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CURVES

Parametric curves
Properties of curves can be classified into local properties and global properties.
Local properties are the properties that hold in a small neighborhood of a point on the curve.
For instance, curvature is a local property.

Local properties can be more conveniently studied by assuming that the curve is param-
etrized locally.

A proper study of global properties of curves really requires the introduction of the notion of
a manifold.

We will do that later
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CURVES

Parametric curves

Recall that the Euclidean space E™ is obtained from the vector space R" by defining the stan-
dard inner product

(xlz---/xm) ' (]/1,---,ym) =X1Y1+ -+ XmYm -

The corresponding Euclidean norm is

N(x1,...,xm)|| = \/X%+~~+x%1.

Let £ = [E", for some m > 2. Typically, m =2 or m = 3.
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CURVES

Parametric curves

From a kinematics point of view, a curve can be defined as a continuous map
fila,bl— €&,

from an open interval I =]a,b| of R to the Euclidean space €.

a I b R f(t) z

We can think of the parameter f € |a,b| as time, and the function f gives the position f(¢) of a
moving particle, at time f. The image f(I) C & of the interval I is the trajectory of the particle.
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CURVES

Parametric curves

In fact, only asking that f be continuous turns out to be too liberal, as rather strange curves
turn out to be definable, such as “square-filling curves”, due to Peano, Hilbert, Sierpinski, and
others.

A very pretty square-filling curve due to Hilbert is defined by a sequence (4, ) of polygonal
lines hy, : [0,1] — [0,1] x [0, 1] starting from the simple pattern hg (a "square cap" ') shown on
the left below:
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CURVES

Parametric curves

It can be shown that the sequence (%) converges (pointwise) to a continuous curve
h:1[0,1] — [0,1] x [0,1]

whose trace is the entire square [0, 1] x [0, 1]. Curve h is nowhere differentiable and has infinite
length!
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CURVES

Parametric curves

Actually, there are many fascinating curves that are only continuous, fractal curves being a
major example, but for our purposes, we need the existence of the tangent at every point

(except perhaps for finitely many points).

This leads us to require that
fila,bl— &

be at least continuously differentiable. We also say that f is a C!-function.

However, asking that f : |a, b| — & be a CP-function for p > 1, still allows unwanted curves.
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CURVES

Parametric curves

For example, the plane curve given by

(0, ety ift < 0;
f)=1{ (0,0) if t = 0;
(e71/t,0) ift > 0;

is a C*®-function, but f/(0) = 0, and thus the tangent at the origin is undefined.

What happens is that the curve has a sharp "corner" at the origin.
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CURVES

Parametric curves
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CURVES

Parametric curves

Similarly, the plane curve defined such that

(—el/t, el/tsin(e=1/t)) ift <O
f(t)=< (0,0) if t = 0;
(e71t, e~ Vtsin(el/t)) ift > 0;

is a C®-function, but f/(0) = 0. In this case, the curve oscillates more and more around the
origin.
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CURVES

Parametric curves
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CURVES

Parametric curves

The problem with the above examples is that the origin is a singular point for which f/(0) =0
(a stationary point).

Although it is possible to define the tangent when f is sufficiently differentiable and when for

every t €la, b, f(P)(t) # 0 for some p > 1 (where f(P) denotes the p-th derivative of f), a
systematic study is rather cumbersome.

Thus, we will restrict our attention to curves having only regular points, that is, for which
f'(t) # 0 for every t € ]a, b|.

However, we allow functions f :]a,b[ — & that are not necessarily injective, unless stated
otherwise.

COMPUTATIONAL MANIFOLDS AND APPLICATIONS (CMA) - 2011, IMPA, RIOo DE JANEIRO, RJ, BRAZIL 12



CURVES

Parametric curves

Definition 1.1. An open curve (or open arc) of class CF is a map
fila,bl— &
of class CP, with p > 1, where |a, b[ is an open interval (allowing a = —oco or b = +00). The

set of points
f(Ja, b))

in £ is called the trace of the curve f. A point f(t) is reqular at t € |a,b| iff f'(t) exists and
f'(t) # 0, and stationary otherwise. A regular open curve (or regular open arc) of class CP is an

open curve of class CP, with p > 1, such that every point is regular, i.e., f'(f) # 0 for every
t €la,bl.
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CURVES

Parametric curves

For example, a parabola is defined by the map

£(t) = (2,2,

The trace of this curve corresponding to the interval (—1,1) is shown below:
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CURVES

Parametric curves

The curve defined by
ft)y=(1-#,t1-1))

is known as a nodal cubic.

Zaih

2L
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CURVES

Parametric curves

The curve defined by
ft) = ()

is known as a cuspidal cubic.

2L
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CURVES

Parametric curves

Definition 1.2. A curve (or arc) of class CP is a map
f:lab] =&,
with p > 1, such that the restriction of f to |a,b| is of class C¥, and where
D(2) = 1 (1) O(p) = 1 (1) (4
fa) = lim f() and - fU(b) = lim fE(H)

exist, where 0 < i < p. A reqular curve (or reqular arc) of class CF is a curve of class C?, with
p > 1, such that every point is regular, i.e., f'(¢) # 0 for every t € [a, b]. The set of points

f([a, b))

in &€ is called the trace of the curve f.
It should be noted that even if f is injective, the trace f(I) of f may be self-intersecting.
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CURVES

Parametric curves

Consider the curve f : R — [E? given by,

ﬂﬂ=(?“+ﬂ)“l_9v-

1+t4 7 14t

The trace of this curve is called the lemniscate of Bernoulli, and it has a self-intersection at the
origin.
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CURVES

Parametric curves

The map f is continuous, and in fact bijective, but its inverse f~! is not continuous.

Self-intersection is due to the fact that

lim f(t) = lim f(t) = f(0).

t——o0 t——4oo
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CURVES

Parametric curves

If we consider a curve

f:la,b] =&

and we assume that f is injective on the entire closed interval [a, b], then the trace

f(la,b])
of f has no self-intersection. Such curves are usually called Jordan arcs or simple arcs.

Because [a, b] is compact, f is in fact a homeomorphism between |[a, b] and f([a, b]).

Many fractal curves are only continuous Jordan arcs that are not differentiable.
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CURVES

Parametric curves

It is possible that the trace of a curve be defined by many parameterizations, as illustrated by

the unit circle, which is the trace of the parameterized curves f; :]0,27t[ — &£ (or fi : [0,277] —
&), where
fr(t) = (coskt, sinkt),

with k > 1.

A clean way to handle this phenomenon is to define a notion of geometric arc curve. For our pur-
poses, it suffices to define a notion of change of parameter which does not change the "geometric
shape" of the trace.
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CURVES

Parametric curves

Recall that a diffeomorphism g :|a,b| — |c,d| of class CP from an open interval |a,b| to another
open interval ]c,d| is a bijection, such that both ¢ :]a, b[ — ]c,d[ and its inverse ¢~! :]c,d[ —
la, b| are CP-functions.

This implies that ¢'(¢) # 0 for every t € |a, b] .

Definition 1.3. Two regular curves f :|a,b[ — £ and & : |c,d[ — &£ of class C?, with p > 1, are
CP-equivalent iff there is a diffeomorphism ¢ — |a, b[ — ]c, d| of class C? such that f is equal to
hog.

It is immediately verified that Definition 1.3 yields an equivalence relation on open curves.
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CURVES

Parametric curves

For instance, consider the regular curves f : [—1,1] — £and h : [2,6] — & given by

32— S
f() = (2,2) and  h(s) = <s—4, 84“6).

Note that f = ho g, where g : [—1,1] — [2,6] is the diffeomorphism given by g(r) =2 -r 4 4.

>

R
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CURVES

Parametric curves

Definition 1.4. For any open curve f :|a,b| — & of class CP (or curve f : [a,b] — & of class
CP), with p > 1, given any point My = f(t) on the curve, if f is locally injective at My and for
any point M; = f(t 4+ h) near My, if the line T}, determined by the points My and M; has a
limit T; when h # 0 approaches 0, we say that T; is the tangent line to f in My = f(t) at t.
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CURVES

Parametric curves

For simplicity, we will often say tangent, instead of tangent line.

The definition is simpler when f is a simple curve (there is no danger that M; = My when

h # 0).

The following lemma shows why regular points are important.

Lemma 1.1. For any open curve f :|a, b[ — £ of class CP (or curve f : [a,b] — & of class CP),
with p > 1, given any point My = f(t) on the curve, if My is a regular point at ¢, then the
tangent line to f in M at t exists and is determined by the derivative f'(f) of f at ¢.
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CURVES

Parametric curves

If f/(t) = 0, the above argument breaks down.

However, if f is a CP-function and f(P)(t) # 0 for some p > 2, where p is the smallest integer
with that property, we can show that the line T; ) has the limit determined by Mj, and the
derivative f(P)(t). Thus, the tangent line may still exist at a stationary point.
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CURVES

Parametric curves

For example, the curve f defined by the map t +— (2, t3) is a C®-function, but f'(0) = 0.
Nevertheless, the tangent at the origin is defined for t = 0 (it is the x-axis).
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