Applications of Manifolds and Research Challenges

Luiz Velho
IMPA
Outline

• Concepts
• Illumination
• Appearance
• Simulation
• Faces
• Manifold Learning
• Wrap-up
Manifolds & Parametrization

- Two Points of View
 - Functions on surfaces
 - Functions defining surfaces
Desirable Properties

• Minimal Distortion
 - Angle
 - Area

• Smoothness
 - Differentiability
 - Continuity
Graphical Objects

- **Shape** U
 - Topology (domain)
 - Abstract Manifold
 - Geometry (function)
 - Embedding
- **Attributes** f
 - Functions (co-domain)

$O = (U, f)$
G.O. Manifold Setting

- **Canonical Surfaces**
 - Fixed Shape (defined *apriori*)
 - Variable Functions (complex)
 - ex: *Sphere*
- **Arbitrary Surfaces**
 - Complex Shape
 - Computation on Surfaces (attributes)
 - Building / Transforming (shape)
 - ex: *Triangle Meshes*
Applications

• Illumination
 - Canonical Manifold + Functions
• Appearance and Simulation
 - Pseudo-Manifold + Attributes
• Faces
 - Manifold + Geometric Deformation
• Surface Reconstruction
 - Pseudo-Manifold / Topology Estimation
The Sphere

- Construction [Grimm 2002]

Chart (squares), edge, and

Top cap

Bottom cap

A single chart on the sphere

Bdry path

Defining chart connectivity
Illumination

• Functions on the Sphere
 - Light Fields / BRDFs
• Applications
 - Capture / Synthesis
Illumination Maps

• Environment Maps
 - Area Sampling

• Light Maps
 - Stratification
Material Properties

- Spatially Varying BRDFs
Spherical Panoramas

- Panoramic Cameras
 - Processing

- Multi-Camera Assembly
 - Stitching / Blending
Omnidirectional Images

• Processing Large Spherical Imagery
 - Example: Sharpening

Obs: Metric Aware Operators
Polygonal Surfaces

- Building from Images

- Projective Map
Surface Properties

- Texture Atlas
 - Albedo
 - Normal Field
 - etc...
Painting

- Editing Ops
 - Color
 - Normals
Solving Equations on Manifolds

- Global Structure
 - Surface Points
 - Local Neighborhoods
Simulation

- Metric Aware Operators

\[F_A(\theta, \varphi) \xrightarrow{\Phi(\theta, \varphi)} \tilde{F}_A = F_A \circ \Phi^{-1} \]

\[F_B(\theta, \varphi) \xrightarrow{\Phi(\theta, \varphi)} \tilde{F}_B = F_B \circ \Phi^{-1} \]

\[F_C(\theta, \varphi) \xrightarrow{\Phi(\theta, \varphi)} \tilde{F}_C = F_C \circ \Phi^{-1} \]
Fluids

- Vector Fields on Surfaces
Biological Processes

• Reaction Diffusion

• Examples:
Texture Synthesis

- Stationary / Quasi Stationary
Faces

- Geometry + Appearance

[G. Borshukov et al SIGGRAPH 2003]
Facial Expressions

- Deformations
Manifold Learning

- Estimate from Data Samples
 - Topology
 - Geometry
Surfaces

- Point Sets
N-Dimensional Case

- ex: Facial Expressions
Multiresolution

- Manifold T-Spline (Gu, et al)
Adaptation

• Hierarchical Surface Reconstruction
Challenges

• Representation
 - Simple / Emcompassing

• Operators
 - Efficient / Accurate

• Multi-Resolution
 - Hierarchical Atlas / Dynamic Setting

• API
 - Intuitive / General
Questions ?