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Manifolds

Submanifolds embedded in RN

Definition 4.1. Given any integers N, m, with N > m > 1, an m-dimensional smooth
manifold in EN, for short a manifold, is a nonempty subset M of EN such that for every

point p € M, there are two open subsets, (3 C E" and U C M, with p € U, and a

smooth function,
¢:Q — EN,

such that ¢ is a homeomorphism between (2 and U = ¢(Q), and (d¢);, is injective,
for

to=¢ (p).
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]EN

lEm

The function
p:Q—U

is called a (local) parametrization of M at p. If 0,, € Q) and ¢(0,,) = p, we say that ¢ is
centered at p.
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Recall that
M C EN

is a topological space under the subspace topology, and U is some open subset of M

in the subspace topology, which means that U = M N W for some open subset W of
EN.
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Since ¢ : () — U is a homeomorphism, it has an inverse,
_1 .
p U —Q,

that is also a homeomorphism, called a (local) chart.

IEm
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Since () C [E™, for every p € M and every parametrization ¢ : (3 — U of M at p, we
have

o ' (p) = (z1,---,2Zm),

for some z; € [E, and we call z1, . .., z, the local coordinates of p (with respect to ¢~ 1).
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We often refer to a manifold M without explicitly specifying its dimension (the inte-
ger ).

Intuitively, a chart provides a "flattened" local map of a region on a manifold.

IEm
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Example 4.1.

Every open subset, U, of EN is a manifold in a trivial way. Indeed, we can use the
inclusion map, ¢ : U — EN, where ¢(p) = p for every p € U, as a parametrization.

Note that, in this case, there is a single parametrization, namely ¢, for every point p
in U.
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Example 4.2.
For U an open subset of [E" and

f:u—E"
the graph of f, I'(f), is defined to be the subspace

[(f) ={(x f(x)) e UxE"}.
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If f is smooth, then T'(f) is a manifold of dimension 7 in E" ™.

Indeed, if we let
¢:U—T(f) and ¢:T(f) - U
such that

p(x) = (x,f(x)) and  9((x f(x)) =x,

then ¢ and ¢ are smooth and inverse to each other, and hence they are homeomor-
phisms.
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The derivative, (d¢@)y, of ¢ at x, which is equal to (id,, (df)x), is clearly injective. So,

(f)

is a manifold in E"*™. That’s why many of the familiar surfaces from calculus, for
instance, an elliptic or a hyperbolic paraboloid, which are graphs of functions, are
manifolds.
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Example 4.3.

For any two positive integers, m and n, let M, ,(R) be the vector space of all m x n
matrices.

Since My, » (R) is isomorphic to R™", we give it the topology of R"".

The general linear group, GL(n,R), is by definition the set of matrices

GL(,R) = {A € Mu(R) | det(A) # 0} = det (R — {0}).

GL(#,R) is a manifold in R"
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Indeed, since the function
det: M,;(R) — R

is continuous and R — {0} is open in R, and since GL(#n,R) is the inverse image of
(the open set) R — {0} under the function det, GL(7, R) is an open set of M,,(R) =
R".

From Example 4.1, we conclude that GL(#, R) is a manifold in R".

The following two lemmas provide the link with the definition of an abstract mani-
fold:
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Lemma 4.1. Given an m-dimensional manifold M in EV, for every p € M there
are two open sets O, W C EN, with Oy € O and p € (MNW), and a smooth

diffeomorphism

p:0—-W

such that
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The next lemma is easily shown from Lemma 4.1. It is a key technical result used
to show that interesting properties of maps between manifolds do not depend on

parametrizations.

Lemma 4.2. Given an m-dimensional manifold M in EV, for every p € M and any
two parametrizations, ¢1 : (31 — Ujand ¢y : Oy — Upof Matp,if U1 NU, # Q,

the map
92 o1 (U1NUz) — ¢; ' (U ML)

is a smooth diffeomorphism.
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The maps ¢, Lo @1 and 1 Lo @, are called transition maps.
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Using Definition 4.1, it may be quite hard to prove that a space is a manifold. There-
fore, it is handy to have alternate characterizations such as those given in the next
Proposition.

Proposition 4.3. A subset, M C E™tk is an m-dimensional manifold if and only if
either

(1) For every p € M, there is some open subset, W C E"** with p € W and a
(smooth) submersion, f : W — E¥, so that WN M = f~1(0), or

(2) For every p € M, there is some open subset, W C E"** with p € W and a
(smooth) map, f : W — EF, so that (df),, is surjective and W N M = f~1(0).
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Condition (2), although apparently weaker than condition (1), is in fact equivalent to
it.

This is because to say that (df), is surjective means that the Jacobian matrix of (df),
has rank k, which means that some determinant is nonzero, and because the determi-
nant function is continuous this must hold in some open subset W; C W containing

p.
Consequently, the restriction, f1, of f to W is indeed a submersion and
£710) =Wy n F710) = Wy n (WA M) =W N M.

The proof is based on two technical lemmas that are proved using the inverse func-
tion theorem.
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Lemma 4.4. Let U C E" be an open subset of E™ and pick some a € U. If
f:u—E"

is a smooth immersion at 4, i.e., if df, is injective (and hence, m < n), then there is
an open set, V. C [E", with f(a) € V, an open subset, U’ C U, with a € U’ and
f(U") C V,an open subset O C E" ™ and a diffeomorphism, 6 : V — (U’ x O), so
that

O(f(x1,...,xm)) = (x1,...,%m,0,...,0),

for all
(x1,...,xm) €U,
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Lemma 4.6. Let W C E™ be an open subset of E” and pick somea € W. If
f:W—E"

is a smooth submersion at 4, i.e., if df; is surjective (and hence, m > n), then there
is an open set, V. C W C [E™, with a € V, and a diffeomorphism, ¢, with domain
O C E™ so that

P(O)=V and f(xy, ..., xm)) = (x1,---,%n),

for all
(x1,...,xm) €0.
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x=(x1,--.,Xm)

O CE™

IEVI

W C E"™ (fOlI))(X):(xl,...,xn)

Using Lemmas 4.5 and 4.6, we can prove the following theorem:
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Theorem 4.7. A nonempty subset, M C EN, is an m-manifold (with 1 < m < N) iff
any of the following conditions hold:

(1) For every p € M, there are two open subsets (3 C E" and U C M, with p € U,

and a smooth function
p:0 — EN
such that ¢ is a homeomorphism between () and U = ¢(Q), and (dg)y is
injective, where
p=¢(0).
(2) For every p € M, there are two open sets O, W C EN, with Oy € O and

p € (MN W), and a smooth diffeomorphism ¢ : O — W, such that ¢(0y) = p
and

(ON(E" X {0N-m})) = MNW.
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(3) For every p € M, there is some open subset, W C EN, with p € W and a
smooth submersion, f : W — EN" go that WN M = f~1(0).

(4) For every p € M, there is some open subset, W C EN with pecW,and N —m
smooth functions, f; : W — [, so that the linear forms (df1)p,..., (dfnN—m)p
are linearly independent and

WNM=f'(0)N---Nfyl,,(0).

Condition (4) says that locally (that is, in a small open set of M containing p € M),

M is "cut out" by N — m smooth functions, f; : W — [E, in the sense that the portion
of the manifold M N W is the intersection of the N — m hypersurfaces, fi_1 (0), (the

zero-level sets of the f;) and that this intersection is "clean", which means that the
linear forms (df1)p,. .., (dfN—m)p are linearly independent.
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Example 4.4.

The sphere
S"={xeE""||x[3-1=0}

is an n-dimensional manifold in IE"™!. Indeed, the map f : E"™! — {0} — E given

by
f(x) = lx|5 -1

is a submersion, since
[

(df)x(y) = ( 2x1 2xp -+ 2Xp41 ) : y:2 , forallx,y € (E"™ —{0}).

\ }/n.+1 )
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Using condition (3) of Theorem 4.7, namely,

(3) For every p € M, there is some open subset, W C EN, with p € W and a smooth
submersion, f : W — EN"" so that WN M = f~1(0),

with
M=S58" and W =E""!—{0},

we get WNM = S" = f~1(0). So, by Theorem 4.7., S" is indeed an n-manifold in
E"+,
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Example 4.5.

Recall that the orthogonal group, O(n), is the group of all real n x n matrices, R, such
that

RR'=R'R=1
and

det(R) = £1,

and that the rotation group, SO(n) is the subgroup of O(n) consisting of all matrices
in O(n) such that

det(R) = +1.

n-(n—1)
2

The group SO(n) is an ( )—dimensional manifold in R™".
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To see why, recall that
GL"(n) = {A € GL(n) | det(A) > 0}

is an open set of R"". Now, note that ATA — I is a symmetric matrix, for all A &
GL™ (n).

So, let
f:GL"(n) — S(n)
be given by
f(A)=ATA -1,

n(ntl) . :
where S(n) ~ R~ 2 is the vector space consisting of all n x n real symmetric ma-

trices.
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It is easy to show (using directional derivatives) that
(df)a(H) = ATH+ HYA € S(n).

But then, (df) 4 is surjective for all A € SO(n), because if S is any symmetric matrix,

we see that
A T
df(A) (;) = Al (%) — (%) A= %(ATAS+STATA) = %(5 +8)=S.

As SO(n) = f~1(0), we can use condition (3) of Theorem 4.7 again, with W =
GL"(n) and M = SO(n), to conclude that SO(n) is indeed a @-manifold in

2

R™.
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