Algebraic Geometry Since 1980

by

Stephen S. Shatz* and Jean Gallier**
*Department of Mathematics
${ }^{* *}$ Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
© Stephen S. Shatz \& Jean Gallier

August 5, 2023

Contents

1 Vanishing Theorems and Some Applications 5
1.1 Divisors, Curves: Nef, Big, Ample (and all that) 5
1.2 The Kodaira \& Akizuki-Nakano Vanishing Theorems, I 31
1.3 The Kodaira \& Akizuki-Nakano Vanishing Theorems, II 35
1.4 Rational Curves and the "Classification of Varieties" 41
1.5 The Kawamata-Vichweg Vanishing Theorem-Part I 48

Chapter 1

Vanishing Theorems and Some Applications

1.1 Divisors, Curves: Nef, Big, Ample (and all that)

We begin by reviewing some basic notions, such as divisors, and by introducing some slight generalizations such as \mathbb{Q}-divisors. In this chapter, we assume that we are dealing with schemes of finite type over some algebraically closed field, k, of characteristic zero. By the Lefschetz Principle, we may assume that $k=\mathbb{C}$. Moreover, we also assume that our schemes are normal.

A prime divisor is an integral subscheme of codimension 1 (Recall: integral means reduced and irreducible). A divisor (or Weil divisor) is any \mathbb{Z}-linear combination of prime divisors.

A Cartier divisor (or C-divisor) is a divisor that it cut out locally by one equation.
A \mathbb{Q}-Cartier divisor, D, is a divisor so that

$$
(\exists N \in \mathbb{Z})(N \neq 0 \quad \text { and } \quad N D \quad \text { is Cartier }) .
$$

A \mathbb{Q}-divisor is a \mathbb{Q}-linear combination of \mathbb{Q}-Cartier divisors. A \mathbb{Q}-divisor is effective iff D is of the form $D=\sum_{i} q_{i} D_{i}$ with $q_{i}>0$ for all i (we assume $D_{i} \neq D_{j}$ whenever $i \neq j$). We write $D \geq E$ iff $D-E$ is effective.

We have the notion of linear equivalence for (ordinary) C-divisors. Suppose X is a proper scheme. If D and D^{\prime} are C-divisors, then they are numerically equivalent, denoted $D \equiv D^{\prime}$, iff for every integral curve, $C \subseteq X$, we have

$$
D \cdot C=D^{\prime} \cdot C
$$

(Recall that $\mathcal{O}_{X}(D)$ is the line bundle associated with D, so $\mathcal{O}_{X}(D) \upharpoonright C$ is a line bundle on C. We take $D \cdot C$ to be the degree of the line bundle $\mathcal{O}_{X}(D) \upharpoonright C$.)

If X is locally factorial (everywhere) then we know that

$$
\operatorname{WDiv}(X)=\operatorname{CDiv}(X)
$$

and the same holds for Q-divisors. We say that X is \mathbb{Q}-factorial iff every \mathbb{Q}-divisor is \mathbb{Q}-Cartier. Set

$$
\operatorname{Num}(X)=\operatorname{CDiv}(X) / \equiv,
$$

the numerical class group of X. Now, over \mathbb{C}, if X is a proper, normal, connected variety, we get the complex analytic space, X_{h}, (with $\mathcal{O}_{X_{h}}=\mathbb{C}$-analytic functions on X) and we have the exact sequence

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O}_{X_{h}} \xrightarrow{e^{2 \pi i}} \mathcal{O}_{X_{h}}^{*} \longrightarrow 0 .
$$

If we apply cohomology, using GAGA, we get the long exact sequence

We know that $\operatorname{Pic}(X)=H^{1}\left(X, \mathcal{O}_{X_{h}}^{*}\right)$ and the map, $c: \operatorname{Pic}(X) \rightarrow H^{2}(X, \mathbb{Z})$, plays a special role. We get

$$
0 \longrightarrow H^{1}\left(X, \mathcal{O}_{X_{h}}\right) / H^{1}(X, \mathbb{Z}) \longrightarrow \operatorname{Pic}(X) \xrightarrow{c} H^{2}(X, \mathbb{Z}) .
$$

Let

$$
\operatorname{Pic}^{0}(X)=H^{1}\left(X, \mathcal{O}_{X_{h}}\right) / H^{1}(X, \mathbb{Z})
$$

a complex torus. Observe that the image of $\operatorname{Pic}(X)$ in $H^{2}(X, \mathbb{Z})$ is the same as the image of $\operatorname{Num}(X)$ in $H^{2}(X, \mathbb{Z})$; in fact $\operatorname{Num}(X) \subseteq H^{2}(X, \mathbb{Z})$. It follows that $\operatorname{Num}(X)$ is a finitely generated torsion-free abelian group (Neron-Severi).

Numerical equivalence also makes sense for \mathbb{Q}-divisors. (Check that ($m D \cdot C=m(D \cdot C)$.) Thus, we set

$$
(D \cdot C)=\frac{1}{m}(m D \cdot C), \quad m>0 .
$$

A C-divisor, D, is very ample iff the rational map, $\varphi_{D}: X \rightarrow \mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}(D)\right)\right)$ is a morphism and an immersion, with

$$
\mathcal{O}_{X}(D)=\varphi_{D}^{*}\left(\mathcal{O}_{\mathbb{P}(1)}\right)
$$

A C-divisor, D, is ample iff there is some integer, $m>0$, so that $m D$ is ample iff for all $m \gg 0, m D$ is very ample.

Recall Serre's characterizations of ampleness (from FAC). Here, we assume that X is a scheme of finite type that is proper.
(I) D is ample iff there is some $m \gg 0$ such that $m D$ is ample iff for all $m \gg 0, m D$ is ample.
(II) (Vanishing Criterion) D is ample iff for every coherent \mathcal{O}_{X}-module, \mathcal{F},

$$
\left(\exists n_{0}=n_{0}(\mathcal{F})\right)(\forall p>0)\left(H^{p}\left(X, \mathcal{F} \otimes \mathcal{O}_{X}(n D)=(0) \quad \text { when } \quad n \geq n_{0}\right)\right.
$$

(III) (Global Sections Criterion) D is ample iff for every coherent \mathcal{O}_{X}-module, \mathcal{F},

$$
\left(\exists n_{0}=n_{0}(\mathcal{F})\right)\left(\forall n \geq n_{0}\right)\left(\mathcal{F} \otimes \mathcal{O}_{X}(n D) \quad \text { is generated by its global sections }\right)
$$

Definition 1.1 A \mathbb{Q}-C-divisor is nef (numerically effective) iff for every integral curve, C, of X (a proper scheme), we have

$$
D \cdot C \geq 0
$$

We say that D is semi-ample iff for all $m \gg 0, \mathcal{O}_{X}(m D)$ is generated by its sections.
We say that D is big iff for all $K>0$, there is some $m \gg 0$ so that

$$
\operatorname{dim}_{\mathbb{C}} H^{0}\left(X, \mathcal{O}_{X}(m D)\right)>K m^{\operatorname{dim} X}
$$

Note that ample implies semi-ample.
The Hirzebruch-Riemann-Roch Theorem (for short, HRR) connects these concepts. In order to state the Hirzebruch-Riemann-Roch Theorem we need some preparation including the definition of Chern classes, of Chern characters and of the Todd polynomial.

Let \mathcal{F} be either a holomorphic vector bundle on a smooth projective variety or a C^{∞} vector bundle on a complex, compact, manifold, X. In both cases, Chern classes exist. Following Hirzebruch's axiomatic approach, the Chern classes, $c_{i}(\mathcal{F})$, turn out to exist and to be uniquely characterized by the following four axioms:
(1) $c_{i}(\mathcal{F}) \in H^{2 i}(X, \mathbb{Z})$
(2) (Naturality) Say $\pi: Y \rightarrow X$ is a morphism of varieties (both "good", in the sense specified above) and write $c(\mathcal{F})(t)=1+c_{1}(\mathcal{F})+c_{2}(\mathcal{F})+\cdots$, the Chern polynmial for the v.b., \mathcal{F}, on X. Then,

$$
c\left(\pi^{*} \mathcal{F}\right)(t)=\pi^{*}(c(\mathcal{F})(t)) .
$$

(3) (Whitney sum) If \mathcal{F} and \mathcal{G} are both v.b.'s on X, then

$$
c(\mathcal{F} \amalg \mathcal{G})(t)=c(\mathcal{F})(t) \amalg c(\mathcal{G})(t) .
$$

(4) (Normalization) If $X=\mathbb{P}^{n}$ and $\mathcal{F}=\mathcal{O}_{X}(1)$, the vector bundle corresponding to the hyperplane divisor, H, on \mathbb{P}^{n}, then

$$
c\left(\mathcal{O}_{X}(1)\right)(t)=1+H t
$$

Say \mathcal{L} is a line bundle on X, a C^{∞} manifold. Then, there are lots of C^{∞} sections and they give rise to a $C^{\infty} \operatorname{map}, \varphi_{\mathcal{L}}: X \hookrightarrow \mathbb{P}^{N}$, with $\mathcal{L}=\varphi_{\mathcal{L}}^{*}\left(\mathcal{O}_{\mathbb{P}^{N}}(1)\right)$. By Axiom (3),

$$
\begin{aligned}
c(\mathcal{L})(t) & =c\left(\varphi_{\mathcal{L}}^{*}\left(\mathcal{O}_{\mathbb{P}^{N}}(1)\right)\right)(t) \\
& =\varphi_{\mathcal{L}}^{*}\left(c\left(\mathcal{O}_{\mathbb{P}^{N}}(1)\right)(t)\right) \\
& =\varphi_{\mathcal{L}}^{*}(1+H t) \\
& =1+\varphi_{\mathcal{L}}^{*}(H) t .
\end{aligned}
$$

We deduce

$$
\begin{aligned}
c_{1}(\mathcal{L}) & =\varphi_{\mathcal{L}}^{*}(H) \\
c_{i}(\mathcal{L}) & =0 \quad \text { if } \quad i>1 .
\end{aligned}
$$

Say \mathcal{F} is a vector bundle on X. Then, there is a fibre space, $Y \xrightarrow{\pi} X$, so that $\pi^{-1}(x)$ is equal to the flag manifold on the vector space $\mathcal{F}_{x}\left(\right.$ with $\left.\operatorname{dim} \mathcal{F}_{x}=\operatorname{rk} \mathcal{F}\right)$. It follows that Y is the flag manifold over X. Then, it is known that
(1) $\pi^{*} \mathcal{F}=L_{1} \amalg \cdots \amalg L_{q}$, with $q=\operatorname{rk} \mathcal{F}$ and the L_{j} 's are line bundles over Y.
(2) $\pi^{*}\left(H^{\bullet}(X, \mathbb{Z})\right) \longrightarrow H^{\bullet}(Y, \mathbb{Z})$ is a monomorphism (Borel).

But then, as $c\left(\pi^{*} \mathcal{F}\right)(t)=\pi^{*}\left(c(\mathcal{F}(t))\right.$ and by (1), $\pi^{*} \mathcal{F}=L_{1} \coprod \cdots \coprod L_{q}$, using Axiom (3), we get

$$
\pi^{*}\left(c(\mathcal{F}(t))=\prod_{j=1}^{q} c\left(L_{j}\right)(t)\right.
$$

However, we know that $c\left(L_{j}\right)=1+\gamma_{j} t$, with $\gamma_{j}=c_{1}\left(L_{j}\right) \in H^{2}(Y, \mathbb{Z})$, so

$$
\prod_{j=1}^{q} c\left(L_{j}\right)(t)=\prod_{j=1}^{q}\left(1+\gamma_{j} t\right)
$$

Now, as π^{*} is a monomorphism we can view π^{*} as an inclusion and we get

$$
c(\mathcal{F})(t)=\prod_{j=1}^{q}\left(1+\gamma_{j} t\right)
$$

(Here $q=\operatorname{rk} \mathcal{F}$.) The γ_{j} 's are called the Chern roots of \mathcal{F}. But, we have

$$
\prod_{j=1}^{q}\left(1+\gamma_{j} t\right)=\sum_{k=0}^{q} \sigma_{k}\left(\gamma_{1}, \ldots, \gamma_{q}\right) t^{k}
$$

where $\sigma_{k}\left(\gamma_{1}, \ldots, \gamma_{q}\right)$ is the $k^{\text {th }}$ elementary symmetric function of the γ_{j} 's. Consequently,

$$
c_{k}(\mathcal{F})=\sigma_{k}\left(\gamma_{1}, \ldots, \gamma_{q}\right)
$$

In particular, $c_{1}(\mathcal{F})=\gamma_{1}+\cdots+\gamma_{k}$. Using Chern roots, we obtain the following useful computational rules:
(0) (Splitting Principle) Given a rank q vector bundle, V, make believe V splits as $V=\coprod_{j=1}^{q} L_{j}$ (for some line bundles, L_{j}), write $\gamma_{j}=c_{1}\left(L_{j}\right)$, the γ_{j} are the Chern roots of V. Then,

$$
c(V)(t)=\prod_{j=1}^{q}\left(1+\gamma_{j} t\right)
$$

(1) $c\left(V^{D}\right)(t)=\prod_{j=1}^{q}\left(1-\gamma_{j} t\right)$ when $c(V)(t)=\prod_{j=1}^{q}\left(1+\gamma_{j} t\right)$. That is, $c_{i}\left(V^{D}\right)=(-1)^{i} c_{i}(V)$.
(2) If $0 \longrightarrow V^{\prime} \longrightarrow V \longrightarrow V^{\prime \prime} \longrightarrow 0$ is exact, then $c(V)(t)=c\left(V^{\prime}\right)(t) c\left(V^{\prime \prime}\right)(t)$.
(3) If $c(V)(t)=\prod_{j=1}^{q}\left(1+\gamma_{j} t\right)$ and $c(W)(t)=\prod_{j=1}^{q^{\prime}}\left(1+\delta_{j} t\right)$, then

$$
c(V \otimes W)(t)=\prod_{j, k=1}^{q, q^{\prime}}\left(1+\left(\gamma_{j}+\delta_{k}\right) t\right)
$$

(4) If $c(V)(t)=\prod_{j=1}^{q}\left(1+\gamma_{j} t\right)$, then

$$
c\left(\bigwedge^{r} V\right)(t)=\prod_{1 \leq i_{1}<\cdots<i_{r} \leq q}\left(1+\left(\gamma_{i_{1}}+\cdots+\gamma_{i_{r}}\right) t\right)
$$

In particular, when $r=q$, there is just one factor in the polynomial, it has degree 1 , it is $1+\left(\gamma_{1}+\cdots+\gamma_{q}\right) t$. By (2). we get

$$
c_{1}\left(\bigwedge^{q} V\right)(t)=c_{1}(V) \quad \text { and } \quad c_{l}\left(\bigwedge^{q} V\right)(t)=0 \quad \text { if } \quad l \geq 2
$$

(5) If $c(V)(t)=\prod_{j=1}^{q}\left(1+\gamma_{j} t\right)$, then

$$
c\left(\mathcal{S}^{r} V\right)(t)=\prod_{\substack{m_{j} \geq 0 \\ m_{1}+\cdots+m_{q}=r}}\left(1+\left(m_{1} \gamma_{1}+\cdots+m_{q} \gamma_{q}\right) t\right)
$$

(6) If $\operatorname{rk}(V) \leq q$, then $\operatorname{deg}(c(V)(t)) \leq q$ (where $\operatorname{deg}(c(V)(t)$ is the degree of $c(V)(t)$ as a polynomial in t).
(7) Suppose we know $c(V)$, for some vector bundle, V, and L is a line bundle. Write $c=c_{1}(L)$. Then, the Chern classes of $V \otimes L$ are

$$
c_{l}(V \otimes L)=\sigma_{l}\left(\gamma_{1}+c, \gamma_{2}+c, \cdots, \gamma_{r}+c\right),
$$

where $r=\operatorname{rk}(V)$ and the γ_{j} are the Chern roots of V. This is because the Chern polynomial of $V \otimes L$ is

$$
c(V \otimes L)(t)=\prod_{i=1}^{r}\left(1+\left(\gamma_{i}+c\right) t\right)
$$

Here is a method due to Griffith for computing Chern classes. Suppose \mathcal{F} is a vector bundle generated by its global sections and $\operatorname{say} \operatorname{rk}(\mathcal{F})=r$. Pick, $\sigma_{1}, \ldots, \sigma_{r}$, some generic global sections of \mathcal{F} and form $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{r-k+1}$ (a section of $\bigwedge^{r-k+1} \mathcal{F}$). Then, the cycle of zeros of $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{r-k+1}$ carries $c_{k}(\mathcal{F})$. From this, we draw two conclusions:
(A) $c_{\mathrm{rk}(\mathcal{F})}(\mathcal{F})$, the top Chern class of \mathcal{F}, is carried by the zeros of any generic section of \mathcal{F}.
(B) If $k=1$, pick all r global sections and find the zeros of $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{r}$ (a section of $\left.\bigwedge^{r} \mathcal{F}=\operatorname{det}(\mathcal{F})\right)$. This cycle of zeros carries $c_{1}(\mathcal{F})$.

If \mathcal{F} is a vector bundle and if $\gamma_{1}, \ldots, \gamma_{q}$ are its Chern roots define the Chern character, $\operatorname{ch}(\mathcal{F})(t)$, of \mathcal{F} by

$$
\begin{aligned}
\operatorname{ch}(\mathcal{F})(t) & =\sum_{j=1}^{q} e^{\gamma_{j} t}=\sum_{j=1}^{q} \sum_{i=0}^{\infty} \frac{\gamma_{j}^{i} t^{i}}{i!} \\
& =\sum_{i=0}^{\infty} \frac{1}{i!}\left(\sum_{j=1}^{q} \gamma_{j}^{i}\right) t^{i} \\
& =\sum_{i=0}^{\infty} \frac{1}{i!} s_{i}\left(\gamma_{1}, \ldots, \gamma_{q}\right) t^{i}
\end{aligned}
$$

where $s_{i}\left(\gamma_{1}, \ldots, \gamma_{q}\right)=\sum_{j=1}^{q} \gamma_{j}^{i}$. If we let $\operatorname{ch}(\mathcal{F})(t)=\sum_{j \geq 0} \operatorname{ch}_{j}(\mathcal{F}) t^{j}$, we get

$$
\operatorname{ch}_{0}(\mathcal{F})=\operatorname{rk}(\mathcal{F}), \quad \operatorname{ch}_{j}(\mathcal{F})=\frac{1}{j!} s_{j}(\mathcal{F}), \quad j \geq 1
$$

Using Newton's formula

$$
s_{k}-c_{1} p_{k-1}+c_{2} p_{k-2}+\cdots+(-1)^{k} k c_{k}=0
$$

for $k \geq 1$ with $c_{j}=\sigma_{j}\left(\gamma_{1}, \ldots, \gamma_{q}\right)$, we can compute recursively the $\operatorname{ch}_{j}(\mathcal{F})$ in terms of the $c_{i}(\mathcal{F})$'s. We can also check that

$$
\begin{aligned}
\operatorname{ch}(\mathcal{F} \coprod \mathcal{G})(t) & =\operatorname{ch}(\mathcal{F})(t)+\operatorname{ch}(\mathcal{G})(t) \\
\operatorname{ch}(\mathcal{F} \otimes \mathcal{G})(t) & =\operatorname{ch}(\mathcal{F})(t) \operatorname{ch}(\mathcal{G})(t)
\end{aligned}
$$

Again, given a vector bundle, \mathcal{F}, of $\operatorname{rank} q$, if $\gamma_{1}, \ldots, \gamma_{q}$ are the Chern roots of \mathcal{F}, we define the Todd polynomial of \mathcal{F} as

$$
\operatorname{Td}(\mathcal{F})(t)=\prod_{j=1}^{q} \frac{\gamma_{j} t}{1-e^{-\gamma_{j} t}}
$$

We write $\operatorname{Td}(\mathcal{F})(t)=1+\operatorname{Td}_{1}(\mathcal{F}) t+\operatorname{Td}_{2}(\mathcal{F}) t^{2}+\cdots$. If X is a manifold with $d=\operatorname{dim} X$, we have the tangent bundle, T_{X}, and we let

$$
\operatorname{Td}(X)=\operatorname{Td}\left(T_{X}\right)
$$

and $T(X)$, the Todd genus of X, is the degree d piece of $\operatorname{Td}(X)$. Hirzebruch proved that there is one and only one power series in the Chern classes so that

$$
T\left(\mathbb{P}_{\mathbb{C}}^{n}\right)=1, \quad \text { for all } \quad n \geq 0
$$

Theorem 1.1 (Hirzebruch-Riemann-Roch (1954)) If X is a non-singular projective variety over \mathbb{C} of dimension n (also true for a compact, complex manifold-Atiyah-Singer) and E is a rank r vector bundle on X, then

$$
\chi\left(X, \mathcal{O}_{X}(E)\right)=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}\left(X, \mathcal{O}_{X}(E)\right)=\operatorname{deg}_{n}(\operatorname{ch}(E) \operatorname{Td}(X))
$$

Let us work out some examples.
(1) $\operatorname{dim} X=1$ and $\operatorname{rk} E=1$, i.e., X is a curve and E is a line bundle. Then, $c_{1}(E) \in$ $H^{2}(X, \mathbb{Z})=\mathbb{Z}$ and in this case, we know that $c_{1}(E)=\operatorname{deg} E$. Now, it is known that the top Chern class, $c_{n}(E)$ is given by

$$
c_{1}(E)=\chi_{\mathrm{EP}}(X)
$$

where $\chi_{\mathrm{EP}}(X)$ is the Euler-Poincaré characteristic of X, so in this case,

$$
c_{1}\left(T_{X}\right)=2-2 g
$$

with $g=$ the genus of the curve C. Alternately, $\bigwedge^{1} T_{X}=T_{X}=-K_{X}$, so

$$
c_{1}\left(T_{C}\right)=-c_{1}\left(K_{X}\right)=-\operatorname{deg} K_{X}=-(2 g-2)=2-2 g .
$$

We have

$$
\operatorname{Td}(X)=1+\frac{1}{2} c_{1}\left(T_{X}\right) t \quad \text { and } \quad \operatorname{ch}(X)=1+(\operatorname{deg} E) t
$$

so

$$
\operatorname{deg}_{1}(\operatorname{ch}(E) \operatorname{Td}(X))=\operatorname{deg} E+\frac{1}{2} c_{1}\left(T_{X}\right)=\operatorname{deg} E+1-g .
$$

Therefore, HRR says that

$$
\chi\left(X, \mathcal{O}_{X}(E)\right)=\operatorname{deg} E+1-g
$$

which, of course, is the original Riemann-Roch Theorem.
(2) Again, $\operatorname{dim} X=1$ but this time, $\operatorname{rk} E=r \geq 1$. Then, $c_{1}(E)=c_{1}\left(\bigwedge^{r} E\right)=c_{1}(\operatorname{det} E)$, so

$$
\operatorname{ch}(E)=r+\operatorname{deg}(\operatorname{det} E) t
$$

and we get

$$
\chi\left(X, \mathcal{O}_{X}(E)\right)=\operatorname{deg}(\operatorname{det} E)+r(1-g)
$$

(3) $\operatorname{dim} X=2$ and $\operatorname{rk} E=1$, i.e., X is a non-singular surface and E is a line bundle. Then,

$$
\operatorname{ch} E)=1+c_{1}(E) t+\frac{1}{2} c_{1}(E)^{2} t^{2}
$$

and

$$
\operatorname{Td}(X)=1+\frac{1}{2} c_{1}(X) t+\frac{1}{12}\left(c_{1}^{2}(X)+\chi_{\mathrm{EP}}(X)\right) t^{2} .
$$

Also, $c_{1}(X)=c_{1}\left(T_{X}\right)=c_{1}\left(\bigwedge^{2} T_{X}\right)=-K_{X}$. If we write $D=c_{1}(E)$ for the divisor corresponding to E, then

$$
\operatorname{deg}_{2}(\operatorname{ch}(E) \operatorname{Td}(X))=\frac{1}{2} D^{2}-\frac{1}{2} K_{X} \cdot D+\frac{1}{12}\left(K_{X}^{2}+\chi_{\mathrm{EP}}(X)\right) .
$$

It follows that

$$
\chi\left(X, \mathcal{O}_{X}(E)\right)=\frac{1}{12}\left(K_{X}^{2}+\chi_{\mathrm{EP}}(X)\right)+\frac{1}{2} D \cdot\left(D-K_{X}\right) .
$$

(4) $\operatorname{dim} X=3$ and $\operatorname{rk} E=1$, i.e., X is a non-singular 3 -fold and E is a line bundle. Then,

$$
\operatorname{ch} E)=1+D t+\frac{1}{2} D^{2} t^{2}+\frac{1}{6} D^{3} t^{3}
$$

and

$$
\begin{aligned}
\operatorname{Td}(X) & =1+\frac{1}{2} c_{1}(X) t+\frac{1}{12}\left(c_{1}^{2}(X)+c_{2}(X)\right) t^{2}+\frac{1}{12} c_{1}(X) c_{2}(X) t^{3} \\
& =1-\frac{1}{2} K_{X} t+\frac{1}{12}\left(K_{X}^{2}(X)+c_{2}(X)\right) t^{2}-\frac{1}{12} K_{X} \cdot c_{2}(X) t^{3}
\end{aligned}
$$

It follows that

$$
\operatorname{deg}_{3}(\operatorname{ch}(E) \operatorname{Td}(X))=\frac{1}{6} D^{2}-\frac{1}{4} K_{X} \cdot D^{2}+\frac{1}{12} D \cdot\left(K_{X}^{2}+c_{2}(X)\right)-\frac{1}{24} K_{X} \cdot c_{2}(X) .
$$

Here is a useful conclusion of $H R R$ for a line bundle, E, with corresponding divisor, D. If $\operatorname{dim} X=n$, as

$$
\operatorname{ch} E)=1+D t+\frac{1}{2} D^{2} t^{2}+\cdots+\frac{1}{n!} D^{n} t^{n}
$$

and

$$
\operatorname{Td}(X)=1+\operatorname{Td}_{1}(X) t+\cdots+\operatorname{Td}_{n}(X) t^{n}
$$

we see that

$$
\operatorname{deg}_{n}(\operatorname{ch}(E) \operatorname{Td}(X))=\frac{1}{n!} D^{n}+O\left(D^{n-1}\right.
$$

In particular, as $E^{\otimes m}=\mathcal{O}_{X}(m D)$, in this case, we get

$$
\chi\left(X, \mathcal{O}_{X}(m D)\right)=\left(\frac{1}{n!} D^{n}\right) m^{n}+O\left(m^{n-1}\right)
$$

We know that very ample \Longrightarrow ample \Longrightarrow semi-ample and semi-ample $\Longleftrightarrow \mathcal{O}_{X}(m D)$ is generated by its global sections.

What does this mean? A global section, $\sigma \in H^{0}\left(X, \mathcal{O}_{X}(m D)\right)$, corresponds to an effective divisor, \widetilde{D}, with $\widetilde{D} \sim D$ (i.e. \widetilde{D} is linearly equivalent to D. Furthermore, $\sigma(x)=0$ iff $x \in \widetilde{D}$. Therefore, $\mathcal{O}_{X}(m D)$ is generated by its global sections iff for every $x \in X$, there is some effective divisor, $\widetilde{D} \in|m D|$, with $x \notin \widetilde{D}$ iff no $x \in X$ is a basepoint of $|m D|$. (Here, $|m D|$ is the linear system associated with $m D$.)

Proposition 1.2 On a proper (projective) variety, X, ample implies big and semi-ample implies nef.

Proof. If D is ample, then for all $m \gg 0$,

$$
\chi\left(X, \mathcal{O}_{X}(m D)\right)=\operatorname{dim}_{\mathbb{C}} H^{0}\left(X, \mathcal{O}_{X}(m D)\right)
$$

By HRR,

$$
\operatorname{dim}_{\mathbb{C}} H^{0}\left(X, \mathcal{O}_{X}(m D)\right)=\left(\frac{1}{n!} D^{n}\right) m^{n}+O\left(m^{n-1}\right)>K m^{n}
$$

if $K=\frac{1}{n!} D^{n}>0$. So, we need to prove $D^{n}>0$. Although we only need the easy direction of the Nakai-Moishezon criterion, we state this criterion since it is a useful fact to know anyway:

Nakai-Moishezon Criterion: Say X is proper and D is a divisor on X. Then, D is ample iff $D^{\operatorname{dim} Y} \cdot Y>0$, for every integral subscheme, Y, of X.

Now, apply the above criterion to $Y=D^{n-1}$. Then, $D^{n}=D \cdot Y=D \cdot D^{n-1}>0$ as D is ample, which concludes this part of the proof. (We really don't need the Nakai-Moishezon Criterion. Say D is ample. Then, $m D$ is very ample for $m \gg 0$. Let Y be an integral subscheme with $\operatorname{dim} Y=r \leq n$. We have a closed immersion

$$
\varphi_{m D}: X \hookrightarrow \mathbb{P}^{N} .
$$

So, $D^{r} \mapsto H^{r}$ and $Y \mapsto$ a closed subvariety of \mathbb{P}^{N} and $(m D)^{r} \cdot Y>0$ becomes $\operatorname{deg}\left(\varphi_{m D}(Y)\right)>0$, and we are done.)

Let us now prove that semi-ample implies nef. Assume D is semi-ample and let C be any curve in X. Look at $(m D) \cdot C=m(D \cdot C)$ with $m>.0$. Now, $m(D \cdot C)$ is the divisor of $\mathcal{O}_{X}(m D) \upharpoonright C$ on C and as $\mathcal{O}_{X}(m D)$ is generated by its global sections, $\mathcal{O}_{X}(m D) \upharpoonright C$ is generated by its global sections on C. It follows that $\operatorname{deg}\left(\mathcal{O}_{X}(m D) \upharpoonright C\right) \geq 0$ which implies $m D \cdot C \geq 0$ and thus, $D \cdot C \geq 0$. As this holds for every curve, C, we conclude that D is nef.

Corollary 1.3 Say Y and X are projective varieties and let $\pi: Y \rightarrow X$ be a proper morphism. If D is nef on X, then $\pi^{*} D$ is nef on Y (and similarly for ample).

Proof. Recall the projection formula

$$
\left(\pi^{*} D \cdot C\right)=\left(D \cdot \pi_{*} C\right)
$$

(for any irreducible curve, C, on X) where

$$
\pi_{*} C= \begin{cases}0 & \text { if } \pi(C)=\text { point } \\ d \pi(C) & \text { if } \pi(C) \text { is a curve and } d=(K(C): K(\pi(C)))\end{cases}
$$

Take any curve on Y and any divisor, D, on X, with D nef. Then, we have

$$
\left(\pi^{*} D \cdot C\right)=\left(D \cdot \pi_{*} C\right)=\left\{\begin{array}{l}
0 \\
d D \cdot \pi(C) \geq 0
\end{array}\right.
$$

and we are done.

Sorites:

1. If X and Y are proper and $\pi: Y \rightarrow X$ is a finite morphism, then π^{*} (ample) $=$ ample.
2. D is ample on X iff $D \upharpoonright($ every irreducible component of $X)$ is ample.
3. Suppose D is ample and E is any Cartier divisor. Then, for all small enough $t \in \mathbb{Q}$, we have $D+t E$ is again ample (use Serre's characterization).
4. The sum of two amples is ample. By (3) and (4), we see that the ample divisors form an open cone in $N^{1}(X)_{\mathbb{Q}}$.
5. nef + nef $=\operatorname{nef}($ ample $+\operatorname{nef}=$ nef $)$.
6. If D is very ample and E is any Cartier divisor, then $m D+E$ is very ample if $m \gg 0$.
7. ample + nef $=$ ample.
8. If D is very ample and E is generated by its sections, then $D+E$ is very ample (use the Segre morphism).

Here is a useful lemma:
Lemma 1.4 Say X is proper and D is ample on $X(n=\operatorname{dim} X)$. Then,

$$
D^{r} \cdot H^{n-r}>0 \quad \text { for } \quad 0 \leq r \leq n .
$$

Proof. It follows from the easy direction of the Nakai-Moishezon criterion.
The Cone of Curves. Say X is a proper scheme. If C and \widetilde{C} are two curves on X, then C is numerically equivalent to \widetilde{C} (written $C \equiv \widetilde{C}$) iff for every Cartier divisor, C, we have $D \cdot C=D \cdot \widetilde{C}$.

Write $N_{1}(X)_{\mathbb{Z}}$ for the free group of curves modulo \equiv and set

$$
\begin{aligned}
N_{1}(X)_{\mathbb{Q}} & =N_{1}(X)_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q} \\
N_{1}(X)_{\mathbb{R}} & =N_{1}(X)_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{R}
\end{aligned}
$$

We have the nondegenerate pairings

$$
N_{1}(X)_{\mathbb{Z}, \mathbb{Q}, \mathbb{R}} \otimes N^{1}(X)_{\mathbb{Z}, \mathbb{Q}, \mathbb{R}} \longrightarrow \mathbb{Z}, \mathbb{Q}, \mathbb{R}
$$

If we use the norm topology on $N_{1}(X)_{\mathbb{Q}, \mathbb{R}}$ and $N^{1}(X)_{\mathbb{Q}, \mathbb{R}}$, then these spaces are ρ-dimensional vector spaces (with $\rho=$ Picard number of X). Define $\mathrm{NE}(X) \subseteq N_{1}(X)_{\mathbb{R}}$ as the cone consisting of all equivalence classes of linear combinations

$$
\sum_{j=1}^{m} a_{j} C_{j}, \quad a_{j} \in \mathbb{R}, a_{j}>0
$$

each C_{j} an irreducible curve.
Theorem 1.5 If X is projective and D is a Cartier divisor on X (the theorem also holds for \mathbb{Q}-cartier, \mathbb{Q}-divisors), then
(1) D is ample iff for every curve $C \in \overline{\mathrm{NE}(X)}$, if $C \neq 0$ then $D \cdot C>0$.
(2) Suppose H is an ample divisor on X, then for any $k \geq 0$,

$$
K_{k}=\left\{C \in N_{1}(X) \mid(H \cdot C) \leq k\right\}
$$

is compact and contains only finitely many classes of irreducible curves, C.
Proof. (1) We know that D nef implies that $D \cdot C \geq 0$ on $\overline{\mathrm{NE}(X)}$. Now, suppose $C \neq 0$ and $D \cdot C=0$. Since the above pairing is nondegenerate, there is some E such that $(E \cdot C)<0$. Loook at $D+t E$, for t small $(t \in \mathbb{Q})$. Then, $(D+t E) \cdot C<0$. Yet, $D+t E$ is ample for t small and so, $(D+t E) \cdot C \geq 0$, a contradiction. Therefore, $D \cdot C>0$.

Conversely, write

$$
K=\{C \in \overline{\operatorname{NE}(X)} \mid\|C\|=1\}
$$

The set K is compact as $N_{1}(X)_{\mathbb{R}}$ is finite dimensional. The function, $f_{D}: K \rightarrow \mathbb{R}$ via $f_{D}(C)=D \cdot C$ is continuous and by hypothesis, $f_{D}>0$ on K. Consequently, there is some $a \in \mathbb{Q}$ such that $0<a<f_{C}(C)$ for all $C \in K$. Similarly, the function $f_{H}: K \rightarrow \mathbb{R}$ is continuous on K and, by the forward part already proved, $f_{H}>0$ on K. Thus, there is some $b \in \mathbb{Q}$ such that $b>f_{H}(C)>0$, for all $C \in K$. Look at $D-\frac{a}{b} H$. For $C \in K$,

$$
\left(D-\frac{a}{b} H\right) \cdot C=D \cdot C-\frac{a}{b}(H \cdot C) \geq D \cdot C-a,
$$

by choice of b. But, $D \cdot C>a$ (by choice of a), so

$$
\left(D-\frac{a}{b} H\right) \cdot C \geq 0, \quad \text { for all } \quad C \in K
$$

Therefore,

$$
\bigcup_{r>0} r K=\overline{\mathrm{NE}(X)}
$$

and $D-\frac{a}{b} H$ is nef. But, $\frac{a}{b} H$ is \mathbb{Q}-ample, so

$$
D=\left(D-\frac{a}{b} H\right)+\frac{a}{b} H
$$

where the first term on the right hand side is nef and the second first term on the right hand side is ample. It follows that D is ample.

Let us now prove that ampe + nef $=$ ample. We know that $D^{r} \cdot H^{n-r}>0$, where H is the embedding divisor of X and $n=\operatorname{dim} X$ (by the useful lemma). Say H is given and D is nef, then $D \upharpoonright Y$ is still nef for all integral schemes, Y, inside X. By the above

$$
(D \upharpoonright Y)^{s} \cdot(H \upharpoonright Y)^{t-s}>0
$$

with $t=\operatorname{dim} Y$, that is,

$$
D^{s} \cdot H^{t-s} \cdot Y>0, \quad 0 \leq s \leq t
$$

Now,

$$
(D+H)^{t} \cdot Y=\sum_{j=0}^{t}\binom{t}{j} D^{j} \cdot H^{j-j} \cdot Y>H^{t} \cdot Y>0
$$

by Nakai-Moishezon. Therefore, $D+H$ is ample.
(2) Write

$$
K_{k}=\left\{c \in N_{1}(X) \mid(H \cdot C) \leq k\right\}
$$

We need to show that K_{k} is compact and contains but finitely many classes of irreducible curves. Let $\rho=$ Picard number of $X=\operatorname{dim} N^{1}(X)_{\mathbb{R}}<\infty$. Pick D_{1}, \ldots, D_{ρ}, a basis for $N^{1}(X)_{\mathbb{R}}$ and let $D^{(1)}, \ldots, D^{(\rho)}$ be the dual basis in $N_{1}(X)_{\mathbb{R}}$. For our K of part (1) and $C \in K$, we know that there is some $M_{0}>0$ so that,

$$
\left(m_{0} H \pm D\right) \cdot C>0, \quad \text { for all } C \in K
$$

It follows that

$$
\left|D_{j} \cdot C\right|<m_{0}|H \cdot C|, \quad \text { for all } C \in K
$$

Thus, if $(H \cdot C) \leq k$, this bounds the coefficients of the expression of C in terms of $D^{(1)}, \ldots, D^{(\rho)}$. The closed bounded subset of $N_{1}(X)_{\mathbb{R}}$ resulting is then compact as $\rho<\infty$.

A curve, C, in K_{k} belongs to $N_{1}(\mathbb{Z})_{\mathbb{Z}} \cap K_{k}$ and as $N_{1}(X)_{\mathbb{Z}}$ is discrete, the previous set is finite.

Corollary 1.6 If D is a real nef divisor, then D is arbitrarily approximable by a \mathbb{Q}-Cartier ample \mathbb{Q}-divisor. Hence, on a projective scheme, X, the real nef cone is the closure of the ample \mathbb{Q}-cone.

Proof. If H is the very ample embedding divisor, pick $t \in \mathbb{Q}$, small and look at $D+t H$. This divisor and ample, so by Kleimann, $(D+t H) \cdot C>0$, for any $C \in \overline{\mathrm{NE}(X)}, C \neq 0$. We can approximate D by a \mathbb{Q}-divisor, \widetilde{D}, so that

$$
(\widetilde{D}+t H) \cdot C>0 \quad \text { in } \quad \overline{\mathrm{NE}(X)}-\{0\} .
$$

By Kleimann, $\widetilde{D}+t H$ is ample. But D is close to $\widetilde{D}+t H$ as t is small.

Remark: (nef \& big) + nef $=$ nef $\&$ big.
Say D is nef and big and E is nef. Of course, $D+E$ is nef. Again, $\frac{1}{m} E$ is nef. So, as

$$
m\left(D+\frac{1}{m} E\right)=m D+E
$$

if $n=\operatorname{dim} X$, we get

$$
m^{n}\left(D+\frac{1}{m} E\right)^{n}=(m D+E)^{n}=\sum_{j=1}^{n}\binom{n}{j} m^{j} D^{j} E^{n-j}>m^{n} D^{n}
$$

But, $m^{n} D^{n}>K m^{n}$, as D is nef and big, which implies that $D+\frac{1}{m} E$ is nef and big. It follows that $D+\frac{1}{m} E+\frac{1}{m} E$ is nef and big and so on, and thus, $D+E$ is nef and big.

Theorem 1.7 Say X is a proper and of finite type, \mathcal{F} is a coherent X-module and D is a Cartier divisor. Then,
(1) $h^{i}\left(X, \mathcal{F} \otimes \mathcal{O}_{X}(m D)\right)=O\left(m^{\operatorname{dim} X}\right)$, for all i.
(2) If D is nef and $i>0$, then
$h^{i}\left(X, \mathcal{F} \otimes \mathcal{O}_{X}(m D)\right)=O\left(m^{\operatorname{dim} X-1}\right)$.
$\left(\right.$ Here, $h^{i}(X, \mathcal{F})=\operatorname{dim} H^{i}(X, \mathcal{F})$.)
(3) $h^{0}\left(X, \mathcal{F} \otimes \mathcal{O}_{X}(m D)\right)=\frac{D^{n}}{n!} m^{n}+O\left(m^{n-1}\right)$, where $n=\operatorname{dim} X$.

Proof. By HRR, (2) $\Longrightarrow(3)$.
(1) We achieve a reduction. First, every coherent sheaf, \mathcal{F}, possesses a finite filtration

$$
\mathcal{F}=\mathcal{F}_{0} \supseteq \mathcal{F}_{1} \supseteq \cdots \supseteq \mathcal{F}_{r}=(0)
$$

in which the successive quotients $\mathcal{F}_{j} / \mathcal{F}_{j+1}$ have support on an integral subscheme of X and are torsion-free there. An obvious induction on r gets us to the case where X is integral
and torsion-free. Matsukata proved that such a sheaf, \mathcal{F}, when restricted to a suitable dense open, U, of X is actually free, say \mathcal{O}_{U}^{r}. So,

$$
\mathcal{F} \upharpoonright U=\mathcal{F} \otimes_{O_{X}} \mathcal{O}_{U} \underset{\theta}{\widetilde{\longrightarrow}} \mathcal{O}_{U}^{r}
$$

The choice of θ is equivalent to giving an embedding $\mathcal{F} \hookrightarrow K(X)^{r}$. Look at $\mathcal{G}=\mathcal{F} \cap \mathcal{O}_{X}^{r}$ (inside $\left.K(X)^{r}\right)$. We have the two exact sequences

$$
0 \longrightarrow \mathcal{G} \xrightarrow{i} \mathcal{F} \longrightarrow \mathcal{G}_{1} \longrightarrow 0
$$

and

$$
0 \longrightarrow \mathcal{G} \xrightarrow{j} \mathcal{O}_{X}^{r} \longrightarrow \mathcal{G}_{2} \longrightarrow 0
$$

Since i is an isomorphism on U, we deduce that $\operatorname{supp} \mathcal{G}_{l}$ is a proper closed subset of X and so, $\operatorname{dim} \operatorname{supp} \mathcal{G}_{l}<\operatorname{dim} X$, for $l=1,2$. If we use induction on $n=\operatorname{dim} X$, then the dimensions of the cohomology vector spaces of the \mathcal{G}_{l} grow at most like $O\left(m^{n-1}\right)$. Therefore, the dimension of the cohomology of \mathcal{F} grows like that of \mathcal{G} which, in turn, grows like the dimension of \mathcal{O}_{X}^{r} and as r is fixed, the latter grows like the dimension of the cohomology of \mathcal{O}_{X}. So, we are reduced to the case $X=\mathcal{O}_{X}$ with X integral.

Look at

$$
\mathfrak{I}_{1}=\mathcal{O}_{X}(-D) \cap \mathcal{O}_{X} \quad \text { and } \quad \mathfrak{I}_{2}=\mathcal{O}_{X}(D) \cap \mathcal{O}_{X}
$$

two coherent ideals of \mathcal{O}_{X}. Let Y_{i} be the subscheme of X cut out by \mathfrak{I}_{i}. Note, $\mathfrak{I}_{1}(D)=\mathfrak{I}_{2}$. We may assume $Y_{1}, Y_{2} \neq X$ (else, the argument is easier). Consider

$$
0 \longrightarrow \mathfrak{I}_{1}(m D) \longrightarrow \mathcal{O}_{X}(m D) \longrightarrow \mathcal{O}_{Y_{1}}(m D) \longrightarrow 0
$$

and

$$
0 \longrightarrow \Im_{2}((m-1) D) \longrightarrow \mathcal{O}_{X}((m-1) D) \longrightarrow \mathcal{O}_{Y_{2}}((m-1) D) \longrightarrow 0
$$

which are exact $\left(\right.$ and $\mathfrak{I}_{1}(m D)=\mathfrak{I}_{2}((m-1) D)$). We will use induction on $n=\operatorname{dim} X$. Apply cohomology to both sequences. We get exact sequences

$$
\cdots \longrightarrow H^{i}\left(X, \mathfrak{I}_{1}(m D)\right) \longrightarrow H^{i}\left(X, \mathcal{O}_{X}(m D)\right) \longrightarrow H^{i}\left(Y_{1}, \mathcal{O}_{Y_{1}}(m D)\right) \longrightarrow \cdots
$$

and
$\cdots \longrightarrow H^{i}\left(X, \mathfrak{I}_{2}((m-1) D)\right) \longrightarrow H^{i}\left(X, \mathcal{O}_{X}((m-1) D)\right) \longrightarrow H^{i}\left(Y_{2}, \mathcal{O}_{Y_{2}}((m-1) D)\right) \longrightarrow \cdots$,
Consequently,

$$
\begin{aligned}
h^{i}\left(X, \mathcal{O}_{X}(m D)\right) & \leq h^{i}\left(X, \mathfrak{I}_{1}(m D)\right)+h^{i}\left(Y_{1}, \mathcal{O}_{Y_{1}}(m D)\right) \\
& \leq h^{i}\left(X, \Im_{2}((m-1) D)\right)+O\left(m^{n-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
h^{i}\left(X, \mathfrak{I}_{2}(m D)\right) & \leq h^{i}\left(X, \mathcal{O}_{X}((m-1) D)\right)+h^{i-1}\left(Y_{2}, \mathcal{O}_{Y_{2}}((m-1) D)\right) \\
& \leq h^{i}\left(X, \mathcal{O}_{X}((m-1) D)\right)+O\left(m^{n-1}\right)
\end{aligned}
$$

Therefore,

$$
h^{i}\left(X, \mathcal{O}_{X}(m D)\right) \leq h^{i}\left(X, \mathcal{O}_{X}((m-1) D)\right)+O\left(m^{n-1}\right)
$$

that is

$$
h^{i}\left(X, \mathcal{O}_{X}(m D)\right)-h^{i}\left(X, \mathcal{O}_{X}((m-1) D)\right) \leq O\left(m^{n-1}\right)
$$

If we write all these inequalities for $j=1, \ldots, i$ and add them up, we get

$$
h^{i}\left(X, \mathcal{O}_{X}(m D)\right)=m O\left(m^{n-1}\right)=O\left(m^{n}\right),
$$

establishing (1).
(2) Again, this case reduces to $X=\mathcal{O}_{X}$ with X integral but now, D is nef. We use induction on $\operatorname{dim} X$. If $i \geq 2$, we can repeat the entire argument (word for word, mutatis mutandis). Consequently

$$
h^{i}\left(X, \mathcal{O}_{X}(m D)\right)=O\left(m^{n-1}\right), \quad i \geq 2 .
$$

Look at $\chi\left(X, \mathcal{O}_{X}(m D)\right)$. Using the case $i \geq 2$, it is of the form

$$
h^{0}\left(X, \mathcal{O}_{X}(m D)\right)-h^{1}\left(X, \mathcal{O}_{X}(m D)\right)+O\left(m^{n-1}\right)
$$

By HRR, it is also of the form

$$
\frac{D^{n}}{n!} m^{n}+O\left(m^{n-1}\right)
$$

There are two cases:
(1) $h^{0}\left(X, \mathcal{O}_{X}(m D)\right)=(0)($ all $m)$. In this case,

$$
-h^{1}\left(X, \mathcal{O}_{X}(m D)\right)=\frac{D^{n}}{n!} m^{n}+O\left(m^{n-1}\right)
$$

If $m \gg 0$, we have $D^{n} \geq 0$ as D is nef, so both sides must be zero. Therefore, $D^{n}=0$ and $h^{1}\left(X, \mathcal{O}_{X}(m D)\right)=0=O\left(m^{n-1}\right)$.
(2) There is some m_{0} such that $h^{0}\left(X, \mathcal{O}_{X}\left(m_{0} D\right)\right) \neq(0)$. In this case, there exists an effective divisor, E, with $E \equiv m_{0} D$ and $\operatorname{dim} \operatorname{supp} E<\operatorname{dim} X$ and

$$
0 \longrightarrow \mathcal{O}_{X}\left(-m_{0} D\right) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{E} \longrightarrow 0
$$

is exact. It follows that

$$
0 \longrightarrow \mathcal{O}_{X}\left(\left(m-m_{0}\right) D\right) \longrightarrow \mathcal{O}_{X}(m D) \longrightarrow \mathcal{O}_{E}(m D) \longrightarrow 0
$$

is exact. Consequently,

$$
\begin{aligned}
h^{1}(X, m D) & \leq h^{1}\left(E, \mathcal{O}_{E}(m D)\right)+h^{1}\left(X,\left(m-m_{0}\right) D\right) \\
& \leq O\left(m^{n-2}\right)+h^{1}\left(X,\left(m-m_{0}\right) D\right)
\end{aligned}
$$

(since $\operatorname{dim} E \leq \operatorname{dim} D$ and D is nef). We get

$$
h^{1}(X, m D)-h^{1}\left(X,\left(m-m_{0}\right) D\right)=O\left(m^{n-2}\right)
$$

Write all these inequalities for $m, m-m_{0}, m-2 m_{0}, \ldots$ and add them up. We get

$$
h^{1}(m D)=O\left(m^{n-1}\right),
$$

as claimed.
Corollary 1.8 Let X be a projective variety and let D be a \mathbb{Q}-Cartier, \mathbb{Q}-divisor which is nef and big. Then, there exists an effective \mathbb{Q}-divisor, E_{0}, so that for all $t \in \mathbb{Q}$, with $0<t<1$, there is some ample divisor, $H(t)$, with

$$
D=H(t)+t E_{0} .
$$

Proof. We may assume that D is an \mathbb{Z}-divisor. Let H be the embedding divisor in X, which is ample, then we have the exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}(-H) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{H} \longrightarrow 0
$$

By tensoring with $\mathcal{O}_{X}(m D)$, we get

$$
0 \longrightarrow \mathcal{O}_{X}(m D-H) \longrightarrow \mathcal{O}_{X}(m D) \longrightarrow \mathcal{O}_{H}(m D) \longrightarrow 0
$$

is exact. By Theorem 1.7(1), it follows that

$$
h^{0}\left(H, \mathcal{O}_{X}(m D)\right)=O\left(m^{n-1}\right),
$$

with $n=\operatorname{dim} X$. As D is nef and big we have
(a) $\chi\left(X, \mathcal{O}_{X}(m D)\right)>K m^{n}$ (as D is big) and
(b) $h^{0}\left(X, \mathcal{O}_{X}(m D)\right)$ grows like $\chi\left(X, \mathcal{O}_{X}(m D)\right)$ (by Theorem $1.7(2)$, as D is nef).

Therefore, if $m \gg 0$, then $h^{0}\left(H, \mathcal{O}_{X}(m D-H)\right) \neq(0)$. Let E be effective with $E \equiv m D-H$. Now,

$$
D=(1-t) D+t D=\left[(1-t) D+\frac{t}{m} H\right]+t\left(\frac{1}{m} E\right) .
$$

If we set $E_{0}=\frac{1}{m} E$, then we have an effective \mathbb{Q}-divisor and as $t>0, \frac{1}{m} H$ is ample. Also $(1-t) D$ is nef because D is. Consequently,

$$
(1-t) D+\frac{t}{m} H=H(t)
$$

is ample and $D=H(t)+t E_{0}$, as required.

Say $\pi: X \rightarrow Y$ is a proper morphism. Notice that π contracts a curve, C, iff $\pi_{*}(C)=0$ and $\pi_{*}(C)$ is a numerical criterion, by nondegeneracy of our pairing. Write $\operatorname{NE}(\pi)$ for the convex subcone of $\mathrm{NE}(X)$ generated by the curves contracted by π. Clearly,

$$
\mathrm{NE}(\pi)=\mathrm{NE}(X) \cap \operatorname{Ker} \pi_{*},
$$

so $\mathrm{NE}(\pi)$ is a closed convex subcone of $\mathrm{NE}(X)$.
For which π does $\mathrm{NE}(\pi)$ provide information determining or quasi-determining π ?
Claim: No chance unless the fibres of π are connected.
First, we claim that if $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}$, then the fibres of π are connected (see Hartshorne's book). The converse is "almost true". Assume characteristic 0 and Y normal. If the fibres are connected, then $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}$. Make the Stein factorization. For this, note that $\pi_{*} \mathcal{O}_{X}$ is a coherent \mathcal{O}_{Y}-module and an \mathcal{O}_{Y}-algebra. So, we can make $\widetilde{Y}=\mathcal{S}$ pec $\pi_{*} \mathcal{O}_{X}$ and there is a factorization

$$
X \xrightarrow{\pi^{\prime}} \widetilde{Y} \xrightarrow{g} Y
$$

of π (the Stein factorization). Now, as $\pi_{*}^{\prime} \mathcal{O}_{X}=\mathcal{O}_{\tilde{Y}}$, the fibres of π^{\prime} are connected (by the previous argument). But, g is a finite morphism.

Claim: g is an isomorphism.
We have $\operatorname{deg} g=1$ at the general point, i.e., X and Y birational and g is bijective. But, for any open affine, $U \subseteq Y, H^{0}\left(g^{-1}(U), \mathcal{O}_{\tilde{Y}}\right)$ is a finite $H^{0}\left(U, \mathcal{O}_{Y}\right)$-module and $K(Y)=(K(\widetilde{Y}))$ algebra. By normality, $H^{0}\left(g^{-1}(U), \mathcal{O}_{\tilde{Y}}\right)=H^{0}\left(U, \mathcal{O}_{Y}\right)$. Therefore, g is an isomorphism. As g contracts no curves, π contracts C iff π^{\prime} contracts C.

Theorem 1.9 Say X, Y, Y^{\prime} are proper schemes and $\pi: X \rightarrow Y$ and $\pi^{\prime}: X \rightarrow Y^{\prime}$ are morphisms. Assume $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}$.
(a) Say there exists $y_{0} \in Y$ such that π^{\prime} contracts $\pi^{-1}\left(y_{0}\right)$. Then, there exists an open $Y_{0} \ni y_{0}$ and a morphism, $\eta: Y_{0} \rightarrow Y^{\prime}$, so that the diagram

commutes: $\pi^{\prime} \upharpoonright X_{0}$ factors through π (by η).
(b) If every fibre of π is contracted by π^{\prime}, then π^{\prime} factors through π.

Proof. Let $\alpha: X \rightarrow Y \prod Y^{\prime}$ be the morphism $\left(\pi, \pi^{\prime}\right)$ (with $\left(\alpha(x)=\left(\pi(x), \pi^{\prime}(x)\right)\right.$). Since α is proper, $\operatorname{Im} \alpha=Z$ is closed in $Y \prod Y^{\prime}$. Because $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}, \pi$ is surjective. (If $U \subseteq Y$ is open, then $\mathcal{O}_{X}\left(\pi^{-1}(U)\right)=\mathcal{O}_{Y}(U) \neq(0)$ implies $\pi^{-1}(U) \neq \emptyset$.) Let $p=p r_{1} \upharpoonright Z$ and $q=p r_{2} \upharpoonright X$.

Now, $\pi^{-1}\left(y_{0}\right) \subseteq \pi^{\prime-1}(*)$, for some $* \in Y^{\prime}$. Therefore, α contracts $\pi^{-1}\left(y_{0}\right)$. As $\pi^{-1}\left(y_{0}\right)=\alpha^{-1}\left(p^{-1}\left(y_{0}\right)\right)$ and α contracts the left-hand side, we see that $p^{-1}\left(y_{0}\right)$ is a single point. Now, the locus of points in Y where p^{-1} blows things up is Zariski closed and $\neq Y$ as y_{0} does not belong to this locus. So, there is some open Y_{0}, with $y_{0} \in Y_{0}$ and $p: p^{-1}\left(Y_{0}\right) \rightarrow Y_{0}$ is a finite morphism. Write $Z_{0}=p^{-1}\left(Y_{0}\right)$ and $X_{0}=\pi^{-1}\left(Y_{0}\right)$. Observe that if we can prove that

$$
\mathcal{O}_{Z_{0}} \subseteq \alpha_{*} \mathcal{O}_{X_{0}}
$$

then we will have

$$
\mathcal{O}_{Y_{0}} \subseteq p_{*} \mathcal{O}_{Z_{0}} \subseteq p_{*} \alpha_{*} \mathcal{O}_{X_{0}}=\pi_{*} \mathcal{O}_{X_{0}}=\mathcal{O}_{Y_{0}}
$$

and so, $p_{*} \mathcal{O}_{Z_{0}}=\mathcal{O}_{Y_{0}}$. However, $\mathcal{O}_{Z_{0}} \subseteq \alpha_{*} \mathcal{O}_{X_{0}}$ holds because α is surjective and Z_{0} is open in Z, the image of X. Consequently, p is a finite morphism on Z_{0} and $p_{*} \mathcal{O}_{Z_{0}}=\mathcal{O}_{Y_{0}}$. So, the factorization is

Observe that η is unique.
For (b), cover Y by these opens and get a morphism, p, finite over all of Y. Then, repeat the above by replacing Y_{0} by Y.

Recall that a convex subcone, $\widetilde{\Gamma}$, of a cone, Γ, is extremal iff $\frac{\alpha+\beta}{2} \in \widetilde{\Gamma}$ implies that $\alpha, \beta \in \widetilde{\Gamma}$. This means that Γ lies in one of the two (closed) half spaces determined by any hyperplane containing $\widetilde{\Gamma}$.

Lemma 1.10 (Hironaka's Lemma) Say X, Y, Y^{\prime} are projective varieties and $\pi: X \rightarrow Y$ and $\pi^{\prime}: X \rightarrow Y^{\prime}$ are morphisms.
(1) The subcone $\mathrm{NE}(\pi)$ is always extremal in $\mathrm{NE}(X)$.
(2) If $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}$ and if $\mathrm{NE}(\pi) \subseteq \mathrm{NE}\left(\pi^{\prime}\right)$, then there exists a unique morphism, $\eta: Y \rightarrow Y^{\prime}$, so that π^{\prime} factors through π via η.
(3) If $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}$, then the morphism π is uniquely determined by $\mathrm{NE}(\pi)$ (up to isomorphism).

Proof. (1) Let $\alpha=\sum_{i} a_{i} A_{i}$ and $\beta=\sum_{j} b_{j} B_{j}$ be two members of $\operatorname{NE}(\pi)$, with $a_{i}, b_{j} \geq 0$ and say that $\frac{\alpha+\beta}{2} \in \mathrm{NE}(\pi)$. Then, $\alpha+\beta=\sum_{k} d_{k} D_{K}$, with $d_{k} \geq 0$ and $\pi\left(D_{k}\right)=$ point $_{k}$. So,

$$
\pi_{*}\left(\sum_{i} a_{i} A_{i}+\sum_{j} b_{j} B_{j}\right)=0 \quad \text { in } \quad N_{1}(Y)_{\mathbb{R}}
$$

that is,

$$
\sum_{i} a_{i} \pi_{*}\left(A_{i}\right)+\sum_{j} b_{j} \pi_{*}\left(B_{j}\right)=0 \quad \text { in } \quad N_{1}(Y)_{\mathbb{R}}
$$

Assume that $B_{j_{0}}$ is not contracted, that is, $\pi_{*} B_{j_{0}}$ is a curve in Y. As Y is projective, there is a some hyperplane, H, with $H \cdot \pi_{*} B_{j_{0}}>0$ (here, we may assume $b_{j_{0}}>0$). But, $A_{i} \cdot H \geq 0$ and $B_{j} \cdot H \geq 0$, for all i, j, a contradiction. Therefore, all the A_{i} and B_{j} are contracted, as required.
(2) As $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}$, the morphism π is surjective and so, the fibres of π are connected.

Claim: Every fibre of π is contracted by π^{\prime}.
Pick p and q in any fibre of π. As π^{-1} (point) is projective, p and q may be connected by a chain of curves. Each curve is in the same fibre, hence contracted by π and (by hypothesis) contracted by π^{\prime}. We conclude that $\pi^{\prime}(p)=\pi^{\prime}(q)$. Therefore, $\pi($ fibre of $\pi)=$ a point and by the rigidity lemma, there is a unique $\eta: Y \rightarrow Y^{\prime}$ such that the following diagram commutes:

(3) Given two morphisms π and π^{\prime} with $\mathrm{NE}(\pi)=\mathrm{NE}\left(\pi^{\prime}\right)$, by applying (2) we get $\eta: Y \rightarrow Y^{\prime}$ and $\xi: Y^{\prime} \rightarrow Y$ with $\eta \circ \xi$ and $\xi \circ \eta$, two morphisms besides $\mathrm{id}_{Y^{\prime}}$ and id_{Y} and so, $\eta \circ \xi=\mathrm{id}_{Y^{\prime}}$ and $\xi \circ \eta=\mathrm{id}_{Y}$, as required.

Mori's program has roughly two goals:
(1) Give a geometric condition under which an extremal subcone, E, gives a contracting morphism, $\pi(E=\mathrm{NE}(\pi))$.
(2) Show that after finitely many contractions, you have a "minimal model" and it is reasonably simple.

Examples.

(1) The case where $N_{1}(X)_{\mathbb{R}}$ is one-dimensional. If so, $X=\mathbb{P}^{r}$ and $N^{1}(X)_{\mathbb{Z}}$ is generated by the hyperplane, H. It follows that $N^{1}(X)_{\mathbb{R}} \cong \mathbb{R}$ and so, $N_{1}(X)_{\mathbb{R}} \cong \mathbb{R}$ and
$\mathrm{NE}(X)=\mathbb{R}_{\geq 0}=\overline{\mathrm{NE}(X)}$. The two extremal subcones are (0) and $\mathbb{R}_{\geq 0}$. In the first case, π is the constant morphism, $\pi: \mathbb{P}^{r} \rightarrow \mathrm{pt}$ and in the second case the identity, $\pi=\mathrm{id}: \mathbb{P}^{r} \longrightarrow \mathbb{P}^{r}$.
(2) $X=\mathbb{P}^{r} \prod \mathbb{P}^{r}$. In this case, $N^{1}(X)_{\mathbb{R}} \cong \mathbb{R} \amalg \mathbb{R}$ and so, $N_{1}(X)_{\mathbb{R}} \cong \mathbb{R} \amalg \mathbb{R}$. There are four extremal subcones:
(a) (0), which corresponds to id.
(b) $\mathbb{R} \amalg \mathbb{R}$, in which case π contracts all points to a point.
(c) \mathbb{R} (first component), in which case $\mathbb{P}^{r} \amalg \mathbb{P}^{s} \xrightarrow{p r_{2}} \mathbb{P}^{s}$.
(d) \mathbb{R} (second component), in which case $\mathbb{P}^{r} \amalg \mathbb{P}^{s} \xrightarrow{p r_{1}} \mathbb{P}^{r}$.
(3) A ruled surface, $X=\mathbb{P}(E)$, where E is a rank 2 vector bundle over C, where C is a smooth projective curve. In other words, X is a \mathbb{P}^{1} bundle over C (with group PGL(1)). By Tsen's Theorem, there exists a section, σ. The main point is this:

Proposition 1.11 If $X=\mathbb{P}(E)$ is a ruled surface, where E is a rank 2 vector bundle over a smooth projective curve, C, then there is a one-to-one correspondence between sections, σ, of $\pi: X \rightarrow C$ and exact sequences

$$
0 \longrightarrow \text { ker } \longrightarrow \mathcal{O}_{C}(E) \longrightarrow \mathcal{L} \longrightarrow 0
$$

where \mathcal{L} is a line bundle over C ($=$ rank 1 , locally free \mathcal{O}_{C}-module). In this correspondence, $\mathcal{L}=\sigma^{*} \mathcal{O}_{X}(1)$ and $\mathrm{ker} \cong \pi_{*}\left(\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)\right)$, where $C_{0}=\sigma(C)$. Also, $\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)=\pi^{*}($ ker $)$.

Proof. The functorial definition of $\mathbb{P}(E)$ says that the section, $\sigma: C \rightarrow X$, corresponds to our surjection, $\mathcal{O}_{C}(E) \longrightarrow \mathcal{L}=\sigma^{*} \mathcal{O}_{X}(1)$, where \mathcal{L} is a rank 1 locally free bundle (because $C=\mathbb{P}(\mathcal{L}))$. Let $C_{0}=\sigma(C)$, then

$$
0 \longrightarrow \mathcal{O}_{X}\left(-C_{0}\right) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{C_{0}} \longrightarrow 0
$$

is exact. Twist by $\mathcal{O}_{X}(1)$ to get

$$
0 \longrightarrow \mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1) \longrightarrow \mathcal{O}_{X}(1) \longrightarrow \mathcal{O}_{C_{0}}(1) \longrightarrow 0
$$

is exact. If we apply π_{*}, we get

$$
0 \longrightarrow \pi_{*}\left(\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)\right) \longrightarrow \mathcal{O}_{C}(E) \longrightarrow \pi_{*} \mathcal{O}_{C_{0}}(1) \longrightarrow R^{1} \pi_{*}\left(\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)\right)
$$

The following hold:
(a) On C_{0}, π and σ are inverse. Therefore, $\pi_{*}=\sigma^{*}$ on C_{0} and so, $\mathcal{L}=\pi_{*} \mathcal{O}_{C_{0}}(1)$.
(b) $R^{1} \pi_{*}\left(\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)\right)=(0)$.

On each fibre, $\pi^{-1}(c)=F=\mathbb{P}^{1}, \mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)$ is just $\mathcal{O}_{\mathbb{P}^{1}}\left(-C_{0} \cdot F+\Delta\right)$, where Δ is the divisor induced on F by $\mathcal{O}_{X}(1)$. As $\operatorname{deg} \Delta>0$ and $C_{0} \cdot F=1$, we deduce that the degree of $\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)$ on F is non-negative and independent of F. As

$$
H^{1}\left(F, \mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)\right)=(0),
$$

for every c, we have

$$
H^{1}\left(F,\left(\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)\right)_{c}\right)=(0)
$$

But the above is just

$$
\overline{R^{1} \pi_{*}\left(\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)\right)_{c}} \otimes \kappa(c)
$$

(by the formal functions Theorem) and, by Nakayama and denseness, we get $R^{1} \pi_{*}\left(\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)\right)=(0)$. Therefore,

$$
\operatorname{ker}=\pi_{*}\left(\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)\right)
$$

Let us abbreviate $\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)$ as \mathfrak{m}. We know that $\mathfrak{m} \cdot F(=\operatorname{deg}(\mathfrak{m} \upharpoonright F))=$ constant ≥ 0 and so, $H^{0}\left(\pi^{-1}(c), \mathfrak{m} \cdot \pi^{-1}(c)\right)$ has dimension $=\operatorname{deg}+1$ (by RR on $\left.\pi^{-1}(c)\right)$. Grauert's Theorem implies that $\pi_{*} \mathfrak{m}$ is locally free of rank $\operatorname{dim} H^{0}=\operatorname{deg}+1$. But the rank is equal to 1 and thus, $\operatorname{deg}=0$ and $\mathfrak{m}=\pi^{*}($ divisor $)=\pi^{*}\left(\pi_{*} \mathfrak{m}\right)$.

If E is a bundle on C and if we twist by $\mathcal{O}_{C}(D)$, we have

$$
\begin{aligned}
c_{1}\left(E \otimes \mathcal{O}_{C}(D)\right) & =c_{1}\left(\bigwedge^{2}\left(E \otimes \mathcal{O}_{C}(D)\right)\right) \\
& =c_{1}(E)+2 c_{1}(D) \\
& =c_{1}(E)+2 \operatorname{deg} D
\end{aligned}
$$

Consequently, we can adjust E by tensoring with a line bundle so that
(a) $H^{0}\left(C, \mathcal{O}_{C}(E)\right) \neq(0)$, yet
(b) $H^{0}\left(C, \mathcal{O}_{C}(E) \otimes M\right) \neq(0)$ if $\operatorname{deg} M<0$.

We have $X=\mathbb{P}(E)=\mathbb{P}(E \otimes M)$ and therefore, we may assume (a) and (b). Such an E is said to be "normalized".

Say E is a normalized bundle, then there is a nonzero section, $s \in H^{0}\left(C, \mathcal{O}_{C}(E)\right)$, and this s gives an exact sequence

$$
0 \longrightarrow \mathcal{O}_{C} \xrightarrow{s} \mathcal{O}_{C}(E) \longrightarrow \mathcal{L} \longrightarrow 0
$$

Claim: \mathcal{L} is a line bundle on C.
We need only check \mathcal{L} is torsion-free as C is a smooth curve. Let $T=\operatorname{torsion}(\mathcal{L})$, and pull back T to $\mathcal{O}_{C}(E)$; let \mathcal{F} be the corresponding subsheaf of $\mathcal{O}_{C}(E)$. Now, as $\mathcal{O}_{C}(E)$ is torsion-free, \mathcal{F} must be torsion-free and so, \mathcal{F} is a bundle. But, if \mathcal{F} is a line bundle, it contains \mathcal{O}_{C} and $\mathcal{F} \neq \mathcal{O}_{C}$, else $T=(0)$. Therefore, $\operatorname{deg} \mathcal{F}>0$. As a consequence, $E \otimes \mathcal{F}^{-1}$ has a section and yet, $\operatorname{deg} \mathcal{F}^{-1}<0$, contradicting (b) and proving the Claim.

Now, $\mathcal{O}_{C}=\operatorname{ker}=\pi_{*}\left(\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)\right)$ implies that $\mathcal{O}_{X}=\mathcal{O}_{X}\left(-C_{0}\right) \otimes \mathcal{O}_{X}(1)$ and for this $s, \mathcal{O}_{X}\left(C_{0}\right)=\mathcal{O}_{X}(1)$. We have the exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}\left(-C_{0}\right) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{C_{0}} \longrightarrow 0
$$

and if we tensor it with $\mathcal{O}_{C_{0}}$, we get

$$
0 \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{X}(1) \longrightarrow \mathcal{O}_{C_{0}}\left(C_{0}^{2}\right) \longrightarrow 0
$$

If we push it down by π_{*}, we get

$$
0 \longrightarrow \mathcal{O}_{C} \longrightarrow \mathcal{O}_{C}(E) \longrightarrow \mathcal{O}_{C_{0}}\left(C_{0}^{2}\right) \longrightarrow 0
$$

Also recall that $c_{1}(E)=\operatorname{deg} \Lambda^{2} E=C_{0}^{2}$. Define

$$
-e=\operatorname{deg} \bigwedge^{2} E=C_{0}^{2}
$$

This is an invariant of X. Now, on $X, \operatorname{Num}(X)$ is free of rank 2 and the class of $\mathcal{O}_{X}(1)\left(=C_{0}\right)$ and the class of F are a basis, so $K_{X}=\alpha F+\beta C_{0}$.

The adjunction formula says that

$$
\begin{aligned}
\operatorname{deg} K_{F} & =F \cdot\left(K_{X}+F\right) \\
-2 & =F \cdot K_{X}+F^{2} \\
-2 & =F \cdot K_{X}=\beta
\end{aligned}
$$

Thus, $\beta=-2$. Furthermore,

$$
\begin{aligned}
\operatorname{deg} K_{C_{0}} & =C_{0} \cdot\left(C_{0}+K_{X}\right) \\
2 g-2 & =C_{0}^{2}+C_{0} \cdot\left(-2 C_{0}+\alpha F\right) \\
2 g-2 & =-C_{0}^{2}+\alpha \\
2 g-2 & =e+\alpha
\end{aligned}
$$

so $\alpha=2 g-2-e$. Consequently,

$$
K_{X}=-2 C_{0}+(2 g-2-e) F .
$$

We check that

$$
K_{X}^{2}=4 C_{0}^{2}-4(2 g-2-e)=8(1-g)
$$

Also

$$
\begin{aligned}
c_{2}(X) & =\chi_{\mathrm{top}}(X)=\chi_{\mathrm{top}}(F) \chi_{\mathrm{top}}(C) \\
& =2(2-2 g) \\
& =4(1-g)
\end{aligned}
$$

and

$$
\frac{1}{12}\left(K_{X}^{2}+c_{2}\right)=\operatorname{Td}(X)=1-g
$$

Now, look at the Leray spectral sequence

$$
H^{p}\left(C, R^{q} \pi_{*} \mathcal{O}_{X}\right) \Longrightarrow H^{\bullet}\left(X, \mathcal{O}_{X}\right)
$$

We have

$$
\left(R^{q^{q} \pi_{*} \mathcal{O}_{X}}\right)_{c} \otimes \kappa(c)=H^{q}\left(\pi^{-1}(c), \mathcal{O}_{X} \upharpoonright \pi^{-1}(c)\right)= \begin{cases}\mathbb{C} & \text { if } q=0 \\ (0) & \text { if } q>0\end{cases}
$$

Therefore,

$$
R^{q} \pi_{*} \mathcal{O}_{X}= \begin{cases}\mathcal{O}_{C} & \text { if } q=0 \\ (0) & \text { if } q>0\end{cases}
$$

Consequently,

$$
H^{p}\left(C, \mathcal{O}_{C}\right) \cong H^{p}\left(X, \mathcal{O}_{X}\right) \quad \text { for all } \quad p \geq 0
$$

from the Leray SS. So,

$$
\begin{array}{rlc}
H^{0}\left(C, \mathcal{O}_{C}\right) & =\mathbb{C} \\
H^{1}\left(C, \mathcal{O}_{C}\right) & =\mathbb{C}^{g} & g=\text { genus } C \\
H^{p}\left(C, \mathcal{O}_{C}\right) & =(0), \quad p \geq 2
\end{array}
$$

and

$$
\begin{aligned}
\operatorname{dim} H^{0}\left(C, \mathcal{O}_{C}\right) & =1 \\
\operatorname{dim} H^{1}\left(C, \mathcal{O}_{C}\right) & =q=g \\
\operatorname{dim} H^{2}\left(C, \mathcal{O}_{C}\right) & =p_{g}=0
\end{aligned}
$$

So, HRR checks. We know that $H^{0}\left(C, \mathcal{O}_{X}\right) \neq(0)$, yet $H^{0}\left(C, \mathcal{O}_{C} \otimes \mathcal{O}_{C}(M)\right)=(0)$ if $\operatorname{deg} M<0$.

Take M with $\operatorname{deg} M=-1$. The sequence

$$
0 \longrightarrow \mathcal{O}_{C} \longrightarrow \mathcal{O}_{C}(E) \longrightarrow \mathcal{O}_{C}\left(C_{0}^{2}\right) \longrightarrow 0
$$

is exact and if we twist with $\mathcal{O}_{C}(M)$, we get

$$
0 \longrightarrow \mathcal{O}_{C}(M) \longrightarrow \mathcal{O}_{C}(E) \otimes \mathcal{O}_{C}(M) \longrightarrow \mathcal{O}_{C}\left(C_{0}^{2}\right) \otimes \mathcal{O}_{C}(M) \longrightarrow 0
$$

If we apply cohomology, we get

$$
0 \longrightarrow H^{0}\left(C, \mathcal{O}_{C}\left(C_{0}^{2}\right) \otimes \mathcal{O}_{C}(M)\right) \longrightarrow H^{1}\left(C, \mathcal{O}_{C}(M)\right)
$$

By Riemann-Roch on C

$$
-h^{1}\left(\mathcal{O}_{C}(M)\right)=-1+1-g=-g
$$

that is, $g=h^{1}\left(\mathcal{O}_{C}(M)\right)$, which implies $h^{0}\left(\mathcal{O}_{C}\left(C_{0}^{2}\right) \otimes \mathcal{O}_{C}(M)\right) \geq g$. By Riemann-Roch on C,

$$
h^{0}\left(\mathcal{O}_{C}\left(C_{0}^{2}\right) \otimes \mathcal{O}_{C}(M)\right) \geq C_{0}^{2}-1+1-g=C_{0}^{2}-g
$$

Therefore, $g \geq c_{0}^{2}-g$, that is, $2 g \geq C_{0}^{2}=-e$, namely

$$
e \geq-2 g
$$

(Actually, Nagata, 1960, showed $e \geq-g$.)
Say X is just a surface and look on the divisor side. We have $\operatorname{Amp}(X) \subseteq \operatorname{NE}(X)$ and so,
(1) $\operatorname{nef}(X)=\overline{\operatorname{Amp}(X)} \subseteq \overline{\mathrm{NE}(X)}$.

Say Γ is an irreducible curve on X and $\Gamma^{2}=0$. Pick an effective "curve", \widetilde{C} (really, a 0 -cycle) on X. Either Γ is an irreducible component of \widetilde{C} or not. If not, $\Gamma \cdot \widetilde{C} \geq 0$. Let

$$
\overline{\mathrm{NE}(X)}_{\Gamma \geq 0}=\{\widetilde{C} \in \overline{\mathrm{NE}(X)} \mid \Gamma \cdot \widetilde{C} \geq 0\}
$$

Then, we have
(2a) $\overline{\mathrm{NE}(X)}=$ the cone spanned by Γ and $\overline{\mathrm{NE}(X)_{\Gamma \geq 0}}$ and
(2b) Γ is the boundary of $\overline{\mathrm{NE}(X)}$.
(2c) If $\Gamma^{2}<0$, then Γ is extremal.

Back to ruled surfaces. The group $\operatorname{Num}(X)$ is generated by $\mathcal{O}_{X}(1)$ and F and we know that $F^{2}=0$ and F is nef. It follows that F is on the boundary of $\overline{\mathrm{NE}(X)}$.

Use the class, ξ, of $\mathcal{O}_{X}(1)$ and the class, f, of F as a basis $(f$ as abscissae and ξ as ordinate). Then we have a bijection, $\operatorname{Num}(X)_{\mathbb{R}} \longrightarrow \mathbb{R}^{2}$. Vectors with $y=0$ and $x \geq 0$ are one boundary of $\overline{\operatorname{NE}(X)}$. To find the other boundary of $\overline{\operatorname{NE}(X)}$ (and $\operatorname{Nef}(X)$) we need information about E. This is a question of "stability" for vector bundles on a curve, C.

Definition 1.2 Let E be a vector bundle of rank r on our curve, C. We say that E is unstable on C iff E possesses a subbundle, F, so that

$$
\mu(F)=\frac{\operatorname{deg} F}{\operatorname{rk} F}>\mu(E)=\frac{\operatorname{deg} E}{\operatorname{rk} E}
$$

The vb E is semi-stable if it is not unstable, that is, for all F as above,

$$
\mu(F) \leq \mu(E)
$$

and E is stable iff for all F as above

$$
\mu(F)<\mu(E)
$$

If

$$
0 \longrightarrow F \longrightarrow E \longrightarrow G \longrightarrow 0
$$

is an exact sequence of bundles on C, then we have

$$
\mu(F) \leq \mu(E) \quad \text { iff } \quad \mu(G) \geq \mu(E)
$$

and

$$
\mu(F)<\mu(E) \quad \text { iff } \quad \mu(G)>\mu(E)
$$

Let X be a ruled surface and take $X=\mathbb{P}(E)$, so that $\operatorname{deg} E \equiv 0(2)$. Then, normalize E, for our purposes, so that $\operatorname{deg} E=0$.

Case (A). E is unstable (e.g., $\left.E=\mathcal{O}_{C}(2) \amalg \mathcal{O}_{C}(-2)\right)$. Here,

$$
\mu(E)=\frac{\operatorname{deg} E}{2}=0
$$

Unstability means that there is some line subbundle, F, with $\mu(F)=\operatorname{deg} F>\mu(E)=0$. Note that $\mu(E / F=G)<0$. We have the exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}(F) \longrightarrow \mathcal{O}_{X}(E) \longrightarrow \mathcal{L}=\mathcal{O}_{X}(G) \longrightarrow 0
$$

and on X, we have our C_{0}, corresponding to the above exact sequence, with $C_{0}^{2}=\operatorname{deg} \mathcal{L}=\operatorname{deg} G<0$. Here, C_{0} plays the role of Γ and so, C_{0} is an extremal ray in $\overline{\mathrm{NE}(X)}$. This ray must be our other boundary.

As E is unstable, there is a quotient, L, of E with $\operatorname{deg} L<0$ and we have an exact sequence

$$
0 \longrightarrow \operatorname{ker} \longrightarrow E \longrightarrow L \longrightarrow 0
$$

so L corresponds to a section, D, of $\pi: \mathbb{P}(E) \rightarrow C$, and $D=\alpha f+\beta \xi$. But, $D \cdot f=1$, so $\beta=1$ and $D=\alpha f+\xi$. It follows that $\alpha=D \cdot \xi=\operatorname{deg} L<0$ and so, $\alpha<0$.

Recall that
(1) $\operatorname{Nef}(X) \subseteq \overline{\mathrm{NE}(X)}$ and
(2) $\Gamma^{2} \leq 0$ (Γ an irreducible curve) imply that
(a) Γ and $\left\{C^{\prime} \mid \Gamma \cdot C^{\prime} \geq 0\right\}$ generate $\overline{\mathrm{NE}(X)}$.
(b) Γ is on the boundary of $\overline{\mathrm{NE}(X)}$.
(3) $\Gamma^{2}<0$ implies Γ is extremal.

Since $D^{2}=2 \alpha<0$, we deduce that $\alpha f+\xi$ is extremal and on the boundary of $\overline{\mathrm{NE}(X)}$. Of course, F is an effective curve and the x-axis is another boundary of $\overline{\mathrm{NE}(X)}$.

What about $\operatorname{Nef}(X)$?
Then, $\Delta=\gamma f+\delta \xi$ is on $\partial \operatorname{Nef}(X)$ iff Δ is perpendicular to the boundary of $\overline{\mathrm{NE}(X)}$. Thus,
$\Delta \cdot f=0$, which yields $\delta=0$ (on the first boundary)
$\Delta \cdot(\alpha f+\xi)=0$, which yields $\gamma+\delta \alpha=0$ (on the second boundary), i.e., $\gamma=-\delta \alpha$.
Consequently,

$$
\Delta=\delta(-\alpha f+\xi)
$$

is on the boundary of $\operatorname{Nef}(X)$.
Case (B) E is semi-stable.
Since we are in characteristic 0 , one finds all the bundles $S^{m} E$ are semi-stable ($m \geq 1$). Say A is some line bundle on C, with $\operatorname{deg} A=a$ and suppose that

$$
H^{0}\left(C, S^{m}(E) \otimes_{\mathcal{O}_{C}} A\right) \neq(0)
$$

for some m. A nonzero section corresponds to a map

$$
0 \longrightarrow \mathcal{O}_{C} \longrightarrow S^{m} E \otimes A
$$

and we get the exact sequence

$$
0 \longrightarrow \mathcal{O}_{C} \longrightarrow S^{m} E \otimes A \longrightarrow M \longrightarrow 0
$$

If we twist by A^{D}, we get

$$
0 \longrightarrow A^{D} \longrightarrow S^{m} E \longrightarrow M \otimes_{\mathcal{O}_{X}} A^{D} \longrightarrow 0
$$

is exact and semi-stability implies $\operatorname{deg} A^{D} \leq 0$. Thus $\operatorname{deg} A \geq 0$, that is, $a \geq 0$. Pick some irreducible curve, Γ, on X, then as a divisor, $\mathcal{O}_{X}(\Gamma) \sim \mathcal{O}_{X}(m) \otimes$ fibres, for some $m \geq 1$ and some fibres $=\pi^{*} A$. It follows that Γ is the zero divisor of a section, s, in $\mathcal{O}_{X}(m) \otimes \pi^{*} A$. But,

$$
\pi^{*}\left(\mathcal{O}_{X}(m) \otimes \pi^{*} A\right)=S^{m} E \otimes A
$$

and

$$
\Gamma\left(C, S^{m} E \otimes A\right)=\Gamma\left(C, \pi_{*}\left(\mathcal{O}_{X}(m) \otimes \pi^{*} A\right)\right)=\Gamma\left(X, \mathcal{O}_{X}(m) \otimes \pi^{*} A\right)
$$

Whenever $s \in \Gamma\left(X, \mathcal{O}_{X}(m) \otimes \pi^{*} A\right)$, we also have $s \in \Gamma\left(C, S^{m} E \otimes A\right)$, so $a \geq 0$, where $a=\operatorname{deg} A$. As $\Gamma=m \xi+a f$, we deduce that Γ belongs to the first quadrant of the (f, ξ) plane and $f=0$ is still a boundary. Therefore, $\overline{\mathrm{NE}(X)}$ is equal to the first quadrant including its boundaries.

As $\operatorname{Nef}(X)=$ closure of $\operatorname{Amp}(X)$, we see that $\operatorname{Nef}(X)$ is also the first quadrant with its boundaries.

Question: Is the ξ-axis in $\mathrm{NE}(X)$? That is, does there exist Γ so that $\Gamma=m \xi$ for some m ?

Here, we must have $a=0$. This implies E and all the $S^{m} E$ are semi-stable but not stable.

Narasimhan and Seshadri gave a characterization of stable bundles using representations of $\pi_{1}(C)$ and Hartshorne (AVB) used this to show if $g(C) \geq 2$, then there is some vector bundle, E, of rank 2 on C, semi-stable, so that

$$
H^{0}\left(C, S^{m} E \otimes A\right)=(0)
$$

for all $m \geq 1$, provided $\operatorname{deg} A \leq 0$. (Almost all E on the boundary of the moduli space of vb's work.) But, by the above, the ξ-axis is not given by any Γ and therfore in this case, $\mathrm{NE}(X) \neq \overline{\mathrm{NE}(X)}$.

Mumford's Example: Let X, E, V be as before $(\mathrm{NE}(X) \neq \overline{\mathrm{NE}(X)})$. Take D to be a divisor representing ξ. Then, $D \cdot Z>0$ (with $Z \in \mathrm{NE}(X)$) and yet, $D \cdot D=0$. We claim that D is not ample, as otherwise, by Kleiman, $D \cdot D>0$, as $D \in \mathrm{NE}(X)$. Therefore, in Nakai-Moshezon, we need to take D^{n} 's, wrong otherwise.

1.2 The Kodaira \& Akizuki-Nakano Vanishing Theorems-Part I. Coverings

First, we consider the easiest case: cyclic covers.
Proposition 1.12 If X is affine and $s \in \mathbb{C}[X]$, with $s \not \equiv 0$, for any $m \geq 1$, there is a finite and flat morphism, $\pi: Y \rightarrow X$, and there is some $s^{\prime} \in \mathbb{C}[Y]$, so that $\left(s^{\prime}\right)^{m}=\pi^{*} s$. Moreover, Y is ramified exactly along $(s)_{0}$.

Proof. Make $X \prod \mathbb{A}^{1}$ and let t be the coordinate on \mathbb{A}^{1}. Look at $Y=$ the locus of $t^{m}-\pi^{*} s=0$ on $X \prod \mathbb{A}^{1}$ and take $\pi=p r_{1} \upharpoonright Y$. Then, set $s^{\prime}=t \upharpoonright Y$ to get $\left(s^{\prime}\right)^{m}=\pi^{*} s$; flatness is clear.

Proposition 1.13 (Global case) Let X be an irreducible variety, L be a line bundle on X and $m \geq 1$ be any integer and let $s \in \Gamma\left(X, L^{\otimes m}\right)$, with $s \not \equiv 0$. Then, there is an irreducible Y and a morphism, $\pi: Y \rightarrow X$, finite and flat, a section, $\sigma \in \Gamma\left(Y, \pi^{*} L\right)$, so that $\sigma^{m}=\pi^{*} s$ and if X is smooth then Y can be taken to be smooth. Moreover, if $D=(s)_{0}$, then π is an isomorphism, $(\sigma)_{0} 工 D$, and if D is smooth we can find σ with $(\sigma)_{0}$ smooth.

Proof. (1) (a la Grothendieck) The result holds in the affine case. Since s is a section of an $m^{\text {th }}$ power, these affine pieces glue. The rest of the statements are local computations.
(2) Another argument: Since L is a line bundle on X we can make

$$
V(L)=\operatorname{Spec}_{\mathcal{O}_{X}}\left(\operatorname{Sym} L^{D}\right)
$$

the total space of \mathbb{L} and let $p: V(L) \rightarrow X$. There is a tautological section of $p^{*} L$ over \mathbb{L}. We need a section, σ, so that $\sigma(\xi) \in\left(p^{*} L\right)_{\xi}$, for all $\xi \in \mathbb{L}$. But, $\left(p^{*} L\right)_{\xi}=L_{p(\xi)}$ and $\xi \in \mathbb{L}$ so ξ is a pair

$$
\xi=\left(p(\xi), \text { vector in } L_{p(\xi)}\right)
$$

and we can set $\sigma(\xi)=$ second component of ξ. Let T be the tautological section. Consequently, $T(\xi)=\xi$ itself. We need a map $\mathbb{L} \longrightarrow p^{*} L$. But, $p^{*} L=\mathbb{L} \otimes L$. Now, as everything is affine, we need a map

$$
\operatorname{Sym}\left(L^{D}\right) \longrightarrow \operatorname{Sym}\left(L^{D}\right) \otimes_{\mathcal{O}_{X}} L
$$

that is, a map

$$
\mathcal{O}_{X} \amalg L^{D} \amalg L^{D^{2}} \amalg \cdots \longrightarrow L \amalg \mathcal{O}_{X} \amalg L^{D} \amalg L^{D^{2}} \amalg \cdots .
$$

The lefthand side is a summand of the righthand side so the desired map exists. (Our T is locally the t of the previous proposition.) In \mathbb{L}, look at the locus of $T^{m}-\pi^{*} s=0$. This is Y and in Y we have

$$
T^{m}=\pi^{*} s
$$

The rest of the statements are purely local.
We will also need roots of bundles.
Theorem 1.14 (Bloch-Gieseker Covers) Say X is a quasi-projective irreducible algebraic variety, $m \geq 1$ is an integer, and L is a line bundle on X. Then, there exists a finite flat morphism, $\pi: Y \rightarrow X$, with Y irreducible and a line bundle, N, on Y so that

$$
N^{\otimes m} \cong \pi^{*} L \quad(\text { on } Y)
$$

If X is smooth, we can take Y smooth. If X is reduced, we can take Y reduced. If D is a simple normal-crossing divisor (SNC) on X, we can arrange $\pi^{*} D$ is again SNC. If $\operatorname{dim} X \geq 2$ and the D_{i} 's are the irreducible components of D (an SNC divisor), then we can arrange that the $\pi^{*} D_{i}$ are the irreducible components of $\pi^{*} D$.

Proof. We do a reduction. Suppose the result is known for $L=f^{*} \mathcal{O}_{\mathbb{P}^{r}}(1)$ where $f: X \rightarrow \mathbb{P}^{r}$ is a quasi-finite morphism. Then, given any L, there are R and S of the form $f^{*} \mathcal{O}_{\mathbb{P}^{r}}(1)$, $g^{*} \mathcal{O}_{\mathbb{P}^{r}}(1)$, so that $L=R \otimes S^{D}$. There is Y_{1} so that $R=m^{\text {th }}$ power of $Y_{1}\left(v i a \mu^{*}\right)$,

$$
\mu^{*} L=\mu^{*} R \otimes\left(\mu^{*} S\right)^{D}
$$

Now, take an $m^{\text {th }}$ root of $\mu^{*} S$ and get

$$
\pi: Y_{2} \xrightarrow{\nu} Y_{1} \xrightarrow{\mu} X
$$

and $\pi^{*} L=m^{\text {th }}$ power $\otimes m^{\text {th }}$ power. This shows existence. In the case that $L=f^{*} \mathcal{O}_{\mathbb{P}^{r}}(1)$ consider the map

$$
\nu: \mathbb{P}^{r} \longrightarrow \mathbb{P}^{r}
$$

given by

$$
\nu\left(T_{0}, \ldots, T_{r}\right)=\left(T_{0}^{m}, \ldots, T_{r}^{m}\right)
$$

and the Cartesian diagram

The variety Y is finite, flat over X by pulling back ν and

$$
\begin{aligned}
\pi^{*} L & =\pi^{*}\left(f^{*} \mathcal{O}_{\mathbb{P}^{r}}(1)\right) \\
& =\operatorname{pr}_{2}^{*}\left(\nu^{*}\left(\mathcal{O}_{\mathbb{P}^{r}}(1)\right)\right) \\
& =\operatorname{rr}_{2}^{*}\left(\mathcal{O}_{\mathbb{P}^{r}}(m)\right) \\
& =p r_{2}^{*}\left(\mathcal{O}_{\mathbb{P}^{r}}(1)^{\otimes m}\right) \\
& =\left(p r_{2}^{*}\left(\mathcal{O}_{\mathbb{P}^{r}}(1)\right)\right)^{\otimes m},
\end{aligned}
$$

so we set $N=p r_{2}^{*}\left(\mathcal{O}_{\mathbb{P}^{r}}(1)\right)$. Now, twist ν by any $\sigma \in \mathrm{GL}(r+1)$ and form Y_{σ} as the fibred product $X \prod_{\mathbb{P} r} \mathbb{P}^{r}$, with ν replaced by $\nu_{[\sigma]}=\sigma \circ \nu$:

We will show that Y_{σ} is irreducible last.
Since we are in characteristic 0 , each $Y_{\sigma} \longrightarrow X$ is generically reduced (X is intergral). To show Y_{σ} is everywhere reduced is local. So, we may assume $X=\operatorname{Spec} A$, where A is a domain and $Y=\operatorname{Spec} B$, with B flat (Argument due to Mike Roth). By generic reducedness, there is some $\alpha \in A$ such that B_{α} is reduced. Pick $\beta \in B$, with β nilpotent. Under $A \longrightarrow A_{\alpha}$, the element β must go to 0 . So, there is some t such that $\alpha^{t} \beta=0$. Now, $\alpha^{t}: A \rightarrow A$ is injective, so tensor with B. As B is flat over A we deduce that α^{t} is injective on B and so, $\beta=0$.

Recall Kleiman's Theorem (Hartshorne, Chapter III): Say X is a homogeneous variety for the algebraic group G and say $Y \longrightarrow X$ and $Z \longrightarrow X$ are morphisms. Then, there is some open $U \subseteq G$ so that, for all $\sigma \in U, Y_{\sigma} \prod_{X} Z$ is nonsingular for the expected dimension, that is, $\operatorname{dim} Y+\operatorname{dim} Z-\operatorname{dim} X$.

Kleiman's Theorem implies Y_{σ} is nonsingular for any $\sigma \in U$, where U is an open in $\mathrm{GL}(r+1)$. The same kind of argument (DX) get the nonsingularity of the pullback of a divisor in the covering and normal crossing, too.

Now, for the irreducibility of Y_{σ}. Recall Bertini's Theorem (Hartshorne, Chapter II): Let $f: X \rightarrow \mathbb{P}^{r}$ be a morphism, assume that d is chosen with $d<\operatorname{dim} \overline{f(X)}$, where X is irreducible. Then, for a Zariski open set of $(r-d)$-planes, L, the variety $f^{-1}(L)$ is irreducible.

From this and the Stein factorization we get Zariski's connectedness Theorem:
Say X is proper and irreducible and $f: X \rightarrow \mathbb{P}^{r}$ is a morphism. Assume $d<\operatorname{dim} f(X)$ and let L be any $(r-d)$-plane of \mathbb{P}^{r}. Then, $f^{-1}(L)$ is connected. If X is not proper, then assume f is a proper morphism over some open U, of \mathbb{P}^{r}. Then, connectness still holds provided L is parametrized by U.

One also has the Fulton-Hansen connectedness Theorem:
Let X be proper and let $f: X \rightarrow \mathbb{P}^{r} \prod \mathbb{P}^{r}$ be a morphism. If $\operatorname{dim} f(X)>r$, then $f^{-1}(\Delta)$ is connected (where Δ is the diagonal in $\mathbb{P}^{r} \prod \mathbb{P}^{r}$).

Theorem 1.15 (Irreducibility of Generic Graphs) Say $f: X \rightarrow \mathbb{P}^{r} \prod \mathbb{P}^{r}$ is given, with $\operatorname{dm} \overline{f(X)}>r$, then there is some open, $U \subseteq \mathrm{GL}(r+1)$, so that for all $\sigma \in U, f^{-1}\left(\Gamma_{\sigma}\right)$ is irreducible.

Proof. Take $\sigma=\left(a_{i j}\right) \in \mathrm{GL}(r+1)$ let $L_{\sigma} \subseteq \mathbb{P}^{r} \prod \mathbb{P}^{r}$ be given by the equations

$$
y_{i}=\sum_{j=0}^{r} a_{i j} x_{j}, \quad 0 \leq i \leq r .
$$

Then (easy), $L_{\sigma} 工 \Gamma_{\sigma}$. Look at the plane $\left(L_{\mathrm{id}}\right)$ given by $y_{i}=x_{i}$ and observe that $d<r$ implies $2 r-d>r$. In Bertini, such L 's are admissible. By an elementary argument, we can prove that all L 's near L_{id} are of the form L_{σ} for $\sigma \in U$ here U is some open in $\mathrm{GL}(r+1)$. By Bertini, $f^{-1}\left(L_{\sigma}\right)$ is irreducible and thus, $f^{-1}\left(\Gamma_{\sigma}\right)$ is also irreducible.

Here is our situation:

Make believe all these are sets. Then,

$$
Y_{\sigma}=\{(\xi, \eta) \mid \varphi(\xi)=\eta(\nu(\eta))\}
$$

and

$$
\begin{aligned}
(\varphi, \nu)\left(\Gamma_{\sigma^{-1}}\right) & =\left\{(\xi, \eta) \mid(\varphi, \nu)(\xi, \eta) \in \Gamma_{\sigma^{-1}}\right\} \\
& =\left\{(\xi, \eta) \mid(\varphi(\xi), \nu(\eta)) \in \Gamma_{\sigma^{-1}}\right\} \\
& =\left\{(\xi, \eta) \mid \sigma^{-1}(\varphi(\xi))=\nu(\eta)\right\} \\
& =Y_{\sigma} .
\end{aligned}
$$

Consequently, on some open subset of $\mathrm{GL}(r+1)$, we have $(\varphi, \nu)^{-1}\left(\Gamma_{\sigma^{-1}}\right)=Y_{\sigma}$, proving that Y_{σ} is irreducible.

1.3 The Kodaira \& Akizuki-Nakano Vanishing Theorems-Part II

Recall the Lefschetz Hyperplane Theorem (Griffith \& Harris):
Say X is a complex, projective, nonsingular variety and D is an effective, ample divisor which is nonsingular. Then, the restriction $\operatorname{map} r_{i}: H^{i}(X, \mathbb{Z}) \rightarrow H^{i}(D, \mathbb{Z})$ is an isomorphism if $i \leq n-2$ and an injection if $i=n-1$ (where $n=\operatorname{dim} X$).

Injectivity lemma.
Say X and Y are projective varieties, with X normal, $f: Y \rightarrow X$ is a finite, flat morphism, and E is a vector bundle on X (we are in characteristic 0). Then, the canonical map

$$
H^{j}\left(X, \mathcal{O}_{X}(E)\right) \longrightarrow H^{j}\left(Y, f^{*} \mathcal{O}_{X}(E)\right)
$$

is injective for all j.
Proof. We can normalize Y and not change anything. By Leray, we have isomorphisms

$$
H^{j}\left(X, f_{*} f^{*}\left(\mathcal{O}_{X}(E)\right)\right) 工 H^{j}\left(Y, f^{*}\left(\mathcal{O}_{X}(E)\right)\right)
$$

Note that

$$
f^{*} \mathcal{O}_{X}(E)=f_{\text {space }}^{*} \mathcal{O}_{X}(E) \otimes_{f_{\text {space }}^{*}} \mathcal{O}_{X} \mathcal{O}_{Y}
$$

The projection formula yields

$$
f_{*} f^{*}\left(\mathcal{O}_{X}(E)\right)=\mathcal{O}_{X}(E) \otimes_{\mathcal{O}_{X}} f_{*} \mathcal{O}_{Y}
$$

Because of characteristic 0, we have a trace map

$$
\operatorname{Tr}_{Y / X}: f_{*} \mathcal{O}_{Y} \longrightarrow \mathcal{O}_{X}
$$

and we have an injection $\mathcal{O}_{X} \hookrightarrow f_{*} \mathcal{O}_{Y}$. This gives a splitting

$$
f_{*} \mathcal{O}_{Y}=\mathcal{O}_{X} \amalg \mathcal{E} .
$$

If we tensor with $\mathcal{O}_{X}(E)$, we get

$$
f_{*} f^{*}\left(\mathcal{O}_{X}(E)\right)=\mathcal{O}_{X}(E) \amalg \mathcal{O}_{X} \otimes_{\mathcal{O}_{X}} \mathcal{E}
$$

When we apply cohomology, we get

$$
H^{j}\left(X, f_{*} f^{*}\left(\mathcal{O}_{X}(E)\right)\right)=H^{j}\left(X, \mathcal{O}_{X}(E)\right) \amalg H^{j}\left(X, \mathcal{O}_{X} \otimes_{\mathcal{O}_{X}} \mathcal{E}\right)
$$

so we get an injection

$$
H^{j}\left(X, \mathcal{O}_{X}(E) \hookrightarrow H^{j}\left(X, f_{*} f^{*}\left(\mathcal{O}_{X}(E)\right)\right) \cong H^{j}\left(Y, f^{*} \mathcal{O}_{X}(E)\right)\right.
$$

as desired.
Theorem 1.16 (Kodaira Vanishing Theorem) Suppose X is a complex, nonsingular, projective, algebraic variety of dimension $n=\operatorname{dim} X$. For any ample line bundle, L, on X, we have

$$
H^{k}\left(X, \mathcal{O}_{X}(L) \otimes_{\mathcal{O}_{X}} \omega_{X}\right)=(0) \quad \text { if } \quad k>0
$$

By Serre Duality, the latter space is dual to $H^{n-k}\left(X, \mathcal{O}_{X}\left(L^{D}\right)\right)$. Therefore, the conclusion of Theorem 1.16 is equivalent to

$$
H^{k}\left(X, \mathcal{O}_{X}\left(L^{D}\right)\right)=(0) \quad \text { if } \quad k<n .
$$

Proof. Begin with Hodge theory:

$$
H^{j}(X, \mathbb{C}) \cong \coprod_{p+q=j} H^{q}\left(X, \Omega_{X}^{p}\right)=\coprod_{p+q=j} H^{p, q}(X)
$$

We also have (Lefschetz)

$$
H^{j}(D, \mathbb{C}) \cong \coprod_{p+q=j} H^{q}\left(D, \Omega_{X}^{p}\right)=\coprod_{p+q=j} H^{p, q}(D)
$$

By tensoring up by \mathbb{C} over \mathbb{Z} in Lefschetz, we get maps

$$
r_{i}: H^{i}(X, \mathbb{C}) \rightarrow H^{i}(D, \mathbb{C})
$$

with r_{i} an isomorphism if $i \leq n-2$ and an injection if $i=n-1$. By Hodge and Lefschetz, we have maps

$$
r_{p, q}: H^{p, q}(X) \rightarrow H^{p, q}(D)
$$

with $r_{p, q}$ an isomorphism if $p+q \leq n-2$ and an injection if $p+q=n-1$.
Look at $L^{\otimes m}$ for $m \gg 0$. There exists a section, $\sigma \in \Gamma\left(X, \mathcal{O}_{X}\left(L^{\otimes m}\right)\right)$ so that $D=(\sigma)_{0}$ is an effective nonsingular (very) ample divisor on X. Make $Y \longrightarrow X$, the m-fold cyclic covering of X, branched along D. Then, $\pi^{*}(D)$ is a nonsingular, ample divisor on nonsingular Y. By
the injectivity lemma, if Kodaira holds for Y, then it will hold for X. Therefore, we may assume our original L is represented by a smooth effective divisor, D.

Apply "Holomorphic Lefschetz" for $p=0, q=j$. Then,

$$
r_{0, j}: H^{0, j}(X) \rightarrow H^{0, j}(D),
$$

with $r_{p, q}$ an isomorphism if $j \leq n-2$ and an injection if $j=n-1$. Here, $H^{0, j}(X)=H^{j}\left(X, \mathcal{O}_{X}\right)$ and $H^{0, j}(D)=H^{j}\left(D, \mathcal{O}_{D}\right)$. But, the sequence

$$
0 \longrightarrow \mathcal{O}_{X}(-D) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{X}(D) \longrightarrow 0
$$

is exact, ie.,

$$
0 \longrightarrow \mathcal{O}_{X}\left(L^{D}\right) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{X}(D) \longrightarrow 0
$$

is exact. If we apply cohomology we get

$$
H^{j}\left(X, \mathcal{O}_{X}\right) \longrightarrow H^{j}\left(D, \mathcal{O}_{D}\right) \longrightarrow H^{j+1}\left(X, \mathcal{O}_{X}(-D)\right) \longrightarrow H^{j+1}\left(X, \mathcal{O}_{X}\right) \longrightarrow H^{j+1}\left(D, \mathcal{O}_{D}\right)
$$

By taking $j \leq n-2$ and using $r_{0, j}$ we get our theorem.
Remark: The Lefschetz Hyperplane Theorem can be understood from the point of view of algebraic topology in the following way: Let Y be our smooth divisor in the smooth (complex) X and let $U=X-Y$, our affine open. It is known that by triangulation there is a fundamental system of neighborhoods of Y in X, all which deformation retract to Y; call them Y_{i}. From this, we see that

$$
H^{k}(X, Y ; \mathbb{Z})=\underset{i}{\lim } H^{k}\left(X, Y_{i} ; \mathbb{Z}\right)
$$

By excision, we get

$$
H^{k}\left(X, Y_{i} ; \mathbb{Z}\right) \cong H^{k}\left(U, U \cap Y_{i} ; \mathbb{Z}\right)
$$

Now, U is a smooth open oriented manifold of real dimension $2 n$ (where $n=\operatorname{dim}_{\mathbb{C}} X$) and we have a relative version of Poincaré Duality, namely

$$
K^{k}(U, U-K ; \mathbb{Z}) \cong H_{2 n-k}(K, \mathbb{Z})
$$

where $K \subseteq U$ is compact and K is a deformation retract of an open of U. For example, $K_{i}=U-U \cap Y_{i}$ is such a K, Consequently,

$$
H^{k}\left(U, U \cap Y_{i} ; \mathbb{Z}\right)=H^{k}\left(U, U-K_{i} ; \mathbb{Z}\right) \cong H_{2 n-k}\left(K_{i}, \mathbb{Z}\right)
$$

and so,

$$
\underset{i}{\lim } H_{2 n-k}\left(K_{i}, \mathbb{Z}\right),=H^{k}(X, Y ; \mathbb{Z})
$$

As every $(2 n-k)$-chain lies in K_{i} for some i, we get

$$
H_{2 n-k}(U, \mathbb{Z}) \cong H^{k}(X, Y ; \mathbb{Z})
$$

Now, we have the exact sequence of relative cohomology

Using our previous isomorphisms, we get

Therefore, the Lefschetz Hyperplane Theorem holds iff $H_{2 n-k}(U, \mathbb{Z})=(0)$ when $k \leq n-1$, that is, iff $H_{l}(U, \mathbb{Z})=(0)$, for $l \geq n+1$.

In fact, Andreotti, Frankel (1959) and Milnor (1963) showed using Morse Theory:
Theorem 1.17 (Andreotti, Frankel, Milnor) Every affine, smooth, complex, n-dimensional algebraic variety (even analytic) has the homotopy type of a $C W$-complex of real dimension at most n.

In order to prove a sharper vanishing theorem, we need some preliminaries on differentials with logarithmic poles.

Let X be a smooth, complex variety and let D be a smooth Cartier divisor on X. Write $\Omega_{X}^{1}(\log D)$ for the sheaf of 1-forms on X having at most poles of order 1 along D (and no ther poles). Write $\Omega_{X}^{p}(\log D)=\bigwedge^{p} \Omega_{X}^{1}(\log D)$. That is, if $z_{1}, \ldots, z_{n-1}, z_{n}$ are local coordinates near D, where D is defined locally by $z_{n}=0$, then $\Omega_{X}^{1}(\log D)$ is spanned by

$$
d z_{1}, \ldots, d z_{n-1}, \frac{d z_{n}}{z_{n}}
$$

locally. Similarly for $\Omega_{X}^{p}(\log D)$.
Proposition 1.18 If X is a smooth, complex, variety and D is a smooth C-dvisor on X then the following satements hold:
(a) There is an exact sequence

$$
0 \longrightarrow \Omega_{X}^{p} \longrightarrow \Omega_{X}^{p}(\log D) \xrightarrow{\mathrm{ID}} \Omega_{D}^{p-1} \longrightarrow 0 .
$$

(b) There is an exact sequence

$$
0 \longrightarrow \Omega_{X}^{p}(\log D) \otimes \mathcal{O}_{X}(-D) \longrightarrow \Omega_{X}^{p} \xrightarrow{\text { res }} \Omega_{D}^{p} \longrightarrow 0
$$

(c) If $\pi: Y \rightarrow X$ is the degree m cyclic cover branched along D and D^{\prime} is the smooth Cartier divisor of Y isomorphic to D by so that $\pi^{*} D=m D^{\prime}$, then

$$
\pi^{*}\left(\Omega_{X}^{p}(\log D)\right)=\Omega_{Y}\left(\log D^{\prime}\right)
$$

Proof sketch. (a) The definition of the residue map is this: Map

$$
d z_{1} \wedge \cdots \wedge d z_{i_{p}} \quad\left(i_{p}<n\right)
$$

to 0 and map

$$
f\left(d z_{1} \wedge \cdots \wedge d z_{i_{p-1}} \wedge \frac{d z_{n}}{z_{n}}\right)
$$

to

$$
d z_{1} \wedge \cdots \wedge d z_{i_{p-1}} \wedge \operatorname{res}\left(f \frac{d z_{n}}{z_{n}}\right)
$$

Then, we can check that (a) holds by local computations as the maps are globally defined. Let's do it for $p=1$. The kernel of res must be generated by $d z_{1}, \ldots . d z_{n-1}$ and $z_{n} \frac{d z_{n}}{z_{n}}\left(=d z_{n}\right)$ and therefore, Ω_{X}^{p} is the kernel (for $=1$). A similar argument can be made for any p.
(b) Take generators for Ω_{X}^{p} (locally and for $p=1$), namely, $d z_{1}, \ldots, d z_{n}$. The kernel of ${ }_{D}$ is spanned by $z_{n} d z_{1}, \ldots, z_{n} d z_{n-1}$ and $d z_{n}$, that is $z_{n} d z_{1}, \ldots, z_{n} d z_{n-1}$ and $z_{n} \frac{d z_{n}}{z_{n}}$ and these locally span $\Omega_{X}^{p}(\log D) \otimes \mathcal{O}_{X}(-D)($ for $p=1)$.
(c) Consider $p=1$. The local coordinates in Y near D^{\prime} are

$$
z_{1}, \ldots, z_{n-1},\left(z_{n}\right)^{\frac{1}{m}}
$$

The local coordinates for $\Omega_{Y}^{1}\left(\log D^{\prime}\right)$ are

$$
d z_{1}, \ldots, d z_{n-1}, \frac{d\left(z_{n}\right)^{\frac{1}{m}}}{\left(z_{n}\right)^{\frac{1}{m}}}
$$

But, by calculus

$$
\frac{d\left(z_{n}\right)^{\frac{1}{m}}}{\left(z_{n}\right)^{\frac{1}{m}}}=\frac{1}{m} \frac{d z_{n}}{z_{n}}
$$

This gives (c) for $p=1$.
Theorem 1.19 (Akizuki-Nakano Vanishing Theorem) Let X be a smooth, complex, projective variety of dimension n, and let L be an ample line bundle on X. Write A for the divisor representing $L\left(=\mathcal{O}_{X}(A)\right)$. Then,

$$
H^{q}\left(X, \Omega_{X}^{p} \otimes L\right)=(0) \quad \text { if } \quad p+q>n
$$

(Note: Kodaira corresponds to the case $p=1$.)

By Serre duality, the above statement is equivalent to

$$
H^{s}\left(X, \Omega_{X}^{r} \otimes L^{D}\right)=(0) \quad \text { if } \quad r+s<n
$$

Proof. We prove the Serre dual formulation. Since L is ample, for $m \gg 0$, there exists $D \in|m A|$, with D smooth, effective, irreducible. Now, suppose we could prove

$$
\left.H^{s}\left(X, \Omega_{X}^{r}(\log D)\right) \otimes \mathcal{O}_{X}(-A)\right)=(0) \quad \text { if } \quad r+s<n
$$

Then, we can use induction on $n=\operatorname{dim} X$ to finish the proof.
If $n=0,1$, the theorem holds (trivial for $n=0$, by Kodaira for a curve). For the induction step, assume the theorem holds for $\Omega_{D}^{r-1} \otimes \mathcal{O}_{X}(-A)$ provided $s+r-1<n-1$, i.e., $s+r<n$. Then, by tensoring (a) with A and taking cohomology we get

The ends vanish by induction, (\dagger) kills the $\log D$ group and our theorem follows in this case.
It remains to prove (\dagger). Construct the cyclic cover $\pi: Y \rightarrow X$ of degree m, branched along D and write D^{\prime} for the associated divisor in Y. By the Injectivity Lemma, we must prove

$$
H^{s}\left(Y, \pi^{*}\left(\Omega_{X}^{r}(\log D) \otimes \mathcal{O}_{Y}(-A)\right)\right)=(0) \quad \text { if } \quad r+s<n
$$

By Proposition 1.18 (c),

$$
\pi^{*}\left(\Omega_{X}^{r}(\log D) \otimes \mathcal{O}_{Y}(-A)\right)=\Omega_{Y}^{r}\left(\log D^{\prime}\right) \otimes \mathcal{O}_{Y}\left(-D^{\prime}\right)
$$

Now apply Proposition 1.18 (b) to our groups:

$$
0 \longrightarrow \Omega_{Y}^{r}\left(\log D^{\prime}\right) \otimes \mathcal{O}_{Y}\left(-D^{\prime}\right) \longrightarrow \Omega_{Y}^{r} \longrightarrow \Omega_{D^{\prime}}^{r} \longrightarrow 0
$$

is exact and by taking cohomology we get

where $r+s<n$. Holomorphic Lefschetz says

1. $r_{r, s-1}$ is an isomorphism for $r+s-1<n-1$ and
2. $r_{r, s}$ is an injection for $r+s<n-1$,
and therefore, (\dagger) is proved.
Bogomolov proved the following vanishing theorem:
Theorem 1.20 (F. Bogomolov, 1978) Suppose X is a smooth, complex, projective variety, D is a SNC divisor and L is any line bundle on X. Then

$$
H^{0}\left(X, \Omega_{X}^{p}(\log D) \otimes L^{D}\right)=(0) \quad \text { if } \quad p<\kappa(L)
$$

[Here, $\kappa(L)$ is the Iitaka dimension of L. That is, let

$$
\underline{N}(L)=\left\{m \mid m \geq 0 H^{0}\left(X, L^{\otimes m}\right) \neq(0)\right\} .
$$

Now, if $m \in \underline{N}(L)$ and $m>0$, then we get a rational map $\varphi_{m}: X-->\mathbb{P}\left(H^{0}\left(X, L^{\otimes M}\right)\right)$. Write $\overline{\varphi_{m}(X)}$ for the Zariski closure if the image of φ_{m}. Set

$$
\kappa(L)=\max \left\{\operatorname{dim} \overline{\varphi_{m}(X)} \mid m>0, m \in \underline{N}(L)\right\}
$$

and if $\underline{N}(L)=\emptyset$, set $\kappa(L)=\infty]$.
Example. If $L=\Omega_{X}$, then

$$
\operatorname{dim} H^{0}\left(X, \omega_{X}^{\otimes m}\right)=P_{m}
$$

the $m^{\text {th }}$ pluri-genus. Note that $P_{1}=p_{g}$, the geometric genus. Then, $\kappa\left(\omega_{X}\right)=$ the Kodaira dimension of $X($ denoted $\operatorname{Kod}(X))$. We say that X is a variety of general type iff $\kappa\left(\omega_{X}\right)=\operatorname{Kod}(X)=\operatorname{dim} X$.

1.4 Rational Curves and the "Classification of Varieties"

Say $\pi: X \rightarrow Y$ is a rational map, then there exists a largest open set, $U \subseteq X$, where π is a morphism. Suppose Y is normal and proper. In fact, unless otherwise stated all X and Y are normal and irreducible. Let $\Gamma=\Gamma_{\pi \mid U}$ be the graph of π restricted to $U\left(\Gamma \subseteq U \prod Y\right)$ and let \widetilde{X} be the closure of Γ in $X \prod Y$. Then, we have a birational morphism, $p: \widetilde{X} \rightarrow X$. Since Y is proper, p is proper. As Y is normal, Zariski's Connectednes Theorem implies the fibres of p are connected. Remember that $\operatorname{dim} p^{-1}(x)$ is always upper semi-continuous on X. Pick x where $p^{-1}(x)$ is a point, then there is a Zariski-closed set, V, with $x \in V$ and $\operatorname{dim} p^{-1}(\xi)=0$ if $\xi \in V$. Over V, the morphism p is finite (it is proper and a quasi-finite). By a previous argument (normality + one-to-one + birational) p is an isomorphism over V. But then, by definition of U, we get $V \subseteq U$. Hence, we find $\xi \in U$ iff $p^{-1}(\xi)$ does not have positive dimension. Hence, we've proved

Theorem 1.21 (Zariski's Main Theorem) If $\pi: X \rightarrow Y$ is a rational map with Y proper and normal, then π fails to be a morphism exactly where $p: \widetilde{X} \rightarrow X$ has a fibre of positive dimension. Moreover, $\operatorname{codim}(X-U) \geq 2$ (where U is the largest open set where π is a morphism).

The second statement holds because $\pi^{-1}(y)$ having positive dimension and the place where this occurs having codimension 1 means means these fill out X, which would imply that π is nowhere defined, a contradiction.

Say $\pi: X \rightarrow Y$ is a birational morphim and write $E(\pi)$ for the locus

$$
E(\pi)=\{x \mid \pi \text { is not a local isom. at } x\} .
$$

The set $E(\pi)$ is called the exceptional locus of π. If $\pi^{-1}(y)$ has at least two points, then the Connectednes Theorem implies that $\pi^{-1}(y)$ has a curve in it. Therefore, $E(\pi)=\pi^{-1}(\pi(E))$, where $E=E(\pi)$. In particular, as before, $\operatorname{codim} \pi(E(\pi)) \geq 2$. (We use normality and properness of Y.) Let's weaken the hypotheses.

Say Y is normal and locally \mathbb{Q}-factorial. This means each Weil divisor, D, on Y has a multiple in D which is a Cartier divisor and $\pi: X \rightarrow Y$ is a birational morphism.

Claim.
(1) $\operatorname{codim} \pi(E(\pi)) \geq 2$.
(2) Every component of $E(\pi)$ has codimension 1.

Pick x in some component of $E(\pi)$ and write $y=\pi(x)$. We know $\pi^{*}: K(Y) \rightarrow K(X)$ is an isomorphism-identify $K(X)$ and $K(Y)$. Then, our map gives a map $\mathcal{O}_{Y, y} \longrightarrow \mathcal{O}_{X, x}$ and $\mathcal{O}_{Y, y} \neq \mathcal{O}_{X, x}$ as $x \in E(\pi)$. Hence, there is some $t \in \mathfrak{m}_{X, x}$ and $t \notin \mathfrak{m}_{Y, y}$. Our t is a meromorphic function on Y. We can choose effective Weil divisors, D_{1}, D_{2}, so that $(t)=D_{1}-D_{2}$ (i.e. $\left.D_{1}=(t)_{0}, D_{2}=(t)_{\infty}\right)$. There exists $m \gg 0$ such that $m D_{1}$ and $m D_{2}$ are Cartier divisors. Therefore, $m D_{1}$ is given by $u=0$ and $m D_{2}$ is given by $v=0$ and thus,

$$
t^{m}=\frac{u}{v} .
$$

Claim. The elements u and v belong to $\mathfrak{m}_{Y, y}$.
If $v \notin \mathfrak{m}_{Y, y}$, then v is a unit and so, $t^{m} \in \mathcal{O}_{Y, y}$. As Y is normal, $t \in \mathcal{O}_{Y, y}$, a contradiction.
Now, $u=t^{m} v \in \mathfrak{m}_{X, x} \cap \mathcal{O}_{Y, y}=\mathfrak{m}_{Y, y}$. But, the locus, Z, (on Y) given by $u=0$ and $v=0$ has codimension 2 and both vanish on y, which implies $y \in Z$. Therefore, (1) is proved.

Now, look on X. We have $u=t^{m} v$, so $v=0$ implies $u=0$ on X and $\pi^{-1}(Z)$ is given by $v=0$. But, $x \in \pi^{-1}(Z)$ implies that through x we have a component of codimension 1 and (2) follows.

Ramification Divisors.

Assume X, Y are smooth and $\pi: X \rightarrow Y$ is a morphism. We get a tangent map, $T_{\pi}: T_{X} \rightarrow \pi^{*} T_{Y}$, and if $\operatorname{dim} X=\operatorname{dim} Y=n$, we also have a map

$$
\bigwedge^{n} T_{\pi}: \bigwedge^{n} T_{X} \longrightarrow \bigwedge \pi^{*} T_{y}
$$

Then, by dualizing, we get a map

$$
\bigwedge^{n} T_{\pi}^{D}: \pi^{*} \bigwedge^{n} T_{Y}^{D} \longrightarrow \bigwedge^{n} T_{X}^{D}
$$

that is,

$$
\bigwedge^{n} T_{\pi}^{D}: \pi^{*} \omega_{Y} \longrightarrow \omega_{X}
$$

Consequently, we get a map

$$
\mathcal{O}_{X} \longrightarrow \omega_{X} \otimes \pi^{*} \omega_{Y}^{D}
$$

and so, we get a section, $\sigma \in \Gamma\left(X, \omega_{X} \otimes \pi^{*} \omega_{Y}^{D}\right)$, i.e., a section $\sigma \in \Gamma\left(X, \mathcal{O}_{X}\left(K_{X}-\pi^{*} K_{Y}\right)\right)$. Observe that $\sigma \equiv 0$ iff $X \longrightarrow Y$ is nowhere étale. So, in characteristic $p \neq 0$ we assume $K(X)$ is separable over $K(Y)$. Since $X \longrightarrow Y$ is generically étale, the zeros of σ give a divisor, $\operatorname{Ram}(\pi)$ called the ramification divisor of π on X. Then,

$$
K_{X}=\pi^{*} K_{Y}+\operatorname{Ram}(\pi)
$$

Birational Morphisms.

Suppose X and Y are projective, smooth and $\pi: X \rightarrow Y$ is a birational morphism. Then, there is a theorem of Grothendieck (Hartshorne, Chapter II) which says:

Theorem 1.22 (Grothendieck) In the situation as above, there is some coherent \mathcal{O}_{Y}-ideal, \mathfrak{I}, such that X is the blow-up, $\mathrm{Bl}_{Y}(\mathfrak{I})$, of \mathfrak{I}.

To define $\mathrm{Bl}_{Y}(\mathfrak{I})$ we proceed as follows: First, we make the graded sheaf of rings, Pow($\left.\mathfrak{I}\right)$, given by

$$
\operatorname{Pow}(\mathfrak{I})=\coprod_{j=0}^{\infty} \mathfrak{I}^{j}=\mathcal{O}_{Y} \coprod \mathfrak{I} \coprod \mathfrak{I}^{2} \coprod \cdots
$$

and then we make $\operatorname{Proj}(\operatorname{Pow}(\mathfrak{I}))$. By definition, $\mathrm{Bl}_{Y}(\mathfrak{I})=\operatorname{Proj}(\operatorname{Pow}(\mathfrak{I}))$.
Moreover, $\pi^{-1}(\mathfrak{I}) \mathcal{O}_{X}$ is an ideal of \mathcal{O}_{X} which is a line bundle, that is, $\mathcal{O}_{X}(1)$ under a suitable embedding. That is, \mathfrak{I} pulled back to X is (locally) principal. Now, we want to understand the relation between $E(\pi)$ and the support of $\mathcal{O}_{X}(1)$.

Let E be an effective divisor for $\mathcal{O}_{X}(1)$. Take an ample, H, on Y, then if $m \gg 0$, $m \pi^{*} H-E$ is ample on X. So, through each point of $E(\pi)$, there is a curve, C, in $E(\pi)$ that π contracts. But, $0<\left(m \pi^{*} H-E\right) \cdot C$, that is

$$
m \pi^{*} H \cdot C-E \cdot C=m H \cdot \pi(C)-E \cdot C=-E \cdot C \text {. }
$$

Consequently, C is contained in the support of E and as C is arbitrary, we conclude that $E(\pi) \subseteq \operatorname{supp} E$. In fact (Hartshorne, Chapter II, Exercise), we can choose \mathfrak{I} so that $E(\pi)=\operatorname{supp} E$.

Notion of "Classification" of Varieties.

(1) Choose a notion of equivalence for varieties.
(2) Determine in each class a "simplest" variety.
(3) Show (or give a procedure) that (2) holds.

By experience, (1) must be coarser than isomorphism. It turns out that success seems to indicate that $X \approx Y$ should mean "birational".

The example of curves is "easy". Here birational equivalence of smooth curves is isomorphism.

For surfaces, birational equivalence is not isomorphism in general.
Theorem 1.23 (Castelnuovo) For a smooth surface, X, and for a rational curve, C, on X there exists a birational morphism, $\pi: X \rightarrow Y$, contracting C iff $C^{2}=-1$ (where Y is another smooth surface).

Castelnuovo and Enriques "proved" that the process of contraction eventually stops. The result is
(1) A smooth surface, Y, unique example in the birational class and this happens iff X is not covered by rational curves and K_{X} is nef.
or
(2) A smooth Y, not a unique example in its birational class and this happens when X is covered by rational curves and K_{X} is not nef.

Example of (2): \mathbb{P}^{2} and $\mathbb{P}^{1} \prod \mathbb{P}^{1}$.
For higher dimensions, we can have K_{X} nef, yet $X \approx Y_{1}, X \approx Y_{2}$, both Y_{1} and Y_{2} are "minimal" birational yet not isomorphic.

Proposition 1.24 Say $\pi: X \rightarrow Y$ is a birational morphism and π is proper, Y is smooth and π is not an isomorphism. Then, through every generic point of E (the exceptional divisor of π) there is a rational curve that π contracts. That is, each component of E is birationally ruled.

Proof. Preliminary reduction: First, we normalize X and we may assume that X is smooth in codimension 1 . So, for any generic point, $x \in E$, by (1) above, x is a smooth point. Shrink X and Y to get
(a) X smooth
(b) E smooth, irreducible
(c) $\overline{\pi(E)}$ smooth.

Let $Y_{1}=\mathrm{Bl}_{\overline{\pi(E)}}$ be the blow-up of Y along $\overline{\pi(E)}$ and let $\epsilon_{1}: Y_{1} \rightarrow Y$ be the corresponding birational morphism. By the universality for blow-ups, π factors through a map, $\pi_{1}: X \rightarrow Y_{1}$. Also, if E_{1} is the exceptional divisor for ϵ_{1}, then $\overline{\pi_{1}(E)} \subseteq E_{1}$. If $\operatorname{codim}\left(\overline{\pi_{1}(E)}\right) \geq$ 2 (in Y_{1}), we can repeat this process. We get the following diagram in which $\operatorname{codim}\left(\overline{\pi_{i}(E)}\right) \geq 2$ (in Y_{i}) for all i, with $1 \leq i \leq n-1$:

We know that

$$
K_{Y_{1}}=\epsilon_{1}^{*} K_{Y}+\gamma_{1} E_{1}
$$

where $\gamma_{1}=\operatorname{codim}_{Y}(\overline{\pi(E)})-1$ and generally,

$$
K_{Y_{i+1}}=\epsilon_{i+1}^{*} K_{Y_{i}}+\gamma_{i+1} E_{i+1}
$$

with $1 \leq i \leq n-1$ and $Y_{0}=Y$. As $\pi_{n} E \subseteq E_{n}$, we deduce that $\pi_{n}^{*} E_{n}-E$ is effective and this implies that

$$
K_{Y_{n}}=\epsilon_{n}^{*} \cdots \epsilon_{1}^{*} K_{Y}+\gamma_{1} E_{1}+\cdots+\gamma_{n} E_{n} .
$$

As π is birational, $\pi^{*} \mathcal{O}_{Y}\left(K_{Y}\right)$ is a subsheaf of $\mathcal{O}_{X}\left(K_{X}\right)$. This implies $\pi^{*} \mathcal{O}_{Y}\left(K_{Y}\right)+\left(\gamma_{1}+\cdots+\gamma_{n}\right) E$ is a subsheaf of $\mathcal{O}_{X}\left(K_{X}\right)$. The later is coherent on X, so the ascending chain

$$
\pi^{*} \mathcal{O}_{Y}\left(K_{Y}\right) \subseteq \pi^{*} \mathcal{O}_{Y}\left(K_{Y}+\gamma_{1} E\right) \subseteq \cdots
$$

stops, say at n. This implies $\operatorname{codim}\left(\pi_{n}(E)\right)$ in Y_{n} is 1 . Now, as $\pi_{n}(E)$ has codimension 1 in E_{n}, we deduce that E is birationally isomorphic to E_{n}. But, E_{n} is ruled, being the exceptional locus of a blow-up.

Corollary 1.25 Say π is a rational map from X to Y and
(1) X is smooth
(2) X has no rational curve
(3) Y is proper.

Then, π is defined everywhere.
Proof. Let U be the largest open subset of X where π is defined and write $\Gamma \subseteq X \prod Y$ be the graph of $\pi \upharpoonright \underset{U}{U}$. As before, let \widetilde{X} be the closure of Γ and write $p=p r_{1} \upharpoonright \widetilde{X}$. Then as Y is proper, so is $p: \widetilde{X} \rightarrow X$ and as $E=\operatorname{Exc}(p) \neq \emptyset$ the previous proposition applies so, through every generaic point of E there is a rational curve, C, and p contracts C. Thus, $p r_{2}(C)$ is either a point or rational curve in Y, but the second possibility yields a contradiction. It follows that $p r_{2}$ contracts C but then, C is a single point and $E=\emptyset$, which is absurd. Therefore, $U=X$ and we are done.

Theorem 1.26 Say X and Y are projective irreducible varieties, both smooth and $\pi: X \rightarrow Y$ is a birational morphism. Suppose π is not an isomorphism. Then, there is a rational curve $D \subseteq X$, so that
(1) π contracts D.
(2) $K_{X} \cdot D<0$.

Proof. (1) Write $E=\operatorname{Exc}(\pi)$, we know E is pure codimension 1 and $\pi(E)$ has codimension at least 2 in Y. Pick $y \in \pi(E)$. As Y is projective, there is an embdedding, $Y \hookrightarrow \mathbb{P}^{N}$, for some (large) N and Bertini's Theorem implies that any general hyperplane cuts Y in a smooth codimension 1 section. We can even pick the hyperplanes through y (DX). If we do this $\operatorname{dim} Y-2$ times we get a smooth surface, $S \subseteq Y$, so that
(1) $y \in S$;
(2) $S \cap \pi(E)$ is a finite set of points.

Do this one more time in two different ways:
(a) a hyperplane through y, we get a smoth curve, C_{0}.
(b) a hyperplane omitting all of $\pi(E) \cap S$, obtaining a smooth curve, C.

By construction, $C \sim C_{0}$ implies

$$
K_{Y} \cdot C=K_{Y} \cdot C_{0}
$$

If we let $C^{\prime}=\pi^{*} C$ we see that C^{\prime} is isomorphic to C and let C_{0}^{\prime} be the proper transform of C_{0}, that is $C_{0}=\overline{\pi^{-1}\left(C_{0}-\{y\}\right)}$. Recall that

$$
K_{X}=\pi^{*} K_{Y}+\operatorname{Ram}(\pi)
$$

and the support of $\operatorname{Ram}(\pi)$ is contained is equal to E. We get

$$
K_{X} \cdot C^{\prime}=\pi^{*} K_{Y} \cdot C^{\prime}+\operatorname{Ram}(\pi) \cdot C=K_{Y} \cdot C
$$

and so,

$$
K_{X} \cdot C^{\prime}=K_{Y} \cdot C
$$

Now,

$$
K_{X} \cdot C_{0}^{\prime}=\pi^{*} K_{Y} \cdot C_{0}^{\prime}+\operatorname{Ram}(\pi) \cdot C_{0}>\pi^{*} K_{Y} \cdot C_{0}^{\prime}=K_{Y} \cdot C_{0}
$$

so

$$
K_{X} \cdot C_{0}^{\prime}>K_{Y} \cdot C_{0}
$$

It follows from all this that

$$
K_{X} \cdot C_{0}^{\prime}>K_{X} \cdot C^{\prime}
$$

Now, look at π^{-1} but restricted to S. It may happen that π^{-1} is not defined on points of $\pi(E)$. But, by surface theory (Hartshorne, Chapter V), we can blow up finitely many points of S to get a new surface, \widetilde{S}, and a birational morphism, $\epsilon: \widetilde{S} \rightarrow S$. We get a morphism, $g: \widetilde{S} \rightarrow X$ and let $C^{\prime \prime}=\epsilon^{*} C \cong C$ and $\epsilon^{*} C_{0}=C_{0}^{\prime \prime}+\sum_{i} m_{i} E_{i}$, with $m_{i} \geq 0$, where the E_{i} are the components of the exceptional divisor of ϵ and $C_{0}^{\prime \prime}$ is the proper transform of C_{0} under ϵ. We have $g_{*} C^{\prime \prime}=C^{\prime}$ and $g_{*} C_{0}^{\prime \prime}=C_{0}^{\prime}$. Then,

$$
\pi^{*} C_{0}=g_{*} C_{0}^{\prime \prime}+\sum_{i} m_{i} g_{*}\left(E_{0}\right)=C_{0}^{\prime}+\sum_{i} m_{i} g_{*}\left(E_{i}\right)
$$

and we know that

$$
K_{X} \cdot C^{\prime}=K_{X} \cdot \pi^{*} C=K_{x} \cdot \pi^{*} C_{0}
$$

because $C \sim C_{0}$ implies $\pi^{*} C \sim \pi^{*} C_{0}$ and

$$
K_{X} \cdot \pi^{*} C_{0}=K_{X} \cdot C_{0}^{\prime}+\sum_{i} m_{i} K_{X} \cdot g_{*}\left(E_{i}\right)
$$

By (\dagger), we have $\sum_{i} m_{i} K_{X} \cdot g_{*}\left(E_{i}\right)<0$ and consequently:
(1) $m_{i}>0$ for some i;
(2) $g_{*}\left(E_{i}\right)$ is a curve for this i, call it D.

As E is rational, D is rational.
(2) by following the last diagram (to be filled in) we see that $\pi(D)=g_{*}\left(E_{i}\right)$ is a point and so, $K_{X} \cdot D<0$.

Corollary 1.27 If $\pi: X \rightarrow Y$ is a birational morphism of smooth projective varieties and K_{X} is nef, then π is an isomorphism.

We now go back to the "classification" of varieties. For simplicity assume all varieties are smooth.
(1) Let $\mathcal{C}=$ be the birational class (smooth varieties) and assume there is some $X_{0} \in \mathcal{C}$ such that X_{0} possesses no rational curves. Let $Z \in \mathcal{C}$ be any other variety and assume there is a rational map, $\pi: Z \cdots \cdots \cdots X_{0}$. Corollary 1.27 implies π is a morphism. Write $X \preceq Y$ iff there is a birational morphism $Y \longrightarrow X$. The above implies that (the equivalence class of) X_{0} is minimal. If X_{0} and \widetilde{X}_{0} are minimal, with no rational curve in either of them, then Theorem 1.26 implies there is birational morphism, $\pi: X_{0} \rightarrow \widetilde{X}_{0}$, and as there are no rational curves in \widetilde{X}_{0}, the map π must be an isomorphism. Therefore, X_{0} is unique up to isomorphism and is a smallest element.
(2) Let $\mathcal{C}=$ be the birational class (smooth varieties) and assume there is some $X_{0} \in \mathcal{C}$ with $K_{X} \cdot C \geq 0$ for all rational curves, C, in X_{0}. (This really does mean that $K_{X_{0}}$ is nef.) Can there be some $Z \in \mathcal{C}$ and a birational morphism, $X_{0} \longrightarrow Z$?

The theorem implies $X_{0} \cong Z$ and so, X_{0} is minimal.
Now, the idea is, for a smooth X, give a procedure (contraction of curves) to make K_{X} nef. These will be among the extremal rays of the cone $\overline{\mathrm{NE}(X)}$.

1.5 The Kawamata-Vichweg Vanishing Theorem-Part I-The Integral Vanishing Theorem

First, we have to discuss the resolution of singularities à la Hironaka.
Theorem 1.28 (Hironaka, 1961) Let X be an irreducible, complex, algebraic variety and D be an effective divisor on X. Then the following assertions hold:
(1) There exists a birational projective morphism, $\rho: \widetilde{X} \rightarrow X$, so that \widetilde{X} is nonsingular and $\rho^{*} D+\operatorname{Exc}(\rho)$ is a divisor on \widetilde{X} with support $S N C$.
(2) One can make ρ by a composition of blowings-up of nonsingular centers supported in Sing X or $\operatorname{Sing} Y$. Hence, ρ is an isomorphism over $X-(\operatorname{Sing} X \cup \operatorname{Sing} Y)$.

Remarks:

(1) This is usually called the "embedded resolution" or "log resolution" of the pair (X, D).
(2) Assertion (1) called the Weak Hironaka Theorem is usually sufficient for most applications. Simple short (~ 6 printed pages) were given by Bogomolov-Pantev and Abramovic-deJong. However, if we use the full strengh of (2) we can prove more.

Proposition 1.29 Say $(X, \underset{\sim}{D})$ is a pair as in Hironaka's Theorem and assume X is smooth and projective. Then, if $\rho: \widetilde{X} \rightarrow X$ is "the" log resolution of (X, D), then
(a) $\rho_{*} \mathcal{O}_{\tilde{X}}\left(K_{\tilde{X}}\right)=\mathcal{O}_{X}\left(K_{X}\right)$.
(b) $\left(R^{p} \rho_{*}\right)\left(\mathcal{O}_{\tilde{X}}\left(K_{\tilde{X}}\right)\right)=(0), p>0$.
(c) Take H ample on X, then there is some $p \gg 0$ and some integers, $b_{1}, \ldots, b_{t} \geq 0$, so that $\rho_{*}(p H)-\sum_{j=1}^{t} b_{j} E_{j}$ is ample on \widetilde{X} where the E_{j} are the exceptional divisors of the blow-ups.

Proof. It is clear that (a), (b), (c) will hold for a composition of blow-ups if they hold for one blow-up. But for a single blow-up, this follows from Hartshorne, Chapter II.

Theorem 1.30 ((Integral) Kawamata-Vichweg Vanishing Theorem) Say X is a smooth, projective, irreducible, complex variety. If D is a big and nef divisor on X, then

$$
H^{p}\left(X, \mathcal{O}_{X}\left(K_{X}+D\right)\right)=(0), \quad p>0 ;
$$

that is, by Serre Duality

$$
H^{p}\left(X, \mathcal{O}_{X}(-D)\right)=(0), \quad p<\operatorname{dim} X
$$

(Note that Kodaira's Theorem is just Kawamata-Vichweg Vanishing for D ample).
Does Akizuki-Nakano generalize to the case where D is big and nef?
Answer: No.
Here is a Counter-Example: Let $X=\mathrm{Bl}_{P}\left(\mathbb{P}^{3}\right)$, the blow-up of (complex) projective space \mathbb{P}^{3} at a point, P, and let D be the pull-back of a general hyperplane on \mathbb{P}^{3}. Then, D is nef and big. Look at $H^{2}(X, \mathbb{C})$. By Poincaré Duality,

$$
\operatorname{dim} H^{2}(X, \mathbb{C})=\operatorname{dim} H^{1}(X, \mathbb{C})
$$

The right-hand side has dimension 2. Using Hodge theory, we have

$$
H^{2}(X, \mathbb{C})=H^{2,0} \amalg H^{1,1} \amalg H^{0,2}
$$

and $H^{2,0}=H^{0}\left(X, \Omega_{X}^{2}\right)$, whose dimension is P_{2}. But, we know the birational invariance of P_{2}, so $\operatorname{dim} H^{2,0}=0\left(\right.$ as this holds for $\left.\mathbb{P}^{3}\right)$. It follows that $\operatorname{dim} H^{0,2}=0$, so $\operatorname{dim} H^{1,1}=2$ (with $H^{1,1}=H^{1}\left(X, \Omega_{X}\right)$). Now, $H^{1}\left(X, \Omega_{D}^{1}\right)$ has dimension 1 as $D=\mathbb{P}^{2}$. Recall the exact sequence

$$
0 \longrightarrow \Omega_{X}^{1}(\log D) \otimes \mathcal{O}_{X}(-D) \longrightarrow \Omega_{X}^{1} \longrightarrow \Omega_{D}^{1} \longrightarrow 0
$$

and apply cohomology. We get

$$
H^{0}\left(D, \Omega_{D}^{1}\right) \longrightarrow H^{1}\left(X, \Omega_{X}^{1}(\log D) \otimes \mathcal{O}_{X}(-D)\right) \longrightarrow H^{1}\left(X, \Omega_{X}^{1}\right) \longrightarrow H^{1}\left(D, \Omega_{D}^{1}\right)
$$

But, $H^{0}\left(D, \Omega_{D}^{1}\right)=(0)$ as $D=\mathbb{P}^{2}$. Therefore, $\operatorname{dim} H^{1}\left(X, \Omega_{X}^{1}(\log D) \otimes \mathcal{O}_{X}(-D)\right) \neq 0$. Now, we have the residue exact sequence

$$
0 \longrightarrow \Omega_{X}^{1} \longrightarrow \Omega_{X}^{1}(\log D) \longrightarrow \Omega_{D}^{0}=\mathcal{O}_{D} \longrightarrow 0
$$

If we twist by $\mathcal{O}_{X}(-D)$, we get the exact sequence

$$
0 \longrightarrow \Omega_{X}^{1} \otimes \mathcal{O}_{X}(-D) \longrightarrow \Omega_{X}^{1}(\log D) \otimes \mathcal{O}_{X}(-D) \longrightarrow \mathcal{O}_{D}\left(-D^{2}\right) \longrightarrow 0
$$

Take cohomology and get

$$
\begin{aligned}
H^{0}\left(D, \mathcal{O}_{D}\left(-D^{2}\right)\right) \longrightarrow H^{1}\left(X, \Omega_{X}^{1} \otimes \mathcal{O}_{X}(-D)\right) \longrightarrow H^{1}\left(X, \Omega_{X}^{1}(\log D) \otimes \mathcal{O}_{X}(-D)\right) \\
\longrightarrow H^{1}\left(D, \mathcal{O}_{D}\left(-D^{2}\right)\right) .
\end{aligned}
$$

But, $H^{0}\left(D, \mathcal{O}_{D}\left(-D^{2}\right)\right)=(0)$ and $H^{1}\left(D, \mathcal{O}_{D}\left(-D^{2}\right)\right)=(0)$. Consequently, $H^{1}\left(X, \Omega_{X}^{1} \otimes \mathcal{O}_{X}(-D)\right) \neq(0)$, contradicting Akizuki-Nakano.

What is the problem? While $H^{0, q}(X)$ and $H^{q, 0}(X)$ are birational invariants for smooth X, the $H^{p, q}$ for $p, q \geq 1$ are not.

In order to prove the Kawamata-Vichweg Vanishing Theorem we need a slight generalization of Kodaira's Theorem.

Lemma 1.31 (Norimatsu) Let X be a smooth, projective, irreducible, complex variety and let A be an ample divisor and E an SNC divisor. Then,

$$
H^{p}\left(X, \mathcal{O}_{X}\left(K_{X}+A+E\right)\right)=(0) \quad \text { if } \quad p>0
$$

that is (Serre Duality)

$$
H^{p}\left(X, \mathcal{O}_{X}(-A-E)\right)=(0) \quad \text { if } \quad p<\operatorname{dim} X .
$$

Proof. Write $E=E_{1}+E_{2}+\cdots+E_{t}$ and use induction on t. If $t=0$, then $E=\emptyset$ and Norimatsu's Lemma is just Kodaira's Theorem. Assume the induction hypothesis holds if $t \leq k$ and look at $E=\sum_{i=1}^{k} E_{i}+E_{k+1}$. We have the exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}\left(-A-\sum_{i=1}^{k+1} E_{i}\right) \longrightarrow \mathcal{O}_{X}\left(-A-\sum_{i=1}^{k} E_{i}\right) \longrightarrow \mathcal{O}_{E_{k+1}}\left(-A-\sum_{i=1}^{k} E_{i}\right) \longrightarrow 0
$$

By induction, the theorem holds for the two right-hand side sheaves if $p<\operatorname{dim} X$ and for E_{k+1} if $p<\operatorname{dim} X-1$. The cohomology sequence finishes the proof.
Proof of Theorem 1.30. As D is big, for some $m \gg 0, m D$ has the form $m D=H+N$, where H is ample and N is effective.

Step 1. Reduction to the case: N is a divisor whose support is SNC. We apply logresolutions (of Hironaka) to the pair (X, N). Then $\rho^{*} N+\operatorname{Exc}(\rho)$ has support SNC. Then,

$$
\rho^{*} m D=\rho^{*} H+\rho^{*} N
$$

but $\rho^{*} H$ may no longer be ample. Write $\rho^{*} N=\sum_{j=1}^{t} a_{j} E_{j}$, where $a_{j} \geq 0$ and the exceptional divisors are among the E_{j} 's. We know there is $p \gg 0$ so that

$$
\rho^{*}(p H)-\sum_{j=1}^{t} b_{j} E_{j}
$$

is ample for some $b_{j} \geq 0$, using (2) of Hironaka. Then,

$$
\begin{aligned}
\rho^{*}(p m D) & =\rho^{*}(p H)+\rho^{*}(p N) \\
& =\underbrace{\rho^{*}(p H)-\sum_{j=1}^{t}+b_{j} E_{j}}_{\text {ample }}+\underbrace{\sum_{j=1}^{t}\left(p a_{j}+b_{j}\right) E_{j}}_{\text {effective }} .
\end{aligned}
$$

On \widetilde{X}, we see that $p m\left(\rho^{*} D\right)$ is the sum of an ample plus an effective divisor and the support of N is an SNC divisor. We know that

$$
\rho_{*}\left(\mathcal{O}_{\tilde{X}}\right)\left(K_{\tilde{X}}\right)=\mathcal{O}_{X}\left(K_{X}\right)
$$

and

$$
R^{p} \rho_{*}\left(\mathcal{O}_{\tilde{X}}\right)\left(K_{\tilde{X}}\right)=(0) \quad \text { if } \quad p>0
$$

Suppose we know the theorem when our D has

$$
m D=H+N
$$

where H is ample and N is nef and the support of N is SNC (for some $m \gg 0$). Then, $\rho^{*} D$ is such a divisor on \widetilde{X} and our theorem holds for \widetilde{X} and $\rho^{*} D$, that is,

$$
H^{r}\left(\widetilde{X}, \mathcal{O}_{\tilde{X}}\left(-\rho^{*}(D)\right)=(0) \quad \text { if } \quad r<n=\operatorname{dim} \widetilde{X}\right.
$$

that is,

$$
H^{r}\left(\widetilde{X}, \mathcal{O}_{\tilde{X}}\left(K_{\tilde{X}}+\rho^{*}(D)\right)\right)=(0) \quad \text { if } \quad r>0
$$

by Hironaka (2). Apply the Leray spectral sequence, as $R^{q} \rho_{*}\left(\mathcal{O}_{\tilde{X}}\left(K_{\tilde{X}}+\rho^{*} D\right)\right)=(0)$ if $q>0$, by Hironaka and the projection formula we get

$$
\rho_{*} \mathcal{O}_{\tilde{X}}\left(K_{\tilde{X}}+\rho^{*}(D)\right)=\mathcal{O}_{X}\left(K_{X}+D\right)
$$

and we get

$$
H^{r}\left(X, \mathcal{O}_{X}\left(K_{X}+D\right)\right)=(0), \quad r>0,
$$

as required.
Step 2. The case where D has the property that $m D=H+N$, with H ample, N effective and $\operatorname{supp} N$ is SNC, for some $m \gg 0$.

In this case we will apply the following covering lemma:
Lemma 1.32 (Kawamata's Covering Lemma) Say X is a smooth, quasi-projective variety and m_{1}, \ldots, m_{t} are chosen positive integers. Given any $S N C$ divisor, $E=\sum_{i=1}^{t} E_{i}$, there exists a flat, finite cover, $h: Y \rightarrow X$, so that $h^{*} E_{i}=m_{i} E_{i}^{\prime}$ and $E^{\prime}=\sum_{i=1}^{t} E_{i}^{\prime}$ is an SNC divisor.

Assume this for now. Then, take $N=\sum_{i=1}^{t} e_{i} E_{i},\left(e_{i}>0\right.$ and the divisor $\sum_{i} E_{i}$ is SNC). Let $\epsilon=e_{1} e_{2} \cdots e_{t}>0$ and write $\epsilon_{i}=\epsilon / e_{i}$, i.e., $e_{i} \epsilon_{i}=\epsilon$. Take $m_{i}=m \epsilon_{i}$, for $i=1, \ldots, t$. Go up to the Kawamata covering, Y. Write $D^{\prime}=h^{*} D$ and $H^{\prime}=h^{*} H$. The divisor H^{\prime} is ample on Y and

$$
\begin{aligned}
m D^{\prime} & =h^{*}(m D)=H^{\prime}+h^{*} N \\
& =H^{\prime}+\sum_{i=1}^{t} e_{i}\left(h^{*} E_{i}\right) \\
& =H^{\prime}+\sum_{i=1}^{t} e_{i} m_{i} E_{i}^{\prime} \\
& =H^{\prime}+\sum_{i=1}^{t} m e_{i} \epsilon_{i} E_{i}^{\prime} \\
& =H^{\prime}+m \epsilon \sum_{i=1}^{t} E_{i}^{\prime} \\
& =H^{\prime}+m \epsilon E^{\prime}
\end{aligned}
$$

Consider $m \epsilon\left(D^{\prime}-E^{\prime}\right)$, we have

$$
m \epsilon\left(D^{\prime}-E^{\prime}\right)=m \epsilon D^{\prime}+H^{\prime}-m D^{\prime}=m(\epsilon-1) D^{\prime}+H^{\prime}=\text { nef }+ \text { ample }=\text { ample },
$$

which implies that $D^{\prime}-E^{\prime}=A^{\prime}$ is ample. But then, $D^{\prime}=A^{\prime}+E^{\prime}$ is the sum of an ample plus an SNC divisor. By Norimatsu, we get the vanishing result:

$$
H^{r}\left(Y, \mathcal{O}_{Y}\left(-A^{\prime}-E^{\prime}\right)\right)=(0), \quad r<\operatorname{dim} X,
$$

that is

$$
H^{r}\left(Y, \mathcal{O}_{Y}\left(-D^{\prime}\right)\right)=(0), \quad r<\operatorname{dim} X
$$

But, $Y \longrightarrow X$ is a cover, so we use the injectivity lemma and this gives

$$
H^{r}\left(X, \mathcal{O}_{X}(-D)\right)=(0), \quad r<\operatorname{dim} X
$$

the required vanishing.
Proof of Kawamata's Covering Lemma. We can use induction on the number of components of our SNC divisor, $D=D_{1}+\cdots+D_{t}$.

By Bloch-Gieseker, we get a cover $\widetilde{Y}($ of $X), f: \widetilde{Y} \rightarrow X$ and $f^{*}\left(\mathcal{O}_{X}\left(D_{1}\right)\right)=\widetilde{L}^{\otimes m_{1}}$, where $\widetilde{L}^{\otimes m_{1}}=\mathcal{O}_{\widetilde{Y}}(B)$, but B is not necessarily effective. Then, as $f^{*}\left(\mathcal{O}_{X}\left(D_{1}\right)\right)$ is an $m_{1}^{\text {th }}$ power, we can make the cyclic cover, $h: Y \rightarrow \widetilde{Y}$, branched along $f^{*} D_{1}=\widetilde{D}_{1}$ and

$$
h^{*} \widetilde{D}_{1}=m_{1} D_{1}^{\prime}
$$

on Y. Now
(a) $f^{*} D$ is still SNC.
(b) Using (a) we see that $H^{*} f^{*} D$ is also SNC. We continue by induction to obtain the result for $D_{1}+\cdots+D_{t}$.

Corollary 1.33 (Generalized $K-V$ Vanishing) Let X be a smooth, projective variety; H an ample divisor on $X ; D$ a Cartier divisor that is nef and assume there is some $k \geq 0$ such that $D^{n-k} \cdot H^{k}>0$, where $n=\operatorname{dim} X$. Then,

$$
H^{i}\left(X, \mathcal{O}_{X}\left(K_{X}+D\right)\right)=(0) \quad i>k
$$

Proof. By induction on k. When $k=0$, this is just Kawamata-Vichweg. Assume the induction hypothesis holds for varieties and integers $<k$. We may assume H is very ample and the divisor is smooth. The sequence

$$
0 \longrightarrow \mathcal{O}_{X}(-H) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{H} \longrightarrow 0
$$

is exact. If we tensor with $\mathcal{O}_{X}\left(K_{X}+D+H\right)$, we get

$$
0 \longrightarrow \mathcal{O}_{X}\left(K_{X}+D\right) \longrightarrow \mathcal{O}_{X}\left(K_{X}+D+H\right) \longrightarrow \mathcal{O}_{H}\left(K_{X} \cdot H+H \cdot H+D \upharpoonright H\right) \longrightarrow 0
$$

By adjunction, the last term is $\mathcal{O}_{H}\left(K_{H}+D \upharpoonright H(=D \cdot H)\right)$. The hypothesis implies that the right-hand term is the induction term for the variety H ($\operatorname{dim} H=n-1$) and the integer $k-1$. The cohomology sequence and induction imply that

$$
H^{l}\left(X, \mathcal{O}_{H}\left(K_{H}+D \upharpoonright H\right)\right)=(0)
$$

for $l>k-1$. Then,

$$
H^{i}\left(X, \mathcal{O}_{X}\left(K_{X}+(D+H)\right)\right)=(0), \quad i>0
$$

since $D+H$ is ample, and the induction step is established.

Definition 1.3 A morphism (between schemes), $f: Y \rightarrow X$ is an alteration iff it is generically finite and surjective.

Remark: De Jong's Theorem says: Every finite type scheme $/ k$ admits an alteration which is nonsingular.

Theorem 1.34 (Grauert-Riemenschneider Vanishing Theorem) If $f: Y \rightarrow X$ is an alteration of (irreducible) varieties and if Y is smooth, then $R^{p} f_{*} \mathcal{O}\left(K_{Y}\right)$ vanishes if $p>0$.

For this, we need a lemma:
Lemma 1.35 Say V and W are projective varieties, $f: V \rightarrow W$ is a morphism and A is ample on W. Given any coherent sheaf, \mathcal{F}, on V, so that

$$
H^{j}\left(V, \mathcal{F} \otimes \mathcal{O}_{X}\left(f^{*}(m A)\right)\right)=(0)
$$

for $j>0$ and all $m \gg 0$, we have

$$
R^{p} f_{*} \mathcal{F}=(0), \quad \text { if } \quad p>0 .
$$

Proof. Look at $R^{j} f_{*} \mathcal{F}$ (only finitely many j necessary). All these sheaves are coherent on W (by Serre). Then, as A is ample, we can arrange

$$
H^{t}\left(W,\left(R^{j} f_{*} \mathcal{F}\right) \otimes \mathcal{O}_{W}(m A)\right)=(0)
$$

for $t>0, j \geq 0$ and $m \gg 0$ and $\left(R^{j} f_{*} \mathcal{F}\right) \otimes \mathcal{O}_{W}(m A)$ is generated by its sections for all $j \geq 0$ and all $m \gg 0$. If we apply the projection formula, we get

$$
R^{q} f_{*}\left(\mathcal{F} \otimes \mathcal{O}_{V}\left(f^{*} m A\right)\right)=\left(R^{q} f_{*} \mathcal{F}\right) \otimes \mathcal{O}_{W}(m A)
$$

for all $q \geq 0$. Therefore,

$$
E_{2}^{q, q}=H^{p}\left(W, R^{q} f_{*}\left(\mathcal{F} \otimes \mathcal{O}_{V}\left(f^{*} m A\right)\right)\right)=(0)
$$

if $p>0$ and $q \gg 0(m \gg 0)$. Consequently, the Leray SS degenerates and this implies

$$
\left.\left.H^{0}\left(W, R^{q} f_{*}\left(\mathcal{F} \otimes \mathcal{O}_{V}\left(f^{*} m A\right)\right)\right) 工 H^{q}\left(V, \mathcal{F} \otimes \mathcal{O}_{V}\right) f^{*} m A\right)\right)
$$

Thus, if $q>0$, then the right-hand side is (0) (by hypothesis). This implies that the global sections of $R^{q} f_{*}\left(\mathcal{F} \otimes \mathcal{O}_{V} f^{*}(m A)\right.$) vanish and so (by the projection formula), the global sections of $\left(R^{q} f_{*} \mathcal{F}\right) \otimes \mathcal{O}_{W}(m A)$ vanish for $q>0$. As $\left(R^{q} f_{*} \mathcal{F}\right) \otimes \mathcal{O}_{W}(m A)$ is generated by global sections, we deduce that

$$
\left(R^{q} f_{*} \mathcal{F}\right) \otimes \mathcal{O}_{W}(m A)=(0)
$$

Therefore, $R^{q} f_{*} \mathcal{F}=(0)$, for $q>0$.
Proof of Theorem 1.34. The theorem is local on X, therefore we may assume that X is affine. The idea is to "compactify" the situation $Y \longrightarrow X$. We can close up X to get $\bar{X} \subseteq \mathbb{P}^{N}$. Check that there is some \bar{Y} (projective) and a morphism, $\bar{f}: \bar{Y} \rightarrow \bar{X}$, with $Y \hookrightarrow \bar{Y}$ (Y dense in \bar{Y}) so that the diagram

is cartesian (easy). This means that

$$
Y=\bar{Y} \prod_{\bar{X}} X
$$

By Hironaka, we can resolve \bar{Y} and we get \tilde{Y}. The morphism $\widetilde{Y} \longrightarrow \bar{X}$ is equal to $Y \longrightarrow X$ when restricted to Y. Moreover, by denseness

$$
R^{p} \bar{f}\left(K_{\tilde{Y}}\right) \upharpoonright X=R^{p} f_{*}\left(K_{Y}\right)
$$

Consequently, we may assume from the outset that X and Y are projective as well as smooth (and we still have an alteration). Now take A ample on X, for $m \gg 0$, we have
(a) $f^{*}(m A)=$ nef;
(b) $f^{*}(m A)=$ big, as F is generically finite.

By Kawamata-Vichweg,

$$
H^{p}\left(Y, \mathcal{O}_{Y}\left(K_{Y}\right) \otimes \mathcal{O}_{Y}\left(f^{*}(m A)\right)\right)=(0)
$$

if $p>0$ and $m \gg 0$. Then, the lemma implies

$$
\left(R^{p} f_{*}\right)\left(\mathcal{O}_{Y}\left(K_{Y}\right)\right)=(0), \quad p>0 .
$$

This concludes the proof.
Now, take X and a resolution, $\mu: X^{\prime} \rightarrow X$. We can make $\mu_{*} \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right)$.
Claim: This coherent sheaf is independent of the resolution.
Take another resolution, $\nu: X^{\prime \prime} \rightarrow X$ and look at the Cartesian diagram

So, $X^{\prime \prime \prime}=X^{\prime} \prod_{X} X^{\prime \prime}$ is a again a resolution of X, say $\theta: X^{\prime \prime \prime} \rightarrow X$. Then,

$$
\theta_{*}\left(K_{X^{\prime \prime \prime}}\right)=\mu_{*}\left(p r_{1}\left(K_{X^{\prime \prime \prime}}\right)\right)=\nu_{*}\left(\left(p r_{2}\right)_{*}\left(K_{X^{\prime \prime \prime}}\right)\right)
$$

By Hartshorne (Chapter II), as $X^{\prime}, X^{\prime \prime}, X^{\prime \prime \prime}$ are all smooth and birationally equivalent, we get

$$
\begin{aligned}
& p r_{1}\left(K_{X^{\prime \prime \prime}}\right)=K_{X^{\prime}} \\
& p r_{2}\left(K_{X^{\prime \prime \prime}}\right)=K_{X^{\prime \prime}}
\end{aligned}
$$

Independence follows.
In view of the independence result just established, set $\mathcal{K}_{X}=\mu_{*}\left(\mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right)\right)$, for any resolution, $\mu: X^{\prime} \rightarrow X$. The sheaf \mathcal{K}_{X} is coherent on X and it is called the GrauertRiemenschneider canonical sheaf of X.

Remark: The Kawamata-Vichweg Vanishing Theorem works for \mathcal{K}_{X}.
Proposition 1.36 If X is an irreducible variety and D is nef and big on X, then

$$
H^{p}\left(X, \mathcal{K}_{X} \otimes \mathcal{O}_{X}(D)\right)=(0), \quad p>0
$$

Proof. Take a resolution, $\mu: X^{\prime} \rightarrow X$, then $\mathcal{K}_{X}=\mu_{*}\left(K_{X^{\prime}}\right)$. The divisor $\mu^{*}(m D)$ is nef and big on X^{\prime} and X^{\prime} is smooth. Then, by Kawamata-Vichweg,

$$
H^{p}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right) \otimes \mu^{*}(m D)\right)=(0)
$$

Observe that

$$
R^{q} \mu_{*}\left(\mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right) \otimes \mu^{*}(m D)\right)=R^{q} \mu_{*} \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right) \otimes \mathcal{O}_{X}(m D)
$$

Grauert-Riemenschneider (Theorem 1.34) implies the above is zero for $q>0$ and the Leray SS implies

$$
H^{p}\left(X, \mathcal{K}_{X} \otimes \mathcal{O}_{X}(m D)\right) \cong H^{p}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}+\mu^{*} m D\right)\right)
$$

Take $m=1$ and apply the Kawamata-Vichweg Vanishing Theorem to the right-hand side to finish the proof.

Rational Singularities.

Definition 1.4 A variety, X, has rational singularities iff
(1) X is normal and
(2) There exists a resolution, $\mu: X^{\prime} \rightarrow X$, so that $R^{p} \mu_{*} \mathcal{O}_{X^{\prime}}=(0)$, for all $p>0$.

Any resolution works if one does:

As $X^{\prime \prime \prime}, X^{\prime}, X^{\prime \prime}$ are smooth, $R^{q} f_{*} \mathcal{O}_{X^{\prime \prime \prime}}=(0)$ and $R^{q} g_{*} \mathcal{O}_{X^{\prime \prime \prime}}=(0)$, for all $q>0$. Also, $\mu \circ f=\nu \circ g$ implies (using the composed spectral sequence)

The rest is clear. (Rational singularities are also called DuVal singularities, after Duval who studied them for surfaces-1934.)

Proposition 1.37 Suppose X has rational singularities and D is nef and big on X. Then,

$$
H^{p}\left(X, \mathcal{O}_{X}(-D)\right)=(0), \quad p<\operatorname{dim} X
$$

Proof. Make a resolution of singularities, $\mu: X^{\prime} \rightarrow X$, then $\mu^{*} D$ is big and nef. Apply the Kawamata-Vichweg Vanishing Theorem to $\mu^{*} D$: we get

$$
H^{p}\left(X^{\prime}, \mu^{*}(-D)\right)=(0), \quad p<\operatorname{dim} X^{\prime}
$$

By the projection formula

$$
R^{p} \mu_{*}\left(\mathcal{O}_{X^{\prime}}\left(\mu^{*}(-D)\right)\right)=R^{p} \mu_{*} \mathcal{O}_{X^{\prime}} \otimes \mathcal{O}_{X}(-D)
$$

and the right-hand side vanishes by rational singularities. The Leray SS tells us that

$$
H^{p}\left(X, \mathcal{O}_{X}(-d)\right) \simeq H^{p}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\left(-\mu^{*} D\right)\right)
$$

and the proposition follows.
Theorem 1.38 (Fujita's Vanishing Theorem) Say X is a projective scheme of finite type, H is an ample line bundle on X and \mathcal{F} is a coherent \mathcal{O}_{X}-module. There exists an $m_{0}=m_{0}(\mathcal{F}, H)$, so that for all nef, D,

$$
H^{p}(X, \mathcal{F}(m H+D))=(0), \quad p>0, m \geq m_{0}
$$

Remark: If $D=(0)$, this is Serre's ampleness criterion. The content of this theorem is that the result holds for all nef divisors with the same m_{0}.

Proof. If X is a curve, the theorem holds by Riemann-Roch. What about non-reduced, reducible, etc.?

Note that: H ample on X iff $H \upharpoonright X_{\text {red }}$ is ample on $X_{\text {red }}$ and H is ample on X iff $H \upharpoonright$ irred. components of X each are ample.

Therefore, we may assume that X is reduced and irreducible. We use induction on $\operatorname{dim} X$. Then it will be true of the support, $\operatorname{Supp}(\mathcal{F}), \operatorname{since} \operatorname{dim}(\operatorname{Supp}(\mathcal{F}))<\operatorname{dim} X$.

Claim. Say there is an integer, a, so that the result is true for $\mathcal{F}=\mathcal{O}_{X}(a H)$, then the result holds for all \mathcal{F} on X.

For, given $\mathcal{O}_{X}\left(b_{i} H\right), i=1, \ldots, t$, we can twist sufficiently high (depending on the b_{i} 's) and get above m for $a H$, then the result holds for

$$
\coprod_{i=1}^{t} \mathcal{O}_{X}\left(b_{i} H\right)^{l_{i}} .
$$

Now, Serre proved (FAC): Given \mathcal{F} on X, we have

$$
\cdots \longrightarrow \mathcal{O}_{X}\left(b_{2} H\right)^{p_{2}} \longrightarrow \mathcal{O}_{X}\left(b_{1} H\right)^{p_{1}} \longrightarrow 0
$$

is exact. If only finitely many b_{i} 's appear, then using exact sequences and the result for the b_{i} 's, we get m_{0} for \mathcal{F}. If infinitely many terms appear, the cohomology for \mathcal{F} uses in higher dimensions the cohomology for the K_{i} 's where

$$
K_{i}=\operatorname{Ker}\left(\mathcal{O}_{X}\left(b_{i} H\right) \longrightarrow K_{i-1}\right)
$$

and in high dimensions any cohomology on X is zero. We are reduced to the case:
$\mathcal{F}=\mathcal{O}(a H)$, for $a \gg 0$.
Now, take a resolution of singularities

$$
\mu: X^{\prime} \rightarrow X,
$$

and look at

$$
\mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right) \quad \text { and } \quad \mathcal{K}_{X}=\mu_{*} \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right)
$$

where \mathcal{K}_{X} is the Grauert-Riemenschneider canonical sheaf on X. As $a \gg 0$, $\mu^{*}\left(\mathcal{O}_{X}(a H)\right)-K_{X^{\prime}}$ is generated by its sections. Take, σ_{1}, a nontrivial section, we get

$$
0 \longrightarrow \mathcal{O}_{X^{\prime}} \xrightarrow{" \sigma^{\prime \prime}} \mathcal{O}_{X^{\prime}}\left(\mu^{*} \mathcal{O}_{X}(a H)\right) \otimes \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right)^{D}
$$

Therefore, we get

$$
0 \longrightarrow \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right) \longrightarrow \mathcal{O}_{X^{\prime}}\left(\mu^{*} \mathcal{O}_{X}(a H)\right)
$$

As μ_{*} is left exact, using the projection formula we get

$$
0 \longrightarrow \mathcal{K}_{X} \xrightarrow{u} \mathcal{O}_{X}(a H) \longrightarrow \operatorname{cok} u \longrightarrow 0 .
$$

Now, $\operatorname{cok} u$ has lower dimensional support. Were the theorem true when $\mathcal{F}=\mathcal{K}_{X}$, then we would be done using the cohomology sequence. Thus, we must show

$$
H^{p}\left(X, \mathcal{K}_{X} \otimes \mathcal{O}_{X}(m H) \otimes \mathcal{O}_{X}(D)\right)=(0)
$$

if $p>0, m \geq m_{0}$ and all D (nef). Now, the sheaf inside this cohomology is

$$
R^{p} \mu_{*} \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right) \otimes \mu_{*}\left(\mu^{*}(m H+D)\right)
$$

By the Grauert-Riemanschneider Theorem and Leray, we deduce that the cohomology group in (\dagger) is

$$
H^{p}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right)+\mu^{*}(m H+D)\right)
$$

and $\left.\mu^{*}(m H+D)\right)$ is big and nef. So, by Kawamata-Vichweg Vanishing, this group vanishes (independently of D) and the proof is complete.

Here is an interesting consequence of Fujita's Theorem:
Theorem 1.39 Say X is projective, with $\operatorname{dim} X=n$. If \mathcal{F} is a coherent sheaf on X, then $\operatorname{dim} H^{p}(X, \mathcal{F}(m D))=O\left(m^{n-p}\right)$ whenever D is nef.

Proof. Pick H very ample on X and H should avoid all irreducible subvarieties corresponding to the associated primes of the given \mathcal{F}. Pick D, nef. Look at $0, D, 2 D, \ldots, r D$, all nef. Then, Fujita's Theorem implies that

$$
H^{p}(X, \mathcal{F}(H+r D))=(0), \quad p>0 .
$$

Use induction on $\operatorname{dim} X$. For curves, the result holds by Riemann-Roch. Then, we have the exact sequence

$$
0 \longrightarrow \mathcal{F}(r D) \longrightarrow \mathcal{F}(H+r D) \longrightarrow \mathcal{F}(H+r D) \upharpoonright H \longrightarrow 0
$$

Apply cohomology and induction for $p \geq 1$; we get

$$
\operatorname{dim} H^{p}(X, \mathcal{F}(r D)) \leq \operatorname{dim} H^{p-1}(H, \mathcal{F}(H+r D) \upharpoonright H)
$$

and on the right-hand side, this yields

$$
O\left(r^{(n-1)-(p-1)}\right)=O\left(r^{n-p}\right),
$$

as claimed.
Question. Look at a curve and an ample divisor, D, on it. Thus, $\operatorname{deg} D>0$. We know $m D$ is very ample in general for $m \gg 0$ but on a curve there is a uniform bound, $m \geq 2 g+1$.

Given X, with $\operatorname{dim} X>1$ and D ample, is there some $m=m(X)$ such that $m D$ is very ample?

The answer is no, even if X is a smooth projective surface. Here is an example due to Kollar.

Start with an elliptic curve, E, and make the surface, $S=E \prod E$. Let F_{1}, F_{2} be the obvious fibres. Given n, write

$$
A_{n}=F_{1}+\left(n^{2}-n+1\right) F_{2}-(n-1) \Delta
$$

a family of divisors on S. Observe that

$$
F_{1}^{2}=F_{2}^{2}=\Delta^{2}(2-2 g)=0 ; F_{1} \cdot F_{2}=1 ; F_{i} \cdot \Delta=1
$$

Consequently,

$$
\begin{aligned}
A_{n}^{2} & =2\left[n\left(n^{2}-n+1\right)-n(n-1)-(n-1)\left(n^{2}-n+1\right)\right] \\
& =2\left(n^{2}-n+1-n^{2}+n\right)=2
\end{aligned}
$$

Also, $A_{n} \cdot F_{1}=n^{2}-2 n+2>0$ if $n \geq 1, A_{n} \cdot F_{2}=1>0$ and $A_{n} \cdot \Delta=n^{2}+1>0$. By Nakai-Moishezon, A_{n} is ample for $n \geq 1$.

Let $D=F_{1}+F_{2}$ and look at $2 D$. As $2 D$ is ample there is a smooth $B \subseteq|2 D|$. Now, take the cyclic cover of S of degree 2 branched along B, call it X. Let $\pi: X \rightarrow S$ and write $D_{n}=\pi^{*} A_{n}$.

Recall that for the cyclic cover of degree r,

$$
\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{S} \coprod \mathcal{O}_{S}(-B) \coprod \cdots \coprod \mathcal{O}_{S}(-(r-1) B) .
$$

For us,

$$
\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{S} \coprod \mathcal{O}_{S}(-B)
$$

Then,

$$
\pi_{*}\left(\mathcal{O}_{X}\left(n D_{n}\right)\right)=\mathcal{O}_{S}\left(n A_{n}\right) \coprod \mathcal{O}_{S}\left(n A_{n}-B\right)
$$

There is a canonical injection

$$
H^{0}\left(S, \mathcal{O}_{S}\left(n A_{n}\right)\right) \longrightarrow H^{0}\left(X, \mathcal{O}_{X}\left(n D_{n}\right)\right)
$$

Were this injection an isomorphism, then $n D_{n}$ could not be very ample (dimensions are too small). Therefore, the number corresponding to D_{n} to make is very ample is at least n. It remains to prove that

$$
H^{0}\left(S, \mathcal{O}_{S}\left(n A_{n}-B\right)\right)=(0)
$$

We have

$$
\begin{aligned}
(n A-B)^{2} & =\left(n A-2\left(F_{1}+F_{2}\right)\right)^{2} \\
& =2 n^{2}+8-4 n\left(A_{n} \cdot F_{1}+A_{n} \cdot F_{2}\right) \\
& =2 n^{2}+8-4 n\left(n^{2}-2 n+2+1\right) \\
& =-O\left(n^{3}\right)<0 \quad \text { if } n \geq 3 .
\end{aligned}
$$

Therefore, out cohomology group vanishes.

