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Chapter 1

Group Representations

1.1 Group Actions and Homogeneous Spaces

If X is a set (usually, some kind of geometric space, for example, the sphere in R3, the upper
half-plane, etc.), the “symmetries” of X are often captured by the action of a group, G, on
X. In fact, if G is a Lie group and the action satisfies some simple properties, the set X
can be given a manifold structure which makes it a projection (quotient) of G, a so-called
“homogeneous space”.

Definition 1.1. Given a set, X, and a group, G, a left action of G on X (for short, an
action of G on X) is a function, ϕ : G×X → X, such that

(1) For all g, h ∈ G and all x ∈ X,

ϕ(g, ϕ(h, x)) = ϕ(gh, x),

(2) For all x ∈ X,
ϕ(1, x) = x,

where 1 ∈ G is the identity element of G.

To alleviate the notation, we usually write g · x or even gx for ϕ(g, x), in which case, the
above axioms read:

(1) For all g, h ∈ G and all x ∈ X,

g · (h · x) = gh · x,

(2) For all x ∈ X,
1 · x = x.

The set X is called a (left) G-set . The action ϕ is faithful or effective iff for every g, if
g · x = x for all x ∈ X, then g = 1; the action ϕ is transitive iff for any two elements
x, y ∈ X, there is some g ∈ G so that g · x = y.

5



6 CHAPTER 1. GROUP REPRESENTATIONS

Given an action, ϕ : G × X → X, for every g ∈ G, we have a function, ϕg : X → X,
defined by

ϕg(x) = g · x, for all x ∈ X.
Observe that ϕg has ϕg−1 as inverse, since

ϕg−1(ϕg(x)) = ϕg−1(g · x) = g−1 · (g · x) = (g−1g) · x = 1 · x = x,

and similarly, ϕg ◦ ϕg−1 = id. Therefore, ϕg is a bijection of X, i.e., a permutation of X.
Moreover, we check immediately that

ϕg ◦ ϕh = ϕgh,

so, the map g 7→ ϕg is a group homomorphism from G to SX , the group of permutations of
X. With a slight abuse of notation, this group homomorphism G −→ SX is also denoted ϕ.

Conversely, it is easy to see that any group homomorphism, ϕ : G→ SX , yields a group
action, · : G×X −→ X, by setting

g · x = ϕ(g)(x).

Observe that an action, ϕ, is faithful iff the group homomorphism, ϕ : G→ SX , is injective.
Also, we have g · x = y iff g−1 · y = x, since (gh) · x = g · (h · x) and 1 · x = x, for all g, h ∈ G
and all x ∈ X.

Definition 1.2. Given twoG-sets, X and Y , a function, f : X → Y , is said to be equivariant ,
or a G-map iff for all x ∈ X and all g ∈ G, we have

f(g · x) = g · f(x).

Remark: We can also define a right action, · : X ×G→ X, of a group G on a set X, as a
map satisfying the conditions

(1) For all g, h ∈ G and all x ∈ X,

(x · g) · h = x · gh,

(2) For all x ∈ X,
x · 1 = x.

Every notion defined for left actions is also defined for right actions, in the obvious way.

Here are some examples of (left) group actions.

Example 1: The unit sphere S2 (more generally, Sn−1).

Recall that for any n ≥ 1, the (real) unit sphere, Sn−1, is the set of points in Rn given by

Sn−1 = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n = 1}.
In particular, S2 is the usual sphere in R3. Since the group SO(3) = SO(3,R) consists of
(orientation preserving) linear isometries, i.e., linear maps that are distance preserving (and
of determinant +1), and every linear map leaves the origin fixed, we see that any rotation
maps S2 into itself.
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� Beware that this would be false if we considered the group of affine isometries, SE(3), of
E3. For example, a screw motion does not map S2 into itself, even though it is distance

preserving, because the origin is translated.

Thus, we have an action, · : SO(3)× S2 → S2, given by

R · x = Rx.

The verification that the above is indeed an action is trivial. This action is transitive.
This is because, for any two points x, y on the sphere S2, there is a rotation whose axis is
perpendicular to the plane containing x, y and the center, O, of the sphere (this plane is not
unique when x and y are antipodal, i.e., on a diameter) mapping x to y.

Similarly, for any n ≥ 1, we get an action, · : SO(n) × Sn−1 → Sn−1. It is easy to show
that this action is transitive.

Analogously, we can define the (complex) unit sphere, Σn−1, as the set of points in Cn

given by
Σn−1 = {(z1, . . . , zn) ∈ Cn | z1z1 + · · ·+ znzn = 1}.

If we write zj = xj + iyj, with xj, yj ∈ R, then

Σn−1 = {(x1, . . . , xn, y1, . . . , yn) ∈ R2n | x2
1 + · · ·+ x2

n + y2
1 + · · ·+ y2

n = 1}.

Therefore, we can view the complex sphere, Σn−1 (in Cn), as the real sphere, S2n−1 (in R2n).
By analogy with the real case, we can define an action, · : SU(n) × Σn−1 → Σn−1, of the
group, SU(n), of linear maps of Cn preserving the hermitian inner product (and the origin,
as all linear maps do) and this action is transitive.

� One should not confuse the unit sphere, Σn−1, with the hypersurface, Sn−1
C , given by

Sn−1
C = {(z1, . . . , zn) ∈ Cn | z2

1 + · · ·+ z2
n = 1}.

For instance, one should check that a line, L, through the origin intersects Σn−1 in a circle,
whereas it intersects Sn−1

C in exactly two points!

Example 2: The upper half-plane.

The upper half-plane, H, is the open subset of R2 consisting of all points, (x, y) ∈ R2,
with y > 0. It is convenient to identify H with the set of complex numbers, z ∈ C, such
that = z > 0. Then, we can define an action, · : SL(2,R) ×H → H, of the group SL(2,R)
on H, as follows: For any z ∈ H, for any A ∈ SL(2,R),

A · z =
az + b

cz + d
,

where

A =

(
a b
c d

)
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with ad− bc = 1. It is easily verified that A · z is indeed always well defined and in H when
z ∈ H. This action is transitive (check this).

Maps of the form

z 7→ az + b

cz + d
,

where z ∈ C and ad− bc = 1, are called Möbius transformations . Here, a, b, c, d ∈ R, but in
general, we allow a, b, c, d ∈ C. Actually, these transformations are not necessarily defined
everywhere on C, for example, for z = −d/c if c 6= 0. To fix this problem, we add a “point
at infinity”,∞, to C and define Möbius transformations as functions C∪{∞} −→ C∪{∞}.
If c = 0, the Möbius transformation sends ∞ to itself, otherwise, −d/c 7→ ∞ and ∞ 7→ a/c.
The space C∪{∞} can be viewed as the plane, R2, extended with a point at infinity. Using
a stereographic projection from the sphere S2 to the plane, (say from the north pole to the
equatorial plane), we see that there is a bijection between the sphere, S2, and C∪{∞}. More
precisely, the stereographic projection of the sphere S2 from the north pole, N = (0, 0, 1), to
the plane z = 0 (extended with the point at infinity, ∞) is given by

(x, y, z) ∈ S2 − {(0, 0, 1)} 7→
(

x

1− z ,
y

1− z

)
=
x+ iy

1− z ∈ C, with (0, 0, 1) 7→ ∞.

The inverse stereographic projection is given by

(x, y) 7→
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
, with ∞ 7→ (0, 0, 1).

Intuitively, the inverse stereographic projection “wraps” the equatorial plane around the
sphere. The space C ∪ {∞} is known as the Riemann sphere. We will see shortly that
C ∪ {∞} ∼= S2 is also the complex projective line, CP1. In summary, Möbius transforma-
tions are bijections of the Riemann sphere. It is easy to check that these transformations
form a group under composition for all a, b, c, d ∈ C, with ad − bc = 1. This is the Möbius
group, denoted Möb+. The Möbius transformations corresponding to the case a, b, c, d ∈ R,
with ad − bc = 1 form a subgroup of Möb+ denoted Möb+

R . The map from SL(2,C) to
Möb+ that sends A ∈ SL(2,C) to the corresponding Möbius transformation is a surjec-
tive group homomorphism and one checks easily that its kernel is {−I, I} (where I is the
2 × 2 identity matrix). Therefore, the Möbius group Möb+ is isomorphic to the quotient
group SL(2,C)/{−I, I}, denoted PSL(2,C). This latter group turns out to be the group of
projective transformations of the projective space CP1. The same reasoning shows that the
subgroup Möb+

R is isomorphic to SL(2,R)/{−I, I}, denoted PSL(2,R).

The group SL(2,C) acts on C ∪ {∞} ∼= S2 the same way that SL(2,R) acts on H,
namely: For any A ∈ SL(2,C), for any z ∈ C ∪ {∞},

A · z =
az + b

cz + d
,
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where

A =

(
a b
c d

)
with ad− bc = 1.

This action is clearly transitive.

Example 3: The set of n× n symmetric, positive, definite matrices, SPD(n).

The group GL(n) = GL(n,R) acts on SPD(n) as follows: For all A ∈ GL(n) and all
S ∈ SPD(n),

A · S = ASA>.

It is easily checked that ASA> is in SPD(n) if S is in SPD(n). This action is transitive
because every SPD matrix, S, can be written as S = AA>, for some invertible matrix, A
(prove this as an exercise).

Example 4: The projective spaces RPn and CPn.

The (real) projective space, RPn, is the set of all lines through the origin in Rn+1, i.e., the
set of one-dimensional subspaces of Rn+1 (where n ≥ 0). Since a one-dimensional subspace,
L ⊆ Rn+1, is spanned by any nonzero vector, u ∈ L, we can view RPn as the set of equivalence
classes of nonzero vectors in Rn+1 − {0} modulo the equivalence relation,

u ∼ v iff v = λu, for some λ ∈ R, λ 6= 0.

In terms of this definition, there is a projection, pr : (Rn+1 − {0})→ RPn, given by pr(u) =
[u]∼, the equivalence class of u modulo ∼. Write [u] for the line defined by the nonzero
vector, u. Since every line, L, in Rn+1 intersects the sphere Sn in two antipodal points, we
can view RPn as the quotient of the sphere Sn by identification of antipodal points. We
write

Sn/{I,−I} ∼= RPn.

We define an action of SO(n + 1) on RPn as follows: For any line, L = [u], for any
R ∈ SO(n+ 1),

R · L = [Ru].

Since R is linear, the line [Ru] is well defined, i.e., does not depend on the choice of u ∈ L.
It is clear that this action is transitive.

The (complex) projective space, CPn, is defined analogously as the set of all lines through
the origin in Cn+1, i.e., the set of one-dimensional subspaces of Cn+1 (where n ≥ 0). This
time, we can view CPn as the set of equivalence classes of vectors in Cn+1−{0} modulo the
equivalence relation,

u ∼ v iff v = λu, for some λ 6= 0 ∈ C.

We have the projection, pr : Cn+1−{0} → CPn, given by pr(u) = [u]∼, the equivalence class
of u modulo ∼. Again, write [u] for the line defined by the nonzero vector, u.
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Recall that Σn ⊆ Cn+1, the unit sphere in Cn+1, is defined by

Σn = {(z1, . . . , zn+1) ∈ Cn+1 | z1z1 + · · ·+ zn+1zn+1 = 1}.

For any line, L = [u], where u ∈ Cn+1 is a nonzero vector, writing u = (u1, . . . , un+1), a point
z ∈ Cn+1 belongs to L iff z = λ(u1, . . . , un+1), for some λ ∈ C. Therefore, the intersection,
L ∩ Σn, of the line L and the sphere Σn is given by

L ∩ Σn = {λ(u1, . . . , un+1) ∈ Cn+1 | λ ∈ C, λλ(u1u1 + · · ·+ un+1un+1) = 1},

i.e.,

L ∩ Σn =

{
λ(u1, . . . , un+1) ∈ Cn+1

∣∣∣∣∣ λ ∈ C, |λ| = 1√
|u1|2 + · · ·+ |un+1|2

}
.

Thus, we see that there is a bijection between L ∩ Σn and the circle, S1, i.e., geometrically,
L ∩Σn is a circle. Moreover, since any line, L, through the origin is determined by just one
other point, we see that for any two lines L1 and L2 through the origin,

L1 6= L2 iff (L1 ∩ Σn) ∩ (L2 ∩ Σn) = ∅.

However, Σn is the sphere S2n+1 in R2n+2. It follows that CPn is the quotient of S2n+1 by
the equivalence relation, ∼, defined such that

y ∼ z iff y, z ∈ L ∩ Σn, for some line, L, through the origin.

Therefore, we can write

S2n+1/S1 ∼= CPn.

Observe that CPn can also be viewed as the orbit space of the action, · : S1×S2n+1 → S2n+1,
given by

λ · (z1, . . . , zn+1) = (λz1, . . . , λzn+1),

where S1 = U(1) (the group of complex numbers of modulus 1) and S2n+1 is identified with
Σn. The case n = 1 is particularly interesting, as it turns out that

S3/S1 ∼= S2.

This is the famous Hopf fibration. To show this, proceed as follows: As

S3 ∼= Σ1 = {(z, z′) ∈ C2 | |z|2 + |z′|2 = 1},

define a map, HF: S3 → S2, by

HF((z, z′)) = (2zz′, |z|2 − |z′|2).
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We leave as a homework exercise to prove that this map has range S2 and that

HF((z1, z
′
1)) = HF((z2, z

′
2)) iff (z1, z

′
1) = λ(z2, z

′
2), for some λ with |λ| = 1.

In other words, for any point, p ∈ S2, the inverse image, HF−1(p) (also called fibre over
p), is a circle on S3. Consequently, S3 can be viewed as the union of a family of disjoint
circles. This is the Hopf fibration. It is possible to visualize the Hopf fibration using the
stereographic projection from S3 onto R3. This is a beautiful and puzzling picture. For
example, see Berger [1]. Therefore, HF induces a bijection from CP1 to S2, and it is a
homeomorphism.

We define an action of SU(n + 1) on CPn as follows: For any line, L = [u], for any
R ∈ SU(n+ 1),

R · L = [Ru].

Again, this action is well defined and it is transitive.

Example 5: Affine spaces.

If E is any (real) vector space and X is any set, a transitive and faithful action,
· : E×X → X, of the additive group of E on X makes X into an affine space. The intuition
is that the members of E are translations.

Those familiar with affine spaces as in Gallier [6] (Chapter 2) or Berger [1] will point out
that if X is an affine space, then, not only is the action of E on X transitive, but more is
true: For any two points, a, b ∈ E, there is a unique vector, u ∈ E, such that u · a = b.
By the way, the action of E on X is usually considered to be a right action and is written
additively, so u · a is written a + u (the result of translating a by u). Thus, it would seem
that we have to require more of our action. However, this is not necessary because E (under
addition) is abelian. More precisely, we have the proposition

Proposition 1.1. If G is an abelian group acting on a set X and the action · : G×X → X
is transitive and faithful, then for any two elements x, y ∈ X, there is a unique g ∈ G so
that g · x = y (the action is simply transitive).

Proof. Since our action is transitive, there is at least some g ∈ G so that g · x = y. Assume
that we have g1, g2 ∈ G with

g1 · x = g2 · x = y.

We shall prove that, actually,

g1 · z = g2 · z, for all z ∈ X.

As our action is faithful we must have g1 = g2, and this proves our proposition.



12 CHAPTER 1. GROUP REPRESENTATIONS

Pick any z ∈ X. As our action is transitive, there is some h ∈ G so that z = h · x. Then,
we have

g1 · z = g1 · (h · x)

= (g1h) · x
= (hg1) · x (since G is abelian)

= h · (g1 · x)

= h · (g2 · x) (since g1 · x = g2 · x)

= (hg2) · x
= (g2h) · x (since G is abelian)

= g2 · (h · x)

= g2 · z.

Therefore, g1 · z = g2 · z, for all z ∈ X, as claimed.

More examples will be considered later.

The subset of group elements that leave some given element x ∈ X fixed plays an impor-
tant role.

Definition 1.3. Given an action, · : G×X → X, of a group G on a set X, for any x ∈ X,
the group Gx (also denoted StabG(x)), called the stabilizer of x or isotropy group at x is
given by

Gx = {g ∈ G | g · x = x}.

We have to verify that Gx is indeed a subgroup of G, but this is easy. Indeed, if g ·x = x
and h · x = x, then we also have h−1 · x = x and so, we get gh−1 · x = x, proving that Gx is
a subgroup of G. In general, Gx is not a normal subgroup.

Observe that

Gg·x = gGxg
−1,

for all g ∈ G and all x ∈ X.

Indeed,

Gg·x = {h ∈ G | h · (g · x) = g · x}
= {h ∈ G | hg · x = g · x}
= {h ∈ G | g−1hg · x = x}
= gGxg

−1.

Therefore, the stabilizers of x and g · x are conjugate of each other.
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When the action of G on X is transitive, for any fixed x ∈ G, the set X is a quotient (as
set, not as group) of G by Gx. Indeed, we can define the map, πx : G→ X, by

πx(g) = g · x, for all g ∈ G.

Observe that
πx(gGx) = (gGx) · x = g · (Gx · x) = g · x = πx(g).

This shows that πx : G → X induces a quotient map, πx : G/Gx → X, from the set, G/Gx,
of (left) cosets of Gx to X, defined by

πx(gGx) = g · x.

Since

πx(g) = πx(h) iff g · x = h · x iff g−1h · x = x iff g−1h ∈ Gx iff gGx = hGx,

we deduce that πx : G/Gx → X is injective. However, since our action is transitive, for every
y ∈ X, there is some g ∈ G so that g · x = y and so, πx(gGx) = g · x = y, i.e., the map πx is
also surjective. Therefore, the map πx : G/Gx → X is a bijection (of sets, not groups). The
map πx : G→ X is also surjective. Let us record this important fact as

Proposition 1.2. If · : G×X → X is a transitive action of a group G on a set X, for every
fixed x ∈ X, the surjection, π : G→ X, given by

π(g) = g · x

induces a bijection
π : G/Gx → X,

where Gx is the stabilizer of x.

The map π : G → X (corresponding to a fixed x ∈ X) is sometimes called a projection
of G onto X. Proposition 1.2 shows that for every y ∈ X, the subset, π−1(y), of G (called
the fibre above y) is equal to some coset, gGx, of G and thus, is in bijection with the group
Gx itself. We can think of G as a moving family of fibres, Gx, parametrized by X. This
point of view of viewing a space as a moving family of simpler spaces is typical in (algebraic)
geometry, and underlies the notion of (principal) fibre bundle.

Note that if the action · : G×X → X is transitive, then the stabilizers Gx and Gy of any
two elements x, y ∈ X are isomorphic, as they as conjugates. Thus, in this case, it is enough
to compute one of these stabilizers for a “convenient” x.

As the situation of Proposition 1.2 is of particular interest, we make the following defi-
nition:

Definition 1.4. A set, X, is said to be a homogeneous space if there is a transitive action,
· : G×X → X, of some group, G, on X.
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We see that all the spaces of Example 1–5 are homogeneous spaces. Another example
that will play an important role when we deal with Lie groups is the situation where we have
a group, G, a subgroup, H, of G (not necessarily normal) and where X = G/H, the set of
left cosets of G modulo H. The group G acts on G/H by left multiplication:

a · (gH) = (ag)H,

where a, g ∈ G. This action is clearly transitive and one checks that the stabilizer of gH is
gHg−1. If G is a topological group and H is a closed subgroup of G it turns out that G/H
is Hausdorff (Recall that a topological space, X, is Hausdorff iff for any two distinct points
x 6= y ∈ X, there exists two disjoint open subsets, U and V , with x ∈ U and y ∈ V .) If G is
a Lie group, we obtain a manifold.

� Even if G and X are topological spaces and the action, · : G × X → X, is continuous,
the space G/Gx under the quotient topology is, in general, not homeomorphic to X.

We will give later sufficient conditions that insure that X is indeed a topological space
or even a manifold. In particular, X will be a manifold when G is a Lie group.

In general, an action · : G × X → X is not transitive on X, but for every x ∈ X, it is
transitive on the set

O(x) = G · x = {g · x | g ∈ G}.
Such a set is called the orbit of x. The orbits are the equivalence classes of the following
equivalence relation:

Definition 1.5. Given an action, · : G×X → X, of some group, G, on X, the equivalence
relation, ∼, on X is defined so that, for all x, y ∈ X,

x ∼ y iff y = g · x, for some g ∈ G.

For every x ∈ X, the equivalence class of x is the orbit of x, denoted O(x) or OrbG(x), with

O(x) = {g · x | g ∈ G}.

The set of orbits is denoted X/G.

The orbit space, X/G, is obtained from X by an identification (or merging) process: For
every orbit, all points in that orbit are merged into a single point. For example, if X = S2

and G is the group consisting of the restrictions of the two linear maps I and −I of R3 to
S2 (where −I(x, y, z) = (−x,−y,−z)), then

X/G = S2/{I,−I} ∼= RP2.

Many manifolds can be obtained in this fashion, including the torus, the Klein bottle, the
Möbius band, etc.
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π s

X/G

X

O(g) O(h)

h

Figure 1.1: The set X as a fibre bundle, and a section

The space X can be viewed as a family of fibres (a fibre bundle) over the set of orbits
X/G, each fibre being an orbit O(g). If π : X → X/G is the projection function, then for
every orbit a = O(g) considered as a point of X/G, the fibre π−1(a) = O(g) is the whole
orbit of g; see Figure 1.1. A section of X is a way of picking some element in each orbit,
namely a function s : X/G→ X such that π ◦ s = id.

Since the action of G is transitive on O(x), by Proposition 1.2, we see that for every
x ∈ X, we have a bijection

O(x) ∼= G/Gx.

As a corollary, if both X and G are finite, for any set, A ⊆ X, of representatives from
every orbit, we have the orbit formula:

|X| =
∑

a∈A
[G : Gx] =

∑

a∈A
|G|/|Gx|.

Even if a group action, · : G ×X → X, is not transitive, when X is a manifold, we can
consider the set of orbits, X/G, and if the action of G on X satisfies certain conditions,
X/G is actually a manifold. Manifolds arising in this fashion are often called orbifolds . In
summary, we see that manifolds arise in at least two ways from a group action:

(1) As homogeneous spaces, G/Gx, if the action is transitive.

(2) As orbifolds, X/G.

Of course, in both cases, the action must satisfy some additional properties.

Let us now determine some stabilizers for the actions of Examples 1–4, and for more
examples of homogeneous spaces.

(a) Consider the action, · : SO(n)× Sn−1 → Sn−1, of SO(n) on the sphere Sn−1 (n ≥ 1)
defined in Example 1. Since this action is transitive, we can determine the stabilizer of any
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convenient element of Sn−1, say e1 = (1, 0, . . . , 0). In order for any R ∈ SO(n) to leave e1

fixed, the first column of R must be e1, so R is an orthogonal matrix of the form

R =

(
1 U
0 S

)
, with det(S) = 1.

As the rows of R must be unit vector, we see that U = 0 and S ∈ SO(n − 1). Therefore,
the stabilizer of e1 is isomorphic to SO(n− 1), and we deduce the bijection

SO(n)/SO(n− 1) ∼= Sn−1.

� Strictly speaking, SO(n − 1) is not a subgroup of SO(n) and in all rigor, we should

consider the subgroup, S̃O(n− 1), of SO(n) consisting of all matrices of the form

(
1 0
0 S

)
, with det(S) = 1

and write
SO(n)/S̃O(n− 1) ∼= Sn−1.

However, it is common practice to identify SO(n− 1) with S̃O(n− 1).

When n = 2, as SO(1) = {1}, we find that SO(2) ∼= S1, a circle, a fact that we already
knew. When n = 3, we find that SO(3)/SO(2) ∼= S2. This says that SO(3) is somehow the
result of glueing circles to the surface of a sphere (in R3), in such a way that these circles do
not intersect. This is hard to visualize!

A similar argument for the complex unit sphere, Σn−1, shows that

SU(n)/SU(n− 1) ∼= Σn−1 ∼= S2n−1.

Again, we identify SU(n− 1) with a subgroup of SU(n), as in the real case. In particular,
when n = 2, as SU(1) = {1}, we find that

SU(2) ∼= S3,

i.e., the group SU(2) is topologically the sphere S3! Actually, this is not surprising if we
remember that SU(2) is in fact the group of unit quaternions.

(b) We saw in Example 2 that the action, · : SL(2,R)×H → H, of the group SL(2,R)
on the upper half plane is transitive. Let us find out what the stabilizer of z = i is. We
should have

ai+ b

ci+ d
= i,

that is, ai+ b = −c+ di, i.e.,
(d− a)i = b+ c.
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Since a, b, c, d are real, we must have d = a and b = −c. Moreover, ad − bc = 1, so we get
a2 + b2 = 1. We conclude that a matrix in SL(2,R) fixes i iff it is of the form

(
a −b
b a

)
, with a2 + b2 = 1.

Clearly, these are the rotation matrices in SO(2) and so, the stabilizer of i is SO(2). We
conclude that

SL(2,R)/SO(2) ∼= H.

This time, we can view SL(2,R) as the result of gluing circles to the upper half plane. This
is not so easy to visualize. There is a better way to visualize the topology of SL(2,R) by
making it act on the open disk, D.

Now, consider the action of SL(2,C) on C ∪ {∞} ∼= S2. As it is transitive, let us find
the stabilizer of z = 0. We must have

b

d
= 0,

and as ad−bc = 1, we must have b = 0 and ad = 1. Thus, the stabilizer of 0 is the subgroup,
SL(2,C)0, of SL(2,C) consisting of all matrices of the form

(
a 0
c a−1

)
, where a ∈ C− {0} and c ∈ C.

We get
SL(2,C)/SL(2,C)0

∼= C ∪ {∞} ∼= S2,

but this is not very illuminating.

(c) In Example 3, we considered the action, · : GL(n)× SPD(n)→ SPD(n), of GL(n)
on SPD(n), the set of symmetric positive definite matrices. As this action is transitive, let
us find the stabilizer of I. For any A ∈ GL(n), the matrix A stabilizes I iff

AIA> = AA> = I.

Therefore, the stabilizer of I is O(n) and we find that

GL(n)/O(n) = SPD(n).

Observe that if GL+(n) denotes the subgroup of GL(n) consisting of all matrices with
a strictly positive determinant, then we have an action · : GL+(n)×SPD(n)→ SPD(n) of
GL+(n) on SPD(n). This action is transtive and we find that the stabilizer of I is SO(n);
consequently, we get

GL+(n)/SO(n) = SPD(n).

(d) In Example 4, we considered the action, · : SO(n + 1) × RPn → RPn, of SO(n + 1)
on the (real) projective space, RPn. As this action is transitive, let us find the stabilizer of
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the line, L = [e1], where e1 = (1, 0, . . . , 0). For any R ∈ SO(n + 1), the line L is fixed iff
either R(e1) = e1 or R(e1) = −e1, since e1 and −e1 define the same line. As R is orthogonal
with det(R) = 1, this means that R is of the form

R =

(
α 0
0 S

)
, with α = ±1 and det(S) = α.

But, S must be orthogonal, so we conclude S ∈ O(n). Therefore, the stabilizer of L = [e1]
is isomorphic to the group O(n) and we find that

SO(n+ 1)/O(n) ∼= RPn.

� Strictly speaking, O(n) is not a subgroup of SO(n+ 1), so the above equation does not
make sense. We should write

SO(n+ 1)/Õ(n) ∼= RPn,

where Õ(n) is the subgroup of SO(n+ 1) consisting of all matrices of the form

(
α 0
0 S

)
, with S ∈ O(n), α = ±1 and det(S) = α.

However, the common practice is to write O(n) instead of Õ(n).

We should mention that RP3 and SO(3) are homeomorphic spaces. This is shown using
the quaternions, for example, see Gallier [6], Chapter 8.

A similar argument applies to the action, · : SU(n + 1)× CPn → CPn, of SU(n + 1) on
the (complex) projective space, CPn. We find that

SU(n+ 1)/U(n) ∼= CPn.

Again, the above is a bit sloppy as U(n) is not a subgroup of SU(n + 1). To be rigorous,

we should use the subgroup, Ũ(n), consisting of all matrices of the form

(
α 0
0 S

)
, with S ∈ U(n), |α| = 1 and det(S) = α.

The common practice is to write U(n) instead of Ũ(n). In particular, when n = 1, we find
that

SU(2)/U(1) ∼= CP1.

But, we know that SU(2) ∼= S3 and, clearly, U(1) ∼= S1. So, again, we find that S3/S1 ∼= CP1

(but we know, more, namely, S3/S1 ∼= S2 ∼= CP1.)

(e) We now consider a generalization of projective spaces (real and complex). First,
consider the real case. Given any n ≥ 1, for any k, with 0 ≤ k ≤ n, let G(k, n) be the
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set of all linear k-dimensional subspaces of Rn (also called k-planes). Any k-dimensional
subspace, U , of R is spanned by k linearly independent vectors, u1, . . . , uk, in Rn; write
U = span(u1, . . . , uk). We can define an action, · : O(n)×G(k, n)→ G(k, n), as follows: For
any R ∈ O(n), for any U = span(u1, . . . , uk), let

R · U = span(Ru1, . . . , Ruk).

We have to check that the above is well defined. If U = span(v1, . . . , vk) for any other k
linearly independent vectors, v1, . . . , vk, we have

vi =
k∑

j=1

aijuj, 1 ≤ i ≤ k,

for some aij ∈ R, and so,

Rvi =
k∑

j=1

aijRuj, 1 ≤ i ≤ k,

which shows that

span(Ru1, . . . , Ruk) = span(Rv1, . . . , Rvk),

i.e., the above action is well defined. This action is transitive. This is because if U and V are
any two k-planes, we may assume that U = span(u1, . . . , uk) and V = span(v1, . . . , vk), where
the ui’s form an orthonormal family and similarly for the vi’s. Then, we can extend these
families to orthonormal bases (u1, . . . , un) and (v1, . . . , vn) or Rn, and w.r.t. the orthonormal
basis (u1, . . . , un), the matrix of the linear map sending ui to vi is orthogonal. Thus, it is
enough to find the stabilizer of any k-plane. Pick U = span(e1, . . . , ek), where (e1, . . . , en)
is the canonical basis of Rn (i.e., ei = (0, . . . , 0, 1, 0, . . . , 0), with the 1 in the ith position).
Now, any R ∈ O(n) stabilizes U iff R maps e1, . . . , ek to k linearly independent vectors in
the subspace U = span(e1, . . . , ek), i.e., R is of the form

R =

(
S 0
0 T

)
,

where S is k × k and T is (n − k) × (n − k). Moreover, as R is orthogonal, S and T must
be orthogonal, i.e., S ∈ O(k) and T ∈ O(n − k). We deduce that the stabilizer of U is
isomorphic to O(k)×O(n− k) and we find that

O(n)/(O(k)×O(n− k)) ∼= G(k, n).

It turns out that this makes G(k, n) into a smooth manifold of dimension k(n− k) called a
Grassmannian.

The restriction of the action of O(n) on G(k, n) to SO(n) yields an action, · : SO(n) ×
G(k, n) → G(k, n), of SO(n) on G(k, n). Then, it is easy to see that the stabilizer of the
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subspace U is isomorphic to the subgroup, S(O(k)×O(n− k)), of SO(n) consisting of the
rotations of the form

R =

(
S 0
0 T

)
,

with S ∈ O(k), T ∈ O(n− k) and det(S) det(T ) = 1. Thus, we also have

SO(n)/S(O(k)×O(n− k)) ∼= G(k, n).

If we recall the projection pr : Rn+1 − {0} → RPn, by definition, a k-plane in RPn is the
image under pr of any (k + 1)-plane in Rn+1. So, for example, a line in RPn is the image
of a 2-plane in Rn+1, and a hyperplane in RPn is the image of a hyperplane in Rn+1. The
advantage of this point of view is that the k-planes in RPn are arbitrary, i.e., they do not
have to go through “the origin” (which does not make sense, anyway!). Then, we see that
we can interpret the Grassmannian, G(k + 1, n + 1), as a space of “parameters” for the
k-planes in RPn. For example, G(2, n+ 1) parametrizes the lines in RPn. In this viewpoint,
G(k + 1, n+ 1) is usually denoted G(k, n).

It can be proved (using some exterior algebra) that G(k, n) can be embedded in RP(nk)−1.
Much more is true. For example, G(k, n) is a projective variety, which means that it can be

defined as a subset of RP(nk)−1 equal to the zero locus of a set of homogeneous equations.
There is even a set of quadratic equations, known as the Plücker equations , defining G(k, n).
In particular, when n = 4 and k = 2, we have G(2, 4) ⊆ RP5 and G(2, 4) is defined by
a single equation of degree 2. The Grassmannian G(2, 4) = G(1, 3) is known as the Klein
quadric. This hypersurface in RP5 parametrizes the lines in RP3.

Complex Grassmannians are defined in a similar way, by replacing R by C and O(n) by
U(n) throughout. The complex Grassmannian, GC(k, n), is a complex manifold as well as a
real manifold and we have

U(n)/(U(k)×U(n− k)) ∼= GC(k, n).

As in the case of the real Grassmannians, the action of U(n) on GC(k, n) yields an action of
SU(n) on GC(k, n) and we get

SU(n)/S(U(k)×U(n− k)) ∼= GC(k, n),

where S(U(k)×U(n− k)) is the subgroup of SU(n) consisting of all matrices, R ∈ SU(n),
of the form

R =

(
S 0
0 T

)
,

with S ∈ U(k), T ∈ U(n− k) and det(S) det(T ) = 1.

(f) Consider the action of G = GL(2,C) on C2 given by
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(
α β
γ δ

)
·
(
x
y

)
=

(
αx+ βy
γx+ δy

)
.

This action is not transitive. The stabilizer of any point of C2 is given by
(
α β
γ δ

)(
x
y

)
=

(
x
y

)
,

that is

(α− 1)x+ βy = 0

γx+ (δ − 1)y = 0.

If x = y = 0, then the stabilizer G0 is all of G. Otherwise, we must have

det

(
α− 1 β
γ δ − 1

)
= 0.

If x = 0 and y 6= 0, then we must have δ = 1, β = 0. In this case,

stab

(
0
y

)
=

{(
α 0
γ 1

)
| α 6= 0

}
.

If x 6= 0 and y = 0, then we must have α = 1, γ = 0. In this case,

stab

(
x
0

)
=

{(
1 β
0 δ

)
| δ 6= 0

}
.

If x, y 6= 0, then

stab

(
x
y

)
=

{(
α β
γ δ

)
| β = −(α− 1)x

y
, γ = −(δ − 1)y

x
, α + δ − 1 6= 0

}
.

Note that the condition (α− 1)(δ − 1)− βγ = 0 holds trivially.

(g) Let

G =

{(
1 ξ
0 1

)
| ξ ∈ R

}

and consider the linear action of G on R2, that is
(

1 ξ
0 1

)
·
(
x
y

)
=

(
x+ ξy
y

)
.

The elements of G are shear transformations. The stabilizer of a point is given by

x+ ξy = x

y = y,
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that is,
ξy = 0.

If y = 0, then

stab

(
x
0

)
= G

and every point of the real line is an orbit, else

stab

(
x
y

)
= {I}

and the orbit of

(
x
y

)
is the line through (0, y).

(e) Our last example is the group of symmetries of an equilateral triangle whose centroid
is taken as the origin; see Figure 1.2.

Figure 1.2: Symmetries of an equilateral triangle

We have the rotation by 2π/3, denoted σ, and the reflection about the y-axis, denoted
τ . It is easy to check that

τσ2 = στ

σ3 = I

τ 2 = I.

The group generated by σ and τ and satisfying the above equations is the group of rigid
motions of the triangle. This group is isomorphic to the permutation group of 3 elements,
S3. Obviously, this group acts on the triangle. We can define other actions of this group,
for example on R3, via

e1 7→ eσ(1)

e2 7→ eσ(2)

e3 7→ eσ(3),

for every σ ∈ S3, where (e1, e2, e3) is the canonical basis of R3.
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1.2 Haar Integral and Maschke’s Theorem

Let G be a group, let V be a vector space over C, and write

Fcn(G,C) resp. Fcn(G, V ),

for the set of all functions from G to C, resp. from G to V .

When G is a locally compact topological group, Haar proved (1931):

Theorem 1.3. There is a notion of integral on G, so that for every continuous function f
with compact support, the integral

∫
G
f(σ)dσ ∈ C is invariant under left translation, which

means that ∫

G

f(τσ)dσ =

∫

G

f(σ)dσ, for all τ ∈ G. (∗)

This integral is unique up a to multiplicative constant.

Examples .

(1) G = R under addition. In this case
∫

R
f(x)dx

is the ordinary integral
∫∞
−∞ f(x)dx. For any y ∈ G = R, we have

∫ ∞

−∞
f(y + x)dx =

∫ ∞

−∞
f(x)dx.

(2) G = R∗>0 (the positive reals under multiplication).

We need to find an integral of the form
∫ ∞

0

f(x)w(x)dx

satisfying the identity ∫ ∞

0

f(yx)w(x)dx =

∫ ∞

0

f(u)w(u)du.

If we let u = yx, then du = ydx, and we should have
∫ ∞

0

f(yx)w(x)dx =

∫ ∞

0

f(u)w

(
u

y

)
du

y
=

∫ ∞

0

f(u)w(u)du.

Thus, the following equation should hold:

1

y
w

(
u

y

)
= w(u), for all u ∈ R∗>0.
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If we pick

w(u) =
1

u
,

then,
1

y
w

(
u

y

)
=

1

y

y

u
=

1

u
= w(u),

which shows that it is a good choice. In fact, this is the only choice that works, so the Haar
integral on R∗>0 is given by ∫ ∞

0

f(x)
dx

x
.

Before we consider the example of finite groups, let us note the following important fact
about the Haar integral:

Remark: If G is a compact group, then

∫

G

1dσ is finite.

To prove this, take a small open neighborhood of 1 in G, say U . For any σ ∈ G, the image
σU of U is an open subset around σ (because multiplication by σ is a homeomorphism). Since
the measure of U is finite, so is the measure of σU . The family {σU}σ∈G is an open cover
of G, and since G is compact (Heine–Borel), it has a finite subcover, say σ1U, . . . , σlU . It
follows that

meas(G) ≤ lmeas(U) <∞.
However,

meas(G) =

∫

G

1dσ,

which proves our remark. In fact, it can be shown that meas(G) is finite iff G is compact.

If G is compact, it turns out that the Haar measure is both left and right invariant. So,
we also have ∫

G

f(στ)dσ =

∫

G

f(σ)dσ, for all τ ∈ G. (∗∗)

When the left-invariant Haar measure on a group is also right-invariant, we say that the
group is unimodular .

If G is compact, then we have the normalized Haar measure, which is the Haar measure
for which ∫

G

1dσ = 1.

(3) Finite groups.
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The Haar integral on a finite group is given by
∫

G

f(σ)dσ =
1

#(G)

∑

σ∈G
f(σ).

(Here #(G) denotes the number of elements in G.) For a finite group, the Haar integral
computes the “average value” of f . A finite group is discrete (which means that every
one-element subset is open), and the Haar measure is a Borel measure (every open set is
measurable). The measure of a one-point set is given by

meas({pt}) =
1

#(G)
.

(4) Arbitrary Discrete Groups

Every compact discrete set is finite, so a function f on G with compact support is nonzero
only on a finite subset. Also, the Haar measure of a one-point set is 1, so

∫

G

f(σ)dσ =
∑

σ∈G
f(σ).

It is now time to define group representations.

Definition 1.6. A (linear) representation of a (topological) group G is an action R on a
complex vector space V , called the representation space of R, which means that there is
a homomorphism R : G → GL(V ), that associates an invertible linear map Rσ ∈ GL(V )
to every σ ∈ G. Furthermore, the map σ 7→ Rσ(v) is continuous for all v ∈ V . If V is
finite-dimensional, we say that we have a representation of finite degree, and the degree of
R is the dimension of V .

Among all representations, we have the trivial representation, which maps every σ ∈ G
to the identity in GL(V ).

Definition 1.7. Given a representation R : G→ GL(V ), a subrepresentation S of R consists
of

(1) A subspace W of V , such that

(2) W is stable under R, which means that for every σ ∈ G and all w ∈ W , we have
Rσ(w) ∈ W . We let Sσ be the restriction of Rσ to W .

The notion of isomorphism of representations is defined as follows:

Definition 1.8. Let R : G → GL(V ) and S : G → GL(W ) be two representations of G.
Then we say that R is isomorphic to S, denoted R ∼= S, iff
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(1) There exists a fixed linear isomorphism L : V → W , and

(2) The following diagram commutes for all σ ∈ G:

V
Rσ //

L
��

V

L
��

W
Sσ
//W,

which is equivalent to
LRσ = SσL, for all σ ∈ G. (∗)

Remark: Without assuming that the linear map L : V → W is an isomorphism, if (∗) holds,
then we say that L intertwines R and S.

Theorem 1.4. (Maschke’s Theorem, 1898) Say R : G → GL(V ) is a representation of a
finite or compact group G, and S : G → GL(W ) is a subrepresentation of R. Then, there
exists a subspace Z of V which is stable under R and complementary to W ; that is,

V = W
∐

Z.

(The above means that W ∩ Z = (0), and that every v ∈ V can be written as v = w + z, for
some w ∈ W and some z ∈ Z, which are uniquely determined by v.) That Z is stable under
R means that Rσ(Z) ⊆ Z, for all σ ∈ G.

Proof. Pick any supplementW ′ ofW in V (so that V = W
∐
W ′), and let P be the projection

of V onto W (a stable subspace of V ); since every v ∈ V is expressed as v = w + w′ in a
unique way, with w ∈ W and w′ ∈ W ′, we have P (v) = w. Then, we know that P 2 = P
and that the restriction of P to W is the identity. Since W is stable under R, we have
Rσ(w) ∈ W for all σ ∈ G, and so

PRσ(w) = Rσ(w).

Let Q be the linear map on V given by

Q(v) =

∫

G

RσPR
−1
σ (v)dσ.

We have the following properties:

(a) If v ∈ V , then
Q(v) ∈ W.

This is because
RσPR

−1
σ (v) = Rσ(P (R−1

σ (v))) = Rσ(w) ∈ W,
since w = P (R−1

σ (v)) ∈ W . Then,

Q(v) =

∫

G

RσPR
−1
σ (v)dσ ∈ W.
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(b) The restriction of Q to W is the identity.

Pick w ∈ W , and consider

Q(w) =

∫

G

RσPR
−1
σ (w)dσ.

Since R−1
σ (w) ∈ W and since P is the identity of W , we have PR−1

σ (w) = R−1
σ (w), so

we get

Q(w) =

∫

G

RσR
−1
σ (w)dσ =

∫

G

wdσ = w.

(c) Q2 = Q and

RτQ = QRτ , for all τ ∈ G.

By (a), we have Q(v) ∈ W for all v ∈ V , and by (b) the restriction of Q to W is the
identity, so Q2 = Q. We have

RτQR
−1
τ =

∫

G

RτRσPR
−1
σ R−1

τ dσ

=

∫

G

RτσPR
−1
τσ dσ

=

∫

G

RσPR
−1
σ dσ

= Q,

where we used the invariance under left translation of the Haar integral going from
line 2 to line 3. Thus,

RτQR
−1
τ = Q,

which implies that

RτQ = QRτ , for all τ ∈ G.

From (b) and (c), we conclude that Q is the projection of V onto W .

Now, let Z = KerQ. Since Q(z) = 0 for all z ∈ Z, RτQ(z) = 0 implies that QRτ (z) = 0,
and thus Rτ (z) ∈ KerQ = Z. This show that Z is stable under R.

If x ∈ W ∩ Z, then Q(x) = x by (b), but Q(x) = 0 since x ∈ Z, so x = 0. Therefore,

W ∩ Z = (0).

Since every v can be written as

v = Q(v) + v −Q(v),
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and since

Q(v −Q(v)) = Q(v)−Q2(v) = Q(v)−Q(v) = 0,

we have v −Q(v) ∈ Z. This shows that

V = W + Z,

and with W ∩ Z = (0), we have

V = W
∐

Z,

with both W and Z stable under R.

Definition 1.9. A representation R : G→ GL(V ) is irreducible if V 6= (0) and if for every
subrepresentation S : G→ GL(W ) of R, either

(a) W = (0) and Sg = 0 for all g ∈ G, or

(b) W = V and S = R.

It is customary to abbreviate irreducible representation by irrep.

Maschke’s Theorem (Theorem 1.4) has the following important corollary:

Corollary 1.5. If R : G → GL(V ) is a finite dimensional representation of a finite or
compact group G, then it is a finite coproduct of irreducible representations of G.

Proof. We proceed by induction on dim(V ). If R : G → GL(V ) is already irreducible,
we are done. If not, there is some nontrivial subspace W of V such that R restricted
to W is a subrepresentation of R. By Maschke’s Theorem, there exists a complementary
subrepresentation (R,Z) with V = W

∐
Z, and we have

dim(W ) < dim(V ) and dim(Z) < dim(V ).

By the induction hypothesis, we can write

W = W1

∐
· · ·
∐

Wl

and

Z = Z1

∐
· · ·
∐

Zm,

where the subrepresentations R : G→ GL(Wi) and R : G→ GL(Zj) are all irreducible, so

V = W1

∐
· · ·
∐

Wl

∐
Z1

∐
· · ·
∐

Zm

yields a coproduct of irreducible subrepresentation of R.
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The property of representations stated in Corollary 1.5 is known as complete reducibilty
or semisimplicity .

In practice, we have a finite set {x1, . . . , xt} of data on which a finite group G acts.
Consider the finite set

{Rσ(xj) | j = 1, . . . , t; σ ∈ G}.
Make the vector space with the Rσ(xj) spanning it. This is a finite vector space V and
R : G→ GL(V ) is a finite-dimensional representation of G.

Proposition 1.6. If G is a finite group and R : G→ GL(V ) is an irreducible representation
of G, then dim(V ) is finite. Moreover, V is the span of any orbit O(v), where v ∈ V .

Proof. Pick any v ∈ V and consider the orbit

O(v) = {σv | σ ∈ G}.

Observe that

W = span(O(v)) =

{∑

σ∈G
aσ(σv) | aσ ∈ C

}
.

Then, R : G→ GL(W ) is a subrepresentation of R with v ∈ W . But R is irreducible, so we
must have W = V .

In particular, observe that Proposition 1.6 implies that dim(V ) ≤ #(G).

We now explain how inner products help in studying representations. Recall that a
Hermitian inner product on a complex vector space V is a map V × V → C, whose value
for v, v′ ∈ V is denoted by (v, v′), such that

1. (v + w, v′) = (v, v′) + (w, v′)

2. (λv, v′) = λ(v, v′)

3. (v′, v) = (v, v′)

4. (v, v) ≥ 0 and (v, v) = 0 iff v = 0.

If V is finite-dimensional, then V has lots of Hermitian inner products. For example, for
any basis (e1, . . . , en), if we write u =

∑
i uiei and v =

∑
j vjej, then

(u, v) =
n∑

i=1

uivi

is a Hermitian inner product on V .
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Assume G is a locally compact group and let dσ be a Haar measure on G. We define
L2(G, dσ) as the function space

L2(G, dσ) =

{
f | f : G→ C, f is measurable and

∫

G

|f(σ)|2dσ <∞
}
.

There is a Hermitian inner product on L2(G, dσ) given by

(f, g) =

∫

G

f(σ)g(σ)dσ.

Proposition 1.7. Let R : G → GL(V ) be a representation where V is an inner product
space (the inner product is denoted by (x, y)). Assume G is finite or compact and set

(x, y)G =

∫

G

(σx, σy)dσ.

Then, we have
(τx, τy)G = (x, y)G, for all τ ∈ G.

Proof. By definition

(τx, τy)G =

∫

G

(στx, στy)dσ,

and since a compact group is unimodular, the Haar measure is right invariant, so

(τx, τy)G =

∫

G

(στx, στy)dσ =

∫

G

(σx, σy)dσ = (x, y)G,

as claimed.

Observe that with respect to the inner product (−,−)G, the linear maps Rτ are unitary
operators, since

(Rτ (x), Rτ (y))G = (τx, τy)G = (x, y)G.

Thus, R is a unitary representation, for short a unirep. We also abbreviate unitary irreducible
representation by unirrep!

Using Proposition 1.7, we can give another proof of Maschke’s Theorem.

Another proof of Maschke’s Theorem. Consider the Hermitian inner product (−,−)G on V .
Then, R is a unirep. Let W⊥ be the orthogonal complement of W in V (recall that W⊥ =
{x ∈ V | (x, y)G = 0, for all y ∈ W}). Because W is stable under R, it is easy to check
that W⊥ is also stable under W . Since

V = W
∐

W⊥,

the restriction of R to W⊥ does the job.

Remark: The irreducible representations involved in Corollary 1.5 are almost unique. The
problem is that all the Wj could be one-dimensional spaces and R could be the trivial on
each Wj. In this case, uniqueness fails.
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1.3 Characters, Schur’s Lemma and Orthogonality Re-

lations

In this section, we assume that R : G → GL(V ) is a unitary representation on V , with
dim(V ) < ∞. For any basis of V , each Rσ is represented by a unitary matrix also denoted
Rσ, so the trace tr(Rσ) of Rσ is well-defined. If we change basis, the new matrix is of the form
PRσP

−1, whose trace is tr(PRσP
−1). However, for any two matrices A,B, tr(AB) = tr(BA),

so we have
tr(PRσP

−1) = tr(P−1PRσ) = tr(Rσ),

which shows that the trace of Rσ does not depend on the basis.

Definition 1.10. We denote tr(Rσ) by χR(σ), and we call the function σ 7→ χR(σ) the
character of the representation R : G→ GL(V ).

Sorites.

(1) For any unirep R : G → GL(V ), If V = W
∐
Z and if W and Z are stable under R,

then
χR(σ) = χR|W (σ) + χR|Z(σ).

(2) χR(σ−1) = χR(σ).

(3) For all σ, τ ∈ G, we have
χR(τ−1στ) = χR(σ).

(4) χR(1) = dim(V ) = deg(R, V ).

Proof. (1) Since V = W
∐
Z, we can form a basis of V using a basis of W and a basis of Z.

The matrix of Rσ with respect to this basis is a block matrix of the form

AV =

(
AW 0
0 AZ

)
,

which implies
tr(AV ) = tr(AW ) + tr(AZ).

(2) Since Rσ is a unitary matrix, its eigenvalues are unit complex numbers. Furthermore,
as Rσ−1 = R−1

σ , the eigenvalues of Rσ−1 are of the form λ−1 = λ/|λ|2, where each λ is an
eigenvalue of Rσ. But |λ| = 1, so λ−1 = λ. Now,

χR(σ) = tr(Rσ) = λ1 + · · ·+ λn,

where λ1, . . . , λn are the eigenvalues of Rσ and

χR(σ−1) = tr(R−1
σ ) = λ−1

1 + · · ·+ λ−1
n = λ1 + · · ·+ λn = tr(Rσ) = χR(σ).
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(3) As we mentioned before, tr(AB) = tr(BA) for any two matrices A,B, so we get

χR(τστ−1) = tr(Rτστ−1) = tr(RτRσR
−1
τ ) = tr(Rσ) = χR(σ).

(4) If I is the n× n identity matrix, then tr(I) = n, so

χR(1) = tr(R1) = tr(I) = n = dim(V ).

Any function f : G → C which is constant on conjugacy classes of G is called a class
function. By (3), every character is a class function.

Schur’s lemma is a simple yet powerful result about intertwiners of irreducible represen-
tations. First, let us discuss how to make intertwiners using the Haar integral.

If R : G→ GL(V ) and S : G→ GL(W ) are two representations of G, recall that a linear
map Λ: V → W intertwines R and S iff the following diagram commutes for all σ ∈ G:

V
Rσ //

Λ
��

V

Λ
��

W
Sσ
//W,

which is equivalent to
ΛRσ = SσΛ, for all σ ∈ G.

Let L : V → W be any linear map, and make

Λ =

∫

G

SσLRσ−1dσ.

Then, using the fact that the Haar integral is left-invariant, we have

SτΛRτ−1 =

∫

G

SτSσLRσ−1Rτ−1dσ =

∫

G

SτσLR(τσ)−1dσ =

∫

G

SσLRσ−1dσ = Λ.

Therefore,
SτΛ = ΛRτ ,

which shows that Λ is an intertwiner of R and S.

Furthermore, if Σ is any intertwiner of R and S, applying the above process to Σ, we get
an intertwiner ∫

G

SσΣRσ−1dσ.

Since Σ intertwines R and S,
SσΣ = ΣRσ,
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so ∫

G

SσΣRσ−1dσ =

∫

G

ΣRσRσ−1dσ =

∫

G

Σdσ = Σ.

This shows that

1. Every intertwiner arises by the integral process defined above.

2. Doing the integral process twice yields the same intertwiner.

Theorem 1.8. (Schur’s Lemma) Say R : G → GL(V ) and S : G → GL(W ) are two irre-
ducible representations of a group G and suppose Λ intertwines R and S. Then, the following
facts hold:

(1) If R : G→ GL(V ) is not isomorphic to S : G→ GL(W ), then Λ = 0.

(2) If R : G → GL(V ) and S : G → GL(W ) are isomorphic, then Λ = 0 or Λ is an
isomorphism Λ: V → W .

(3) If V is complex vector space (more generally a vector space over an algebraically-closed
field), and R : G → GL(V ) and S : G → GL(V ) are isomorphic, then Λ = λI, for
some λ ∈ C.

Proof. (1) Let Z = Ker Λ and Y = Im Λ. We claim that (R | Z,Z) is a subrepresentation of
(R, V ).

For any z ∈ Z and any σ ∈ G, since

ΛRσ = SσΛ

and Z = Ker Λ, we have Λ(z) = 0, thus ΛRσ(z) = SσΛ(z) = 0, which implies that Rσ(z) ∈
Ker Λ = Z. Therefore, Z is stable under R. A similar argument shows that (R | Y, Y ) is
a subrepresentation of R. Since R is irreducible, either Z = (0) or Z = V , and since S is
irreducible, either Y = (0) or Y = W .

If Ker Λ = Z = (0), then Λ is injective. If Λ 6= 0, then Y = Im Λ 6= 0, which implies that
Y = W , so Λ is surjective. But then, Λ is an isomorphism, contradicting the assumption
that (R, V ) and (S,W ) are not isomorphic. Therefore, Z 6= (0), which implies that Z = V ;
that is, Ker Λ = V , which means that Λ = 0.

(2) If Λ 6= 0, then Z 6= V , and so Z = (0). Then, Λ is injective, and since Λ 6= 0 we have
Y 6= (0), which implies that Y = W . Therefore, if Λ 6= 0, then it is an isomorphism.

(3) Assume that Λ 6= 0. As C is algebraically-closed, Λ has some eigenvalue, λ. Consider
Σ = Λ − λI. Because Λ and I are intertwiners, so is Σ. But, Ker Σ 6= (0) (since it is the
eigenspace of Λ associated with λ), so Σ is not an isomorphism. By (2), we must have Σ = 0;
that is, Λ = λI.
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Notation.

We denote by L1(G,C) the set of functions f : G→ C, such that:

1. f is measurable.

2. ‖f‖1 =
∫
G
|f(σ)|dσ is finite.

If G is finite, then L1(G,C) consists of all functions f : G→ C.

If G is compact, then all continuous functions belong to L1(G,C).

If G is locally compact, then the set Co(G,C) of continuous functions with compact
support is contained in L1(G,C).

If G is finite, then for every σ ∈ G let bσ be the function given by

bσ(τ) =

{
1 if σ = τ

0 if σ 6= τ .

Clearly, these functions form a basis of L1(G,C), which shows that

dim(L1(G,C)) = #(G).

Let L2(G,C) be the set of functions f : G→ C, such that:

1. f is measurable.

2. ‖f‖2
2 =

∫
G
|f(σ)|2dσ is finite.

If G is finite, then L2(G,C) = L1(G,C) = all functions on G.

We have the following Hermitian inner product on L2(G,C):

(f, g) =

∫

G

f(σ)g(σ)dσ,

and with this inner product, L2(G,C) is a Hilbert space. The corresponding norm is

‖f‖2 =
√

(f, f),

and thus, the Cauchy–Schwarz inequality holds:

|(f, g)| ≤ ‖f‖2 ‖g‖2 .

If G is compact and we use the normalized Haar measure, applying Cauchy–Schwarz to f
and g = 1, we get ∣∣∣∣

∫

G

f(σ)dσ

∣∣∣∣ = |(f, 1)| ≤ ‖f‖2 ‖1‖2 = ‖f‖2 .
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If
∫
G
f(σ)dσ is not real, let

∫
G
f(σ)dσ = eiθρ with ρ ∈ R>0, so that e−iθ

∫
G
f(σ)dσ is real,

and since

e−iθ
∫

G

f(σ)dσ =

∫

G

e−iθf(σ)dσ

we see that ∥∥e−iθf
∥∥

1
= ‖f‖1 ,

so we conclude that

‖f‖1 ≤ ‖f‖2 .

Therefore, if G is compact, then

L2(G,C) ⊆ L1(G,C).

Our next goal is to consider various orthogonality relations. Let R : G → GL(V ) and
S : G → GL(W ) be any two nonisomorphic irreducible representations of finite degree, so
that we may assume that these are unitary irreps. With respect to unitary bases of V and
W , Rσ and Sσ are given by matrices (ra,b(σ)) and (sa,b(σ)), and ra,b and sa,b are continuous
functions on G.

Remark: Assume we are in Case (3) of Schur’s Lemma, and let Λ = λI be the intertwiner.

Claim. For any linear map L : V → W , if

Λ =

∫

G

RσLRσ−1dσ,

then

tr(Λ) = tr(L)

and

λ =
1

deg(R)
tr(L).

Proof. We have

tr(Λ) =

∫

G

tr(RσLRσ−1)dσ =

∫

G

tr(L)dσ = tr(L).

For L = λI, we have tr(Λ) = tr(L) = λdeg(R), and so

λ =
1

deg(R)
tr(L),

as claimed.
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Since (R, V ) and (S,W ) are not isomorphic, by (1) of Schur’s lemma, we must have Λ = 0
for all L; that is, ∫

G

RσLRσ−1dσ = 0, for all L : V → W.

If L is given by the matrix (ξij), then

RσLRσ−1 =
∑

βa

sαβ(σ)ξβarab(σ
−1),

and the above equation implies that

∑

βa

∫

G

sαβ(σ)ξβarab(σ
−1)dσ = 0,

and thus,
∑

βa

(∫

G

sαβ(σ)rab(σ
−1)dσ

)
ξβa = 0. (†)

Since (†) is a system of linear equations satisfied by all ξβa, the matrix of the system
must be zero, which means that

∫

G

sαβ(σ)rab(σ
−1)dσ = 0, for all α, β, a, b.

Since R is unitary, R−1
σ = R∗σ, so the above is equivalent to
∫

G

sαβ(σ)rba(σ)dσ = 0, for all α, β, a, b. (ON1)

In terms of the inner product on L2(G,C), this means that

(sαβ, rab) = 0, for all α, β, a, b.

We derive more orthogonality relations using part (3) of Schur’s Lemma. In this case, R
and S are isomorphic, and Λ = λI, for some λ ∈ C. From

λI =

∫

G

RσLRσ−1dσ,

we deduce that

λδij =
∑

ρα

∫

G

riρξραrαj(σ
−1)dσ.

If i 6= j, since the ξρα are arbitrary, we must have
∫

G

riρrαj(σ
−1)dσ = 0, for all ρ, α.
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If i = j, then

λ =
∑

ρα

∫

G

riρξραrαi(σ
−1)dσ.

But, we showed that

λ =
1

deg(R)
tr(L) =

1

deg(R)

∑

α

ξαα =
1

deg(R)

∑

ρ,α

ξραδρα,

so we get
1

deg(R)

∑

ρ,α

ξραδρα =
∑

ρα

∫

G

riρξραrαi(σ
−1)dσ.

By equating the coefficients of ξρα, we get
∫

G

riρrαi(σ
−1)dσ =

1

deg(R)
δρα.

We can put the cases i 6= j and i = j together to obtain
∫

G

riρrαj(σ
−1)dσ =

1

deg(R)
δijδρα.

In the unitary case, we have rαj(σ
−1) = rjα(σ), and the above equations become

∫

G

riρrjα(σ)dσ =
1

deg(R)
δijδρα, (ON2)

which can be expressed as

(riρ, rαj) =
1

deg(R)
δijδρα.

Equations (ON1) and (ON2) are the Peter–Weyl orthogonality relations .

Equations (ON1) and (ON2) can be used to derive orthogonality relations about the
characters. Again, assume that (R, V ) and (S,W ) are nonisomorphic unitary irreps.

By (ON1), we have
∫

G

sαβ(σ)rba(σ)dσ = 0, for all α, β, a, b.

If we let α = β and a = b and sum with respect to α and a, we get

(χS, χR) = 0.

If R and S are isomorphic, we use (ON2), with i = ρ and j = α. We have
∫

G

riirαα(σ)dσ =
1

deg(R)
δiα.
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If we sum over i and α, we get

(χR, χS) =
∑

α

∑

i

1

deg(R)
δiα =

1

deg(R)

∑

α

1 = 1.

In summary, we obtained the following result:

Theorem 1.9. If G is a finite or compact group, then for any two unitary irreducible rep-
resentations R and S of G,

(χR, χS) = δRS,

where δRS = 1 iff R and S are isomorphic, otherwise δRS = 0.

Say (R, V ) is any representation of a finite or compact group G, with V finite-dimensional.
Then, we know that R is the coproduct of irreducible representations

R =
∐

S irred

njSj, nj ∈ N,

where nj is the number of times S appears in R in the decomposition. It follows that

χR =
∑

S irred

nSχS.

If T is any given irred of G, then we have

(χR, χT ) =
∑

S

nS(χS, χT )

=
∑

S

nSδST = nT .

This gives the following proposition:

Proposition 1.10. For any representation (R, V ) of finite degree of a group G where G is
finite or compact, the number of times a given irrep T appears in R is (χR, χT ). Hence, no
matter how we decompose R, we always get the same irreps, in the same multiplicity. The
canonical decomposition of R is

R =
∐

S any irrep

(χR, χS)S.

Corollary 1.11. If (R, V ) and (S,W ) are any finite-degree representations of a finite or
compact group G, then R ∼= S iff χR = χS. In other words, the characters of a representation
determine the representation.
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Proof. We have the decompositions

R =
∐

T any irrep

(χR, χT )T and S =
∐

T any irrep

(χs, χT )T.

If χR = χS, then obviously R ∼= S. Conversely,f if R ∼= S, then χR = χS, because Rσ =
L−1SσL (where L is the intertwining isomorphism), so the traces are the same.

Corollary 1.12. If (R, V ) is finite-degree representation of a finite or compact group G and
if T is any irrep of G, then (χR, χT ) is a nonnegative integer.

Corollary 1.13. Given any finite-degree representation (R, V ) of a finite or compact group
G, the number (χR, χR) is a positive integer, and (χR, χR) = 1 iff R is irreducible.

Proof. If we write

R =
∐

T irred

(χR, χT )T,

then
χR =

∑

T

(χR, χT )χT .

Consequently,

(χR, χR) =
∑

T,S

(χR, χT )(χR, χS)(χT , χS)

=
∑

T,S

(χR, χT )(χR, χS)δST

=
∑

T

|(χR, χT )|2,

which is a positive integer.

If (χR, χR) = 1, then R = T for some irrep T , because R itself is an irrep. Conversely, if
R is an irrep, Theorem 1.9 implies immediately that (χR, χR) = 1.

We now define an important representation of a group G.

Any group G acts on itself by “translation,” where the action is given by

σ · τ = στ.

(1) Assume G is finite. Pick any vector eτ for every τ ∈ G, and consider the vector space
V freely generated by the eτ , so that they form a basis of V (dim(V ) = #(G)). We
define the representation Reg of G on V by

Regσ(eτ ) = eστ .

This representation is called the regular representation of G.
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(2) Now assume G is infinite. In this case, we wish to define a “regular representation” of
G on L1(G, dσ) or L2(G, dσ). When G is finite, we have the functions bσ given by

bσ(τ) =

{
1 if σ = τ

0 if σ 6= τ

which form a basis of L1(G) = L2(G), and

Regσ(bτ ) = bστ

defines Reg.

How do we generalize this to infinite groups?

We want to view Regσ(bτ ) as a function, so we need to define Regσ(bτ )(θ), for any
θ ∈ G, in such a way that

Regσ(bτ )(θ) = bστ (θ) = δστ,θ.

However, στ = θ iff τ = σ−1θ, in which case

Regσ(bτ )(θ) = δτ,σ−1θ = bτ (σ
−1θ).

This suggests that the proper way to define the regular representation on L1(G) or
L2(G) is to set

Regσ(f)(θ) = f(σ−1τ), θ ∈ G, f ∈ L1(G) (or f ∈ L2(G)).

Let us go back to the case where G is a finite group, and let us compute the matrix of
Regσ in the basis (eτ). The τth column of Regσ is Regσ(eτ ) = eστ , so this is a permutation
matrix.

What is the entry of index (τ, τ)?

If σ = 1, the answer is 1 (since Reg1 = I). If σ 6= 1, then the answer is 0 for all τ . It
follows that tr(Reg1) = #(G) and tr(Regσ) = 0 for all σ 6= 1.

Proposition 1.14. For any finite group G, the character χReg of the regular representation
is given by

χReg(1) = #(G)

χReg(σ) = 0, σ 6= 1.
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Let
Reg =

∐

S irrep

(χReg, χS)S

be the canonical decomposition of Reg, and compute its character

χReg =
∑

S irrep

(χReg, χS)χS.

However, we know χReg, so if we write g = #(G), we get

(χReg, χS) =

∫

G

χRegχS(σ)dσ =
1

g
χReg(1)χS(1) =

g

g
χS(1) = deg(S).

Therefore,

Reg =
∐

S irrep

deg(S)S

and
g = #(G) =

∑

S irrep

deg(S)χS(1) =
∑

S irrep

(deg(S))2.

In summary, we proved the following result:

Theorem 1.15. Every irreducible representation of a finite group appears in Reg exactly as
many times as its degree. That is, the canonical decomposition of Reg is

Reg =
∐

S irrep

deg(S)S.

Moreover,

g = #(G) =
∑

S irrep

(deg(S))2.

Construction

Say (R, V ) is a representation of a compact group G (not necessarily finite). Write L2
cl(G)

(resp. L1
cl(G)) for the subspace of class functions in L2(G) (resp. L1(G)); that is

L2
cl(G) = {f ∈ L2(G) | f(σ−1τσ) = f(τ), for all σ, τ ∈ G}

= {f ∈ L2(G) | f(στ) = f(τσ), for all σ, τ ∈ G}.

The space L1
cl(G) is defined analogously (mutatis mutandis).

For any function f ∈ L2
cl(G) (or in L1

cl(G)), define R[f ], called the f weighted automor-
phism of V , by

R[f ] =

∫

G

f(σ)Rσdσ.
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Proposition 1.16. For any class function f , the f weighted automorphism of V is a self-
intertwining operator; that is,

RτR[f ] = R[f ]Rτ , for all τ ∈ G.
If R is irreducible and V is a complex vector space, then

R[f ] = λI,

with

λ =
1

deg(R)
(f, χR).

Proof. We have

R−1
τ R[f ]Rτ = Rτ−1R[f ]Rτ =

∫

G

Rτ−1f(σ)RσRτdσ =

∫

G

f(σ)Rτ−1στdσ.

Because the Haar integral on a compact group is left and right invariant, we have
∫

G

f(σ)Rτ−1στdσ =

∫

G

f(τσ)Rστdσ =

∫

G

f(τστ−1)Rσdσ,

and since f is a class function, we have
∫

G

f(τστ−1)Rσdσ =

∫

G

f(σ)Rσdσ = R[f ],

which proves that
R−1
τ R[f ]Rτ = R[f ].

If R is an irrep and V is complex, then by Schur’s Lemma part (3), we must have

R[f ] = λI.

If we apply the trace operator on both sides, we get

tr(R[f ]) = λdeg(R).

On the other hand,

tr(R[f ]) =

∫

G

f(σ)tr(Rσ)dσ

=

∫

G

f(σ)χR(σ)dσ

=

∫

G

f(σ)χR(σ)dσ

= (f, χR).

Therefore,

λ =
1

deg(R)
(f, χR),

as claimed.
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We now come to an important theorem proved by Frobenius and Schur for finite groups,
and by Peter and Weyl for compact groups.

Theorem 1.17. (Frobenius, Schur, Peter–Weyl) Let G be a finite or a compact group. The
characters χR of irreducible representations of G form an orthonormal basis for L2

cl(G) (a
Hilbert basis of L2

cl(G)). This means that for any f ∈ L2
cl(G), we can write

f =
∑

R irrep

cR χR

(the Fourier series for f), with the R-Fourier coefficient given by

cR = (f, χR).

Proof. Since the characters χR associated with irreps form an orthonormal set in L2
cl(G) (by

the orthogonality relations), all we have to show is that they span L2
cl(G) (in the sense of

Hilbert spaces); that is, we need to show that for any f ∈ L2
cl(G), if (f, χR) = 0 for all χR,

then f = 0.

Pick any f ∈ L2
cl(G) such that (f, χR) = 0 for all χR and consider f . Take any finite

dimensional representation S and form S[f ]. We know from Proposition 1.16 that S[f ]
intertwines S and itself. If S is an irrep, then by Schur’s Lemma,

S[f ] = λI,

and

λ =
1

deg(S)
(f, χR).

Remark: Here, we use the fact that if G is compact, then every irrep is finite-dimensional.
This is left as a homework problem.

It follows that

λ =
1

deg(S)
(f, χR) = 0,

by hypothesis. Therefore,

S[f ] = 0

for all irrep S. However, any finite dimensional representation is a coproduct of irreps, and
this implies that

S[f ] = 0

for all finite-dimensional representations. In particular, this applies to the regular represen-
tation, so we have

Reg[f ] = 0.
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Remark: The regular representation is generally not finite-dimensional, but the argument
can be justified for a compact group.

Recall that if g ∈ L2
cl(G), then

Regτ (g)(σ) = g(τ−1σ),

so that

(Reg[f ](g))(σ) =

∫

G

f(u)Regu(g)(σ)du

=

∫

G

f(u)g(u−1σ)du. (†)

Case where G is finite.

Then, we can use the basis functions bσ. We know that

Regτ (bσ) = bτσ.

Let g = b1 in (†). We get

Reg[f ](b1) =

∫

G

f(u)Regu(b1)du

=

∫

G

f(u)budu

=
1

#(G)

∑

u∈G
f(u)bu.

But, Reg[(f ] = 0, which implies that

∑

u∈G
f(u)bu = 0,

and since the bu form a basis, we conclude that f(u) = 0 for all u, and therefore, f = 0.

If G is an infinite group, how do we choose g to mimic b1?

An Aside: G = R+.

In this case, Dirac comes to the rescue! To proceed rigorously, we use an idea due to
Friedricks. We define some functions gα, where gα is a “hat function” defined on the interval
[−α, α] with α > 0, where the value hα = gα(0) is chosen so that the area under the graph
of gα is equal to 1. Then, we have the convolution

(f ∗ gα)(0) =

∫ ∞

∞
f(x)gα(−x)dx =

∫ α

−α
f(x)gα(−x)dx,
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and we take the limit when α ↓ 0, so that

lim
α↓0

(f ∗ gα)(0) = f(0).

The set {gα} is called an approximate identity , and when the functions are C∞, the gαs
are Friedricks mollifiers .

Case where G is compact.

Going back to a compact group G, take a neighborhood Uα of 1 and a set of functions
gα that form an approximate identity at 1. Go back to (†), and let v = u−1σ. Using the
translation invariance of the Haar measure, (†) says that

Reg[f ](gα)(σ) =

∫

G

f(σv−1)gα(v)dv.

If we take the limit as α ↓ 0, we get the value at v = 1. The right-hand side yields f(σ), but
the left-hand side is 0, since Reg[f ] = 0. It follows that f(σ) = 0 for all σ, and thus f = 0,
which concludes the proof.

Corollary 1.18. The number of irreducible representations of a finite group G is exactly the
number of distinct conjugacy classes conj(G) in G.

Proof. Recall that for any σ ∈ G,

conj(σ) = {ρσρ−1 | ρ ∈ G}.

Define the function fσ such that

fσ(τ) =

{
1 if τ ∈ conj(σ)

0 if τ /∈ conj(σ).

These functions form a basis of L2
cl(G) and there are conj(G) of these, so dim(L2

cl(G)) =
conj(G). By Theorem 1.17, the dimension of L2

cl(G) is equal to the number of irreducible
representations of G, which proves the corollary.

Corollary 1.19. (Peter–Weyl) If G is a compact group, then taking all the matrix entries in
Rσ = (rij(σ)) as R ranges over all the uniirreps of G as functions on G (they are continuous),
we find that these rij form a Hilbert basis of L2(G).

Proof. Reprove Theorem 1.17 with R[f ], but don’t take traces, and use (ON1) and (ON2).
The details are left as an exercise.

Given any group, recall that [G,G] is the subgroup of G generated by the commutators,

[σ, τ ] = στσ−1τ−1, σ, τ ∈ G.
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Observe that

ρ−1[σ, τ ]ρ = ρ−1στσ−1τ−1ρ

= ρ−1σρ ρ−1τρ ρ−1σ−1ρ ρ−1τ−1ρ

= [ρ−1σρ, ρ−1τρ],

which proves that [G,G] is a normal subgroup of G called the commutator subgroup of G.
The group [G,G] is characterized by the property that for any normal subgroup N of G, the
quotient G/N is abelian iff [G,G] ⊆ N . The group

Gab = G/[G,G]

is the abelianization of G (or G made abelian).

Theorem 1.20. Say G is a group. If R is an irrep of degree 1, then

(1) R corresponds to an irrep R̃ (of degree 1) of Gab, and the correspondence is one-to-one.

Here, R̃ is the unique homomorphism which makes the following diagam commutes:

G R //

  A
AA

AA
AA

A GL(1) = Gm

Gab

R̃

88qqqqqqqqqqq

(2) If G is abelian, then all its irreps have degree 1.

(3) Lastly, if G is finite (or compact) and all the irreps of G have degree 1 then G is
abelian.

Proof. (1) This follows immediately from the first isomorphism theorem.

(2) Let (R, V ) be any irrep of G and pick any σ ∈ G. For all τ ∈ G,

RσRτ = Rστ = Rτσ = RτRσ,

which means that Rσ intertwines R. By Schur’s Lemma, Rσ = λσI. So for every v ∈ V ,

Rσv = λσv,

and this shows that the span of v is a subrepresentation of R. Since R is irreducible and
nontrivial, we must have Span(v) = V , which shows that V is one-dimensional.

(3) If G is finite and if all its irreps have degree 1, then

g = #(G) =
∑

R irrep

(deg(R))2 =
∑

R irrep

1 = conj(G),

which shows that G is abelian.
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Proposition 1.21. If G is any group and H is an abelian subgroup of G, then for any irrep
(R, V ) of G, we have

deg(R) ≤ (G : H).

(Here, (G : H) is the index of H in G; that is, (G : H) is the number of cosets gH, with
g ∈ G.)

Proof. Say (R, V ) is an irrep of G and consider the restriction S of R to H. Then, S is a
representation of H, and since H is abelian, its irreps have degree 1. Pick any irred of S,
and say it is spanned by v ∈ V (v 6= 0).

If σ ∈ H, then
σv = Rσ(v) = λ(v)v, for some λ(v) ∈ C.

We may assume (G : H) = t is finite, let ρ1 = 1, ρ2, . . . , ρt be some coset representatives for
H and G, and set

vj = ρjv, 1 ≤ j ≤ t

and
W = span(v1, v2, . . . , vt).

Next, suppose τ /∈ H. Then, we have

τ = ρjσ, for some σ ∈ H, 1 ≤ j ≤ t

and

τvl = ρjσvl

= ρjσρlv.

But,
σρj = ρkσ̃, for some σ̃ ∈ H,

so we get

τvl = ρjσρlv

= ρjρkσ̃v

= ρjρkλ(σ̃)v

= λ(σ̃)ρjρkv,

and since
ρjρk = ρmγ, for some γ ∈ H, 1 ≤ m ≤ t,

we get

τvl = λ(σ̃)ρjρkv

= λ(σ̃)ρmγv

= λ(σ̃)ρmλ(γ)v

= λ(σ̃)λ(γ)ρmv

= λ(σ̃)λ(γ)vm,
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which shows that τvl ∈ W . Therefore, W is stable under R, and since R is irreducible, we
must have W = V . As a consequence,

deg(R) = dim(V ) = dim(W ) ≤ t = (G : H),

as claimed.

Proposition 1.22. If G is a finite group and χR runs through all irreducible characters of
G, then for all σ, τ ∈ G, we have

∑

R irred

χR(σ)χR(τ) =
g

#cl(σ)
δcl(σ),cl(τ),

where cl(σ) denotes the conjugacy class of σ and g = #(G).

Proof. Let f : G→ C be the function defined by

f(τ) =

{
1 if τ ∈ cl(σ)

0 if τ /∈ cl(σ).

Clearly, f is a class function, and thus it is given by the Fourier series

f =
∑

R irred

(f, χR)χR,

with

(f, χR) =

∫

G

f(θ)χR(θ)dθ =
1

g

∑

θ∈cl(σ)

1 · χR(θ) =
#cl(σ)

g
χR(σ),

and so

f(τ) =
∑

R irred

#cl(σ)

g
χR(σ)χR(τ).

However, the left-hand side is equal to δcl(σ),cl(τ), so we conclude that

g

#cl(σ)
δcl(σ),cl(τ) =

∑

R irred

χR(σ)χR(τ),

as claimed.

1.4 Some (Easy) Examples & Some Techniques

(I) The symmetric group S3 of order three = the symmetry group of an equilateral triangle.

The group S3 is generated by 2 elements σ, τ , such that

σ3 = τ 2 = 1, τσ = σ2τ, στ = τσ2.

The group G has order 6 = 3!, so by the first Sylow Theorem, there exist subgroups of order
2 and 3. The second Sylow Theorem says that
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(a) The number of p-Sylow subgroups is ≡ 1 (mod p).

(b) The number of p-Sylow subgroups divides #(G).

(c) Any two p-Sylow subgroups are conjugate in G.

(d) If σ ∈ G has order pk, then σ belongs to some p-Sylow subgroup.

In G, there is a subgroup of order 3.

(i) It is Z/3Z, abelian, and (G : Z/3Z) = 2; each irrep has degree at most 2.

(ii) The number of Z/3Z subgroups in G is ≡ 1 (mod 3); this number divides 6, and by
the above, it divides 2.

By (c) and counting, there exists only one subgroup Z/3Z, and by (c) again, Z/3Z is
normal in G. Then, we have an isomophism

G/(Z/3Z) ∼= Z/2Z,

with Z/2Z abelian. Therefore, [G,G] = Z/3Z, and since G is nonabelian,

Gab = Z/2Z.

Therefore, the number of irreps of degree 1 of G is the number of irreps of Gab. There are
two of them:

The first irrep R1 is the trivial one and has the constant character χ1 = 1 on G;

The second irrep R2 has the character χ2 determined by χ2(σ) = 1, and χ2(τ) = −1.

What is the number of irreps of G?

We must have

6 = #(G) = 1 + 1 + sum of squares bigger than 1.

Therefore, there is only one more irrep R3 of degree 3 (recall that the degree of an irrep
divides #(G)).

Let’s compute the conjugacy classes of G. Since cl(1) = {1} and cl(σ) = {σ, σ2}, there is
only one more conjugacy class (since the number of irreps is equal to the number of conjugacy
classes). This must be cl(τ) = {τ, σ2τ, στ}.

Let G act on itself by conjugation; that is, by

σ · ρ = σρσ−1, σ, ρ ∈ G.

Consider the action of G on cl(τ). The action of τ on τ is

τ · τ = τττ = τ ;
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The action of τ on σ2τ is
τ · σ2τ = τσ2ττ = στ ;

The action of τ on στ is
τ · στ = τσττ = σ2τ.

The action of σ on στ is
σ · τ = στσ−1 = στσ2 = σ2τ.

The action of σ on σ2τ is
σ · σ2τ = σ3τσ−1 = τσ2 = στ ;

The action of σ on στ is
σ · στ = σ2τσ−1 = τσσ2 = τ.

It follows that the map inn: G→ Aut(G) given by

σ 7→ action by σ

is a homomorphism. The kernel of this homomorphism is Z(G) (the center of G). But in
our case, Z(G) = (1), so the image of inn is the group I(G) of all inner automorphisms
of G. This is a normal subgroup of G, and Aut(G)/I(G) = Out(G), is the group of outer
automorphisms of G.

In summary, our third representation R has the property that the action of Rσ on cl(τ)
is given by

Rσ(τ) = σ2τ

Rσ(σ2τ) = στ

Rσ(στ) = τ,

and then the action of Rσ2 is the same as RσRσ, and the actions of Rστ is the same as RσRτ .

Make a 3-dimensional complex vector space with basis eτ , eσ2τ , eστ , with action

Rσ(eτ ) = eσ2τ

Rσ(eσ2τ ) = eστ

Rσ(eστ ) = eτ .

The action of Rτ is given by

Rτ (eτ ) = eτ3 = eτ

Rτ (eσ2τ ) = eτσ2ττ = eστ

Rτ (eστ ) = eτσττ = eτσ = eσ2τ .

Let
v = eτ + eσ2τ + eστ .
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Observe that v is fixed by Rσ and Rτ . Using coordinates, we have

eτ = (1, 0, 0)

eσ2τ = (0, 1, 0)

eστ = (0, 0, 1),

and
v = eτ + eσ2τ + eστ = (1, 1, 1).

The orthogonal complement of v is the plane of equation

x+ y + z = 0,

and the restriction of R to this plane is a 2-dimensional representation. Let us find a basis
of this plane. First, we look for

w1 = v − αeτ
such that w1 is orthogonal to v. We want (v, w1) = 0, that is

(v, v)− α(eτ , v) = 3− α = 0,

which yields α = 3. Similarly, we look for

w2 = v − βeσ2τ

such that w2 is orthogonal to v, and we find that β = 3. Thus, we have the following basis
for the plane x+ y + z = 0:

w1 = v − 3eτ

w2 = v − 3eσ2τ .

Let us find the action of Rσ on this basis. We have

Rσ(w1) = σ · v − 3σ · eτ = v − 3eσ2τ = w2,

and
Rσ(w2) = σ · v − 3σ · eσ2τ = v − 3eστ .

Since
v = eτ + eσ2τ + eστ ,

we have
eστ = v − eτ − eσ2τ ,

which yields

Rσ(w2) = v − 3eστ

= v − 3(v − eτ − eσ2τ )

= −2v + 3eτ + 3eσ2τ

= −(v − 3eτ )− (v − 3eσ2τ )

= −w1 − w2.
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Using the above, we see that the matrix of Rσ over the basis (w1, w2) is
(

0 −1
1 −1

)
,

and thus, χR(σ) = −1.

For the action of Rτ , we have

Rτ (w1) = τ · v − 3τ · eτ = v − 3eτ = w1,

and

Rτ (w2) = τ · v − 3τ · eσ2τ

= v − 3eστ

= v − 3(v − eτ − eσ2τ )

= −2v + 3eτ + 3eσ2τ

= −(v − 3eτ )− (v − 3eσ2τ )

= −w1 − w2.

The matrix of Rτ is (
1 −1
0 −1

)
,

and thus, χR(τ) = 0. Finally, we obtain the following character table for the irreducible
characters of G = S3:

cl(1) cl(τ) cl(σ)

χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

The columns and the rows of a character table are not independent. Here are three
“tricks” to fill an incomplete character table.

Method 1 . Use column orthogonality:
∑

R

χR(σ)χR(τ) =
g

#cl(σ)
δcl(σ),cl(τ).

This means that the inner product of any two distinct columns in the character table are
orthogonal. For example, if we have the incomplete character table

cl(1) cl(τ) cl(σ)

χ1 1 1 1
χ2 1 −1 1
χ3 2 x y

,
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orthogonality of the first two columns yields

2x = 0

and orthogonality of the first and the third column yields

2y + 2 = 0.

Therefore, x = 0 and y = 1, as we already know.

Method 2 . Use the regular representation. Namely, from

Reg =
∐

R

deg(R)R,

we have
χReg =

∑

R

deg(R)χR.

In our example, χReg(σ) = χReg(τ) = 0, so we get

χ1

(
σ

τ

)
+ χ2

(
σ

τ

)
+ 2χ3

(
σ

τ

)
= 0,

that is (
1

1

)
+

(
1

−1

)
+ 2

(
y

x

)
= 0,

and again, we get x = 0 and y = −1.

Method 3 . Use character orthogonality; that is,

(χR, χS) = δR,S =
1

g

∑

σ∈G
χR(σ)χS(σ)

=
∑

conj. classes

#cl(σ)

g
χR(σ)χS(σ).

This means that we use the orthogonality of the rows of the character table with weighting
factors. For our example, the incomplete table is:

1/6 1/2 1/3
cl(1) cl(τ) cl(σ)

χ1 1 1 1
χ2 1 −1 1
χ3 2 x y

The weighted inner product of row 1 and row 3 is

1

6
× 2 +

1

2
x+

1

3
y = 0,
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and the weighted inner product of row 2 and row 3 is

1

6
× 2− 1

2
x+

1

3
y = 0.

Again, the solution is x = 0, y = −1.

II. The group G of symmetries of the regular pentagon (g = #G = 10), see Figure 1.3.

Figure 1.3: Symmetries of a Pentagon

This group is generated by the rotation σ by 2π/5 around the origin, and the reflection
τ about the x-axis. These generators satisfy the relations

σ5 = τ 2 = 1, τσ = σ4τ,

which characterize the group (as a quotient of the free group on two generators).

Actually, we claim that any nonabelian group G of order 10 is isomorphic to the group
of the pentagon.

By the first Sylow theorem, a nonabelian group of order 10 has a subgroup of order 5.
By the second Sylow theorem, there exist 1 or 6 such subgroups, but counting implies that
there is only one. Therefore this subgroup is normal, and we have the exact sequence

0 −→ Z/5Z −→ G −→ Z/2Z −→ 0. (∗)
Pick a generator θ in Z/2Z and lift it to τ in G. The element τ must have order 2 because
otherwise it would generate G, but G is not cyclic. We can define an action of τ on Z/5Z as
follows:

τ · σk = τσkτ−1 = τσkτ,
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where σ is a generator of Z/5Z. If τ̃ is another lift of θ in G, then τ̃ = τh for some h ∈ Z/5Z,
and as Z/5Z is abelian, for any α ∈ Z/5Z, we have

τ̃α(τ̃)−1 = τhαh−1τ−1 = τατ−1,

which shows that this action only depends on θ. It follows that the exact sequence (∗) defines
an action of Z/2Z on Z/5Z, via

θ · α = τατ−1, α ∈ Z/5Z,

and where τ is any lift of θ ∈ Z/2Z. For any generator σ in Z/5Z, there are four possibilities
for θ · σ = τστ−1:

σ, σ2, σ3, σ4.

Our action is an automorphism 6= id on Z/5Z, and it has order 2 (since τ has order 2).

If τστ−1 = σ, then τσ = στ , but then G would be abelian, a contradiction.

If τστ−1 = σ2, then τσ2τ−1 = (τστ−1)2 = σ4 6= 1, also a contradiction.

If τστ−1 = σ3, then τσ3τ−1 = (τστ−1)3 = σ6 = σ 6= 1, also a contradiction.

So, we must have τστ−1 = σ4, which works out since τσ4τ−1 = (τστ−1)4 = σ16 = σ.

In summary, σ and τ generate G,

σ5 = τ 2 = 1,

and

τσ = σ4τ,

which shows that G is the group of the pentagon.

From the above, we know that there exists inG an abelian subgroup of index 2. Therefore,
the degree of irreducible representations of G is less than or equal to 2. Because G is
nonabelian, we have [G,G] = Z/5Z, and

Gab = G/[G,G] = Z/2Z.

Therefore, there are two irreps of degree 1 (these are the irreps of Gab):

1. The trivial irrep, with Rσ = Rτ = I;

2. The irrep given by

Rσ = I

Rτ = −I.
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We also know that

10 = g =
∑

d=deg(R)

d2 = 1 + 1 + n× 22,

where R ranges over irreps of G and where n is the number of irreps of degree 2. This yields

8 = 4n,

and so, n = 2. Therefore, G has four irreps, including two of degee 1, and two of degree 2.

It is not hard to find the conjugacy classes of G. There are four of them:

cl(1) = {1}, cl(σ) = {σ, σ4}, cl(σ2) = {σ2, σ3}, cl(τ) = {τ, στ, σ2τ, σ3τ, σ4τ}.

Then, we can begin the character table:

1/10 1/5 1/5 1/2
cl(1) cl(σ) cl(σ2) cl(τ)

χ1 1 1 1 1
χ2 1 1 1 −1
χ3 2 x y z
χ4 2 p q r

By column orthogonality, writing that col 1 and col 2 are orthogonal, we get

2 + 2x+ 2p = 0,

that is,

x+ p = −1;

writing that col 1 and col 3 are orthogonal, we get

y + q = −1;

writing that col 1 and col 4 are orthogonal, we get

z + r = 0.

Therefore, our character table becomes

1/10 1/5 1/5 1/2
cl(1) cl(σ) cl(σ2) cl(τ)

χ1 1 1 1 1
χ2 1 1 1 −1
χ3 2 x y z
χ4 2 p q −z
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Using the orthogonality relations

∑

R irrep

χR(σ)χR(τ) =
g

cl(σ)
δcl(σ),cl(τ),

applying this to columns 2, 3 and 3, we get

2 + xx+ pp =
10

2
= 5

2 + yy + qq =
10

2
= 5

2 + 2zz =
10

2
= 5,

which yields
z = r = 0,

and

xx+ pp = 3

yy + qq = 3.

We also have

‖χ3‖2 = (χ3, χ3) = 1 =
4

10
+

2

10
xx+

2

10
yy,

which yields
xx+ yy = 3.

Similarly, since ‖χ3‖2 = (χ3, χ3) = 1, we get

p+ qq = 3.

Then, we have
xx+ yy = 3 = xx+ pp,

which yields
yy = pp.

From
(χ3, χ1) = 0,

we get
1

10
× 2 +

1

5
x+

1

5
y = 0,

and so
x+ y = −1.

Using x+ p = −1 we deduce that
y = p.
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From
(χ3, χ4) = 0,

we get
1

10
× 4 +

1

5
xy +

1

5
yq = 0,

which yields
xy + yq = −2.

But, y = p, so we have
xy + pq = −2.

Let us now us the regular representation. Since

χReg = χ1 + χ2 + 2χ3 + 2χ4,

we get

χReg(1) = 1 + 1 + 4 + 4 = 10

χReg(σ) = 1 + 1 + 2x+ 2y

χReg(σ2) = 1 + 1 + 2y + 2q

χReg(τ) = 1− 1 + 2× 0 + 2× 0.

From χReg(σ) = 0, we get
x+ y = −1,

and since y + q = −1, we deduce that
x = q.

From χReg(σ2) = 0, we obtain y + q = −1, which we already knew.

In summary,

x = q

y = p

p = −1− q,

and the character table becomes

1/10 1/5 1/5 1/2
cl(1) cl(σ) cl(σ2) cl(τ)

χ1 1 1 1 1
χ2 1 1 1 −1
χ3 2 q −1− q 0
χ4 2 −1− q q 0
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To complete the character table, we use the fact that

(R3)5
σ = I.

This is because

(R3)5
σ = (R3)σ5 = (R3)1 = I.

Therefore, as q = χ3(σ) = tr((R3)σ), we see that q must be a sum of fifth roots of unity. If
ζ is a primitive fifth root of unity, then as ζ5 = 1, we have ζ−1 = ζ = ζ4 and ζ3 = ζ−2. The
size of the second column of the table gives only one possibility, namely

q = ζ + ζ−1,

and then

−1− q = −1− ζ − ζ−1 = −1− ζ − ζ4 = ζ2 + ζ3 = ζ2 + ζ−2.

Finally, we get the character table (consisting of real entries):

1/10 1/5 1/5 1/2
cl(1) cl(σ) cl(σ2) cl(τ)

χ1 1 1 1 1
χ2 1 1 1 −1
χ3 2 ζ + ζ−1 ζ2 + ζ−2 0
χ4 2 ζ2 + ζ−2 ζ + ζ−1 0

It turns out that the character table can be used to find all the irreps of the group, and
we first illustrate how to do this on the group of the pentagon.

Let G act on itself by conjugation. The action of τ on cl(τ) is

τ · τ = τ

τ · (στ) = τσττ = τσ = σ4τ

τ · (σ2τ) = τσ2ττ = τσ2 = σ4τσ = σ8τ = σ3τ

τ · (σ3τ) = σ2τ

τ · (σ4τ) = στ.

Therefore, cl(τ) is invariant under the action of τ . Observe that from

τσ = σ4τ

we get τστ = σ4, and then

στ = τσ4.
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The action of σ on cl(τ) is

σ · τ = στσ−1 = στσ4 = σστ = σ2τ

σ · (στ) = σστσ−1 = σ2τσ4 = σ3τ

σ · (σ2τ) = σσ2τσ4 = σ3στ = σ4τ

σ · (σ3τ) = σσ3τσ4 = σ4στ = τ

σ · (σ4τ) = σσ4τσ4 = τσ4 = στ.

Consider C5 with basis

eτ , eστ , eσ2τ , eσ3τ , eσ4τ .

The action of R is

Rσei = eσ·i

Rτei = eτ ·i.

If
v = eτ + eστ + eσ2τ + eσ3τ + eσ4τ,

then the subspace W = span(v) is stable. Then W⊥ is a four-dimensional representation,
and by Gram-Schmidt we get the basis

z1 = v − 5eστ

z2 = v − 5eσ4τ

z3 = v − 5eσ2τ

z4 = v − 5eσ3τ .

The matrix of Rτ on this basis is 


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




and the matrix of Rσ on this basis is



0 1 0 −1
0 0 1 −1
0 0 0 −1
1 0 0 −1


 ,

because

Rσ(z4) = v − 5eτ

= v − 5(v − eστ − eσ2τ − eσ3τ − eσ4τ )

= −(v − 5eστ + v − 5eσ2τ + v − 5eσ3τ + v − 5eσ4τ )

= −(z1 + z2 + z3 + z4).
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Look at the eigenvectors of Rτ . Since τ 2 = 1, the eigenvalues are ±1. So we must have



0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0







a
b
c
d


 =




b
a
d
c


 = ±




a
b
c
d


 ,

which in the + case yields
b = a; c = d,

and in the − case
b = −a; d = −c.

In the + case, a basis of the eigenspace of Rτ is given by

(1, 1, 0, 0), (0, 0, 1, 1).

In the − case, a basis of the eigenspace of Rτ is given by

(1,−1, 0, 0), (0, 0, 1,−1).

Let’ s see whether (a, a, c, c) is an eigenvector of Rσ, for a, c 6= 0. We should have



0 1 0 −1
0 0 1 −1
0 0 0 −1
1 0 0 −1







a
a
c
c


 =




a− c
0
−c
a− c


 = λ




a
a
c
c


 ,

with λ5 = 1 (since R5
σ = I). From λa = 0, we get a = 0, and from λc = −c, we get c = 0.

It follows that no eigenvector of Rτ is an eigenvector of Rσ in the + case.

A similar computation shows that no eigenvector of Rτ is an eigenvector of Rσ in the −
case. But then, W⊥ has no one-dimensional irrep, which implies that

W⊥ = R3

∐
R4,

where R3 and R4 are 2-dimensional irreps and we can check that R4 = R3. We can find the
representations using geometry. Look at the pentagon again, and let ζ be a primitive fifth
root of unity. Then the action of R3 is given by

(R3)σ =

(
ζ 0
0 ζ−1

)
, (R3)τ =

(
0 1
1 0

)
,

and the action of R4 is given by

(R4)σ =

(
ζ2 0
0 ζ−2

)
, (R4)τ =

(
0 1
1 0

)
.

We can check that R3 and R4 are irreps and that they are not equivalent.

In general, say we know the irreducible characters of a group G. How do we promote
this to the irreps?
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Proposition 1.23. If (S, V ) is a representation of G and if we write

V =
∐

R irrep

W
(χS ,χR)
R ,

then the projection πR of V onto W
(χS ,χR)
R =

∐
(χS ,χR) W is given by

πR = deg(R)

∫

G

χR(σ)Sσdσ.

Proof. If we write

P = deg(R)

∫

G

χR(σ)Sσdσ,

then χR(σ) is a class function and
∫

G

χR(σ)Sσdσ = S[χR(σ)]

intertwines S with itself. Then, for any irrep R̃, observe that by Schur’s Lemma, we have

P | WR̃ =

{
0 if R̃ 6= R

id if R̃ = R.

By Schur’s Lemma again, P | WR = λI, with

λ =
deg(R)

deg(R)
(χR, χR) = 1.

Therefore, P | WR = I and P | WR̃ = 0 if R̃ 6= R, which shows that P is indeed the

projection onto W
(χS ,χR)
R =

∐
(χS ,χR) W .

Apply Proposition 1.23 to the regular representation. We know that

Reg =
∐

R irrep

V
deg(R)
R

with
deg(R) = (χReg, χR),

and Proposition 1.23 yields the projection

πR : VReg −→ V
deg(R)
R .

Consequently, since we know VReg and deg(R) (from the character table), we obtain VR.
Therefore, knowledge of the character table and of the regular representation yields all irreps
of the group.
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1.5 Induced Representations and Frobenius

Reciprocity

The set-up is the following:

G is a group with a Haar measure, H is a subgroup of G (not necessarily normal), and
we are given a representation (S,W ) of H. The goal is to make a representation of G from
these data.

The basic construction is to define the set of functions MapH(G,W ) given by:

MapH(G,W ) =



f : G→ W

∣∣∣∣∣∣

1. f ∈ L2(G,W )
2. f(στ) = τ−1 · f(σ),

for all σ ∈ G and all τ ∈ H



 .

The set MapH(G,W ) is a vector space which is also known under the following notation
in the literature:

(1) πG∗H(W ), called the direct image of W .

(2) indGH(W ), called the induced space of W .

Observe that

f(σ(τρ)) = f((στ)ρ)

= ρ−1f(στ)

= ρ−1τ−1f(σ)

= (τρ)−1f(σ).

We can define a G-action on πG∗H(W ) via:

(σf)(ρ) = f(σ−1ρ), f ∈ πG∗H(W ), σ, ρ ∈ G.

Let’s check that this is indeed an action. We have

((στ)(f))(ρ) = f((στ)−1ρ)

= f(τ−1σ−1ρ)

= (τf)(σ−1ρ)

= (σ(τf))(ρ),

as required.

The representation of G whose space is MapH(G,W ) = πG∗H(W ) is the representation
induced by (S,W ) on G (from H). This representation is denoted by πG∗H(S).
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We can also go backwards. Given any representation (R, V ) of G, the restriction of R to
H yields a representation of H with representation space called representation of G restricted
to H. The notation for this representation is

π∗GH (R) = resGH(R),

and it is also called the inverse image of (R, V ) on H.

Proposition 1.24. Given any group G and two subgroups K,H of G such that K ⊆ H ⊆ G,
we have (transitivity of induction)

πG∗H(πH∗K) = πG∗K ,

and similarly (transitivity of restriction)

π∗HK (π∗GH ) = π∗GK .

Proof. The second statement is a tautology.

For the first statement, pick a K-space W , and consider

MapH(G,MapK(H,W )) = πG∗H(πH∗K).

Pick f ∈ MapH(G,MapK(H,W )) and σ ∈ G. Then

f(σ) ∈ MapK(H,W ).

If ρ ∈ K, then
f(σ)(τρ) = ρ−1(f(σ)(τ)). (∗)

Since f ∈ MapH(G,−), we have

f(σθ) = θ−1f(σ), θ ∈ H,

and since f(σ) ∈ MapK(H,W ), we get

(τ−1f(σ))(θ) = f(σ)(θτ).

If we set θ = 1, then
(τ−1f(σ))(1) = f(σ)(τ).

Then, substituting the left-hand side for the right-hand side in (∗), we obtain

f(σ)(τρ) = ρ−1(τ−1f(σ))(1)) = (τρ)−1(f(σ)(1)).

If we set τ = 1, we obtain
f(σ)(ρ) = ρ−1(f(σ)(1)). (∗∗)
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Define Θ: MapH(G,MapK(H,W ))→ MapK(G,W ) such that

Θ(f)(σ) = f(σ)(1), σ ∈ G.
Observe that (∗∗) implies that

ρ−1Θ(f)(σ) = f(σ)(ρ), ρ ∈ K. (a)

We would like to prove that

Θ(f)(σρ) = ρ−1Θ(f)(σ), σ ∈ G, ρ ∈ K.
For this, note that by (∗∗),

Θ(f)(σρ) = f(σρ)(1) = (ρ−1f(σ))(1) = f(σ)(ρ). (b)

Then, using (a) and (b), we get

Θ(f)(σρ) = f(σ)(ρ) = ρ−1Θ(f)(σ)

as required. This shows that Θ(f) ∈ MapK(G,W ).

We can also define an inverse map and show that Θ and this maps are mutual inverses
(DX).

Take H = {1}, and take the representation to be the identity representation I from H
to C∗, where 1 7→ 1. In this case, the representation space is

Map1(G,C) = L2(G,C),

and the action is given by
(σf)(θ) = f(σ−1θ).

Therefore, we get the regular representation and

πG∗1(I) = RegG.

Corollary 1.25. If H ⊆ G, then

πG∗H(RegH) = RegG.

Proof. By the remark just before Corollary 1.25,

RegH = πH∗1(I),

and by Corollary 1.25,

πG∗H(RegH) = πG∗H(πH∗1(I))

= πG∗1(I)

= RegG,

as required.
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Proposition 1.26. (Adjointness of π∗ and π∗) Say H is a subgroup of G, W is a repre-
sentation space of H, and V is a representation space of G. Then, there exists a natural
isomorphism

HomH(π∗GH (V ),W ) ≈ HomG(V, πG∗H(W )),

where the left-hand side is the set of all linear maps θ such that

θ(hv) = hθ(v), h ∈ H, v ∈ V,

and mutatis mutandis for the right-hand-side.

Proof. If ϕ ∈ HomG(V,MapH(G,W )), then ϕ(v) ∈ MapH(G,W ) and

ϕ(σv) = σϕ(v).

It follows that
ϕ(σv)(τ) = (σϕ(v))(τ) = ϕ(v)(σ−1τ). (†)

We define the map Θ: HomG(V,MapH(G,W ))→ HomH(π∗GH (V ),W ) by

Θ(ϕ)(v) = ϕ(v)(1), v ∈ V.

We need to check that Θ(ϕ) ∈ HomH(π∗GH (V ),W ), i.e. that

Θ(ϕ)(hv) = h(Θ(ϕ)(v)), h ∈ H,

or equivalently
ϕ(hv)(1) = h(ϕ(v)(1)), h ∈ H.

As ϕ(v) ∈ MapH(G,W ), we have

ϕ(v)(σh) = h−1(ϕ(v)(σ)).

But, as ϕ ∈ HomG(−,−),
ϕ(τv) = τϕ(v),

so
ϕ(τv)(σ) = (τϕ(v))(σ) = ϕ(v)(τ−1σ), τ ∈ G.

If we let σ = 1 and τ = h ∈ H in the above equation, we get

ϕ(hv)(1) = ϕ(v)(h−1) = ϕ(v)(1 · h−1) = h(ϕ(v)(1)),

as required.

Next, we define Ψ: HomH(π∗GH (V ),W ) → HomG(V,MapH(G,W )) so that for every
ξ : π∗GH (V )→ W ,

Ψ(ξ)(v)(σ) = ξ(σ−1v), v ∈ V, σ ∈ G.
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Then we can check that Θ and Ψ are mutual inverses. Indeed, we have

(ΘΨ)(ξ)(v) = Θ(Ψ(ξ))(v)

= Ψ(ξ)(v)(1)

= ξ(1−1v)

= ξ(v),

and

(ΨΘ)(ϕ)(v)(σ) = Ψ(Θ(ϕ))(v)(σ)

= Θ(ϕ)(σ−1v)

= ϕ(σ−1v)(1)

= ϕ(v)(σ),

using (†) in the last step.

Say (S,W1) and (T,W2) are representations for H, and consider HomH(W1,W2). This
space consists of all linear maps ϕ : W1 → W2 such that

ϕ(σw1) = σϕ(w1), w1 ∈ W1, σ ∈ H.

However, in terms of our representations

σw1 = Sσ(w1)

σϕ(w1) = Tσ(ϕ(w1)),

so the condition ϕ(σw1) = σϕ(w1) says that

ϕ(Sσ(w1)) = Tσ(ϕ(w1)),

namely that ϕ is an intertwiner of S and T .

Pick f ∈ MapH(G,W ), and let R be a system of left coset representatives for H in G.
This measn that every σ ∈ G has the form

σ = rh,

where r ∈ R is some coset representative and h ∈ H (the axiom of choice is needed to define
R if G and H are infinite). Since

f(σ) = f(rh) = h−1f(r),

we see that f is determined on G if we know f(r) for all r ∈ R. So, f belongs to the product

∏

r∈R
W = WR.
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If R is finite, say R = {r1, . . . , rt}, then f ∈ MapH(G,W ) is a t-tuple (f(r1), . . . , f(rt)) ∈ W t.
The action of G is given by

(σf)(τ) = f(σ−1τ), σ, τ ∈ G.

We would like to know how an element σ ∈ G acts on
∏

r∈RW . We have σ = ρh for some
ρ ∈ R and some h ∈ H. For any r ∈ R, we have

(σf)(r) = f(σ−1r) = f(h−1ρ−1r).

Now, ρ−1r = r(ρ)h̃, for some coset representative r(ρ) ∈ R and some h̃ ∈ H, so if f(r) ∈ Wr,
then f(ρ−1) ∈ Wr(ρ). We can write

h−1ρ−1r = (h−1ρ−1rh)h−1,

and we get
f(h−1ρ−1r) = hf(h−1ρ−1rh) ∈ Wh−1ρ−1rh.

This shows that σ = ρh permutes the copies of W . Note also that

dim(MapH(G,W )) = (G : H)dim(W ).

Let us now consider the isomorhism of Proposition 1.26 in the special case where W is a
uniirrep of H and V is a uniirrep of G, with

1. dim(W ) finite.

2. dim(V ) finite.

(The above conditions are satisfied if G is finite or compact.)

3. (G : H) is finite.

Then,

MapH(G, V ) ≈
∏

r∈R
W =

∐

U irrep

UnU ,

where nU is the number of times that U appears. Then,

HomG(V,MapH(G, V )) ≈ HomG

(
V,
∐

U irrep

UnU

)
≈
∏

U irrep

(HomG(V, U))nU .

However, recall that HomG(V, U) consists of the intertwiners of V and U , so if U and V are
not equivalent, then by Schur’s lemma,

HomG(V, U) = (0),
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and if U and V are equivalent, then, V appears nU times in MapH(G, V ).

Similarly,

π∗GH (V ) ≈
∐

T irred

TmT ,

where mT is the number of times that T appears in π∗GH (V ), and we have

HomH(π∗GH (V ),W ) ≈ HomH

( ∐

T irred

TmT ,W

)
≈
∏

T irred

(HomH(T,W ))mT .

By Schur’s Lemma again, if T and W are inequivalent, then

HomH(T,W ) = (0),

else if T and W are equivalent then T appears mT times in π∗GH (V ). But then, the isomor-
phism

HomH(π∗GH (V ),W ) ≈ HomG(V, πG∗H(W ))

implies that the number of times that W appears in π∗GH (V ) is equal to the number of times
that V appears in πG∗H(W ), which we state as the following theorem:

Theorem 1.27. (Weak Frobenius Reciprocity) Given two groups H ⊆ G, if (G : H) is finite
and if the irreps of H and G are finite-dimensional, then for any irrep W of H and any
irrep V of G, the number of times that Wappears in π∗GH (V ) is equal to the number of times
V that appears in πG∗H(W ).

Given two groups G and H with H ⊆ G, if S is a representation of H and χS is its
character, then a (messy) computation shows that

χπ∗H(S)(ξ) =
∑

ρ∈R
ρ−1ξρ∈H

χS(ρ−1ξρ) = (G : H)

∫

I(H,ξ)

χS(σ−1ξσ)dσ, (∗)

where

(1) R is a system of coset representatives of H in G, and

(2) I(H, ξ) = {σ ∈ G | σ−1ξσ ∈ H}.

Equality of these two formulae come from the fact that if

σ = ρh, ρ ∈ R, h ∈ H

then
σ−1ξσ = h(ρ−1ξρ)h.
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Therefore, σ ∈ I(H, ξ) iff ρ ∈ R and ρ−1ξρ ∈ H. Then, we have

∫

I(H,ξ)

χS(σ−1ξσ)dσ =
1

g

∑

σ∈I(H,ξ)
χS(σ−1ξσ)

=
1

g

∑

h∈H

∑

ρ∈R
ρ−1ξρ∈H

χS(h−1ρ−1ξρh)

=
1

g

∑

h∈H

∑

ρ∈R
ρ−1ξρ∈H

χS(ρ−1ξρ)

=
h

g

∑

ρ∈R
ρ−1ξρ∈H

χS(ρ−1ξρ),

so
∑

ρ∈R
ρ−1ξρ∈H

χS(ρ−1ξρ) =
g

h
=

∫

I(H,ξ)

χS(σ−1ξσ)dσ,

as claimed.

Sketch of proof for equation (∗). We choose a convenient basis to make the computation of
the matrices and we compute their traces.

Recall that π∗H(S) acts on MapH(G,W ) where W is the representation space of S. We
know that

MapH(G,W ) =
∐

ρ∈R
W ;

write ρW for the copy of W corresponding to the coset ρH, with ρ ∈ R. Choose a basis
for W , say e1, . . . , et; then “repeat these” indexing the repetitions by ρ. The basis consists
of pairs (ρ, ej), with ρ ∈ R and j = 1, . . . , t. The “mess” comes from explicating the action
of σ ∈ G, where we write σ = ρh, and then determining the diagonal elements of the
matrix.

Say f ∈ L2
cl(H), we want to make π∗f ∈ L2

cl(G). Inspired by the above formula, we set

(π∗f)(ξ) = (G : H)

∫

I(H,ξ)

f(σ−1ξσ)dσ.
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Observe that using the invariance of the Haar integral, we have

(π∗f)(θ−1ξθ) = (G : H)

∫

I(H,θ−1ξθ)

f(σ−1θ−1ξθσ)dσ

= (G : H)

∫

I(H,θ−1ξθ)

f((θσ)−1ξθσ)dσ

= (G : H)

∫

I(H,ξ)

f(η−1ξη)dη

= (π∗f)(ξ).

This means that (π∗f)(ξ) is a class function. Given a class function g ∈ L2
cl(G), we let π∗(g)

denote the restriction of f to H.

Theorem 1.28. (Frobenius Reciprocity) Say H is a subgroup of G, of finite index. Given
any f ∈ L2

cl(H) and any g ∈ L2
cl(G), we have

(π∗g, f)H = (g, π∗f)G.

Thus, the two linear maps π∗ : L2
cl(G) → L2

cl(H) (restriction) and π∗ : L2
cl(H) → L2

cl(G)
(induction) are adjoint maps.

Proof. Any class function on H is a linear combination of characters of H and characters of
H are linear combinations of irreducible characters. The same is true for the class functions
of G. Both sides of the Frobenius equation are bilinear, therefore we only need to check the
adjunction for f = χS and g = χR, where S is an irrep of H and R is an irrep of G. We have

π∗g = π∗χR = χπ∗R

π∗f = π∗χS = χπ∗S,

so

(π∗g, χS)H = (χπ∗R, χS)H = number of times S appears in π∗R

and

(χR, π∗f)G = (χR, χπ∗S)G = number of times R appears in π∗S.

By the Weak Frobenius Reciprocity, the right-hand sides are equal, which establishes the
Frobenius reciprocity equation.

We now return to finite groups and show that the degree of any irrep of G divides the
order of G. The proof makes use of some basic properties of rings, namely of the integral
closure of a ring.

The set-up is this: We have an integral domain A and some commutative ring B such
that A ⊆ B.
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Definition 1.11. (Emmy Noether, 1921) An element b ∈ B is integral over A if there is a
monic polynomial

P (x) = xn + α1x
n−1 + · · ·+ αn,

with α1, . . . , αn ∈ A, so that P (b) = 0. Let

IntA(B) = {ξ ∈ B | ξ integral over A}.

The following facts hold:

(1) The sum of two integral elements of B is again integral.

(2) The product of two integral elements of B is again integral.

(3) If A ⊆ C ⊆ B and if b ∈ B is integral over C and all the coefficients of the polynomial
for b (over C) are themselves integral overA, then b is integral over A.

Given an integral domain A, denote by K = Frac(A) the field of fractions of A. For
example

1. If A = Z, then K = Q.

2. If A = C[x], then K = C(x) = {f/g | f, g ∈ C[x], g 6= 0}.

3. If A = C[x1, . . . , xn], then K = C(x1, . . . , xn) = {f/g | f, g ∈ C[x1, . . . , xn], g 6= 0}.

A ring is a UFD iff every element of A is uniquely a product of irreducible elements, up
to order and up to a unit. All the above examples are UFD’s.

Proposition 1.29. If A is a UFD then

IntA(Frac(A)) = {ξ ∈ Frac(A) | ξ integral over A} = A.

We say that A is integrally closed.

Proof. Say ξ = a/b ∈ Frac(A) satisfies a monic polynomial with coefficients in A,

P (x) = xn + α1x
n−1 + · · ·+ αn.

Since A is a UFD, we may assume that no irreducible factor belongs to both a and b. From

an

bn
+ α1

an−1

bn−1
+ · · ·+ αn = 0,

multiplying both sides by bn, we get

−an = b(α1a
n−1 + · · ·+ αnb

n−1).

However, in a UFD, an irreducible element p that divides a product αβ divides one of the
factors. Therefore, if p is irreducible and if p divide b, then p divides an, and thus p divides
a. This contradicts the fact that a and b have no irreducible factor in common, and so b has
no irreducible factor, which implies that b is unit. Then b−1 ∈ A, and a/b ∈ A.



1.5. INDUCED REPRESENTATIONS AND FROBENIUS RECIPROCITY 73

Next, we need the group algebra C[G], defined by

C[G] =

{
formal finite sums

∑

σ∈G
a(σ)σ | a(σ) ∈ C

}
.

This is a complex vector space and we define a (noncommutative) multiplication on C[G]
via (∑

σ∈G
a(σ)σ

)(∑

τ∈G
b(τ)τ

)
=
∑

θ∈G

(∑

στ=θ

a(σ)b(τ)

)
θ.

The integral group algebra Z[G] is defined in a similar fashion.

Proposition 1.30. If G is finite group, an element
∑

σ∈G a(σ)σ ∈ C[G] is in the center
Z(C[G]) of C[G] iff the function σ 7→ a(σ) is a class function. Moreover, a basis of Z(C[G])
consists of the elements

εC =
∑

σ∈C
σ,

where C is a conjugacy class of G. Therefore

dimC(Z(C[G])) = conj(G) = #(irreps of G).

Proof. Let α =
∑

σ∈G a(σ)σ, then α ∈ Z(C[G]) iff

ατ = τα, for all τ ∈ G

iff
τ−1ατ = α, for all τ ∈ G.

But,

τ−1ατ =
∑

σ∈G
a(σ)τ−1στ,

so α = τ−1ατ iff
a(τ−1στ) = a(τ), for all τ ∈ G,

which shows that a is a class function. Write a(C) for the common value of a on the
conjugacty class C. Then, α ∈ Z(C[G]) iff

α =
∑

C

(∑

σ∈C
a(C)σ

)

=
∑

C

a(C)

(∑

σ∈C
σ

)

=
∑

C

a(C)εC .

Therefore, the εC span Z(C[G]), and because conjugacy classes are disjoint, they are linearly
independent.
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Proposition 1.31. Say α =
∑

σ∈G a(σ)σ ∈ Z(C[G]), and a(σ) is integral over Z. Then, α
itself is integral over Z.

Proof. By Proposition 1.30, we have

α =
∑

C

a(C)εC .

If all εC are integral over Z, then α is integral over Z. The εC form a basis for Z(C[G]) and
they are contained in a finitely generated module over Z, namely the set of all elements of
the form {∑

C

n(C)εC | nC ∈ Z
}
.

Emmy Noether proved that such elements are indeed integral over Z.

Theorem 1.32. If G is a finite group and d is the degree of any irrep of G, then d divides
the order of G.

Proof. Consider the character χR of any representation R of G and write

ξ =
∑

σ∈G
χR(σ)σ.

Since each σ satisfies σn = 1, for some n, we have

Rn
σ = Rσn = R1 = I,

which implies that the eigenvalues of Rσ are roots of unity, and thus integral over Z. But
χR(σ) is the sum of the eigenvalues of Rσ, so it is also integral over Z. Therefore, by the
previous two Propositions, ξ is integral over Z.

Now, let χ = χR be the character of an irreducible representation R. When we apply R
to ξ we get

R(ξ) =
∑

σ∈G
χR(σ)Rσ,

and R(ξ) is integral over Z because ξ is, and because R is a homomorphism (R(ξ) and ξ
are satisfy the same polynomial). But, R(ξ) = R[χ], the χ-weighted automorphism from R.
Since R is irreducible, by Schur’s Lemma

R(ξ) = xI

for some x ∈ C. From the above discussion, x is integral over Z. By previous work,

x =
#(G)

d
(χR, χR),
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and because R is irreducible, (χR, χR) = 1, so

x =
#(G)

d

is integral over Z. Since Z is a UFD, it is integrally closed, so #(G)/d ∈ Z, and d must
divide #(G).

Here are a few more facts stated without proof.

1. If Z(G) denotes the center of G and if d is the degree of any irrep of G, then d divides
(G : Z(G)).

2. Say A is a normal, abelian subgroup of G. Then d (as in (1)) divides (G : A).

3. Artin Induction Theorem (1920). Every rational combination of irreducible characters
of G, (

∑
R irrep a(R)χR, with a(R) ∈ Q), is a sum (with coefficients in Q) of characters

induced from cyclic subgroups of G.

4. Brauer Induction Theorem (1948). Every irreducible character of G is a linear com-
bination with integral coefficients of characters induced by elementary subgroups of
G

A subgroup H of G is elementary if H = P × C, where P is a p-group (P has order
ph, for some prime p) and C is cyclic of order prime to p. (A shorter proof was given
later in the 1950’s by Brauer and Tate.)

5. Converse of Brauer’s Theorem, J. Green. Let F be a family of subgroups of G, and
assume that each irreducible character of G is an integral linear combination of induced
characters from subgroups in F . Then, F contains a conjugate of every elementary
subgroup of G.

Proofs of most of the above results, as well as a masterly presentation of the linear repre-
sentation of finite groups, are found in Serre [13].

1.6 Lie Groups and Lie Algebras

A Lie group G is a topological space which is a smooth manifold and a topological group,
which means that group multiplication and inverse are smooth functions.

Examples

1. (a) G = GL(n,R), the group of n× n real invertible matrices.

(b) G = GL(n,C), the group of n × n complex invertible matrices. In the special
case n = 1, Gm,R = GL(1,R) = R∗, and Gm,C = GL(1,C) = C∗.
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2. Ga(Rn), the group of translations by a fixed vector in Rn, and Ga(Cn), the group of
translations by a fixed vector in Cn.

3. Let V be a complex vector space of dimension n with a Hermitian inner product
denoted by (−,−). Let U(n) be group given by

U(n) = {σ ∈ GL(n,C) | (σ(x), σ(y)) = (x, y), x, y ∈ V }.

The group U(n) is the unitary group. The unitary group is a closed subgroup of
GL(n,C), and the implicit function theorem can be used to find smooth charts on
U(n), so U(n) is a Lie group. A matrix σ belongs to U(n) iff

σσ∗ = σ∗σ = I,

where σ∗ = (σ)> = (σ>). The subgroup of U(n) given by

SU(n) = {σ ∈ U(n) | det(σ) = 1}

is again a Lie group. In the special case when n = 1, we have

U(1) = {λ ∈ C∗ | λ−1 = λ} = {λ ∈ C∗ | |λ| = 1},

so U(1) is the set of points on the unit circle, S1, and SU(1) = {1}.

We have the exact sequence

0 −→ SU(n) −→ U(n)
det−→ S1 −→ 0.

In Rn, if (−,−) is a Euclidean inner product (a symmetric bilinear form which is positive
definite), we define O(n) and SO(n) by

O(n) = {σ ∈ GL(n,R) | (σ(u), σ(v)) = (u, v), u, v ∈ Rn},

and
SO(n) = {σ ∈ O(n) | det(σ) = 1}.

We have σ ∈ O(n) iff
σ−1 = σ>.

Both O(n) and SO(n) are Lie groups.

If [−,−] is a bilinear skew-symmetric form ([v, u] = −[u, v]) on Rn which is nondegenerate
(which means that if [u, v] = 0 for all v, then u = 0), then n must be even, and we define
the symplectic group by

Sp(n) = {σ ∈ GL(n,R) | [σ(u), σ(v)] = [u, v], u, v ∈ Rn}.
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It is easy to see that the adjoint of σ with respect to [−,−] is −σ>, so σ ∈ Sp(n) iff

σ−1 = −σ>.

Observe that if σ ∈ Sp, then iσ ∈ U(n).

Every bilinear form ϕ on Rn is given by an n× n matrix B, where

ϕ(x, y) = x>By.

The bilinear form ϕ is symmetric iff B is a symmetric matrix, and nondegenerate iff B is
invertible. The bilinear form ϕ is skew-symmetric iff B> = −B. In the symmetric case, the
symmetric matrix B can be diagonalized by an orthonormal basis Q, as

B = QDQ>,

where D is a real diagonal matrix

D =




λ1 0 . . . 0 0
0 λ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . λn−1 0
0 0 . . . 0 λn



.

With respect to the orthonormal basis given by Q,

B(x, y) =
n∑

=1

λixiyi.

If B is a nondegenerate skew-symmetric matrix, it can be block-diagonalized by an orthonor-
mal basis Q, as

B = QDQ>,

where D is a real skew-symmetric matrix of the form

D =




0 −λ1 . . . 0 0
λ1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . −λn
0 0 . . . λn 0



.

Say X and Y are two manifolds, with X connected and let ϕ : X → Y be a smooth map
between them. We say that ϕ is a covering map iff for every y ∈ Y , there is some open
subset U ⊆ Y with y ∈ U , so that ϕ−1(U) is a disjoint union of open sets Vα ⊆ X, and
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ϕ | Vα is a diffeomorphism from Vα onto U . From an intuitive point of view, X locally over
y “looks like a stack of pancakes.”

Example. X = R, Y = S1 = U(1), and ϕ : R→ S1 is given by

ϕ(x) = e2πix.

Consider y = 1, take a small U = (e−2πiε, e2πiε), then

ϕ−1(U) = {x ∈ R | e2πix ∈ U} =
⋃

n∈Z
(−2πε+ n2π, 2πε+ n2π).

Here are a few fundamental facts:

(1) Say ϕ : X → G is a covering map with X connected and G a topological group or a
Lie group. For any e ∈ X lying over the identity element 1G of G (i.e. ϕ(e) = 1G) ,
there exists a unique group structure on X with e as its identity element and ϕ is a
homomorphism. Moreover,

Kerϕ ⊆ Z(G),

where Z(G) denotes the center of G. Also, X is a Lie group if G is.

(2) Partial converse of (1). Say Y is a connected topological group or a Lie group, if Γ
is a discrete subgroup of the center of X, then X/Γ has has a unique topology (or
differentiable structure) so that the homomorphism ϕ : X → X/Γ is a covering map.

(3) If G is a connected topological group (or a Lie group), write G̃ for its universal cover.
If Z(G) is discrete then

G̃/Z(G̃) ' G/Z(G),

G̃ is a topological group (resp. a Lie group), Z(G̃) is discrete and

(a) Z(G̃/Z(G̃)) = Z(G/Z(G)) = (1)

(b) π1(G, 1) is a subgroup of Z(G) and π1(G/Z(G), 1) = Z(G).

Nomenclature (from algebraic geometry).

If G −→ H is a covering map, with G connected and Z(G) discrete, we say that G is
isogenous to H. The smallest equivalence so generated yields the isogeny class of G.

If X is a smooth manifold of dimension n and if p ∈ X is any point on X, recall that two
curves γ1 : (−ε, ε) → X and γ2 : (−ε, ε) → X are equivalent iff for some chart ϕ : U → Rn

with p ∈ U , we have
(ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0).

This equivalence relation does not depend on the choice of the chart (use the transition
functions). The set of all equivalence classes of curves through p is the tangent space, Tp(X),
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to X at p. It is a vector space of dimension n. If G is a Lie group, the tangent space T1(G)
at the identity element plays a special role. The tangent space T1(G) is also denoted by g.

Given two normed vector spaces X and Y , for any function f : X → Y , for any x ∈ X,
we say that f is differentiable at x if there is a continuous linear map L : X → Y such that

f(x+ h) = f(x) + L(h) + o(‖h‖),

for all h ∈ X, and where o(‖h‖) is a small vector with respect to h, which means that

lim
‖h‖7→0

o(‖h‖)
‖h‖ = 0.

Observe that we can write

f(x+ h)− f(x)

‖h‖ = L

(
h

‖h‖

)
+
o(‖h‖)
‖h‖ ,

which shows that as h 7→ 0, the linear map L is uniquely determined on vectors of norm 1,
and thus, it is unique. We write

L = Df(x), or L = Dfx.

If X and Y are finite dimensional with dim(X) = q and dim(Y ) = p, then with respect to
bases of X and Y the function f is given by q functions fi(x1, . . . , xp), and the linear map
Df(x) is given by the p× q Jacobian matrix

A = J(f)(x) =

(
∂fi
∂xj

(x)

)
.

Given two smooth manifolds X and Y and a smooth function f : X → Y , for any x ∈ X,
we define the tangent map of f at x (or differential map of f at x), dfx, as the linear map
dfx : Tx(X) → Tf(x)Y defined as follows: for every tangent vector v ∈ TxX given as some
equivalence class [γ] of curves in X through x, we set

dfx(v) = [f ◦ γ],

the equivalence class [f ◦ γ] of curves in Y through f(x).

In particular, if G and H are Lie groups and if f : G → H is a homomorphism of Lie
groups (a group homomorphism which is also a smooth map), then we get a linear map
df1 : g→ h.

Fact. If G is a connected Lie group and if U is any connected neighbothood of 1G, then
the group generated by U is G (DX). As a corollary, if G and H are Lie groups and G
is connected, any homomorphism f : G → H is determined by its restriction to any open
neighborhood of 1G.
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Next, we define the adjoint representation of a Lie group. Given a Lie group G, for any
σ ∈ G, let Iσ : G→ G be the inner automorphism given by

Iσ(τ) = στσ−1, τ ∈ G.
We get a homomorphism, σ 7→ Iσ, from G to Aut(G). The derivative of Iσ at 1G is a linear
map

d(Iσ)1 : g→ g,

and since Iσ is an automorphism, d(Iσ)1 ∈ Aut(g) = GL(g). Therefore, we obtain a homo-
morphism σ 7→ d(Iσ)1 from G to GL(g), namely a representation of G. Is is customary to
denote d(Iσ)1 by Adσ, and to denote the above representation called the adjoint representa-
tion of G by

Ad: G→ GL(g),

with
Ad(σ) = Adσ.

If θ : G→ H is a Lie group homomorphism, then for all σ, g ∈ G, we have

Iθ(σ)(θ(g)) = θ(σ)θ(g)θ(σ)−1

= θ(σgσ−1)

= θ(Iσ(g)),

so that the following diagram commutes:

G
θ //

Iσ
��

H

Iθ(σ)
��

G
θ
// H.

Taking differentials, we get the commutative diagram

g
dθ1 //

Adσ

��

h

Adθ(σ)
��

g
dθ1
// h.

Now, the derivative dAd1 : g→ g of Ad at 1 is a linear map denoted by ad, with

ad: g→ End(g),

and for every X ∈ g, the map ad(X) is an arbitrary endomorphism in End(g). By taking
derivatives in the diagram above, we get the commutative diagram

g
dθ1 //

ad(X)

��

h

ad(dθ1(X)

��
g

dθ1
// h,
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which says that
dθ1(ad(X)(Y )) = ad(dθ1(X))(dθ1(Y )), X, Y ∈ g. (†)

We write
[X, Y ] = ad(X)(Y ),

and call [X, Y ] the Lie bracket of X and Y . Then equation (†) says that

dθ1([X, Y ]) = [dθ1(X), dθ1(Y )], X, Y ∈ g. (††)

Fundamental Fact. If G and H are Lie groups and if G is connected, then every homo-
morphism h : G→ H is determined by its differential dθ1 : g→ h.

The above implies that the map θ 7→ dθ1 from HomLie(G,H) to HomVec(g, h) is injective.
Moreover, if G is simply connected , then a necessary and sufficient condition for the above
map to be surjective is that if f ∈ HomVec(g, h), then

f([X, Y ]) = [f(X), f(Y )], X, Y ∈ g.

Remark: We proved the necessity of this condition.

The above considerations motivate the following definition:

Definition 1.12. A lie algebra A (over a field k) is an algebraic structure such that:

(1) A is vector space (over k).

(2) There is a bilinear map, [−,−] : A×A → A (the Lie bracket), so that

(a) [X,X] = 0

(b) (Jacobi identity)

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

Property 2(a) and bilinearity yield the identity

[Y,X] = −[X, Y ].

The tangent space g = T1G of a Lie group at the identity is a Lie algebra. The Lie
algebra of a Lie group G is also denoted by L(G), or Lie(G). We will determine explicitly
g = Lie(G) and its Lie brackets for several familiar groups G (GL(n,R), SL(n,R), O(n),
SO(n), U(n), SU(n)).

We begin with G = GL(n,R). In this case, T1(G) = gl(n,R) = Mn(R), the vector space
of all n× n real matrices. Since the inner automorphism Iσ is given by τ 7→ στσ−1, we see
that Adσ = d(Iσ)1 is conjugation by σ:

Adσ(X) = σXσ−1.
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Let γ be a curve in GL(n,R) passing through 1G for t = 0 and let X = γ′(0). The
curve γ is given by an invertible n×n matrix whose entries are differentiable functions, and
γ(0) = I. We have

[X, Y ] = ad(X)(Y ) =
d

dt
Ad(γ(t))

∣∣∣
t=0

(Y )

=
d

dt
(γ(t)Y γ(t)−1)

∣∣∣
t=0

= γ(0)
d

dt
(Y γ(t)−1)

∣∣∣
t=0

+ γ′(0)Y γ−1(0)

= Y
d

dt
(γ(t)−1)

∣∣∣
t=0

+XY.

On the other hand, from γ(t)−1γ(t) = I, we get

d

dt
(γ(t)−1)γ(t) + γ(t)−1γ′(t) = 0,

which yields
d

dt
(γ(t)−1) = −γ(t)−1γ′(t)γ(t)−1.

For t = 0, we obtain
d

dt
(γ(t)−1)

∣∣∣
t=0

= −Iγ′(0)I = −X.

Therefore,
[X, Y ] = Y (−X) +XY = XY − Y X,

which shows that the Lie bracket in gl(n,R) is the commutator operator for matrices. As
a consequence, if G is a closed subgroup of GL(n,R), then g is a subspace of gl(n,R), and
since 2(a) and 2(b) hold for [−,−] in gl(n,R), it also holds in g, which implies that g is a
Lie algebra.

Given two Lie algebras g and h, a Lie algebra homomorphism is a linear map ϕ : g → h
such that

[ϕ(X), ϕ(Y )]h = ϕ([X, Y ]g), X, Y ∈ g.

If G is a connected and simply connected Lie group, then there is an isomorphism

HomLie−gr(G,GL(n,C)) ∼= HomLie−alg(g, gl(n,C)),

that is, a bijective correspondence between Lie group representations of G and Lie algebra
representations of g. On the right-hand side, a linear map ψ : g→ gl(n,C) has the property
that

ψ([X, Y ])(v) = X(Y (v))− Y (X(v)), X, Y ∈ g, v ∈ Cn.

Examples of Lie Algebras
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(1) sl(n,R)

Pick any basis (e1, . . . , en) of Rn, and let A ∈ GL(n,R). We have

(
n∧
A)(e1 ∧ · · · ∧ en) = A(e1) ∧ · · · ∧ A(en) = det(A)(e1 ∧ · · · ∧ en). (†)

Since A ∈ SL(n,R) iff det(A) = 1, we have

A(e1) ∧ · · · ∧ A(en) = e1 ∧ · · · ∧ en.

Let At be a curve in SL(n,R) passing through I such that A0 = I and A′(0) = X ∈ sl(n,R).
If we differentiate (†) and evaluate at t = 0, we get

n∑

j=1

A(e1) ∧ · · · ∧ A(ej−1) ∧ A′(0)(ej) ∧ A(ej+1) ∧ · · · ∧ A(en) = 0

and then
n∑

j=1

e1 ∧ · · · ∧ ej−1 ∧X(ej) ∧ ej+1 ∧ · · · ∧ en = 0.

But, X(ej) is the j-column of the matrix X, so X(ej) =
∑n

i=1Xijei, and then

0 =
n∑

j=1

e1 ∧ · · · ∧ ej−1 ∧X(ej) ∧ ej+1 ∧ · · · ∧ en

=
n∑

i=1

n∑

j=1

e1 ∧ · · · ∧ ej−1 ∧Xijei ∧ ej+1 ∧ · · · ∧ en

=

( n∑

i=1

Xii

)
e1 ∧ · · · ∧ en

= tr(X)(e1 ∧ · · · ∧ en),

which implies that
tr(X) = 0.

In conclusion,
sl(n,R) = {X ∈ Mn(R) | tr(X) = 0}.

A similar computation shows that

sl(n,C) = {X ∈ Mn(C) | tr(X) = 0}.

(2) Let Q be any symmetric bilinear form which is nondegenerate, and let

O(Q) = {A ∈ GL(n,R) | Q(Au,Av) = Q(u, v), u, v ∈ Rn}.



84 CHAPTER 1. GROUP REPRESENTATIONS

In order to find out what o(Q) is, we consider a curve At in O(Q) though I so that A(0) = I
and A′(0) = X. If we differentiate the equation

Q(Au,Av) = Q(u, v)

and evaluate at t = 0, we get

Q(A(0)u,Xv) +Q(Xu,A(0)v) = 0,

that is,
Q(u,Xv) +Q(Xu, v) = 0, u, v ∈ Rn.

If the quadratic form Q is defined by the invertible symmetric matrix P , so that Q(u, v) =
u>Pv, then the above condition becomes

u>PXv + u>X>Pv = 0, u, v ∈ Rn,

which implies that
PX +X>P = 0.

Therefore,
o(Q) = {X ∈ Mn(R) | PX +X>P = 0}.

In particular, if Q is the standard Euclidean inner product, for which P = I, we get

o(n,R) = {X ∈ Mn(R) | X> = −X},

the space of skew-symmetric matrices. For real matrices, X> = −X implies that tr(X) = 0,
so

so(n,R) = o(n,R) = {X ∈ Mn(R) | X> = −X}.

(3) Let Q be any skew symmetric nondegenerate bilinear form on R2m and consider

Sp(Q) = {A ∈ GL(2m,R) | Q(Au,Av) = A(u, v), u, v ∈ R2m}.

If Q is given by a skew symmetric matrix P , so that Q(u, v) = u>Pv, then by taking the
derivative of

Q(Au,Av) = Q(u, v)

as in case (2), we get the same condition

X>P + PX = 0,

and
sp(Q) = {X ∈ M2m(R) | PX +X>P = 0}.

(4) Let Q be a Hermitian form on Cn. Then

U(Q) = {A ∈ GL(n,C) | Q(Au,Av) = Q(u, v), u, v ∈ Cn}.
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If Q is given by the Hermitian matrix P , then

Q(u, v) = v∗Pu = u∗Pv = Q(v, u).

As before, the derivative of the condition Q(Au,Av) = Q(u, v) yields

Q(u,Xv) +Q(Xu, v) = 0, u, v ∈ Cn.

In terms of the matrix P , this is

v∗X∗Pu+ v∗PXu = 0,

which yields
X∗P + PX = 0.

Therefore,
u(Q) = {X ∈ Mn(C) | PX +X∗P = 0}.

In the standard case, P = I, so

u(n) = {X ∈ Mn(C) | X∗ = −X}.

Since SU(n) = U(n) ∩ SL(n,C), we have

u(n) = {X ∈ Mn(C) | X∗ = −X, tr(X) = 0}.

Unlike the real case, we have su(n) 6= u(n).

Our next goal is to show that given a Lie group G, there is a map exp: g→ G defined on
the Lie algebra g of G, and which is locally a diffeomorphism. For this, we need to consider
left-invariant vector fields.

Given any element σ ∈ G, let Lσ : G→ G denote left multiplication by σ, that is,

Lσ(τ) = στ.

Each Lσ is a diffeomorphism, so the derivative d(Lσ)1 : g → g is a linear isomorphism. A
vector field X on G is left-invariant iff

d(Lσ)τ (X(τ)) = X(Lσ(τ)) = X(στ), for all σ, τ ∈ G.

By setting τ = 1, we see that a left-invariant vector field X is completely determined by the
tangent vector X(1) ∈ g, since

X(σ) = d(Lσ)1(X(1)).

Conversely, given any vector v ∈ g, we can define the vector field Xv by

Xv(σ) = d(Lσ)1(v), σ ∈ G.
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It is easy to check that Xv is left-invariant, so the map X 7→ X(1) is a bijection between the
Lie algebra of left-invariant vector fields (under the Lie bracket on vector fields) and the Lie
algebra g (DX).

Given any left-invariant vector field X on G, for any g ∈ G, by the fundamental theorem
existence for ODE’s, there is some integral curve γg : (−ε, ε)→ G such that γg(0) = g and

γ′(t) = X(γg(t)), t ∈ (−ε, ε).

For every g ∈ G, there is a unique maximal integral curve Γg such that Γg(0) = g, whose
domain is denoted I(g). Then, if we let

D(X) = {(t, g) ∈ R×G | t ∈ I(g)},

the function Φ: D(X)→ G given by

Φ(t, g) = Γg(t)

is called the flow of X. We often write Φt(g) instead of Φ(t, g).

One of the main properties of the flow of a left-invariant vector field on a Lie group is
that it is complete, which means that

D(X) = R×G,

that is, every integral curve Γg is defined for all t ∈ R.

We have the following proposition:

Proposition 1.33. Given a Lie group G and a left-invariant vector field X, if Φ is the flow
of X, then

Φt(g) = gΦt(1), for all (t, g) ∈ D(X).

Proof. Define the curve γ by

γ(t) = gΦt(1) = Lg(Φt(1)).

We have γ(0) = g, and using the chain rule

γ′(t) = d(Lg)Φt(1)(Φ
′
t(1)) = d(Lg)Φt(1)(X(Φt(1))) = X(Lg(Φt(1))) = X(γ(t)).

By the uniqueness of maximal integral curves, γ(t) = Φt(g) for all t, and so

Φt(g) = gΦt(1).

Using Proposition 1.33, we can prove the following crucial result:
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Proposition 1.34. Given a Lie group G, for every v ∈ g, there is a unique smooth homo-
morphism hv : (R,+) → G such that h′v(0) = v. Furthermore, hv(t) is the maximal integral
curve of the left-invariant vector field Xv, and it is defined for all t ∈ R.

Proof. Let Φt(g) denote the flow of Xv. By a familiar property of the flow,

Φs+t(1) = Φs(Φt(1)),

whenever both sides are defined. By Proposition 1.33, we have

Φs+t(1) = Φs(Φt(1)) = Φt(1)Φs(1).

It follows that if Φt(1) is defined on (−ε, ε), with s = t, we see that Φt(1) is actually defined
on (−2ε, 2ε). By induction, Φt(1) is defined on (−2nε, 2nε) for all n ≥ 1, so the map t 7→ Φt(1)
is defined for all t ∈ R. Let hv be the homomorphism given by

hv(t) = Φt(1),

then, h′v(0) = v. To show that hv is smooth, consider the map from R × G × g to G × g
given by

(t, g, v) 7→ (gΦt(1), v).

It is easy to see that this map is the flow of the vector field

(g, v) 7→ (v(g), 0).

and thus, it is smooth.

Next, assume that h : R→ G is a smooth homomorphism with h′(0) = v. From

h(s+ t) = h(t)h(s),

by differentiating at s = 0, we get

h′(t) = d(Lh(t))1(v) = Xv(g(t)).

Therefore, h(t) is an integral curve for Xv with initial condition h(0) = 1, so by uniqueness
h(t) = Φt(1).

Definition 1.13. Given a Lie group G, the exponential map exp: g→ G is given by

exp(v) = hv(1) = Φ1(1), for all v ∈ g.

The map exp is smooth because it is the restriction of the flow of the vector field

(g, v) 7→ (v(g), 0)
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to {1} × {1} × g. Obviously,
exp(0) = 1G.

For any fixed t, the map s 7→ hv(st) is a smooth homomorphism h such that h′(0) = tv.
By uniquenes,

hv(st) = htv(s).

If we set s = 1, we find that

hv(t) = exp(tv), for all v ∈ g, t ∈ R.

The homomorphism t 7→ exp(tv) is called a one-parameter group. Differentiating with
respect to t at t = 0, we get

v = d exp0(v),

that is,
d exp0 = idg.

By the inverse function theorem, exp is a local diffeomorphism at 0.

The exponential map is also natural in the following sense:

Proposition 1.35. Given any two Lie groups, G and H, for every Lie group homomorphism,
f : G→ H, the following diagram commutes:

G
f // H

g
df1
//

exp

OO

h

exp

OO

Proof. Observe that the map h : t 7→ f(exp(tv)) is a homomorphism from (R,+) to G such
that h′(0) = df1(v). Proposition 1.34 shows that f(exp(v)) = exp(df1(v)).

A useful corollary of Proposition 1.35 is:

Proposition 1.36. Let G be a connected Lie group and H be any Lie group. For any two
homomorphisms, ϕ1 : G→ H and ϕ2 : G→ H, if d(ϕ1)1 = d(ϕ2)1, then ϕ1 = ϕ2.

Let us find out what the exponential map is in GL(n,C). For any n×n complex matrix
A, let

eA = I +
∞∑

k=1

Ak

k!
.

For any operator norm ‖ ‖ on n× n matrices, ‖I‖ = 1 and
∥∥Ak

∥∥ ≤ ‖A‖k, so

‖I‖+
n∑

k=1

∥∥∥∥
Ak

k!

∥∥∥∥ ≤ e‖A‖,
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which proves that the series
∑∞

k=0

∥∥∥Akk!

∥∥∥ converges, and thus the series
∑∞

k=0
Ak

k!
is absolutely

convergent. In fact, it converges uniformly in any compact subset of Mn(C). It is not hard
to show that if AB = BA, then

eA+B = eAeB,

and so

e(λ+µ)A = eλAeµA, for all λ, µ ∈ C.

Therefore, the map hA : t 7→ etA is a smooth homomorphism from R to GL(n,C). It is also
easy to see that

h′A(0) = A.

It follows from Proposition 1.34 that hA is the maximal integral curve through I such that
h′A(0) = A, which implies that

exp(A) = eA.

If ‖I −X‖ < 1, the series

log(X) = (X − I)− (X − I)2

2
+ · · ·+ (−1)n−1 (X − I)n

n
+ · · ·

is convergent, and we can check that

exp(log(X)) = X

log(exp(X)) = X,

with ‖I −X‖ < 1 in the first equation, and ‖X‖ small enough in the second equation.

Caution. In general

eX+Y 6= eXeY ,

unless XY = Y X. Therefore, it is natural to ask if there is an expression µ(X, Y ) (also
denoted X ∗ Y ) of X and Y such that

eµ(X,Y ) = eXeY .

It turns out that there is such a formula known as the Campbell–Baker–Hausdorff–Dynkin
formula. It turns out that for X and Y in a small enough neighborhood of 0,

µ(X, Y ) = log(exp(X) exp(Y ))

sagtisfies the equation

eµ(X,Y ) = eXeY .

A Taylor expansion of µ(X, Y ) was obtained by Dynkin (1947). Here is a version due to
Serre.
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Theorem 1.37. (Dynkin’s Formula) If we write µ(X, Y ) =
∑∞

n=1 zn(X, Y ), then we have

zn(X, Y ) =
1

n

∑

p+q=n

(z′p,q(X, Y ) + z′′p,q(X, Y )),

with

z′p,q(X, Y ) =
∑

p1+···+pm=p
q1+···+qm−1=q−1
pi+qi≥1, pm≥1, m≥1

(−1)m+1

m

((
m−1∏

i=1

(adX)pi

pi!

(adY )qi

qi!

)
(adX)pm

pm!

)
(Y )

and

z′′p,q(X, Y ) =
∑

p1+···+pm−1=p−1
q1+···+qm−1=q
pi+qi≥1, m≥1

(−1)m+1

m

(
m−1∏

i=1

(adX)pi

pi!

(adY )qi

qi!

)
(X).

As a concrete illustration of Dynkin’s formula, after some labor, the following Taylor
expansion up to order 4 is obtained:

µ(X, Y ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]] +

1

12
[Y, [Y,X]]− 1

24
[X, [Y, [X, Y ]]]

+ higher order terms.

Observe that due the lack of associativity of the Lie bracket quite different looking ex-
pressions can be obtained using the Jacobi identity. For example,

−[X, [Y, [X, Y ]]] = [Y, [X, [Y,X]]].

(1) The CBHD formula shows that multiplication in the group G is already determined
by addition in g. For connected groups, homomorphisms of G are also determined
by homomrphisms of g, and for simply-connected groups, representations of G are
determined by representations of g.

(2) The CBHD formula also shows that if h is a subalgebra of the Lie algebra g = T1(G) of
a Lie group G, then exp(h) is an immersed subgroup of G. Recall that an immersion
ϕ : H → G is an injective homomorphism such that dϕσ is injective for all σ ∈ H, yet
not an embedding. An embedding is an immersion which is also a homeomorphism
onto ϕ(H), with the manifold structure on ϕ(H) induced from G. An example of an
immersion which is not an embedding is the following map ϕ : R→ S1 from R to the
unit circle given by

ϕ(t) = ei2 arctan(t).

The problem is that the inverse image of a small open connected neighborhood of eiπ

consists of two disjoint open subsets of R.

Also observe that multiplication in exp(h) is given by exp(x ∗ y), with x, y ∈ h.

(3) Every Lie algegra is the Lie algebra of some Lie group. Indeed, by Ado’s Theorem, a Lie
algebra can be embedded in gl(n,C), so exp(g) is an immersed subgroup in GL(n,C).



1.7. SOME LIE ALGEBRA REPRESENTATIONS 91

1.7 Some Lie Algebra Representations

There are useful analogies between various notions for groups and for Lie algebras, some of
which are listed below.

Groups Lie Algebras
Subgroup H of G Subalgebra h of g: a linear subspace h of g

closed under the Lie bracket

Normal subgroup H of G Ideal h of g: for all X ∈ h, all Y ∈ g, [X, Y ] ∈ h
Notation: H CG Notation: hC g

Commutator subgroup [G,G] CG Commutator ideal [g, g] C g
Derived series Derived series
D1 = [G,G]; Dk+1G = [DkG,DkG] D1g = [g, g]; Dk+1g = [Dkg, Dkg]
G ⊇ D1G ⊇ D2G ⊇ · · · g ⊇ D1g ⊇ D2g ⊇ · · ·
DkG/Dk+1G is abelian Dkg/Dk+1g is abelian
G is solvable iff g is solvable iff
DnG = (1), for some n Dng = (0), for some n

Lower central series Lower central series
Γ1G = [G,G] = D1G; Γ1g = [g, g] = D1g;
Γk+1G = [G,ΓkG] ⊇ Dk+1G Γk+1g = [g,Γkg] ⊇ Dk+1g
G is nilpotent iff g is nilpotent iff
ΓnG = (1), for some n Γng = (0), for some n

Note that nilpotent implies solvable.

Theorem 1.38. (Engel’s Theorem) If g is Lie subalgebra of gl(n,R) (or gl(n,C)) and if
every X ∈ g is nilpotent, then g is nilpotent, and there is a common eigenvector for all
X ∈ g; that is, there is some v 6= 0 such that X(v) = 0 for all X ∈ g.

Recall that a representation ρ of a Lie algebra g is a Lie algebra homomorphism
ρ : g→ End(V ), where V is some finite-dimensional vector space over C; so, ρ is linear, and

ρ([X, Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X), for all X, Y ∈ g.

Theorem 1.39. (Lie’s Theorem) If g is solvable Lie algebra and if ρ : g → End(V ) is a
finite-dimensional representation of g, then there exists a common eigenvector v of all ρ(X),
where X ∈ g.

Consider a representation ρ : g→ End(V ) of a complex solvable Lie algebra g. By Lie’s
Theorem, there is a vector v1 6= 0 which is a common eigenvector of all ρ(X), with X ∈ g.
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The subspace U = Span(v1) is invariant under ρ, so we can define a representation ρ of g on
W = V/U as follows:

ρ(X)(v) = ρ(X)(v) = ρ(v) mod U, for all v ∈ V.

Since dim(V/U) = dim(V )− 1, by induction we can find a sequence of subspaces (a flag)

V/U = W0 ⊇ W1 ⊇ · · · ⊇ Wn−1 = (0),

with Wi invariant under ρ (which means that ρ(X)(Wi) ⊆ Wi), and dim(Wi) = n − 1 − i.
If π : V → V/U is the quotient map (which commutes with all ρ(X)), set Vi = π−1(Wi) and
Vn = (0). Then, we obtain a flag

V = V0 ⊇ V1 ⊇ · · · ⊇ Vn = (0),

with Vi invariant under ρ and dim(Vi) = n − i, and if we choose a basis from this flag, the
matrices representing the ρ(X) (with X ∈ g) are all upper triangular.

There is also a version of Engel’s Theorem for nilpotent Lie algebra.

Theorem 1.40. (Engel’s Theorem (2)) Say g is a Lie algebra and ρ : g → End(V ) is a
finite-dimensional representation of g. If ρ(X) is nilpotent for all X ∈ g, then g is nilpotent,
and there is a vector v 6= 0 in V such that ρ(X)(v) = 0, for all X ∈ g.

If g is a nilpotent Lie algebra, then by Engel’s Theorem, it is easy to show by induction
that there is a flag

V = V0 ⊇ V1 ⊇ · · · ⊇ Vn = (0),

such that ρ(X)(Vi) ⊆ Vi+1 and dim(Vi) = n− i. As a consequence, there is a basis in which
the matrices ρ(X) are strictly upper-triangular for all X ∈ g (they are upper triangular and
they have zero diagonal elements).

Theorem 1.41. (Ado’s Theorem) Every real or complex Lie algebra g embeds as a subalgebra
of gl(n,C) = Mn(C). When g is a complex Lie algebra, the embedding can be taken as complex
linear.

Say ρ is an irrep of a solvable Lie algebra g (over C). Lie’s Theorem implies that there
is an eigenvector v such that

X(v) = λ(v)v, for all X ∈ g,

for some λ(v) ∈ C. As a consequence, the subspace U = Span(v) is invariant under ρ, and it
defines a subrepresentation of ρ. As ρ is an irrep, by Schur’s Lemma, ρ is one-dimensional.

Corollary 1.42. Every irrep of a solvable Lie algebra (over C) is one-dimensional.
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Remarks:

(1) If
0 −→ h −→ g −→ g/h −→ 0

is an exact sequence with h an ideal of g, then g is solvable iff h and g/h are solvable.

(2) If h and h′ are ideals in g and both h and h′ are solvable, then h + h′ C g is solvable.
Therefore, there exists a unique maximal ideal in g (the sum of all solvable ideals)
called the radical of g and denoted by rad(g).

Definition 1.14. A Lie algebra g is semi-simple if rad(g) = (0). This is equivalent to the
property that g has no nonzero abelian ideal.

The quotient g/rad(g) = gss is the semi-simple part of g. We have the exact sequence

0 −→ rad(g) −→ g
π−→ gss −→ 0. (†)

Theorem 1.43. (Levi’s Theorem) The exact sequence (†) splits. This means that there is
some semi-simple Lie subalgebra g̃ of g (there are many) and an isomorphism ε : gss → g̃
such that

π ◦ ε = id.

Elementary Remarks

(1) If
0 −→ h −→ g −→ g/h −→ 0

is an exact sequence, then g is semi-simple iff each of h and g/h are semi-simple.

(2) Noncompactness of a Lie group may result in a bad behavior of its representations.
For example, if G = C, then

(a) In the representation

z 7→
(

0 z
0 0

)

every element is nilpotent, but

(b) in the representation

z 7→
(
z z
0 0

)

the matrices are neither diagonalizable nor nilpotent.

Fundamental Fact.

Say g is a complex semi-simple Lie algebra.
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(1) If ρ : g→ End(V ) is a representation of g, for every subspace W of V associated with a
subrepresentation of ρ, there is some subspace Z of V which is invariant under ρ such
that

V = W
∐

Z.

We say that all representations of g are completely reducible.

(2) Recall that the Jordan decomposition of a matrix A is

A = A∆ + An,

whre A∆ is a diagonalizable matrix and An is a nilpotent matrix, with

A∆An = AnA∆,

and both A∆ and An are polynomials in A. In general, for an arbitrary Lie algebra,
the Jordan decomposition is not preserved by a representation. However, the following
result holds in the semi-simple case.

Proposition 1.44. Let g be a semi-simple Lie algebra. For any X ∈ g, there exist
X∆, Xn ∈ g so that if ρ is any representation of g, then

ρ(X∆) = ρ(X)∆

ρ(Xn) = ρ(X)n.

In particular, if ρ is injective and if we view g as a subalgebra of gl(V ), then the
diagonalizable and nilpotents parts of any element X of g are again in g and are
independent of ρ.

(3) From Levi’s Theorem, the following facts hold:

(a) The representation space of every irreducible representation ρ of a Lie algebra g
is of the form C ⊗ L, where the restriction of ρ to V is an irrep of gss and the
restriction of ρ to L is a one-dimensional representation.

(b) From the elementary remark and Levi’s Theorem, every semi-simple Lie algebra
g is a coproduct

g =
∐

α

gα,

where each gα is a simple Lie algebra (this means that gα is nonabelian and has
only the trivial ideals (0) and g).

Theorem 1.45. (Elie Cartan, Killing, 1898) Every simple Lie algebra (over C) belongs to
one of four infinite families An, Bn, Cn, Dn, or to five “exceptional” Lie algebra:

(1) For n ≥ 1, An = sl(n+ 1,C), the Lie algebra of SL(n+ 1,C).
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(2) For n ≥ 2, Bn = so(2n+ 1,C), with

so(2n+ 1,C) = {X ∈ gl(2n+ 1,C) | X> = −X},

the Lie algebra of SO(2n+ 1,C).

(3) For n ≥ 3, Cn = sp(2n), with

sp(2n) = {X ∈ gl(2n,C) | X>J + JX = 0},

with

J =

(
0 In
−In 0

)

the Lie algebra of Sp(2n).

(4) For n ≥ 4, Dn = so(2n,C), with

so(2n,C) = {X ∈ gl(2n,C) | X> = −X},

the Lie algebra of SO(2n,C).

(5) The five exceptional Lie algebra G2, F4, E6, E7, and E8, whose dimensions are respec-
tively, 14, 52, 78, 133, and 248.

Remark: The somewhat peculiar indexing of the families An, Bn, Cn, Dn is motivated by
the fact that for small n, there are repetitions in these series. For instance, A1

∼= B1
∼= C1,

B2
∼= C2, and A3

∼= D3.

Representation of Some Low-Dimensional Simple Lie Algebras

(A) sl(2,C). These are the complex 2× 2 matrices

X =

(
a b
c d

)
, a+ d = 0.

A basis of sl(2,C) consists of the three matrices

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

We easily check that

[H,X] = 2X

[H,Y ] = −2Y

[X, Y ] = H.
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The crucial idea is to examine the eigenspaces of H on V . Let Vλ be the eigenspace where
H(v) = λv. If v is an eigenvector of H, then X(v) ∈ Vλ+2 and Y (v) ∈ Vλ−2. Indeed,

H(X(v)) = [H,X](v) +XH(v) = 2X(v) + λX(v) = (λ+ 2)X(v),

and similarly for Y (v). We get

HXr(v) = (λ+ 2r)Xr(v) and HY r(v) = (λ− 2r)Y r(v).

But, V is finite-dimensional, so both X and Y are nilpotent on the eigenvectors of H in V .

Vt−4 Vt−2 Vt

X

Y

H

X

Y

H

X

Y

H

Figure 1.4: Action of X, Y,H on a representation space V

Definition 1.15. (Lefschetz) An element, v, of the finite-dimensional representation space,
V , for sl(2,C) is primitive iff it is an eigenvector for H and X(v) = 0.

As V is a finite-dimensional C-space, a primitive element must exist. Indeed, H has at
least some eigenvalue, λ, and if v ∈ Vλ, then Xr(v) ∈ Vλ+2r, for all r. Since Vλ+2r ∩ Vλ+2s =
(0), for r 6= s and V is finite-dimensional, there is a smallest r so that Xr(v) 6= 0 and
Xr+1(v) = 0. The vector Xr(v) is a primitive element.

Proposition 1.46. Let V be a finite-dimensional irreducible representation space for sl(2,C)
and pick any primitive vector, v, in V . Then, the vectors

v, Y (v), Y 2(v), . . . , Y t(v),

where Y t+1(v) = 0, form a basis for V . Hence,

(1) dimC V = t+ 1 = index of nilpotence of Y on V .

(2) Any two primitive v’s give the same index of nilpotence.

Proof. Consider
W = span(v, Y (v), Y 2(v), . . . , Y t(v)).

If we show that H,X, Y take W to itself, irreducibility of V implies W = V . Clearly,
Y (W ) ⊆ W . As

HY r(v) = (λ− 2r)Y r(v), if H(v) = λv,
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we also have H(W ) ⊆ W . For X, we prove by induction on l that XY l(v) ∈ W . When
l = 0, we get X(v) = 0, and the claim holds trivially. Assume the claim holds for l − 1. We
have

XY l(v) = XY Y l−1(v)

= (H + Y X)(Y l−1(v))

= (λ− 2(l − 1))Y l−1(v) + Y (XY l−1(v)),

and XY l−1(v) ∈ W , by the induction hypothesis. So, both terms on the right hand side are
in W and the induction step is done. Now, v, Y (v), Y 2(v), . . . , Y t(v) are eigenvectors with
distinct eigenvalues, so they must be linearly independent. Therefore, they form a basis of
V . The rest is obvious.

Call an eigenspace for H on any (finite-dimensional) representation space a weight space
and the weight is just the eigenvalue. We get

Corollary 1.47. Every irreducible finite-dimensional representation, V , of sl(2,C) is a finite
coproduct of one-dimensional weight spaces, Vλ,

V =
∐

λ

Vλ.

The “highest weight space” consists of 0 and all the primitive vectors (each a multiple of the
other).

Proposition 1.48. Say V is a finite-dimensional sl(2,C)-module, then every eigenvalue of
V is an integer. If V is irreducible, these are

−t,−t+ 2, . . . , t− 2, t,

where dimC V = t + 1 = index of nilpotence of Y on V . Therefore, the irreducible sl(2,C)-
modules are in one-to-one correspondence with the non-negative integers, t, via

t 7→ V (t) =
∐

0≤2j≤t
V−t+2j q

∐

0≤2j≤t
Vt−2j

with dimC V = t+ 1.

Proof. As V is finite-dimensional, there is a primitive element, v, and let λ be its weight
(eigenvalue). Look at XY l(v). I claim:

XY l(v) = (lλ− l(l − 1))Y l−1(v).



98 CHAPTER 1. GROUP REPRESENTATIONS

This is shown by induction on l. For l = 0, this is trivial (0 = 0). Assume the claim hols for
l. We have

XY l+1(v) = XY (Y l(v))

= H(Y l(v)) + Y X(Y l(v))

= (λ− 2l)Y l(v) + Y (lλ− l(l − 1))Y l−1(v)

= (λ− 2l + lλ− l2 + l)Y l(v)

= ((l + 1)λ− (l + 1)l)Y l(v),

proving the induction hypothesis. Now, we know that there is some t ≥ 0 so that Y t(v) 6= 0
and Y t+1(v) = 0, so let l = t+ 1. We get

0 = XY t+1(v) = ((t+ 1)λ− (t+ 1)t)Y l(v),

that is,
(t+ 1)λ− (t+ 1)t = 0,

which means that λ = t, an integer. Now, say V is irreducible and t is the maximum weight
in V . If V has weight t, then X(v) has weight t + 2, a contradiction, unless X(v) = 0.
Therefore, v is primitive. Now, Proposition 1.46 implies that V is as claimed.

Observe that the standard representation of sl(2,C) is given by

H

(
x
y

)
=

(
x
−y

)
, X

(
x
y

)
=

(
y
0

)
, Y

(
x
y

)
=

(
0
x

)
.

Consider any Lie algebra g = Lie(G) ane let us find out how it operates on tensor
products. Given two representations of G with representation spaces V and W , for every
σ ∈ G, we have

σ(v ⊗ w) = σv ⊗ σw.
Let γ be a curve in G through 1G, with γ′(0) = X ∈ g. We must have

X(v ⊗ w) =
d

dt
(γ(t)v ⊗ γ(t)w)

∣∣∣
t=0

= (γ(t)v ⊗ γ′(t)w + γ′(t)v ⊗ γ(t)w)
∣∣∣
t=0

= v ⊗X(w) +X(v)⊗ w.

This shows that X acts as a derivation. Later, we will also need to know how a Lie
algebra acts on the dual of a representation space. First, if R : G → GL(V ) is a group
representation, we define the dual representation RD : G→ GL(V D) by

RD(g) = (R(g−1))> = (R(g)−1)> : V D −→ V D.
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Then, differentiating as in the tensor product case, we see that if ρ : g → End(V ) is a
representatiom of a Lie algebra g, then the dual representation ρD : g → End(V D) is given
by

ρD(X) = −ρ(X)> : V D −→ V D.

Now, look at Symn(C2). If we choose a basis (e1, e2) for C2, then the symmetric tensors
of the form er1e

s
2 form a basis of Symn(C2), which is isomorphic to the vector space of

homogeneous polynomials of degree n in two variables x and y. Let us find out what is the
action of H on the basis element xrys. Since H(x) = x and H(y) = −y, we get

H(xrys) = xrH(ys) +H(xr)ys

= sxrys−1H(y) + rxr−1ysH(x)

= −sxrys + rxrys

= (r − s)xrys.

It follows that H acts on Symn(C2) as it acts on V (n), and the irrep corresponding to V (t)
has an explicit description as derivations on complex homogeneous polynomials of degree n
in two variables. We recover, V (0) = C, and V (1) = C2, the standard representation.

(B) sl(3,C). These are the complex 3× 3 matrices X with zero trace,







a ∗ ∗
∗ b ∗
∗ ∗ c



∣∣∣∣ a+ b+ c = 0



 .

The subspace of diagonal traceless matrices

h =







a 0 0
0 b 0
0 0 c



∣∣∣∣ a+ b+ c = 0





plays the role of H. The space h is a maximal abelian subalgebra of sl(3,C). It is a
Cartan subalgebra. Because the matrices in h are diagonalizable and commute, and because
sl(3,C) is semisimple, by Proposition 1.44, in any representation of sl(3,C), the matrices
corresponding to the elements of h are diagonalizable with respect to a common basis. It
follows that the representation space V can be written as a finite coproduct of “eigenspaces,”

V =
∐

α

Vα, (∗)

where
Vα = {v ∈ V | H(v) = α(H)v for some α(H) ∈ C, for allH ∈ h}.

Observe that H 7→ α(H) defines a linear form on h, that is, an element of the dual, hD, of h.
We say that Vα is an eigenspace for h, that the nonzero vectors v ∈ Vα are eigenvectors for
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h, and that α ∈ hD is an eigenvalue for h. Only finitely many α ∈ h appear in the coproduct
(∗).

What is the analog of X and Y ? Going back to sl(2,C), we note that the equations

[H,X] = 2X

[H,Y ] = −2Y

can be interpreted in terms of the adjoint action of sl(2,C) as saying that X and Y are
eigenvectors of ad(H), for every H ∈ h:

ad(H)(X) = 2X

ad(H)(Y ) = −2Y.

Observe that h is spanned by the linear forms L1, L2, L3 given by

Li



a1 0 0
0 a2 0
0 0 a3


 = ai,

and that
L1 + L2 + L3 = 0.

Given any matrix M = (mij), it is clear that


a1 0 0
0 a2 0
0 0 a3


M −M



a1 0 0
0 a2 0
0 0 a3


 =

(
(ai − aj)mij

)
.

Therefore, M = (mij) is an eigenvector for ad(H) (for all H ∈ h) iff M = Eij, where Eij is
the matrix given by

(Eij)hk =

{
1 if h = i and k = j

0 otherwise,

with 1 ≤ i, j ≤ 3 and i 6= j. It follows that Eij is an eigenvector for Li − Lj ∈ hD, and
there are six such elements, for i 6= j. The decomposition (∗) applied to A = sl(3,C), the
representation space of the adjoint representation of sl(3,C), yields

sl(3,C) = AL3−L2

∐
AL3−L1

∐
AL2−L1

∐
h
∐

AL1−L2

∐
AL1−L3

∐
AL2−L3 ,

with each ALi−Lj one-dimensional and spanned by Eij.

More generally, for any semisimple Lie algebra g, there is a similar decomposition

g = hq
∐

α

gα,

where the gα are some of the eigenspaces for h (finitely many).

Nomenclature
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(1) The eigenvectors α for h appearing in the decomposition

V =
∐

α

Vα

are the weights of the representation V .

(2) Each Vα is the weight space corresponding to α ∈ hD.

(3) Each nonzero vector v ∈ Vα is a weight vector for α.

(4) When the representation is the adjoint representation with V = g as a vector space
and with

X(v) = ad(X)(v) = [X, v], for allX ∈ g,

the weights of this representation are called the roots of g.

(5) The space gα is the αth root space.

(6) Each nonzero v ∈ gα is a root vector .

Let us now consider the decomposition

g = hq
∐

α

gα

associated with the adjoint representation. Given X ∈ gα and Y ∈ gβ, what is ad(X)(Y ) =
[X, Y ]? To find out what this is, see how h acts on it, so pick any H ∈ h and compute

H(ad(X)(Y ) = ad(H)(ad(X)(Y ))

= ad(H)([X, Y ]) = [H, [X, Y ]].

Using the Jacobi identity, we get

[H, [X, Y ]] = −[X, [Y,H]]− [Y, [H,X]]

= [X, [H, Y ]]− [Y, [H,X]]

= [X, β(H)Y ]− [Y, α(H)X]

= (α(H) + β(H))[X, Y ].

This shows that ad(X)(Y ) = [X, Y ] is an eigenvector for h for the weight α + β. Thus, we
obtain the following Proposition:

Proposition 1.49. If g is a Lie algebra and

g = hq
∐

α

gα

is the decomposition associated with the adjoint representation, if X ∈ gα and Y ∈ gβ, then
[X, Y ] ∈ gα+β.
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We can prove a similar result for the decomposition

V = hq
∐

α

Vα

associated with any representation.

Proposition 1.50. For any representation V of a lie algebra g, if

V = hq
∐

α

Vα,

then for any X ∈ gα and any v ∈ Vβ, we have X(v) ∈ Vα+β.

Proof. For any H ∈ h, we have

H(X(v)) = X(H(v)) + [H,X](v)

= X(β(H)v) + ad(H)(X)(v)

= β(H)X(v) + α(H)X(v)

= (β(H) + α(H))X(v),

whenever α is a root and β is a weight for V .

An important consequence of Proposition 1.50 is this:

Proposition 1.51. For any irreducible representation V of a Lie algebra g, the weights for
V differ by integral linear combinations of the roots of g.

Proof. Consider

W = hq
∐

Vλ+
∑
kαα,

where α runs over the roots and kα ∈ Z. Then the action of g takes W into W , and by
Schur’s Lemma, V = W .

The roots of g form an integral lattice in hD denoted by Λroot and called the root lattice.

Now, what we need to do is to find an extremal root that corresponds to an extremal Vt
in the case of sl(2,C). We can do so by choosing a linear form ϕ on Λroot, in order to divide
the roots into positive roots (those on one side of the line determined by ϕ), and negative
roots (those on the other side of the line determined by ϕ). To make sure that this line
does not pass through any point of the lattice Λroot besides the origin, we pick ϕ(L1) = a,
ϕ(L2) = b, and ϕ(L3) = b, real and irrational (with a + b + c = 0). We extend ϕ to hD by
linearity.
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0 L1

L2

L3

L1 − L3

L1 − L2

L2 − L3

L3 − L2

L2 − L1

L3 − L1

ϕ = 0

Figure 1.5: Choosing the Positive Roots

Then, we pick a weight α in V such that Re(ϕ(α)) is maximal. If we assume that
a > b > c, then we have

ϕ(L1 − L3) = a− c > 0

ϕ(L1 − L2) = a− b > 0

ϕ(L2 − L3) = b− c > 0,

and with respect to this choice of ϕ, the roots L1 − L3, L1 − L2, and L2 − L3 are positive
roots.

Remark: By convention, 0 is not a root.

Say β is a root and ϕ(β) > 0. Then for every X ∈ gβ and for every nonzero v ∈ Vα where
α is maximal, we know that X(v) ∈ Vα+β. But,

Re(ϕ(α + β)) = Re(ϕ(α)) + Re(ϕ(β))

= Re(ϕ(α)) + ϕ(β) > Re(ϕ(α)).

By maximality of α, we see that
Vα+β = (0).
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As a consequence, all positive root vectors of sl(3,C) kill Vα, and so

Eij(v) = 0, whenever i < j.

A nonzero vector v ∈ Vα with α maximal is called a highest weight vector and α is called a
highest weight .

By analogy with the case of sl(2,C), we will show that if V is an irrep, then V is generated
by applying compositions of the Eij to any highest weight vector v, with i > j, that is, to
the Eij corresponding to negative roots.

Let E
(k)
(ij) denote any k-fold composition of the Eij with i > j.

Proposition 1.52. For any representation V of a Lie algebra g, for any highest weight
vector v, the space W spanned by the vectors E

(k)
(ij)v with i > j and k ≥ 1 is an irreducible

subrepresentation of V . In particular, if V is an irrep, then V = W .

Sketch of proof. We need to prove that Eij(W ) ⊆ W . Since

Eij(v) = 0, if i < j,

we just need to check that E1,2, E2,3, and E1,3 carry W into itself. Since

E1,3 = [E1,2, E2,3],

it suffices to prove it for E1,2 and E2,3. We proceed by induction on the length of words.
Let wn(v) denote any word of length at most n in the letters E2,1 and E3,2, and let Wn be
the vector space spanned by the vectors wn(v), with W0 = Span(v). Clearly, there is some
n such that W = Wn. We claim that

E12(Wn) ⊆ Wn−1

E2,3(Wn) ⊆ Wn−1.

For n = 0, we have

E1,2(E2,1(v)) = E2,1(E1,2(v)) + [E1,2, E2,1](v)

= α([E1,2, E2,1])v,

since E1,2(v) = 0 and [E1,2, E2,1] ∈ h. We also have

E2,3(E2,1(v)) = E2,1(E2,3(v)) + [E2,3, E2,1](v)

= 0,

since E2,3(v) = 0 and [E2,3, E2,1] = 0. A similar computation shows that E3,2(v) is also
carried into W0 by E1,2 and E2,3.
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For the induction step, wn is either of the form E2,1 ◦wn−1 or of the form E3,2 ◦wn−1. In
either case, wn−1(v) is an eigenvector for h for some eigenvalue β. If wn = E2,1 ◦ wn−1, for
the action of E1,2 we have

E1,2(wn(v)) = E1,2(E2,1(wn−1(v)))

= E2,1(E1,2(wn−1(v))) + [E1,2, E2,1](wn−1(v))

∈ E2,1(Wn−2) + β([E1,2, E2,1])wn−1(v)

⊆ Wn−1,

since [E1,2, E2,1] ∈ h. For the action of E2,3 we have

E2,3(wn(v)) = E2,3(E2,1(wn−1(v)))

= E2,1(E2,3(wn−1(v))) + [E2,3, E2,1](wn−1(v))

∈ E2,1(Wn−2)

⊆ Wn−1,

since [E2,3, E2,1] = 0. A similar computation covers the case wn = E3,2 ◦ wn−1.

We obtain the following corollaries:

(1) If V is an irrep and α is a highest weight, then dim(Vα) = 1.

(2) If V is an irrep then there is a unique highest weight vector, up to scalars.

(3) If V is any representation of sl(3,C), and if α is a highest weight, then V is irreducible
iff dim(Vα) = 1. Indeed, assume that

V = W
∐

W ′.

Projection onto W or W ′ commutes with the action of h. Consequently,

Vα = Wα

∐
W ′
α,

but dim(Vα) = 1, so v is either in Wα or in W ′
α. We may assume that v ∈ Wα, and so

W ′
α = (0). The action of gα on W ′ gives 0, so W ′ = (0), and V = W .

Let
[E1,2, E2,1] = H1,2 = E1,1 − E2,2.

More generally, write
[Ei,j, Ej,i] = Hi,j.

Note that Hi,j ∈ h. We find that

[H1,2, E1,2] = [E1,1, E1,2]− [E2,2, E1,2] = 2E1,,2
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and

[H1,2, E2,1] = −2E2,1.

Therefore, E1,2, E2,1, and H1,2 generate a subalgebra sL1−L2 of sl(3,C) isomorphic to sl(2,C)
via the map

E1,2 7→ X

E2,1 7→ Y

H1,2 7→ H.

More generally, for any β root of g, the coproduct

W =
∐

k∈Z
gβ+k(Li−Lj)

is a representation of sLi−Lj (which is isomorphic to sl(2,C)).

In order to understand better the structure of the root lattice, we need to figure out the
symmetries induced by the action of sL1−L2. Recall the pairing between h and hD given by

〈X, β〉 = β(X), X ∈ h, β ∈ hD.

Let us find out what is the line given by the equation

〈H1,2, β〉 = 0.

We can write β = ξ1L1 + ξ2L2 + ξ3L3, with ξ1 + ξ2 + ξ3 = 0, and we get

〈H1,2, β〉 = (ξ1L1 + ξ2L2 + ξ3L3)(H1,2)

= ξ1L1(H1,2) + ξ2L2(H1,2) + ξ3L3(H1,2)

= ξ1 − ξ2.

It follows that the line given by 〈H1,2, β〉 = 0 is the line spanned by L3. But, as L1+L2+L3 =
0, we have L3 = −L1 − L2, which is orthogonal to L1 − L2.

The same reasoning applies to the lines defined by H1,3 and H2,3, and we deduce the
following facts for any highest weight α:

(1) If we reflect α about the lines spanned by L1, L2, and L3, then all the weights must
occur inside or on the boundary of the convex hull of these various reflected points;
See Figure 1.6.

(2) The various extreme points (the reflections of α) are heighest weights for different
orderings of a, b, c (in ϕ); for example, in Figure 1.6, the weight α̃ corresponds to the
ordering b > a > c.
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0 L1

L2

L3

α

α̃

Figure 1.6: Root Lattice and weights

(3) Applying sl(2,C) to any boundary point, we get any point in the interior as a weight
if it is on the root lattice.

We can summarize all these facts in the following theorem:

Theorem 1.53. If V is an irrep of sl(3,C), then there is a unique highest weight α (up to
a scalar) such that the set of weights in V is exactly the set of linear forms congruent to α
modulo the root lattice Λroot = ZL1 +ZL2 +ZL3 (L1 +L2 +L3 = 0) and lying in the hexagon
with vertices the images of α under the reflections in the lines 〈Hi,j, β〉 = 0, that is, the lines
spanned by the Li.

Our previous discussion shows that any highest weight α must lie in the part of the plane
determined by the inequalities 〈H1,2, L〉 ≥ 0 and 〈H2,3, L〉 ≥ 0. It follows that α must be of
the form

α = (m1 +m2)L1 +m2L2 = m1L1 −m2L3,

for some nonnegative integers m1,m2 ∈ N. We also have a sort of converse.

Theorem 1.54. For every pair of natural numbers a, b ∈ N, there exists a unique irrep of
sl(3,C) with heighest weight aL1 − bL2; denote it by Γa,b.



108 CHAPTER 1. GROUP REPRESENTATIONS

Proof Sketch. First, consider uniqueness. Say Z and Z̃ are two irrreps of g with the same
heighest weight α and consider the vector space Z

∐
Z̃. Then, Z

∐
Z̃ is a representation of

g also with heighest weight α. This is because if z and z̃ are (unique up to a scalar) heighest

weight vectors, then (z, z̃) is a highest weight vector in Z
∐
Z̃ (recall that the action of g on

Z
∐
Z̃ is given by X(z, z̃) = (X(z), X(z̃))). By Proposition 1.52, the vector (z, z̃) generates

an irrep Q ⊆ Z
∐
Z̃. Consider the maps induced by the projection of Z

∐
Z̃ onto its factors

Q ↪→ Z
∐

Z̃ −→ Z

Q ↪→ Z
∐

Z̃ −→ Z̃.

Both maps are not zero, yet Q,Z, Z̃ are irreducible, so Schur’s Lemma implies that Q ∼= Z
and Q ∼= Z̃, and thus Z ∼= Z̃.

Next we consider existence. Let V = C3 and construe V as a representation of sl(3,C),
namely the standard representation. The eigenvalues for h are L1, L2, L3. For the dual
representation, by a previous remark, the eigenvalues are −L1,−L2,−L3.

Observe that if W and Z are representations of g, and if w ∈ W and z ∈ Z are highest
weight vectors with weights α and β, then w ⊗ z is a highest weight vector in W ⊗ Z with
weight α + β. This fact has the following consequences:

(1) The highest weight vector w ⊗ z ∈ W ⊗ Z generates a subrepresentation of W ⊗ Z
which is an irrep.

(2) The representations SymaV is an irrep with highest weight aL1.

(3) The representations SymbV D is an irrep with highest weight −bL3.

Consequently, we see that the irreps Γa,0 and Γ0,b are given by Γa,0 = SymaV and Γ0,b =
SymbV D.

If we look at V ⊗V D, we see that the weights are the linear forms Li−Lj, with i 6= j, and
the highest weight is L1 − L3. A highest weight vector associated with L1 − L3 generates a
subrepresentation of V ⊗V D isomorphic to Γ1,1. More generallly, SymaV ⊗SymbV D contains
a highest weight vector of weight aL1 − bL2, and thus a subrepresentation which is an irrep
isomorphic to Γa,b, with a, b ∈ N.

To find this irrep more explicitly, we can make use of the contraction map

Θa,b : SymaV ⊗ SymbV D → Syma−1V ⊗ Symb−1V D

given by

Θa,b(w1 · · ·wa ⊗ zD1 · · · zDb ) =
∑

i 6=j
zDj (wi)(w1 · · · ŵi · · ·wa ⊗ zD1 · · · (̂zDj ) · · · zDb ).
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The map Θa,b is a Lie algebra map and it can be shown that its kernel is Γa,b. Consequently,
we have an exact sequence

0 −→ Γa,b −→ SymaV ⊗ SymbV D −→ Syma−1V ⊗ Symb−1V D −→ 0,

which yields an inductive description of the representation SymaV ⊗ SymbV D.

Remark: The representation V ⊗ V D of sl(3,C) occurs in high energy physics, and has to
do with quarks and antiquarks. The adjoint representation of sl(3,C) has to do with baryons
(feel the strong force) and mesons. Gell–Mann called it the “eight-fold way.”

The representations of sl(4,C), . . . , sl(n,C) are described in much the same way as the
representations of sl(3,C), using the notion of highest weight.

How about simply-connected Lie groups?

Say G is a simply-connected Lie group and let ρ : g→ End(V ) be a representation of its
Lie algebra. For a small enough open neighborhood U of 1 in G, the exponential map

exp: g→ G

is a diffeomorphism. We can make a representation ρ̃ of G as follows: for every σ ∈ U , we
have σ = exp(X) for some unique X ∈ g, so ρ(X) ∈ gl(n,C) and we set

ρ̃(σ) = eρ(X),

where

eρ(X) =
∞∑

k=0

ρ(X)k

k!

is the matrix exponential. Since U generates G, the map ρ̃(σ) is defined for all σ ∈ G.

For more on the representation of groups, Lie groups, and Lie algebras, the reader should
consult Fulton and Harris [5], Knapp [11], Serre [13, 15, 14], Bröcker, and tom Dieck [2] and
Humphreys [9].
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Chapter 2

Numerical Linear Algebra

2.1 Some Elementary Numerical Analysis. Some Bad

Examples. “Algorithms”

In a computer, the reals cannot be embedded. We put it as a discrete substitute, “floating
point computations.”

Fix a number b, the base (b = 2, 4, 8, 16), fix s, the number of places , and two integers m
and M , the min and max exponent ; then fl(R) consists in numbers

± .d1 · · · ds be, wherem ≤ e ≤M, dj ∈ N, with 0 ≤ dj ≤ b− 1 if j ≥ 2 and 1 ≤ d1 ≤ b− 1.

Zero is represented by
+ .0 · · · 0 bm.

Examples . In old and big IBM machines, b = 16, m = −63, M = 64, s = 6 for ordinary
arithmetic, and s = 14 for double precision arithmetic.

If x, y are two real numbers, when do we think that fl(x) and fl(y) are the same? The
convention is that

|x− y|
|x| ≤ 1

2
bs

def
= εmachine.

Let ∗ be a binary operation on the real numbers. Then

fl(x ∗ y) = (x ∗ y)(1 + ε), where ε ≤ εmachine.

Problems and Algorithms

We have a vector space of data, D, and we have a vector space of solutions, S. A problem
is a function f : D → S. An algorithm for a problem f consists in

(1) Making D into fl(D) ⊆ D.

111
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(2) A naive notion of an algorithm: a discrete well-defined process that always terminates.

(3) A program to run an algorithm on a computer.

(4) The output of the algorithm is of the form fl(S) ⊆ S.

Let us denote by f̃ an algorithm for f . The following property is desired:

‖f̃(x)− f(x)‖
‖f(x)‖ = O(εmachine). (†)

Recall that in analysis, we write (assuming h(ξ) ≥ 0)

g(ξ) = O(h(ξ)) as ξ 7→ L

iff there is a constant C > 0 such that

|g(ξ)| ≤ Ch(ξ) near L. (∗)

If g is one of a family of functions, say gs(t), where s ∈ S, then (∗) might mean

|gs(ξ)| ≤ C(s)h(ξ) near L,

or
|gs(ξ)| ≤ Ch(ξ) near L.

In the second case, we say that g is uniformly O(h) near L . We always want uniformity in
(†) if f depends on a parameter.

Some problems are “bad,” or ill -posed (Hadamard), ill-conditioned, chaotic: this means
that a small change in x (say from x to x̃ = fl(x)) can make a very large difference in f(x),

and so in f̃(x).

A stable algorithm is one for which

‖f̃(x)− f(x̃)‖
‖f(x̃)‖ = O(εmachine)

if
‖x̃− x‖
‖x‖ = O(εmachine).

That is, the algorithm gives “nearly the right answer to nearly the right question.” It would
be better if whenever

‖x̃− x‖
‖x‖ = O(εmachine),

then
‖f̃(x)− f(x̃)‖ = 0,
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that is, the algorithm gives “exactly the right answer to nearly the right question.” Such an
algorithn is called backwardly stable.

Bad examples

(1) Moler’s Example.
0.778x+ 0.563y = 0.217

0.913x+ 0.659y = 0.254.
(E)

The first proposed “solution” is:

x = 0.999

y = −1.001,

and the second proposed “solution” is

x = 0.341

y = −0.087.

To check how “good” these solutions are, we substitute them in the error expressions

0.778x+ 0.563y − 0.217

0.913x+ 0.659y − 0.254.

For the first solution, we get

− 0.001243

− 0.001572,

and for the second solution we get

− 0.000001

0.

By this measurement, it looks like we should choose the second solution. However, the exact
solution is

x = 1

y = −1.

Which solution we pick depends on the criterion chosen. If we wish to minimize the error
term, then we should pick the second solution, although it is not as “close” to the exact
solution as the first solution. Note that if we use Gaussian elimination, then

δ =
913

780
= 1.17050
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and then

.563 δ = .65899

.217 δ = .253999.

(2) Polynomial Equations

Consider the quadratic equation

x2 − 4x+ 4 = 0,

whose solution is x = 2, a double root. Make a small change:

x2 − 4x+ 3.9999999 = 0.

The new solutions are

x =

{
1.9996838

2.0003162

We changed the data of the problem by 10−7 and the solution changed by 3× 10−4, a ratio
of 3000.

This bad behavior can be explained as follows: we changed the equation

(x− 2)2 = 0

to

(x− 2)− ε = 0,

for some ε > 0. The new solutions are

x = 2±√ε.

But, if ε is small, then
√
ε� ε.

As a general rule, if in a computation small numbers appear, avoid forming powers
(number)a if 0 < a < 1.

(3) Hilbert’s Problem.

Given a continuous function f ∈ C([0, 1]), the problem is to approximate f by a polyno-
mial of degree n− 1,

p(t) = x1 + x2t+ · · ·+ xnt
n−1,

in the unknowns x1, . . . , xn. By Gauss, the best approximation is by least squares, that is,
p(t) minimizes

‖f(t)− p(t)‖2 .
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Therefore, we wish to minimize

Φ(x1, . . . , xn) =

∫ 1

0

(f(t)− p(t))2dt.

It is easy to see that there is a unique solution obtained by setting

∂Φ

∂xi
= 0, i = 1, . . . , n.

This yields a systems of n linear equations in x1, . . . , xn,

Ax = b, (††)

whose matrix A = (aij) is given by

aij =
1

i+ j − 1

and with

bi =

∫ 1

0

f(t)ti−1dt.

The matrix

A =




1 1
2

1
3
· · · 1

n

1
2

1
3

1
4
· · · 1

n+1

...
...

...
. . .

...

1
n

1
n+1

1
n+2

· · · 1
2n−1




is the nth Hilbert matrix , denoted by Hn. Here are some facts about the Hilbert matrix:

(1) The matrix Hn is invertible. I fact, it is symmetric, positive, definite (as the matrix of
inner products (ti−1, tj−1)).

(2) The inverse matrix H−1
n has integer coefficients.

(3) The determinant of Hn is ridiculously small.

(4) For any n× n matrix A = (aij), if we let

‖A‖∞ = max |aij|,
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then we have the following table:

n ‖H−1
n ‖∞

2 12
3 192
4 6, 480
5 1.79× 105

6 4.41× 106

7 1.33× 108

8 4.25× 109

9 1.22× 1011

10 3.48× 1012

The linear system (††) cannot be solved in s-place floating point arithmetic with base b
if ‖H−1

n ‖∞ � bs.

(4) Wilkinson’s Example

This is the polynomial

P (x) =
20∏

j=1

(x− j) = x20 − 210x19 + · · ·+ 20!.

The roots of this polynomials are the integers j = 1, . . . , 20, all real and well separated. Say
we use b = 2, s = 30 for floating point. So, we enter the data into the computer (x̃ in D)
by rounding to 30 significant bits (base 2). Now, make a small change in only one of the
twenty coefficients, and make this change only in the 30th significant bit . What happens?

Wilkinson changed the coefficient of x19 and computed roots for

P (x)− 2−23x19 = 0,

using b = 2, but s = 90. Here are the answers for the 20 roots: 10 remain real, 10 are now
complex:

1.00000 0000 10.09526 6145± 0.64350 0904i

2.00000 0000 11.79363 3881± 1.65232 9728i

3.00000 0000 13.99235 8137± 2.51883 0070i

4.00000 0000 16.73073 7466± 2.81262 4894i ⇐=

6.00000 6944 19.50243 9400± 1.94033 0347i

8.00726 7603

8.91725 0249

20.84690 8101
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Note that the zeros for 1, 2, . . . , 10 remain real, as well as the zero for 20, but the zeros for
10, 11, 12, . . . , 19 become complex, and two of them (indicated by a left arrow) are shifted
2.81 units off the real axis.

(5) Forsythe’s Example

If A is a square matrix and if there is some matrix X such that AX = I, then we know
that XA = I. So fix A and vary X. If AX − I is “small,” by continuity XA− I should also
be “small.” Let

A =

(
9999 9998
10000 9999

)
.

The determinant of A is nonzero but “small.” Let
(

9999.9999 −9997.0001
−10001 9998

)
.

A real computation (with no roundoff) yields

AX − I =

(
.001 .0001

0 0

)
,

but

XA− I =

(
19997.0001 19995.0003
−19999 −19995

)
.

We will now describe a method for computing the eigenvalues of a matrix using complex
analysis. Unfortunately it is not practical.

Say z 7→ f(z) is holomorphic on region Ω in C. Then, it turns out that

1

2πi

∫

∂Ω

f ′(z)

f(z)
dz

is the number of zeros of f in Ω (an integer).

If A is an n× n matrix and if its characteristic polynomial is

χ(A)(z) = zn + a1z
n−1 + · · ·+ an,

we would like to know where to look for the roots of χ(A). If we let

K = |a1|+ · · ·+ |an|+ 1,

complex analysis shows that zn = 0 and χ(A)(z) = 0 have the same number of roots in any
disk |z| ≤ B, with B ≥ K. This shows that χ(A) has all its roots in the disk |z| ≤ K. We
design a bisection algorithm that works as follows:

(1) First, draw the square enclosing the disk |z| ≤ K.
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(2) Bisect the square (say vertically); see Figure 2.1. Build in a subroutine for computing

∫

L

R(z)dz,

where L is a line segment parallel to the x or y axis, and R(z) is a rational function,
up to 1/10.

Γ

Figure 2.1: Bisection method to find roots of a polynomial

(3) Compute ∫

Γ

χ(A)′(z)

χ(A)(z)
dz,

along the polygonal boundary Γ of the current rectangle; see Figure 2.1. The error
will be at at most 4/10 < 1/2. Since the value of the integral is an integer, we will
have the real answer. If the answer is ≥ 1, bisect horizontally, and if the answer is 0
(< 1/2), then bisect the left-hand rectangle horizontally.

(4) Repeat this process.

Critique.

1. χ(A)(z) has roundoff error problems.

2. Too many steps may be needed (2r).
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2.2 Square Matrices, Eigenvalues, QR-Factorization,

and the QR-Algorithm

Let A be an n × n real invertible matrix. In order to find the eigenvalues of A, we try to
find matrices Q and R so that

(1) A = QR.

(2) Q is orthogonal.

(3) R is upper triangular.

When A = QR as above, we say that we have a QR-factorization. Write Aj for the jth
column of A and Qj for the jth column of Q. Given any v ∈ Rn, let

‖v‖ = ‖v‖2 =
√
v2

1 + · · ·+ v2
n.

If we write out the equations given by A = QR we get

C1 = r11Q1

Q2 = r22Q2 + r12Q1

...

Cn = rnnQn + rn−1nQn−1 + · · ·+ r1nQ1,

(∗1)

and since Q is orthogonal,
Q>i Qj = δij. (∗2)

We show that Q and R satisfying the above equations can be obtained using the Gram–
Schmidt orthonormalization procedure.

We begin by setting
Q′1 = C1, r11 = ‖C1‖ ,

and

Q1 =
1

r11

Q′1.

This way, Q1 is a unitary vector such that

C1 = r11.Q1

Next, since
C2 = r22Q2 + xQ1,

if we want Q1 and Q2 to be orthogonal, we must have

Q>1 C2 = r22Q
>
1 Q2 + xQ>1 Q1 = x,



120 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

and so
x = Q>1 C2.

Then, we get
r22Q2 = C2 − (Q>1 C2)Q1,

and if we write
Q′2 = C2 − (Q>1 C2)Q1, r2,2 = ‖Q′2‖ ,

then

Q2 =
1

r22

Q′2.

In general, we want Qj orthogonal to Q1, . . . , Qj−1, so we get

Q′j = Cj − ((C>j Qj−1)Qj−1 + · · ·+ (C>j Q1)Q1), rjj =
∥∥Q′j

∥∥ ,

and

Qj =
1

rjj
Q′j.

Note that
Span(C1, . . . , Cj) = Span(Q1, . . . , Qj).

Therefore, Gram-Schmidt yields the desired QR-decomposition. Furthermore, it is easy to
see that if the diagonal elements of R are required to be positive, then Q and R are unique.

Observe that
Cj = Q′j + (C>j Q1)Q1 + · · ·+ (C>j Qj−1)Qj−1︸ ︷︷ ︸,

where the term in the underbrace is the Fourier series for Cj over (Q1, . . . , Qj−1), and

Qj =
Q′j∥∥Q′j
∥∥ .

Oberve thatQj is the orthogonal projection of Cj onto the subspace spanned byQ1, . . . , Qj−1.
It turns out that in computing this projection Pj there are roundoff errors. A modified version
of Gram–Schmidt has less roundoff errors.

Write P (⊥ v) for the orthogonal projection onto the orthogonal complement of Span(v).
Observe that

Pj = P (⊥ Qj−1) ◦ P (⊥ Qj−2) ◦ · · · ◦ P (⊥ Q1).

The P (⊥ Qi) are easier to compute and we obtain Qj by the following iterative process:

Q
(1)
j = P (⊥ Q1)Cj

Q
(2)
j = P (⊥ Q2)Q

(1)
j

...

Q
(j−1)
j = P (⊥ Qj−1)Q

(j−2)
j ,
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and Qj = Q
(j−1)
j .

We now go back to our original problem: Given an invertible matrix A, find its eigen-
values. The QR algorithm due to JR Francis and Vera Kublanoskaya, independently (1960-
1961), is one of the most remarkable algorithms and goes as follows:

(1) Factor A as A = A0 = Q1R1 (the QR factorization of A).

(2) Make
A1 = R1Q1,

and then compute a QR-factorization of A1,

A1 = Q2R2

(3) Repeat step (2): Using Ai−1 = QiRi, make

Ai = RiQi

and QR-factor Ai as
Ai = Qi+1Ri+1.

Remarks:

(1) From Ai = RiQi we get Ri = AiQ
∗
i , and from Ai−1 = QiRi, we get

Ai−1 = QiAiQ
∗
i = QiAiQ

−1
i .

Therefore, Ai and Ai−1 are similar, and thus A and Ai are similar for all i. Conse-
quently, Ai has the same eigenvalues as A, including multiplicities.

(2) If Ai becomes upper triangular, then the eigenvalues of A are the diagonal elements of
Ai.

(3) The method does not always converge. For example, if A is a unitary matrix, the
method loops forever (in this case, R = I). Therefore, certain conditions on A are
needed to ensure that the method converges. We will investigate this matter later on.

We now briefly review some basics about eigenvalues and eigenvectors. Our main goal is
to prove that every (complex) matrix A can be factored as UTU∗, where U is unitary and
T is upper triangular (the Schur form).

Eigenvalues and Eigenvectors

Given an n×n matrix A, the set of all the eigenvalues of A is the spectrum of A, denoted
by sp(A). We let

ρ(A) = max{|λ| | λ ∈ sp(A)}
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be the spectral radius of A. Given any eigenvalue λ of A, write

Eλ = {v ∈ Cn | Av = λv},

the eigenspace associated with λ. Except for the zero vector, all vectors in Eλ are eigenvectors
for the eigenvalue λ. The dimension of Eλ, denoted by geo(λ), is the geometric multiplicity
of λ.

The spectrum of A is the set of zeros of the characteristic polynomial of A,

χ(A)(z) = det(zI − A).

We have

χ(A)(z) = zn − tr(A)zn−1 + · · ·+ (−1)n det(A).

If we factor χ(A)(z), then we get

χ(A)(z) =
∏

λ∈sp(A)

(z − λ)r(λ),

where each r(λ) is some positive integer called the algebraic multiplicity of λ. We also denote
r(λ) by alg(λ).

Proposition 2.1. (Fundamental Inequality) If A is a square matrix, then for every eigen-
value λ ∈ sp(A), we have

geo(λ) ≤ alg(λ).

Proof. Pick any eigenvalue λ1 of A and consider Eλ1 . Pick a basis of Eλ1 and extend it to
a basis of Cn. Let Q be the change of basis matrix (from the canonical basis). Then, with
respect to this new basis, the matrix A becomes

Q−1AQ =

(
λI X
0 Y

)
.

Furthermore, we have

χ(A)(z) = χ(Q−1AQ)(z)

= det(zI −Q−1AQ)

= (z − λ1)geo(λ1) det(zI − Y )

= (z − λ1)geo(λ1)χ(Y )(z).

It follows that (z − λ1)geo(λ1) divides χ(A)(z), which shows that geo(λ1) ≤ alg(λ1).

Proposition 2.1 has the following useful consequences:
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(I) If alg(λ) = 1 for all λ ∈ sp(A), then A is diagonalizable.

This is because in this case, geo(λ) = alg(λ) for all λ. But
∑

λ alg(λ) = n = dim(A),
so
∑

λ geo(λ) = n and then

dim

(∐

λ

Eλ

)
= n,

which implies that

Cn =
∐

λ

Eλ.

(II) If geo(λ) = alg(λ) for all λ ∈ sp(A), then A is diagonalizable (the converse is clearly
true).

The proof is the same as in case (I).

Question: Say Q is unitary and Q∗AQ = D is diagonal. What can we say about A?

From Q∗AQ = D, we get A = QDQ∗, and because Q is unitary, we have

AA∗ = QDQ∗QD∗Q∗ = QDD∗Q∗,

and
A∗A = QD∗Q∗QDQ∗ = QD∗DQ∗.

However, both D and D∗ are diagonal matrices, so DD∗ = D∗D, and we get

AA∗ = A∗A.

In this case, we say that A is a normal matrix . Conversely, every normal matrix A can be
diagonalized as A = QDQ∗, where Q is unitary. This is the spectral theorem.

As a special case, if A is Hermitian, which means that A = A∗, then A is diagonalizable.
Furthermore, all the eigenvalues of A are real. This is because, from A = QDQ∗ we get

QDQ∗ = A = A∗ = QD∗Q∗,

which implies that D = D∗ = D, that is, D is real.

Unfortunately not every square matrix can be diagonalized, but if we relax the require-
ment of obtaining a similar diagonal matrix to obtaining a similar upper triangular matrix,
then this is possible. In fact, Schur proved that for every complex matrix A, there is a
unitary matrix U and an upper triangular matrix T such that

A = UTU∗.

This is called a Schur factorization of A.
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Remark: The eigenvalue problem is equivalent with the problem of finding the roots of a
polynomial. Since the eigenvalues of a matrix A are the zeros of its characteristic polynomial
χA(z), a solution to the second problem obviously yields a solution of the first problem.
Conversely, if P (z) is any polynomial of degree n, we may assume that the leading coefficient
is 1 so that

P (z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an−1z + an,

then we can make the companion matrix

A =




0 0 0 · · · 0 −an
1 0 0 · · · 0 −an−1

0 1 0 · · · 0 −an−2
...

. . . . . . . . .
...

...

0 0 0
. . . 0 −a2

0 0 0 · · · 1 −a1



.

and a simple computation shows that the characteristic polynomial χA(z) = det(zI − A) is
equal to P (z). Therefore, a method for finding the eigenvalues of the matrix A can be used
to find the zeros of the polynomial P (z) = χA(z).

In 1819, NH Abel proved that for a “generic” quintic equation with coefficients in Q,
there exists a root which cannot be expressed as a finite combination of the coefficients
using the operations +,−, ∗, / and k

√
(solution by radicals). Then, E. Galois (1832) gave

a criterion for polynomials of degree n for when they could be solved by radicals. Galois
associated to each P (of degree n) a subgroup Gal(P ) of Sn (in a canonical way) called the
Galois group of P .

Galois’s criterion: A polynomial P (z) is solvable by radicals iff Gal(P ) is a solvable group.

Abel showed that for n = 5, any generic P has Gal(P ) = S5, but S5 is not solvable. The
conclusion is that the eigenvalue problem is not solvable by formulae involving radicals.

We now return to the Schur normal form.

Proposition 2.2. Every square complex matrix A has a Schur decomposition

A = UTU∗,

with U unitary and T upper triangular.

Proof. We proceed by induction on the dimension of A. The case n = 1 is trivial. If n > 1,
let λ1 ∈ C be any eigenvalue of A (it exists since C is algebraically closed). Using Gram-
Schmidt, we can find an orthonormal basis consisting of a basis of the eigenspace Eλ1 and a
basis of E⊥λ1 . Thus, there is a unitary matrix U1 such that

U∗1AU1 =

(
λI X
0 Y

)
.
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By the induction hypothesis applied to Y , there is a unitary matrix U2 such that

U∗2Y U2 = T2

is an upper triangular matrix. Then, we have

(
I 0
0 U∗2

)(
λI X
0 Y

)(
I 0
0 U2

)
=

(
λI X
0 U∗2Y

)(
I 0
0 U2

)
=

(
λI XU2

0 U∗2Y U2

)
=

(
λI XU2

0 T2

)

Thus, if we let

U3 =

(
I 0
0 U2

)
,

we have

U∗3

(
λI X
0 Y

)
U3 = U∗3U

∗
1AU1U3 =

(
λI XU2

0 T2

)
,

an upper triangular matrix. If we write U = U1U3 and

T =

(
λI XU2

0 T2

)
,

we get
U∗AU = T,

with U unitary and T upper triangular, as claimed.

Corollary 2.3. (Spectral Theorem for Hermitian matrices) Every Hermitian matrix A can
be diagonalized by a unitary matrix; that is

A = UDU∗,

with U unitary and D diagonal. Furthermore, D is real.

Proof. Let A = UTU∗ be a Schur factorization of A. Since A = A∗, we get

UTU∗ = UT ∗U∗,

which implies T = T ∗. However, since T is upper triangular, T ∗ is lower triangular, and the
only way that T = T ∗ is that T is a diagonal matrix D. Then D = D∗ = D, which shows
that D is real.

Let us go back to the QR factorization. We will show that there is a more stable way to
obtain it using Householder reflections.

Observe that when we apply Gram–Schmidt (or modified Gram–Schmidt), we alter the
columns seriatum leaving the previously altered ones alone. This means that we perform a
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sequence of right multiplications by upper triangular matrices, and in the end we obtain a
unitary matrix.

To avoid complications having to do with conjugation, let us consider real matrices. We
can try to operate on the rows by orthogonal matrices. We would like to find an orthogonal
matrix Q such that QA is upper triangular, and do this in a stepwise fashion. So, if we have
a matrix Ak of the form

Ak =




∗ ∗ ∗ · · · ∗ uk1 · · · ∗
0 ∗ ∗ · · · ∗ uk2 · · · ∗
0 0 ∗ · · · ∗ uk3 · · · ∗
...

...
...

. . .
...

...
...

...
0 0 0 · · · ∗ ukk−1 · · · ∗
0 0 0 · · · 0 ukk · · · ∗
0 0 0 · · · 0 ukk+1 · · · ∗
...

...
...

...
...

...
...

...
0 0 0 · · · 0 ukn · · · ∗




where the left upper triangular block has size (k − 1) × (k − 1), we would like to multiply
on the left by some orthogonal matrix to zero the entries ukk+1, . . . , u

k
n in the kth column

and preserve the k − 1 rows that we already have. This can be done using a hyperplane
reflection, and such a method was found by Householder (1958).

If ukk+1 = · · · = ukn = 0, then Hk = I, else let

u′′k = (0, . . . , 0, ukk, . . . , u
k
n)

rkk = ‖u′′k‖,

and let Hk be the unique hyperplane reflection such that

Hk(u
′′
k) = rkkek,

where (e1, . . . , en) is the canonical basis of Rn. The reflection Hk is uniquely determined by
the hyperplane Hk orthogonal to wk = rkkek − u′′k. Since the first k− 1 rows of Ak are linear
combinations of e1, . . . , ek−1, and since these vectors are orthogonal to wk, they are invariant
under the reflection Hk, as desired. Then, after n steps, we obtain

HnHn−1 · · ·H1A = R,

where R is an upper triangular matrix and each Hi is a hyperplane reflection (or the identity).
Observe that this works even if A is singular.

We claim that the hyperplane reflection H about a hyperplane orthogonal to a nonzero
vector w is given by

H(u) = u− 2
(u,w)

‖w‖2 w, u ∈ Rn.
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We just need to find the orthogonal projection of u onto w. If we write

u = u′ + λw,

where u′ is orthogonal to w, then we get

(u,w) = (u′, w) + λ(w,w) = λ(w,w),

which yields

λ =
(u,w)

‖w‖2 .

Then, it is geometrically obvious that

H(u) = u− 2λw = u− 2
(u,w)

‖w‖2 w.

The matrix corresponding to H is

Hw = I − 2
ww>

w>w
,

since

Hwu = u− 2
ww>

w>w
u = u− 2

w>u

w>w
w.

The matrix Hw = I−2ww
>

w>w
is a Householder reflection. It is both orthogonal and symmetric.

Remark: Since the Householder reflection associated with wk involves division by ‖wk‖2, for
numerical stability we want to make sure that ‖wk‖ is not too small, so it may be preferable
to pick

wk = rkkek + u′′k

instead of wk = rkkek − u′′k to maximize ‖wk‖. This amounts to picking

rkk = −‖u′′k‖ ,

and in this case, some diagonal entries of R may be negative.

In the complex (Hermitian) case, we have the additional complication that if u and v are
two distinct nonzero vectors such that ‖u‖ = ‖v‖, unlike the Euclidean case, there may not
be any reflection H such that H(u) = v. This is true only if the Hermitian inner product
(u, v) is real. We can salvage the situation by multiplying by a suitable complex number.
Specifically, if (u, v) = eiθ|(u, v)| (and ‖u‖ = ‖v‖), then the reflection Hw determined by the
vector w = v − e−iθu has the property that

Hw(u) = eiθv.
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If we use this trick, we obtain a triangular matrix

R = HnHn−1 · · ·H1A

whose diagonal entries are of the form eiθjrjj, with rjj > 0. We leave the details as an
exercise.

Is it possible to achieve the Schur normal form of a matrix A = QTQ∗ using Householder
reflections?

As a first attempt, use an orthogonal matrix Q to zero all entries below a11 in the first
column of A. If

QA =




∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ ∗ · · · ∗


 ,

then forming QAQ∗ will change the first column, so this doesn not work. If we ask for less,
namely, for j = 1, . . . , n, to zero the entries aij for which i ≥ j+ 2, then we succeed. Indeed,
using a Householder reflection Q1 we can zero all the entries below a21 obtaining

Q1A =




∗ ∗ · · · ∗
∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ ∗ · · · ∗



.

This time, when we multiply on the right by Q∗1, since Q1 leaves the first row alone, Q∗1
leaves the first column alone, so we obtain a matrix of the form

Q1AQ
∗
1 =




∗ ∗ · · · ∗
∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ ∗ · · · ∗



.

Next, we can use a Householder reflection Q2 to zero all the entries in the second column
for which i ≥ 4, and since Q2 leaves the first two rows alone, Q∗2 leaves the first two columns
alone. We get a matrix of the form

Q2Q1AQ
∗
1Q
∗
2 =




∗ ∗ · · · ∗
∗ ∗ · · · ∗
0 ∗ · · · ∗
0 0 · · · ∗
...

...
. . .

...
0 0 ∗ · · · ∗



.
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Continuing in this fashion, we obtain a matrix R with

R = Qn−2 · · ·Q2Q1AQ
∗
1Q
∗
2 · · ·Q∗n−2 =




∗ ∗ ∗ · · · ∗ ∗ ∗
∗ ∗ ∗ · · · ∗ ∗ ∗
0 ∗ ∗ · · · ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗
0 0 0

. . . ∗ ∗ ∗
...

...
...

. . . . . . . . .
...

0 0 0 · · · 0 ∗ ∗




,

such that rij = 0 for j = 1, . . . , n and j + 2 ≤ i ≤ n. In other words, R has zeros below
the second diagonal. We say that R is a matrix in Hessenberg form. Thus, we showed that
for every real matrix A, there is a sequence of Householder reflections whose composition Q
yields

A = Q∗RQ,

with R a Hessenberg matrix. Observe that if A is a symmetric matrix, then R is a tridiagonal
matrix.

2.3 More on Conditioning and Stability

Recall that a problem is a function f : D → S, from the data space D to the problem space
S. Say x ∈ D and δx is a small perturbation of x. What happens to f(x)?

As in calculus, let
δf = f(x+ δx)− f(x).

The numerical measure of changing the solution is

lim
δ 7→0

sup
‖δx‖≤δ

‖δf‖
‖δx‖ = κf (x).

This quantity is the conditioning number of the problem f at x. In floating point arithmetic,
we are interested in relative errors. So we divide by ‖f(x)‖ / ‖x‖, and we get the relative
condition number of the problem f at x,

κf,rel(x) = lim
δ 7→0

sup
‖δx‖≤δ

‖δf‖
‖f(x)‖

/‖δx‖
‖x‖ .

Examples

(1) (Silly example) Let D = S = C, and f(x) = λx, for some λ ∈ C. We have

δf = f(x+ δx)− f(x) = λx+ λδx− λx = λδx,
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so
‖δf‖
‖x‖ = |λ|,

and then
κf (x) = |λ|,

independently of x. We also have

‖δf‖
‖f(x)‖ =

|λ| ‖δx‖
|λ| ‖x‖ =

‖δx‖
‖x‖ ,

which yields
‖δf‖
‖f(x)‖

/‖δx‖
‖x‖ = 1,

and so
κf,rel(x) = 1,

independently of x.

(2) D = S = C, f(x) = k
√
x.

The above is a particular example of a differentiable function f , so we consider this case.
For δx small enough, we have

f(x+ δx) = f(x) +Dfx(δx) + o(δx),

where Dfx is a linear map from D to S, that is,

δf = Dfx(δx) + o(δx).

From this, we deduce the inequalities

‖Dfx(δx)‖ − ‖o(δx)‖ ≤ ‖δf‖ ≤ ‖Dfx(δx)‖+ ‖o(δx)‖ ,

and so
‖Dfx(δx)‖
‖δx‖ − ‖o(δx)‖

‖δx‖ ≤
‖δf‖
‖δx‖ ≤

‖Dfx(δx)‖
‖δx‖ +

‖o(δx)‖
‖δx‖ .

These inequalities are preserved by sup, which implies that when we take the limit

lim
δ 7→0

sup
‖δx‖≤δ

we obtain

κf (x) = lim
‖δx‖7→0

‖Dfx(δx)‖
‖δx‖ .

Now, if L is any linear map over a finite dimensional space, then L is continuous so the
quantity

sup
‖x‖=1

‖L(x)‖
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is well defined and is achieved for some x (by compactess of the unit sphere). For any x 6= 0,
we have x = ‖x‖ x̂ with

x̂ =
x

‖x‖ ,

a unit vector, which implies that for any x 6= 0,

‖L(x)‖
‖x‖ = ‖L(x̂)‖ ,

and this shows that

sup
x6=0

‖L(x)‖
‖x‖ = sup

‖x‖=1

‖L(x)‖ .

The above quantity is the operator norm (or subordinate norm) of L, and it is denoted by
‖L‖. Therefore, we proved that

κf (x) = ‖Dfx‖ .
It follows that

κf,rel(x) = ‖Dfx‖
/‖f(x)‖
‖x‖ .

Back to f(x) = k
√
x. We have

Dfx = f ′(x) =
1

k
x

1
k
−1 =

1

k

k
√
x

x
,

and so

κf (x) =
1

k

k
√
|x|
|x| .

Observe that κf (x) is very large if x is small. On the other hand,

κf,rel(x) =
1

k

k
√
|x|
|x|

/
k
√
|x|
|x| =

1

k
,

which is independent of x. In conclusion, kf (x) is ill-conditioned near 0, and κf,rel(x) is well
conditioned for all x.

(3) D = C2, S = C, f(x1, x2) = x1 − x2.

We have
Df(x) = (1,−1),

and so

‖Df(x)‖ = max

∣∣∣∣
∂f

∂xj
(x1, x2)

∣∣∣∣ dim(D) = 2.

It follows that
κf (x) = 2,
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and f is well-conditioned. On the other hand,

κf,rel(x) =
2
√
x2

1 + x2
2

|x1 − x2|
= 2

‖x‖2

|x1 − x2|
.

If x1 − x2 is very small, that is, x1 ≈ x2, then κf,rel(x) is big. Thus, f is relatively ill-
conditioned. This is a cancellation problem.

(4) Eigenvalue problems are ill-conditioned in general. Let

A =

(
1 1000
0 1

)
.

The eigenvalues of A are both 1. Yet, if we change A a little bit to

B =

(
1 1000

0.001 1

)
,

then det(B) = 0 and the eigenvalues are 0 and 2.

(5) Wilkinson’s polynomial,

P (x) =
20∏

j=1

(x− j).

The sixteenth root is sensitive. Say

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

Fact . If we change only the ith coefficient of P by δai, then the change in the jth root is

−(δai)x
i
j

P ′(xj)
.

If f(P ) = jth root of P , then

κf (P ) =
|δai||xj|i
|P ′(xj)||δai|

=
|xj|i
|P ′(xj)|

,

and

κf,rel(P ) =
|xj|i
|P ′(xj)|

/ |xj|
‖P‖ =

‖P‖
|P ′(xj)|

|xj|i−1.

The quantity κf,rel(P ) can be very large.

(6) The condition number of a matrix. Let A be an m×m complex matrix, let D = Cm,
S = Cm. We have

A(x+ δx)− Ax = Aδx,
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and so

κA,rel = lim
δ 7→0

sup
‖δx‖≤δ

‖Aδx‖
‖δx‖

/‖Ax‖
‖x‖ = ‖A‖ ‖x‖‖Ax‖ .

If A−1 exists, then
x = A−1Ax,

which implies that
‖x‖ ≤

∥∥A−1
∥∥ ‖Ax‖ ,

and so
‖x‖
‖Ax‖ ≤

∥∥A−1
∥∥ .

Therefore, we get
κA,rel ≤ ‖A‖

∥∥A−1
∥∥ .

The number κ(A) = ‖A‖ ‖A−1‖ is called the condition number of the matrix A. If A is not
invertible, we agree that κ(A) =∞.

Look at the two problems:

1. Given, x, find y such that y = Ax.

2. Given y, find x such that Ax = y, which is equivalent to A−1y = x.

We find that

1. The first problem has condition number

κrel(x) = ‖A‖ ‖x‖‖y‖ ,

2. The second problem has condition number

κrel(y) =
∥∥A−1

∥∥ ‖y‖
‖x‖ .

In both cases, we have
κrel ≤ κ(A).

For example, if A = Hn, the Hilbert matrix, then κ(Hn) is enormous. In fact, the
following proposition holds:

Proposition 2.4. Suppose f : D → S is a problem and f̃ is a backwardly stable algorithm
to compute f . Then, ∥∥∥f̃(x)− f(x)

∥∥∥
‖f(x)‖ = O(κf,rel(x) · εmachine).
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Proof. Because f̃ is backwardly stable, there is some x̃ such that f(x̃) = f̃(x), where

‖x̃− x‖
‖x‖ = O(εmachine).

Then, we have
f̃(x)− f(x) = f(x̃)− f(x) = δf,

and for ‖x̃− x‖ ≤ δ,

κf,rel(x) = lim
δ 7→0

sup
‖δx‖≤δ

‖δf‖
‖δx‖

/‖f(x)‖
‖x‖ = lim

δ 7→0
sup
‖δx‖≤δ

‖δf‖
‖f(x)‖

/ ‖x‖
‖δx‖ ,

which implies that
∥∥∥f̃(x)− f(x)

∥∥∥
‖f(x)‖ ≤ (κf,rel(x) + o(1))(O(εmachine)).

The righthand side is O(κf,rel(x) · εmachine), as claimed.

As an application of Proposition 2.4, consider the problem of computing sin(π
2
− δ) for

δ > 0 small. Let
x =

π

2
− δ

and suppose that f̃(x) = fl(sin x). Is the algorithm f̃ backwardly stable?

If so, there is some x̃ such that f̃(x) = f(x̃) with

‖x̃− x‖
‖x‖ = O(εmachine).

Using calculus, we have

f(x̃)− f(x) = f ′(x)(x̃− x) +O((x̃− x)2).

Since
f ′(x) = cos x = cos

(π
2
− δ
)

and
cos
(π

2
− δ
)

= cos
π

2
cos δ + sin

π

2
sin δ = sin δ ≈ δ,

we get
f(x̃)− f(x) ≈ δ(x̃− x) +O((x̃− x)2). (∗)

By assumption, f(x̃) = f̃(x) = fl(sin x) and f(x) = sinx. This implies that

‖f(x̃)− f(x)‖ = O(εmachine),
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and if we divide (∗) by δ, we get

∥∥∥f̃(x)− f(x)
∥∥∥

δ
= ‖x̃− x‖+ small error.

The lefthand side is O(εmachine)/δ. Thus, if δ is small, then

‖x̃− x‖ 6= O(εmachine) ‖x‖ ,

a contradiction. Therefore, f̃ is not backwardly stable.

2.4 Rayleigh Quotient and Power Iteration

In this section, we assume that A is a square, real, symmetric matrix. In this case, A has
real eigenvalues that can be ordered according to their absolute values,

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|,

and A can be diagonalized with respect to an orthornormal basis of eigenvectors (e1, . . . , en).

Definition 2.1. The Rayleigh quotient of A at x (x 6= 0) is

r(x) =
x>Ax

x>x
=

(Ax, x)

(x, x)
.

The following properties hold:

(1) r(λx) = r(x), for all λ 6= 0. Consequently, we may assume that ‖x‖ = 1.

(2) If y is an eigenvector of A for λ, then (Ay, y) = λ(y, y), and so

r(y) = λ.

We can consider r as a function on the unit sphere Sn−1. The function r is smooth on Sn−1.
Pick x on Sn−1 and look at r(x) near x. We need Dr(x), the derivative of r at x. Thus, we
need to compute the partial derivatives, ∂r/∂xj. We have

∂r

∂xj
=

(x, x)∂(Ax,x)
∂xj

− ∂(x,x)
∂xj

(Ax, x)

(x, x)2
.

Say x =
∑n

j=1 xjej, then

Ax =
n∑

j=1

xjAej,
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and

∂(Ax, x)

∂xj
=

(
∂Ax

∂xj
, x

)
+

(
Ax,

∂x

∂xj

)

= (Aej, x) + (Ax, ej)

= 2(Ax, ej).

Since the basis is orthonormal, if Ax =
∑

i aiei, we have

∂(Ax, x)

∂xj
= 2aj,

and we also have

∂(x, x)

∂xj
=

(
∂x

∂xj
, x

)
+

(
x,

∂x

∂xj

)

= (ej, x) + (x, ej)

= 2(x, ej) = 2xj.

It follows that
∂r

∂xj
=

2

(x, x)
(aj − xjr(x)),

and thus

Dr(x) =
2

(x, x)
(Ax− r(x)x).

The critical points of r are given by Dr(x) = 0, that is,

Ax = r(x)x, x 6= 0.

Therefore, the critical points of r are the eigenvalues of A and the corresponding critical
values are the corresponding eigenvalues (by (2) above).

The Taylor series of r near a critical point is given by

r(y) = r(x) +Dr(x)(y − x) + (y − x)>H(ξ)(y − x),

where H(ξ) is the Hessian of r at some point ξ near x and y. In conclusion, near a critical
point, we have

|r(y)− r(x)| = |r(y)− λ| = O(‖y − x‖2).

Power Iteration

Given x 6= 0, look at the sequence

x,Ax,A2x, . . . , Amx, . . . ,
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and at the sequence of normalized vectors

Amx

‖Amx‖ .

Nomenclatrure: The kth Krylov subspace from A and x, denoted by Kk(A;x), is the subspace
spanned by (x,Ax, . . . , Akx).

Assume that |λ1| > |λ2| ≥ · · · ≥ |λn|. Compute Akx using a basis of eigenvectors
(e1, . . . , en). If x =

∑
j ajej, then

Ax =
∑

j

ajλjej,

and we get

Amx =
∑

j

ajλ
m
j ej,

which yields

Amx

‖Amx‖ =

1
λm1
Amx

1
λm1
‖Amx‖

=

∑
j aj

(
λj
λ1

)m
ej

√
∑

j a
2
j

(
λj
λ1

)2m
,

and as m goes to infinity, since |λ1| > |λj| for j = 2, . . . , n, the limit is

a1
e1

|a1|
= ±e1.

We can also estimate the rate of convergence. If we let

xk =
Akx

‖Akx‖ ,

then the above implies that

∥∥Akx
∥∥ = |a1||λ1|kO

(∣∣∣∣
λ2

λ1

∣∣∣∣
k
)
,

and so

‖xk −±e1‖ = O

(∣∣∣∣
λ2

λ1

∣∣∣∣
k
)
, (∗)
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and finally

|r(xk)− λ1| = O

(∣∣∣∣
λ2

λ1

∣∣∣∣
2k
)
. (∗∗)

The next question is: what do we do to improve the speed of convergence of power
iteration?

Here is an idea: pick a number µ and suppose that it is close to an eigenvalue λ of A. If
µ is distinct from all the eigenvalues of A, then A− µI is invertible, so let B = (A− µI)−1.
Say x is an eigenvector of B for some eigenvalue ξ 6= 0. If so, Bx = ξx, that is,

x = (A− µ)ξx,

which yields
(1 + µξ)x = ξAx.

It follows that x is an eigenvector of A for the eigenvalue

λ =
1 + µξ

ξ
,

and then
1 + µξ = λξ,

so

ξ =
1

λ− µ.

In summary: The eigenvectors of B are equal to those of A, and if λ is an eigenvalue of A,
then 1/(λ− µ) is an eigenvalue of B. Also, if µ is close to λ, then 1/(λ− µ) is large, and if
µ is closest to λ than to any other eigenvalue λ′ of A, then

|λ− µ| < |λ′ − µ| for all λ′ 6= λ,

so
1

|λ− µ| >
1

|λ′ − µ| for all λ′ 6= λ,

and then power iteration applied to B = (A − µI)−1 converges to an eigenvector e corre-
sponding to λ. We also have

∥∥xk −±e
∥∥ = O

(∣∣∣∣
λ− µ
λ′ − µ

∣∣∣∣
k
)
,

and

|r(xk)− λ| = O

(∣∣∣∣
λ− µ
λ′ − µ

∣∣∣∣
2k
)
.
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The above method is the inverse power iteration method .

Power iteration and inverse power iteration can be used together to yield an effective
iterative method for computing eigenvalues and eigenvectors. Look at the diagram in Figure
2.2:

Repeat these steps seriatum alternately; use r(xk−1) instead of the previous guess of
eigenvalue when doing iteration and use the better vectors starting vector in either itreration
steps.

guess an eigenvalue
pick a starting vector x0

x1 a better approximation
of e-vector
r(x1) a much better
appproximation of e-value

inverse power iteration

power iteration

Figure 2.2: Rayleigh quotient iteration

Remark: To compute x1 we apply B = (A− µI)−1, that is, we solve

(A− µI)x1 = x0

for x1. This is ill conditioned if µ is close to λ. Remarkably, in practice this does not matter!
Also, if ∥∥xk −±e

∥∥ = O(ε),

then

|r(xk)− λ| = O(ε2).

From (∗) and (∗∗), it can be shown that if the iteration converges, then

∥∥xk+1 −±e
∥∥ = O(

∥∥xk −±e
∥∥3

)

and ∥∥r(xk+1)− λ
∥∥ = O(

∥∥r(xk)− λ
∥∥3

).

This is a very fast convergence rate.
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2.5 Back to the QR-Algorithm

Recall the QR algorithm for finding the eigenvalues of a (symmetric) matrix: First, factor
A(0) = A as

A(0) = Q(1)R(1)

(say by Householder reflection) and then make

A(1) = R(1)Q(1).

In general, factor A(k) as
A(k) = Q(k+1)R(k+1)

and make
A(k+1) = R(k+1)Q(k+1).

Since, Q(k+1) = A(k)(R(k+1))∗, we have

A(k+1) = R(k+1)A(k)(R(k+1))∗,

which shows that A(k) and A(k+1) have the same spectrum, and thus that A and A(k) have
the same spectrum for all k.

The “practical algorithm” consists of the following steps:

(0) Use Householder reflections to convert A to Hessenberg form (tridiagonal if A is Her-
mitian); call this matrix A(0).

(1) Pick a good shift µ1, and QR factor A(0) − µ1I as

A(0) − µ1I = Q(1)R(1).

(2) Make
A(1) = R(1)Q(1) + µ1I.

Repeat (1) and (2). Usually, we pick µk = A
(k)
mm. Observe that

Q(1)A(1)(Q(1))∗ = Q(1)(R(1)Q(1) + µ1I)(Q(1))∗ = Q(1)R(1) + µ1I = A(0),

which shows that A(0) and A(1) have the same spectrum, and similarly A(0) and A(k)

have the same spectrum for all k.

(3) (Deflation) If A(k) has some very small lower off diagonal entry A
(k)
j+1j, then replace A(k)

by the matrix which has A
(k)
j+1j = 0 to get a new matrix of the form

(
B ∗
0 C

)

and run the shifted QR algorithm separately on B and C.
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The above method is the QR algorithm with shift.

To analyze the convergence of the above method, assume that A is Hermitian and forget
about the shifts. Let (e1, . . . , em) be an orthonormal basis of eigenvectors for A. Let X(0)

be an invertible m×m matrix whose jth column is a vector of the form

x
(0)
j =

m∑

i=1

aijei.

Write Q for the matrix whose columns are e1, . . . , em and look at Q>X(0). Observe that

(Q>x(0)
j )l = (el, x

(0)
j ) = alj.

Recall that the principal k minor of a m × m matrix A = (aij) is the matrix (aij), with
1 ≤ i, j ≤ k and 1 ≤ k ≤ m.

Theorem 2.5. If A is a real symmetric matrix, Q is an orthogonal matrix consisting of an
orthonormal basis of eigenvectors of A, and if

(1) X(0) is any matrix such that Q>X(0) and all its principal minors are nonsingular

(2) |λ1| > |λ2| > · · · > |λm|, where λ1, . . . , λm are the eigenvalues of A, and if

A(k)X(0) = Q(k)R(k),

is a QR decomposition of A(k)X(0),

then the sequence (Q(k)) converges linearly to Q and the diagonal entries of R(k) converge
linearly to the eigenvalues of A.

Sketch of proof. We have A = QΛQ> where Λ is a diagonal matrix and Q is orthogonal. It
follows that

Ak = QΛkQ>.

Let l ≤ m and for any m×m matrix B write Bl for the principal l-minor of B augmented
by 1s down the diagonal. We have

AkX(0) = QΛkQ>X(0),

and so

(AkX(0))l = QlΛ
k
l (Q

>X(0))l,

= (QΛk)lQ
>
l X

(0) +O(λkl+1)

= (QΛk)lQ
>
l X

(0) +O(λkl+1)(Q>l X
(0))−1Q>l X

(0)

= [(QΛk)l +O(λkl+1)]Q>l X
(0).
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Since Q>l X
(0) is nonsingular, the column space of (AkX(0))l is the same as the column space

of (QΛk)l +O(λkl+1). Let

C = max

{∣∣∣∣
λj+1

λj

∣∣∣∣ , j = 1, . . . ,m− 1

}
.

By hypothesis, C < 1. For l = 1, the column space of (AkX(0))1 +O(|λ2|k) converges to the
first column of Q in O(C). By induction, all the column spaces of QΛk converge those of
AkX(0) in O(C) as k goes to infinity. But, QΛk has the same column space as Q, so

∥∥(AkX(0))j −±ej
∥∥ = O(C).

In practice, there are too many roundoff errors so we normalize at each stage. Start with
X(0), compute

X(1) = AX(0) = Q(1)R(1).

Since A is invertible, so is R(1), thus X(1) and Q(1) have the same column space. Replace
X(1) by Q(1). Keep going: let

AQ(k−1) = Q(k)R(k)

and get Q(k). This method is the simultaneous power iteration method (SPI). It turns out
that QR iteration is equivalent to simultaneous iteration applied to the identity matrix. To
show this, we need to introduce some notation. Define the matrices A(k), X(k), Q(k), Q(k)

and R(k) as follows:

A(0) = A

A(k−1) = Q(k)R(k)

A(k) = R(k)Q(k)

X(0) = Q(0) = I

AQ(k−1) = Q(k)R(k)

X(k) = Q(k).

We also define the matrices A(k) and R(k) by

A(k) = Q(k)A(Q(k))>

R(k) = R(k)R(k−1) · · ·R(1).

Proposition 2.6. The following properties hold:

1. Ak = Q(k)R(k).

2. A(k) = A(k).

3. R(k) = R(1) · · ·R(k).

4. Q(k) = Q(1) · · ·Q(k).

Proof. By induction.
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2.6 Singular Value Decomposition (SVD)

Let A be a p× q complex matrix, and let S2q−1 be the unit sphere in Cq, given by

S2q−1 = {(z1, . . . , zq) ∈ Cq | |z1|2 + · · ·+ |zq|2 = 1}.

Recall that (for any norms on Cp and Cq)

‖A‖ = sup
‖x‖=1

‖Ax‖ .

Because S2q−1 is compact, there is some x ∈ Cq such that

‖A‖ = ‖Ax‖ ,

and the image of S2q−1 under A is also compact, so geometrically AS2q−1 is an ellipsoid.
Because A may not have full rank, this ellipsoid may be flat in certain directions. This can
be easily handled using some linear algebra.

First, we prove that every square real matrix has an SVD. Stronger results can be obtained
if we first consider the polar form and then derive the SVD from it (there are uniqueness
properties of the polar decomposition). For our purposes, uniqueness results are not as
important so we content ourselves with existence results, whose proofs are simpler. Readers
interested in a more general treatment are referred to [6].

The early history of the singular value decomposition is described in a fascinating paper
by Stewart [16]. The SVD is due to Beltrami and Camille Jordan independently (1873,
1874). Gauss is the grandfather of all this, for his work on least squares (1809, 1823)
(but Legendre also published a paper on least squares!). Then come Sylvester, Schmidt, and
Hermann Weyl. Sylvester’s work was apparently “opaque.” He gave a computational method
to find an SVD. Schmidt’s work really has to do with integral equations and symmetric and
asymmetric kernels (1907). Weyl’s work has to do with perturbation theory (1912). Autonne
came up with the polar decomposition (1902, 1915). Eckart and Young extended SVD to
rectangular matrices (1936, 1939).

Theorem 2.7. (Singular value decomposition) For every real n× n matrix A there are two
orthogonal matrices U and V and a diagonal matrix D such that A = V DU>, where D is of
the form

D =




σ1 . . .
σ2 . . .

...
...

. . .
...

. . . σn


 ,

where σ1, . . . , σr are the singular values of f , i.e., the (positive) square roots of the nonzero
eigenvalues of A>A and AA>, and σr+1 = · · · = σn = 0. The columns of U are eigenvectors
of A>A, and the columns of V are eigenvectors of AA>.
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Proof. Since A>A is a symmetric matrix, in fact, a positive semidefinite matrix, there exists
an orthogonal matrix U such that

A>A = UD2U>,

with D = diag(σ1, . . . , σr, 0, . . . , 0), where σ2
1, . . . , σ

2
r are the nonzero eigenvalues of A>A,

and where r is the rank of A; that is, σ1, . . . , σr are the singular values of A. It follows that

U>A>AU = (AU)>AU = D2,

and if we let fj be the jth column of AU for j = 1, . . . , n, then we have

〈fi, fj〉 = σ2
i δij, 1 ≤ i, j ≤ r

and
fj = 0, r + 1 ≤ j ≤ n.

If we define (v1, . . . , vr) by
vj = σ−1

j fj, 1 ≤ j ≤ r,

then we have
〈vi, vj〉 = δij, 1 ≤ i, j ≤ r,

so complete (v1, . . . , vr) into an orthonormal basis (v1, . . . , vr, vr+1, . . . , vn) (for example,
using Gram–Schmidt). Now, since fj = σjvj for j = 1 . . . , r, we have

〈vi, fj〉 = σj〈vi, vj〉 = σjδi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ r

and since fj = 0 for j = r + 1, . . . , n,

〈vi, fj〉 = 0 1 ≤ i ≤ n, r + 1 ≤ j ≤ n.

If V is the matrix whose columns are v1, . . . , vn, then V is orthogonal and the above equations
prove that

V >AU = D,

which yields A = V DU>, as required.

The equation A = V DU> implies that

A>A = UD2U>, AA> = V D2V >,

which shows that A>A and AA> have the same eigenvalues, that the columns of U are
eigenvectors of A>A, and that the columns of V are eigenvectors of AA>.

Theorem 2.7 suggests the following definition.

Definition 2.2. A triple (U,D, V ) such that A = V DU>, where U and V are orthogonal
and D is a diagonal matrix whose entries are nonnegative (it is positive semidefinite) is called
a singular value decomposition (SVD) of A.
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The proof of Theorem 2.7 shows that there are two orthonormal bases (u1, . . . , un) and
(v1, . . . , vn), where (u1, . . . , un) are eigenvectors of A>A and (v1, . . . , vn) are eigenvectors
of AA>. Furthermore, (u1, . . . , ur) is an orthonormal basis of ImA>, (ur+1, . . . , un) is an
orthonormal basis of KerA, (v1, . . . , vr) is an orthonormal basis of ImA, and (vr+1, . . . , vn)
is an orthonormal basis of KerA>.

If we denote the columns of U by u1, . . . , un and the columns of V by v1, . . . , vn, then we
can write

A = V DU> = σ1v1u
>
1 + · · ·+ σrvru

>
r .

As a consequence, if r is a lot smaller than n (we write r � n), we see that A can be
reconstructed from U and V using a much smaller number of elements. This idea will be
used to provide “low-rank” approximations of a matrix. The idea is to keep only the k top
singular values for some suitable k � r for which σk+1, . . . σr are very small.

Remarks:

(1) In Strang [18] the matrices U, V,D are denoted by U = Q2, V = Q1, and D = Σ, and
an SVD is written as A = Q1ΣQ>2 . This has the advantage that Q1 comes before Q2 in
A = Q1ΣQ>2 . This has the disadvantage that A maps the columns of Q2 (eigenvectors
of A>A) to multiples of the columns of Q1 (eigenvectors of AA>).

(2) Algorithms for actually computing the SVD of a matrix are presented in Golub and Van
Loan [7], Demmel [4], and Trefethen and Bau [19], where the SVD and its applications
are also discussed quite extensively.

(3) The SVD also applies to complex matrices. In this case, for every complex n×n matrix
A, there are two unitary matrices U and V and a diagonal matrix D such that

A = V DU∗,

where D is a diagonal matrix consisting of real entries σ1, . . . , σn, where σ1, . . . , σr are
the singular values of A, i.e., the positive square roots of the nonzero eigenvalues of
A∗A and AA∗, and σr+1 = . . . = σn = 0.

A notion closely related to the SVD is the polar form of a matrix.

Definition 2.3. A pair (R, S) such that A = RS with R orthogonal and S symmetric
positive semidefinite is called a polar decomposition of A.

Theorem 2.7 implies that for every real n× n matrix A, there is some orthogonal matrix
R and some positive semidefinite symmetric matrix S such that

A = RS.

This is easy to show and we will prove it below. Furthermore, R, S are unique if A is
invertible, but this is harder to prove.
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For example, the matrix

A =
1

2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




is both orthogonal and symmetric, and A = RS with R = A and S = I, which implies that
some of the eigenvalues of A are negative.

Remark: In the complex case, the polar decomposition states that for every complex n×n
matrix A, there is some unitary matrix U and some positive semidefinite Hermitian matrix
H such that

A = UH.

It is easy to go from the polar form to the SVD, and conversely.

Given an SVD decomposition A = V DU>, let R = V U> and S = UDU>. It is clear
that R is orthogonal and that S is positive semidefinite symmetric, and

RS = V U>UDU> = V DU> = A.

Going the other way, given a polar decomposition A = R1S, where R1 is orthogonal
and S is positive semidefinite symmetric, there is an orthogonal matrix R2 and a positive
semidefinite diagonal matrix D such that S = R2DR>2 , and thus

A = R1R2DR>2 = V DU>,

where V = R1R2 and U = R2 are orthogonal.

The eigenvalues and the singular values of a matrix are typically not related in any
obvious way. For example, the n× n matrix

A =




1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1




has the eigenvalue 1 with multiplicity n, but its singular values, σ1 ≥ · · · ≥ σn, which are



2.7. SINGULAR VALUE DECOMPOSITION FOR RECTANGULAR MATRICES 147

the positive square roots of the eigenvalues of the matrix B = A>A with

B =




1 2 0 0 . . . 0 0
2 5 2 0 . . . 0 0
0 2 5 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 2 5 2 0
0 0 . . . 0 2 5 2
0 0 . . . 0 0 2 5




have a wide spread, since
σ1

σn
= cond2(A) ≥ 2n−1.

If A is a complex n× n matrix, the eigenvalues λ1, . . . , λn and the singular values
σ1 ≥ σ2 ≥ · · · ≥ σn of A are not unrelated, since

σ2
1 · · ·σ2

n = det(A∗A) = | det(A)|2

and
|λ1| · · · |λn| = | det(A)|,

so we have
|λ1| · · · |λn| = σ1 · · · σn.

More generally, Hermann Weyl proved the following remarkable theorem:

Theorem 2.8. (Weyl’s inequalities, 1949 ) For any complex n×n matrix, A, if λ1, . . . , λn ∈
C are the eigenvalues of A and σ1, . . . , σn ∈ R+ are the singular values of A, listed so that
|λ1| ≥ · · · ≥ |λn| and σ1 ≥ · · · ≥ σn ≥ 0, then

|λ1| · · · |λn| = σ1 · · ·σn and

|λ1| · · · |λk| ≤ σ1 · · · σk, for k = 1, . . . , n− 1.

A proof of Theorem 2.8 can be found in Horn and Johnson [8], Chapter 3, Section 3.3,
where more inequalities relating the eigenvalues and the singular values of a matrix are given.

Theorem 2.7 can be easily extended to rectangular m × n matrices, as we show in the
next section (for various versions of the SVD for rectangular matrices, see Strang [18] Golub
and Van Loan [7], Demmel [4], and Trefethen and Bau [19]).

2.7 Singular Value Decomposition for

Rectangular Matrices

Here is the generalization of Theorem 2.7 to rectangular matrices.
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Theorem 2.9. (Singular value decomposition) For every real m×n matrix A, there are two
orthogonal matrices U (n × n) and V (m ×m) and a diagonal m × n matrix D such that
A = V DU>, where D is of the form

D =




σ1 . . .
σ2 . . .

...
...

. . .
...

. . . σn

0
... . . . 0

...
...

. . .
...

0
... . . . 0




or D =




σ1 . . . 0 . . . 0
σ2 . . . 0 . . . 0

...
...

. . .
... 0

... 0
. . . σm 0 . . . 0


 ,

where σ1, . . . , σr are the singular values of f , i.e. the (positive) square roots of the nonzero
eigenvalues of A>A and AA>, and σr+1 = . . . = σp = 0, where p = min(m,n). The columns
of U are eigenvectors of A>A, and the columns of V are eigenvectors of AA>.

Proof. As in the proof of Theorem 2.7, since A>A is symmetric positive semidefinite, there
exists an n× n orthogonal matrix U such that

A>A = UΣ2U>,

with Σ = diag(σ1, . . . , σr, 0, . . . , 0), where σ2
1, . . . , σ

2
r are the nonzero eigenvalues of A>A,

and where r is the rank of A. Observe that r ≤ min{m,n}, and AU is an m× n matrix. It
follows that

U>A>AU = (AU)>AU = Σ2,

and if we let fj ∈ Rm be the jth column of AU for j = 1, . . . , n, then we have

〈fi, fj〉 = σ2
i δij, 1 ≤ i, j ≤ r

and

fj = 0, r + 1 ≤ j ≤ n.

If we define (v1, . . . , vr) by

vj = σ−1
j fj, 1 ≤ j ≤ r,

then we have

〈vi, vj〉 = δij, 1 ≤ i, j ≤ r,

so complete (v1, . . . , vr) into an orthonormal basis (v1, . . . , vr, vr+1, . . . , vm) (for example,
using Gram–Schmidt).

Now, since fj = σjvj for j = 1 . . . , r, we have

〈vi, fj〉 = σj〈vi, vj〉 = σjδi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ r
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and since fj = 0 for j = r + 1, . . . , n, we have

〈vi, fj〉 = 0 1 ≤ i ≤ m, r + 1 ≤ j ≤ n.

If V is the matrix whose columns are v1, . . . , vm, then V is an m×m orthogonal matrix and
if m ≥ n, we let

D =

(
Σ

0m−n

)
=




σ1 . . .
σ2 . . .

...
...

. . .
...

. . . σn

0
... . . . 0

...
...

. . .
...

0
... . . . 0




,

else if n ≥ m, then we let

D =




σ1 . . . 0 . . . 0
σ2 . . . 0 . . . 0

...
...

. . .
... 0

... 0
. . . σm 0 . . . 0


 .

In either case, the above equations prove that

V >AU = D,

which yields A = V DU>, as required.

The equation A = V DU> implies that

A>A = UD>DU> = Udiag(σ2
1, . . . , σ

2
r , 0, . . . , 0︸ ︷︷ ︸

n−r

)U>

and
AA> = V DD>V > = V diag(σ2

1, . . . , σ
2
r , 0, . . . , 0︸ ︷︷ ︸

m−r

)V >,

which shows that A>A and AA> have the same nonzero eigenvalues, that the columns of U
are eigenvectors of A>A, and that the columns of V are eigenvectors of AA>.

A triple (U,D, V ) such that A = V DU> is called a singular value decomposition (SVD)
of A.

Even though the matrix D is an m×n rectangular matrix, since its only nonzero entries
are on the descending diagonal, we still say that D is a diagonal matrix.



150 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

If we view A as the representation of a linear map f : E → F , where dim(E) = n and
dim(F ) = m, the proof of Theorem 2.9 shows that there are two orthonormal bases (u1, . . .,
un) and (v1, . . . , vm) for E and F , respectively, where (u1, . . . , un) are eigenvectors of f ∗ ◦ f
and (v1, . . . , vm) are eigenvectors of f ◦f ∗. Furthermore, (u1, . . . , ur) is an orthonormal basis
of Im f ∗, (ur+1, . . . , un) is an orthonormal basis of Ker f , (v1, . . . , vr) is an orthonormal basis
of Im f , and (vr+1, . . . , vm) is an orthonormal basis of Ker f ∗.

The SVD of matrices can be used to define the pseudo-inverse of a rectangular matrix;
we do so in the nexg section. The reader may also consult Strang [18], Demmel [4], Trefethen
and Bau [19], and Golub and Van Loan [7].

The polar form has applications in continuum mechanics. Indeed, in any deformation it
is important to separate stretching from rotation. This is exactly what QS achieves. The
orthogonal part Q corresponds to rotation (perhaps with an additional reflection), and the
symmetric matrix S to stretching (or compression). The real eigenvalues σ1, . . . , σr of S are
the stretch factors (or compression factors) (see Marsden and Hughes [12]). The fact that
S can be diagonalized by an orthogonal matrix corresponds to a natural choice of axes, the
principal axes.

The SVD has applications to data compression, for instance in image processing. The
idea is to retain only singular values whose magnitudes are significant enough. The SVD
can also be used to determine the rank of a matrix when other methods such as Gaussian
elimination produce very small pivots. One of the main applications of the SVD is the
computation of the pseudo-inverse. Pseudo-inverses are the key to the solution of various
optimization problems, in particular the method of least squares. This topic is discussed in
the next section. Applications of the material of this section can be found in Strang [18, 17];
Ciarlet [3]; Golub and Van Loan [7], which contains many other references; Demmel [4]; and
Trefethen and Bau [19].

2.8 Least Squares Problems and the Pseudo-Inverse

De tous les principes qu’on peut proposer pour cet objet, je pense qu’il n’en est pas de
plus général, de plus exact, ni d’une application plus facile, que celui dont nous avons
fait usage dans les recherches précédentes, et qui consiste à rendre minimum la somme
des carrés des erreurs. Par ce moyen il s’établit entre les erreurs une sorte d’équilibre
qui, empêchant les extrêmes de prévaloir, est très propre à faire connaitre l’état du
système le plus proche de la vérité.

—Legendre, 1805, Nouvelles Méthodes pour la détermination des Orbites des
Comètes

This section and the next present several applications of SVD. The first one is the pseudo-
inverse, which plays a crucial role in solving linear systems by the method of least squares.
The second application is data compression.
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The method of least squares is a way of “solving” an overdetermined system of linear
equations

Ax = b,

i.e., a system in which A is a rectangular m×n matrix with more equations than unknowns
(when m > n). Historically, the method of least squares was used by Gauss and Legendre
to solve problems in astronomy and geodesy. The method was first published by Legendre
in 1805 in a paper on methods for determining the orbits of comets. However, Gauss had
already used the method of least squares as early as 1801 to determine the orbit of the asteroid
Ceres, and he published a paper about it in 1810 after the discovery of the asteroid Pallas.
Incidentally, it is in that same paper that Gaussian elimination using pivots is introduced.

The reason why more equations than unknowns arise in such problems is that repeated
measurements are taken to minimize errors. This produces an overdetermined and often
inconsistent system of linear equations. For example, Gauss solved a system of eleven equa-
tions in six unknowns to determine the orbit of the asteroid Pallas. As a concrete illustration,
suppose that we observe the motion of a small object, assimilated to a point, in the plane.
From our observations, we suspect that this point moves along a straight line, say of equation
y = dx+ c. Suppose that we observed the moving point at three different locations (x1, y1),
(x2, y2), and (x3, y3). Then we should have

c+ dx1 = y1,

c+ dx2 = y2,

c+ dx3 = y3.

If there were no errors in our measurements, these equations would be compatible, and c
and d would be determined by only two of the equations. However, in the presence of errors,
the system may be inconsistent. Yet we would like to find c and d!

The idea of the method of least squares is to determine (c, d) such that it minimizes the
sum of the squares of the errors, namely,

(c+ dx1 − y1)2 + (c+ dx2 − y2)2 + (c+ dx3 − y3)2.

In general, for an overdetermined m×n system Ax = b, what Gauss and Legendre discovered
is that there are solutions x minimizing

‖Ax− b‖2
2

(where ‖u‖2
2 = u2

1 +· · ·+u2
n, the square of the Euclidean norm of the vector u = (u1, . . . , un)),

and that these solutions are given by the square n× n system

A>Ax = A>b,

called the normal equations . Furthermore, when the columns of A are linearly independent,
it turns out that A>A is invertible, and so x is unique and given by

x = (A>A)−1A>b.
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Note that A>A is a symmetric matrix, one of the nice features of the normal equations of a
least squares problem. For instance, the normal equations for the above problem are

(
3 x1 + x2 + x3

x1 + x2 + x3 x2
1 + x2

2 + x2
3

)(
c
d

)
=

(
y1 + y2 + y3

x1y1 + x2y2 + x3y3

)
.

In fact, given any real m × n matrix A, there is always a unique x+ of minimum norm
that minimizes ‖Ax− b‖2

2, even when the columns of A are linearly dependent. How do we
prove this, and how do we find x+?

Theorem 2.10. Every linear system Ax = b, where A is an m × n matrix, has a unique
least squares solution x+ of smallest norm.

Proof. Geometry offers a nice proof of the existence and uniqueness of x+. Indeed, we can
interpret b as a point in the Euclidean (affine) space Rm, and the image subspace of A (also
called the column space of A) as a subspace U of Rm (passing through the origin). Then, it
is clear that

inf
x∈Rn
‖Ax− b‖2

2 = inf
y∈U
‖y − b‖2

2,

with U = ImA, and we claim that x minimizes ‖Ax− b‖2
2 iff Ax = p, where p the orthogonal

projection of b onto the subspace U .

Recall that the orthogonal projection pU : U ⊕ U⊥ → U is the linear map given by

pU(u+ v) = u,

with u ∈ U and v ∈ U⊥. If we let p = pU(b) ∈ U , then for any point y ∈ U , the vectors
−→py = y − p ∈ U and

−→
bp = p− b ∈ U⊥ are orthogonal, which implies that

‖−→by‖2
2 = ‖−→bp‖2

2 + ‖−→py‖2
2,

where
−→
by = y− b. Thus, p is indeed the unique point in U that minimizes the distance from

b to any point in U .

Thus, the problem has been reduced to proving that there is a unique x+ of minimum
norm such that Ax+ = p, with p = pU(b) ∈ U , the orthogonal projection of b onto U . We
use the fact that

Rn = KerA⊕ (KerA)⊥.

Consequently, every x ∈ Rn can be written uniquely as x = u + v, where u ∈ KerA and
v ∈ (KerA)⊥, and since u and v are orthogonal,

‖x‖2
2 = ‖u‖2

2 + ‖v‖2
2.

Furthermore, since u ∈ KerA, we have Au = 0, and thus Ax = p iff Av = p, which shows
that the solutions of Ax = p for which x has minimum norm must belong to (KerA)⊥.
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However, the restriction of A to (KerA)⊥ is injective. This is because if Av1 = Av2, where
v1, v2 ∈ (KerA)⊥, then A(v2 − v2) = 0, which implies v2 − v1 ∈ KerA, and since v1, v2 ∈
(KerA)⊥, we also have v2 − v1 ∈ (KerA)⊥, and consequently, v2 − v1 = 0. This shows that
there is a unique x+ of minimum norm such that Ax+ = p, and that x+ must belong to
(KerA)⊥. By our previous reasoning, x+ is the unique vector of minimum norm minimizing
‖Ax− b‖2

2.

The proof also shows that x minimizes ‖Ax − b‖2
2 iff

−→
pb = b − Ax is orthogonal to U ,

which can be expressed by saying that b−Ax is orthogonal to every column of A. However,
this is equivalent to

A>(b− Ax) = 0, i.e., A>Ax = A>b.

Finally, it turns out that the minimum norm least squares solution x+ can be found in terms
of the pseudo-inverse A+ of A, which is itself obtained from any SVD of A.

Definition 2.4. Given any m× n matrix A, if A = V DU> is an SVD of A with

D = diag(λ1, . . . , λr, 0, . . . , 0),

where D is an m× n matrix and λi > 0, if we let

D+ = diag(1/λ1, . . . , 1/λr, 0, . . . , 0),

an n×m matrix, the pseudo-inverse of A is defined by

A+ = UD+V >.

Actually, it seems that A+ depends on the specific choice of U and V in an SVD (U,D, V )
for A, but the next theorem shows that this is not so.

Theorem 2.11. The least squares solution of smallest norm of the linear system Ax = b,
where A is an m× n matrix, is given by

x+ = A+b = UD+V >b.

Proof. First, assume that A is a (rectangular) diagonal matrix D, as above. Then, since x
minimizes ‖Dx− b‖2

2 iff Dx is the projection of b onto the image subspace F of D, it is fairly
obvious that x+ = D+b. Otherwise, we can write

A = V DU>,

where U and V are orthogonal. However, since V is an isometry,

‖Ax− b‖2 = ‖V DU>x− b‖2 = ‖DU>x− V >b‖2.
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Letting y = U>x, we have ‖x‖2 = ‖y‖2, since U is an isometry, and since U is surjective,
‖Ax − b‖2 is minimized iff ‖Dy − V >b‖2 is minimized, and we have shown that the least
solution is

y+ = D+V >b.

Since y = U>x, with ‖x‖2 = ‖y‖2, we get

x+ = UD+V >b = A+b.

Thus, the pseudo-inverse provides the optimal solution to the least squares problem.

By Proposition 2.11 and Theorem 2.10, A+b is uniquely defined by every b, and thus A+

depends only on A.

If A has full rank and m ≥ n, then A>A is invertible, in which case the pseudo inverse
of A is given by

A+ = (A>A)−1A>.

Let A = UΣV > be an SVD for A. It is easy to check that

AA+A = A,

A+AA+ = A+,

and both AA+ and A+A are symmetric matrices. In fact,

AA+ = UΣV >V Σ+U> = UΣΣ+U> = U

(
Ir 0
0 0n−r

)
U>

and

A+A = V Σ+U>UΣV > = V Σ+ΣV > = V

(
Ir 0
0 0n−r

)
V >.

We immediately get

(AA+)2 = AA+,

(A+A)2 = A+A,

so both AA+ and A+A are orthogonal projections (since they are both symmetric). We
claim that AA+ is the orthogonal projection onto the range of A and A+A is the orthogonal
projection onto Ker(A)⊥ = Im(A>), the range of A>.

Obviously, we have range(AA+) ⊆ range(A), and for any y = Ax ∈ range(A), since
AA+A = A, we have

AA+y = AA+Ax = Ax = y,

so the image of AA+ is indeed the range of A. It is also clear that Ker(A) ⊆ Ker(A+A), and
since AA+A = A, we also have Ker(A+A) ⊆ Ker(A), and so

Ker(A+A) = Ker(A).
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Since A+A is Hermitian, range(A+A) = Ker(A+A)⊥ = Ker(A)⊥, as claimed.

It will also be useful to see that range(A) = range(AA+) consists of all vectors y ∈ Rn

such that

U>y =

(
z
0

)
,

with z ∈ Rr.

Indeed, if y = Ax, then

U>y = U>Ax = U>UΣV >x = ΣV >x =

(
Σr 0
0 0n−r

)
V >x =

(
z
0

)
,

where Σr is the r × r diagonal matrix diag(σ1, . . . , σr). Conversely, if U>y = ( z0 ), then
y = U ( z0 ), and

AA+y = U

(
Ir 0
0 0n−r

)
U>y

= U

(
Ir 0
0 0n−r

)
U>U

(
z
0

)

= U

(
Ir 0
0 0n−r

)(
z
0

)

= U

(
z
0

)
= y,

which shows that y belongs to the range of A.

Similarly, we claim that range(A+A) = Ker(A)⊥ consists of all vectors y ∈ Rn such that

V >y =

(
z
0

)
,

with z ∈ Rr.

If y = A+Au, then

y = A+Au = V

(
Ir 0
0 0n−r

)
V >u = V

(
z
0

)
,

for some z ∈ Rr. Conversely, if V >y = ( z0 ), then y = V ( z0 ), and so

A+AV

(
z
0

)
= V

(
Ir 0
0 0n−r

)
V >V

(
z
0

)

= V

(
Ir 0
0 0n−r

)(
z
0

)

= V

(
z
0

)
= y,
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which shows that y ∈ range(A+A).

If A is a symmetric matrix, then in general, there is no SVD UΣV > of A with U = V .
However, if A is positive semidefinite, then the eigenvalues of A are nonnegative, and so the
nonzero eigenvalues of A are equal to the singular values of A and SVDs of A are of the form

A = UΣU>.

If A is symmetric but not necessarily positive definite, since

A∗A = UΣ2U>,

we see that the singular values of A are |λ1|, . . . , |λr|, where λ1, . . . , λr are the nonzero
eigenvalues of A. Analogous results hold for complex matrices, but in this case, U and V
are unitary matrices and AA+ and A+A are Hermitian orthogonal projections.

The following properties, due to Penrose, characterize the pseudo-inverse of a matrix.
We have already proved that the pseudo-inverse satisfies these equations. For a proof of the
converse, see Kincaid and Cheney [10].

Proposition 2.12. Given any m× n matrix A (real or complex), the pseudo-inverse A+ of
A is the unique n×m matrix satisfying the following properties:

AA+A = A,

A+AA+ = A+,

(AA+)> = AA+,

(A+A)> = A+A.

If A is an m × n matrix of rank n (and so m ≥ n), it is immediately shown that the
QR-decomposition in terms of Householder transformations applies as follows:

There are n m × m matrices H1, . . . , Hn, Householder matrices or the identity, and an
upper triangular m× n matrix R of rank n such that

A = H1 · · ·HnR.

Then, because each Hi is an isometry,

‖Ax− b‖2 = ‖Rx−Hn · · ·H1b‖2,

and the least squares problem Ax = b is equivalent to the system

Rx = Hn · · ·H1b.

Now, the system
Rx = Hn · · ·H1b
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is of the form (
R1

0m−n

)
x =

(
c
d

)
,

where R1 is an invertible n× n matrix (since A has rank n), c ∈ Rn, and d ∈ Rm−n, and the
least squares solution of smallest norm is

x+ = R−1
1 c.

Since R1 is a triangular matrix, it is very easy to invert R1.

Hilbert’s problem (given a function f ∈ C[0, 1], find a polynomial P (x) of degree n so

that
∫ 1

0
|P (x) − f(x)|2dx is minimum) can be cast as a least square problem. Many other

interpolation problems can be cast as least squares problems.

The method of least squares is one of the most effective tools of the mathematical sciences.
There are entire books devoted to it. Readers are advised to consult Strang [18], Golub and
Van Loan [7], Demmel [4], and Trefethen and Bau [19], where extensions and applications
of least squares (such as weighted least squares and recursive least squares) are described.
Golub and Van Loan [7] also contains a very extensive bibliography, including a list of books
on least squares.

2.9 Data Compression and SVD

Among the many applications of SVD, a very useful one is data compression, notably for
images. In order to make precise the notion of closeness of matrices, we use the notion of
matrix norm.

Given an m × n matrix of rank r, we would like to find a best approximation of A
by a matrix B of rank k ≤ r (actually, k < r) so that ‖A−B‖2 (or the Frobenius norm
‖A−B‖F ) is minimized.

Proposition 2.13. Let A be an m× n matrix of rank r and let V DU> = A be an SVD for
A. Write ui for the columns of U , vi for the columns of V , and σ1 ≥ σ2 ≥ · · · ≥ σp for the
singular values of A (p = min(m,n)). Then a matrix of rank k < r closest to A (in the ‖ ‖2

norm) is given by

Ak =
k∑

i=1

σiviu
>
i = V diag(σ1, . . . , σk)U

>

and ‖A− Ak‖2 = σk+1.

Proof. By construction, Ak has rank k, and we have

‖A− Ak‖2 =
∥∥∥

p∑

i=k+1

σiviu
>
i

∥∥∥
2

=
∥∥V diag(0, . . . , 0, σk+1, . . . , σp)U

>∥∥
2

= σk+1.
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It remains to show that ‖A−B‖2 ≥ σk+1 for all rank-k matrices B. Let B be any rank-k
matrix, so its kernel has dimension p− k. The subspace Vk+1 spanned by (v1, . . . , vk+1) has
dimension k + 1, and because the sum of the dimensions of the kernel of B and of Vk+1 is
(p − k) + k + 1 = p + 1, these two subspaces must intersect in a subspace of dimension at
least 1. Pick any unit vector h in Ker(B) ∩ Vk+1. Then since Bh = 0, we have

‖A−B‖2
2 ≥ ‖(A−B)h‖2

2 = ‖Ah‖2
2 =

∥∥V DU>h
∥∥2

2
≥ σ2

k+1

∥∥U>h
∥∥2

2
= σ2

k+1,

which proves our claim.

Note that Ak can be stored using (m + n)k entries, as opposed to mn entries. When
k � m, this is a substantial gain.

A nice example of the use of Proposition 2.13 in image compression is given in Demmel
[4], Chapter 3, Section 3.2.3, pages 113–115; see the Matlab demo.

An interesting topic that we have not addressed is the actual computation of an SVD.
This is a very interesting but tricky subject. Most methods reduce the computation of an
SVD to the diagonalization of a well-chosen symmetric matrix (which is not A>A). Interested
readers should read Section 5.4 of Demmel’s excellent book [4], which contains an overview
of most known methods and an extensive list of references.
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