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Chapter 1

Vanishing Theorems and Some
Applications

1.1 Divisors, Curves: Nef, Big, Ample (and all that)

We begin by reviewing some basic notions, such as divisors, and by introducing some slight
generalizations such as Q-divisors. In this chapter, we assume that we are dealing with
schemes of finite type over some algebraically closed field, k, of characteristic zero. By the
Lefschetz Principle, we may assume that k = C. Moreover, we also assume that our schemes
are normal.

A prime divisor is an integral subscheme of codimension 1 (Recall: integral means reduced
and irreducible). A divisor (or Weil divisor) is any Z-linear combination of prime divisors.

A Cartier divisor (or C-divisor) is a divisor that it cut out locally by one equation.

A Q-Cartier divisor , D, is a divisor so that

(∃N ∈ Z)(N 6= 0 and ND is Cartier).

A Q-divisor is a Q-linear combination of Q-Cartier divisors. A Q-divisor is effective iff D
is of the form D =

∑
i qiDi with qi > 0 for all i (we assume Di 6= Dj whenever i 6= j). We

write D ≥ E iff D − E is effective.

We have the notion of linear equivalence for (ordinary) C-divisors. Suppose X is a proper
scheme. If D and D′ are C-divisors, then they are numerically equivalent , denoted D ≡ D′,
iff for every integral curve, C ⊆ X, we have

D · C = D′ · C.

(Recall that OX(D) is the line bundle associated with D, so OX(D) � C is a line bundle on
C. We take D · C to be the degree of the line bundle OX(D) � C.)

If X is locally factorial (everywhere) then we know that

WDiv(X) = CDiv(X)

5



6 CHAPTER 1. VANISHING THEOREMS AND SOME APPLICATIONS

and the same holds for Q-divisors. We say that X is Q-factorial iff every Q-divisor is
Q-Cartier. Set

Num(X) = CDiv(X)/ ≡,
the numerical class group of X. Now, over C, if X is a proper, normal, connected variety, we
get the complex analytic space, Xh, (with OXh = C-analytic functions on X) and we have
the exact sequence

0 −→ Z −→ OXh
e2πi−−→ O∗Xh −→ 0.

If we apply cohomology, using GAGA, we get the long exact sequence

0 // Z // C exp // C∗ EDBC
GF@A

// H1(X,Z) // H1(X,OXh) // H1(X,O∗Xh) EDBC
GF

c

@A
// H2(X,Z) // H2(X,OXh) // · · · ,

We know that Pic(X) = H1(X,O∗Xh) and the map, c : Pic(X) → H2(X,Z), plays a special
role. We get

0 −→ H1(X,OXh)/H1(X,Z) −→ Pic(X)
c−→ H2(X,Z).

Let
Pic0(X) = H1(X,OXh)/H1(X,Z),

a complex torus. Observe that the image of Pic(X) in H2(X,Z) is the same as the image
of Num(X) in H2(X,Z); in fact Num(X) ⊆ H2(X,Z). It follows that Num(X) is a finitely
generated torsion-free abelian group (Neron-Severi).

Numerical equivalence also makes sense for Q-divisors. (Check that (mD ·C = m(D ·C).)
Thus, we set

(D · C) =
1

m
(mD · C), m > 0.

A C-divisor, D, is very ample iff the rational map, ϕD : X → P(H0(X,OX(D))) is a
morphism and an immersion, with

OX(D) = ϕ∗D(OP(1)).

A C-divisor, D, is ample iff there is some integer, m > 0, so that mD is ample iff for all
m >> 0, mD is very ample.

Recall Serre’s characterizations of ampleness (from FAC). Here, we assume that X is a
scheme of finite type that is proper.

(I) D is ample iff there is some m >> 0 such that mD is ample iff for all m >> 0, mD is
ample.
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(II) (Vanishing Criterion) D is ample iff for every coherent OX-module, F ,

(∃n0 = n0(F))(∀p > 0)(Hp(X,F ⊗OX(nD) = (0) when n ≥ n0).

(III) (Global Sections Criterion) D is ample iff for every coherent OX-module, F ,

(∃n0 = n0(F))(∀n ≥ n0)(F ⊗OX(nD) is generated by its global sections).

Definition 1.1 A Q-C-divisor is nef (numerically effective) iff for every integral curve, C,
of X (a proper scheme), we have

D · C ≥ 0.

We say that D is semi-ample iff for all m >> 0, OX(mD) is generated by its sections.

We say that D is big iff for all K > 0, there is some m >> 0 so that

dimCH
0(X,OX(mD)) > KmdimX .

Note that ample implies semi-ample.

The Hirzebruch-Riemann-Roch Theorem (for short, HRR) connects these concepts. In
order to state the Hirzebruch-Riemann-Roch Theorem we need some preparation including
the definition of Chern classes, of Chern characters and of the Todd polynomial.

Let F be either a holomorphic vector bundle on a smooth projective variety or a C∞

vector bundle on a complex, compact, manifold, X. In both cases, Chern classes exist.
Following Hirzebruch’s axiomatic approach, the Chern classes, ci(F), turn out to exist and
to be uniquely characterized by the following four axioms:

(1) ci(F) ∈ H2i(X,Z)

(2) (Naturality) Say π : Y → X is a morphism of varieties (both “good”, in the sense
specified above) and write c(F)(t) = 1 + c1(F) + c2(F) + · · · , the Chern polynmial for
the v.b., F , on X. Then,

c(π∗F)(t) = π∗(c(F)(t)).

(3) (Whitney sum) If F and G are both v.b.’s on X, then

c(F q G)(t) = c(F)(t)q c(G)(t).

(4) (Normalization) If X = Pn and F = OX(1), the vector bundle corresponding to the
hyperplane divisor, H, on Pn, then

c(OX(1))(t) = 1 +Ht.



8 CHAPTER 1. VANISHING THEOREMS AND SOME APPLICATIONS

Say L is a line bundle on X, a C∞ manifold. Then, there are lots of C∞ sections and
they give rise to a C∞ map, ϕL : X ↪→ PN , with L = ϕ∗L(OPN (1)). By Axiom (3),

c(L)(t) = c(ϕ∗L(OPN (1)))(t)

= ϕ∗L(c(OPN (1))(t))

= ϕ∗L(1 +Ht)

= 1 + ϕ∗L(H)t.

We deduce

c1(L) = ϕ∗L(H)

ci(L) = 0 if i > 1.

Say F is a vector bundle on X. Then, there is a fibre space, Y
π−→ X, so that π−1(x) is

equal to the flag manifold on the vector space Fx (with dimFx = rkF). It follows that Y is
the flag manifold over X. Then, it is known that

(1) π∗F = L1

∐
· · ·
∐
Lq, with q = rkF and the Lj’s are line bundles over Y .

(2) π∗(H•(X,Z)) −→ H•(Y,Z) is a monomorphism (Borel).

But then, as c(π∗F)(t) = π∗(c(F(t)) and by (1), π∗F = L1

∐
· · ·
∐
Lq, using Axiom (3), we

get

π∗(c(F(t)) =

q∏
j=1

c(Lj)(t).

However, we know that c(Lj) = 1 + γjt, with γj = c1(Lj) ∈ H2(Y,Z), so

q∏
j=1

c(Lj)(t) =

q∏
j=1

(1 + γjt).

Now, as π∗ is a monomorphism we can view π∗ as an inclusion and we get

c(F)(t) =

q∏
j=1

(1 + γjt).

(Here q = rkF .) The γj’s are called the Chern roots of F . But, we have

q∏
j=1

(1 + γjt) =

q∑
k=0

σk(γ1, . . . , γq)t
k,

where σk(γ1, . . . , γq) is the kth elementary symmetric function of the γj’s. Consequently,

ck(F) = σk(γ1, . . . , γq).

In particular, c1(F) = γ1 + · · · + γk. Using Chern roots, we obtain the following useful
computational rules:
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(0) (Splitting Principle) Given a rank q vector bundle, V , make believe V splits as
V =

∐q
j=1 Lj (for some line bundles, Lj), write γj = c1(Lj), the γj are the Chern roots

of V . Then,

c(V )(t) =

q∏
j=1

(1 + γjt).

(1) c(V D)(t) =
∏q

j=1(1−γjt) when c(V )(t) =
∏q

j=1(1+γjt). That is, ci(V
D) = (−1)ici(V ).

(2) If 0 −→ V ′ −→ V −→ V ′′ −→ 0 is exact, then c(V )(t) = c(V ′)(t)c(V ′′)(t).

(3) If c(V )(t) =
∏q

j=1(1 + γjt) and c(W )(t) =
∏q′

j=1(1 + δjt), then

c(V ⊗W )(t) =

q,q′∏
j,k=1

(1 + (γj + δk)t).

(4) If c(V )(t) =
∏q

j=1(1 + γjt), then

c
( r∧

V
)

(t) =
∏

1≤i1<···<ir≤q

(1 + (γi1 + · · ·+ γir)t).

In particular, when r = q, there is just one factor in the polynomial, it has degree 1,
it is 1 + (γ1 + · · ·+ γq)t. By (2). we get

c1

( q∧
V
)

(t) = c1(V ) and cl

( q∧
V
)

(t) = 0 if l ≥ 2.

(5) If c(V )(t) =
∏q

j=1(1 + γjt), then

c(SrV )(t) =
∏
mj≥0

m1+···+mq=r

(1 + (m1γ1 + · · ·+mqγq)t).

(6) If rk(V ) ≤ q, then deg(c(V )(t)) ≤ q (where deg(c(V )(t) is the degree of c(V )(t) as a
polynomial in t).

(7) Suppose we know c(V ), for some vector bundle, V , and L is a line bundle. Write
c = c1(L). Then, the Chern classes of V ⊗ L are

cl(V ⊗ L) = σl(γ1 + c, γ2 + c, · · · , γr + c),

where r = rk(V ) and the γj are the Chern roots of V . This is because the Chern
polynomial of V ⊗ L is

c(V ⊗ L)(t) =
r∏
i=1

(1 + (γi + c)t).



10 CHAPTER 1. VANISHING THEOREMS AND SOME APPLICATIONS

Here is a method due to Griffith for computing Chern classes. Suppose F is a vector
bundle generated by its global sections and say rk(F) = r. Pick, σ1, . . . , σr, some generic
global sections of F and form σ1 ∧σ2 ∧ · · · ∧σr−k+1 (a section of

∧r−k+1F). Then, the cycle
of zeros of σ1 ∧ σ2 ∧ · · · ∧ σr−k+1 carries ck(F). From this, we draw two conclusions:

(A) crk(F)(F), the top Chern class of F , is carried by the zeros of any generic section of F .

(B) If k = 1, pick all r global sections and find the zeros of σ1 ∧ σ2 ∧ · · · ∧ σr (a section of∧r F = det(F)). This cycle of zeros carries c1(F).

If F is a vector bundle and if γ1, . . . , γq are its Chern roots define the Chern character,
ch(F)(t), of F by

ch(F)(t) =

q∑
j=1

eγjt =

q∑
j=1

∞∑
i=0

γijt
i

i!

=
∞∑
i=0

1

i!

(
q∑
j=1

γij

)
ti

=
∞∑
i=0

1

i!
si(γ1, . . . , γq)t

i

where si(γ1, . . . , γq) =
∑q

j=1 γ
i
j. If we let ch(F)(t) =

∑
j≥0 chj(F)tj, we get

ch0(F) = rk(F), chj(F) =
1

j!
sj(F), j ≥ 1.

Using Newton’s formula

sk − c1pk−1 + c2pk−2 + · · ·+ (−1)kkck = 0,

for k ≥ 1 with cj = σj(γ1, . . . , γq), we can compute recursively the chj(F) in terms of the
ci(F)’s. We can also check that

ch(F
∐
G)(t) = ch(F)(t) + ch(G)(t)

ch(F ⊗ G)(t) = ch(F)(t)ch(G)(t).

Again, given a vector bundle, F , of rank q, if γ1, . . . , γq are the Chern roots of F , we
define the Todd polynomial of F as

Td(F)(t) =

q∏
j=1

γjt

1− e−γjt
.

We write Td(F)(t) = 1 + Td1(F)t+ Td2(F)t2 + · · · . If X is a manifold with d = dimX, we
have the tangent bundle, TX , and we let

Td(X) = Td(TX)
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and T (X), the Todd genus of X, is the degree d piece of Td(X). Hirzebruch proved that
there is one and only one power series in the Chern classes so that

T (PnC) = 1, for all n ≥ 0.

Theorem 1.1 (Hirzebruch-Riemann-Roch (1954)) If X is a non-singular projective variety
over C of dimension n (also true for a compact, complex manifold–Atiyah-Singer) and E is
a rank r vector bundle on X, then

χ(X,OX(E)) =
n∑
i=0

(−1)i dimCH
i(X,OX(E)) = degn(ch(E)Td(X)).

Let us work out some examples.

(1) dimX = 1 and rkE = 1, i.e., X is a curve and E is a line bundle. Then, c1(E) ∈
H2(X,Z) = Z and in this case, we know that c1(E) = degE. Now, it is known that
the top Chern class, cn(E) is given by

c1(E) = χEP(X),

where χEP(X) is the Euler-Poincaré characteristic of X, so in this case,

c1(TX) = 2− 2g,

with g = the genus of the curve C. Alternately,
∧1 TX = TX = −KX , so

c1(TC) = −c1(KX) = −degKX = −(2g − 2) = 2− 2g.

We have

Td(X) = 1 +
1

2
c1(TX)t and ch(X) = 1 + (degE)t,

so

deg1(ch(E)Td(X)) = degE +
1

2
c1(TX) = degE + 1− g.

Therefore, HRR says that

χ(X,OX(E)) = degE + 1− g,

which, of course, is the original Riemann-Roch Theorem.

(2) Again, dimX = 1 but this time, rkE = r ≥ 1. Then, c1(E) = c1(
∧r E) = c1(detE),

so
ch(E) = r + deg(detE)t

and we get
χ(X,OX(E)) = deg(detE) + r(1− g).
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(3) dimX = 2 and rkE = 1, i.e., X is a non-singular surface and E is a line bundle.
Then,

chE) = 1 + c1(E)t+
1

2
c1(E)2t2

and

Td(X) = 1 +
1

2
c1(X)t+

1

12
(c2

1(X) + χEP(X))t2.

Also, c1(X) = c1(TX) = c1(
∧2 TX) = −KX . If we write D = c1(E) for the divisor

corresponding to E, then

deg2(ch(E)Td(X)) =
1

2
D2 − 1

2
KX ·D +

1

12
(K2

X + χEP(X)).

It follows that

χ(X,OX(E)) =
1

12
(K2

X + χEP(X)) +
1

2
D · (D −KX).

(4) dimX = 3 and rkE = 1, i.e., X is a non-singular 3-fold and E is a line bundle. Then,

chE) = 1 +Dt+
1

2
D2t2 +

1

6
D3t3

and

Td(X) = 1 +
1

2
c1(X)t+

1

12
(c2

1(X) + c2(X))t2 +
1

12
c1(X)c2(X)t3

= 1− 1

2
KXt+

1

12
(K2

X(X) + c2(X))t2 − 1

12
KX · c2(X)t3.

It follows that

deg3(ch(E)Td(X)) =
1

6
D2 − 1

4
KX ·D2 +

1

12
D · (K2

X + c2(X))− 1

24
KX · c2(X).

Here is a useful conclusion of HRR for a line bundle, E, with corresponding divisor, D.
If dimX = n, as

chE) = 1 +Dt+
1

2
D2t2 + · · ·+ 1

n!
Dntn

and
Td(X) = 1 + Td1(X)t+ · · ·+ Tdn(X)tn,

we see that

degn(ch(E)Td(X)) =
1

n!
Dn +O(Dn−1.

In particular, as E⊗m = OX(mD), in this case, we get

χ(X,OX(mD)) =

(
1

n!
Dn

)
mn +O(mn−1).
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We know that very ample =⇒ ample =⇒ semi-ample and semi-ample ⇐⇒ OX(mD) is
generated by its global sections.

What does this mean? A global section, σ ∈ H0(X,OX(mD)), corresponds to an effective

divisor, D̃, with D̃ ∼ D (i.e. D̃ is linearly equivalent to D). Furthermore, σ(x) = 0 iff x ∈ D̃.
Therefore, OX(mD) is generated by its global sections iff for every x ∈ X, there is some

effective divisor, D̃ ∈ |mD|, with x /∈ D̃ iff no x ∈ X is a basepoint of |mD|. (Here, |mD| is
the linear system associated with mD.)

Proposition 1.2 On a proper (projective) variety, X, ample implies big and semi-ample
implies nef.

Proof . If D is ample, then for all m >> 0,

χ(X,OX(mD)) = dimC H
0(X,OX(mD)).

By HRR,

dimC H
0(X,OX(mD)) =

(
1

n!
Dn

)
mn +O(mn−1) > Kmn

if K = 1
n!
Dn > 0. So, we need to prove Dn > 0. Although we only need the easy direction

of the Nakai-Moishezon criterion, we state this criterion since it is a useful fact to know
anyway:

Nakai-Moishezon Criterion: Say X is proper and D is a divisor on X. Then, D is ample
iff DdimY · Y > 0, for every integral subscheme, Y , of X.

Now, apply the above criterion to Y = Dn−1. Then, Dn = D · Y = D ·Dn−1 > 0 as D is
ample, which concludes this part of the proof. (We really don’t need the Nakai-Moishezon
Criterion. Say D is ample. Then, mD is very ample for m >> 0. Let Y be an integral
subscheme with dimY = r ≤ n. We have a closed immersion

ϕmD : X ↪→ PN .

So, Dr 7→ Hr and Y 7→ a closed subvariety of PN and (mD)r · Y > 0 becomes
deg(ϕmD(Y )) > 0, and we are done.)

Let us now prove that semi-ample implies nef. Assume D is semi-ample and let C be
any curve in X. Look at (mD) · C = m(D · C) with m > .0. Now, m(D · C) is the divisor
of OX(mD) � C on C and as OX(mD) is generated by its global sections, OX(mD) � C is
generated by its global sections on C. It follows that deg(OX(mD) � C) ≥ 0 which implies
mD · C ≥ 0 and thus, D · C ≥ 0. As this holds for every curve, C, we conclude that D is
nef.

Corollary 1.3 Say Y and X are projective varieties and let π : Y → X be a proper mor-
phism. If D is nef on X, then π∗D is nef on Y (and similarly for ample).
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Proof . Recall the projection formula

(π∗D · C) = (D · π∗C),

(for any irreducible curve, C, on X) where

π∗C =

{
0 if π(C) = point
dπ(C) if π(C) is a curve and d = (K(C) : K(π(C))).

Take any curve on Y and any divisor, D, on X, with D nef. Then, we have

(π∗D · C) = (D · π∗C) =

{
0
dD · π(C) ≥ 0

and we are done.

Sorites:

1. If X and Y are proper and π : Y → X is a finite morphism, then π∗(ample) = ample.

2. D is ample on X iff D � ( every irreducible component of X) is ample.

3. Suppose D is ample and E is any Cartier divisor. Then, for all small enough t ∈ Q,
we have D + tE is again ample (use Serre’s characterization).

4. The sum of two amples is ample. By (3) and (4) , we see that the ample divisors form
an open cone in N1(X)Q.

5. nef + nef = nef (ample + nef = nef).

6. If D is very ample and E is any Cartier divisor, then mD+E is very ample if m >> 0.

7. ample + nef = ample.

8. If D is very ample and E is generated by its sections, then D + E is very ample (use
the Segre morphism).

Here is a useful lemma:

Lemma 1.4 Say X is proper and D is ample on X (n = dimX). Then,

Dr ·Hn−r > 0 for 0 ≤ r ≤ n.

Proof . It follows from the easy direction of the Nakai-Moishezon criterion.

The Cone of Curves. Say X is a proper scheme. If C and C̃ are two curves on X, then
C is numerically equivalent to C̃ (written C ≡ C̃) iff for every Cartier divisor, C, we have

D · C = D · C̃.
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Write N1(X)Z for the free group of curves modulo ≡ and set

N1(X)Q = N1(X)Z ⊗Z Q
N1(X)R = N1(X)Z ⊗Z R.

We have the nondegenerate pairings

N1(X)Z,Q,R ⊗N1(X)Z,Q,R −→ Z,Q,R.

If we use the norm topology on N1(X)Q,R and N1(X)Q,R, then these spaces are ρ-dimensional
vector spaces (with ρ = Picard number of X). Define NE(X) ⊆ N1(X)R as the cone
consisting of all equivalence classes of linear combinations

m∑
j=1

ajCj, aj ∈ R, aj > 0,

each Cj an irreducible curve.

Theorem 1.5 If X is projective and D is a Cartier divisor on X (the theorem also holds
for Q-cartier, Q-divisors), then

(1) D is ample iff for every curve C ∈ NE(X), if C 6= 0 then D · C > 0.

(2) Suppose H is an ample divisor on X, then for any k ≥ 0,

Kk = {C ∈ N1(X) | (H · C) ≤ k}

is compact and contains only finitely many classes of irreducible curves, C.

Proof . (1) We know that D nef implies that D ·C ≥ 0 on NE(X). Now, suppose C 6= 0 and
D ·C = 0. Since the above pairing is nondegenerate, there is some E such that (E ·C) < 0.
Loook at D + tE, for t small (t ∈ Q). Then, (D + tE) · C < 0. Yet, D + tE is ample for t
small and so, (D + tE) · C ≥ 0, a contradiction. Therefore, D · C > 0.

Conversely, write

K = {C ∈ NE(X) | ‖C‖ = 1}.

The set K is compact as N1(X)R is finite dimensional. The function, fD : K → R via
fD(C) = D · C is continuous and by hypothesis, fD > 0 on K. Consequently, there is some
a ∈ Q such that 0 < a < fC(C) for all C ∈ K. Similarly, the function fH : K → R is
continuous on K and, by the forward part already proved, fH > 0 on K. Thus, there is
some b ∈ Q such that b > fH(C) > 0, for all C ∈ K. Look at D − a

b
H. For C ∈ K,(

D − a

b
H
)
· C = D · C − a

b
(H · C) ≥ D · C − a,
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by choice of b. But, D · C > a (by choice of a), so(
D − a

b
H
)
· C ≥ 0, for all C ∈ K.

Therefore, ⋃
r>0

rK = NE(X)

and D − a
b
H is nef. But, a

b
H is Q-ample, so

D =
(
D − a

b
H
)

+
a

b
H

where the first term on the right hand side is nef and the second first term on the right hand
side is ample. It follows that D is ample.

Let us now prove that ampe + nef = ample. We know that Dr ·Hn−r > 0, where H is
the embedding divisor of X and n = dimX (by the useful lemma). Say H is given and D is
nef, then D � Y is still nef for all integral schemes, Y , inside X. By the above

(D � Y )s · (H � Y )t−s > 0,

with t = dimY , that is,
Ds ·H t−s · Y > 0, 0 ≤ s ≤ t.

Now,

(D +H)t · Y =
t∑

j=0

(
t

j

)
Dj ·Hj−j · Y > H t · Y > 0,

by Nakai-Moishezon. Therefore, D +H is ample.

(2) Write
Kk = {c ∈ N1(X) | (H · C) ≤ k}.

We need to show that Kk is compact and contains but finitely many classes of irreducible
curves. Let ρ = Picard number of X = dimN1(X)R < ∞. Pick D1, . . . , Dρ, a basis for
N1(X)R and let D(1), . . . , D(ρ) be the dual basis in N1(X)R. For our K of part (1) and
C ∈ K, we know that there is some M0 > 0 so that,

(m0H ±D) · C > 0, for all C ∈ K.

It follows that
|Dj · C| < m0|H · C|, for all C ∈ K.

Thus, if (H · C) ≤ k, this bounds the coefficients of the expression of C in terms of
D(1), . . . , D(ρ). The closed bounded subset of N1(X)R resulting is then compact as ρ <∞.

A curve, C, in Kk belongs to N1(Z)Z ∩Kk and as N1(X)Z is discrete, the previous set is
finite.
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Corollary 1.6 If D is a real nef divisor, then D is arbitrarily approximable by a Q-Cartier
ample Q-divisor. Hence, on a projective scheme, X, the real nef cone is the closure of the
ample Q-cone.

Proof . If H is the very ample embedding divisor, pick t ∈ Q, small and look at D + tH.
This divisor and ample, so by Kleimann, (D+ tH) ·C > 0, for any C ∈ NE(X), C 6= 0. We

can approximate D by a Q-divisor, D̃, so that

(D̃ + tH) · C > 0 in NE(X)− {0}.

By Kleimann, D̃ + tH is ample. But D is close to D̃ + tH as t is small.

Remark: (nef & big) + nef = nef & big.

Say D is nef and big and E is nef. Of course, D + E is nef. Again, 1
m
E is nef. So, as

m

(
D +

1

m
E

)
= mD + E,

if n = dimX, we get

mn

(
D +

1

m
E

)n
= (mD + E)n =

n∑
j=1

(
n

j

)
mjDjEn−j > mnDn.

But, mnDn > Kmn, as D is nef and big, which implies that D + 1
m
E is nef and big. It

follows that D + 1
m
E + 1

m
E is nef and big and so on, and thus, D + E is nef and big.

Theorem 1.7 Say X is a proper and of finite type, F is a coherent X-module and D is a
Cartier divisor. Then,

(1) hi(X,F ⊗OX(mD)) = O(mdimX), for all i.

(2) If D is nef and i > 0, then
hi(X,F ⊗OX(mD)) = O(mdimX−1).
(Here, hi(X,F) = dimH i(X,F).)

(3) h0(X,F ⊗OX(mD)) = Dn

n!
mn +O(mn−1), where n = dim X.

Proof . By HRR, (2) =⇒ (3).

(1) We achieve a reduction. First, every coherent sheaf, F , possesses a finite filtration

F = F0 ⊇ F1 ⊇ · · · ⊇ Fr = (0)

in which the successive quotients Fj/Fj+1 have support on an integral subscheme of X and
are torsion-free there. An obvious induction on r gets us to the case where X is integral
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and torsion-free. Matsukata proved that such a sheaf, F , when restricted to a suitable dense
open, U , of X is actually free, say OrU . So,

F � U = F ⊗OX OU −̃→
θ
OrU .

The choice of θ is equivalent to giving an embedding F ↪→ K(X)r. Look at G = F ∩ OrX
(inside K(X)r). We have the two exact sequences

0 −→ G i−→ F −→ G1 −→ 0

and
0 −→ G j−→ OrX −→ G2 −→ 0.

Since i is an isomorphism on U , we deduce that suppGl is a proper closed subset of X and so,
dim suppGl < dimX, for l = 1, 2. If we use induction on n = dimX, then the dimensions of
the cohomology vector spaces of the Gl grow at most like O(mn−1). Therefore, the dimension
of the cohomology of F grows like that of G which, in turn, grows like the dimension of OrX
and as r is fixed, the latter grows like the dimension of the cohomology of OX . So, we are
reduced to the case X = OX with X integral.

Look at
I1 = OX(−D) ∩ OX and I2 = OX(D) ∩ OX ,

two coherent ideals of OX . Let Yi be the subscheme of X cut out by Ii. Note, I1(D) = I2.
We may assume Y1, Y2 6= X (else, the argument is easier). Consider

0 −→ I1(mD) −→ OX(mD) −→ OY1(mD) −→ 0

and
0 −→ I2((m− 1)D) −→ OX((m− 1)D) −→ OY2((m− 1)D) −→ 0,

which are exact (and I1(mD) = I2((m−1)D)). We will use induction on n = dimX. Apply
cohomology to both sequences. We get exact sequences

· · · −→ H i(X, I1(mD)) −→ H i(X,OX(mD)) −→ H i(Y1,OY1(mD)) −→ · · ·

and

· · · −→ H i(X, I2((m−1)D)) −→ H i(X,OX((m−1)D)) −→ H i(Y2,OY2((m−1)D)) −→ · · · ,

Consequently,

hi(X,OX(mD)) ≤ hi(X, I1(mD)) + hi(Y1,OY1(mD))

≤ hi(X, I2((m− 1)D)) +O(mn−1)

and

hi(X, I2(mD)) ≤ hi(X,OX((m− 1)D)) + hi−1(Y2,OY2((m− 1)D))

≤ hi(X,OX((m− 1)D)) +O(mn−1).
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Therefore,
hi(X,OX(mD)) ≤ hi(X,OX((m− 1)D)) +O(mn−1),

that is
hi(X,OX(mD))− hi(X,OX((m− 1)D)) ≤ O(mn−1).

If we write all these inequalities for j = 1, . . . , i and add them up, we get

hi(X,OX(mD)) = mO(mn−1) = O(mn),

establishing (1).

(2) Again, this case reduces to X = OX with X integral but now, D is nef. We use
induction on dimX. If i ≥ 2, we can repeat the entire argument (word for word, mutatis
mutandis). Consequently

hi(X,OX(mD)) = O(mn−1), i ≥ 2.

Look at χ(X,OX(mD)). Using the case i ≥ 2, it is of the form

h0(X,OX(mD))− h1(X,OX(mD)) +O(mn−1).

By HRR, it is also of the form
Dn

n!
mn +O(mn−1).

There are two cases:

(1) h0(X,OX(mD)) = (0) (all m). In this case,

−h1(X,OX(mD)) =
Dn

n!
mn +O(mn−1).

If m >> 0, we have Dn ≥ 0 as D is nef, so both sides must be zero. Therefore, Dn = 0
and h1(X,OX(mD)) = 0 = O(mn−1).

(2) There is some m0 such that h0(X,OX(m0D)) 6= (0). In this case, there exists an
effective divisor, E, with E ≡ m0D and dim suppE < dimX and

0 −→ OX(−m0D) −→ OX −→ OE −→ 0

is exact. It follows that

0 −→ OX((m−m0)D) −→ OX(mD) −→ OE(mD) −→ 0

is exact. Consequently,

h1(X,mD) ≤ h1(E,OE(mD)) + h1(X, (m−m0)D)

≤ O(mn−2) + h1(X, (m−m0)D)
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(since dimE ≤ dimD and D is nef). We get

h1(X,mD)− h1(X, (m−m0)D) = O(mn−2).

Write all these inequalities for m,m−m0,m− 2m0, . . . and add them up. We get

h1(mD) = O(mn−1),

as claimed.

Corollary 1.8 Let X be a projective variety and let D be a Q-Cartier, Q-divisor which
is nef and big. Then, there exists an effective Q-divisor, E0, so that for all t ∈ Q, with
0 < t < 1, there is some ample divisor, H(t), with

D = H(t) + tE0.

Proof . We may assume that D is an Z-divisor. Let H be the embedding divisor in X, which
is ample, then we have the exact sequence

0 −→ OX(−H) −→ OX −→ OH −→ 0.

By tensoring with OX(mD), we get

0 −→ OX(mD −H) −→ OX(mD) −→ OH(mD) −→ 0

is exact. By Theorem 1.7(1), it follows that

h0(H,OX(mD)) = O(mn−1),

with n = dimX. As D is nef and big we have

(a) χ(X,OX(mD)) > Kmn (as D is big) and

(b) h0(X,OX(mD)) grows like χ(X,OX(mD)) (by Theorem 1.7(2), as D is nef).

Therefore, if m >> 0, then h0(H,OX(mD−H)) 6= (0). Let E be effective with E ≡ mD−H.
Now,

D = (1− t)D + tD =

[
(1− t)D +

t

m
H

]
+ t

(
1

m
E

)
.

If we set E0 = 1
m
E, then we have an effective Q-divisor and as t > 0, 1

m
H is ample. Also

(1− t)D is nef because D is. Consequently,

(1− t)D +
t

m
H = H(t)

is ample and D = H(t) + tE0, as required.
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Say π : X → Y is a proper morphism. Notice that π contracts a curve, C, iff π∗(C) = 0
and π∗(C) is a numerical criterion, by nondegeneracy of our pairing. Write NE(π) for the
convex subcone of NE(X) generated by the curves contracted by π. Clearly,

NE(π) = NE(X) ∩Ker π∗,

so NE(π) is a closed convex subcone of NE(X).

For which π does NE(π) provide information determining or quasi-determining π?

Claim: No chance unless the fibres of π are connected.

First, we claim that if π∗OX = OY , then the fibres of π are connected (see Hartshorne’s
book). The converse is “almost true”. Assume characteristic 0 and Y normal. If the fibres
are connected, then π∗OX = OY . Make the Stein factorization. For this, note that π∗OX is
a coherent OY -module and an OY -algebra. So, we can make Ỹ = Spec π∗OX and there is a
factorization

X
π′−→ Ỹ

g−→ Y

of π (the Stein factorization). Now, as π′∗OX = OỸ , the fibres of π′ are connected (by the
previous argument). But, g is a finite morphism.

Claim: g is an isomorphism.

We have deg g = 1 at the general point, i.e., X and Y birational and g is bijective. But, for
any open affine, U ⊆ Y , H0(g−1(U),OỸ ) is a finite H0(U,OY )-module and K(Y ) = (K(Ỹ ))
algebra. By normality, H0(g−1(U),OỸ ) = H0(U,OY ). Therefore, g is an isomorphism. As
g contracts no curves, π contracts C iff π′ contracts C.

Theorem 1.9 Say X, Y, Y ′ are proper schemes and π : X → Y and π′ : X → Y ′ are mor-
phisms. Assume π∗OX = OY .

(a) Say there exists y0 ∈ Y such that π′ contracts π−1(y0). Then, there exists an open
Y0 3 y0 and a morphism, η : Y0 → Y ′, so that the diagram

X

π′

""EEEEEEEEEEEEEEEEEEEEEE

X0 = π−1(Y0)
?�

OO

π

��
Y0 ⊆ Y η

// Y ′

commutes: π′ � X0 factors through π (by η).

(b) If every fibre of π is contracted by π′, then π′ factors through π.
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Proof . Let α : X → Y
∏
Y ′ be the morphism (π, π′) (with (α(x) = (π(x), π′(x))). Since α

is proper, Imα = Z is closed in Y
∏
Y ′. Because π∗OX = OY , π is surjective. (If U ⊆ Y

is open, then OX(π−1(U)) = OY (U) 6= (0) implies π−1(U) 6= ∅.) Let p = pr1 � Z and
q = pr2 � X.

X
α //

π
  AAAAAAAA Z

p
��~~~~~~~~

Y

X
α //

π′   AAAAAAAA Z

q
~~}}}}}}}

Y ′

Now, π−1(y0) ⊆ π′−1(∗), for some ∗ ∈ Y ′. Therefore, α contracts π−1(y0). As
π−1(y0) = α−1(p−1(y0)) and α contracts the left-hand side, we see that p−1(y0) is a single
point. Now, the locus of points in Y where p−1 blows things up is Zariski closed and 6= Y as
y0 does not belong to this locus. So, there is some open Y0, with y0 ∈ Y0 and p : p−1(Y0)→ Y0

is a finite morphism. Write Z0 = p−1(Y0) and X0 = π−1(Y0). Observe that if we can prove
that

OZ0 ⊆ α∗OX0

then we will have
OY0 ⊆ p∗OZ0 ⊆ p∗α∗OX0 = π∗OX0 = OY0

and so, p∗OZ0 = OY0 . However, OZ0 ⊆ α∗OX0 holds because α is surjective and Z0 is open
in Z, the image of X. Consequently, p is a finite morphism on Z0 and p∗OZ0 = OY0 . So, the
factorization is

Y0
p−1

∼= // Z0 q�Z0

// Y ′

X0

π

``AAAAAAAA π′

>>}}}}}}}}

Observe that η is unique.

For (b), cover Y by these opens and get a morphism, p, finite over all of Y . Then, repeat
the above by replacing Y0 by Y .

Recall that a convex subcone, Γ̃, of a cone, Γ, is extremal iff α+β
2
∈ Γ̃ implies that

α, β ∈ Γ̃. This means that Γ lies in one of the two (closed) half spaces determined by any

hyperplane containing Γ̃.

Lemma 1.10 (Hironaka’s Lemma) Say X, Y, Y ′ are projective varieties and π : X → Y and
π′ : X → Y ′ are morphisms.

(1) The subcone NE(π) is always extremal in NE(X).

(2) If π∗OX = OY and if NE(π) ⊆ NE(π′), then there exists a unique morphism,
η : Y → Y ′, so that π′ factors through π via η.

(3) If π∗OX = OY , then the morphism π is uniquely determined by NE(π) (up to isomor-
phism).
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Proof . (1) Let α =
∑

i aiAi and β =
∑

j bjBj be two members of NE(π), with ai, bj ≥ 0 and

say that α+β
2
∈ NE(π). Then, α + β =

∑
k dkDK , with dk ≥ 0 and π(Dk) = pointk. So,

π∗

(∑
i

aiAi +
∑
j

bjBj

)
= 0 in N1(Y )R,

that is, ∑
i

aiπ∗(Ai) +
∑
j

bjπ∗(Bj) = 0 in N1(Y )R.

Assume that Bj0 is not contracted, that is, π∗Bj0 is a curve in Y . As Y is projective, there
is a some hyperplane, H, with H ·π∗Bj0 > 0 (here, we may assume bj0 > 0). But, Ai ·H ≥ 0
and Bj ·H ≥ 0, for all i, j, a contradiction. Therefore, all the Ai and Bj are contracted, as
required.

(2) As π∗OX = OY , the morphism π is surjective and so, the fibres of π are connected.

Claim: Every fibre of π is contracted by π′.

Pick p and q in any fibre of π. As π−1(point) is projective, p and q may be connected by
a chain of curves. Each curve is in the same fibre, hence contracted by π and (by hypothesis)
contracted by π′. We conclude that π′(p) = π′(q). Therefore, π(fibre of π) = a point and by
the rigidity lemma, there is a unique η : Y → Y ′ such that the following diagram commutes:

X
π

~~~~~~~~~~
π′

  AAAAAAAA

Y η
// Y ′

(3) Given two morphisms π and π′ with NE(π) = NE(π′), by applying (2) we get
η : Y → Y ′ and ξ : Y ′ → Y with η ◦ ξ and ξ ◦ η, two morphisms besides idY ′ and idY and so,
η ◦ ξ = idY ′ and ξ ◦ η = idY , as required.

Mori’s program has roughly two goals:

(1) Give a geometric condition under which an extremal subcone, E, gives a contracting
morphism, π (E = NE(π)).

(2) Show that after finitely many contractions, you have a “minimal model” and it is
reasonably simple.

Examples.

(1) The case where N1(X)R is one-dimensional. If so, X = Pr and N1(X)Z is generated
by the hyperplane, H. It follows that N1(X)R ∼= R and so, N1(X)R ∼= R and
NE(X) = R≥0 = NE(X). The two extremal subcones are (0) and R≥0. In the first case, π is
the constant morphism, π : Pr → pt and in the second case the identity, π = id: Pr −→ Pr.

(2) X = Pr
∏

Pr. In this case, N1(X)R ∼= R q R and so, N1(X)R ∼= R q R. There are
four extremal subcones:
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(a) (0), which corresponds to id.

(b) Rq R, in which case π contracts all points to a point.

(c) R (first component), in which case Pr q Ps pr2−→ Ps.

(d) R (second component), in which case Pr q Ps pr1−→ Pr.

(3) A ruled surface, X = P(E), where E is a rank 2 vector bundle over C, where C is a
smooth projective curve. In other words, X is a P1 bundle over C (with group PGL(1)). By
Tsen’s Theorem, there exists a section, σ. The main point is this:

Proposition 1.11 If X = P(E) is a ruled surface, where E is a rank 2 vector bundle over
a smooth projective curve, C, then there is a one-to-one correspondence between sections, σ,
of π : X → C and exact sequences

0 −→ ker −→ OC(E) −→ L −→ 0

where L is a line bundle over C (= rank 1, locally free OC-module). In this correspondence,
L = σ∗OX(1) and ker ∼= π∗(OX(−C0)⊗OX(1)), where C0 = σ(C). Also,
OX(−C0)⊗OX(1) = π∗(ker).

Proof . The functorial definition of P(E) says that the section, σ : C → X, corresponds to
our surjection, OC(E) −→ L = σ∗OX(1), where L is a rank 1 locally free bundle (because
C = P(L)). Let C0 = σ(C), then

0 −→ OX(−C0) −→ OX −→ OC0 −→ 0

is exact. Twist by OX(1) to get

0 −→ OX(−C0)⊗OX(1) −→ OX(1) −→ OC0(1) −→ 0

is exact. If we apply π∗, we get

0 −→ π∗(OX(−C0)⊗OX(1)) −→ OC(E) −→ π∗OC0(1) −→ R1π∗(OX(−C0)⊗OX(1)).

The following hold:

(a) On C0, π and σ are inverse. Therefore, π∗ = σ∗ on C0 and so, L = π∗OC0(1).

(b) R1π∗(OX(−C0)⊗OX(1)) = (0).

On each fibre, π−1(c) = F = P1, OX(−C0)⊗OX(1) is just OP1(−C0 · F + ∆), where ∆
is the divisor induced on F by OX(1). As deg ∆ > 0 and C0 · F = 1, we deduce that the
degree of OX(−C0)⊗OX(1) on F is non-negative and independent of F . As

H1(F,OX(−C0)⊗OX(1)) = (0),
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for every c, we have
H1(F, (OX(−C0)⊗OX(1))c) = (0).

But the above is just
R1π∗(OX(−C0)⊗OX(1))c ⊗ κ(c)

(by the formal functions Theorem) and, by Nakayama and denseness, we get
R1π∗(OX(−C0)⊗OX(1)) = (0). Therefore,

ker = π∗(OX(−C0)⊗OX(1)).

Let us abbreviate OX(−C0)⊗OX(1) as m. We know that m · F (= deg(m � F )) = constant
≥ 0 and so, H0(π−1(c),m · π−1(c)) has dimension = deg + 1 (by RR on π−1(c)). Grauert’s
Theorem implies that π∗m is locally free of rank dimH0 = deg + 1. But the rank is equal to
1 and thus, deg = 0 and m = π∗(divisor) = π∗(π∗m).

If E is a bundle on C and if we twist by OC(D), we have

c1(E ⊗OC(D)) = c1

(
2∧

(E ⊗OC(D))

)
= c1(E) + 2c1(D)

= c1(E) + 2degD.

Consequently, we can adjust E by tensoring with a line bundle so that

(a) H0(C,OC(E)) 6= (0), yet

(b) H0(C,OC(E)⊗M) 6= (0) if degM < 0.

We have X = P(E) = P(E ⊗M) and therefore, we may assume (a) and (b). Such an E is
said to be “normalized”.

Say E is a normalized bundle, then there is a nonzero section, s ∈ H0(C,OC(E)), and
this s gives an exact sequence

0 −→ OC
s−→ OC(E) −→ L −→ 0.

Claim: L is a line bundle on C.

We need only check L is torsion-free as C is a smooth curve. Let T = torsion(L), and
pull back T to OC(E); let F be the corresponding subsheaf of OC(E). Now, as OC(E) is
torsion-free, F must be torsion-free and so, F is a bundle. But, if F is a line bundle, it
contains OC and F 6= OC , else T = (0). Therefore, degF > 0. As a consequence, E ⊗ F−1

has a section and yet, degF−1 < 0, contradicting (b) and proving the Claim.

Now, OC = ker = π∗(OX(−C0)⊗OX(1)) implies that OX = OX(−C0)⊗OX(1) and for
this s, OX(C0) = OX(1). We have the exact sequence

0 −→ OX(−C0) −→ OX −→ OC0 −→ 0
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and if we tensor it with OC0 , we get

0 −→ OX −→ OX(1) −→ OC0(C
2
0) −→ 0.

If we push it down by π∗, we get

0 −→ OC −→ OC(E) −→ OC0(C
2
0) −→ 0.

Also recall that c1(E) = deg
∧2E = C2

0 . Define

−e = deg
2∧
E = C2

0 .

This is an invariant of X. Now, on X, Num(X) is free of rank 2 and the class of OX(1)(= C0)
and the class of F are a basis, so KX = αF + βC0.

The adjunction formula says that

degKF = F · (KX + F )

−2 = F ·KX + F 2

−2 = F ·KX = β.

Thus, β = −2. Furthermore,

degKC0 = C0 · (C0 +KX)

2g − 2 = C2
0 + C0 · (−2C0 + αF )

2g − 2 = −C2
0 + α

2g − 2 = e+ α,

so α = 2g − 2− e. Consequently,

KX = −2C0 + (2g − 2− e)F.

We check that
K2
X = 4C2

0 − 4(2g − 2− e) = 8(1− g).

Also

c2(X) = χtop(X) = χtop(F )χtop(C)

= 2(2− 2g)

= 4(1− g)

and
1

12
(K2

X + c2) = Td(X) = 1− g.
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Now, look at the Leray spectral sequence

Hp(C,Rqπ∗OX) =⇒ H•(X,OX).

We have

̂(Rqπ∗OX)c ⊗ κ(c) = Hq(π−1(c),OX � π−1(c)) =

{
C if q = 0
(0) if q > 0.

Therefore,

Rqπ∗OX =

{
OC if q = 0
(0) if q > 0.

Consequently,
Hp(C,OC) ∼= Hp(X,OX) for all p ≥ 0,

from the Leray SS. So,

H0(C,OC) = C
H1(C,OC) = Cg g = genusC

Hp(C,OC) = (0), p ≥ 2

and

dimH0(C,OC) = 1

dimH1(C,OC) = q = g

dimH2(C,OC) = pg = 0.

So, HRR checks. We know that H0(C,OX) 6= (0), yet H0(C,OC ⊗OC(M)) = (0) if
degM < 0.

Take M with degM = −1. The sequence

0 −→ OC −→ OC(E) −→ OC(C2
0) −→ 0

is exact and if we twist with OC(M), we get

0 −→ OC(M) −→ OC(E)⊗OC(M) −→ OC(C2
0)⊗OC(M) −→ 0.

If we apply cohomology, we get

0 −→ H0(C,OC(C2
0)⊗OC(M)) −→ H1(C,OC(M)).

By Riemann-Roch on C
−h1(OC(M)) = −1 + 1− g = −g,

that is, g = h1(OC(M)), which implies h0(OC(C2
0)⊗OC(M)) ≥ g. By Riemann-Roch on C,

h0(OC(C2
0)⊗OC(M)) ≥ C2

0 − 1 + 1− g = C2
0 − g.
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Therefore, g ≥ c2
0 − g, that is, 2g ≥ C2

0 = −e, namely

e ≥ −2g.

(Actually, Nagata, 1960, showed e ≥ −g.)

Say X is just a surface and look on the divisor side. We have Amp(X) ⊆ NE(X) and so,

(1) nef(X) = Amp(X) ⊆ NE(X).

Say Γ is an irreducible curve on X and Γ2 = 0. Pick an effective “curve”, C̃ (really, a

0-cycle) on X. Either Γ is an irreducible component of C̃ or not. If not, Γ · C̃ ≥ 0. Let

NE(X)Γ≥0 = {C̃ ∈ NE(X) | Γ · C̃ ≥ 0}.

Then, we have

(2a) NE(X) = the cone spanned by Γ and NE(X)Γ≥0 and

(2b) Γ is the boundary of NE(X).

(2c) If Γ2 < 0, then Γ is extremal.

Back to ruled surfaces. The group Num(X) is generated by OX(1) and F and we know
that F 2 = 0 and F is nef. It follows that F is on the boundary of NE(X).

Use the class, ξ, of OX(1) and the class, f , of F as a basis (f as abscissae and ξ as
ordinate). Then we have a bijection, Num(X)R −→ R2. Vectors with y = 0 and x ≥ 0
are one boundary of NE(X). To find the other boundary of NE(X) (and Nef(X)) we need
information about E. This is a question of “stability” for vector bundles on a curve, C.

Definition 1.2 Let E be a vector bundle of rank r on our curve, C. We say that E is
unstable on C iff E possesses a subbundle, F , so that

µ(F ) =
degF

rkF
> µ(E) =

degE

rkE
.

The vb E is semi-stable if it is not unstable, that is, for all F as above,

µ(F ) ≤ µ(E)

and E is stable iff for all F as above

µ(F ) < µ(E).
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If

0 −→ F −→ E −→ G −→ 0

is an exact sequence of bundles on C, then we have

µ(F ) ≤ µ(E) iff µ(G) ≥ µ(E)

and

µ(F ) < µ(E) iff µ(G) > µ(E).

Let X be a ruled surface and take X = P(E), so that degE ≡ 0 (2). Then, normalize E,
for our purposes, so that degE = 0.

Case (A). E is unstable (e.g., E = OC(2)qOC(−2)). Here,

µ(E) =
degE

2
= 0.

Unstability means that there is some line subbundle, F , with µ(F ) = degF > µ(E) = 0.
Note that µ(E/F = G) < 0. We have the exact sequence

0 −→ OX(F ) −→ OX(E) −→ L = OX(G) −→ 0

and on X, we have our C0, corresponding to the above exact sequence, with
C2

0 = degL = degG < 0. Here, C0 plays the role of Γ and so, C0 is an extremal ray in
NE(X). This ray must be our other boundary.

As E is unstable, there is a quotient, L, of E with degL < 0 and we have an exact
sequence

0 −→ ker −→ E −→ L −→ 0,

so L corresponds to a section, D, of π : P(E) → C, and D = αf + βξ. But, D · f = 1, so
β = 1 and D = αf + ξ. It follows that α = D · ξ = degL < 0 and so, α < 0.

Recall that

(1) Nef(X) ⊆ NE(X) and

(2) Γ2 ≤ 0 (Γ an irreducible curve) imply that

(a) Γ and {C ′ | Γ · C ′ ≥ 0} generate NE(X).

(b) Γ is on the boundary of NE(X).

(3) Γ2 < 0 implies Γ is extremal.
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Since D2 = 2α < 0, we deduce that αf + ξ is extremal and on the boundary of NE(X).
Of course, F is an effective curve and the x-axis is another boundary of NE(X).

What about Nef(X)?

Then, ∆ = γf + δξ is on ∂ Nef(X) iff ∆ is perpendicular to the boundary of NE(X).
Thus,

∆ · f = 0, which yields δ = 0 (on the first boundary)

∆ · (αf + ξ) = 0, which yields γ + δα = 0 (on the second boundary), i.e., γ = −δα.

Consequently,
∆ = δ(−αf + ξ),

is on the boundary of Nef(X).

Case (B) E is semi-stable.

Since we are in characteristic 0, one finds all the bundles SmE are semi-stable (m ≥ 1).
Say A is some line bundle on C, with degA = a and suppose that

H0(C, Sm(E)⊗OC A) 6= (0)

for some m. A nonzero section corresponds to a map

0 −→ OC −→ SmE ⊗ A

and we get the exact sequence

0 −→ OC −→ SmE ⊗ A −→M −→ 0.

If we twist by AD, we get

0 −→ AD −→ SmE −→M ⊗OX AD −→ 0

is exact and semi-stability implies degAD ≤ 0. Thus degA ≥ 0, that is, a ≥ 0. Pick some
irreducible curve, Γ, on X, then as a divisor, OX(Γ) ∼ OX(m)⊗ fibres, for some m ≥ 1 and
some fibres = π∗A. It follows that Γ is the zero divisor of a section, s, in OX(m) ⊗ π∗A.
But,

π∗(OX(m)⊗ π∗A) = SmE ⊗ A

and
Γ(C, SmE ⊗ A) = Γ(C, π∗(OX(m)⊗ π∗A)) = Γ(X,OX(m)⊗ π∗A).

Whenever s ∈ Γ(X,OX(m) ⊗ π∗A), we also have s ∈ Γ(C, SmE ⊗ A), so a ≥ 0, where
a = degA. As Γ = mξ + af , we deduce that Γ belongs to the first quadrant of the (f, ξ)-
plane and f = 0 is still a boundary. Therefore, NE(X) is equal to the first quadrant including
its boundaries.
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As Nef(X) = closure of Amp(X), we see that Nef(X) is also the first quadrant with its
boundaries.

Question: Is the ξ-axis in NE(X)? That is, does there exist Γ so that Γ = mξ for some
m?

Here, we must have a = 0. This implies E and all the SmE are semi-stable but not
stable.

Narasimhan and Seshadri gave a characterization of stable bundles using representations
of π1(C) and Hartshorne (AVB) used this to show if g(C) ≥ 2, then there is some vector
bundle, E, of rank 2 on C, semi-stable, so that

H0(C, SmE ⊗ A) = (0)

for all m ≥ 1, provided degA ≤ 0. (Almost all E on the boundary of the moduli space of
vb’s work.) But, by the above, the ξ-axis is not given by any Γ and therfore in this case,
NE(X) 6= NE(X).

Mumford’s Example: Let X,E, V be as before (NE(X) 6= NE(X)). Take D to be a
divisor representing ξ. Then, D · Z > 0 (with Z ∈ NE(X)) and yet, D · D = 0. We claim
that D is not ample, as otherwise, by Kleiman, D · D > 0, as D ∈ NE(X). Therefore, in
Nakai-Moshezon, we need to take Dn’s, wrong otherwise.

1.2 The Kodaira & Akizuki-Nakano Vanishing

Theorems–Part I. Coverings

First, we consider the easiest case: cyclic covers.

Proposition 1.12 If X is affine and s ∈ C[X], with s 6≡ 0, for any m ≥ 1, there is a finite
and flat morphism, π : Y → X, and there is some s′ ∈ C[Y ], so that (s′)m = π∗s. Moreover,
Y is ramified exactly along (s)0.

Proof . MakeX
∏

A1 and let t be the coordinate on A1. Look at Y = the locus of tm−π∗s = 0
on X

∏
A1 and take π = pr1 � Y . Then, set s′ = t � Y to get (s′)m = π∗s; flatness is clear.

Proposition 1.13 (Global case) Let X be an irreducible variety, L be a line bundle on X
and m ≥ 1 be any integer and let s ∈ Γ(X,L⊗m), with s 6≡ 0.Then, there is an irreducible
Y and a morphism, π : Y → X, finite and flat, a section, σ ∈ Γ(Y, π∗L), so that σm = π∗s
and if X is smooth then Y can be taken to be smooth. Moreover, if D = (s)0, then π is an
isomorphism, (σ)0 −̃→D, and if D is smooth we can find σ with (σ)0 smooth.

Proof . (1) (a la Grothendieck) The result holds in the affine case. Since s is a section of an
mth power, these affine pieces glue. The rest of the statements are local computations.
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(2) Another argument: Since L is a line bundle on X we can make

V (L) = SpecOX (SymLD),

the total space of L and let p : V (L)→ X. There is a tautological section of p∗L over L. We
need a section, σ, so that σ(ξ) ∈ (p∗L)ξ, for all ξ ∈ L. But, (p∗L)ξ = Lp(ξ) and ξ ∈ L so ξ is
a pair

ξ = (p(ξ), vector in Lp(ξ))

and we can set σ(ξ) = second component of ξ. Let T be the tautological section. Conse-
quently, T (ξ) = ξ itself. We need a map L −→ p∗L. But, p∗L = L⊗ L. Now, as everything
is affine, we need a map

Sym(LD) −→ Sym(LD)⊗OX L,

that is, a map

OX q LD q LD
2 q · · · −→ LqOX q LD q LD

2 q · · · .

The lefthand side is a summand of the righthand side so the desired map exists. (Our T is
locally the t of the previous proposition.) In L, look at the locus of Tm − π∗s = 0. This is
Y and in Y we have

Tm = π∗s.

The rest of the statements are purely local.

We will also need roots of bundles.

Theorem 1.14 (Bloch-Gieseker Covers) Say X is a quasi-projective irreducible algebraic
variety, m ≥ 1 is an integer, and L is a line bundle on X. Then, there exists a finite flat
morphism, π : Y → X, with Y irreducible and a line bundle, N , on Y so that

N⊗m ∼= π∗L (on Y ).

If X is smooth, we can take Y smooth. If X is reduced, we can take Y reduced. If D is a
simple normal-crossing divisor (SNC) on X, we can arrange π∗D is again SNC. If dimX ≥ 2
and the Di’s are the irreducible components of D (an SNC divisor), then we can arrange
that the π∗Di are the irreducible components of π∗D.

Proof . We do a reduction. Suppose the result is known for L = f ∗OPr(1) where f : X → Pr
is a quasi-finite morphism. Then, given any L, there are R and S of the form f ∗OPr(1),
g∗OPr(1), so that L = R⊗ SD. There is Y1 so that R = mth power of Y1 (via µ∗) ,

µ∗L = µ∗R⊗ (µ∗S)D.

Now, take an mth root of µ∗S and get

π : Y2
ν−→ Y1

µ−→ X
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and π∗L = mth power ⊗mth power. This shows existence. In the case that L = f ∗OPr(1)
consider the map

ν : Pr −→ Pr

given by

ν(T0, . . . , Tr) = (Tm0 , . . . , T
m
r )

and the Cartesian diagram

Y = X
∏
Pr

Pr pr2 //

π=pr1
��

Pr

ν

��
X

f
// Pr

The variety Y is finite, flat over X by pulling back ν and

π∗L = π∗(f ∗OPr(1))

= pr∗2(ν∗(OPr(1)))

= pr∗2(OPr(m))

= pr∗2(OPr(1)⊗m)

= (pr∗2(OPr(1)))⊗m,

so we set N = pr∗2(OPr(1)). Now, twist ν by any σ ∈ GL(r + 1) and form Yσ as the fibred
product X

∏
Pr

Pr, with ν replaced by ν[σ] = σ ◦ ν:

Yσ
pr2 //

pr1
��

Pr
ν[σ]

��
X

f
// Pr

We will show that Yσ is irreducible last.

Since we are in characteristic 0, each Yσ −→ X is generically reduced (X is intergral). To
show Yσ is everywhere reduced is local. So, we may assume X = SpecA, where A is a domain
and Y = SpecB, with B flat (Argument due to Mike Roth). By generic reducedness, there
is some α ∈ A such that Bα is reduced. Pick β ∈ B, with β nilpotent. Under A −→ Aα, the
element β must go to 0. So, there is some t such that αtβ = 0. Now, αt : A→ A is injective,
so tensor with B. As B is flat over A we deduce that αt is injective on B and so, β = 0.

Recall Kleiman’s Theorem (Hartshorne, Chapter III): Say X is a homogeneous variety
for the algebraic group G and say Y −→ X and Z −→ X are morphisms. Then, there is
some open U ⊆ G so that, for all σ ∈ U , Yσ

∏
X

Z is nonsingular for the expected dimension,

that is, dimY + dimZ − dimX.
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Kleiman’s Theorem implies Yσ is nonsingular for any σ ∈ U , where U is an open in
GL(r + 1). The same kind of argument (DX) get the nonsingularity of the pullback of a
divisor in the covering and normal crossing, too.

Now, for the irreducibility of Yσ. Recall Bertini’s Theorem (Hartshorne, Chapter II):
Let f : X → Pr be a morphism, assume that d is chosen with d < dim f(X), where X is
irreducible. Then, for a Zariski open set of (r−d)-planes, L, the variety f−1(L) is irreducible.

From this and the Stein factorization we get Zariski’s connectedness Theorem:

Say X is proper and irreducible and f : X → Pr is a morphism. Assume d < dim f(X)
and let L be any (r − d)-plane of Pr. Then, f−1(L) is connected. If X is not proper, then
assume f is a proper morphism over some open U , of Pr. Then, connectness still holds
provided L is parametrized by U .

One also has the Fulton-Hansen connectedness Theorem:

Let X be proper and let f : X → Pr
∏

Pr be a morphism. If dim f(X) > r, then f−1(∆)
is connected (where ∆ is the diagonal in Pr

∏
Pr).

Theorem 1.15 (Irreducibility of Generic Graphs) Say f : X → Pr
∏

Pr is given, with
dm f(X) > r, then there is some open, U ⊆ GL(r + 1), so that for all σ ∈ U , f−1(Γσ)
is irreducible.

Proof . Take σ = (aij) ∈ GL(r + 1) let Lσ ⊆ Pr
∏

Pr be given by the equations

yi =
r∑
j=0

aijxj, 0 ≤ i ≤ r.

Then (easy), Lσ −̃→ Γσ. Look at the plane (Lid) given by yi = xi and observe that d < r
implies 2r− d > r. In Bertini, such L’s are admissible. By an elementary argument, we can
prove that all L’s near Lid are of the form Lσ for σ ∈ U here U is some open in GL(r + 1).
By Bertini, f−1(Lσ) is irreducible and thus, f−1(Γσ) is also irreducible.

Here is our situation:

Yσ
pr2 //

pr1
��

Pr
ν[σ]

��
X ϕ

// Pr

Make believe all these are sets. Then,

Yσ = {(ξ, η) | ϕ(ξ) = η(ν(η))}
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and

(ϕ, ν)(Γσ−1) = {(ξ, η) | (ϕ, ν)(ξ, η) ∈ Γσ−1}
= {(ξ, η) | (ϕ(ξ), ν(η)) ∈ Γσ−1}
= {(ξ, η) | σ−1(ϕ(ξ)) = ν(η)}
= Yσ.

Consequently, on some open subset of GL(r+ 1), we have (ϕ, ν)−1(Γσ−1) = Yσ, proving that
Yσ is irreducible.

1.3 The Kodaira & Akizuki-Nakano Vanishing

Theorems–Part II

Recall the Lefschetz Hyperplane Theorem (Griffith & Harris):

Say X is a complex, projective, nonsingular variety and D is an effective, ample divisor
which is nonsingular. Then, the restriction map ri : H

i(X,Z)→ H i(D,Z) is an isomorphism
if i ≤ n− 2 and an injection if i = n− 1 (where n = dimX).

Injectivity lemma.

SayX and Y are projective varieties, with X normal, f : Y → X is a finite, flat morphism,
and E is a vector bundle on X (we are in characteristic 0). Then, the canonical map

Hj(X,OX(E)) −→ Hj(Y, f ∗OX(E))

is injective for all j.

Proof . We can normalize Y and not change anything. By Leray, we have isomorphisms

Hj(X, f∗f
∗(OX(E))) −̃→Hj(Y, f ∗(OX(E))).

Note that
f ∗OX(E) = f ∗spaceOX(E)⊗f∗spaceOX OY .

The projection formula yields

f∗f
∗(OX(E)) = OX(E)⊗OX f∗OY .

Because of characteristic 0, we have a trace map

TrY/X : f∗OY −→ OX

and we have an injection OX ↪→ f∗OY . This gives a splitting

f∗OY = OX q E .
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If we tensor with OX(E), we get

f∗f
∗(OX(E)) = OX(E)qOX ⊗OX E .

When we apply cohomology, we get

Hj(X, f∗f
∗(OX(E))) = Hj(X,OX(E))qHj(X,OX ⊗OX E),

so we get an injection

Hj(X,OX(E) ↪→ Hj(X, f∗f
∗(OX(E))) ∼= Hj(Y, f ∗OX(E)),

as desired.

Theorem 1.16 (Kodaira Vanishing Theorem) Suppose X is a complex, nonsingular, pro-
jective, algebraic variety of dimension n = dimX. For any ample line bundle, L, on X, we
have

Hk(X,OX(L)⊗OX ωX) = (0) if k > 0.

By Serre Duality, the latter space is dual to Hn−k(X,OX(LD)). Therefore, the conclusion
of Theorem 1.16 is equivalent to

Hk(X,OX(LD)) = (0) if k < n.

Proof . Begin with Hodge theory:

Hj(X,C) ∼=
∐
p+q=j

Hq(X,Ωp
X) =

∐
p+q=j

Hp,q(X).

We also have (Lefschetz)

Hj(D,C) ∼=
∐
p+q=j

Hq(D,Ωp
X) =

∐
p+q=j

Hp,q(D).

By tensoring up by C over Z in Lefschetz, we get maps

ri : H
i(X,C)→ H i(D,C),

with ri an isomorphism if i ≤ n− 2 and an injection if i = n− 1. By Hodge and Lefschetz,
we have maps

rp,q : Hp,q(X)→ Hp,q(D),

with rp,q an isomorphism if p+ q ≤ n− 2 and an injection if p+ q = n− 1.

Look at L⊗m for m >> 0. There exists a section, σ ∈ Γ(X,OX(L⊗m)) so that D = (σ)0 is
an effective nonsingular (very) ample divisor onX. Make Y −→ X, them-fold cyclic covering
of X, branched along D. Then, π∗(D) is a nonsingular, ample divisor on nonsingular Y . By



1.3. THE KODAIRA & AKIZUKI-NAKANO VANISHING THEOREMS, II 37

the injectivity lemma, if Kodaira holds for Y , then it will hold for X. Therefore, we may
assume our original L is represented by a smooth effective divisor, D.

Apply “Holomorphic Lefschetz” for p = 0, q = j. Then,

r0,j : H0,j(X)→ H0,j(D),

with rp,q an isomorphism if j ≤ n− 2 and an injection if j = n− 1. Here,
H0,j(X) = Hj(X,OX) and H0,j(D) = Hj(D,OD). But, the sequence

0 −→ OX(−D) −→ OX −→ OX(D) −→ 0

is exact, ie.,
0 −→ OX(LD) −→ OX −→ OX(D) −→ 0

is exact. If we apply cohomology we get

Hj(X,OX) −→ Hj(D,OD) −→ Hj+1(X,OX(−D)) −→ Hj+1(X,OX) −→ Hj+1(D,OD).

By taking j ≤ n− 2 and using r0,j we get our theorem.

Remark: The Lefschetz Hyperplane Theorem can be understood from the point of view
of algebraic topology in the following way: Let Y be our smooth divisor in the smooth
(complex) X and let U = X − Y , our affine open. It is known that by triangulation there is
a fundamental system of neighborhoods of Y in X, all which deformation retract to Y ; call
them Yi. From this, we see that

Hk(X, Y ;Z) = lim−→
i

Hk(X, Yi;Z).

By excision, we get
Hk(X, Yi;Z) ∼= Hk(U,U ∩ Yi;Z).

Now, U is a smooth open oriented manifold of real dimension 2n (where n = dimCX) and
we have a relative version of Poincaré Duality, namely

Kk(U,U −K;Z) ∼= H2n−k(K,Z),

where K ⊆ U is compact and K is a deformation retract of an open of U . For example,
Ki = U − U ∩ Yi is such a K, Consequently,

Hk(U,U ∩ Yi;Z) = Hk(U,U −Ki;Z) ∼= H2n−k(Ki,Z),

and so,
lim−→
i

H2n−k(Ki,Z),= Hk(X, Y ;Z).

As every (2n− k)-chain lies in Ki for some i, we get

H2n−k(U,Z) ∼= Hk(X, Y ;Z).
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Now, we have the exact sequence of relative cohomology

· · · // Hk(X, Y ;Z) // Hk(X,Z) // Hk(Y,Z) EDBC
GF@A

// Hk+1(X, Y ;Z) // · · ·

Using our previous isomorphisms, we get

· · · // H2n−k(U,Z) // Hk(X,Z) // Hk(Y,Z) EDBC
GF@A

// H2n−k−1(U,Z) // · · ·

Therefore, the Lefschetz Hyperplane Theorem holds iff H2n−k(U,Z) = (0) when k ≤ n − 1,
that is, iff Hl(U,Z) = (0), for l ≥ n+ 1.

In fact, Andreotti, Frankel (1959) and Milnor (1963) showed using Morse Theory:

Theorem 1.17 (Andreotti, Frankel, Milnor) Every affine, smooth, complex, n-dimensional
algebraic variety (even analytic) has the homotopy type of a CW-complex of real dimension
at most n.

In order to prove a sharper vanishing theorem, we need some preliminaries on differentials
with logarithmic poles.

Let X be a smooth, complex variety and let D be a smooth Cartier divisor on X. Write
Ω1
X(logD) for the sheaf of 1-forms on X having at most poles of order 1 along D (and no ther

poles). Write Ωp
X(logD) =

∧p Ω1
X(logD). That is, if z1, . . . , zn−1, zn are local coordinates

near D, where D is defined locally by zn = 0, then Ω1
X(logD) is spanned by

dz1, . . . , dzn−1,
dzn
zn

locally. Similarly for Ωp
X(logD).

Proposition 1.18 If X is a smooth, complex, variety and D is a smooth C-dvisor on X
then the following satements hold:

(a) There is an exact sequence

0 −→ Ωp
X −→ Ωp

X(logD)
�D−→ Ωp−1

D −→ 0.

(b) There is an exact sequence

0 −→ Ωp
X(logD)⊗OX(−D) −→ Ωp

X

res−→ Ωp
D −→ 0.
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(c) If π : Y → X is the degree m cyclic cover branched along D and D′ is the smooth
Cartier divisor of Y isomorphic to D by π so that π∗D = mD′, then

π∗(Ωp
X(logD)) = ΩY (logD′).

Proof sketch. (a) The definition of the residue map is this: Map

dz1 ∧ · · · ∧ dzip (ip < n)

to 0 and map

f

(
dz1 ∧ · · · ∧ dzip−1 ∧

dzn
zn

)
to

dz1 ∧ · · · ∧ dzip−1 ∧ res

(
f
dzn
zn

)
.

Then, we can check that (a) holds by local computations as the maps are globally defined.
Let’s do it for p = 1. The kernel of res must be generated by dz1, . . . .dzn−1 and zn

dzn
zn

(= dzn)
and therefore, Ωp

X is the kernel (for = 1). A similar argument can be made for any p.

(b) Take generators for Ωp
X (locally and for p = 1) , namely, dz1, . . . , dzn. The kernel of

�D is spanned by zndz1, . . . , zndzn−1 and dzn, that is zndz1, . . . , zndzn−1 and zn
dzn
zn

and these
locally span Ωp

X(logD)⊗OX(−D) (for p = 1).

(c) Consider p = 1. The local coordinates in Y near D′ are

z1, . . . , zn−1, (zn)
1
m .

The local coordinates for Ω1
Y (logD′) are

dz1, . . . , dzn−1,
d(zn)

1
m

(zn)
1
m

.

But, by calculus
d(zn)

1
m

(zn)
1
m

=
1

m

dzn
zn

.

This gives (c) for p = 1.

Theorem 1.19 (Akizuki-Nakano Vanishing Theorem) Let X be a smooth, complex, projec-
tive variety of dimension n, and let L be an ample line bundle on X. Write A for the divisor
representing L (= OX(A)). Then,

Hq(X,Ωp
X ⊗ L) = (0) if p+ q > n.

(Note: Kodaira corresponds to the case p = 1.)
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By Serre duality, the above statement is equivalent to

Hs(X,Ωr
X ⊗ LD) = (0) if r + s < n.

Proof . We prove the Serre dual formulation. Since L is ample, for m >> 0, there exists
D ∈ |mA|, with D smooth, effective, irreducible. Now, suppose we could prove

Hs(X,Ωr
X(logD))⊗OX(−A)) = (0) if r + s < n. (†)

Then, we can use induction on n = dimX to finish the proof.

If n = 0, 1, the theorem holds (trivial for n = 0, by Kodaira for a curve). For the
induction step, assume the theorem holds for Ωr−1

D ⊗ OX(−A) provided s + r − 1 < n − 1,
i.e., s+ r < n. Then, by tensoring (a) with A and taking cohomology we get

Hs−1(D,Ωr−1
D ⊗OX(−A)) EDBC

GF@A
// Hs(X,Ωr

X ⊗OX(−A)) // Hs(X,Ωr
X(logD)⊗OX(−A)) EDBC

GF@A
// Hs(D,Ωr−1

D ⊗OX(−A))

The ends vanish by induction, (†) kills the logD group and our theorem follows in this case.

It remains to prove (†). Construct the cyclic cover π : Y → X of degree m, branched
along D and write D′ for the associated divisor in Y . By the Injectivity Lemma, we must
prove

Hs(Y, π∗(Ωr
X(logD)⊗OY (−A))) = (0) if r + s < n.

By Proposition 1.18 (c),

π∗(Ωr
X(logD)⊗OY (−A)) = Ωr

Y (logD′)⊗OY (−D′).

Now apply Proposition 1.18 (b) to our groups:

0 −→ Ωr
Y (logD′)⊗OY (−D′) −→ Ωr

Y −→ Ωr
D′ −→ 0

is exact and by taking cohomology we get

· · · // Hs−1(Ωr
Y )

rr,s−1 // Hs−1(Ωr
D′)

// Hs(Ωr
Y (logD′)⊗OX(−D′)) EDBC

GF@A
// Hs(Ωr

Y )
rr,s // Hs(Ωr

D′)

where r + s < n. Holomorphic Lefschetz says
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1. rr,s−1 is an isomorphism for r + s− 1 < n− 1 and

2. rr,s is an injection for r + s < n− 1,

and therefore, (†) is proved.

Bogomolov proved the following vanishing theorem:

Theorem 1.20 (F. Bogomolov, 1978) Suppose X is a smooth, complex, projective variety,
D is a SNC divisor and L is any line bundle on X. Then

H0(X,Ωp
X(logD)⊗ LD) = (0) if p < κ(L).

[ Here, κ(L) is the Iitaka dimension of L. That is, let

N(L) = {m | m ≥ 0 H0(X,L⊗m) 6= (0)}.

Now, if m ∈ N(L) and m > 0, then we get a rational map ϕm : X //___ P(H0(X,L⊗M)) .

Write ϕm(X) for the Zariski closure if the image of ϕm. Set

κ(L) = max{dimϕm(X) | m > 0, m ∈ N(L)}

and if N(L) = ∅, set κ(L) =∞].

Example. If L = ΩX , then

dimH0(X,ω⊗mX ) = Pm,

the mth pluri-genus. Note that P1 = pg, the geometric genus. Then, κ(ωX) = the Kodaira
dimension of X (denoted Kod(X)). We say that X is a variety of general type iff
κ(ωX) = Kod(X) = dimX.

1.4 Rational Curves and the “Classification of

Varieties”

Say π : X → Y is a rational map, then there exists a largest open set, U ⊆ X, where π is a
morphism. Suppose Y is normal and proper. In fact, unless otherwise stated all X and Y
are normal and irreducible. Let Γ = Γπ�U be the graph of π restricted to U (Γ ⊆ U

∏
Y )

and let X̃ be the closure of Γ in X
∏
Y . Then, we have a birational morphism, p : X̃ → X.

Since Y is proper, p is proper. As Y is normal, Zariski’s Connectednes Theorem implies the
fibres of p are connected. Remember that dim p−1(x) is always upper semi-continuous on
X. Pick x where p−1(x) is a point, then there is a Zariski-closed set, V , with x ∈ V and
dim p−1(ξ) = 0 if ξ ∈ V . Over V , the morphism p is finite (it is proper and a quasi-finite).
By a previous argument (normality + one-to-one + birational) p is an isomorphism over V .
But then, by definition of U , we get V ⊆ U . Hence, we find ξ ∈ U iff p−1(ξ) does not have
positive dimension. Hence, we’ve proved
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Theorem 1.21 (Zariski’s Main Theorem) If π : X → Y is a rational map with Y proper

and normal, then π fails to be a morphism exactly where p : X̃ → X has a fibre of positive
dimension. Moreover, codim(X − U) ≥ 2 (where U is the largest open set where π is a
morphism).

The second statement holds because π−1(y) having positive dimension and the place
where this occurs having codimension 1 means means these fill out X, which would imply
that π is nowhere defined, a contradiction.

Say π : X → Y is a birational morphim and write E(π) for the locus

E(π) = {x | π is not a local isom. at x}.

The set E(π) is called the exceptional locus of π. If π−1(y) has at least two points, then the
Connectednes Theorem implies that π−1(y) has a curve in it. Therefore, E(π) = π−1(π(E)),
where E = E(π). In particular, as before, codim π(E(π)) ≥ 2. (We use normality and
properness of Y .) Let’s weaken the hypotheses.

Say Y is normal and locally Q-factorial. This means each Weil divisor, D, on Y has a
multiple in D which is a Cartier divisor and π : X → Y is a birational morphism.

Claim.

(1) codimπ(E(π)) ≥ 2.

(2) Every component of E(π) has codimension 1.

Pick x in some component of E(π) and write y = π(x). We know π∗ : K(Y ) → K(X)
is an isomorphism—identify K(X) and K(Y ). Then, our map gives a map OY,y −→ OX,x
and OY,y 6= OX,x as x ∈ E(π). Hence, there is some t ∈ mX,x and t /∈ mY,y. Our t
is a meromorphic function on Y . We can choose effective Weil divisors, D1, D2, so that
(t) = D1 −D2 (i.e. D1 = (t)0, D2 = (t)∞). There exists m >> 0 such that mD1 and mD2

are Cartier divisors. Therefore, mD1 is given by u = 0 and mD2 is given by v = 0 and thus,

tm =
u

v
.

Claim. The elements u and v belong to mY,y.

If v /∈ mY,y, then v is a unit and so, tm ∈ OY,y. As Y is normal, t ∈ OY,y, a contradiction.

Now, u = tmv ∈ mX,x ∩OY,y = mY,y. But, the locus, Z, (on Y ) given by u = 0 and v = 0
has codimension 2 and both vanish on y, which implies y ∈ Z. Therefore, (1) is proved.

Now, look on X. We have u = tmv, so v = 0 implies u = 0 on X and π−1(Z) is given by
v = 0. But, x ∈ π−1(Z) implies that through x we have a component of codimension 1 and
(2) follows.
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Ramification Divisors.

Assume X, Y are smooth and π : X → Y is a morphism. We get a tangent map,
Tπ : TX → π∗TY , and if dimX = dimY = n, we also have a map

n∧
Tπ :

n∧
TX −→

∧
π∗Ty.

Then, by dualizing, we get a map

n∧
TDπ : π∗

n∧
TDY −→

n∧
TDX ,

that is,
n∧
TDπ : π∗ωY −→ ωX .

Consequently, we get a map

OX −→ ωX ⊗ π∗ωDY ,

and so, we get a section, σ ∈ Γ(X,ωX ⊗ π∗ωDY ), i.e., a section σ ∈ Γ(X,OX(KX − π∗KY )).
Observe that σ ≡ 0 iff X −→ Y is nowhere étale. So, in characteristic p 6= 0 we assume
K(X) is separable over K(Y ). Since X −→ Y is generically étale, the zeros of σ give a
divisor, Ram(π) called the ramification divisor of π on X. Then,

KX = π∗KY + Ram(π).

Birational Morphisms.

Suppose X and Y are projective, smooth and π : X → Y is a birational morphism. Then,
there is a theorem of Grothendieck (Hartshorne, Chapter II) which says:

Theorem 1.22 (Grothendieck) In the situation as above, there is some coherent OY -ideal,
I, such that X is the blow-up, BlY (I), of I.

To define BlY (I) we proceed as follows: First, we make the graded sheaf of rings, Pow(I),
given by

Pow(I) =
∞∐
j=0

Ij = OY
∐

I
∐

I2
∐
· · ·

and then we make Proj(Pow(I)). By definition, BlY (I) = Proj(Pow(I)).

Moreover, π−1(I)OX is an ideal of OX which is a line bundle, that is, OX(1) under a
suitable embedding. That is, I pulled back to X is (locally) principal. Now, we want to
understand the relation between E(π) and the support of OX(1).
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Let E be an effective divisor for OX(1). Take an ample, H, on Y , then if m >> 0,
mπ∗H −E is ample on X. So, through each point of E(π), there is a curve, C, in E(π) that
π contracts. But, 0 < (mπ∗H − E) · C, that is

mπ∗H · C − E · C = mH · π(C)− E · C = −E · C.

Consequently, C is contained in the support of E and as C is arbitrary, we conclude that
E(π) ⊆ suppE. In fact (Hartshorne, Chapter II, Exercise), we can choose I so that
E(π) = suppE.

Notion of “Classification” of Varieties.

(1) Choose a notion of equivalence for varieties.

(2) Determine in each class a “simplest” variety.

(3) Show (or give a procedure) that (2) holds.

By experience, (1) must be coarser than isomorphism. It turns out that success seems to
indicate that X ≈ Y should mean “birational”.

The example of curves is “easy”. Here birational equivalence of smooth curves is isomor-
phism.

For surfaces, birational equivalence is not isomorphism in general.

Theorem 1.23 (Castelnuovo) For a smooth surface, X, and for a rational curve, C, on
X there exists a birational morphism, π : X → Y , contracting C iff C2 = −1 (where Y is
another smooth surface).

Castelnuovo and Enriques “proved” that the process of contraction eventually stops. The
result is

(1) A smooth surface, Y , unique example in the birational class and this happens iff X is
not covered by rational curves and KX is nef.

or

(2) A smooth Y , not a unique example in its birational class and this happens when X is
covered by rational curves and KX is not nef.

Example of (2): P2 and P1
∏

P1.

For higher dimensions, we can have KX nef, yet X ≈ Y1, X ≈ Y2, both Y1 and Y2 are
“minimal” birational yet not isomorphic.
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Proposition 1.24 Say π : X → Y is a birational morphism and π is proper, Y is smooth
and π is not an isomorphism. Then, through every generic point of E (the exceptional divisor
of π) there is a rational curve that π contracts. That is, each component of E is birationally
ruled.

Proof . Preliminary reduction: First, we normalize X and we may assume that X is smooth
in codimension 1. So, for any generic point, x ∈ E, by (1) above, x is a smooth point. Shrink
X and Y to get

(a) X smooth

(b) E smooth, irreducible

(c) π(E) smooth.

Let Y1 = Blπ(E) be the blow-up of Y along π(E) and let ε1 : Y1 → Y be the corresponding
birational morphism. By the universality for blow-ups, π factors through a map,
π1 : X → Y1. Also, if E1 is the exceptional divisor for ε1, then π1(E) ⊆ E1. If codim(π1(E)) ≥
2 (in Y1), we can repeat this process. We get the following diagram in which codim(πi(E)) ≥ 2
(in Yi) for all i, with 1 ≤ i ≤ n− 1:

Yn

εn
��

Yn−1

��
Y2

ε2
��
Y1

ε1
��

X π
//

π1

77oooooooooooooo

πn−1

EE


























πn

GG���������������������������������
Y

We know that

KY1 = ε∗1KY + γ1E1

where γ1 = codimY (π(E))− 1 and generally,

KYi+1
= ε∗i+1KYi + γi+1Ei+1,

with 1 ≤ i ≤ n − 1 and Y0 = Y . As πnE ⊆ En, we deduce that π∗nEn − E is effective and
this implies that

KYn = ε∗n · · · ε∗1KY + γ1E1 + · · ·+ γnEn.
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As π is birational, π∗OY (KY ) is a subsheaf of OX(KX). This implies
π∗OY (KY ) + (γ1 + · · ·+ γn)E is a subsheaf of OX(KX). The later is coherent on X, so the
ascending chain

π∗OY (KY ) ⊆ π∗OY (KY + γ1E) ⊆ · · ·

stops, say at n. This implies codim(πn(E)) in Yn is 1. Now, as πn(E) has codimension
1 in En, we deduce that E is birationally isomorphic to En. But, En is ruled, being the
exceptional locus of a blow-up.

Corollary 1.25 Say π is a rational map from X to Y and

(1) X is smooth

(2) X has no rational curve

(3) Y is proper.

Then, π is defined everywhere.

Proof . Let U be the largest open subset of X where π is defined and write Γ ⊆ X
∏
Y be

the graph of π � U . As before, let X̃ be the closure of Γ and write p = pr1 � X̃. Then as Y is
proper, so is p : X̃ → X and as E = Exc(p) 6= ∅ the previous proposition applies so, through
every generaic point of E there is a rational curve, C, and p contracts C. Thus, pr2(C)
is either a point or rational curve in Y , but the second possibility yields a contradiction.
It follows that pr2 contracts C but then, C is a single point and E = ∅, which is absurd.
Therefore, U = X and we are done.

Theorem 1.26 Say X and Y are projective irreducible varieties, both smooth and
π : X → Y is a birational morphism. Suppose π is not an isomorphism. Then, there is a
rational curve D ⊆ X, so that

(1) π contracts D.

(2) KX ·D < 0.

Proof . (1) Write E = Exc(π), we know E is pure codimension 1 and π(E) has codimension
at least 2 in Y . Pick y ∈ π(E). As Y is projective, there is an embdedding, Y ↪→ PN ,
for some (large) N and Bertini’s Theorem implies that any general hyperplane cuts Y in a
smooth codimension 1 section. We can even pick the hyperplanes through y (DX). If we do
this dimY − 2 times we get a smooth surface, S ⊆ Y , so that

(1) y ∈ S;

(2) S ∩ π(E) is a finite set of points.

Do this one more time in two different ways:
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(a) a hyperplane through y, we get a smoth curve, C0.

(b) a hyperplane omitting all of π(E) ∩ S, obtaining a smooth curve, C.

By construction, C ∼ C0 implies

KY · C = KY · C0.

If we let C ′ = π∗C we see that C ′ is isomorphic to C and let C ′0 be the proper transform of
C0, that is C0 = π−1(C0 − {y}). Recall that

KX = π∗KY + Ram(π)

and the support of Ram(π) is contained is equal to E. We get

KX · C ′ = π∗KY · C ′ + Ram(π) · C = KY · C

and so,
KX · C ′ = KY · C.

Now,
KX · C ′0 = π∗KY · C ′0 + Ram(π) · C0 > π∗KY · C ′0 = KY · C0,

so
KX · C ′0 > KY · C0.

It follows from all this that
KX · C ′0 > KX · C ′. (†)

Now, look at π−1 but restricted to S. It may happen that π−1 is not defined on points of
π(E). But, by surface theory (Hartshorne, Chapter V), we can blow up finitely many points

of S to get a new surface, S̃, and a birational morphism, ε : S̃ → S. We get a morphism,
g : S̃ → X and let C ′′ = ε∗C ∼= C and ε∗C0 = C ′′0 +

∑
imiEi, with mi ≥ 0, where the Ei are

the components of the exceptional divisor of ε and C ′′0 is the proper transform of C0 under
ε. We have g∗C

′′ = C ′ and g∗C
′′
0 = C ′0. Then,

π∗C0 = g∗C
′′
0 +

∑
i

mig∗(E0) = C ′0 +
∑
i

mig∗(Ei)

and we know that
KX · C ′ = KX · π∗C = Kx · π∗C0

because C ∼ C0 implies π∗C ∼ π∗C0 and

KX · π∗C0 = KX · C ′0 +
∑
i

miKX · g∗(Ei).

By (†), we have
∑

imiKX · g∗(Ei) < 0 and consequently:
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(1) mi > 0 for some i;

(2) g∗(Ei) is a curve for this i, call it D.

As E is rational, D is rational.

(2) by following the last diagram (to be filled in) we see that π(D) = g∗(Ei) is a point
and so, KX ·D < 0.

Corollary 1.27 If π : X → Y is a birational morphism of smooth projective varieties and
KX is nef, then π is an isomorphism.

We now go back to the “classification” of varieties. For simplicity assume all varieties
are smooth.

(1) Let C = be the birational class (smooth varieties) and assume there is some X0 ∈ C
such that X0 possesses no rational curves. Let Z ∈ C be any other variety and assume there
is a rational map, π : Z // X0 . Corollary 1.27 implies π is a morphism. Write X � Y
iff there is a birational morphism Y −→ X. The above implies that (the equivalence class

of) X0 is minimal. If X0 and X̃0 are minimal, with no rational curve in either of them,

then Theorem 1.26 implies there is birational morphism, π : X0 → X̃0, and as there are no
rational curves in X̃0, the map π must be an isomorphism. Therefore, X0 is unique up to
isomorphism and is a smallest element.

(2) Let C = be the birational class (smooth varieties) and assume there is some X0 ∈ C
with KX · C ≥ 0 for all rational curves, C, in X0. (This really does mean that KX0 is nef.)
Can there be some Z ∈ C and a birational morphism, X0 −→ Z?

The theorem implies X0
∼= Z and so, X0 is minimal.

Now, the idea is, for a smooth X, give a procedure (contraction of curves) to make KX

nef. These will be among the extremal rays of the cone NE(X).

1.5 The Kawamata-Vichweg Vanishing Theorem-Part

I—The Integral Vanishing Theorem

First, we have to discuss the resolution of singularities à la Hironaka.

Theorem 1.28 (Hironaka, 1961) Let X be an irreducible, complex, algebraic variety and D
be an effective divisor on X. Then the following assertions hold:

(1) There exists a birational projective morphism, ρ : X̃ → X, so that X̃ is nonsingular

and ρ∗D + Exc(ρ) is a divisor on X̃ with support SNC.

(2) One can make ρ by a composition of blowings-up of nonsingular centers supported in
SingX or Sing Y . Hence, ρ is an isomorphism over X − (SingX ∪ Sing Y ).
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Remarks:

(1) This is usually called the “embedded resolution” or “log resolution” of the pair (X,D).

(2) Assertion (1) called the Weak Hironaka Theorem is usually sufficient for most ap-
plications. Simple short (∼ 6 printed pages) were given by Bogomolov–Pantev and
Abramovic-deJong. However, if we use the full strengh of (2) we can prove more.

Proposition 1.29 Say (X,D) is a pair as in Hironaka’s Theorem and assume X is smooth

and projective. Then, if ρ : X̃ → X is “the” log resolution of (X,D), then

(a) ρ∗OX̃(KX̃) = OX(KX).

(b) (Rpρ∗)(OX̃(KX̃)) = (0), p > 0.

(c) Take H ample on X, then there is some p >> 0 and some integers, b1, . . . , bt ≥ 0, so

that ρ∗(pH) −
∑t

j=1 bjEj is ample on X̃ where the Ej are the exceptional divisors of
the blow-ups.

Proof . It is clear that (a), (b), (c) will hold for a composition of blow-ups if they hold for
one blow-up. But for a single blow-up, this follows from Hartshorne, Chapter II.

Theorem 1.30 ((Integral) Kawamata–Vichweg Vanishing Theorem) Say X is a smooth,
projective, irreducible, complex variety. If D is a big and nef divisor on X, then

Hp(X,OX(KX +D)) = (0), p > 0;

that is, by Serre Duality

Hp(X,OX(−D)) = (0), p < dimX.

(Note that Kodaira’s Theorem is just Kawamata–Vichweg Vanishing for D ample).

Does Akizuki-Nakano generalize to the case where D is big and nef?

Answer: No.

Here is a Counter-Example: Let X = BlP (P3), the blow-up of (complex) projective
space P3 at a point, P , and let D be the pull-back of a general hyperplane on P3. Then, D
is nef and big. Look at H2(X,C). By Poincaré Duality,

dimH2(X,C) = dimH1(X,C).

The right-hand side has dimension 2. Using Hodge theory, we have

H2(X,C) = H2,0 qH1,1 qH0,2
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and H2,0 = H0(X,Ω2
X), whose dimension is P2. But, we know the birational invariance of

P2, so dimH2,0 = 0 (as this holds for P3). It follows that dimH0,2 = 0, so dimH1,1 = 2
(with H1,1 = H1(X,ΩX)). Now, H1(X,Ω1

D) has dimension 1 as D = P2. Recall the exact
sequence

0 −→ Ω1
X(logD)⊗OX(−D) −→ Ω1

X −→ Ω1
D −→ 0

and apply cohomology. We get

H0(D,Ω1
D) −→ H1(X,Ω1

X(logD)⊗OX(−D)) −→ H1(X,Ω1
X) −→ H1(D,Ω1

D).

But, H0(D,Ω1
D) = (0) as D = P2. Therefore, dimH1(X,Ω1

X(logD)⊗OX(−D)) 6= 0. Now,
we have the residue exact sequence

0 −→ Ω1
X −→ Ω1

X(logD) −→ Ω0
D = OD −→ 0.

If we twist by OX(−D), we get the exact sequence

0 −→ Ω1
X ⊗OX(−D) −→ Ω1

X(logD)⊗OX(−D) −→ OD(−D2) −→ 0.

Take cohomology and get

H0(D,OD(−D2)) −→ H1(X,Ω1
X ⊗OX(−D)) −→ H1(X,Ω1

X(logD)⊗OX(−D))

−→ H1(D,OD(−D2)).

But, H0(D,OD(−D2)) = (0) and H1(D,OD(−D2)) = (0). Consequently,
H1(X,Ω1

X ⊗OX(−D)) 6= (0), contradicting Akizuki-Nakano.

What is the problem? While H0,q(X) and Hq,0(X) are birational invariants for smooth
X, the Hp,q for p, q ≥ 1 are not.

In order to prove the Kawamata–Vichweg Vanishing Theorem we need a slight general-
ization of Kodaira’s Theorem.

Lemma 1.31 (Norimatsu) Let X be a smooth, projective, irreducible, complex variety and
let A be an ample divisor and E an SNC divisor. Then,

Hp(X,OX(KX + A+ E)) = (0) if p > 0,

that is (Serre Duality)

Hp(X,OX(−A− E)) = (0) if p < dimX.

Proof . Write E = E1 + E2 + · · · + Et and use induction on t. If t = 0, then E = ∅ and
Norimatsu’s Lemma is just Kodaira’s Theorem. Assume the induction hypothesis holds if
t ≤ k and look at E =

∑k
i=1Ei + Ek+1. We have the exact sequence

0 −→ OX(−A−
k+1∑
i=1

Ei) −→ OX(−A−
k∑
i=1

Ei) −→ OEk+1
(−A−

k∑
i=1

Ei) −→ 0.
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By induction, the theorem holds for the two right-hand side sheaves if p < dimX and for
Ek+1 if p < dimX − 1. The cohomology sequence finishes the proof.

Proof of Theorem 1.30. As D is big, for some m >> 0, mD has the form mD = H + N ,
where H is ample and N is effective.

Step 1 . Reduction to the case: N is a divisor whose support is SNC. We apply log-
resolutions (of Hironaka) to the pair (X,N). Then ρ∗N + Exc(ρ) has support SNC. Then,

ρ∗mD = ρ∗H + ρ∗N,

but ρ∗H may no longer be ample. Write ρ∗N =
∑t

j=1 ajEj, where aj ≥ 0 and the exceptional
divisors are among the Ej’s. We know there is p >> 0 so that

ρ∗(pH)−
t∑

j=1

bjEj

is ample for some bj ≥ 0, using (2) of Hironaka. Then,

ρ∗(pmD) = ρ∗(pH) + ρ∗(pN)

= ρ∗(pH)−
t∑

j=1

+bjEj︸ ︷︷ ︸
ample

+
t∑

j=1

(paj + bj)Ej︸ ︷︷ ︸
effective

.

On X̃, we see that pm(ρ∗D) is the sum of an ample plus an effective divisor and the support
of N is an SNC divisor. We know that

ρ∗(OX̃)(KX̃) = OX(KX)

and
Rpρ∗(OX̃)(KX̃) = (0) if p > 0.

Suppose we know the theorem when our D has

mD = H +N,

where H is ample and N is nef and the support of N is SNC (for some m >> 0). Then,

ρ∗D is such a divisor on X̃ and our theorem holds for X̃ and ρ∗D, that is,

Hr(X̃,OX̃(−ρ∗(D)) = (0) if r < n = dim X̃,

that is,
Hr(X̃,OX̃(KX̃ + ρ∗(D))) = (0) if r > 0,

by Hironaka (2). Apply the Leray spectral sequence, as Rqρ∗(OX̃(KX̃ +ρ∗D)) = (0) if q > 0,
by Hironaka and the projection formula we get

ρ∗OX̃(KX̃ + ρ∗(D)) = OX(KX +D)
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and we get
Hr(X,OX(KX +D)) = (0), r > 0,

as required.

Step 2 . The case where D has the property that mD = H+N , with H ample, N effective
and suppN is SNC, for some m >> 0.

In this case we will apply the following covering lemma:

Lemma 1.32 (Kawamata’s Covering Lemma) Say X is a smooth, quasi-projective variety
and m1, . . . ,mt are chosen positive integers. Given any SNC divisor, E =

∑t
i=1Ei, there

exists a flat, finite cover, h : Y → X, so that h∗Ei = miE
′
i and E ′ =

∑t
i=1E

′
i is an SNC

divisor.

Assume this for now. Then, take N =
∑t

i=1 eiEi, (ei > 0 and the divisor
∑

iEi is SNC).
Let ε = e1e2 · · · et > 0 and write εi = ε/ei, i.e., eiεi = ε. Take mi = mεi, for i = 1, . . . , t. Go
up to the Kawamata covering, Y . Write D′ = h∗D and H ′ = h∗H. The divisor H ′ is ample
on Y and

mD′ = h∗(mD) = H ′ + h∗N

= H ′ +
t∑
i=1

ei(h
∗Ei)

= H ′ +
t∑
i=1

eimiE
′
i

= H ′ +
t∑
i=1

meiεiE
′
i

= H ′ +mε
t∑
i=1

E ′i

= H ′ +mεE ′.

Consider mε(D′ − E ′), we have

mε(D′ − E ′) = mεD′ +H ′ −mD′ = m(ε− 1)D′ +H ′ = nef + ample = ample,

which implies that D′ − E ′ = A′ is ample. But then, D′ = A′ + E ′ is the sum of an ample
plus an SNC divisor. By Norimatsu, we get the vanishing result:

Hr(Y,OY (−A′ − E ′)) = (0), r < dimX,

that is
Hr(Y,OY (−D′)) = (0), r < dimX.
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But, Y −→ X is a cover, so we use the injectivity lemma and this gives

Hr(X,OX(−D)) = (0), r < dimX,

the required vanishing.

Proof of Kawamata’s Covering Lemma. We can use induction on the number of components
of our SNC divisor, D = D1 + · · ·+Dt.

By Bloch-Gieseker, we get a cover Ỹ (of X), f : Ỹ → X and f ∗(OX(D1)) = L̃⊗m1 , where

L̃⊗m1 = OỸ (B), but B is not necessarily effective. Then, as f ∗(OX(D1)) is an mth
1 power,

we can make the cyclic cover, h : Y → Ỹ , branched along f ∗D1 = D̃1 and

h∗D̃1 = m1D
′
1

on Y . Now

(a) f ∗D is still SNC.

(b) Using (a) we see that H∗f ∗D is also SNC. We continue by induction to obtain the
result for D1 + · · ·+Dt.

Corollary 1.33 (Generalized K-V Vanishing) Let X be a smooth, projective variety; H an
ample divisor on X; D a Cartier divisor that is nef and assume there is some k ≥ 0 such
that Dn−k ·Hk > 0, where n = dimX. Then,

H i(X,OX(KX +D)) = (0) i > k.

Proof . By induction on k. When k = 0, this is just Kawamata–Vichweg. Assume the
induction hypothesis holds for varieties and integers < k. We may assume H is very ample
and the divisor is smooth. The sequence

0 −→ OX(−H) −→ OX −→ OH −→ 0

is exact. If we tensor with OX(KX +D +H), we get

0 −→ OX(KX +D) −→ OX(KX +D +H) −→ OH(KX ·H +H ·H +D � H) −→ 0.

By adjunction, the last term is OH(KH + D � H (= D · H)). The hypothesis implies that
the right-hand term is the induction term for the variety H (dimH = n− 1) and the integer
k − 1. The cohomology sequence and induction imply that

H l(X,OH(KH +D � H)) = (0)

for l > k − 1. Then,

H i(X,OX(KX + (D +H))) = (0), i > 0,

since D +H is ample, and the induction step is established.
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Definition 1.3 A morphism (between schemes), f : Y → X is an alteration iff it is generi-
cally finite and surjective.

Remark: De Jong’s Theorem says: Every finite type scheme/k admits an alteration which
is nonsingular.

Theorem 1.34 (Grauert-Riemenschneider Vanishing Theorem) If f : Y → X is an alter-
ation of (irreducible) varieties and if Y is smooth, then Rpf∗O(KY ) vanishes if p > 0.

For this, we need a lemma:

Lemma 1.35 Say V and W are projective varieties, f : V → W is a morphism and A is
ample on W . Given any coherent sheaf, F , on V , so that

Hj(V,F ⊗OX(f ∗(mA))) = (0)

for j > 0 and all m >> 0, we have

Rpf∗F = (0), if p > 0.

Proof . Look at Rjf∗F (only finitely many j necessary). All these sheaves are coherent on
W (by Serre). Then, as A is ample, we can arrange

H t(W, (Rjf∗F)⊗OW (mA)) = (0)

for t > 0, j ≥ 0 and m >> 0 and (Rjf∗F) ⊗ OW (mA) is generated by its sections for all
j ≥ 0 and all m >> 0. If we apply the projection formula, we get

Rqf∗(F ⊗OV (f ∗mA)) = (Rqf∗F)⊗OW (mA),

for all q ≥ 0. Therefore,

Eq,q
2 = Hp(W,Rqf∗(F ⊗OV (f ∗mA))) = (0)

if p > 0 and q >> 0 (m >> 0). Consequently, the Leray SS degenerates and this implies

H0(W,Rqf∗(F ⊗OV (f ∗mA))) −̃→ Hq(V,F ⊗OV )f ∗mA)).

Thus, if q > 0, then the right-hand side is (0) (by hypothesis). This implies that the global
sections of Rqf∗(F ⊗ OV f ∗(mA)) vanish and so (by the projection formula), the global
sections of (Rqf∗F) ⊗ OW (mA) vanish for q > 0. As (Rqf∗F) ⊗ OW (mA) is generated by
global sections, we deduce that

(Rqf∗F)⊗OW (mA) = (0).
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Therefore, Rqf∗F = (0), for q > 0.

Proof of Theorem 1.34. The theorem is local on X, therefore we may assume that X is affine.
The idea is to “compactify” the situation Y −→ X. We can close up X to get X ⊆ PN .
Check that there is some Y (projective) and a morphism, f : Y → X, with Y ↪→ Y (Y dense
in Y ) so that the diagram

Y �
� //

f

��

Y

f
��

X �
� // X

is cartesian (easy). This means that

Y = Y
∏
X

X.

By Hironaka, we can resolve Y and we get Ỹ . The morphism Ỹ −→ X is equal to Y −→ X
when restricted to Y . Moreover, by denseness

Rpf(KỸ ) � X = Rpf∗(KY ).

Consequently, we may assume from the outset that X and Y are projective as well as smooth
(and we still have an alteration). Now take A ample on X, for m >> 0, we have

(a) f ∗(mA) = nef;

(b) f ∗(mA) = big, as F is generically finite.

By Kawamata-Vichweg,

Hp(Y,OY (KY )⊗OY (f ∗(mA))) = (0)

if p > 0 and m >> 0. Then, the lemma implies

(Rpf∗)(OY (KY )) = (0), p > 0.

This concludes the proof.

Now, take X and a resolution, µ : X ′ → X. We can make µ∗OX′(KX′).

Claim: This coherent sheaf is independent of the resolution.

Take another resolution, ν : X ′′ → X and look at the Cartesian diagram

X ′
∏
X

X ′′

pr1

zzvvvvvvvv pr2

$$IIIIIII

X ′

µ
%%LLLLLLLLLLL X ′′

ν
yyrrrrrrrrrrr

X
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So, X ′′′ = X ′
∏
X

X ′′ is a again a resolution of X, say θ : X ′′′ → X. Then,

θ∗(KX′′′) = µ∗(pr1(KX′′′)) = ν∗((pr2)∗(KX′′′)).

By Hartshorne (Chapter II), as X ′, X ′′, X ′′′ are all smooth and birationally equivalent, we
get

pr1(KX′′′) = KX′

pr2(KX′′′) = KX′′ .

Independence follows.

In view of the independence result just established, set KX = µ∗(OX′(KX′)), for any
resolution, µ : X ′ → X. The sheaf KX is coherent on X and it is called the Grauert-
Riemenschneider canonical sheaf of X.

Remark: The Kawamata-Vichweg Vanishing Theorem works for KX .

Proposition 1.36 If X is an irreducible variety and D is nef and big on X, then

Hp(X,KX ⊗OX(D)) = (0), p > 0.

Proof . Take a resolution, µ : X ′ → X, then KX = µ∗(KX′). The divisor µ∗(mD) is nef and
big on X ′ and X ′ is smooth. Then, by Kawamata-Vichweg,

Hp(X ′,OX′(KX′)⊗ µ∗(mD)) = (0).

Observe that

Rqµ∗(OX′(KX′)⊗ µ∗(mD)) = Rqµ∗OX′(KX′)⊗OX(mD).

Grauert-Riemenschneider (Theorem 1.34) implies the above is zero for q > 0 and the Leray
SS implies

Hp(X,KX ⊗OX(mD)) ∼= Hp(X ′,OX′(KX′ + µ∗mD)).

Take m = 1 and apply the Kawamata-Vichweg Vanishing Theorem to the right-hand side
to finish the proof.

Rational Singularities.

Definition 1.4 A variety, X, has rational singularities iff

(1) X is normal and

(2) There exists a resolution, µ : X ′ → X, so that Rpµ∗OX′ = (0), for all p > 0.
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Any resolution works if one does:

X ′′′

f

||yyyyyyyy
g

""EEEEEEEE

X ′

µ
""EEEEEEEE X ′′

ν
||yyyyyyyyy

X

As X ′′′, X ′, X ′′ are smooth, Rqf∗OX′′′ = (0) and Rqg∗OX′′′ = (0), for all q > 0. Also,
µ ◦ f = ν ◦ g implies (using the composed spectral sequence)

R•(µ ◦ f)∗OX′′′ R•(ν ◦ g)∗OX′′′

Rpµ∗(R
qf∗OX′′′)

KS

Rpν∗(R
qg∗OX′′′)

KS

The rest is clear. (Rational singularities are also called DuVal singularities , after Duval who
studied them for surfaces—1934.)

Proposition 1.37 Suppose X has rational singularities and D is nef and big on X. Then,

Hp(X,OX(−D)) = (0), p < dimX.

Proof . Make a resolution of singularities, µ : X ′ → X, then µ∗D is big and nef. Apply the
Kawamata-Vichweg Vanishing Theorem to µ∗D: we get

Hp(X ′, µ∗(−D)) = (0), p < dimX ′.

By the projection formula

Rpµ∗(OX′(µ∗(−D))) = Rpµ∗OX′ ⊗OX(−D),

and the right-hand side vanishes by rational singularities. The Leray SS tells us that

Hp(X,OX(−d)) −̃→ Hp(X ′,OX′(−µ∗D))

and the proposition follows.

Theorem 1.38 (Fujita’s Vanishing Theorem) Say X is a projective scheme of finite type,
H is an ample line bundle on X and F is a coherent OX-module. There exists an
m0 = m0(F , H), so that for all nef, D,

Hp(X,F(mH +D)) = (0), p > 0, m ≥ m0.
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Remark: If D = (0), this is Serre’s ampleness criterion. The content of this theorem is that
the result holds for all nef divisors with the same m0.

Proof . If X is a curve, the theorem holds by Riemann-Roch. What about non-reduced,
reducible, etc.?

Note that: H ample on X iff H � Xred is ample on Xred and H is ample on X iff
H � irred. components of X each are ample.

Therefore, we may assume that X is reduced and irreducible. We use induction on dimX.
Then it will be true of the support, Supp(F), since dim(Supp(F)) < dimX.

Claim. Say there is an integer, a, so that the result is true for F = OX(aH), then the
result holds for all F on X.

For, given OX(biH), i = 1, . . . , t, we can twist sufficiently high (depending on the bi’s)
and get above m for aH, then the result holds for

t∐
i=1

OX(biH)li .

Now, Serre proved (FAC): Given F on X, we have

· · · −→ OX(b2H)p2 −→ OX(b1H)p1 −→ 0

is exact. If only finitely many bi’s appear, then using exact sequences and the result for the
bi’s, we get m0 for F . If infinitely many terms appear, the cohomology for F uses in higher
dimensions the cohomology for the Ki’s where

Ki = Ker (OX(biH) −→ Ki−1)

and in high dimensions any cohomology on X is zero. We are reduced to the case:
F = O(aH), for a >> 0.

Now, take a resolution of singularities

µ : X ′ → X,

and look at
OX′(KX′) and KX = µ∗OX′(KX′)

where KX is the Grauert-Riemenschneider canonical sheaf on X. As a >> 0,
µ∗(OX(aH))−KX′ is generated by its sections. Take, σ1, a nontrivial section, we get

0 −→ OX′
“σ′′−→ OX′(µ∗OX(aH))⊗OX′(KX′)

D.

Therefore, we get
0 −→ OX′(KX′) −→ OX′(µ∗OX(aH)).
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As µ∗ is left exact, using the projection formula we get

0 −→ KX
u−→ OX(aH) −→ coku −→ 0.

Now, coku has lower dimensional support. Were the theorem true when F = KX , then we
would be done using the cohomology sequence. Thus, we must show

Hp(X,KX ⊗OX(mH)⊗OX(D)) = (0) (†)

if p > 0, m ≥ m0 and all D (nef). Now, the sheaf inside this cohomology is

Rpµ∗OX′(KX′)⊗ µ∗(µ∗(mH +D)).

By the Grauert-Riemanschneider Theorem and Leray, we deduce that the cohomology group
in (†) is

Hp(X ′,OX′(KX′) + µ∗(mH +D))

and µ∗(mH +D)) is big and nef. So, by Kawamata-Vichweg Vanishing, this group vanishes
(independently of D) and the proof is complete.

Here is an interesting consequence of Fujita’s Theorem:

Theorem 1.39 Say X is projective, with dimX = n. If F is a coherent sheaf on X, then
dimHp(X,F(mD)) = O(mn−p) whenever D is nef.

Proof . PickH very ample onX andH should avoid all irreducible subvarieties corresponding
to the associated primes of the given F . Pick D, nef. Look at 0, D, 2D, . . . , rD, all nef. Then,
Fujita’s Theorem implies that

Hp(X,F(H + rD)) = (0), p > 0.

Use induction on dimX. For curves, the result holds by Riemann-Roch. Then, we have the
exact sequence

0 −→ F(rD) −→ F(H + rD) −→ F(H + rD) � H −→ 0.

Apply cohomology and induction for p ≥ 1; we get

dimHp(X,F(rD)) ≤ dimHp−1(H,F(H + rD) � H)

and on the right-hand side, this yields

O(r(n−1)−(p−1)) = O(rn−p),

as claimed.

Question. Look at a curve and an ample divisor, D, on it. Thus, degD > 0. We
know mD is very ample in general for m >> 0 but on a curve there is a uniform bound,
m ≥ 2g + 1.
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Given X, with dimX > 1 and D ample, is there some m = m(X) such that mD is very
ample?

The answer is no, even if X is a smooth projective surface. Here is an example due to
Kollar.

Start with an elliptic curve, E, and make the surface, S = E
∏
E. Let F1, F2 be the

obvious fibres. Given n, write

An = F1 + (n2 − n+ 1)F2 − (n− 1)∆,

a family of divisors on S. Observe that

F 2
1 = F 2

2 = ∆2(2− 2g) = 0;F1 · F2 = 1;Fi ·∆ = 1.

Consequently,

A2
n = 2[n(n2 − n+ 1)− n(n− 1)− (n− 1)(n2 − n+ 1)]

= 2(n2 − n+ 1− n2 + n) = 2.

Also, An · F1 = n2 − 2n + 2 > 0 if n ≥ 1, An · F2 = 1 > 0 and An · ∆ = n2 + 1 > 0. By
Nakai-Moishezon, An is ample for n ≥ 1.

Let D = F1 + F2 and look at 2D. As 2D is ample there is a smooth B ⊆ |2D|. Now,
take the cyclic cover of S of degree 2 branched along B, call it X. Let π : X → S and write
Dn = π∗An.

Recall that for the cyclic cover of degree r,

π∗OX = OS
∐
OS(−B)

∐
· · ·
∐
OS(−(r − 1)B).

For us,

π∗OX = OS
∐
OS(−B).

Then,

π∗(OX(nDn)) = OS(nAn)
∐
OS(nAn −B).

There is a canonical injection

H0(S,OS(nAn)) −→ H0(X,OX(nDn)).

Were this injection an isomorphism, then nDn could not be very ample (dimensions are too
small). Therefore, the number corresponding to Dn to make is very ample is at least n. It
remains to prove that

H0(S,OS(nAn −B)) = (0).

We have

(nA−B)2 = (nA− 2(F1 + F2))2

= 2n2 + 8− 4n(An · F1 + An · F2)

= 2n2 + 8− 4n(n2 − 2n+ 2 + 1)

= −O(n3) < 0 if n ≥ 3.

Therefore, out cohomology group vanishes.


