ◦ ϕ−1
1

ϕ12 = ϕ1 ◦ ϕ−1
2
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Formal Definition

A topological space (E,O) is said to satisfy the Hausdorff separation axiom (or T2-

separation axiom) if for any two distinct points a �= b in E, there exist two open sets Ua

and Ub such that, a ∈ Ua, b ∈ Ub, and Ua ∩Ub = ∅. When the T2-separation axiom
is satisfied, we also say that (E,O) is a Hausdorff space.

A topological space E is called second-countable if there is a countable basis for its
topology, i.e., if there is a countable family, (Ui)i≥0, of open sets such that every
open set of E is a union of open sets Ui.
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Formal Definition

Definition 5.3. Given a topological space, M, given some integer n ≥ 1 and given
some k such that k is either an integer, with k ≥ 1, or k = ∞, a Ck n-atlas (or n-atlas of
class Ck),

A = {(Ui, ϕi)}i ,

is a family of charts such that

(1) ϕi(Ui) ⊆ En for all i ;

(2) The Ui cover M, i.e.,
M =

�

i
Ui ;

(3) Whenever
Ui ∩Uj �= ∅ ,

the transition map ϕji (and ϕij) is a Ck-diffeomorphism.
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Formal Definition

Given a Ck n-atlas, A, on M, for any other chart, (U, ϕ), we say that (U, ϕ) is compat-
ible with the atlas A iff every map ϕi ◦ ϕ−1 and ϕ ◦ ϕ−1

i is Ck (whenever U ∩Ui �= ∅).

Two atlases A and A� on M are compatible iff every chart of one is compatible with
the other atlas. This is equivalent to saying that the union of the two atlases is still
an atlas.

It is immediately verified that compatibility induces an equivalence relation on Ck

n-atlases on M. In fact, given an atlas, A, for M, the collection, �A, of all charts
compatible with A is a maximal atlas in the equivalence class of charts compatible
with A.

Finally, we have our generalized notion of a manifold.
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Formal Definition

Definition 5.4. Given some integer n ≥ 1 and given some k such that k is either an
integer, with k ≥ 1, or k = ∞, a Ck-manifold of dimension n consists of a topological
space, M, together with an equivalence class, A, of Ck n-atlases, on M. Any atlas, A,
in the equivalence class A is called a differentiable structure of class Ck (and dimension
n) on M. We say that M is modeled on En. When k = ∞, we say that M is a smooth
manifold.

It might have been better to use the terminology abstract manifold rather than mani-
fold, to emphasize the fact that the space M is not a priori a subspace of EN , for some
suitable N.

To avoid pathological cases and to ensure the existence of partitions of unity, we

further require that the topology of M be Hausdorff and second-countable.
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Formal Definition

In this case, M is called a topological manifold of dimension n.

We do not require a manifold to be connected but we require all the components to
have the same dimension, n. Actually, on every connected component of M, it can be
shown that the dimension, nϕ, of the range of every chart is the same (i.e., nϕ = n).
This is quite easy to show if k ≥ 1 but for k = 0, this requires a deep theorem due to
Brouwer.

We can allow k = 0 in the above definitions. In this case, condition (3) in Definition
5.3 is void, since a C0-diffeomorphism is just a homeomorphism, but ϕji is always a
homeomorphism.
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Formal Definition

Brouwer’s Invariance of Domain Theorem states the following: if U ⊆ En is an open
set and if f : U → En is a continuous and injective map, then the set f (U) is open in
En.

Using Brouwer’s Theorem, we can show the following fact: If U ⊆ Em and V ⊆ En

are two open subsets and if f : U → V is a homeomorphism between U and V, then
m = n.

If m > n, then consider the injection, i : En → Em, where i(x) = (x, 0m−n). Clearly,
i is injective and continuous, so i ◦ f : U → i(V) is injective and continuous and
Brouwer’s Theorem implies that i(V) is open in Em, which is a contradiction, as
i(V) = V × {0m−n} is not open in Em. If m < n, consider the homeomorphism
f−1 : V → U.
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Formal Definition

What happens if n = 0?

In this case, every one-point subset of M is open, so every subset of M is open, i.e.,
M is any (countable if we assume M to be second-countable) set with the discrete
topology!

Observe that since En is locally compact and locally connected, so is every manifold.
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Formal Definition

To get a better grasp of the notion of manifold it is useful to consider examples of
non-manifolds. First, consider the curve in E2 given by the zero locus of the equation

y2 = x2 − x3,

namely, the set of points

M1 = {(x, y) ∈ E2 | y2 = x2 − x3}.

This curve is called a nodal cubic and we saw its parametric equation in our first
lecture:

x = 1 − t2

y = t(1 − t2).
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Formal Definition

�2 �1 1 2

�2

�1

1

2
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Formal Definition

We claim that M1 is not even a topological manifold.

The problem is that the nodal cubic has a self-intersection at the origin.

If M1 was a topological manifold, then there would be a connected open subset,
U ⊆ M1, containing the origin, O = (0, 0), namely the intersection of a small enough
open disc centered at O with M1, and a local chart, ϕ : U → Ω, where Ω is some
connected open subset of E (that is, an open interval), since ϕ is a homeomorphism.

However, U − {O} consists of four disconnected components and Ω− ϕ(O) consists

of two disconnected components, contradicting the fact that ϕ is a homeomorphism.
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Formal Definition

Let us now consider the curve in E2 given by the zero locus of the equation

y2 = x3,

namely, the set of points

M2 = {(x, y) ∈ E2 | y2 = x3} .

This curve is called a cuspidal cubic and we also saw its parametric form in the first
lecture:

x = t2

y = t3.
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Formal Definition

�2 �1 1 2

�2

�1

1

2
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Formal Definition

Consider the map, ϕ : M2 → E, given by

ϕ(x, y) = y1/3
.

Since x = y2/3
on M2, we see that ϕ−1

is given by

ϕ−1(t) = (t2
, t3)

and clearly, ϕ is a homeomorphism, so M2 is a topological manifold. However, in

the atlas consisting of the single chart, ϕ : M2 → E, the space M2 is also a smooth

manifold! Indeed, as there is a single chart, condition (3) of Definition 5.3 holds

vacuously.
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Formal Definition

This fact is somewhat unexpected because the cuspidal cubic is usually not consid-
ered smooth at the origin, since the tangent vector of the parametric curve,

c : t �→ (t2, t3) ,

at the origin is the zero vector (the velocity vector at t, is
dc
dt
(t) = (2t, 3t2)).

However, this apparent paradox has to do with the fact that, as a parametric curve,

M2 is not immersed in E2
since c� is not injective (see "immersion" in slide 39 of Lec-

ture 2), whereas as an abstract manifold, with this single chart, M2 is diffeomorphic

to E.
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Formal Definition

Now, we also have the chart, ψ : M2 → E, given by

ψ(x, y) = y ,

with ψ−1 given by
ψ−1(u) = (u2/3, u) .

Then, observe that
ϕ ◦ ψ−1(u) = u1/3 ,

a map that is not differentiable at u = 0. Therefore, the atlas consisting of the charts

(M2, ϕ : M2 → E) and (M2, ψ : M2 → E)

is not C1 and thus, with respect to that atlas, M2 is not a C1-manifold.
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Formal Definition

If a space, M, happens to be a topological manifold because it has an atlas consisting
of a single chart, then it is automatically a smooth manifold!

The example of the cuspidal cubic shows a peculiarity of the definition of a Ck (or
C∞) manifold:
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Formal Definition

In particular, if
f : U → Em

is any continuous function from some open subset, U, of En, to Em, then the graph,

Γ( f ) = {(x, f (x)) ∈ En+m | x ∈ U} ,

of f is a smooth manifold with respect to the atlas consisting of the single chart,
namely,

{(Γ( f ), ϕ : Γ( f ) → U)} ,

where
ϕ(x, f (x)) = x and ϕ−1(x) = (x, f (x)) .
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Formal Definition

The example of the cuspidal cubic also shows clearly that whether a topological
space is considered a Ck-manifold or a smooth manifold depends on the choice of
atlas.
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Examples

Example 5.1.

S2

E3

Sn = {(x1, . . . , xn, xn+1) ∈ En+1 | x2
1 + · · ·+ x2

n + x2
n+1 = 1}
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Examples

We use stereographic projection from the north pole...

σN (x1, . . . , xn+1) =
1

1 − xn+1

(x1, . . . , xn)
N

S2

E3

E2

σN : Sn − {N} → En



Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 34

Examples

and stereographic projection from the south pole.

σS(x1, . . . , xn+1) =
1

1 + xn+1

(x1, . . . , xn)

S

R2

S2

E2

E3

σS : Sn − {S} → En
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Examples

The inverse stereographic projections are given by

σ−1
N (x1, . . . , xn) =

1�
∑n

i=1 x2
i
�
+ 1

�
2x1, . . . , 2xn,

� n

∑
i=1

x2
i

�
− 1

�

and

σ−1
S (x1, . . . , xn) =

1�
∑n

i=1 x2
i
�
+ 1

�
2x1, . . . , 2xn,−

� n

∑
i=1

x2
i

�
+ 1

�
.
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Examples

Consider the open cover consisting of

UN = Sn − {N} and US = Sn − {S} .

Out!

Out!
UN US

N

S
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Examples

On the overlap

UN ∩ US = Sn − {N, S} .

UN ∩ US

S

N

Out!
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Examples

It is easily checked that on the overlap, UN ∩ US = S
n − {N, S}, the transition maps

σS ◦ σ−1
N

= σN ◦ σ−1
S

are given by

(x1, . . . , xn) �→
1

∑n

i=1 x2
i

(x1, . . . , xn),

that is, the inversion of center O = (0, . . . , 0) and power 1. Clearly, this map is
smooth on En − {O}, so we conclude that (UN , σN) and (US, σS) form a smooth
atlas for S

n.


