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Submanifolds embedded in RN

Definition 4.1. Given any integers N, m, with N ≥ m ≥ 1, an m-dimensional smooth
manifold in EN , for short a manifold, is a nonempty subset M of EN such that for every
point p ∈ M, there are two open subsets, Ω ⊆ Em and U ⊆ M, with p ∈ U, and a
smooth function,

ϕ : Ω → EN ,

such that ϕ is a homeomorphism between Ω and U = ϕ(Ω), and (dϕ)t0 is injective,
for

t0 = ϕ−1(p) .
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Submanifolds embedded in RN
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The function
ϕ : Ω → U

is called a (local) parametrization of M at p. If 0m ∈ Ω and ϕ(0m) = p, we say that ϕ is
centered at p.
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Submanifolds embedded in RN

Recall that
M ⊆ EN

is a topological space under the subspace topology, and U is some open subset of M
in the subspace topology, which means that U = M ∩W for some open subset W of
EN .
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Submanifolds embedded in RN

Since ϕ : Ω → U is a homeomorphism, it has an inverse,

ϕ−1 : U → Ω ,

that is also a homeomorphism, called a (local) chart.
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Submanifolds embedded in RN
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Since Ω ⊆ Em, for every p ∈ M and every parametrization ϕ : Ω → U of M at p, we
have

ϕ−1(p) = (z1, . . . , zm) ,

for some zi ∈ E, and we call z1, . . . , zm the local coordinates of p (with respect to ϕ−1).

t0 = (z1, . . . , zm)
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Submanifolds embedded in RN

We often refer to a manifold M without explicitly specifying its dimension (the inte-
ger m).

Intuitively, a chart provides a "flattened" local map of a region on a manifold.
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Submanifolds embedded in RN

Example 4.1.

Every open subset, U, of EN is a manifold in a trivial way. Indeed, we can use the
inclusion map, ϕ : U → EN , where ϕ(p) = p for every p ∈ U, as a parametrization.
Note that, in this case, there is a single parametrization, namely ϕ, for every point p
in U.
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Submanifolds embedded in RN

Example 4.2.

For U an open subset of En and

f : U → Em

the graph of f , Γ( f ), is defined to be the subspace

Γ( f ) = {(x, f (x)) ∈ U ×Em} .
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Submanifolds embedded in RN

If f is smooth, then Γ( f ) is a manifold of dimension n in En+m.

Indeed, if we let
ϕ : U → Γ( f ) and ψ : Γ( f )→ U

such that
ϕ(x) = (x, f (x)) and ψ((x, f (x)) = x ,

then ϕ and ψ are smooth and inverse to each other, and hence they are homeomor-
phisms.
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Submanifolds embedded in RN

The derivative, (dϕ)x, of ϕ at x, which is equal to (idn, (d f )x), is clearly injective. So,

Γ( f )

is a manifold in En+m. That’s why many of the familiar surfaces from calculus, for
instance, an elliptic or a hyperbolic paraboloid, which are graphs of functions, are
manifolds.
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Submanifolds embedded in RN

Example 4.3.

For any two positive integers, m and n, let Mm,n(R) be the vector space of all m× n
matrices.

Since Mm,n(R) is isomorphic to Rmn, we give it the topology of Rmn.

The general linear group, GL(n, R), is by definition the set of matrices

GL(n, R) = {A ∈ Mn(R) | det(A) �= 0} = det−1(R− {0}) .

GL(n, R) is a manifold in Rn2 .
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Submanifolds embedded in RN

Indeed, since the function
det : Mn(R)→ R

is continuous and R− {0} is open in R , and since GL(n, R) is the inverse image of
(the open set) R− {0} under the function det, GL(n, R) is an open set of Mn(R) ≈
Rn2 .

From Example 4.1, we conclude that GL(n, R) is a manifold in Rn2 .

The following two lemmas provide the link with the definition of an abstract mani-
fold:
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Submanifolds embedded in RN

Lemma 4.1. Given an m-dimensional manifold M in EN , for every p ∈ M there
are two open sets O, W ⊆ EN , with 0N ∈ O and p ∈ (M ∩W), and a smooth
diffeomorphism

ϕ : O → W

such that

ϕ(0N) = p and ϕ(O ∩ (Em × {0N−m})) = M ∩W .

EN−m

Em

Em × {0N−m}
O

Ω

M ∩W

W

p
M
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Submanifolds embedded in RN

The next lemma is easily shown from Lemma 4.1. It is a key technical result used
to show that interesting properties of maps between manifolds do not depend on
parametrizations.

Lemma 4.2. Given an m-dimensional manifold M in EN , for every p ∈ M and any
two parametrizations, ϕ1 : Ω1 → U1 and ϕ2 : Ω2 → U2 of M at p, if U1 ∩U2 �= ∅,
the map

ϕ−1
2 ◦ ϕ1 : ϕ−1

1 (U1 ∩U2) → ϕ−1
2 (U1 ∩U2)

is a smooth diffeomorphism.
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Submanifolds embedded in RN

The maps ϕ−1
2 ◦ ϕ1 and ϕ−1

1 ◦ ϕ2 are called transition maps.
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Submanifolds embedded in RN

Using Definition 4.1, it may be quite hard to prove that a space is a manifold. There-
fore, it is handy to have alternate characterizations such as those given in the next
Proposition.

Proposition 4.3. A subset, M ⊆ Em+k, is an m-dimensional manifold if and only if
either

(1) For every p ∈ M, there is some open subset, W ⊆ Em+k, with p ∈ W and a
(smooth) submersion, f : W → Ek, so that W ∩M = f−1(0), or

(2) For every p ∈ M, there is some open subset, W ⊆ Em+k, with p ∈ W and a
(smooth) map, f : W → Ek, so that (d f )p is surjective and W ∩M = f−1(0).
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Submanifolds embedded in RN

Condition (2), although apparently weaker than condition (1), is in fact equivalent to
it.

Consequently, the restriction, f1, of f to W1 is indeed a submersion and

f−1
1 (0) = W1 ∩ f−1(0) = W1 ∩ (W ∩ M) = W1 ∩ M .

The proof is based on two technical lemmas that are proved using the inverse func-
tion theorem.

This is because to say that (d f )p is surjective means that the Jacobian matrix of (d f )p

has rank k, which means that some determinant is nonzero, and because the determi-
nant function is continuous this must hold in some open subset W1 ⊆ W containing
p.
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Submanifolds embedded in RN

Lemma 4.4. Let U ⊆ Em be an open subset of Em and pick some a ∈ U. If

f : U → En

is a smooth immersion at a, i.e., if d fa is injective (and hence, m ≤ n), then there is
an open set, V ⊆ En, with f (a) ∈ V, an open subset, U

� ⊆ U, with a ∈ U
� and

f (U
�) ⊆ V, an open subset O ⊆ En−m, and a diffeomorphism, θ : V → (U

� ×O), so
that

θ( f (x1, . . . , xm)) = (x1, . . . , xm, 0, . . . , 0) ,

for all
(x1, . . . , xm) ∈ U

� .
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Submanifolds embedded in RN
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Submanifolds embedded in RN

Lemma 4.6. Let W ⊆ Em be an open subset of Em and pick some a ∈ W. If

f : W → En

is a smooth submersion at a, i.e., if d fa is surjective (and hence, m ≥ n), then there
is an open set, V ⊆ W ⊆ Em, with a ∈ V, and a diffeomorphism, ψ, with domain
O ⊆ Em, so that

ψ(O) = V and f (ψ(x1, . . . , xm)) = (x1, . . . , xn) ,

for all
(x1, . . . , xm) ∈ O .

.
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Submanifolds embedded in RN

f
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( f ◦ ψ)(x) = (x1, . . . , xn)

x = (x1, . . . , xm)

Using Lemmas 4.5 and 4.6, we can prove the following theorem:
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Submanifolds embedded in RN

Theorem 4.7. A nonempty subset, M ⊆ EN , is an m-manifold (with 1 ≤ m ≤ N) iff
any of the following conditions hold:

(1) For every p ∈ M, there are two open subsets Ω ⊆ Em and U ⊆ M, with p ∈ U,
and a smooth function

ϕ : Ω → EN

such that ϕ is a homeomorphism between Ω and U = ϕ(Ω), and (dϕ)0 is
injective, where

p = ϕ(0) .

(2) For every p ∈ M, there are two open sets O, W ⊆ EN , with 0N ∈ O and
p ∈ (M ∩W), and a smooth diffeomorphism ϕ : O → W, such that ϕ(0N) = p

and
ϕ(O ∩ (Em × {0N−m})) = M ∩W.
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Submanifolds embedded in RN

(3) For every p ∈ M, there is some open subset, W ⊆ EN , with p ∈ W and a
smooth submersion, f : W → EN−m, so that W ∩M = f−1(0).

(4) For every p ∈ M, there is some open subset, W ⊆ EN , with p ∈ W, and N −m
smooth functions, fi : W → E, so that the linear forms (d f1)p, . . . , (d fN−m)p

are linearly independent and

W ∩M = f−1
1 (0) ∩ · · · ∩ f−1

N−m(0).

Condition (4) says that locally (that is, in a small open set of M containing p ∈ M),
M is "cut out" by N −m smooth functions, fi : W → E, in the sense that the portion
of the manifold M ∩W is the intersection of the N − m hypersurfaces, f−1

i (0), (the
zero-level sets of the fi) and that this intersection is "clean", which means that the
linear forms (d f1)p, . . . , (d fN−m)p are linearly independent.
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Submanifolds embedded in RN

Example 4.4.

The sphere
Sn = {x ∈ En+1 | �x�2

2 − 1 = 0}

is an n-dimensional manifold in En+1. Indeed, the map f : En+1 − {0} → E given
by

f (x) = �x�2
2 − 1

is a submersion, since

(d f )x(y) =
�

2x1 2x2 · · · 2xn+1

�
·





y1

y2
...

yn+1




, for all x, y ∈ (En+1 − {0}).



Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 26

Submanifolds embedded in RN

Using condition (3) of Theorem 4.7, namely,

(3) For every p ∈ M, there is some open subset, W ⊆ EN, with p ∈ W and a smooth
submersion, f : W → EN−m, so that W ∩M = f−1(0),

with
M = Sn and W = En+1 − {0} ,

we get W ∩ M = Sn = f−1(0). So, by Theorem 4.7., Sn is indeed an n-manifold in
En+1.
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Submanifolds embedded in RN

Example 4.5.

Recall that the orthogonal group, O(n), is the group of all real n× n matrices, R, such
that

RRT = RTR = I

and
det(R) = ±1 ,

and that the rotation group, SO(n) is the subgroup of O(n) consisting of all matrices
in O(n) such that

det(R) = +1 .

The group SO(n) is an
�

n · (n− 1)
2

�
-dimensional manifold in Rn2 .



Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 28

Submanifolds embedded in RN

To see why, recall that

GL+(n) = {A ∈ GL(n) | det(A) > 0}

is an open set of Rn2 . Now, note that AT A − I is a symmetric matrix, for all A ∈
GL+(n).

So, let
f : GL+(n)→ S(n)

be given by
f (A) = AT A− I ,

where S(n) ≈ R
n(n+1)

2 is the vector space consisting of all n× n real symmetric ma-
trices.
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Submanifolds embedded in RN

It is easy to show (using directional derivatives) that

(d f )A(H) = A
T

H + H
T

A ∈ S(n) .

But then, (d f )A is surjective for all A ∈ SO(n), because if S is any symmetric matrix,
we see that

d f (A)
�

AS

2

�
= A

T
�

AS

2

�
+

�
AS

2

�T
A =

1
2
(A

T
AS + S

T
A

T
A) =

1
2
(S + S) = S .

As SO(n) = f−1(0), we can use condition (3) of Theorem 4.7 again, with W =
GL

+(n) and M = SO(n), to conclude that SO(n) is indeed a n(n−1)
2 -manifold in

Rn2 .


