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Preface

This manuscript is based on lectures given by Steve Shatz for the course Math 624/625–
Algebraic Geometry , during Fall 2001 and Spring 2002. The process for producing this
manuscript was the following: I (Jean Gallier) took notes and transcribed them in LATEX at
the end of every week. A week later or so, Steve reviewed these notes and made changes and
corrections. After the course was over, Steve wrote up additional material that I transcribed
into LATEX. We also met numerous times from 2002 until 2005 to make corrections and
additions.

The following manuscript is thus unfinished and should be considered as work in progress.
Nevertherless, given that the EGA’s (Elements de Géométrie Algébrique) of Grothendieck
and Dieudonné are a formidable and rather inpenetrable source, we feel that the material
presented in this manuscript will be of some value. Indeed, some material from the EGA’s
is presented here in a more accessible form. We also hope that the exposition of spectral
sequences given in this manuscript will be somewhat illuminating. In particular, Steve
worked out a presentation of Serre duality which sheds some new light on its connection to
spectral sequences.

We apologize for the typos and mistakes that surely occur in the manuscript (as well as
unfinished sections and even unfinished proofs!). Still, our hope is that by its “freshness,”
this work will be of value to algebraic geometry lovers.

Please, report typos, mistakes, etc. (to Jean). We intend to improve and perhaps even
complete this manuscript.

Philadelphia, February 2011 Jean Gallier
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Chapter 1

Elementary Algebraic Geometry

1.1 History and Problems

Diophantus (second century A.D.) looked at simultaneous polynomial equations with Z-
coefficients, asking for Z-solutions. For example, he looked at equations (1.1)–(1.4) among
the following equations:

x2 + y2 = z2, (1.1)

x3 + y3 + z3 = 0, (1.2)

ax3 + by3 + cz3 = 0, (1.3)

ax3 + bx+ c = y2, (1.4)

3x3 + 4y3 + 5z3 = 0, (1.5)

xn + yn = zn (n ≥ 4), (1.6)

axn + byn = czn(n ≥ 4). (1.7)

Diophantus found all solutions for the first equation, and some answers for some special
a, b, c for the third equation. Faltings proved that the last equation has only finitely many
solutions in algebraic numbers (in 1983).

Cardano and Tartaglia (fifteenth century) found methods (and formulae) to solve cubic
and quartic equations in one variable.

The marriage of algebra and geometry comes with Descartes (sixteenth century).

Gauss solved the linear case completely (linear equations).

After that, there were Riemann, Halphen, Max Noether, Picard and Simart (function
theory), Castelnuovo, Enriques, and Severi (beginning the twentieth century), among others.

Given a field k, the standard elementary problem is the following:

7
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Given p polynomials f1, . . . , fp ∈ k[x1, . . . , xq], consider the system of simultaneous equa-
tions

f1(x1, . . . , xq) = 0,

. . . . . . . . . (1.8)

fp(x1, . . . , xq) = 0,

and say “something” about the solutions.

If the fj ’s are linear, by Gauss-Jordan elimination, we get existence, or nonexistence,
and an algorithm to solve the system. We also get a geometric description of the set of the
solutions: it is the translate of some linear space.

What about existence?

Stated this way, the question is vague. For example, over Q, the equation

x2 + y2 + 1 = 0

has no solutions. It also has no solutions over R, but it has plenty of solutions over C.

The equation
3x+ 6y = 1

has no integer solutions, but it has plenty of rational solutions.

Thus, for this problem, we should ask for solutions in some algebraically closed field (at
least the algebraic closure, k, of k).

We observed that the problem is fully solved when the fj ’s are linear. Is it easier to solve
the problem when the fj ’s are at most quadratic, rather than solving the general problem?
The answer is No. If we had a method for solving Problem (1.8) in the quadratic case, then
we could solve the general problem.

The proof consists in introducing new variables and new equations to lower the degree
of terms to at most 2. For instance, consider the cubic terms

x3, x2y, xyz.

In the first case, let u be a new variable, and add the new equation

u = x2.

Occurrences of x3 are then replaced by xu.

In the second case, let u be a new variable, and add the new equation

u = xy.

Occurrences of x2y are then replaced by xu.
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In the third case, let u be a new variable, and add the new equation

u = yz.

Occurrences of xyz are also replaced by xu.

Observe that the new equations have degree 2, which is the desired goal. The general-
ization to terms of higher degree is straightforward.

Going back to existence, note that (1.8) clearly has no solutions if we can find some
gj ∈ k[x1, . . . , xq] such that

g1f1 + · · ·+ gpfp = 1. (1.9)

Indeed, a simultaneous solution of (1.8) would yield 0 = 1. A famous theorem of Hilbert,
the Nullstellensatz (1893), tells us that if (1.8) is not “obviously inconsistent” (in the sense
that equation 1.9 holds), then it has a solution in the algebraic closure k of k.

Given the system (1.8), assume that we have m polynomials F1, . . . , Fm and some poly-
nomials gij and hij such that

Fi =

p∑

j=1

gijfj and fi =

m∑

j=1

hijFj,

then the system

F1(x1, . . . , xq) = 0,

. . . . . . . . . (1.10)

Fm(x1, . . . , xq) = 0,

has the same set of solutions as the system (1.8). This means that if the ideals (f1, . . . , fp) and
(F1, . . . , Fm) (in k[x1, . . . , xq]) are identical, then (1.8) and (1.10) have the same solutions.

Thus, the solution set of a system of polynomial equations only depends on the ideal
generated by the equations. Now recall Hilbert’s basis theorem (1890, see Atiyah and Mac-
donald [2], Theorem 7.5, Chapter 7, or Zariski and Samuel [60], Theorem 1, Chapter IV,
Section 1): Every ideal

A ⊆ k[x1, . . . , xq]

is finitely generated by some polynomials f1, . . . , fp. Thus, we can talk about the “zeros”
of the ideal A, i.e., the simultaneous solutions of (1.8) for some finite set of generators,
f1, . . . , fp, of A.

What do we mean by describing the solutions geometrically?

The above statement is vague. We mean, make some kind of picture of the solutions.
Some relevant questions are:

1. Is the picture connected?
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2. Is it compact?

3. Are there holes?

4. What are the functions on the space of solutions?

We seek to describe as well as possible some nontrivial invariants of the geometric picture.

Example 1.1 Consider the equation

x2 + y2 = 1.

Over R, a good picture of the solutions is a circle.

Over C, it is a 2-sphere without two points. This can be seen as follows. By stereographic
projection from the North pole onto an equatorial plane, the complex plane C is in bijection
with the sphere S2 with the North pole N removed. The equation

x2 + y2 = 1

can be written as

(x+ iy)(x− iy) = 1,

and by letting w = x+ iy and z = x− iy, we see that it is equivalent to

wz = 1.

Clearly, every w 6= 0 determines a unique z, and thus, the solution set is indeed S2−{N, S}.

Later on, we will show the following important fact : Systems of the form (1.8) never
have a compact set of solutions in C, unless the solution set is finite.

Example 1.2 Note that k is the solution set corresponding to the empty ideal in k[x].
Similarly, k

n
is the solution set corresponding to the empty ideal in k[x1, . . . , xn]. We also

denote k
n
by An(k), and call it the points of affine n-space over k.

Can we view A1(k)− {0} as the solution set of some set of equations? Yes indeed. Let
A be the ideal, (zw − 1), generated by the polynomial zw − 1 ∈ k[z, w]. The solutions of

zw − 1 = 0

are in bijection with the set of all z ∈ A1(k)− {0}.

Example 1.3 We will prove later on that A2(k) − {0} is not the solution set of any set
of equations. On the other hand, A2(k) − {0} is “locally” an algebraic solution set. It is
possible to cover A2(k)− {0} with two “affine patches.” Indeed,
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(a) Consider k[x, y, z] and the equation

xz = 1.

(b) Consider k[x, y, t] and the equation

yt = 1.

The solution set, †a, of xz = 1 is in bijection with

{(x, y) ∈ A2(k) | x 6= 0}

and the solution set, †b, of yt = 1 is in bijection with

{(x, y) ∈ A2(k) | y 6= 0},

and thus,

†a ∪ †b = A2(k)− {0}.

This suggests that we define algebraic “things” (i.e., our varieties) as topological spaces
that are locally solution sets of equations of the form (1.8).

Generally speaking, to “do geometry,” we need

(1) A topological space.

(2) A notion of locally standard objects. For example, in the case of real manifolds, a
ball in Rn. In the case of a complex manifold, a ball in Cn. In the case of algebraic
varieties, something defined by a system of the form (1.8).

(3) Some set of functions on the space (perhaps locally defined). For example, in the real
case, Ck-functions, or smooth functions, or analytic functions. In the complex case,
holomorphic functions.

(4) Maps between the objects defined by (1), (2), (3).

Another theme in algebraic geometry is that of a classifying space (or moduli space).
Assume that we have some geometric algebraic object X . This object X is at least a
topological space.

Question: Given X , with some topological structure, “classify” all the algebraic struc-
tures it carries, compatible with the underlying topological structure.
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Example 1.4 Consider the ellipic curve of equation

y2 = ax3 + bx+ c, (a, b, c ∈ C).

where the righthand side has distinct roots. Geometrically, this is a one-hole torus with one
point missing. If we compactify, we obtain a usual torus.

Problem 1. What are the algebraic structures (up to some suitable notion of isomorphism)
carried by a torus?

The collection of algebraic structures turns out to be in one-to-one correspondence with
the affine line A1

C, which is again an algebraic variety.

Problem 2. Given X (an algebraic variety), classify all the subobjects of X .

This problem can only be handled if we fix some discrete invariants. Then, it might
be possible to classify the subobjects, and the classifying space might also be an algebraic
variety.

Consider the special case where k = C and X = An. We would like to classify all the
subvarieties of An of the form (1.8). This is a very difficult problem. Let us consider the
easier problem which is to classify the linear (affine) subvarieties of An. Using translation,
we may assume wlog1 that they pass through the origin (that is, we have a point in Aq

as one of the pieces of classifying data). The discrete invariant is the dimension d, where
0 ≤ d ≤ n. The cases d = 0, n are trivial. Let G(n, d) denote the space of all linear subspaces
of dimension d in An through 0.

Observe that there is an isomorphism

G(n, d) ∼= G(n, n− d)

given by duality. We will treat the case d = 1, since it is simpler. We need to classify all the
lines through the origin 0 in An. Let Σ be the unit sphere in An, that is,

Σ =
{
z
∣∣∣
∑
|zi|2 = 1, z = (z1, . . . , zn)

}
=
{
(x, y)

∣∣∣
∑

x2i + y2i = 1
}
= S2n−1.

The sphere S2n−1 is compact in the complex topology. Given any line L ∈ G(n, 1), consider
L ∩ Σ. We can define L parametrically by

L = {(zj) | zj = αjt, t ∈ C, some αj 6= 0}.

Then,

L ∩ Σ =
{
t
∣∣∣
∑
|αj|2|t|2 = 1

}
=

{
t

∣∣∣∣ |t|2 =
1∑ |αj |2

}
.

1We use the abbreviation “wlog” for “without loss of generality.”
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Thus, L ∩ Σ is a circle S1 of radius 1√∑
|αj |2

. Since a line through 0 is determined by just

another point, observe that for any two lines L, L′ ∈ G(n, 1),

L = L′ iff (L ∩ Σ) ∩ (L′ ∩ Σ) 6= ∅.

Thus, the lines through 0 are in bijection with the quotient space S2n−1/S1. The quotient
space is thereby compact. Therefore, G(n, 1) is not globally of the form (1.8). However,
G(n, 1) is locally of the form (1.8). To see this, it is easier to consider G(n, n− 1), which is
isomorphic to G(n, 1) (by duality).

Let H ∈ G(n, n− 1) be a hyperplane with equation

α1x1 + · · ·+ αnxn = 0,

where αj 6= 0 for some j. If we define an equivalence relation ∼ on An so that

(α1, . . . , αn) ∼ (β1, . . . , βn) iff βj = λαj for some λ 6= 0, 1 ≤ i ≤ n,

then the map
H 7→ [(α1, . . . , αn)]∼,

where [(α1, . . . , αn)]∼ denotes the equivalence class of (α1, . . . , αn), is a bijection between
G(n, n− 1) and An/ ∼. Now consider

Uj = {[(α1, . . . , αn)] | αj 6= 0}.

In each equivalence classes, there is a unique representative with αj = 1, and so,

Uj ∼= An−1,

via
(α1, . . . , 1, . . . , αn) 7→ (α1, . . . , αj−1, αj+1, αn).

As a consequence,

G(n, n− 1) =
n⋃

j=1

Uj ,

where each Uj is isomorphic to An−1, and thus, G(n, n− 1) is locally of the form (1.8).

1.2 Affine Geometry (first level of abstraction), Zariski

Topology

In this section, we set up the basic correspondence between ideals in k[X1, . . . , Xq] and
subsets of Aq. Let k be a fixed field, and let Ω be a field such that k ⊆ Ω and the following
properties hold:
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(1) Ω is algebraically closed.

(2) The transcendence degree of Ω over k is ℵ0:
tr.dk Ω = ℵ0.

For any q ≥ 0, we consider ideals A such that A ⊆ k[X1, . . . , Xq] or A ⊆ k[X1, . . . , Xq], and
write

Aq = Aq
k = Ωq.

Definition 1.1 Given any ideal A ⊆ k[X1, . . . , Xq], define Vk(A) by

Vk(A) = {(ξ) ∈ Aq | (∀f ∈ A)(f(ξ) = 0)}.
We call Vk(A) the set of Ω-points of the affine k-variety determined by A. With a slight
abuse of language, we call Vk(A) the affine k-variety determined by A. Similarly, given any
ideal A ⊆ k[X1, . . . , Xq], define Vk(A) by

Vk(A) = {(ξ) ∈ Aq | (∀f ∈ A)(f(ξ) = 0)}.
We call Vk(A) the set of Ω-points of the (geometric) affine k-variety determined by A, or for
short, the (geometric) affine variety determined by A.

To ease the notation, we usually drop the subscript k or k and simply write V for Vk or
Vk. Generally, V means Vk, unless specified otherwise.

If A is a (commutative) ring (with unit 1), recall that the radical,
√
A, of an ideal, A ⊆ A,

is defined by √
A = {a ∈ A | ∃n ≥ 1, an ∈ A}.

A radical ideal is an ideal, A, such that A =
√
A.

The following properties are easily verified. Following our conventions, they are stated
for V = Vk, but they hold as well for Vk.

V ((0)) = An, V ((1)) = ∅ (1.11)

V (A ∩B) = V (AB) = V (A) ∪ V (B) (1.12)

A ⊆ B implies that V (B) ⊆ V (A) (1.13)

V (ΣαAα) =
⋂

α

V (Aα) (1.14)

V (
√
A) = V (A). (1.15)

From (1.11), (1.12), (1.14), it follows that the sets V (A) = Vk(A) can be taken as closed
subsets of Aq, and we obtain a topology on Aq. This is the k-topology on Aq. If we consider
ideals in k[X1, . . . , Xq] (i.e., sets of the form Vk(A)), we obtain the Zariski topology on Aq.

Remark: Each set of the form V (A) inherits a topology, and so, each set of the form (1.8)
is topologized.
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� The Zariski topology is not Hausdorff (except when V (A) consists of a finite set of
points).

Let us see that Aq is not Hausdorff in the Zariski topology. Let P,Q ∈ Aq, with P 6= Q.
The line PQ is isomorphic to A1. Thus, it is enough to show that A1 is not Hausdorff.
Consider any ideal A ⊆ k[X ]. Then, A is a principal ideal, and thus

A = (f)

for some polynomial f , which shows that V (A) = V ((f)) is a finite set. As a consequence,
the closed sets of A1 (other than A1) are finite. Then, the union of two closed sets (distinct
from A1) is also finite, and thus distinct from A1.

� The topology on Aq is not the product topology on A1
∏ · · ·∏A1.

For example, when n = 2, the closed sets in A1
∏

A1 are those sets consisting of finitely
many horizontal and vertical lines, and intersections of such sets. However

X2 + Y 2 − 1 = 0

defines a closed set in A2 not of the previous form.

To go backwards from subsets of Aq to ideals, we make the following definition.

Definition 1.2 Given any subset S ⊆ Aq, define Ik(S) and Ik(S) by

Ik(S) = {f ∈ k[X1, . . . , Xq] | (∀s ∈ S)(f(s) = 0)}

and
Ik(S) = {f ∈ k[X1, . . . , Xq] | (∀s ∈ S)(f(s) = 0)}.

The following properties are easily shown (following our conventions, they are stated for
I, i.e., Ik, but they also hold for Ik).

S ⊆ T implies that I(T ) ⊆ I(S) (1.16)

A ⊆ I(V (A)) (1.17)

What about V (I(V (A)))? By (1.17), we have

V (I(V (A))) ⊆ V (A).

If ξ ∈ V (A) and f ∈ I(V (A)), so that f(ξ) = 0, then, ξ ∈ V (I(V (A))). Thus,

V (I(V (A))) = V (A). (1.18)

Given a set S ⊆ Aq, we get the closed set V (I(S)).
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Claim. The Zariski closure (resp. k-closure) of S in Aq is simply V (I(S)) (resp.
V (Ik(S))).
Proof . It is clear that

S ⊆ V (I(S)).

Pick any Zariski-closed set V (A) such that S ⊆ V (A). Then, we have

I(V (A)) ⊆ I(S),

and so,

V (I(S)) ⊆ V (I(V (A))) = V (A),

proving that V (I(S)) is indeed the smallest closed Zariski set containing S.

In summary

S ⊆ V (I(S)) and V (I(S)) is the Zariski closure (resp. k-closure) of S. (1.19)

In analogy with (1.18), we also have

I(V (I(S))) = I(S). (1.20)

Now, V (A) = V (B) implies that

I(V (A)) = I(V (B)).

Conversely, given V (A) and V (B), if I(V (A)) = I(V (B)), then

V (A) = V (I(V (A))) = V (I(V (B))) = V (B).

Thus

I(V (A)) = I(V (B)) iff V (A) = V (B). (1.21)

In other words, closed sets are determined by the ideals associated with them. Since ideals
in k[X1, . . . , Xq] have the ascending chain condition (ACC), we find that affine varieties in Aq

have the descending chain condition (DCC). From this, it follows that affine varieties satisfy
the Heine-Borel property (every open cover has a finite subcover). Hence, they are quasi-
compact (reserving the term compact for quasi-compact and Hausdorff). Unfortunately,
quasi-compactness is a very weak property.

A notion aligned to connectedness for non-Hausdorff topologies is the notion of irreducible
set. Here is the definition for our topologies.

Definition 1.3 An affine variety V ⊆ Aq is k-irreducible (resp. geometrically irreducible) if
V is not the union of two properly contained k-closed (resp. Zariski-closed) subsets of V .
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� A variety V may be k-irreducible but not geometrically irreducible. Consider the case
where k = Q and Ω ⊆ C, let f(X, Y ) = X2 + Y 2, and let

V = {ξ ∈ Ω2 | ξ21 + ξ22 = 0}.

Clearly, V is Q-irreducible. However, if we adjoin i to Q, then

X2 + Y 2 = (X + iY )(X − iY ).

Let
W1 = {ξ | ξ1 + iξ2 = 0}, W2 = {ξ | ξ1 − iξ2 = 0}.

Then, V = W1 ∪W2, but the Wj’s are Q-closed, but not Q-closed.

Proposition 1.1 An affine variety V ⊆ Aq is k-irreducible iff Ik(V ) is a prime ideal in
k[X1, . . . , Xq].

Proof . First, assume that Ik(V ) = P is not prime and that V is irreducible. If so, there are
some polynomials f, g ∈ k[X1, . . . , Xq] such that f, g /∈ P and fg ∈ P. Consider the ideals
A = (P, f) and B = (P, g), and let V1 = V (A), V2 = V (B). Since

P ⊆ A = (P, f) and P ⊆ B = (P, g),

we have
Vi ⊆ V

for i = 1, 2. Furthermore, V1 6= V , because f vanishes on V1, since V1 = V (A) and A = (P, f),
but f does not vanish on V , since f /∈ P and P = Ik(V ). Similarly, V2 6= V . However, we
claim that

V = V1 ∪ V2.
Indeed, observe that

AB ⊆ P,

since every element of AB is of the form
∑
figi where fi ∈ A and gi ∈ B, and thus,

V = V (P) ⊆ V (AB) = V (A) ∪ V (B) ⊆ V.

But then, V is reducible, a contradiction.

Conversely, assume that V is reducible and that I(V ) is prime. Then,

V = V1 ∪ V2

where Vi 6= V for i = 1, 2. So,

I(V1) ⊃ I(V ) and I(V2) ⊃ I(V ).
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Let f ∈ I(V1) − I(V ) and g ∈ I(V2) − I(V ). Then fg vanishes on V = V (I(V )), since
f ∈ I(V1) implies that f vanishes on V1, g ∈ I(V2) implies that g vanishes on V2, and
V = V1 ∪ V2. Therefore, fg ∈ I(V ), which contradicts the fact that I(V ) is prime.

Corresponding to the decomposition into connected components, we obtain the decompo-
sition of an affine variety into k-irreducible varieties. First, define the notion of an irredundant
decomposition.

Definition 1.4 Given an affine variety V ⊆ Aq, a decomposition of V is a finite family of
k-irreducible varieties V1, . . . , Vt such that

V = V1 ∪ · · · ∪ Vt.

Such a decomposition is irredundant if for no distinct i, j do we have Vi ⊆ Vj.

Theorem 1.2 Every affine variety V ⊆ Aq has a decomposition

V = V1 ∪ · · · ∪ Vt

into k-irreducible varieties. The decomposition of V is unique provided it is irredundant.

Proof . Let S be the set of all varieties V ⊆ Aq such that V is not the finite union of some
k-irreducible varieties. We want to show that S = ∅. If not, by the (DCC), S has a minimal
element V0. By definition of S, V0 is not irreducible. Thus,

V0 = V1 ∪ V2,

where Vj 6= V0, for j = 1, 2. Since V0 is minimal, V1, V2 /∈ S, which implies that both V1
and V2 can be expressed as finite unions of k-irreducible varieties, and thus, V0 can also be
expressed as a finite union of k-irreducible varieties, a contradiction.

Let us now assume that

V = V1 ∪ · · · ∪ Vt =W1 ∪ · · · ∪Wp

are two irredundant decompositions of V . Then,

Wi = V ∩Wi =

t⋃

j=1

Vj ∩Wi.

Since Wi is irreducible, there is some j = j(i) such that

Wi = Vj ∩Wi

which implies that
Wi ⊆ Vj(i).
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If we repeat the argument starting with Vj 6= Wi, we have some k = k(j) such that

Vj ⊆ Wk(j).

But then,
Wi ⊆ Vj ⊆Wk,

contradicting the fact that the decompositions are irredundant. Thus, we must have k = i,
and the Vj’s are in bijection with the Wj ’s.

The structure of irreducible k-varieties can be better understood using the concept of a
k-generic point. First, recall that a k-specialization of Ω is a ring homomorphism ϕ : R→ Ω
(the identity on k) defined on a subring R of Ω which contains k (k ⊆ R ⊆ Ω).

Definition 1.5 For an affine k-variety V ⊆ Aq, a k-generic point for V is a point ξ ∈ Aq

such that:

(1) ξ ∈ V .

(2) If f ∈ k[X1, . . . , Xq] and f(ξ) = 0, then f ∈ Ik(V ), i.e., the restriction of f to V is
identically zero.

Proposition 1.3 If V ⊆ Aq is an affine variety, then the variety, V , is k-irreducible iff V
has a k-generic point.

Proof . Assume that V is k-irreducible. Then, I(V ) is a prime ideal and k[X1, . . . , Xq]/I(V )
is a finitely generated k-algebra which is an integral domain. Let x1, . . . , xq be the images of
X1, . . . , Xq under the residue map. Then k[X1, . . . , Xq]/I(V ) is isomorphic to k[x1, . . . , xq].
However, the transcendence degree, r, of the fraction field, k(x1, . . . , xq), is finite and r ≤ q.
We may reorder the xi’s so that x1, . . . , xr are algebraically independent and k[x1, . . . , xq] is
algebraic over k[x1, . . . , xr]. Since Ω has transcendence degree ℵ0, there exist ξ1, . . . , ξr in Ω
which are algebraically independent. Thus, there is a k-isomorphism

k[x1, . . . , xr] ∼= k[ξ1, . . . , ξr].

Since k[x1, . . . , xq] is algebraic over k[x1, . . . , xr] and k[x1, . . . , xr] is embedded in Ω, the fact
that Ω is algebraically closed implies that there is an extension

θ : k[x1, . . . , xq]→ Ω

which is a k-monomorphism. Let
ξr+j = θ(xr+j),

where 1 ≤ j ≤ q − r, and let

ξ = (ξ1, . . . , ξr, ξr+1, . . . , ξq) ∈ Ωq.
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Clearly, the map
θ : k[X1, . . . , Xq] −→ k[x1, . . . , xq] →֒ Ω,

which is given by Xj 7→ ξj, has kernel I(V ). We have

θ(f(X1, . . . , Xq)) = f(ξ1, . . . , ξq)

for every f ∈ I(V ) and
θ(f) = 0 iff f(ξ) = 0.

Therefore, ξ is k-generic for V .

Conversely, assume that ξ is k-generic for V . For any ξ ∈ Aq, let

P(ξ) = {f ∈ k[X1, . . . , Xq] | f(ξ) = 0}.

Clearly, P(ξ) is a prime ideal. If ξ is a k-generic point, then (1) & (2) say that

Ik(V ) = P(ξ),

and thus, Ik(V ) is prime and V is k-irreducible.

Example 1.5 Let f(X, Y ) = X2 + Y 2 − 1 ∈ Q[X, Y ]. Then, V (f) is geometrically irre-
ducible. Pick π ∈ C (the circumference of the unit circle), and consider the map

X 7→ π.

Then, we get
Q[X, Y ] = Q[X ][T ]/(T 2 = 1− π2).

We can find a root, θ, of 1− π2 in C. Then, ξ = (π, θ) is Q-generic.

Remark: Given ξ, η ∈ Aq, we say that η is a k-specialization of ξ if there is a k-specialization
ϕ : R→ Ω, of Ω, denoted by

ξ −→
k

η,

so that

1. k[ξ1, . . . , ξq] ⊆ R.

2. ϕ(ξi) = ηi, 1 ≤ i ≤ q.

Then, the following properties are equivalent (DX).2

(1) η is a k-specialization of ξ.

2Here and in what follows, the symbol (DX) denotes an unsupported statement whose proof should be
easily suppliable by the reader. If the reader cannot supply the proof, then he or she, should turn back a
few pages and reread the material.
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(2) For every f ∈ k[X1, . . . , Xq], if f(ξ) = 0 then f(η) = 0.

(3) P(ξ) ⊆ P(η).

Remark: Given ξ, η ∈ V , one should think of a specialization

ξ −→
k

η

as “representing a sequence in V whose limit is η.” In this representation, ξ stands for the
whole sequence.

Proposition 1.4 If V ⊆ Aq is a k-irreducible affine variety and ξ is a k-generic point of
V , then V consists exactly of the k-specializations of ξ. Conversely, if ξ is any point of Aq,
then the collection of all its k-specializations is a k-irreducible variety in Aq. Indeed, this
variety is exactly V (P(ξ)) and ξ is a k-generic point of it. We have

k-closure{ξ} = V (P(ξ)).

Proof . Say ξ is a k-generic point for V , where V is a k-irreducible variety. Then,

Ik(V ) = P(ξ).

Let η be a k-specialization of ξ, then, we have the isomorphisms

k[X1, . . . , Xq]/Ik(V ) ∼= k[X1, . . . , Xq]/P(ξ) ∼= k[ξ1, . . . , ξq],

and the surjection
ϕ : k[ξ1, . . . , ξq] −→ k[η1, . . . , ηq]

given by the specialization ϕ. We also have the isomorphism

k[η1, . . . , ηq] ∼= k[X1, . . . , Xq]/P(η),

and thus, if f ∈ I(V ), then f ∈ P(ξ) ⊆ P(η), which implies f(η) = 0, so

η ∈ V (Ik(V )) = V.

Pick (z1, . . . , zq) ∈ V . If f ∈ P(ξ), then f ∈ I(V ), which implies f(z) = 0. Consequently,
there is a well-defined map

ξj 7→ zj,

which means that (z) is a k-specialization of ξ. Since

I(V (P(ξ))) = {g | g(ξ) = 0} = P(ξ)

and P(ξ) is prime, we see that V (P(ξ)) is k-irreducible and ξ is k-generic. The rest is trivial.

Remark: Observe that ξ is a k-closed (resp. Zariski-closed) point iff the coordinates of ξ
are in k, (resp. the coordinates of ξ are in k).
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� Note that the closure of a point is not necessarily a point. The Zariski topology is not
T1.

Recall that in discussing the question of existence of solutions to equation (1.8), we
asserted that the criterion of “non-obvious inconsistency” was a criterion for existence
(Hilbert’s Nullstellensatz). The following theorem is a weak version of this theorem and
is called the weak Nullstellensatz.

Remember that an ideal A in a ring A is a primary ideal if A 6= A and whenever xy ∈ A,
either x ∈ A or ym ∈ A for some m ≥ 1 (see Atiyah and Macdonald [2], Chapter 4, or Zariski
and Samuel [60], Chapter III, Section 9). This is equivalent to saying that A/A is not the
trivial ring {0} and that every zero-divisor in A/A is nilpotent. Of course, if A is a primary
ideal, then its radical

√
A is the smallest prime ideal containing A.

Theorem 1.5 (Weak Nullstellensatz) Let P be a prime ideal in k[X1, . . . , Xq]. Then, V (P)
is k-irreducible and I(V (P)) = P. If A is any ideal in k[X1, . . . , Xq], then

I(V (A)) =
√
A.

Proof . If P is prime then

k[X1, . . . , Xq]/P = k[x1, . . . , xq]

is a finitely generated algebra which is an integral domain. By the usual argument, there
are some ξ1, . . . , ξq ∈ Ω such that

k[x1, . . . , xq] ∼= k[ξ1, . . . , ξq],

i.e., P = P(ξ). By Proposition 1.4,

V = V (P) = V (ξ)

is a k-irreducible variety and
I(V (P(ξ))) = P(ξ).

Let A be any ideal of k[X1, . . . , Xq]. By the Lasker-Noether intersection theorem (see Zariski
and Samuel [60], Theorem 4, Chapter IV, Section 4, or Atiyah and Macdonald [2], Theorem
7.13, Chapter 7),

A =

n⋂

i=1

Qi,

where the Qi are primary ideals, and thus, the ideals Pi =
√
Qi are prime ideals. The ideals

Pi are called associated primes of A (they are uniquely determined by A, see Zariski and
Samuel [60], Theorem 6, Chapter IV, Section 5). We have

V (A) =

n⋃

i=1

V (Qi) =

n⋃

i=1

V (Pi).
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We can eliminate the terms V (Pi) which are already contained in some other variety V (Pj)
and keep only the minimal primes (called isolated primes , see Zariski and Samuel [60],
Chapter IV, Section 5); so, we have

V (A) =
⋃

i

V (Pi),

where the V (Pi)’s are isolated primes. Then, we get

I(V (A)) =
⋂

i

{I(V (Pi)) | Pi is an isolated prime} =
⋂

i

{Pi | Pi is an isolated prime}.

However, by commutative ring theory (see Zariski and Samuel [60], Theorem 10, Chapter
IV, Section 6),

√
A =

⋂

i

{Pi | Pi is an isolated prime}.

From now on, we will omit A in V (A), and just write V (if reference to A is clear).

Definition 1.6 If V ⊆ Aq is an affine k-variety, we define the k-algebra k[V ] by

k[V ] = k[X1, . . . , Xq]/Ik(V ),

and call k[V ] the affine coordinate ring of V .

The k-algebras k[V ] satisfy the following properties.

(1) Each k[V ] is a finitely generated k-algebra.

(2) Each k[V ] possesses no nonzero nilpotent elements.

(3) Given A, a finitely generated k-algebra which is reduced (i.e., it has no nonzero nilpotent
elements), there exists an affine k-variety V ⊆ Aq so that A ∼= k[V ].

(4) Given A, a reduced, finitely generated algebra over k, A is an integral domain iff any
variety V such that A ∼= k[V ] is k-irreducible.

These properties are all easy to prove, and we only prove (4).
Proof . By definition, since A is a finitely generated k-algebra, we have

A ∼= k[X1, . . . , Xq]/A

for some ideal A. Since A is reduced, we have

A = Ared = A/N(A)
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where N(A) is the nilradical ideal of A, and so,
√
A = A.

Letting V = V (A) ⊆ Aq, we get

I(V ) =
√
A = A,

and thus,

A ∼= k[V ].

Let us agree to write, given a subfield L of the layer Ω/k (i.e., k ⊆ L ⊆ Ω), V (L) for the
set of points of V (= V (Ω)) whose coordinates all lie in L. In referring to V (L), we will use
the locutions

V (L) = L-valued points of V = points of V with values in L = L-rational points of V .

If V ⊆ Aq is an affine k-variety, let

Homk−alg(k[V ], L)

denote the set of all ring homomorphisms θ : k[V ]→ L that are the identity on k.

Proposition 1.6 Let V ⊆ Aq be an affine k-variety, then, there is a bijection between V (L)
and the set Homk−alg(k[V ], L). Moreover, there is a bijection between k-closed subvarieties
of V and radical ideals, B, of k[V ]. The k-irreducible varieties of V correspond to prime
ideals of k[V ] (under the above correspondence).

Proof . We have V = V (A) and we can assume that A =
√
A, by choosing A = Ik(V ). Then,

k[V ] = k[X1, . . . , Xq]/A,

and if θ ∈ Homk−alg(k[V ], L), we have the diagram

Θ: k[X1, . . . , Xq] −→ k[X1, . . . , Xq]/A
θ−→ L,

and the composite map Θ determines (and is determined by) a point η = (η1, . . . , ηq), where
ηi = Θ(Xi). If f ∈ Ik(V ), then f ∈ KerΘ. However, Θ(f) = f(η), and therefore, if
f ∈ Ik(V ), then f(η) = 0 and η ∈ V (L).

Conversely, assume that η ∈ V (L). We have a k-algebra homomorphism

Θ: k[X1, . . . , Xq] −→ L

given by Θ(Xj) = ηj. Since η ∈ V (L), whenever f ∈ Ik(V ), we have f(η) = 0. Since
A = Ik(V ) and since k[V ] = k[X1, . . . , Xq]/A, every element of k[V ] is a coset of the form
f + A for some f ∈ k[X1, . . . , Xq] and we can define the function θ : k[V ]→ L by setting

θ(f + A) = Θ(f).
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Since KerΘ ⊆ A, this function is well defined, and θ : k[V ]→ L is a ring homomorphism.

Let ρ : k[X1, . . . , Xq] → k[V ] be the residue map, where k[V ] = k[X1, . . . , Xq]/A. As-
sume that W is a closed variety in V , this means that W corresponds to some ideal B of
k[X1, . . . , Xq] such that B =

√
B, and

A = I(V ) ⊆ I(W ) = B.

Then, B corresponds to the radical ideal ρ(B) = B/A in k[V ]. Conversely, every radical
ideal, Q, of k[V ] = k[X1, . . . , Xq]/A corresponds to the radical ideal B = ρ−1(Q) which
contains A. Hence, V (B) is a closed variety in V .

Remarks:

(1) Given any η ∈ V (L), the unique k-algebra homomorphism

Θ: k[X1, . . . , Xq] −→ L

given by Θ(Xj) = ηj has the property that

Θ(f) = f(η)

for every f ∈ k[X1, . . . , Xq]. In other words, Θ is the “evaluation homomorphism at η
(on k[X1, . . . , Xq]).” The unique k-algebra homomorphism θ : k[V ]→ L induced by Θ
leads us to define F (η) for every F ∈ k[V ] by setting

F (η) = θ(F ).

Again, η ∈ V (L) corresponds to the evaluation homomorphism at η (on k[V ]).

(2) The k-topology (resp. Zariski-topology) on Aq has as a basis the sets

Vf = {ξ ∈ Aq | f(ξ) 6= 0} = V ((f))c,

(where Xc denotes the set-theoretic complement of X) with f ∈ k[X1, . . . , Xq] (resp.
f ∈ k[X1, . . . , Xq]). Indeed, if U is any k-open set, then U c = V (A) for some ideal A,
and if A is generated by the family of polynomials (fα), then

V (A) =
⋂

α

V (fα);

So,

U =
⋃

α

V (fα)
c =

⋃

α

Vfα.

(3) In other references, such as Hartshorne [33], Grothendieck and Dieudonné (EGA I)
[30], or Dieudonné [13], the basic open sets Vf are also denoted by D(f).
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Proposition 1.7 If f is any polynomial in k[X1, . . . , Xq] (resp. f ∈ k[X1, . . . , Xq]), the
restriction, f ↾ V , of f to V is a continuous function on the affine variety V ⊆ Aq, when
we give Ω the k-topology (resp. the Zariski topology). Furthermore, the k-topology (resp. the
Zariski topology) is the weakest topology for which all such functions are continuous.

Proof . First, consider the Zariski topology. If ξ is a closed point in A1(Ω), then ξ ∈ k. Given
the polynomial f ∈ k[X1, . . . , Xq], the polynomial

g(X1, . . . , Xq) = f(X1, . . . , Xq)− ξ

has coefficients in k, and its zero locus is exactly the inverse image under f of the closed
point ξ. As Zariski-closed sets in A1(Ω) are merely finite sets of such ξ, we see that f−1 of
any Zariski-closed set in Ω is Zariski-closed in V .

When k is arbitrary, Galois theory shows that an irreducible k-closed set in Ω is a finite
set of k-conjugate Zariski-closed points in Ω (with p-powers multiplicities if necessary in
characteristic p > 0). Hence, we obtain the continuity of f .

Remark: Consider the image of Xj in k[V ] viewed as a continuous function. This is the
jth coordinate function on V , and these functions generate k[V ]. Therefore, k[V ] merits its
name of “coordinate ring.” Suppose V ⊆ Aq is a k-irreducible variety, let ξ be a k-generic
point; we may assume that

ξ = (ξ1, . . . , ξr, ξr+1, . . . , ξq)

where ξ1, . . . , ξr are algebraically independent over k and ξr+1, . . . , ξq are algebraic over
k[ξ1, . . . , ξr], then, to get any point, η ∈ V , we apply a k-specialization, ϕ, to ξ. We can
map ξ1, . . . , ξr anywhere. Intuitively, we have r degrees of freedom on V . This leads to the
definition of dimension.

Definition 1.7 Let V ⊆ Aq be any k-irreducible variety. The dimension, dimkV , of V is
defined by

dimkV = tr.dk(k[V ]).

If V is reducible, then there is a unique irredundant decomposition

V = V1 ∪ · · · ∪ Vt

into k-irreducible components, and we let

dimkV = max
i
{tr.dk(k[Vi])}.

Here are some of the desirable properties of the notion of dimension; all turn out to be
true, but we will not prove all of them right now.

(1) dimk A
q
k = q.
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(2) If V ⊆ Aq, then dimkV ≤ q

(3) If V ⊆W , where V and W are k-irreducible varieties, then

dimkV ≤ dimkW,

and, if dimkV = dimkW , then V = W .

(4) If W is a k-irreducible variety and V is a maximal k-irreducible subvariety of W , then

dimkV = dimkW − 1.

Remarks:

(1) Property (3) is false if we drop the assumption of k-irreducibility. For a counter-
example, consider the case where V consists of one line and W consists of two lines.

(2) Property (4) does not make sense if we drop the assumption of k-irreducibility. Con-
sider countably many distinct parallel lines in A2. Label them l1, l2, . . ., and write

Wj =

j⋃

i=1

li.

The Wj ’s form an infinite ascending chain of irreducible subvarieties of A2, and there
is no maximal proper subvariety of the variety

W =

∞⋃

j=1

Wj .

“There is no maximality without irreducibility.”

Properties (1) and (2) are clear; we will now prove (3). (Clearly, (3) implies (2)).

Proposition 1.8 Let V,W ⊆ Aq be two k-irreducible varieties. If V ⊆W , then

dimkV ≤ dimkW,

and if dimkV = dimkW , then V =W .

Proof . Let ξ be a k-generic point of W and η be a k-generic point of V . Then,

{ξ} =W and {η} = V.

There is a surjective k-specialization

ϕ : k[ξ1, . . . , ξq]→ k[η1, . . . , ηq],
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and we can arrange η1, . . . , ηq so that η1, . . . , ηr form a transcendence base, where r =
dimkV . We claim that ξ1, . . . , ξr are algebraically independent. If not, there is some nonzero
polynomial F ∈ k[X1, . . . , Xr] such that

F (ξ1, . . . , ξr) = 0,

and by applying ϕ, we get
F (η1, . . . , ηr) = 0.

Since η1, . . . , ηr form a transcendence base, we have F ≡ 0, and so ξ1, . . . , ξr are algebraically
independent. As a consequence

dimkV = r ≤ dimkW.

Let us now assume that ξ1, . . . , ξr also form a transcendence base forW . We have a surjection

k[W ] ∼= k[ξ1, . . . , ξq]
ϕ−→ k[η1, . . . , ηq] ∼= k[V ].

We claim that the map ϕ is also injective. If y ∈ k[W ] is in the kernel of ϕ, then y is algebraic
over ξ1, . . . , ξr, and y satisfies a polynomial equation

bl(ξ1, . . . , ξr)y
l + bl−1(ξ1, . . . , ξr)y

l−1 + · · ·+ b0(ξ1, . . . , ξr) = 0. (1.22)

Applying ϕ, since y ∈ Kerϕ, we have

ϕ(b0(ξ1, . . . , ξr)) = 0.

However, the restriction of ϕ to k[ξ1, . . . , ξr] is an isomorphism onto k[η1, . . . , ηr], and there-
fore,

b0(ξ1, . . . , ξr) = 0.

If we choose the polynomial in (1.22) to have minimal degree, we get a contradiction. There-
fore, k[V ] ∼= k[W ] and V = W .

We know that there is a one-to-one correspondence among the following three entities:

1. k-irreducible k-varieties V ⊆ Aq.

2. Prime ideals in k[X1, . . . , Xq].

3. k-equivalence classes of points ξ ∈ Aq: k-specialization.

To each such object, we can assign an integer r, (dimk V ), 0 ≤ r ≤ q, and this integer
behaves much like vector space dimension, in that:

(a) It is monotone:
V ⊆W implies dimV ≤ dimW.
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(b) If V ⊆W and dimV = dimW , then V = W .

Remark: Let f ∈ k[X1, . . . , Xq] and assume that U is k-dense in V . If f ↾ U = 0, then
f ↾ V = 0.
Proof . The point 0 is k-closed in A1, and f(U) ⊆ {0}. By continuity,

f(U) ⊆ f(U),

and therefore

f(V ) = f(U) ⊆ {0} = {0}.

Finally, we are in a position to prove Hilbert’s Nullstellensatz. First, we give various
equivalent statements of the Nullstellensatz.

Proposition 1.9 Let V = V (A) ⊆ Aq be an affine k-variety, then the following statements
are equivalent.

(α) If A 6= (1) then V (k) 6= ∅.

(β) The point set V (k) is k-dense in V (= V (Ω)). (Note: V (k) consists of the k-closed
points of V ).

(γ1) If f ∈ k[X1, . . . , Xq] and f ↾ V (k) = 0, then f ↾ V = 0.

(γ2) If f ∈ k[X1, . . . , Xq] and f ↾ V (k) = 0, then f ρ ∈ A for some power ρ ≥ 1.

(δ) Every maximal ideal of the ring k[X1, . . . , Xq] has the form

M = (X1 − α1, . . . , Xq − αq),

for some α1, . . . , αq ∈ k.

Proof . First, we prove that (β) implies (α). If assuming (β), we prove that V 6= ∅, we are
done. But if V = ∅, then by the weak Nullstellensatz (Theorem 1.5), we have I(V ) = (1) =√
A. As a consequence, A = (1), a contradiction.

(γ1)⇒ (β). Assume that if f ↾ V (k) = 0, then f ↾ V = 0. If so, f 6= 0 on V implies that
f 6= 0 on V (k). Thus, Aq

f ∩V 6= ∅ implies that Aq
f ∩V (k) 6= ∅. Since the sets Aq

f form a base

of the k-topology in Aq, V (k) is k-dense in V .

(γ2)⇒ (γ1). This is trivial.

(α) ⇒ (γ2) (Rabinowitch trick). Given f ∈ k[X1, . . . , Xq], assume that f = 0 on V (k).
We have V = V (A), and since A is finitely generated, A = (f1, . . . , fp) for some fi ∈
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k[X1, . . . , Xq]. Pick a new transcendental T independent of X1, . . . , Xq, and consider the
system of equations

f1 = 0, . . . , fp = 0, 1− Tf = 0

in the variables X1, . . . , Xq, T . These equations define a variety W in Aq+1. Observe that
W (k) = ∅, since if fi(ξ) = 0 for i = 1, . . . , q, and ξ ∈ V (k), then the equation 1 = 0 would
hold. By (α) applied to W , the ideal

(f1, . . . , fp, 1− Tf)
is equal to (1). Thus, there is some equation

1 =

p∑

i=1

gi(X1, . . . , Xq, T )fi(X1, . . . , Xq) + h(X1, . . . , Xq, T )(1− Tf).

If we specialize T to be 1/f , we get

1 =

p∑

i=1

gi(X1, . . . , Xq, 1/f)fi(X1, . . . , Xq).

By clearing denominators, we find some ρ > 0 so that

f ρ =

p∑

i=1

gi(X1, . . . , Xq, f)fi(X1, . . . , Xq),

but each gi(X1, . . . , Xq, f) is equal to some polynomial Gi(X1, . . . , Xq), and so

f ρ =

p∑

i=1

Gi(X1, . . . , Xq)fi(X1, . . . , Xq),

which means that f ρ ∈ A.

(α)⇒ (δ). Given a maximal ideal M of k[X1, . . . , Xq], since M 6= (1), using (α), we have
V (M)(k) 6= ∅. Assume that ξ = (ξ1, . . . , ξq) ∈ k

q
is in V (M)(k). Now, ξ ∈ V (M), so

M ⊆ I({ξ}).
But {ξ} is k-closed, thus

I({ξ}) = (X1 − ξ1, . . . , Xq − ξq).
However, M is maximal, so we must have

M = (X1 − ξ1, . . . , Xq − ξq).

(δ)⇒ (α). Let V = V (A) for some ideal A in k[X1, . . . , Xq], and assume A 6= (1). Then,
it is easily shown that A in k[X1, . . . , Xq] is also different from (1) (DX). There is some
maximal ideal M of k[X1, . . . , Xq] such that A ⊆M. By (δ), we have

M = (X1 − ξ1, . . . , Xq − ξq)
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for some ξ1, . . . , ξ1 ∈ k, and thus,

A ⊆ (X1 − ξ1, . . . , Xq − ξq),

which implies that

{ξ} = V ((X1 − ξ1, . . . , Xq − ξq)) ⊆ V (A) = V (A),

and ξ ∈ V (k).
Here is Hilbert’s Nullstellensatz.

Theorem 1.10 (Hilbert’s Nullstellensatz (1893)) Given any affine k-variety V ⊆ Aq, all
the statements of Proposition 1.9 hold.

Proof . Assume that V = V (A) and that A 6= (1). There is a maximal ideal M such that
A ⊆ M. Since V (M) ⊆ V (A), we may assume that A is maximal. But then, A is prime,
so V is k-irreducible, and there is some k-generic point ξ ∈ V (= V (Ω)). Let r = dimkV ,
0 ≤ r ≤ q, and, as usual, arrange the notation so that ξ1, . . . , ξr form a transcendence base
for k[ξ1, . . . , ξq] over k. Then, ξr+1, . . . , ξq are algebraic over k[ξ1, . . . , ξr], and we have some
minimal equations for the ξj’s (r + 1 ≤ j ≤ q) of the form

g(j)mj
(ξ1, . . . , ξr)ξ

mj

j + · · ·+ g
(j)
0 (ξ1, . . . , ξr) = 0. (∗)

Since k is algebraically closed, it is infinite; so, by elementary algebra, there are some
η1, . . . , ηr ∈ k so that

g(j)mj
(η1, . . . , ηr) 6= 0 (1.23)

for all j, where r+1 ≤ j ≤ q. By mapping ξ1, . . . , ξr to η1, . . . , ηr, we have a homomorphism

ϕ : k[ξ1, . . . , ξr] −→ k,

so by the place-extension theorem, ϕ extends to a k-valued place of the field k(ξ1, . . . , ξq),
which we also denote by ϕ. The domain of ϕ is a subring of k(ξ1, . . . , ξq) and ϕ is not
extendable further with values in k. It is known that if x ∈ k(ξ1, . . . , ξq) and x /∈ dom(ϕ),
then 1/x ∈ dom(ϕ) and ϕ(1/x) = 0 (see Zariski and Samuel [61], Theorem 5′, Chapter VI,
Section 4). I claim that ϕ is finite on ξr+1, . . . , ξq, i.e., that ξr+1, . . . , ξq belong to dom(ϕ).

Otherwise, there is some ξj such that ξj /∈ dom(ϕ), where r + 1 ≤ j ≤ q. But then,
1/ξj ∈ dom(ϕ) and ϕ(1/ξj) = 0. Consider the j-th equation of (∗) and divide each term by
ξ
mj

j . We get

g(j)mj
(ξ1, . . . , ξr) + g(j)mj−1

(ξ1, . . . , ξr)

(
1

ξj

)
+ · · ·+ g

(j)
0 (ξ1, . . . , ξr)

(
1

ξj

)mj

= 0.

Applying ϕ, we get
g(j)mj

(η1, . . . , ηr) = 0,
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which contradicts (1.23).

Therefore, ϕ(ξj) ∈ k, where r + 1 ≤ j ≤ q. Letting ηr+1 = ϕ(ξr+1), . . . , ηq = ϕ(ξq), we
obtain a k-point

ϕ : k[ξ1, . . . , ξq] −→ k.

Remark: The key part of the argument involving the existence of η1, . . . , ηr ∈ k so that
equation (1.23) holds is Hilbert’s original argument. The rest of the argument follows Cheval-
ley. Other proofs of Hilbert’s Nullstellensatz can be found in Zariski and Samuel [61] (The-
orem 14, Chapter VII, Section 3), or Mumford [43], Fulton [17], Eisenbud [14], Bourbaki [7],
Atiyah and Macdonald [2], Matsumura [40].

1.3 Functions and Morphisms

We begin with some remarks about k-density. Let V ⊆ Aq be an affine k-variety.

(1) If V is k-irreducible, then any nonempty k-open subset U of V is k-dense.

(2) If V is k-irreducible, then any two nonempty k-open subsets of V have a nonempty
(and thus, k-dense) intersection.

(3) If U is k-dense in V and U is k-irreducible in the relative topology, then V is k-
irreducible (DX).

(4) If U is k-dense in V , f, g are any two polynomials in k[X1, . . . , Xq], and f ↾ U = g ↾ U ,
then f = g on V .

Statement (3) being a diagnostic exercise, we prove (1), (2), and (4).
Proofs . (1) Let U be nonempty and open in V , where V is k-irreducible. Then, Z = U c is
closed and Z 6= V . Let W = U be the k-closure of U , then

V = U c ∪ U = Z ∪ U ⊆ Z ∪W ⊆ V.

So, V = Z ∪W . Since V is k-irreducible, we must have V = W and U is k-dense in V .

(2) Let U1, U2 be two nonempty open subsets of V . Then, U c
1 and U c

2 are closed subsets
distinct from V . Since V is k-irreducible, we must have

U c
1 ∪ U c

2 6= V,

and thus, U1 ∩ U2 6= ∅.
(4) Consider the map (f, g) : U → A2 defined by

(f, g)(ξ) = (f(ξ), g(ξ)),
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and give A2 = Ω×Ω the Zariski topology (resp. k-topology). It is easily checked that (f, g)
is continuous (DX). If

∆ = {(η, η) | η ∈ Ω},
the hypothesis f ↾ U = g ↾ U is expressed by

(f, g)(U) ⊆ ∆.

However, ∆ is k-closed (resp. Zariski-closed) in A2, since it is given by the equation

x− y = 0,

and thus, by continuity,

(f, g)(V ) = (f, g)(U) ⊆ (f, g)(U) ⊆ ∆ = ∆,

and f = g on V .

Remark: Property (4) can also be proven by considering the function f − g which vanishes
on U . By the remark just before Proposition 1.9, f − g vanishes on V , i.e., f = g. The
reason we gave the longer proof above is because it is the archtype of the proof we must use
in the more general situation where subtraction is not available.

Recall that to do geometry, we need a topological space and, locally defined, functions.
Here is our definition of the functions on an affine variety V . Given an affine variety V ⊆ Aq,
a function ϕ : V → Ω on V is a set-theoretic function that is locally defined by rational
functions. This is analogous to the definition of a complex holomorphic function which is
locally defined by convergent power series.

Definition 1.8 Let V ⊆ Aq be an affine k-variety. A locally defined holomorphic function
on V is a triple (f, g, U) where f, g ∈ k[V ] and U is a k-open subset of V such that g does
not vanish on U . (That is, U ⊆ Vg = {ξ ∈ V | g(ξ) 6= 0}).

Given such a triple, we get a set-theoretic function on U with values in Ω also denoted
by (f, g, U), namely, the function such that

ξ 7→ f(ξ)

g(ξ)

for every ξ ∈ U . By Proposition 1.7 the function (f, g, U) is Zariski-continuous (resp. k-
continuous).

To actually define functions on V , we need to introduce an equivalence relation on triples
(f, g, U):
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Two locally defined holomorphic functions (f, g, U) and (f̃ , g̃, Ũ) are equivalent , denoted
by

(f, g, U) ∼ (f̃ , g̃, Ũ)

if
U = Ũ and f(ξ)g̃(ξ) = g(ξ)f̃(ξ),

for all ξ ∈ U .
Finally, the class of “good” functions on an affine variety can be defined.

Definition 1.9 Let V ⊆ Aq be an affine k-variety. A (global) holomorphic function on V is
a set-theoretic function ϕ : V → Ω satisfying the following condition: For every ξ ∈ V , there
is some k-open subset Uξ of V with ξ ∈ Uξ and some locally defined holomorphic function
(f, g, Uξ) so that

ϕ(η) = (f, g, Uξ)(η)

for all η ∈ Uξ.

Informally, ϕ looks like the rational function f(ξ)/g(ξ) on Uξ. Holomorphic functions on
V are continuous, since they are defined locally by continuous functions.

Remarks:

(1) Every f ∈ k[V ] gives rise to a (global) holomorphic function on V . Indeed, we can
cover V by itself and take g ≡ 1. Then, f corresponds to the function (f, 1, V ).

(2) The map from k[V ] to the set of (global) holomorphic functions on V defined by the
assignment

f 7→ (f, 1, V )

is an injection. This follows because from (f, 1, V ) ∼ (g, 1, V ), we find

(f − g)(ξ) = 0

for all ξ ∈ V . Thus, (f − g) ∈ Ik(V ), and f − g ≡ 0 on k[V ] = k[X1, . . . , Xq]/Ik(V ).

Now that we have a class of good functions on the set of points of an affine variety, we
can give the definition of an affine variety that implicitly incorporates the important concept
of a sheaf.

Definition 1.10 An affine k-variety is a pair consisting of

(1) The set V = V (Ω) viewed as a topological space (where V is of the form Vk(A), as in
Definition 1.1), and

(2) The collection of all (equivalence classes of) locally defined holomorphic functions on
V .
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Now that we have the basic objects of affine algebraic geometry (at the first level of
abstraction), we can define morphisms between them.

Definition 1.11 If V,W are two affine k-varieties, a k-morphism ϕ : V → W is a set-
theoretic map ϕ : V (Ω) → W (Ω) so that for every locally defined holomorphic function
(f, g, U) on W , the pull-back ϕ∗(f, g, U) (that is, the composition (f, g, U) ◦ ϕ) is again a
locally defined holomorphic function on V .

Even though Definition 1.11 is nice and clean, it does not say what a k-morphism really
is. This is the object of the next proposition.

Proposition 1.11 (Explicit form of k-morphisms) Let V and W be affine k-varieties with
W ⊆ Aq. A set-theoretic map ϕ : V (Ω)→ W (Ω) is a k-morphism iff for every ξ ∈ V , there
is some k-open subset Uξ of V with ξ ∈ Uξ and there are some f1, . . . , fq, g1, . . . , gq ∈ k[V ]
so that the following properties hold:

(a)

q∏

i=1

gi 6≡ 0 on Uξ, i.e., Uξ ⊆
q⋂

j=1

Vgj , and

(b) ϕ(η) =

〈
f1(η)

g1(η)
, . . . ,

fq(η)

gq(η)

〉
, for all η ∈ Uξ.

Proof . Assume that (a) and (b) hold. Let (F,G,O) be a locally defined holomorphic function
onW . By (b), the function ϕ is k-continuous (or Zariski-continuous). Therefore, U = ϕ−1(O)
is k-open (Zariski-open) in V . For any η ∈ U , we have

ϕ∗(F,G,O)(η) =

F

(
f1(η)

g1(η)
, . . . ,

fq(η)

gq(η)

)

G

(
f1(η)

g1(η)
, . . . ,

fq(η)

gq(η)

) =
h(η)

l(η)

for some h, l ∈ k[V ].

Conversely, assume that ϕ : V (Ω) → W (Ω) is a k-morphism. On W , we have the coor-
dinate functions Y1, . . . , Yq. Thus, ϕ

∗(Yj) is a locally defined holomorphic function on all of

V for every j, 1 ≤ j ≤ q. This means that ϕ∗(Yj) is of the form f
(ξ)
j /g

(ξ)
j on some suitable

k-open Uξ. But then,

ϕ(η) =

〈
f
(ξ)
1 (η)

g
(ξ)
1 (η)

, . . . ,
f
(ξ)
q (η)

g
(ξ)
q (η)

〉

on Uξ.
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Remarks:

(1) From Definition 1.11, the composition of k-morphisms is a k-morphism. Thus, affine
k-varieties form a category.

(2) The explicit form (Proposition 1.11) implies that a k-morphism is a continuous map
of topological spaces.

(3) The explicit form implies that k-morphisms preserve “rationality,” i.e., for every field
L such that k ⊆ L ⊆ Ω, if ϕ : V → W is a k-morphism, then ϕ : V (L)→W (L).

(4) Let Hom k(V,W ) denote the set of all k-morphisms ϕ : V → W . Then, Hom k(V,A1)
is the collection of global holomorphic functions on V .

Let A be an affine k-algebra, i.e., a k-algebra which is finitely generated and reduced.
Thus, A = k[V ], where V = V (A) for some radical ideal, A, of k[X1, . . . , Xq], and A =
k[X1, . . . , Xq]/A.

Definition 1.12 Any affine k-algebra A as above completely determines an affine k-variety
Spec A as follows:

(i) The set of points V (Ω) of Spec A is

V (Ω) = Homk−alg(A,Ω).

Define h(θ) = θ(h), for all θ ∈ V (Ω) and all h ∈ A.

(ii) The k-closed sets of V (Ω) correspond to radical ideals of A:

A←→ V (A) = {θ ∈ Homk−alg(A,Ω) | Ker θ = A}.

(iii) The locally defined holomorphic functions are the triples (f, g, U) where U is open (in
the topology defined in (ii)) and f and g are in A, with g ↾ U never zero.

The following proposition is the key step in showing that the mapping

A 7→ SpecA

is a functor from the category of finitely generated reduced (no nonzero nilpotent elements)
k-algebras to the category of affine k-varieties.

Proposition 1.12 Let A and B be affine k-algebras, and write V and W for Spec A and
Spec B respectively. Every k-algebra homomorphism θ : A → B determines a k-morphism
θ̃ : W → V .
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Proof . Let θ : A → B be a k-algebra homomorphism. Say A ∼= k[X1, . . . , Xq]/A where

A =
√
A. Then, we have the composite map

Θ: k[X1, . . . , Xq]
ρ−→ A

θ−→ B.

Let Fj = Θ(Xj), so that Fj ∈ k[W ] = B. We define the map θ̃ : W → V as follows: For
every w ∈ W ,

θ̃(w) = 〈F1(w), . . . , Fq(w)〉.
Clearly, θ̃(w) ∈ Aq, and θ̃ : W → Aq is a k-morphism. We need to prove that θ̃(w) ∈ V .

We know from Proposition 1.6 that each w ∈ W corresponds to the unique k-algebra
homomorphism λ : B → Ω such that

λ(b) = b(w)

for all b ∈ B. Choose f ∈ A, we have

f(θ̃(w)) = f(F1(w), . . . , Fq(w))

= f(λ(F1), . . . , λ(Fq))

= f(λ(Θ(X1)), . . . , λ(Θ(Xq)))

= f(λ(θ(ρ(X1))), . . . , λ(θ(ρ(Xq))))

= λ ◦ θ ◦ ρ(f(X1, . . . , Xq))

= λ ◦ θ ◦ ρ(f)
= λ(Θ(f)).

Since f ∈ A, we have Θ(f) = 0; thus, λ(Θ(f)) = 0 and f(θ̃(w)) = 0. Hence, θ̃(w) ∈ V (A) =
V .

Remark: Given an affine k-algebra B, there is an isomorphism

Homk−alg(k[X ], B) ∼= B.

If W = Spec B, we have the map θ 7→ θ̃ from Homk−alg(k[X ], B) to Hom k(W,A1). We also
have a map from B to Hom k(W,A1); we claim that the following diagram is commutative
(DX):

B // Hom k(W,A1)

Homk−alg(k[X ], B)

OO 55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

Given a k-algebra homomorphism ϕ : A → B between two k-algebras A and B, we get
a k-morphism ϕ̃ : Spec B → Spec A. Furthermore, if ϕ is a k-isomorphism, then ϕ̃ is also
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an isomorphism of k-varieties. This shows that affine k-varieties can be k-isomorphic even
if they live in different ambient spaces.

The following situation also arises, and yields a broader concept of an affine variety.
Given an affine variety V ⊆ Aq, we may have a subset X such that

X(L) ⊆ V (L)

for every field L with k ⊆ L ⊆ Ω compatibly, in the sense that the following diagram
commutes

X(L′) �
� // V (L′)

X(L)

OO

� � // V (L)

OO

for all L, L′ with k ⊆ L ⊆ L′ ⊆ Ω. It can happen that there is some affine k-variety W and
a compatible bijection

X(L)←→W (L).

In this case, the functions on W (L) can be pulled back fromW to X , and we get a collection
of functions on X . This gives X the structure of an affine variety. If X is open, we want
these new functions on X to agree with the ones we get by restricting the locally defined
holomorphic functions on V to X . If the latter condition holds, we say that X is an open
affine k-subvariety of V .

Example 1.6 Choose V= A1 and let the open X be

X = {ξ ∈ A1 | ξ 6= 0}.

For W , we choose the following affine variety in A2:

W = {(ξ, η) ∈ A2 | ξη − 1 = 0.}

The bijection is given by

ξ 7→
(
ξ,

1

ξ

)
.

The functions on X(L) are the functions from k[X ] where the denominators are of the form
Xkg(X), with g(0) 6= 0. On W (L), the functions are locally of the form

g

(
X,

1

X

)

h

(
X,

1

X

) ,

and these indeed have denominators of the form Xkg(X).
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We can generalize the previous example. Given an affine k-variety V ⊆ Aq, recall that

Vf = {ξ ∈ V | f(ξ) 6= 0}.

Proposition 1.13 Let V ⊆ Aq be an affine k-variety and let f be in k[V ]. The open set Vf
is an open k-subvariety of V . In fact, Vf is k-isomorphic to Spec (k[V ]f), where

k[V ]f = k[V ][T ]/(fT − 1)

is the localization of k[V ] at f .

Proof . First, we prove that k[V ]f is reduced. Pick g
fr
∈ k[V ]f . If

(
g

f r

)N
= 0,

then gN = 0, since f is a unit (the reasoning takes place in k[V ]f ). This means that there is
some s > 0 such that

f sgN = 0

in k[V ]. Letting M = max(s,N), we get

(fg)M = 0

in k[V ]. Since k[V ] is reduced, we get fg = 0, and thus g/1 = 0 in k[V ]f . As a consequence,

g

f r
= 0,

and k[V ]f is reduced. Since k[V ]f is finitely generated and reduced, if W = Speck[V ]f , then
W is an affine k-variety. So,

W (L) = {λ : k[V ]→ L | λ(f) 6= 0}
= {ξ ∈ V (L) | f(ξ) 6= 0} = Vf (L).

We leave it as an exercise to check that the functions are the same on Vf and W .

We need two technical lemmas for the proof of the next theorem. In preparation for
this theorem (Theorem 1.16), you may want to review the definition of an equivalence of
categories, say in Grothendieck [21] or Mac Lane [39], Chapter IV, Section 4, especially
Theorem 1.

Lemma 1.14 Let V be an affine k-variety and let g, h ∈ k[V ]. If h ↾ Vg is never zero, then
h is a unit of the ring k[V ]g, so that h and 1

h
have the form

α

gr
,

where α ∈ k[V ] is a unit of k[V ]g and r > 0.
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Proof . We know that Vg is an open affine k-variety, and

h

1
∈ k[V ]g.

By hypothesis, h/1 is never zero on Vg, so, by the Nullstellensatz, we must have

I

(
V

(
h

1

))
= Vg.

This implies that the ideal (h/1), generated by h/1, is the unit ideal in k[V ]g. Thus, h is a
unit of k[V ]g.

The second lemma gives a very useful normal form for k-morphisms; its proof will be
given after the proof of Theorem 1.16.

Lemma 1.15 Choose two affine k-varieties V,W , with V ⊆ Aq. Given any k-morphism
θ : W → V , there are some F1, . . . , Fq ∈ k[W ] such that

θ(w) = 〈F1(w), . . . , Fq(w)〉

for all w ∈ W .

Theorem 1.16 (Fundamental theorem of affine geometry) The contravariant functor

A 7→ SpecA

from the category of affine k-algebras to the opposite of the category of affine k-varieties (i.e.,
the category with the arrows reversed) is an equivalence of categories.

Proof . We already know that a k-algebra homomorphism ϕ : A → B gives rise to a k-
morphism ϕ̃ : Spec B → Spec A, and this is functorial. Thus, we get a map

Homk−alg(A,B) 7→ Hom k(Spec B, SpecA);

It is given by
ϕ 7→ ϕ̃.

We need to prove that this is a bijection. Let W = Spec B and V = Spec A. If θ : W → V
is a k-morphism, by Lemma 1.15, there are some F1, . . . , Fq ∈ k[W ] = B such that

θ(w) = 〈F1(w), . . . , Fq(w)〉

for all w ∈ W . We may assume that V ⊆ Aq and that A = k[X1, . . . , Xq]/A, where A =
√
A.

Now, define the k-algebra map

ϕ : k[X1, . . . , Xq] −→ B
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by setting ϕ(Xj) = Fj ∈ B. Each w ∈ W corresponds to a unique k-algebra homomorphism
λ : B → Ω such that

λ(F ) = F (w)

for all F ∈ B. Let f ∈ A. We have

λ(ϕ(f)) = λ(ϕ(f(X1, . . . , Xq))

= λ(f(ϕ(X1), . . . , ϕ(Xq)))

= λ(f(F1, . . . , Fq))

= f(λ(F1), . . . , λ(Fq))

= f(F1(w), . . . , Fq(w)).

Since f ∈ A, we have
f(F1(w), . . . , Fq(w)) = 0,

and so
λ(ϕ(f)) = 0

for all λ. This implies that
ϕ(f)(w) = 0

for all w ∈ W . Therefore, ϕ(f) ≡ 0 in B, since B ⊆ Hom k(W,A1), and we have proved that

ϕ induces a k-algebra homomorphism θ̂ : A → B. We leave it as an exercise to check that
the maps

ϕ 7→ ϕ̃ and θ 7→ θ̂

are mutual inverses.

Here is the proof of Lemma 1.15.
Proof . By the definition of a k-morphism, for every ξ ∈ W , there is some k-open subset
U(ξ) of W with ξ ∈ U(ξ) and there are some β

(ξ)
1 , . . . , β

(ξ)
q , γ

(ξ)
1 , . . . , γ

(ξ)
q ∈ k[W ] so that

θ(η) =

〈
β
(ξ)
1 (η)

γ
(ξ)
1 (η)

, . . . ,
β
(ξ)
q (η)

γ
(ξ)
q (η)

〉

for all η ∈ U(ξ), where γ(ξ)i is never zero on U(ξ) for all i, 1 ≤ i ≤ q. Since the Wg’s form a
basis of the k-topology, we can pick some g so that ξ ∈ Wg ⊆ U(ξ), and then, Lemma 1.14

implies that there are some f
(ξ)
1 , . . . , f

(ξ)
q ∈ k[W ], so that

θ(η) =

〈
f
(ξ)
1 (η)

gν1(η)
, . . . ,

f
(ξ)
q (η)

gν1(η)

〉
.

If ν is the maximum of the νi’s, since Wgν =Wg, we may assume that ν = 1, and we have

θ(η) =

〈
f
(ξ)
1 (η)

g(η)
, . . . ,

f
(ξ)
q (η)

g(η)

〉
.
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Now, theWg’s coverW , and by quasi-compactness, there is a finite subfamily {Wg1, . . . ,Wgt}
that covers W . Thus, on each Wgj , we have

θ(η) =

〈
f
(j)
1 (η)

gj(η)
, . . . ,

f
(j)
q (η)

gj(η)

〉
. (∗)

Since θ is well-defined, the local definitions of θ must agree on Wgi ∩Wgj = Wgigj , and we
have

f
(j)
l (η)

gj(η)
=
f
(i)
l (η)

gi(η)

for all η ∈ Wgigj and all l, 1 ≤ l ≤ q. As a consequence,

f
(j)
l gi − f (i)

l gj = 0 on Wgigj ,

which implies that
f
(j)
l gi − f (i)

l gj = 0 in k[W ]gigj .

Therefore, there are some integers nijl so that

(gigj)
nijl(f

(j)
l gi − f (i)

l gj) = 0 in k[W ].

Let N = max{nijl}, where 1 ≤ i, j,≤ t, 1 ≤ l ≤ q. We have

(gigj)
Nf

(j)
l gi = (g1gj)

Nf
(i)
l gj, (∗∗)

for all i, j, l, with 1 ≤ i, j,≤ t, 1 ≤ l ≤ q. Now, the Wgi cover W . Hence, the gi have no
common zero, and neither do the gN+1

i (since WgN =Wg). By the Nullstellensatz,

(gN+1
1 , . . . , gN+1

t ) = (1),

the unit ideal in k[W ], and thus, there are some hi so that

1 =

t∑

i=1

hig
N+1
i .

But, we have

gNi f
(i)
l = gNi f

(i)
l

(
t∑

r=1

hrg
N+1
r

)

=
t∑

r=1

hrg
N+1
r gNi f

(i)
l

=

t∑

r=1

hrg
N+1
i gNr f

(r)
l by (∗∗)

= gN+1
i

(
t∑

r=1

hrg
N
r f

(r)
l

)
.
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Letting

Fl =
t∑

r=1

hrg
N
r f

(r)
l ,

we have Fl ∈ k[W ], and

gNi f
(i)
l = gN+1

i Fl in k[W ].

For any η ∈ Wgi, we get

f
(i)
l (η)

gi(η)
= Fl(η),

and by (∗),

θ(η) = 〈F1(η), . . . , F1(η)〉.

Theorem 1.16 has many corollaries. Here are two.

Corollary 1.17 The global holomorphic functions on an affine k-variety V are exactly the
elements of the coordinate ring k[V ].

Proof . By definition, the ring of global holomorphic functions is Hom k(V,A1). By Theorem
1.16,

Hom k(V,A
1) ∼= Homk−alg(k[T ], k[V ]) ∼= k[V ].

Corollary 1.18 Let A and B be affine k-algebras, V = Spec A, W = Spec B, and let
ϕ : A→ B be a k-algebra homomorphism. Then:

(1) ϕ is surjective iff ϕ̃ maps W isomorphically onto a k-closed subvariety of V .

(2) ϕ is injective iff Im ϕ̃ is k-dense.

Proof . (1) The morphism ϕ is surjective iff B ∼= A/A for a radical ideal A. By Theorem
1.16, we have

Spec B ∼= Spec(A/A),

and Spec(A/A) is a k-closed subvariety of V (namely, V (A)).

(2) Let A = Kerϕ and assume that Im ϕ̃ is k-dense. We have the following commutative
diagram in which θ is an injection

A

π
!!❈

❈❈
❈❈

❈❈
❈

ϕ // B

A/A

θ

==④④④④④④④④
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and B being reduced, A/A is also reduced. This implies that A =
√
A. By Theorem 1.16,

we have the diagram

W

θ̃   ❆
❆❆

❆❆
❆❆

❆

ϕ̃ // V

Z
π̃

??⑦⑦⑦⑦⑦⑦⑦⑦

where Z = Spec(A/A) is k-closed in V . Now, the image of ϕ̃ is k-dense and Im ϕ̃ ⊆ Z; so,
Z = V , and then A = (0), by the Nullstellensatz.

Conversely, assume that ϕ is injective and let Z be the closure of the image of ϕ̃. Then
Z = Spec(A/A) for some radical ideal A. We have the commutative diagram

Spec B = W

θ̃ ))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

ϕ̃ // V = Spec A

Z = Spec(A/A)

π̃

66❧❧❧❧❧❧❧❧❧❧❧❧❧

and (by Theorem 1.16) we get the diagram

A

π
!!❈

❈❈
❈❈

❈❈
❈

ϕ // B

A/A

θ

==④④④④④④④④

But ϕ is injective and A = Kerϕ, by the first part of the proof of (2); so, A = (0), and thus,
Z = V .

1.4 Integral Morphisms, Products, Diagonal, Fibres

Let A,B be some k-algebras (not necessarily affine algebras) and let ϕ : A→ B be a k-algebra
homomorphism. Then, we can view B as an A-algebra.

Definition 1.13 We say that B is integral over A (or B is an integral A-algebra) if for
every b ∈ B, there are a0, . . . , an−1 ∈ A such that

bn + ϕ(an−1)b
n−1 + · · ·+ ϕ(a1)b+ ϕ(a0) = 0.

If V and W are affine k-varieties, with V = SpecA and W = SpecB, and if ϕ̃ : W → V is a
k-morphism (with corresponding k-algebra homomorphism ϕ : A→ B), then ϕ̃ is an integral
k-morphism (or W is integral over V ) if B is integral over A.

Remark: Lots of morphisms θ : W → V are not integral. For example, the composed map

ϕ̃ : V (XY = 1) →֒ A2 pr1−→ A1
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from a hyperbola to the affine line (via the first projection pr1 : A2 → A1) is not integral.
Indeed, the corresponding k-algebra homomorphism is

ϕ : k[X ] −→ k[X, Y ]/(XY − 1)

given by
X 7→ X.

However, Y is not integral over k[X ]. Also note that the image A1 − {0} of ϕ̃ is not closed.
This is the general situation. A morphism of affine k-varieties is almost never a closed map
(i.e., maps closed sets to closed sets). However, for integral morphisms, we have the following
theorem.

Theorem 1.19 Let V,W be affine k-varieties and let ϕ̃ : W → V be a k-morphism. If ϕ̃ is
an integral k-morphism, then it is a closed map.

Proof . Write W = Spec B, V = Spec A, and let W ′ be a k-closed subvariety in W

W ′ →֒ W
ϕ̃−→ V.

By Theorem 1.16, we have k-homomorphisms

A −→ B −→ B/B,

where B is a radical ideal. Since, by hypothesis, B is integral over A, and since B/B is
trivially integral over B, it follows that B/B is integral over A, and we may assume that
W ′ =W . We must show that ϕ̃(W ) is k-closed in V . Let V ′ be the k-closure of Im ϕ̃. Then,

V ′ = Spec(A/A)

for some radical ideal A and we get the diagram

A

!!❈
❈❈

❈❈
❈❈

❈

ϕ // B

A/A

==④④④④④④④④

Since ϕ is integral, B is integral over A/A. Therefore, we may also assume that V ′ = V ,
and we are in the situation where ϕ̃ : W → V has dense image and is an integral morphism,
and we must show that ϕ̃ is surjective. Pick ξ ∈ V , so that

P(ξ) = I({ξ})

is a prime ideal. Since the map ϕ : A → B is injective (by Proposition 1.18 (2)) and B is
integrally dependent onA, by the first Cohen-Seidenberg theorem (the “Lying over theorem”,
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Zariski and Samuel [60], Theorem 3, Chapter V, Section 2, Bourbaki [7], Theorem 1, Chapter
V, Section 2, or Atiyah and Macdonald [2], Chapter 5), there is a prime ideal P of B with

P(ξ) = P ∩ A.

This gives the commutative diagram

B // B/P � � // Frac(B/P)

A

OO

// A/P(ξ)

OO

ξ // Ω

where Frac(B/P) is the fraction field of B/P and where the two vertical left arrows are
injections. Since A/P(ξ) ⊆ Frac(B/P), by the place extension theorem (Zariski and Samuel
[61], Theorem 5′, Chapter VI, Section 4), we may extend ξ to a place η of Frac(B/P) with
values in Ω. However, B is integral over A, and it follows that B/P is integral over A/P(ξ).
We will use this to show that B/P lies in the domain of η.

If not, there is some b ∈ B such that b /∈ dom η, which implies that 1/b ∈ dom η and
η(1/b) = 0. However, B/P is integral over A/P(ξ), so we have some integral equation

b
n
+ an−1b

n−1
+ · · ·+ a1b+ · · ·+ a0 = 0

with the aj ∈ A/P(ξ). Dividing by b, we get

1 + an−1

(
1

b

)
+ · · ·+ a1

(
1

b

)n−1
+ a0

(
1

b

)n
= 0.

Now apply η. It follows that 1 = 0, a contradiction. So, B/P ⊆ dom η, as contended.

Now, the map ϕ̃ : W → V is of the form

ϕ̃(w) = 〈F1(w), . . . , Fq(w)〉

where ϕ(xj) = Fj ∈ B and A = k[x1, . . . , xq]. But, the map

B −→ B/P
η−→ Ω

corresponds to a point η ofW ; the value ϕ̃(η) is obtained by following the xj ’s in the diagram

B // B/P � � // Frac(B/P)

η

��
A = k[x1, . . . , xq]

OO

// A/P(ξ)

OO

ξ // Ω

which commutes. So,
xj 7→ ξj
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by the lower line, and ϕ̃(η) = ξ, which proves the surjectivity of ϕ̃.

For use below, we need to review some basic categorical concepts. Detailed presentations
can be found in Grothendieck and Dieudonné (EGA I) [30], Mac Lane [39], or Grothendieck
[21]. Suppose that C is a category, we denote its set of objects by Ob(C), and for any two
objects A,B ∈ Ob(C), the set of morphisms from A to B is MorC(A,B) or Hom C(A,B).
We often drop the subscript C. A morphism f ∈ Hom C(A,B) is denoted by an arrow, viz
f : A→ B. Given a category C, the opposite category Co has the same objects as C but has
reversed morphisms (arrows), i.e.,

Hom Co(A,B) = Hom C(B,A),

or equivalently, f : A → B is a morphism of Co iff f : B → A is a morphism of C. For two
categories C and D, a contravariant functor or cofunctor F : C → D is a functor F : Co → D
(i.e., it is arrow-reversing). We let Sets denote the category of sets.

If C is a category, for every object X of C we can define a cofunctor hX : C → Sets as
follows: For a “test object” T ∈ C,

hX(T ) = Hom(T,X),

the set of all morphisms from T to X , and for any two objects Y, Z ∈ Ob(C) and every
morphism f ∈ Hom(Y, Z), the action of the functor hX on arrows is the map

hX(f) : Hom (Z,X)→ Hom (Y,X)

defined by
hX(f)(g) = g ◦ f

for all g ∈ Hom(Z,X). The functor hX is also denoted by Hom(−, X).

Let F : C → Sets be a cofunctor. Is it of the form hX = Hom(−, X) for some object
X ∈ Ob(C)? If so, F is said to be representable by X . More precisely, this means that F
and Hom(−, X) are isomorphic functors. By definition, an isomorphism of functors means
that there is a natural transformation, θ : hX → F , i.e., there is a family (θT ) of bijections

θT : Hom (T,X)→ F (T )

for every object T of C such that the following diagram commutes for every morphism
f : Y → Z of C:

Hom (Z,X)

hX(f)
��

θZ // F (Z)

F (f)
��

Hom(Y,X)
θY

// F (Y )

The isomorphism θ is uniquely determined by the element x ∈ F (X) defined by

x = θX(idX).
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Indeed, setting Z = X , we have the commutative diagram

Hom(X,X)

hX(f)
��

θX // F (X)

F (f)
��

Hom(Y,X)
θY

// F (Y )

and since hX(f)(idX) = idX ◦ f = f (recall that f : Y → X), we get

θY (hX(f)(idX)) = F (f)(θX(idX)),

that is,

θY (f) = F (f)(x),

which shows that θY is completely determined for every object Y of C.
Actually, the above diagram shows that there is a bijection between the set of all natural

transformations θ : hX → F and F (X) given by the map

θ 7→ θX(idX).

The inverse map assigns to every x ∈ F (X) the natural transformation θ defined by

θT (f) = F (f)(x)

for all T ∈ Ob(C) and for all f : T → X .

Consequently, to fix matters, we make the following definition for representability. The
cofunctor F is represented by the pair (X, x) (where x ∈ F (X)) when the natural transforma-
tion θ : Hom (−, X)→ F corresponding to x is an isomorphism of functors. It is easy to show
that the pair, (X, x), representing a cofunctor F is unique up to (a unique) isomorphism

A similar treatment applies to the (covariant) functor Hom (X,−) : C → Sets defined by

Hom(X,−)(T ) = Hom(X, T )

for every “test object” T ∈ C, and

Hom(X,−)(f)(g) = f ◦ g

for every f ∈ Hom(Y, Z) and every g ∈ Hom(X, Y ). A (covariant) functor F : C → Sets is
representable by some pair (X, x) withX ∈ C and x ∈ F (X) when the natural transformation
θ : Hom (X,−)→ F corresponding to x is an isomorphism of functors.

Representable functors (and cofunctors) allow us to define products, coproducts, fibred
products, fibred coproducts, in any category.
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Let X, Y, Z be some objects in C. Consider the cofunctor

T 7→ Hom C(T,X)×Hom C(T, Y ).

If this functor is representable, there is an object P ∈ C and an element in

Hom C(P,X)× Hom C(P, Y ),

i.e., a pair of maps pX : P → X and pY : P → Y so that we have a bijection

θT : Hom C(T, P ) ∼= Hom C(T,X)× Hom C(T, Y ),

via
θT (f) = 〈pX ◦ f, pY ◦ f〉.

In this case, the representing triple (P, pX , pY ) is called the product of X and Y in C. It has
the usual universal property of Cartesian products. We also denote P by X

∏
Y .

If we consider the functor

T 7→ Hom C(X, T )× Hom C(Y, T ),

and if this functor is representable, the representing triple (C, iX , iY ) is called the coproduct
of X and Y in C. It has the usual universal property of disjoint sums. We also denote C by
X
∐
Y .

We also have two categories CZ and CZ associated with Z, called comma categories or
slice categories . The objects of CZ are the pairs (T, θT ) where T ∈ Ob(C) and θT : T → Z.
A morphism Φ: (T, θT )→ (S, θS) is a morphism Φ: T → S such that the following diagram
commutes:

T Φ //

θT ��❄
❄❄

❄❄
❄❄

❄ S

θS��⑧⑧
⑧⑧
⑧⑧
⑧⑧

Z

The category CZ is defined by turning the arrows around, i.e., the objects are the pairs
(T, θT ) where T ∈ Ob(C) and θT : Z → T , etc. The category CZ is called C over Z, and the
category CZ is called C co-over Z.

In CZ , if the product of (X, θX) and (Y, θY ) exists, it is called the fibred product of X
and Y over Z, denoted by X

∏
Z

Y . Similarly, in CZ , if the coproduct of (X, ηX) and (Y, ηY )

exists, it is called the fibred coproduct of X and Y over Z, denoted by X
Z∐
Y .

Examples 1.7

(1) Let C = Sets. Then, X
∏
Y is the ordinary Cartesian product X × Y of X and Y

with its projections, and X
∐
Y is the disjoint union of X and Y with its injections. Also,

X
∏

Z

Y = {(x, y) ∈ X × Y | θX(x) = θY (y)}
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with the obvious maps:
X
∏
Z

Y

||①①
①①
①①
①

""❊
❊❊

❊❊
❊❊

X

θX $$■
■■

■■
■■

■■
■ Y

θYzz✉✉
✉✉
✉✉
✉✉
✉✉

Z

(2) If C = Grp, the category of groups, or C = Ab, the category of abelian groups, then
products, coproducts, fibred products, and fibred coproducts all exist (DX).

(3) If C = CRng, the category of commutative rings (with unit), then products, coprod-
ucts, fibred products, and fibred coproducts all exist (DX). For example, the product A

∏
B

of two rings A,B is the set-theoretic product A×B with coordinatewise operations. For the
coproduct, check that

A
∐

B = A⊗Z B.

Given three commutative rings, the fibred coproduct A
C∐
B is given by

A

C∐
B = A⊗C B,

and the fibred product A
∏
C

B by

A
∏

C

B = {(a, b) ∈ A
∏

B | θA(a) = θB(b)},

where θA : A→ C and θB : B → C.

(4) If C = k-alg, the category of commutative k-algebras (where k is a field), then
products, coproducts, fibred products, and fibred coproducts all exist (DX).

(5) If C = k-affalg, the category of affine k-algebras (where k is a field), then products,
coproducts, fibred products, and fibred coproducts all exist (DX). In each construction, we
divide by the nilradical. For example

A
∐

B = (A⊗k B)/N = (A⊗k B)red,

the product

A
∏

B = A×B,
as usual, and if C is an affine k-algebra with maps, ηA : C → A and ηB : C → B, then

A

C∐
B = (A⊗C B)/N = (A⊗C B)red.
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The fundamental theorem implies the following proposition.

Proposition 1.20 If V,W,Z are affine k-varieties and θV : V → Z, θW : W → Z, or
ηV : Z → V , ηW : Z → W are k-morphisms, the following objects all exist:

V
∏

W = Spec ((k[V ]⊗k k[W ])red) ,

V
∏

Z

W = Spec
(
(k[V ]⊗k[Z] k[W ])red

)
, and

V
∐

W = Spec(k[V ]× k[W ]),

V
Z∐
W = Spec


k[V ]

∏

k[Z]

k[W ]


 .

It is interesting to consider the effect of extending the field k.

Definition 1.14 Let V be a k-variety and let K be a field such that k ⊆ K ⊆ Ω. We define
the K-variety V ⊗k K by

V ⊗k K = Spec ((k[V ]⊗k K)red) .

� (1) If K is not a finite extension over k, then V ⊗k K is not a k-variety.

(2) Even if K is finite algebraic extension of k, the structure of V ⊗k K as a K-variety
may be different from the structure of V as a k-variety. For example, V may have V (k) = ∅,
and yet (V ⊗k K)(K) 6= ∅.

The following proposition shows that the points of the varieties V
∏
W and V

∏
Z

W are

just what should be expected.

Proposition 1.21 Given any k-varieties V,W,Z, we have

(V
∏

W )(Ω) = V (Ω)×W (Ω)

where × is the Cartesian product of sets, and

(V
∏

Z

W )(Ω) = V (Ω)
∏

Z(Ω)

W (Ω).

Proof . By definition

V (Ω) = Homk−alg(k[V ],Ω) and W (Ω) = Homk−alg(k[W ],Ω).

Because Ω is a field,

Homk−alg((k[V ]⊗k k[W ])red,Ω) = Homk−alg(k[V ]⊗k k[W ],Ω),
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and then

Homk−alg(k[V ]⊗k k[W ],Ω) = Homk−alg(k[V ],Ω)× Homk−alg(k[W ],Ω) = V (Ω)×W (Ω).

The proof of the other identity is similar.

A more general notion of point is suggested by the fundamental theorem (Theorem 1.16).

Definition 1.15 Given any (commutative) k-algebra A, let

V (A) = Homk−alg(k[V ], A),

and call V (A) the points of V with values in A. If A is an affine k-algebra and T = SpecA,
then we write V (T ) instead of V (A), sometimes. We call V (T ) the T -valued points of V , or
points of V with values in T .

We would like to understand how V and V ⊗kK are similar and different. Here are some
partial answers.

Proposition 1.22 Let K and L be fields such that k ⊆ K ⊆ L ⊆ Ω, and let V be an affine
k-variety.

(1) We have
(V ⊗k K)(L) = V (L),

where V ⊗k K is viewed as a K-variety and V as a k-variety.

(2) If V is k-irreducible and the extension K/k is normal algebraic, then V ⊗kK is a finite
union of k-conjugate K-irreducible varieties. Hence, in general, V is equidimensional
over k iff V ⊗k K is equidimensional over K.

Proof . (1) Since L is a field, we have

(V ⊗k K)(L) = HomK−alg((k[V ]⊗k K)red, L)

= HomK−alg(k[V ]⊗k K,L)
= Homk−alg(k[V ], L)

= V (L).

(2) Assume that V is k-irreducible. TheK-variety V⊗kK is a finite union ofK-irreducible
varieties

V ⊗k K = V1 ∪ · · · ∪ Vt.
Let ξj be a K-generic point of Vj. We have

ξj ∈ Vj(Ω) ⊆ (V ⊗k K)(Ω) = V (Ω),
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and thus, ξj is a specialization of some ξ, where ξ is k-generic for V . Then, there is a
surjection (identity on k)

θj : k[ξ] −→ k[ξj]

for every j, 1 ≤ j ≤ t. Hence,

tr.dk ξj ≤ tr.dk ξ (∗)

for every j, 1 ≤ j ≤ t. Now,

ξ ∈ V (Ω) = (V ⊗k K)(Ω) =

t⋃

j=1

Vj(Ω).

For instance, assume that ξ ∈ V1(Ω). Then, ξ is a K-specialization of ξ1. Thus there is a
surjection π : K[ξ1]→ K[ξ], and as a consequence,

tr.dK ξ ≤ tr.dK ξ1. (∗∗)

Since the extension K/k is algebraic, by (∗∗), we get

tr.dk ξ ≤ tr.dk ξ1. (∗∗∗)

Then, by (∗) and (∗∗∗), we get
tr.dk ξ = tr.dk ξ1.

Our previous work implies that θ1 is a k-isomorphism. Hence, we get the k-surjections

ϕj : k[ξ1]
θ−1
1−→ k[ξ]

θj−→ k[ξj].

Consider K(ξ1) = Frac(K[ξ1]) (the fraction field of K[ξ1]). We have the following commu-
tative diagram:

K(ξ1)
ϕ̂j

##●
●●

●●
●●

●●
●

K[ξ1]

OO

Ω

k[ξ1]

OO

ϕj // k[ξj]

OO

By the place extension theorem, ϕj extends to a place ϕ̂j, and we have

ϕ̂j(ξ1) = ξj.

Since K is algebraic over k and since k and K are fields, K is integral over k, and by the
usual argument about integrality, ϕ̂j is defined on K. Since K/k is a normal extension, we
have

ϕ̂j(K) = K,
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i.e., ϕ̃j , the restriction of ϕ̂j to K, is an automorphism of K. We have the diagram

K(ξ1)

K[ξ1]

OO

ϕ̂j // K[η] ⊆ Ω

K

OO

ϕ̃j //K

OO

where ϕj(ξ1) = ξj, and where ϕ̂j(ξ) = η (η depending on j). Observe that the map

K[η]
ϕ̂j

−1

−→ K[ξ1]
ϕj−→ K[ξj]

is a K-surjection, by construction. Therefore, ξj ∈ {η}, and as η is a specialization of ξ, we
get η ∈ V ⊗k K. However,

V ⊗k K =
t⋃

j=1

Vj

where the decomposition is irredundant, and each Vj is K-irreducible, so we must have

Vj = {η}.

Thus,

tr.dK η = tr.dK ξj;

So,

tr.dK ξ1 = tr.dK η.

It follows that

tr.dK η = tr.dK ξi (1.24)

for all i, 1 ≤ i ≤ t. This shows that the components Vi have the same dimension. By (1.24),
because the extension K/k is algebraic and ϕi is a k-surjection, ϕi is a k-isomorphism

ϕi : k[ξ1]→ k[ξi]

for all i, 1 ≤ i ≤ t. Hence, V1 and Vi are k-conjugates. The last part is trivial.

The above Proposition suggests two kinds of questions.

1. Given a property (P ) of k-varieties, does V ⊗k K possess (P ) as a K-variety? This
question is also phrased as: “(P ) is stable under base extension.” Generally, it is not
hard.
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2. Assume that V ⊗kK has the property (P ) as a K-variety. Does V already have (P ) as a
k-variety? This question is also phrased as: “(P ) is stable under descent .” For example,
if K/k is normal algebraic and V ⊗k K is K-irreducible, then V is k-irreducible. Also,
from the proof of Proposition 1.22,

dimk V = dimK(V ⊗k K).

Thus, the notion of dimension is stable under base extension and descent, by normal
algebraic field extension.

Let (P ) be a property of k-varieties. We say that V is geometrically (P ) if V ⊗k k has
(P ) as a k-variety. For example, dimension is a geometric property.

� However, note that V geometrically irreducible is different from V k-irreducible.

Proposition 1.23 Let V be an affine k-variety and assume that V is geometrically irre-
ducible. Then, for any field extension K/k, with k ⊆ K ⊆ Ω, the K-variety V ⊗k K is
K-irreducible.

Proof . Let K̃ be the smallest subfield of Ω containing K and k (i.e., the compositum of K
and k). We have

(V ⊗k k)⊗k K̃ = V ⊗k K̃.
Next, we use the following result from commutative algebra: If A is an integral domain
over k and k is algebraically closed, then for any extension K/k, A⊗kK is again an integral
domain (see Bourbaki (Algèbre) [6], Chapter 5, Section 17, No. 5, Corollary 3 to Proposition
9). Then, by considering the corresponding coordinate rings and the fact that V ⊗k k is k-
irreducible, we see that

V ⊗k K̃ = (V ⊗k k)⊗k K̃
is K̃-irreducible. But K̃ lies over K, and K̃-irreducibility descends, so that V ⊗k K is
K-irreducible.

Proposition 1.24 Let V and W be irreducible affine k-varieties. The following properties
hold.

(1) If k is algebraically closed, then V
∏
k

W is k-irreducible.

(2) If k is algebraically closed, then

Ik(V
∏

k

W ) = (Ik(V ), Ik(W )),

where Ik(V ) ⊆ k[X1, . . . , Xq]; Ik(W ) ⊆ k[Y1, . . . , Yr]; Ik(V
∏
k

W ) ⊆ k[X1, . . ., Xq,

Y1, . . . , Yr]; and where (Ik(V ), Ik(W )) is the ideal generated by Ik(V ) and Ik(W ).



56 CHAPTER 1. ELEMENTARY ALGEBRAIC GEOMETRY

(3) If k is algebraically closed and x, y are respectively k-generic points in V,W , then 〈x, y〉
is k-generic in V

∏
k

W .

(4) If k is arbitrary,

dimk(V
∏

k

W ) = dimk(V ) + dimk(W ).

Proof . (1) By definition,

k[V
∏

k

W ] = (k[V ]⊗k k[W ])red.

However, k[V ] is an integral domain, k is algebraically closed, and k[W ] ⊆ k(W ). By the
fact about tensor products stated during the the proof of Proposition 1.23, k[V ]⊗k k[W ] is
an integral domain, and V

∏
k

W is k-irreducible.

(2) Since k is algebraically closed, k[V ]⊗k k[W ] has no nilpotents, and so,

Spec(k[V ]⊗k k[W ]) = V
∏

k

W.

Now, we have the exact sequences

0 −→ Ik(V ) −→ k[X1, . . . , Xq] −→ k[V ] −→ 0

and

0 −→ Ik(W ) −→ k[Y1, . . . , Yr] −→ k[W ] −→ 0.

By tensoring the first exact sequence with Ik(W ) and the second exact sequence with Ik(V ),
we get

0 −→ Ik(V )⊗k Ik(W ) −→ k[X1, . . . , Xq]⊗k Ik(W ) −→ k[V ]⊗k Ik(W ) −→ 0

and

0 −→ Ik(V )⊗k Ik(W ) −→ Ik(V )⊗k k[Y1, . . . , Yr] −→ Ik(V )⊗k k[W ] −→ 0.
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Similarly, we can tensor the exact sequences with k[Y1, . . . , Yr], resp. k[X1, . . . , Xq], and with
k[W ], resp. k[V ]. This gives the following diagram:

0

��

0

��

0

��
0 // Ik(V )⊗k Ik(W )

��

// k[Xi’s]⊗k Ik(W )

��

// k[V ]⊗k Ik(W )

��

// 0

0 // Ik(V )⊗k k[Yj’s]

��

// k[Xi’s]⊗k k[Yj’s]

��

// k[V ]⊗k k[Yj’s]

��

// 0

0 // Ik(V )⊗k k[W ]

��

// k[Xi’s]⊗k k[W ]

��

// k[V ]⊗k k[W ]

��

// 0

0 0 0

A simple diagram chase shows that (2) holds.

(3) The affine k-algebras k[V ] and k[W ] are finitely generated, and

k[x1, . . . , xq] ∼= k[X1, . . . , Xq]/Ik(V ) and k[y1, . . . , yr] ∼= k[Y1, . . . , Yr]/Ik(W ).

The result then follows from (2).

(4) Expressing V and W in terms of irredundant decompositions, we have

V =

s⋃

j=1

Vj and W =

t⋃

l=1

Wl.

Then

V
∏

k

W =

s,t⋃

j=1,l=1

Vj
∏

k

Wl.

Thus, it is enough to assume that V and W are k-irreducible. We also have irredundant
decompositions

V ⊗k k =

s⋃

j=1

Ṽj

where the Ṽj are k-irreducible and all have the same dimension, and similarly,

W ⊗k k =

t⋃

l=1

W̃l

where the W̃l are k-irreducible and all have the same dimension. Then

(V ⊗k k)
∏

k

(W ⊗k k) ∼= (V
∏

k

W )⊗k k,
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and

(V
∏

k

W )⊗k k =

s,t⋃

j=1,l=1

Ṽj
∏

k

W̃l.

Thus, the argument is reduced to the case of k-irreducible varieties where the field is alge-
braically closed. Then, because the algebras involved are integral domains and because k is
algebraically closed, it is clear that

tr.dk(k[V ]⊗k k[W ]) = tr.dk(k[V ]) + tr.dk(k[W ]).

Proposition 1.25 Let V and W be affine k-varieties and let ϕ : V →W be a k-morphism.
The following properties hold.

(1) The fibred product V
∏
W

V is closed in V
∏
k

V .

(2) The diagonal, ∆, is closed in V
∏
W

V , and hence, in V
∏
k

V . In fact, the map

∆V/W : V → V
∏

W

V

(the diagonal map) is a closed immersion (i.e., it an isomorphism onto a closed sub-
variety, namely, the diagonal).

Proof . (1) We have

V
∏

k

V = Spec((k[V ]⊗k k[V ])red) = Spec A,

and
V
∏

W

V = Spec((k[V ]⊗k[W ] k[V ])red) = Spec B.

The kernel of the map from A to B is the ideal I generated by the elements of the form

i(w)⊗ 1− 1⊗ i(w),

where i : k[W ]→ k[V ] is the k-algebra homomorphism corresponding to ϕ. Now, B ∼= A/I,
so that I defines V

∏
W

V as a subvariety of V
∏
k

V .

(2) Consider the map ρ of k-algebras

ρ : k[V ]⊗k[W ] k[V ] −→ k[V ]

defined via
ξ ⊗ η 7→ ξη.
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Observe that if
∑

i ξi ⊗ ηi ∈ Ker ρ, then
∑

i

ξi ⊗ ηi =
∑

i

ξi ⊗ ηi − 1⊗
∑

i

ξiηi

=
∑

i

(ξi ⊗ ηi − 1⊗ ξiηi)

=
∑

i

(ξi ⊗ 1− 1⊗ ξi)(1⊗ ηi),

which implies that the kernel of the map ρ is the ideal J of k[V ]⊗k[W ] k[V ] generated by the
elements ξ ⊗k[W ] 1− 1⊗k[W ] ξ. Letting C = k[V ]⊗k[W ] k[V ], we have

Homk−alg(C,Ω) = Homk−alg(C/NC ,Ω)

= (V
∏

W

V )(Ω),

since Ω is a field. Now, J corresponds to the diagonal, as should be clear from the above
(DX). Therefore, the diagonal is closed in V

∏
W

V , since it is defined by an ideal, and the

map ρ is a closed immersion.

Remark: If V and W are geometrically irreducible, then so is V
∏
k

W (DX).

We now consider fibres of k-morphisms. Given a k-morphism ϕ : V → W of affine k-
varieties, for any w ∈ W (= W (Ω)), we have the set-theoretic fibre

ϕ−1(w) = {v ∈ V | ϕ(v) = w}.

Then, V is the disjoint union

V =
⋃

w∈W

ϕ−1(w).

If each fibre ϕ−1(w) is an affine variety, then V will be decomposed as a family of algebraic
varieties indexed by another algebraic variety. When W and the fibres have a simpler
structure than V , this yields a fruitful way of studying the structure of V . But, how can one
view ϕ−1(w) as an affine variety? Here is the answer.

Given an affine k-variety V , for any ξ ∈ V , recall that

P(ξ) = {f ∈ k[X1, . . . , Xq] | f(ξ) = 0}.

Proposition 1.26 Let ϕ : V → W be a morphism of affine k-varieties and let w ∈ W .
Write

κ(w) = Frac(k[W ]/P(w)),

and call it the residue field of W at w. Then, in a natural way, the fibre ϕ−1(w) is an affine
κ(w)-variety. In fact,

ϕ−1(w) = Spec
(
(k[V ]⊗k[W ] κ(w))red

)
.
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Proof . Consider
Spec

(
(k[V ]⊗k[W ] κ(w))red

)
.

The set of points of this κ(w)-affine variety is

Homκ(w)−alg((k[V ]⊗k[W ] κ(w))red,Ω),

where Ω is a κ(w)-algebra because: The point w ∈ W (Ω) corresponds to a k-algebra homo-
morphism

hw ∈ Homk−alg(k[W ],Ω),

and the kernel of hw is P(w). So, hw induces a homomorphism (also denoted by hw)

hw : k[W ]/P(w)→ Ω,

which extends uniquely to a homomorphism

hw : κ(w)→ Ω,

and this makes Ω a κ(w)-algebra. The field Ω is also a k[W ]-algebra via the homomorphism

k[W ] −→ k[W ]/P(w)
hw→֒ Ω.

Since Ω is a field, we have

Homκ(w)−alg((k[V ]⊗k[W ] κ(w))red,Ω) = Homk[W ]−alg(k[V ],Ω).

If ξ ∈ Homk[W ]−alg(k[V ],Ω), then

(a) ξ : k[V ]→ Ω, and

(b) The diagram

k[V ]

ϕ̃ ##❋
❋❋

❋❋
❋❋

❋

ξ // Ω

k[W ]

hw

==⑤⑤⑤⑤⑤⑤⑤⑤⑤

commutes.

However, (a) says that ξ ∈ V (Ω), and (b) says that ξ ∈ ϕ−1(w). Therefore, as sets,

ϕ−1(w) = Spec
(
(k[V ]⊗k[W ] κ(w))red

)
.

The rest is obvious.

Corollary 1.27 If w and w′ are k-conjugate points of W , then ϕ−1(w) and ϕ−1(w′) are
k-conjugate affine varieties.
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Proof . The k-algebra k[V ] is integral over k[W ] and finitely generated as a k[W ]-algebra.
A standard result of commutative algebra implies that k[V ] is a finite algebra over k[W ]
(i.e., k[V ] is a finitely generated k[V ]-module, see Atiyah and Macdonald [2], Corollary 5.2,
Chapter 5, Zariski and Samuel [60], Theorem 1, Chapter V, or Bourbaki [7], Chapter V).

Corollary 1.28 Let ϕ : V → W be an integral morphism of affine k-varieties. The following
properties hold.

(1) The affine variety V is a finite W -variety i.e, k[V ] is a finite k[W ]-algebra.

(2) The fibres ϕ−1(w) are finite sets for all w ∈ W , i.e., dimκ(w)(ϕ
−1(w)) = 0.

Proof . By the proof of k[V ] is a finite k[W ]-algebra and Corollary 1.27, k[V ] ⊗k[W ] κ(w) is
a finite κ(w)-module. Then,

tr.dκ(w) (k[V ]⊗k[W ] κ(w)) = 0,

which means that the dimension of the fibre is 0. However, affine varieties of dimension 0
are finite sets.

A morphism ϕ : V →W satisfying condition (2) of Corollary 1.28 is called a quasi-finite
morphism.

� Note that quasi-finite does not imply finite. For example, if V = Speck[X, Y ](XY −1) ⊆
A2, W = Spec k[X ] = A1, and ϕ : V → W , the first projection from A2 to A1, then we

observe that the map is not integral (since the element Y is not integral over the ring k[X ]).

Definition 1.16 Given a topological space (for example, an affine variety) V , we say that
a set Z is locally closed in V if

Z = U ∩W
where U is open and W is closed.

Observe that open and closed sets in a variety are locally closed. Let Zi = Ui ∩ Wi,
i = 1, 2. Then,

Z1 ∩ Z2 = U1 ∩ U2 ∩W1 ∩W2,

so that Z1 ∩Z2 is locally closed. Thus, any finite intersection of locally closed sets is locally
closed.

If Z = U ∩W , then Zc = U c ∪W c, where U c is closed and W c is open. It follows that
the Boolean algebra generated by the open and closed sets is just the set of finite unions of
locally closed sets. Finite unions of locally closed sets are called constructible sets . We have
the following important theorem.

Theorem 1.29 Let V and W be affine k-varieties and let ϕ : V → W be a k-morphism.
Then:
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(1) If ϕ(V ) is dense in W , there is some nonempty k-open set U in W so that

U ⊆ ϕ(V ) ⊆W.

(2) (Chevalley) The image of ϕ is a constructible set in W .

Proof . (1) Assume that ϕ(V ) is k-dense in W . Let V ′ be any k-irreducible component of V .

Then, ϕ(V ′) is k-irreducible in W , and thus, W̃ = ϕ(V ′) is again k-irreducible and closed in
W . Let

W =
t⋃

j=1

Wj ,

where the Wj are the irredundant components of W . Then

W̃ =
t⋃

j=1

W̃ ∩Wj ,

and since W̃ is k-irreducible, there is some j, 1 ≤ j ≤ t, such that W̃ = W̃ ∩Wj , i.e.,

W̃ ⊆Wj .

But, if

V =

s⋃

i=1

Vi

is an irredundant decomposition of V , we showed that for every i, 1 ≤ i ≤ s, there is some
j = j(i) so that

ϕ(Vi) ⊆ Wj(i).

However,

ϕ(V ) = ϕ

(
s⋃

i=1

Vi

)
=

s⋃

i=1

ϕ(Vi).

Therefore,

W = ϕ(V ) =
s⋃

i=1

ϕ(Vi) =
s⋃

i=1

ϕ(Vi) ⊆
s⋃

i=1

Wj(i) =
s⋃

i=1

Wj(i) ⊆
t⋃

j=1

Wj =W,

and the inclusions are all equalities. Since the decompositions are irredundant, the Wj(i) run
over all the Wj ’s and, by denseness, ϕ(Vi) is dense in Wj(i).

Assume that the theorem (1) holds when V is k-irreducible (so is W , since W = ϕ(V )).
Then, for every i, there is some k-open subset Ui ⊆Wj(i) so that

Ui ⊆ ϕ(Vi) ⊆Wj(i).
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If Ci = Wj(i) − Ui, then Ci is closed in Wj(i), which implies that Ci is closed in W . The
image ϕ(V ) misses at most

C =
s⋃

i=1

Ci,

which is closed. Therefore, U = Cc is a nonempty k-open contained in ϕ(V ).

Therefore, we may assume that V is k-irreducible. As ϕ(V ) is k-dense in W , we know
from part (2) of Proposition 1.18 that k[W ] →֒ k[V ] is an inclusion. Letting r = tr.dk[W ]k[V ],
we pick some transcendence base ξ1, . . . , ξr (ξj ∈ k[V ]) over k[W ], so that k[V ] is algebraic
over k[W ][ξ1, . . . , ξr]. Since

k[W ][ξ1, . . . , ξr] ∼= k[W ]⊗k k[ξ1, . . . , ξr],

the map

k[W ] →֒ k[W ][ξ1, . . . , ξr] →֒ k[V ] (∗)

is just the map

ϕ̃ : k[W ] →֒ k[W ]⊗k k[ξ1, . . . , ξr] →֒ k[V ].

Reading the above geometrically, we get the map

ϕ : V
ϕ1−→W

∏

k

Ar pr1−→ W.

Since each η ∈ k[V ] is algebraic over k[W
∏
k

Ar], we have equations

a0(ξ1, . . . , ξr)η
s + a1(ξ1, . . . , ξr)η

s−1 + · · ·+ as(ξ1, . . . , ξr) = 0,

where the coefficients aj(ξ1, . . . , ξr) are functions over W , and thus, depend on w ∈ W ,
but we omit w for simplicity of notation. If we multiply by a0(ξ1, . . . , ξr)

s−1 and let ζ =
a0(ξ1, . . . , ξr)η, we get

ζs + b1(ξ1, . . . , ξr)ζ
s−1 + · · ·+ bs(ξ1, . . . , ξr) = 0.

Therefore, for every η ∈ k[V ], there is some α ∈ k[W ∏
k

Ar] so that

ζ = αη

is integral over k[W
∏
k

Ar]. Since k[V ] is finitely generated, there exist η1, . . . , ηt so that

k[V ] = k[W
∏

k

Ar][η1, . . . , ηt],
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and each ηj comes with its corresponding αj and αjηj is integral over k[W
∏
k

Ar]. Let

b =
t∏

j=1

αj(ξ1, . . . , ξs) ∈ k[W
∏

k

Ar].

Consider the ring k[W
∏
k

Ar]b and the corresponding affine variety

Spec k[W
∏

k

Ar]b = U1,

also denoted by (W
∏
k

Ar)b. We have U1 ⊆ W
∏
k

Ar, and on U1, b and all the αj ’s are

invertible. Let us look at ϕ̂1(b) ∈ k[V ], where ϕ̂1 : k[W
∏
k

Ar] → k[V ] is the k-algebra

homomorphism associated with the k-morphism ϕ1 : V →W
∏
k

Ar. Then, we get

Vϕ̂1(b)
ϕ1−→ (W

∏

k

Ar)b = U1.

Since each αj is invertible, on Vϕ̂1(b), each ηj is integral over k[U1]. But Vϕ̂1(b) is generated
by the ηj’s; so Vϕ̂1(b) is integral over (W

∏
k

Ar)b. And therefore, the image of the morphism

Vϕ̂1(b)
ϕ1−→ U1 (†)

is closed (see Theorem 1.19). Consequently, (†) is a surjection of varieties, and we find

U1 = (W
∏

k

Ar)b = ϕ1(Vϕ̂1(b)) ⊆ ϕ1(V ).

Even though U1 is a nonempty open, we still need to show that there is some nonempty open
U ⊆ W such that U ⊆ pr1(U1). For then, we will have U ⊆ ϕ(V ). Now, b ∈ k[W ∏

k

Ar]

means that b can be expressed by a formula of the form

b =
∑

(β)

b(β)(w)ξ
(β),

where (β) denotes the multi-index (β) = (β1, . . . , βr), x
(β) = ξβ11 · · · ξβrr , and b(β) ∈ k[W ]. Let

U = {w ∈ W | ∃(β), b(β)(w) 6= 0}.

The set U is a k-open set in W . If w ∈ U , since b is a polynomial in the ξj’s which is
not identically null, there is some (β) such that b(β)(w) 6= 0. Now, Ω and k are infinite,



1.4. INTEGRAL MORPHISMS, PRODUCTS, DIAGONAL, FIBRES 65

so there are some elements t1, . . . , tr ∈ Ω (or k) such that b(w, t1, . . . , tr) 6= 0. How-
ever, (w, t1, . . . , tr) ∈ W

∏
k

Ar and b(w, t1, . . . , tr) 6= 0, so that (w, t1, . . . , tr) ∈ U1 and

pr1(w, t1, . . . , tr) = w. Therefore, U ⊆ pr1(U1), which concludes the proof of (1).

(2) By a familiar argument (using irredundant decompositions), we may assume that the
affine varieties are k-irreducible. We proceed by induction on r = dim(V ).

When r = 0, the fact that V is irreducible implies that V is a finite set of k-conjugate
points, and since the image of a finite set is finite, ϕ(V ) is constructible.

Assume that the claim holds for r − 1. As we said earlier, we may restrict our attention
to the case where V is k-irreducible. Let W̃ = Im ϕ. If Im ϕ is constructible in W̃ , then

Im ϕ = U1 ∩ W̃1 ∪ . . . ∪ Un ∩ W̃n,

where Uj is open in W̃ , and W̃j is closed in W̃ , which implies that W̃j is closed in W . By
definition of the relative topology, there are some open sets U ′j in W so that

W̃ ∩ U ′j = Uj .

Then, we have

Im ϕ = (W̃ ∩ U ′1) ∩ W̃1 ∪ · · · ∪ (W̃ ∩ U ′n) ∩ W̃n

= W̃ ∩ (U ′1 ∩ W̃1 ∪ · · · ∪ U ′n ∩ W̃n)

= U ′1 ∩ W̃1 ∪ · · · ∪ U ′n ∩ W̃n,

a constructible set in W . As a consequence, we may assume that W = W̃ , i.e., that Im ϕ is
dense in W . By (1), there is some nonempty open subset U of W such that U ⊆ ϕ(V ). Let
T = ϕ−1(U). This is an open subset of V and moreover, ϕ(T ) = U . Let Z = V − T . The
set Z is k-closed in V , and thus

dim Z < dim V,

and by induction, Chevalley’s result holds for Z. But then,

ϕ(V ) = ϕ(Z) ∪ ϕ(T ) = ϕ(Z) ∪ U,

and since ϕ(Z) is constructible and U is open, ϕ(Z) ∪ U is also constructible.

We will be able to promote many of our results by introducing a generalization of affine
varieties, called abstract varieties.

Definition 1.17 An abstract k-variety is a topological space X together with a collection of
locally defined functions on X to Ω so that the following condition holds: For every x ∈ X ,
there is some open subset U with x ∈ U so that U and the induced set of locally defined
functions from X is k-isomorphic to SpecA for some affine k-algebra A. Given two abstract
k-varieties X, Y , a k-morphism is a topological map ϕ : X → Y such that for every locally
defined function g on Y , ϕ∗(g) (= g ◦ ϕ) is a locally defined function on X .



66 CHAPTER 1. ELEMENTARY ALGEBRAIC GEOMETRY

Of course, abstract varieties form a category having the category of affine k-varieties as
a full subcategory. But, many results true for affine varieties will fail for abstract varieties
if they are “too big.” Here, the concept of bigness has to do with the fact that an abstract
variety might not be a finite union of affine varieties. Therefore, the concept of quasi-
compactness introduced in the discussion immediately following Definition 1.2 should prove
useful. We will generally assume it, and, in the interest of brevity, we tend to omit “abstract”
in “abstract varieties.” The following terminology will also be needed.

Definition 1.18 Given two k-varieties X, Y , a k-morphism ϕ : X → Y is an affine mor-
phism if for every y ∈ Y , there is some open subset U with y ∈ U , where U is affine and
ϕ−1(U) is affine. We say that ϕ is an integral morphism if ϕ is an affine morphism and
ϕ−1(U) is integral over U (U as above, depends on y ∈ Y .) A morphism ϕ is a finite-type
morphism if for every y ∈ Y , there is some open subset U with y ∈ U , where U is affine and
ϕ−1(U) is quasi-compact, and lastly, ϕ is a finite morphism if it is an affine morphism and
if k[ϕ−1(U)] is a finite k[U ]-algebra (U as above, depends on y ∈ Y .)

Note that if ϕ is integral, then ϕ is a closed map and the fibres are finite (reduce to Y
affine, statement local on Y ).

Remarks:

(1) Each quasi-compact k-variety is a finite union (unique if irredundant) of irreducible
k-varieties.

(2) An open subset U of a k-variety X is a k-variety. Indeed, X =
⋃
αXα where each Xα

is affine. So,

U =
⋃

α

U ∩Xα,

where each Uα = U ∩ Xα is an open subset of the affine k-variety Xα. Thus, we are
reduced to case where X is an affine k-variety. In this case, since the (Xα)bα form a
basis of the topology (where bα ∈ k[Xα]) and since an affine k-variety is quasi-compact,
we have

U =

t⋃

j=1

(Xα)bjα,

which shows that U is a finite union of affine k-varieties.

(3) If Y ⊆ X and Y is closed, with X a k-variety, then Y is a k-variety. This is because
X =

⋃
αXα where each Xα is affine, and so

Y =
⋃

α

Y ∩Xα

where Y ∩Xα is k-closed in the affine k-variety Xα, and thus, of the form SpecAα/Aα

where Xα = Spec Aα. As a consequence, Y is also a k-variety.
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(4) If Y ⊆ X and Y is locally closed, with X a k-variety, then Y is a k-variety (DX).

(5) An open subset U of an affine (or projective) k-variety X is a k-variety. However,
such a k-variety U is neither affine nor projective in general. Such varieties are called
quasi-affine or quasi-projective varieties, respectively, to distinguish them from open
subsets of arbitrary varieties.

(6) If V is a k-irreducible variety, any nonempty open subset U of V is k-dense in V .

We can now generalize the previous theorem as follows. Call a morphism ϕ : X → Y of
k-varieties a dominating or dominant morphism if ϕ(X) is dense in Y .

Theorem 1.30 Let X and Y be k-varieties with X quasi-compact, and let ϕ : X → Y be a
k-morphism. Then:

(1) If X is irreducible and ϕ is dominating there is some nonempty open set U in X so
that

U ⊆ ϕ(X) ⊆ Y.

(2) (Chevalley) The image of ϕ is a constructible set in Y .

Proof . (1) We have Y =
⋃
α Yα for some affine open sets Yα. Let Xα = ϕ−1(Yα). Since X

is quasi-compact and each Xα is a union of affine open subsets, each Xα is quasi-compact.
But, ϕ(X) is dense in Y , so each ϕ(Xα) is dense in Yα. Thus, we may assume that Y = Yα
is affine. Each affine open, Z, of X is dense (since X is irreducible), and thus, ϕ(Z) is dense
in Y . Consequently, we are reduced to the case where X is affine; and here, Theorem 1.29
applies.

(2) Since X is quasi-compact, X =
⋃t
j=1Xj , where each Xj is an affine open, and we

may assume that X is affine. By the same argument as before, we may assume that ϕ(X)
is dense in Y . We get (2) by applying (1).

1.5 Further Readings

The material covered in this chapter belongs to the repertoire of classical algebraic geometry,
basically as laid out by Oscar Zariski and André Weil, and rests on commutative algebra
for its foundations. Both Zariski and Weil, independently, grew increasingly uncomfortable
with the lack of rigor found in the otherwise beautiful work of the Italian school of algebraic
geometry of the beginning of the twentieth century. One can only admire their tremendous
accomplishments, providing perfectly rigorous foundations for algebraic geometry, mostly
by developing the appropriate tools of commutative algebra. The next bold step, already
implicitly anticipated by Weil, was taken by Jean-Pierre Serre, with the introduction of
sheaves and cohomology. The next leap, of course, was taken by Alexander Grothendieck,
with the introduction of schemes.
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Readers will find other presentations of the material of this chapter (some more complete,
some less) in the references listed below: Shafarevich [53], Chapter 1, Section 1–3, and
Dieudonné [13], Chapter 1–2, are the closest in spirit; Hartshorne [33], Chapter 1, Section
1; Mumford [43], Chapter 1, Section 1–3; Mumford [42], Chapter 1, Section 1; Fulton [17],
Chapter 1, 2, 6; Perrin [45], Chapter 1; Kendig [37]; Kempf [36], Chapter 1–3. An excellent
tutorial on algebraic geometry can also be found in Danilov’s article in [11], and Volume I of
Ueno [56] is worth consulting. Finally, Smith et al [55] give a very elementary but delightful
introduction to algebraic geometry.



Chapter 2

Dimension, Local Theory, Projective
Geometry

2.1 Dimension Theory

In this section, we will finally show that if X is an irreducible k-variety and Y is a maximal
closed irreducible subvariety in X , then dim(Y ) = dim(X)− 1. Our proof will use a funda-
mental result due to Emmy Noether, the normalization theorem. As a preview, consider the
affine variety V ⊆ A2 (an hyperbola)

V = Spec(k[X, Y ]/(XY − 1)).

As we know, the restriction of the first projection, pr1 : A2 → A1, to V is not an integral
morphism. However, if we rotate the axes by π/4, we get a surjective integral map.

This is a general fact. Indeed, Noether’s normalization theorem says that every irre-
ducible affine k-variety of dimension r in An is a (finite) branched covering of Ar.

Theorem 2.1 Suppose V is an irreducible affine k-variety in An, and let dimk(V ) = r.
Then, there is some change of coordinates in An so that the projection of An = Ar × An−r

onto Ar yields a surjective integral morphism

V →֒ An pr−→ Ar.

If k is infinite, we may arrange the change of coordinates (x1, . . . , xn) 7→ (y1, . . . , yr) to be
linear and if k(V ) = k[x1, . . . , xn] is separably generated over k, then the yi ∈ k[x1, . . . , xn]
may be chosen so that k[x1, . . . , xn] is separably generated over k[y1, . . . , yr].

Proof . Since k[V ] = k[X1, . . . , Xn]/A for some radical ideal A, we have k[V ] = k[x1, . . . , xn],
the homomorphic image of the polynomial ring k[X1, . . . , Xn]. If r = n, then V ∼= An, and
we are done. Thus, we may asume that r < n. We prove the theorem by induction on n > r.

69
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The case n = 1, r = 0, is trivial. Assume that the theorem holds up to n − 1. We need to
show that there exist y2, . . ., yn ∈ k[x1, . . . , xn] so that

k[y2, . . . , yn] →֒ k[x1, . . . , xn]

is an integral extension of rings, separable in the separable case (i.e., when the transcendence
base is separable). Then, we use the induction hypothesis applied to k[y2, . . . , yn] and that
integrality and separability is preserved under composition, to obtain the desired theorem.

Since r < n, we may assume that x1 is algebraically dependent on x2, . . . , xn. Therefore,
there is a nontrivial equation ∑

(α)

c(α)x
(α) = 0,

where, as before, (α) = (α1, . . . , αn). Choose some integers m2, . . . , mn, to be determined
later, and set

yj = xj − xmj

1 ,

for j = 2, . . . , n. Then, xj = yj + x
mj

1 , and we get

∑

(α)

c(α)x
α1
1 (y2 + xm2

1 )α2 · · · (yn + xmn
1 )αn = 0,

which can be written as

∑

(α)

c(α)x
(α)·(m)
1 +G(x1, y2, . . . , yn) = 0, (∗)

where

(m) = (1, m2, . . . , mn),

and G involves the yj’s and x1 at lower degree than the maximum of the (α) · (m)’s. If
we show that the (α) · (m)’s are all distinct, then (∗) is an integral dependence of x1 on
y2, . . . , yn. Since each xj (xj = yj + x

mj

1 , 2 ≤ j ≤ n) is also integral over y2, . . . , yn, this
implies that k[x1, . . . , xn] is integral over k[y2, . . . , yn]. Now, the (α)’s are distinct, so we can
consider the differences

(δ(λ)) = (δ
(λ)
1 , . . . , δ(λ)n ) = (α)− (α′)

of any two distinct (α)’s for all possible choices of the (α)’s (except that we do not include
(α′)− (α) if we have included (α)− (α′)). Assume that there are t such δ(λ)’s. Let T2, . . . , Tn
be some independent indeterminates, and consider

H(T2, . . . , Tn) =

t∏

j=1

(δ(j) · −→T ),



2.1. DIMENSION THEORY 71

where
−→
T = (1, T2, . . . , Tn). We have

H(T2, . . . , Tn) =

t∏

j=1

(δ
(j)
1 + δ

(j)
2 T2 + · · ·+ δ(j)n Tn).

Since all the δ(j)’s are nonzero, H is not the null polynomial. Furthermore, the coefficients
of H are integers. But then, it is well-known that there are some non-negative integers
m2, . . . , mn such that

H(m2, . . . , mn) 6= 0.

These are the required integers!

Remark: We can also find the non-negative integers m2, . . . , mn as follows. Let d be a
non-negative integer larger than any of the components of a vector (α) such that c(α) 6= 0.
Then, take

(m2, . . . , mn) = (d, d2, . . . , dn−1).

Let us now consider the case where k is infinite. Again, x1 depends algebraically on
x2, . . . , xn, and in the separable case, we pick a separating transcendence base (by MacLane’s
theorem). Write the minimal polynomial for x1 over k(x2, . . . , xn) as

P (U, x2, . . . , xn) = 0.

We can assume that the coefficients of P (U, x2, . . . , xn) are in k[x2, . . . , xn], so that the
polynomial P (U, x2, . . . , xn) is the result of substituting U, x2, . . . , xn for X1, X2, . . . , Xn in
some non-zero polynomial P (X1, . . . , Xn) with coefficients in k. Perform the linear change
of variables

yj = xj − ajx1, (†)

for j = 2, . . . , n, and where a2, . . . , an ∈ k will be determined later. Since xj = yj+ajx1, it is
sufficient to prove that x1 is integral (and separable in the separable case) over k[y2, . . . , yn].
The minimal equation P (x1, x) = 0 (abbreviating P (x1, x2, . . . , xn) by P (x1, x)) becomes

P (x1, y2 + a2x1, . . . , yn + anx1) = 0,

which can be written as

P (x1, y) = xq1f(1, a2, . . . , an) +Q(x1, y2, . . . , yn) = 0, (∗∗)

where f(X1, X2, . . . , Xn) is the highest degree form of P (X1, . . . , Xn) and q its degree,
and Q contains terms of degree lower than q in x1. If we can find some aj’s such that
f(1, a2, . . . , an) 6= 0, then we have an integral dependence of x1 on y2, . . . , yn; thus, the xj ’s
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are integrally dependent on y2, . . . , yn, and we finish by induction. In the separable case, we
need the minimal polynomial for x1 to have a simple root, i.e.,

dP

dx1
(x1, y) 6= 0.

We have
dP

dx1
(x1, y) =

∂P

∂x1
(x1, x) + a2

∂P

∂x2
(x1, x) + · · ·+ an

∂P

∂xn
(x1, x).

But this is a linear form in the aj ’s which is not identically zero, since it takes for a2 = · · · =
an = 0 the value

∂P

∂x1
(x1, x) 6= 0,

x1 being separable over k(x2, . . . , xn). Thus, the equation

∂P

∂x1
(x1, x) + a2

∂P

∂x2
(x1, x) + · · ·+ an

∂P

∂xn
(x1, x) = 0

defines an affine hyperplane, i.e., the translate of a (linear) hyperplane. But then,

dP

dx1
(x1, x) 6= 0

on the complement of a hyperplane, that is, an infinite open subset of An−1, since k is infinite.
On this infinite set where dP

dx1
(x1, x) 6= 0, we can find a2, . . . , an so that f(1, a2, . . . , an) 6= 0,

which concludes the proof.

To use Noether’s theorem, we need the following definitions.

Definition 2.1 A k-variety V is separated if it has an affine open covering V =
⋃
α Vα so

that

(a) Vα ∩ Vβ is affine.

(b) k[Vα ∩ Vβ] = (k[Vα] ⊗k[V ] k[Vβ])red, where k[V ] denotes the set of global holomorphic
functions on V , i.e., k[V ] = Hom k(V,A1).

We will show later that the conditions of Definition 2.1 are equivalent to the fact that
the diagonal ∆ is closed in V

∏
k

V . If we had used the product topology on V
∏
k

V , this

would be equivalent to V being Hausdorff. However, the Zariski topology (or k-topology)
in V

∏
k

V is not the product topology, and thus, this does not imply that V is Hausdorff.

Nevertheless, separatedness is the algebro-geometric substitute of being Hausdorff. Note
that every k-affine variety is separated.
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Definition 2.2 An irreducible k-variety V is normal if for every v ∈ V , there is some
irreducible affine k-open subset U containing v so that k[U ] is integrally closed in k(U)
(where k(U) denotes the fraction field of k[U ]).

For example, An is normal, and when projective space is defined, it will be clear that it
is normal.

Note that if V is a k-irreducible variety (not necessarily affine), the integer, dimV , makes
sense. For, Vα =

⋃
α Vα, where each Vα is an open irreducible affine subvariety. But each

Vα ∩ Vβ is nonempty open and dense in both Vα and Vβ, by irreducibility. Hence,

dim(Vα) = dim(Vα ∩ Vβ) = dim(Vβ);

so, dim(V ) makes sense.

Proposition 2.2 Let V,W be k-irreducible and separated k-varieties, with W normal. If
dim(V ) = dim(W ) and ϕ : V → W is a finite surjective morphism, then ϕ establishes a
surjective map from the collection of closed k-irreducible varieties of V to those of W . In
this map, maximal irreducible subvarieties of V map to maximal irreducible subvarieties of
W , inclusion relations are preserved, dimensions are preserved, and no subvariety of V ,
except V itself, maps onto W .

Proof . Let Wα be an affine open in W , then so is Vα = ϕ−1(Wα) in V , because ϕ is affine,
since it is a finite morphism. If Z is an irreducible closed variety in V , then Zα = Z ∩ Vα
is irreducible in Vα since Zα is dense in Z. Thus, we may assume that V and W are affine.
Let A = k[W ] and B = k[V ]. Since ϕ is finite and surjective, we see that A is contained
in B and B is a finite A-algebra. Both A,B are integral domains, both are Noetherian,
A is integrally closed, and no nonzero element of A is a zero divisor in B. These are the
conditions for applying the Cohen-Seidenberg theorems I, II, and III. By Cohen-Seidenberg
I (Zariski and Samuel [60], Theorem 3, Chapter V, Section 2, or Atiyah and Macdonald [2],
Chapter 5), there is a surjective correspondence

P 7→ P ∩ A
between prime ideals of B and prime ideals of A, and thus, there is a surjective correspon-
dence between irreducible subvarieties of V and their images in W .

Consider a maximal irreducible variety Z in V . Then, its corresponding ideal is a minimal
prime ideal P. Let p = P ∩ A, the ideal corresponding to ϕ(Z). If ϕ(Z) is not a maximal
irreducible variety in W , then p is not a minimal prime, and thus, there is some prime ideal
q of A such that

q 6⊆ p,

where the inclusion is strict. By Cohen-Seidenberg III (Zariski and Samuel [60], Theorem 6,
Chapter V, Section 3, or Atiyah and Macdonald [2], Chapter 5), there is some prime ideal
Q in B such that

Q 6⊆ P
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and q = Q∩A, contradicting the fact that P is minimal. Thus, ϕ takes maximal irreducible
varieties to maximal irreducible varieties.

Finally, by Cohen-Seidenberg II (Zariski and Samuel [60], Corollary to Theorem 3, Chap-
ter V, Section 2, or Atiyah and Macdonald [2], Chapter 5), inclusions are preserved, and
since ϕ is finite, dimension is preserved. The rest is clear.

We can finally prove the fundamental fact on dimension.

Proposition 2.3 Let V be a separated k-irreducible variety and W a separated maximal
k-irreducible subvariety of V . Then,

dimk(W ) = dimk(V )− 1.

Proof . We may assume that V andW are affine (using open covers, as usual). By Noether’s
normalization theorem (Theorem 2.1), there is a finite surjective morphism ϕ : V → Ar,
where r = dimk(V ). However, Ar is normal, and by Proposition 2.2, we may assume that
V = Ar. Let W be a maximal irreducible k-variety in Ar. It corresponds to a minimal prime
ideal P of k[T1, . . . , Tr], which is a UFD. As a consequence, since P is a minimal prime, it is
equal to some principal ideal, i.e., P = (g), where g is not a unit. Without loss of generality,
we may assume that g involves Tr.

Now, the images t1, . . . , tr−1 of T1, . . . , Tr−1 in k[T1, . . . , Tr]/P are algebraically indepen-
dent over k. Otherwise, there would be some polynomial f ∈ k[T1, . . . , Tr−1] such that

f(t1, . . . , tr−1) = 0.

But then, f(T1, . . . , Tr−1) ∈ P = (g). Thus,

f(T1, . . . , Tr−1) = α(T1, . . . , Tr)g(T1, . . . , Tr),

contradicting the algebraic independence of T1, . . . , Tr. Therefore, dimk(W ) ≥ r − 1, but
since we also know that dimk(W ) ≤ r − 1, we get dimk(W ) = r − 1.

Definition 2.3 Let V and W be separated k-irreducible varieties with W ⊆ V . We define
the codimension, codim(W ;V ), of V in W by

codim(W ;V ) = dimk(V )− dimk(W ).

Given a chain of irreducible varieties

W = Vh 6⊆ Vh−1 6⊆ · · · 6⊆ V0 = V,

where the inclusions are strict , we define the height of W in V to be the length h of a
maximal such chain.
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We have dim(Vh) = dim(W ), and by Proposition 2.3,

dim(Vh−1) = dim(W ) + 1,

and thus, we get
dim(V0) = dim(W ) + h = dim(V ),

so that
h = codim(W ;V )

is the height of W in V .

Corollary 2.4 (Combinatorial interpretation of dimension) If V is a separated k-irreducible
variety, then dim(V ) is the maximum of the chain length of all chains of the form

Vh 6⊆ Vh−1 6⊆ · · · 6⊆ V0 = V,

where Vh is any finite set of k-conjugate points. The codimension, codim(W ;V ), is equal to
the height of W in V .

Certain subvarieties of a k-variety are particularly simple. Among these are the hyper-
surfaces, which are defined by:

Definition 2.4 Let V be a k-variety and f a nonconstant global holomorphic function on
V . The hypersurface cut out by f is the subvariety

{ξ ∈ V | f(ξ) = 0}.

Corollary 2.5 Let V be an affine k-irreducible variety and let W be a closed subvariety of
V . The following statements are equivalent:

(1) W is a maximal k-irreducible subvariety of V .

(2) W is a k-irreducible subvariety of V and dim(W ) = dim(V )− 1.

(3) If k[V ] is a UFD, then (1) and (2) are both equivalent to the fact thatW is an irreducible
hypersurface in V .

Proof . The equivalence of (1) and (2) follows from Corollary 2.4. Assume that k[V ] is a
UFD, and let W be a maximal k-irreducible subvariety of V . Then, W corresponds to a
prime ideal P of k[V ]. Since k[V ] is a UFD, P is a principal ideal, so that P = (f). Then

W = Spec k[V ]/P = Spec k[V ]/(f) = {ξ ∈ V | f(ξ) = 0},

the hypersurface cut out by f .

Conversely, assume that W is the irreducible hypersurface cut out by f . Let Z be a
maximal k-irreducible subvariety of V such that W ⊆ Z. By definition, I(W ) = (f), so that
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(f) is prime, which implies that f is irreducible in k[V ]. The variety Z corresponds to a
minimal prime ideal P of k[V ], and since k[V ] is a UFD, the ideal I(Z) = P = (g). Since
(g) is prime, g is irreducible in k[V ]. But W ⊆ Z, so we get

I(Z) ⊆ I(W ).

As a consequence, g = αf , but as f and g are both irreducible, α must be a unit and

I(Z) = I(W ),

which implies that Z = W .

In linear algebra, we know how the concept of dimension behaves with respect to inter-
section of subspaces. The intersection of two subspaces is never empty as 0 is common to
both; this needs not happen with varieties. So, in investigating how our notion of dimension
behaves with respect to intersections, some hypotheses of nontriviality must be assumed.
The principal theorem is the intersection dimension theorem. The proof of this theorem
uses another important theorem known as the hypersurface section theorem.

Theorem 2.6 (Intersection Dimension theorem in An) Let V and W be k-irreducible closed
subvarieties of An, with dim(V ) = r, dim(W ) = s, and assume that V ∩W 6= ∅. Then, each
k-irreducible component of V ∩W has dimension at least r + s− n.
Proof . We may assume that k is algebraically closed, since dimension is stable under base
extension. Consider the embedding

V
∏

k

W →֒ An
∏

k

An = A2n,

and further consider (V
∏
k

W ) ∩∆. We have the commutative diagram

An ∆ // A2n

V ∩W

OO

∆
// (V

∏
k

W ) ∩∆

OO

where the lower map is an isomorphism (DX). We need to prove the theorem for (V
∏
k

W )∩∆
in A2n. But

∆ =

n⋂

j=1

Hj,

where Hj is the hyperplane
Hj = {(ξ, η) | ξj = ηj}.

Hence, our theorem comes down to the following important statement (by applying it se-
riatum to the various intersections (V

∏
k

W ) ∩H1 ∩H2 · · · ∩ Hj; adding one j at a time).
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Theorem 2.7 (Hypersurface section theorem) If V is an irreducible subvariety of An and
H is a hypersurface of An, with V not contained in H, then every nonempty irreducible
component of V ∩H (hypersurface section) has codimension 1 in V .

Proof . This proof makes use of a major theorem, Krull’s principal ideal’s theorem. There
is a more elementary (but longer) proof using Noether’s normalization. However, such a
proof does not apply to a more general setting (schemes). This is why we make use of this
rather “heavy” theorem. The k-algebra k[V ] is a homomorphic image of k[T1, . . . , Tn], and
H is given by the equation f(T1, . . . , Tn) = 0. Since V is not contained in H , the restriction,
f = f ↾ V , of f to V , i.e., the image of f in k[V ], is not identically zero. Furthermore,

k[V ∩H ] = k[V ]/(f).

The irreducible components of V ∩H correspond to the isolated prime ideals in k[V ] of the
principal ideal (f). By Krull’s principal ideal theorem (Zariski and Samuel [60], Theorem 29,
Chapter IV, Section 14), the isolated primes of (f) are minimal primes in k[V ]. Thus, these
ideals correspond to maximal irreducible subvarieties of V . But we know that the dimension
of these irreducible components is dim(V )− 1, i.e., of codimension 1.

Corollary 2.8 In an affine variety, each hypersurface is equidimensional (of codimension
one).

� If V and W are contained in some affine variety Z not Aq, the intersection dimension
theorem (Theorem 2.6) may be false. Indeed, consider the following example.

Example 2.1 Let Z be the quadric cone in A4 given by

x1x2 − x3x4 = 0.

The cone Z has dimension 3 (it is a hypersurface). Let V be the plane

x1 = x3 = 0,

and W the plane
x2 = x4 = 0.

Observe that V,W ⊆ Z. Since V and W have dimension 2 and V ∩W 6= ∅, the intersection
dimension theorem would yield dim(V ∩W ) ≥ 2+2−3 = 1. However V ∩W = {(0, 0, 0, 0)},
the origin, whose dimension is zero!

What is the problem? The answer is that near 0, ∆∩Z is not the locus of three equations,
rather of four equations.

Again, in linear algebra, when we have a linear map of vector spaces, we can say what
the dimension of the fibre of each point in the image is. The corresponding theorem in our
case is necessarily more complicated, but generically, it proves to be the same statement.
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Theorem 2.9 (Fibre dimension theorem) Let V and W be irreducible k-varieties and let
ϕ : V → W be a surjective morphism. Write n = dim(V ) and m = dim(W ). Then:

(1) For all w ∈ W ,
dimκ(w)ϕ

−1(w) ≥ n−m.

(2) If w is k-generic, then
dimκ(w)ϕ

−1(w) = n−m.

(3) There is a nonempty open U ⊆W so that dimκ(w)ϕ
−1(w) = n−m, for all w ∈ U .

Proof . Statements (1), (2), and (3) are local on W ; so, we may assume thatW is affine. Say
W ⊆ AM , with M ≥ m. Since dimension is invariant under base extension, we may assume
that w ∈ W (k) and k is algebraically closed.

(1) Pick ξ ∈ W , ξ 6= w. There is a hyperplane H ⊆ AM such that w ∈ H and ξ /∈ H .
Thus, W is not contained in H . [In fact, if L = 0 is a linear form defining H , Ld (d ≥ 1)
is a form of degree d defining a hypersurface of degree d, call it H ′; W is not contained in
H ′, but w ∈ H ′.] By the hypersurface section theorem (Theorem 2.7), the dimension of any
irreducible component of W ∩ H is dim(W ) − 1. Pick, ξ1, . . . ξs in each of the components

of W ∩H . Then, there is a hyperplane H̃ so that ξj /∈ H̃ for all j, 1 ≤ j ≤ s, but w ∈ H̃ .

Then, by Theorem 2.7 again, the dimension of any component of W ∩H ∩ H̃ is dim(W )−2.
Using this process, we get some hyperplanes H1, H2, . . . , Hm such that

w ∈
m⋂

j=1

Hj ,

and if we write
Wj = Wj−1 ∩Hj ,

with W1 = W ∩H1, we get a chain

W ⊃W1 ⊃W2 ⊃ · · · ⊃Wm.

Here, w ∈ Wm, and
dim(Wj) = dim(W )− j.

Thus, the linear forms L1, . . . , Lm associated with the Hj ’s define Wm in W and

dim(Wm) = 0.

Consequently, Wm is a finite set of k-points:

Wm = {w1 = w,w2, . . . , wt}.

Let
U0 = W − {w2, . . . , wt},
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it is a k-open dense subset of W . We can replace W by U0, and thus, we may assume
that Wm = {w}. We have ϕ : V → W , and so, each ϕ̂(Lj) is a function on V (where
ϕ̂ : k[W ] → k[V ]). But ϕ−1(w) is the locus in V cut out by ϕ̂(L1), . . . , ϕ̂(Lm); so, by the
hypersurface intersection theorem (Theorem 2.7) (we may assume that V ⊆ AN), we get

dim ϕ−1(w) ≥ dim(V )−m ≥ n−m.

Observe that (3) implies (2), since every generic point is in any nonempty open.

(3) Again, we may assume that W is affine. For any nonempty affine open, V0, in V , as
V0 is dense in V , we see that ϕ(V0) is dense in W . Moreover, any nonempty intersection of
V0 with a fibre is dense in the fibre. Thus, we may assume that V and W are affine and that
ϕ(V ) is dense in W . We can also assume that k is algebraically closed (since dimension is
stable under base extension). We know that k[W ] ⊆ k[V ], since ϕ(V ) is dense in W , and

tr.dk[W ] k[V ] = n−m.

We have V →֒ AN , with k[V ] = k[v1, . . . , vN ], and W →֒ AM , with k[W ] = k[w1, . . . , wM ],
for some suitable M,N . We may also assume that v1, . . . , vn−m form a transcendence base
of k[V ] over k[W ]. Then, each vj, j = n−m+1, . . . , N is algebraic over k[W ][v1, . . . , vn−m],
and there are polynomials Gj(T1, . . . , Tn−m, T ) (coefficients in k[W ]) so that

Gj(v1, . . . , vn−m, vj) = 0.

Pick gj(T1, . . . , Tn−m) as the coefficient of highest degree of Gj in T . The set

{w ∈ W | gj(w) = 0} =Wj

is a k-closed subset of W . Let

U =W −
N⋃

j=n−m+1

Wj.

The open U is nonempty, since W is irreducible. On U , the polynomial Gj is not identically
zero as a polynomial in T1, . . . , Tn−m, T , yet

Gj(v1, . . . , vn−m, vj) = 0.

Thus, vj is algebraically dependent on v1, . . . , vn−m over k[U ]. Letting ṽj denote the restric-
tion of vj to ϕ

−1(w) (i.e., the image of vj in k[V ]⊗k[W ] κ(w)), where w ∈ U , we see that ṽj
is also algebraically dependent on ṽ1, . . ., ṽn−m. Now,

ϕ−1(w) = Spec κ(w)[ṽ1, . . . , ṽn−m],

which implies that
tr.dκ(w) κ(w)[ṽ1, . . . , ṽn−m] ≤ n−m.
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However, by (1),
dim(ϕ−1(w)) ≥ n−m,

and so,

dim(ϕ−1(w)) = n−m.

Corollary 2.10 Assume that we are in the same situation as in the fibre dimension theorem
(Theorem 2.9). Let

Wl = {w ∈ W | dim(ϕ−1(w)) ≥ l}.
Then, Wl is k-closed in W , i.e., the function

w 7→ dim(ϕ−1(w))

is upper semi-continuous on W . Hence, W possesses a stratification

W = U0 ∪ U1 ∪ · · · ∪ Un,

where Uj =Wj −Wj+1 is locally closed and dim(ϕ−1(w)) = j for all w ∈ Uj.

Proof . The proof is by induction on dim(W ). The case where dim(W ) = 0 is easy. Given
W , Theorem 2.9 part (3) implies that there is some open set U ⊆ W and some Wl (l ≥ 1
and l minimum) so that

Wl ⊆ Z = W − U.
Also, Z is closed and we have some irredundant decomposition

Z =

t⋃

j=1

Zj,

where Zj is irreducible and strictly contained in W . Then, dim(Zj) < dim(W ), and we can
apply the induction hypothesis to the maps ϕj : ϕ

−1(Zj) → Zj, the details are left as an
exercise (DX).

� Note that the dimension of the fibres may jump, as shown by the following example
(which is nothing but the “blowing-up” at a point in A2).

Example 2.2 Let W = A2, and consider A2
∏

P1. We use w1, w2 as cooordinates on W ,
and ξ1, ξ2 as homogeneous coordinates on P1. Write V for the subvariety of A2

∏
P1 given

by the equation
w1ξ2 = w2ξ1.

This equation is homogeneous in ξ1, ξ2, and it defines a closed subvariety of A2
∏

P1. We get
a morphism ϕ : V →W via

ϕ : V →֒ A2
∏

P1 pr1−→W = A2.

If w = (w1, w2) 6= (0, 0), then the fibre over w is {(ξ1 : ξ2) | w1ξ2 = w2ξ1}.
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1. If w1 6= 0, then ξ2 = (w2/w1)ξ1.

2. If w2 6= 0, then ξ1 = (w1/w2)ξ2.

In both cases, we get a single point, and the dimension of the fibre ϕ−1(w) is zero for
w ∈ A− {(0, 0)}.

When w = (0, 0), the fibre is the whole P1. Thus, the dimension of the fibre at the origin
jumps to 1.

In algebraic geometry, we have the analog of the notion of compactness for Hausdorff
topologies, but here working for the Zariski topology. This is the notion of properness.

Definition 2.5 An abstract k-variety, V , is proper if V is separated, quasi-compact, and if
for every k-variety W , the second projection map pr2 : V

∏
k

W →W is a closed map.

Remarks:

(1) As we said, the notion of properness of a k-variety is the algebraic substitute for
compactness. An older terminology is the term complete variety . As an illustration
of the similarity of properness and compactness, we have the following property (well
known for continuous maps on compact spaces): If V is proper and W is separated,
then for any morphism ϕ : V →W , the map ϕ is a closed map.

Proof . Consider the graph morphism

Γϕ : V → V
∏

k

W,

given by

Γϕ(v) = (v, ϕ(v)).

Note that the image of Γϕ is closed in V
∏
k

W because W is separated. Indeed,

consider the morphism

(ϕ, id) : V
∏

k

W →W
∏

k

W

given by

(ϕ, id)(u, w) = (ϕ(u), w).

It is obvious that Γϕ = (ϕ, id)−1(∆), where ∆ is the diagonal in W
∏
k

W . Thus, it is

enough to prove that ∆ is closed in W
∏
k

W , but this follows from the fact that W is

separated.
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Also, pr1 restricted to the image of Γϕ is the inverse of the morphism Γϕ. Thus, Γϕ is
an isomorphism and V is isomorphic to a closed subvariety of V

∏
k

W . Now, ϕ is the

composition

V
Γϕ−→ V

∏

k

W
pr2−→W,

and since Im Γϕ is closed, the properness of V (pr2 is closed) shows that ϕ is closed.

(2) When we introduce projective varietes (see Section 2.5), we will show that every pro-
jective variety is proper. However, there are proper varieties which are not projective,
although this is a harder fact to demonstrate.

One of the pleasant consequences of properness and the holomorphic nature of morphisms
is the following theorem about irreducibility:

Theorem 2.11 (Irreducibility criterion) Let V be a proper k-variety, W a separated k-
variety and ϕ : V →W a surjective morphism. Assume that

(1) W is k-irreducible.

(2) ϕ−1(w) is κ(w)-irreducible for every w ∈ W .

(3) dimκ(w)(ϕ
−1(w)) = n, a constant for all w ∈ W .

Then, V is k-irreducible.

Proof . Let V =
⋃q
j=1 Vj be an irredundant decomposition of V into k-irreducible compo-

nents. Consider Vj. It is closed in V , and thus, ϕ(Vj) is closed in W , because V is proper.
Since ϕ : V → W is surjective,

W =

q⋃

j=1

ϕ(Vj).

But W is k-irreducible; so, it follows (after renumbering, if needed) that ϕ(Vj) = W for
j = 1, . . . , s, and ϕ(Vj) is strictly contained in W for j = s+ 1, . . . , q. Thus,

q⋃

j=s+1

ϕ(Vj)

is a k-closed subset of W strictly contained in W , and

W̃ = W −
q⋃

j=s+1

ϕ(Vj)

is a k-open dense subset of W . Let Ṽ = ϕ−1(W̃ ), write Ṽj = Ṽ ∩ Vj , and let ϕj be the

restriction of ϕ to Ṽj . Note,

ϕj(Ṽj) = ϕ(Ṽj) = W̃ ,
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because, given any w ∈ W̃ , there exists v ∈ Vj with ϕ(v) = w. Since ϕ(v) ∈ W̃ , the element

v is in Ṽ . Therefore, v ∈ Ṽ ∩ Vj; hence, v ∈ Ṽj , as required. Write

µj = min{dim(ϕ−1j (w)) | w ∈ W̃}.

By the fibre dimension theorem (Theorem 2.9), there is some nonempty open subset

Uj ⊆ W̃ so that if w ∈ Uj , then dim(ϕ−1j (w)) = µj. Thus, as U =
⋂s
j=1Uj is a dense k-open

subset of W̃ , we have a nontrivial dense open, U , so that if w ∈ U , then dim(ϕ−1j (w)) = µj,
for j = 1, . . . , s. Pick w0 ∈ U . Then

ϕ−1(w0) =

s⋃

j=1

ϕ−1j (w0).

However, ϕ−1(w0) is κ(w0)-irreducible, and thus, there is some j such that

ϕ−1(w0) = ϕ−1j (w0).

We may assume that j = 1. Since the dimension of the fibres is constant, we get

µ1 = n.

By the fibre dimension theorem, dim ϕ−11 (w) ≥ dim ϕ−11 (w0) = n, for all w ∈ W . Now,

ϕ−1(w) =

s⋃

j=1

ϕ−1j (w), (∗)

and since dim ϕ−11 (w) ≤ dim ϕ−1(w) = n, we must have dim ϕ−11 (w) = n for all w ∈ W and
(∗) together with the irreducibility of ϕ−1(w) imply that ϕ−1(w) = ϕ−11 (w), for all w ∈ W .
It follows that

V =
⋃

w∈W

ϕ−1(w) =
⋃

w∈W

ϕ−11 (w) = V1

and since V1 is irreducible, so is V .

2.2 Local Theory, Zariski Tangent Space

Let V be a k-variety and p a point in V . Consider the locally defined holomorphic functions
on V (to Ω) near p. We can define an equivalence relation ∼ on such functions so that, given
F defined on some open U and G defined on some open V , with p ∈ U ∩ V ,

F ∼ G

iff there is some open W ⊆ U ∩ V such that F ↾ W = G ↾ W . The germ of F at p is the
equivalence class of F .
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Definition 2.6 If V is a k-variety and p is a point in V , we let OV,p be the ring of germs
of locally defined holomorphic functions at p on V .

Actually, OV,p is a k-algebra, although not necessarily finitely generated. Now,
V =

⋃
α Vα, where each Vα is an affine open; so, there is some α such that p ∈ Vα, we have

Vα = Spec Aα for an affine algebra Aα, and

Iα(p) = {f ∈ Aα | f(p) = 0}

is a prime ideal, pα, of Aα. Given a germ [F ] at p, we may assume that a representative
of [F ] is defined on some open Vα. In fact, there exist smaller opens in Vα, for instance,
{q ∈ Vα | h(q) 6= 0} where h ∈ Aα, and where we can write

F =
g

hm

in (Aα)h. By replacing hm by h, we may assume that

F =
g

h

in (Aα)h. Similarly, we have

G =
g̃

h̃

in (Aα)h̃. However, using hh̃ as denominator, we can assume that

F =
g

h
and G =

g̃

h
.

Then, F ∼ G means that there is some l ∈ (Aα)h so that

g

h
=
g̃

h
, in (Aα)l.

That is, g/h and g̃/h have the same image in (Aα)l. As a consequence,

OV,p = lim
−→
l(p)6=0

(Aα)l = (Aα)pα .

In particular, OV,p is a local ring. We have a map

Aα −→ OV,p = (Aα)pα,

and pα is the pullback of the maximal ideal of OV,p, which we denote mp.

If p is also in Vβ, then then the open set Vα ∩ Vβ is covered by affine opens, W ; so, p
belongs to some affine open W such thatW ⊆ Vα∩Vβ . Then, there is some open (Vα)h ⊆W
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around p, and the computation of OV,p as above gives the same computation for Vα, but the
limit is taken over a cofinal family. We obtain

OV,p = (Aα)pα = k[W ]pα and OV,p = (Aβ)pβ = k[W ]pβ ,

and OV,p, computed as a direct limit, is independent of the affine open used. We see that

OV,p/mp = Frac(Aα/pα) = κ(p).

Let’s summarize all this in the following proposition:

Proposition 2.12 At p ∈ V , we have a local ring, OV,p, consisting of the germs of locally
defined holomorphic functions on V at p. If Vα is an affine open in V containing p, then
OV,p can be computed as (Aα)pα, where

(1) Vα = Spec Aα.

(2) pα = Iα(p) = {f ∈ Aα | f(p) = 0}.

Furthermore, under the map Aα −→ OV,p, the maximal ideal mp (of OV,p) pulls back to pα,
and the residue field of the local ring is just κ(p).

Now consider V , an affine variety in An. Write A for the ideal I(V ) ⊆ k[X1, . . . , Xn].
Consider p ∈ V (L), where L is some field between k and Ω. Then, look at the collection of
linear equations

n∑

j=1

((
∂f

∂xj

)

p

)
(xj − pj) = 0, (∗)

where p = (p1, . . . , pn) and f ∈ A. If we write λj = xj − pj, these equations define a linear
space over L. By Hilbert’s basis theorem, A is finitely generated, say A = (f1, . . . , ft); so,

f =

t∑

i=1

hifi,

where hi ∈ k[X1, . . . , Xn]. We get

∂f

∂xj
=

t∑

i=1

(
hi
∂fi
∂xj

+ fi
∂hi
∂xj

)
,

and, since fi(p) = 0, (
∂f

∂xj

)

p

=

t∑

i=1

hi(p)

(
∂fi
∂xj

)

p

.
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Equation (∗) becomes

n∑

j=1

t∑

i=1

(
hi(p)

(
∂fi
∂xj

)

p

)
(xj − pj) = 0,

which yields
t∑

i=1

hi(p)

(
n∑

j=1

(
∂fi
∂xj

)

p

(xj − pj)
)

= 0.

Hence, the vector space defined by (∗) is also defined by

n∑

j=1

(
∂fi
∂xj

)

p

(xj − pj) = 0, for i = 1, . . . , t. (∗∗)

Definition 2.7 The L-linear space at p ∈ V defined by (∗∗) is called the Zariski tangent
space at p on V . It is denoted by TV,p(L).

Note that Definition 2.7 is an extrinsic definition. It depends on the embedding of V in
An. It is possible to give an intrinsic definition. For this, we review k-derivations.

Definition 2.8 A k-derivation of k[V ] with values in L centered at p consists of the following
data:

(1) A k-linear map D : k[V ]→ L. (values in L)

(2) D(fg) = f(p)Dg + g(p)Df (Leibnitz rule) (centered at p)

(3) D(λ) = 0 for all λ ∈ k. (k-derivation)

The set of such derivations is denoted by Derk(k[V ], L; p).

The composition

k[X1, . . . , Xn] −→ k[V ]
D−→ L

is again a k-derivation (on the polynomial ring) centered at p with values in L. Note that
a k-derivation on the polynomial ring (call it D again) factors as above iff D ↾ A = 0. This
shows that

Derk(k[V ], L; p) = {D ∈ Derk(k[A
n], L; p) | D ↾ A = 0}.

However, a k-derivation D ∈ Derk(k[An], L; p) is determined by its values D(Xj) = λj at the
variables Xj . Clearly (DX),

D(f(X1, . . . , Xn)) =

n∑

j=1

(
∂f

∂xj

)

p

D(Xj).
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But, observe that for any (λ1, . . . , λn), the restriction of D to A vanishes iff

n∑

j=1

(
∂f

∂xj

)

p

λj = 0, for every f ∈ A,

that is, iff
n∑

j=1

(
∂fi
∂xj

)

p

λj = 0, for every i = 1, . . . , m,

where f1, . . . , fm generate the ideal A. Letting ξj = λj+pj ∈ L, we have a bijection between
Derk(k[V ], L; p) and

{
(ξ1, . . . , ξn) ∈ Ln

∣∣∣∣∣
n∑

j=1

(
∂fi
∂xj

)

p

λj = 0, 1 ≤ i ≤ m

}
.

It is given by the map
D 7→ (ξ1, . . . , ξn),

with ξj = D(Xj) + pj. This gives the isomorphism

TV,p(L) ∼= Derk(k[V ], L; p).

We conclude that TV,p(L) is independent of the embedding of V into An, up to isomorphism.
Now, OV,p = k[V ]p, the localization of k[V ] at the prime ideal p = I(p); so,

OV,p =
{[

f

g

] ∣∣∣∣ f, g ∈ k[V ], g /∈ p

}
=

{[
f

g

] ∣∣∣∣ f, g ∈ k[V ], g(p) 6= 0

}
.

Any k-derivation D ∈ Derk(k[V ], L; p) is uniquely extendable to OV,p via

D

(
f

g

)
=
g(p)Df − f(p)Dg

g(p)2
.

Therefore,
Derk(k[V ], L; p) = Derk(OV,p, L; p).

The local ring OV,p determines the point p, too. To see this, recall that any p ∈ V (L)
corresponds to a unique k-algebra morphism ϕp ∈ Homk−alg(k[V ], L), where ϕp(f) = f(p).
So, if g ∈ k[V ] with g(p) 6= 0, viewing g as a polynomial, we have g ∈ k[An] − p, and this
implies that

ϕp

(
f

g

)
=
f(p)

g(p)
.

This means that ϕp extends uniquely to OV,p and kills mp. Therefore, ϕp corresponds to a
k-injection from κ(p) to L, and so, OV,p determines p. In summary, we have the following
proposition:
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Proposition 2.13 If V is an irreducible affine k-variety, the Zariski tangent space, TV,p(L),
at p ∈ V (L) is canonically isomorphic to either Derk(k[V ], L; p), or Derk(OV,p, L; p), and
V (L) corresponds to pairs (p, ϕ), where

(a) p is a prime ideal of k[V ] with residue field κ(p) (κ(p) = Frac(k[V ]/p)).

(b) ϕ : κ(p)→ L is a k-injection.

The correspondence is given as follows. The pair (p, ϕ) gives rise to the homomorphism

k[V ] −→ Frac(k[V ]/p)
ϕ−→ L,

which is a point in V (L), and the point p in V (L) gives the homomorphism

k[V ] −→ Frac(k[V ]/I(p)) −→ L,

that is, the homomorphism

k[V ] −→ Frac(OV,p/mp)
ϕ−→ L,

and hence, the pair (mp, ϕ).

Proposition 2.14 Let V be an irreducible k-variety. The function

p 7→ dimκ(p)TV,p(κ(p))

is upper-semicontinuous on V , i.e.,

Sl = {ξ ∈ V | dimκ(p)TV,p(κ(p)) ≥ l}

is k-closed in V , and furthermore, Sl+1 ⊆ Sl.

Proof . We may assume that V is affine (DX); so, we have V ⊆ An for some n. Hence,
TV,p(κ(p)) is the κ(p)-vector space given by the set of (λ1, . . . , λn) ∈ κ(p)n such that

n∑

j=1

(
∂fi
∂xj

)

p

λj = 0, for i = 1, . . . , m,

where f1, . . . , fm generate the ideal A = I(V ). Hence, TV,p(κ(p)) is the kernel of the linear
map from An to Am given by the m× n matrix

((
∂fi
∂xj

)

p

)
.

It follows that

dimκ(p)TV,p(κ(p)) = n− rk

((
∂fi
∂xj

)

p

)
.
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Consequently, dimκ(p)TV,p(κ(p)) ≥ l iff

rk

((
∂fi
∂xj

)

p

)
≤ n− l;

and this holds iff the (n− l + 1)× (n− l + 1) minors are all singular at p. But the latter is
true when and only when the corresponding determinants vanish at p. These give additional
equations on V at p in order that p ∈ Sl and this implies that Sl is closed in V . Since the Sl
manifestly form a nonincreasing chain as l increases, there is a largest l for which Sl = V .
The set Sl+1 is closed in V , and it complement {ξ | dimκ(p)TV,p(κ(p)) = l} is k-open. This
gives us the tangent space stratification by locally closed sets

V = U0 ∪ U1 ∪ · · · ∪ Ut,

where U0 = {ξ | dimκ(p)TV,p(κ(p)) = l} is open, and Ui = {ξ | dimκ(p)TV,p(κ(p)) = l + i}.
We have U1 open in V − U0 = Sl+1, etc.

Remark: Given a hypersurface S in An defined by the equation f = 0, when are we in the
“bad” closed set Sl+1 which is the complement of U0? This happens when and only when

rk

((
∂fi
∂xj

)

p

)
≤ 1 and p ∈ S,

that is , when f(p) = 0 and

(
∂fi
∂xj

)

p

= 0, for j = 1, . . . , n.

Example 2.3 Assume that k has characteristic 0, and let V ⊆ A2 be the hypersurface
defined by

Y 2 −X3 = 0.

We have ∂f/∂X = 3X2, ∂f/∂Y = 2Y , and the only bad point is O = (0, 0). At this point,
dimkTV,O(Ω) = 2. As a real curve, this cubic looks like the picture displayed in Figure 2.1.
The singularity at the origin is called a cusp.

Example 2.4 Let V ⊆ A2 be the hypersurface defined by

Y 2 +X3 −X2 = 0.

Again, the only bad point is O = (0, 0), where we have dimkTV,O(Ω) = 2. As a real curve,
this cubic looks like the picture displayed in Figure 2.2. Its singularity at the origin is called
a double point (a node).

The equation of the “tangent cone” is Y 2 −X2 = 0.
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Figure 2.1: A Cuspidal Cubic

Figure 2.2: A Nodal Cubic

Example 2.5 Let V ⊆ A3 be the cone defined by

X2 + Y 2 = Z2.

The only bad point is O = (0, 0, 0). We have dimkTV,O(Ω) = 3, and not 2.

Separability and derivations are intimately connected. Since tangent spaces are defined
by derivations, it will be no surprise that some hypotheses of separability will enter into the
theorem of about tangent space. The connection with separability is that separability of the
field extension K/k (in the wide sense) implies that

tr.dk K = dimKDerk(K,K).

Proposition 2.15 Let V be k-variety V such that V has an open affine covering V =
⋃
α Vα,

for which each function field k(Vα) is separably generated over k. Then, there is a nonempty
k-open set U ⊆ V so that

dimκ(p)TV,p(κ(p)) = dimkV

for all p ∈ U .

Proof . In the decomposition V =
⋃
α Vα, we may restrict attention to those Vα for which

dim(Vα) = dim(V ). If Uα works in each such Vα, then
⋃
β Uβ works, where β ranges over

those α’s. Therefore, we may assume that V is affine. Let

V = V1 ∪ · · · ∪ Vt
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be an irredundant decomposition into irreducible components. At least one of the Vj ’s has
dimension dim(V ). Say it is j = 1. Look at V1 ∩ Vj , j = 2, . . . , t. Each V1 ∩ Vj is a closed
set, and so

W = V −
t⋃

j=2

V1 ∩ Vj

is k-open. Also, W ∩ V1 is k-open in V1 because it is the complement of all the closed sets
V1 ∩ Vj with j ≥ 2. Take any open subset, U , of V −⋃t

j=2 Vj for which U is a good open in
V1, that is, where dimκ(p)TV,p(κ(p)) = dimkV1 whenever p ∈ U . Then, U ∩W also has the
right property. Hence, we may assume that V is affine and irreducible, so, V ⊆ An. If so,
recall that TV,p(κ(p)) is the vector space consisting of all (λ1, . . . , λn) ∈ κ(p)n so that

n∑

j=1

(
∂fi
∂xj

)

p

λj = 0,

where I(V ) = (f1, . . . , fm). Since we assume that k(V ) is separably generated over k, we
have

tr.dk K = dimKDerk(K,K),

where K = k(V ) = Frac(k[V ]). Then,

dimk(V ) = tr.dk k(V )

= dimk(V )Derk(k(V ), k(V ))

= dimk(V )Derk(k[V ], k(V ))

= dimk(V ){D ∈ Derk(k[A
n], k(V ); q) | D = 0 on I(V ), and q generic}

= dimk(V )

{
λ1, . . . , λn) ∈ k(V )n

∣∣∣∣∣
n∑

j=1

(
∂fi
∂xj

)

q

λj = 0, 1 ≤ i ≤ m

}

= n− rk

((
∂fi
∂xj

)

q

)
.

Thus, we must show that there is some nonempty open subset U ⊆ V so that

rk

((
∂fi
∂xj

)

p

)
= rk

((
∂fi
∂xj

)

q

)
, for all p ∈ U,

and for q generic in V . Now, if q is k-generic, then κ(q) = k(V ) and the rank of the matrix
((

∂fi
∂xj

)

q

)

is just its rank as a matrix (
∂fi
∂xj

)
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whose entries are in the field k(V ). Under specialization, the rank can drop, but there is an
open where the rank is constant (again, the argument by minors). This completes the proof.

A second argument for the rank part goes as follows. From our previous work, there is
some open set U ⊆ V so that the rank at q is equal to the rank at p, for all p ∈ U . Assume
that the rank of (

∂fi
∂xj

)

as a matrix with entries in k(V ) is r. By linear algebra, this means that there are matrices
A,B (with entries in k(V )) so that

A

(
∂fi
∂xj

)
B =

(
Ir 0
0 0

)
.

Let α(X1, . . . , Xn) and β(X1, . . . , Xn) be the common denominators of entries in A and B,

respectively. So, A = (1/α)Ã and B = (1/β)B̃, and the entries in Ã and B̃ are in k[V ]. Let

U be the open set where the polynomial αβ det(Ã) det(B̃) is nonzero. Then, as

1

αβ
Ã

(
∂fi
∂xj

)
B̃ =

(
Ir 0
0 0

)
in k(V ),

applying the specialization corresponding to p, we get

1

α(p)β(p)
Ã(p)

((
∂fi
∂xj

)

p

)
B̃(p) =

(
Ir 0
0 0

)
,

and ((
∂fi
∂xj

)

p

)

has rank r.
Now, if V is irreducible, we must have a big open subset U0 of V where dim TV,p(κ(p))

is equal to the minimum it takes on V . Also, we have an open Ũ0 where dim TV,p(κ(p)) =
dim(V ). Since these opens are dense, we find

U0 ∩ Ũ0 6= ∅.

Therefore, we must have
U0 = Ũ0,

and the minimum value taken by the dimension of the Zariski tangent space is just dim(V ).
In summary, the set

U0 = {p ∈ V | dim TV,p(κ(p)) = dim(V )} = min
q∈V

dim TV,q(κ(p))

is a k-open dense subset of V .
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Definition 2.9 If V is an irreducible variety, a point p ∈ V is nonsingular if

dimκ(p) TV,p(κ(p)) = dimk(V ).

Otherwise, we say that p is singular . If V is quasi-compact, then V =
⋃t
i=1 Vi for some

irredundant decomposition into irreducible components, and we say that p ∈ V is nonsingular
if p /∈ Vi ∩ Vj (for all i, j, with i 6= j) and p is nonsingular in the component to which it
belongs. Otherwise, we say that p is singular . The singular locus of V is denoted by Sing(V ).

From previous observations, the singular locus, Sing(V ), of V is a k-closed set. This
leads to the Zariski stratification. Let U0 be the set of nonsingular points in V , write
V1 = Sing(V ) = V − U0, and let U1 be the set of nonsingular points in V1. We can set
V2 = V1−U1, and so on. Then, we obtain the Zariski-stratification of V into disjoint locally
closed strata

V = U0 ∪ U1 ∪ · · · ∪ Ut,
where each Ui is a nonsingular variety and U0 is the open subset of nonsingular points in V .

Example 2.6 In this example (see Figure 2.3), Sing(V ) consists of a line with a bad point
on it (the origin). V1 is that line, and V2 = Sing(V1) is the bad point.

Example 2.7 In this example (see Figure 2.4), Sing(V ) consists of three points. Observe
that V is reducible and consists of components of dimension 1 and 2.

Example 2.8 This example shows that troubles may arise in characteristic p > 0. Let
k = (Z/pZ)(T ), the field of rational functions over Z/pZ. We let V be the variety in A2

k

defined by

TXp + Y 2p − 1 = 0.

Letting f = TXp + Y 2p − 1, we get

∂f

∂X
= pTXp−1 = 0 and

∂f

∂Y
= 2pY 2p−1 = 0.

Thus, dim TV,p(Ω) = 2 for all points p! However, dimk(V ) = 1.

Why do we use the function field (Z/pZ)(T )? If T does not appear in the equation (e.g.,
T = 1), we have

Xp + Y 2p − 1 = (X + Y 2 − 1)p,

the ideal I(V ) (over Z/pZ) is generated by X + Y 2 − 1, and so there is no problem. This
example (with T appearing) shows that it is necessary to assume that each k[Vα] is separably
generated.
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V

Figure 2.3: Example of A Surface with Singularites

A B
C

Figure 2.4: Example of A Variety with Singularites
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Let us take a closer look at the tangent space TV,p(L).

Pick, p, a point of an irreducible variety V . We have

κ(p) = Frac(k[V ]/I(p)) = k
(
{p}
)
.

We want κ(p) separable over k, in the wide sense (i.e., κ(p) is not necessarily algebraic over
k); we have

TV,p(Ω) = Derk(OV,p,Ω; p).
Recall from commutative algebra that

lim
←−
r

OV,p/mr
p

is the completion of OV,p, denoted by ÔV,p. Since OV,p = k[V ]I(p) is a Noetherian ring, by
Krull’s intersection theorem (Zariski and Samuel [60], Corollary 1 Chapter IV, Section 7),

⋂

r

mr
p = ((0)).

Thus, we have an injection i : OV,p → ÔV,p and the mp-adic topology is Hausdorff. Also, the
characteristic of κ(p), the residue field of OV,p, is equal to the characteristic of k. By the
structure theorem of I.S. Cohen (1945) (Zariski and Samuel [61], Theorem 27, Chapter VIII,

Section 12), ÔV,p contains a unique field k-isomorphic to κ(p). We can write

ÔV,p = κ(p)
∐

m̂p,

as a module over κ(p). The multiplication in the ring ÔV,p is given by

(λ,m)(λ′, m′) = (λλ′, (λm′ + λ′m+mm′)).

We also have the isomorphism
m̂r
p/m̂

r+1
p
∼= mr

p/m
r+1
p .

Given a derivation D ∈ Derk(OV,p,Ω; p), the restriction D ↾ mp of D to mp has the property
that D ↾ m2

p = 0. Indeed,

D

(∑

i

aibi

)
=
∑

i

D(aibi) = ai(p)Dbi + bi(p)Dai.

Since ai, bi ∈ mp, we have ai(p) = bi(p) = 0, and so, D (
∑

i aibi) = 0, which proves that
D ↾ m2

p = 0. As a consequence, D is a linear map from mp/m
2
p to Ω. However, since

m̂p/m̂
2
p
∼= mp/m

2
p,
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D is a linear map from m̂p/m̂
2
p to Ω. Thus, by the Cohen splitting, to know D on ÔV,p, we

need to know D on κ(p).

(1) Assume at first, that κ(p) is separable algebraic over k. Since D ↾ k = 0, we get
D ↾ κ(p) = 0.

Conversely, given a linear map L : m̂p/m̂
2
p → Ω over κ(p), how do we make a derivation

D inducing L?

Define D on m̂p via

m̂p −→ m̂p/m̂
2
p

L−→ Ω,

and define D = 0 on κ(p). Hence, we can define

D(λ,m) = L(m (mod m̂2
p)).

We need to check that it is a derivation. Letting ξ = (λ,m) and η = (λ′, m′), we have

D(ξη) = D(λλ′, (λm′ + λ′m+mm′))

= L(λm′ + λ′m+mm′ (mod m̂2
p))

= L(λm′ + λ′m (mod m̂2
p))

= λL(m′) + λ′L(m)

= ξ(p)D(η) + η(p)D(ξ).

As a summary,

Derk(OV,p,Ω; p) = Derk(ÔV,p,Ω; p)
= the set of κ(p)-linear maps m̂p/m̂

2
p −→ Ω

= the set of κ(p)-linear maps mp/m
2
p −→ Ω

(because κ(p) is separable algebraic over k).

Of course, p ∈ V (Ω); but a more canonical choice is p ∈ V (κ(p)). If we use this choice of
field, we find that

TV,p(κ(p)) = Derk(OV,p, κ(p); p) =
(
mp/m

2
p

)D
,

the dual of the κ(p)-vector space mp/m
2
p. When p is thought of as a point of V (Ω), then

TV,p(Ω) = Derk(OV,p,Ω; p).

(2) Assume now that p is not a closed point of V , but continue assuming that κ(p) is
separable over k. Now, a derivation trivial on k does not imply that it is trivial on κ(p).
Hence, we need Derk(κ(p), κ(p)). We get

TV,p(κ(p)) = Derk(κ(p), κ(p))
∐

Derκ(p)(ÔV,p, κ(p))
= Derk(κ(p), κ(p))

∐(
mp/m

2
p

)D
.
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If we compute the dimensions over κ(p), since κ(p) is separable over k, we get

dimκ(p) Derk(κ(p), κ(p)) = tr.dk κ(p) = dimk {p},
and thus,

dimκ(p) TV,p(κ(p)) = dimk {p}+ dimκ(p)

(
mp/m

2
p

)
. (∗)

We can us this computation to compare the dimension of TV,p(κ(p)) as κ(p)-vector space
with the dimension of V as k-variety. Consider a maximal chain of prime ideals

mp ⊃ p1 ⊃ p2 ⊃ · · · ⊃ pd = (0);

by definition, d is the height of mp. This chain is in one-to-one correspondence with the
chain of ideals of k[V ]:

I = I(p) ⊃ P1 ⊃ P2 ⊃ · · · ⊃ Pd = (0).

Geometrically, this is a chain of varieties

{p} ⊂ V1 ⊂ · · · ⊂ Vd = V.

So, the height of mp is equal to the codimension of {p} in V . But, the (Krull) dimension of
OV,p is equal to the height of mp, and thus

dimk(V ) = dimk {p}+ dimOV,p. (∗∗)
If κ(p) is separable over k, (∗) and (∗∗) show

dimκ(p) TV,p(κ(p)) = dimk(V ) iff dimκ(p)

(
mp/m

2
p

)
= dimκ(p) OV,p.

Putting things together, we find that the following properties hold: Given p ∈ V ,
TV,p(κ(p)) = Derk(κ(p), κ(p))

∐
Derκ(p)(ÔV,p, κ(p))

= Derk(κ(p), κ(p))
∐(

mp/m
2
p

)D
,

and,

dimκ(p)TV,p(κ(p)) = dimκ(p) Derk(κ(p), κ(p)) + dimκ(p)

(
mp/m

2
p

)

≥ dimk {p}+ dimκ(p)

(
mp/m

2
p

)
,

where equality holds if κ(p) is separable over k,

dimk(V ) = dimk {p}+ dimOV,p ≤ dimk {p}+ dimκ(p)

(
mp/m

2
p

)
.

Hence,

dimκ(p) TV,p(κ(p)) = dimκ(p) Derk(κ(p), κ(p)) + dimκ(p)

(
mp/m

2
p

)

≥ dimk {p}+ dimκ(p)

(
mp/m

2
p

)

≥ dimk {p}+ dimOV,p = dimk V,

where equality implies that
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(1) dimk {p} = dimκ(p) Derk(κ(p), κ(p));

(2) dimκ(p)

(
mp/m

2
p

)
= dimOV,p.

Of course, condition (1) will be taken care of by our separability assumption. Local rings
satisfying condition (2) are called regular local rings . Thus, if p is a nonsingular point on V ,
then OV,p is regular; we can summarize all this in the following proposition due to Zariski.

Proposition 2.16 Let V be an irreducible k-variety and let p ∈ V . The following properties
hold:

(1) If p is a closed point and κ(p) is separable over k, then

TV,p(κ(p)) = Derκ(p)(ÔV,p, κ(p)) =
(
mp/m

2
p

)D
,

as κ(p)-vector space.

(2) If p is not necessarily closed, then

TV,p(κ(p))/Derk(κ(p), κ(p)) ∼= Derκ(p)(ÔV,p, κ(p)) =
(
mp/m

2
p

)D
.

(3) If κ(p) is separable over k, then

dimk TV,p(κ(p)) = dimk {p}+ dim
(
mp/m

2
p

)
.

(4) We always have

dimκ(p) TV,p(κ(p)) ≥ dimk {p}+ dimκ(p)

(
mp/m

2
p

)

≥ dimk {p}+ dimOV,p = dimk V.

(5) If p is nonsingular, then OV,p is a regular local ring. If κ(p) is separable over k and
OV,p is a regular ring, then p is nonsingular.

(6) Separable generation is automatic if k is perfect, e.g., (a) k has characteristic 0, (b)
k is algebraically closed, (c) k is a finite field (Zariski and Samuel [60], Theorem 31,
Chapter II, Section 13).

Since κ(p) is the field canonically associated to p, and because we want TV,p to be a
relative invariant depending on V and κ(p), we make the following improved definition of
the Zariski tangent space TV,p to V at p.

Definition 2.10 Let V be an irreducible k-variety and let p ∈ V . The Zariski tangent

space, TV,p, to V at p is the κ(p)-vector space
(
mp/m

2
p

)D
(where mp is the maximal ideal in

OV,p). The Zariski cotangent space to V at p is the κ(p)-vector space mp/m
2
p.
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Remark: We have

old TV,p(κ(p))/Derk(κ(p), κ(p)) = new TV,p.

If p is closed and κ(p) is separable over k, then

old TV,p(κ(p)) = new TV,p.

It is interesting to observe that the tangent space at a point can be recovered from the
points of a variety with values in a special ring; namely, the ring of dual numbers over the
integers . This is the ring Z[T ]/(T 2), and it is usually denoted Λ. Define

Λat p = Λ⊗Z κ(p) = κ(p)[T ]/(T 2).

If V is an affine irreducible variety, we can form V (Λat p) for any point p ∈ V . By definition

V (Λat p) = Homk−alg(k[V ],Λat p).

We have k[V ] ∼= k[X1, . . . , Xn]/I(V ), and thus, k[V ] = k[x1, . . . , xn] (where xj is the image
of Xj). If ϕ ∈ V (Λat p), then

ϕ(xj) = α(xj) + β(xj)ǫ,

where ǫ = T mod (T 2). Since ϕ is a homomorphism, ϕ(xjxk) = ϕ(xj)ϕ(xk) implies that

α(xjxk) = α(xj)α(xk)

β(xjxk) = α(xj)β(xk) + β(xj)α(xk).

Also, since ϕ is k-linear, so are α and β. Thus,

(1) α ∈ Homk−alg(k[V ], κ(p));

(2) β is a “derivation” D : k[V ]→ κ(p).

In (1), we will always take α to be the homomorphism given by p itself, so that in (2),
we get that β is a k-derivation of k[V ] with values in κ(p) centered at p.

Conversely, (1) and (2) as just modified give a point of V with values in Λat p, centered at
p. We’ll get (1) automatically if we extend α, β to OV,p = k[V ]I(p) and demand that α is just
our map res : OV,p → κ(p). If we use the notation V (Λat p; p) to mean those homomorphisms
in which α is just the point p, we get

TV,p(κ(p)) = Derk(OV,p, κ(p); p) ∼= V (Λat p; p).

Hence, points of V in a sufficiently general ring give us tangent vectors of V at p.

In a similar manner, we can define the jet space to V at p to be the space

Jetp(V ) =
∐

n

(
mn
p/m

n+1
p

)D
,
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and the co-jet space to V at p as the space

co-Jetp(V ) =
∐

n

mn
p/m

n+1
p = gr(OV,p) = gr(ÔV,p).

Remark: The ring OV,p is a regular local ring iff co-Jetp(V ) is a polynomial ring over κ(p)
in dimκ(p)

(
mp/m

2
p

)
variables. By definition, a point p is a regular point of V if OV,p is a

regular local ring. We write Vreg for the set of regular points of V . Then,

Vnonsing ⊆ Vreg.

Equality holds when k has characteristic 0.

2.3 Local Structure of a Variety

As in differential geometry the local structure of an algebraic variety has a great deal to do
with the tangent space analysis and jet space analysis at a point. Moreover, one needs the
completion of the local ring OV,p, and hence, one is led into an analysis and study of the
power series ring centered at p. To set up the notation, we let A be a commutative ring and
denote the ring of formal power series in the variables X1, . . . , Xn by A[[X1, . . . , Xn]]. We
have the following facts.

(1) For any f ∈ A[[X1, . . . , Xn]], f is a unit iff f(0, . . . , 0) is a unit in A.

(2) A is a local ring iff A[[X1, . . . , Xn]] is a local ring.

(3) A is Noetherian iff A[[X1, . . . , Xn]] is Noetherian.

(4) If O is a local ring, then in the m-adic topology, Ô is Hausdorff iff
⋂∞
j=0m

j = (0), and
the latter holds when O is Noetherian.

The fundamental results in this case are all essentially easy corollaries of the following
lemma:

Lemma 2.17 Let O be a complete Hausdorff local domain with respect to the m-adic topol-
ogy, and let f ∈ O[[X ]]. Assume that

(a) f(0) ∈ m.

(b)
(
df
dX

)
(0) is a unit of O.

Then, there exist unique elements α ∈ m and u(X) ∈ O[[X ]], so that

(1) u(X) is a unit of O[[X ]].

(2) f(X) = u(X)(X − α).
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Proof . We get u(X) and α by successive approximations as follows. Refer to equation (2)
by (†) in what follows. We compute the unknown coefficients of u(X) and the element α by
successive approximations. Write u(X) =

∑∞
j=0 ujX

j and f(X) =
∑∞

j=0 ajX
j; reduce the

coefficients modulo m in (†); then, since α ∈ m, (†) becomes

f(X) = Xu(X),

which implies that
∞∑

j=0

ajX
j =

∞∑

j=0

ujX
j+1.

Since a0 = 0, we have a0 ∈ m and uj = aj+1. Thus,

uj = aj+1 (modm).

Note that

u0 = a1 =
∂f

∂X
(0) 6= 0

in κ = O/m, which implies that if u(X) exists at all, then it is a unit. Write

uj = aj+1 + ξ
(1)
j ,

where ξ
(1)
j ∈ m, j ≥ 0. Remember that α ∈ m; so, upon reducing (†) modulo m2, we get

f(X) = u(X)(X − α).

This implies that

∞∑

j=0

ajX
j =

∞∑

j=0

ujX
j(X − α)

=

∞∑

j=0

ujX
j+1 −

∞∑

j=0

uj αX
j

=
∞∑

j=0

(
aj+1 + ξ

(1)
j

)
Xj+1 −

∞∑

j=0

(
aj+1 + ξ

(1)
j

)
αXj

=

∞∑

j=0

aj+1X
j+1 +

∞∑

j=0

ξ
(1)
j Xj+1 −

∞∑

j=0

aj+1 αX
j.

When j = 0, we get
a0 = −a1 α.

Since a1 is a unit, α exists. Now, looking at the coefficient of Xj+1, we get

aj+1 = aj+1 + ξ
(1)
j − aj+2α,
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which implies that

ξ
(1)
j = aj+2α,

and ξ
(1)
j exists.

We now proceed by induction. Assume that we know the coefficients u
(t)
j ∈ O of the t-th

approximation to u(X) and that u(X) using these coefficients (modmt+1) works in (†), and
further that the u

(t)
l ’s are consistent for l ≤ t. Also, assume α(t) ∈ m, that α(t) (mod mt+1)

works in (†), and that the α(l) are consistent for l ≤ t. Look at u
(t)
j + ξ

(t+1)
j , α(t) + η(t+1),

where ξ
(t+1)
j , η(t+1) ∈ mt+1. We want to determine ξ

(t+1)
j and η(t+1), so that (†) will work for

these modulo mt+2. For simplicity, write bar as a superscript to denote reduction modulo
mt+2. Then, reducing (†) modulo mt+2, we get

∞∑

j=0

ajX
j =

∞∑

j=0

ujX
j(X − α)

=

∞∑

j=0

ujX
j+1 −

∞∑

j=0

uj αX
j

=
∞∑

j=0

(
u
(t)
j + ξ

(t+1)
j

)
Xj+1 −

∞∑

j=0

(
u
(t)
j + ξ

(t+1)
j

)(
α(t) + η(t+1)

)
Xj

=

∞∑

j=0

u
(t)
j X

j+1 +

∞∑

j=0

ξ
(t+1)
j Xj+1 −

∞∑

j=0

u
(t)
j α(t)Xj −

∞∑

j=0

u
(t)
j η(t+1)Xj.

For j = 0, we get

a0 = −u(t)0 α(t) − u(t)0 η(t+1).

But u
(t)
0 is a unit, and so, η(t+1) exists. Now, look at the coefficient of Xj+1, we have

aj+1 = u
(t)
j + ξ

(t+1)
j − u(t)j+1 α

(t) − u(t)j+1 η
(t+1).

But u
(t)
j+1 α

(t) and u
(t)
j+1 η

(t+1) are now known and in mt+1 modulo mt+2, and thus,

ξ
(t+1)
j = aj+1 − u(t)j + u

(t)
j+1 α

(t) + u
(t)
j+1 η

(t+1)

exists and the induction step goes through. As a consequence

u(X) ∈ lim
←−
t

(O/mt)[[X ]]

and
α ∈ lim

←−
t

(m/mt)[[X ]]
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exist; and so, u(X) ∈ Ô[[X ]] = O[[X ]], and α ∈ m̂ = m.

We still have to prove the uniqueness of u(X) and α. Assume that

f = u(X − α) = ũ(X − α̃).

Since ũ is a unit,
ũ−1u(X − α) = X − α̃.

Thus, we may assume that ũ = 1. Since α ∈ m, we can plug α into the power series which
defines u, and get convergence in the m-adic topology of O. We get

u(α)(α− α) = α− α̃,

so that α = α̃. Then,
u(X − α) = X − α̃,

and since we assumed that O is a domain, so is O[[X ]], and thus, u = 1.

The fundamental lemma just proved leads almost immediately to the formal implicit
function theorem:

Theorem 2.18 (First form of the implicit function theorem: Weierstrass preparation theo-
rem) Given f ∈ k[[Z1, . . . , Zn]], if

f(0, . . . , 0) = 0 and
∂f

∂Z1
(0) 6= 0,

then there exist unique power series u(Z1, . . . , Zn) and g(Z2, . . . , Zn) so that u(Z1, . . . , Zn)
is a unit, g(0, . . . , 0) = 0, and f(Z1, . . . , Zn) factors as

f(Z1, . . . , Zn) = u(Z1, . . . , Zn)(Z1 − g(Z2, . . . , Zn)). (∗)

Moreover, every power series h(Z1, . . . , Zn) factors uniquely as

h(Z1, . . . , Zn) = f(Z1, . . . , Zn)q(Z1, . . . , Zn) + r(Z2, . . . , Zn).

Hence, there is a canonical isomorphism

k[[Z1, . . . , Zn]]/(f) ∼= k[[Z2, . . . , Zn]],

so that the following diagram commutes

k[[Z1, . . . , Zn]] // k[[Z1, . . . , Zn]]/(f)

k[[Z2, . . . , Zn]]

hh❘❘❘❘❘❘❘❘❘❘❘❘❘

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦
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Proof . First, observe that equation (∗) (the Weierstrass preparation theorem) implies the
second statement. For, assume (∗); then, u is a unit, so there is v such that vu = 1.
Consequently,

vf = Z1 − g(Z2, . . . , Zn),

and the ideal (f) equals the ideal (vf), because v is a unit. So,

k[[Z1, . . . , Zn]]/(f) = k[[Z1, . . . , Zn]]/(vf),

and we get the residue ring by setting Z1 equal to g(Z2, . . . , Zn). It follows that the canonical
isomorphism

k[[Z1, . . . , Zn]]/(f) ∼= k[[Z2, . . . , Zn]]

is given as follows: In h(Z1, . . . , Zn), replace every occurrence of Z1 by g(Z2, . . . , Zn); we
obtain

h(Z2, . . . , Zn) = h(g(Z2, . . . , Zn), Z2, . . . , Zn),

and the diagram obviously commutes. Write r(Z2, . . . , Zn) instead of h(Z2, . . . , Zn). Then,

h(Z1, . . . , Zn)− r(Z2, . . . , Zn) = fq

for some q(Z1, . . . , Zn). We still have to show uniqueness. Assume that

h(Z1, . . . , Zn) = fq + r = f q̃ + r̃.

Since g(0, . . . , 0) = 0, we have g ∈ m; thus, we can plug in Z1 = g(Z2, . . . , Zn) and get m-adic
convergence. By (∗), f goes to 0, and the commutative diagram shows r (mod f) = r and
r̃ (mod f) = r̃. Hence, we get

r = r̃,

so that
fq − f q̃ = 0.

Now, k[[Z1, . . . , Zn]] is a domain, so q = q̃.

Now let us prove (∗), the Weierstrass preparation theorem. We will apply the previous
lemma to O = k[[Z2, . . . , Zn]], because then, O[[Z1]] = k[[Z1, . . . , Zn]]. Viewing f as an
element of O[[Z1]], we find that f(0) is a power series in Z2, . . . , Zn, and f(0) ∈ m (the
maximal ideal of O), since f(0, . . . , 0) = 0. Also df/dZ1 = ∂f/∂Z1, and at (0, . . . , 0), this
is not zero. Therefore, ∂f/∂Z1(0) is a unit. Now, we can apply the fundamental lemma
(Lemma 2.17). It says that there is some g = α ∈ m and some u(Z1, . . . , Zn) a unit, and we
have

f(Z1, . . . , Zn) = u(Z1, . . . , zn)(Z1 − g(Z2, . . . , Zn)).

Since g ∈ m, we have g(0, . . . , 0) = 0. Uniqueness is obtained as in the lemma.

We can now apply induction to get the second version of the formal implicit function
theorem, or FIFT .
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Theorem 2.19 (Second form of the implicit function theorem)
Given f1, . . . , fr ∈ k[[Z1, . . . , Zn]], if fj(0, . . . , 0) = 0 for j = 1, . . . , r and

rk

(
∂fi
∂Zj

(0)

)
= r

(so that n ≥ r), then we can reorder the variables so that

rk

(
∂fi
∂Zj

(0)

)
= r, where 1 ≤ i, j ≤ r,

and there is a canonical isomorphism

k[[Z1, . . . , Zn]]/(f1, . . . , fr) ∼= k[[Zr+1, . . . , Zn]],

which makes the following diagram commute

k[[Z1, . . . , Zn]] // k[[Z1, . . . , Zn]]/(f1, . . . , fr)

k[[Zr+1, . . . , Zn]]

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

Proof . The proof of this statement is quite simple (using induction) from the previous the-
orem (DX).

An obvious question is what happens to these theorems in the convergent analytic case?
Denote by C{Z1, . . . , Zn} the subring of C[[Z1, . . . , Zn]] consisting of convergent power series
in the norm topology. For any ξ ∈ Cn and any ǫ > 0, we define the polydisc PD(ξ, ǫ) by

PD(ξ, ǫ) = {(z1, . . . , zn) ∈ Cn | |zi − ξi| < ǫ, for every i, 1 ≤ i ≤ n}.
Here is the convergent implicit function theorem in the rank one case.

Theorem 2.20 Let f ∈ C{Z1, . . . , Zn} and suppose that f(0, . . . , 0) = 0, but

∂f

∂Z1

(0, . . . , 0) 6= 0.

Then, there exists a unique power series g(Z2, . . . , Zn) ∈ C{Z2 . . . , Zn} and there is some ǫ >
0, so that in the polydisc PD(0, ǫ), we have f(ξ1, . . . , ξn) = 0 if and only if ξ1 = g(ξ2, . . . , ξn).

Remark: To prove this, look at the formal version of the implicit function theorem and at
the fundamental lemma (i.e., the construction of u(Z1, . . . , Zn) and g(Z2, . . . , Zn)). Then
show (tricky and messy!) that u and g converge in some ǫ-neighborhood of (0, . . . , 0). By
the Weierstrass preparation theorem (now proved in the convergent case),

f(Z1, . . . , Zn) = u(Z1, . . . , Zn)(Z1 − g(Z2, . . . , Zn)).

But, for ǫ small enough, PD(0, ǫ) is contained in this open and on the polydisc:
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(1) u converges and is never 0.

(2) g converges and g(0, . . . , 0) = 0.

So, in PD(0, ǫ), we have f = 0 iff u(Z1 − g) = 0 iff Z1 = g(Z2, . . . , Zn).

However, to avoid tricks and mess, observe that a polydisc is just a product of one-
dimensional discs. Therefore, there exists a Cauchy multi-integral formula for f valid in
PD(ξ, ǫ) (DX). We know that the implicit function theorem for holomorphic functions of
one variable is an easy consequence of Cauchy’s formula (Ahlfors [1], Chapter 4, Theorem
4 ff). Thus, we get that Z1 = g(Z2, . . . , Zn) where g is a holomorphic function, and thus, a
convergent power series in some suitable polydisc.

An easy induction yields the convergent implicit function theorem:

Theorem 2.21 (Convergent implicit function theorem) Let f1, . . . , fr ∈ C{Z1, . . . , Zn}. If
fj(0, . . . , 0) = 0 for j = 1, . . . , r and

rk

(
∂fi
∂Zj

(0)

)
= r

(so that n ≥ r), then there is a permutation of the variables so that

rk

(
∂fi
∂Zj

(0)

)
= r, where 1 ≤ i, j ≤ r

and there exist r unique power series gj(Zr+1, . . . , Zn) ∈ C{Z2 . . . , Zn} (1 ≤ j ≤ r) and an
ǫ > 0, so that in the polydisc PD(0, ǫ), we have

f1(ξ) = · · · = fr(ξ) = 0 iff ξj = gj(ξr+1, . . . , ξn), for j = 1, . . . , r.

Moreover
C{Z1, . . . , Zn}/(f1, . . . , fr) ∼= C{Zr+1, . . . , Zn}.

When r = n, we have another form of the convergent implicit function theorem also
called the inverse function theorem.

Theorem 2.22 (Inverse function theorem) Let f1, . . . , fn ∈ C{Z1, . . . , Zn} and suppose that
fj(0, . . . , 0) = 0 for j = 1, . . . , n, but

rk

(
∂fi
∂Zj

(0, . . . , 0)

)
= n.

Then, there exist n unique power series gj(W1, . . . ,Wn) ∈ C{W1 . . . ,Wn} (1 ≤ j ≤ n) and
there are some open neighborhoods of (0, . . . , 0) (in the Z’s and in the W ’s), call them U
and V , so that the holomorphic maps

(Z1, . . . , Zn) 7→ (W1 = f1(Z1, . . . , Zn), . . . ,Wn = fn(Z1, . . . , Zn)) : U → V

(W1, . . . ,Wn) 7→ (Z1 = g1(W1, . . . ,Wn), . . . , Zn = gn(W1, . . . ,Wn)) : V → U

are inverse isomorphisms.
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The reader should have no difficulty in supplying the proof. Use of the formal implicit
function theorem and formal power series in general will give us the local structure of irre-
ducible varieties. We need the

Definition 2.11 Let X be an affine variety, X ⊆ An, and assume that dimX = d. Then, X
is a complete intersection if I(X) has n−d generators. If X is any k-variety and ξ ∈ X , then
X is a local complete intersection at ξ if there is some affine open X(ξ), with ξ ∈ X(ξ) ⊆ X ,
so that X(ξ) can be embedded in An for some n, and X(ξ) is a complete intersection. The
variety X is a local complete intersection if it is a local complete intersection at ξ for all
ξ ∈ X .

Theorem 2.23 (Local complete intersection theorem) Let V be an irreducible k-variety and
p ∈ V a k-rational nonsingular point. Write dim(V ) = d and assume that near p, the variety
V has local embedding dimension n, which means that there is some affine open, U ⊆ V ,
with p ∈ U such that U can be embedded into An as a k-closed subset (we may assume that
n is minimal). Then, there exist polynomials f1, . . . , fr in n variables with r = n−d, so that
k-locally on V near p, the variety V is cut out by f1, . . . , fr. This means that there exists a
possibly smaller k-open W ⊆ U ⊆ V with p ∈ W so that

q ∈ W if and only if f1(q) = · · · = fr(q) = 0.

The local complete intersection theorem will be obtained from the following affine form
of the theorem.

Theorem 2.24 (Affine local complete intersection theorem) Let V ⊆ An be an affine ir-
reducible k-variety of dimension dim(V ) = d, and assume that V = V (p). If p ∈ V is
nonsingular k-rational point, then there exist f1, . . . , fr ∈ p, with r = n− d, so that

p =

{
g ∈ k[Z1, . . . , Zn]

∣∣∣∣∣ g =
r∑

i=1

hi(Z1, . . . , Zn)

l(Z1, . . . , Zn)
fi(Z1, . . . , Zn) , and l(p) 6= 0

}
, (†)

where hi and l ∈ k[Z1, . . . , Zn]. The fi’s having the above property are exactly those fi ∈ p

whose differentials dfi cut out the tangent space TV,p (i.e., these differentials are linearly
independent).

What are we saying? Intuitively, near p (in the k-topology), the behavior of V should be
controlled by OV,p. Write A for the ideal (f1, . . . , fr) (this is contained in p), and consider
the diagram

k[Z1, . . . , Zn]]r]

��

� _�� k[Z1, . . . , Zn]I(p) = OAn,p

��
k[V ] // k[V ]I(p) = OV,p.
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The kernel of the left vertical map is p and the kernel of the right vertical map is

pe = pOAn,p.

Since,
Ae = (f1, . . . , fr)OAn,p,

the righthand side of (†) is exactly Aec (that is, A extended and then contracted). We know
that pec = p, and thus, we are saying that

p = Aec.

But then, pe = Ae, which means that (†) says: If f1, . . . , fr generate pe (i.e., p in OAn,p),
then they cut out V near p.

Proof of the local complete intersection theorem (Theorem 2.23). We show that the affine
local complete intersection theorem (Theorem 2.24) implies the general one (Theorem 2.23).
There is some open affine set, say U , with p ∈ U . By working with U instead of V , we may
assume that V is affine. Let V = V (p), and let A = (f1, . . . , fr), in k[An]. Suppose that g1,
. . ., gt are some generators for p. By the affine local complete intersection theorem (Theorem
2.24), there are some l1, . . . , lt with lj(p) 6= 0, so that

gj =

r∑

i=1

hij
lj
fi, for j = 1, . . . , t.

Let l =
∏t

j=1 lj and let W be the k-open where l does not vanish. We have p ∈ W , and we
also have

k[V ∩W ] = k[V ](l) = k[X1, . . . , Xn](l)/p.

But

ljgj =

r∑

i=1

hijfi,

and on V ∩W , the lj’s are units. Therefore, p(l) = A(l), that is,

pk[X1, . . . , Xn](l) = Ak[X1, . . . , Xn](l).

Thus, on V ∩W , we have p = A in the above sense, and so, V ∩W is the variety given by
the fj ’s. The affine version of the theorem implies that r = n− d.

Remarks:

(1) The set Y = V − V ∩W is k-closed, Y ⊆ V , and p /∈ Y .

(2) The local complete intersection theorem says that X is a local complete intersection
at every nonsingular point; so, X − Sing X is a local complete intersection.



2.3. LOCAL STRUCTURE OF A VARIETY 109

We now turn to the proof of the affine theorem.

Proof of the affine local complete intersection theorem (Theorem 2.24). Let the righthand
side of (†) be P. Given any g ∈ P, there is some l so that

lg =
r∑

i=1

hifi.

Since fi ∈ p, we have lg ∈ p. But l(p) 6= 0, so l /∈ p; and since p is prime, we must have
g ∈ p. Thus, we have

P ⊆ p.

By translation, we can move p to the origin, and we may assume that p = 0. Now, the proof
of our theorem rests on the following proposition:

Proposition 2.25 (Zariski) Let f1, . . . , fr ∈ k[X1, . . . , Xn] be polynomials with
f1(0, . . . , 0) = · · · = fr(0, . . . , 0) = 0, and linearly independent linear terms at (0, . . . , 0).
Then, the ideal

P =

{
g ∈ k[X1, . . . , Xn]

∣∣∣∣∣ g =
r∑

i=1

hi(X1, . . . , Xn)

l(X1, . . . , Xn)
fi(X1, . . . , Xn) , and l(0, . . . , 0) 6= 0

}

is a prime ideal and V (P) has dimension n−r. Moreover, (0, . . . , 0) ∈ V (P) is a nonsingular
point and V (f1, . . . , fr) = V (P) ∪ Y , where Y is k-closed and (0, . . . , 0) /∈ Y .

0

V (P)

V (f ′s)

Figure 2.5: Illustration of Proposition 2.25

If we assume Zariski’s Proposition 2.25, we can finish the proof of the affine local complete
intersection theorem (Theorem 2.24): Since p = (0, . . . , 0) is nonsingular, we find
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dim TV,0 = d, the differentials of f1, . . . , fr are linearly independent if and only if they cut
out TV,0. Then, V (P) has dimension n − r = d. By Proposition 2.25, P is prime, and we
have already proved P ⊆ p. However,

dim V (P) = dim V (p);

so, we get V (P) = V (p), and thus, P = p. This proves the affine local complete intersection
theorem.

It remains to prove Zariski’s proposition.

Proof of Proposition 2.25. We have the three rings

R = k[X1, . . . , Xn],

R′ = k[X1, . . . , Xn](X1,...,Xn) = OAn,0, and

R′′ = k[[X1, . . . , Xn]].

If l ∈ OAn,0 ∩ k[X1, . . . , Xn] and l(0) 6= 0, then

l(X1, . . . , Xn) = l(0)

(
1 +

n∑

j=1

aj(X1, . . . , Xn)Xj

)
,

where aj(X1, . . . , Xn) ∈ k[X1, . . . , Xn]. But then,

1

1 +
∑n

j=1 aj(X1, . . . , Xn)Xj

=
∞∑

r=0

(−1)r
(

n∑

j=1

aj(X1, . . . , Xn)Xj

)r

,

which belongs to k[[X1, . . . , Xn]]. Hence, we have inclusions

R →֒ R′ →֒ R′′.

Let P′ = (f1, . . . , fr)R
′ and write P′′ = (f1, . . . , fr)R

′′. By definition, P = P′ ∩R. If we can
show that P′ is a prime ideal, then P will be prime, too.

Claim: P′ = P′′ ∩ R′.
Let g ∈ P′′ ∩ R′. Then,

g =

r∑

i=1

hifi,

with g ∈ R′, by assumption, and with hi ∈ R′′. We can define the notion of “vanishing to
order t of a power series,” and with “obvious notation,” we can write

hi = h̃i +O(X t),
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where deg h̃i < t. Because fi(0, . . . , 0) = 0 for each i, we find that

g =

r∑

i=1

h̃ifi +O(X t+1),

and thus,

g ∈ P′ + (X1, . . . , Xn)
t+1R′, for all t.

As a consequence,

g ∈
∞⋂

t=1

(
P′ + (X1, . . . , Xn)

t+1R′
)
;

so,

P′′ ∩R′ ⊆
∞⋂

t=1

(
P′ + (X1, . . . , Xn)

t+1R′
)
.

But R′ is a Noetherian local ring, and by Krull’s intersection theorem (Zariski and Samuel
[60], Theorem 12′, Chapter IV, Section 7), P′ is closed in the M-adic topology of R′ (where,
M = (X1, . . . , Xn)R

′). Consequently,

P′ =
∞⋂

t=1

(
P′ +Mt+1

)
,

and we have proved

P′′ ∩ R′ ⊆ P′.

Since we already know that P′ ⊆ P′′ ∩ R′, we get our claim. Thus, if we knew P′′ were
prime, then so would be P′. Now, the linear terms of f1, . . . , fr at (0, . . . , 0) are linearly
independent, thus,

rk

(
∂fi
∂Xj

(0)

)
= r,

and we can apply the formal implicit function theorem (Theorem 2.19). As a result, we get
the isomorphism

R′′/P′′ ∼= k[[Xr+1, . . . , Xn]].

However, since k[[Xr+1, . . . , Xn]] is an integral domain, P′′ must be a prime ideal. Hence,
our chain of arguments proved that P is a prime ideal. To calculate the dimension of V (P),
observe that

P′′ ∩ R = P′′ ∩ R′ ∩ R = P′ ∩ R = P,

and we also have

k[X1, . . . , Xn]/P →֒ k[[X1, . . . , Xn]]/P
′′ ∼= k[[Xr+1, . . . , Xn]].
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Therefore, Xr+1, . . . , Xn (modP) are algebraically independent over k, which implies that
dim V (P) ≥ n− r. Now, the linear terms of f1, . . . , fr cut out the linear space TV,0, and by
linear independence, this space has dimension n− r. Then,

n− r = dim TV,0 ≥ dim V (P) ≥ n− r,
so that dim V (P) = n− r, and 0 is nonsingular.

If g ∈ P, there exists some l with l(0) 6= 0 such that

g =
r∑

i=1

hi
l
fi,

which implies that lg ∈ (f1, . . . , fr). Applying this fact to each of the generators of P, say,
g1, . . . , gt, and letting l =

∏t
i=1 li, we have

lP ⊆ (f1, . . . , fr) ⊆ P.

As a consequence,

V (P) ⊆ V (f1, . . . , fr) ⊆ V (lP) = V (l) ∪ V (P).

If we let Y = V (l) ∩ V (f1, . . . , fr), we have

V (f1, . . . , fr) = V (P) ∪ Y.
Since l(0) 6= 0, we have 0 /∈ Y .

We would like to take a closer look at the completion, ÔV,ξ, of the local ring at some
nonsingular point ξ ∈ V . Since everything is local, we may assume that V ⊆ An is affine, and
V = V (p) for some prime ideal p. Let d = dim V , and let ξ ∈ V be a k-rational point. We
know that dim TV,ξ = d, and that TV,ξ is cut out by the r linearly independent differentials
df1, . . . , dfr at ξ for some f1, . . . , fr ∈ p, where r = n− d. Also,

OAn,ξ/p = OV,ξ.
Pick y1, . . . , yd ∈ mξ so that dy1, . . . , dyd are linearly independent at ξ. This is equivalent to
saying that the residue classes y1, . . . , yd form a basis of mξ/m

2
ξ . We have

k[X1, . . . , Xn](X1−ξ1,...,Xn−ξn) = OAn,ξ →֒ k[[X1 − ξ1, . . . , Xn − ξn]]
and

(k[X1, . . . , Xn]/p)(X1−ξ1,...,Xn−ξn) = OV,ξ →֒ k[[X1 − ξ1, . . . , Xn − ξn]]/(f1, . . . , fr).
By the formal implicit function theorem,

k[[X1 − ξ1, . . . , Xn − ξn]]/(f1, . . . , fr) ∼= k[[Xn−d+1 − ξn−d+1, . . . , Xn − ξn]].
However, by the same theorem, the last ring is isomorphic to k[[y1, . . . , yd]]. Therefore,

ÔV,ξ ∼= k[[y1, . . . , yd]].

We can summarize the above as follows:
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Theorem 2.26 Given an irreducible variety V and a nonsingular point p ∈ V , pick y1, . . .,
ys in mp (where s = dim V if p is a closed point, and s = dim V − dim {p} otherwise), so
that dy1, . . . , dys are linearly independent forms on TV,p (equivalently, y1, . . . , ys are linearly

independent in mp/m
2
p over κ(p)). Then, every f ∈ ÔV,p can be written uniquely as a power

series with coefficients in κ(p), in the yj’s, that is,

f ∈ κ(p)[[y1, . . . , ys]].

This theorem is the formal series equivalent of the well-known Taylor series theorem in
complex analysis. Namely, f ∈ ÔV,p is a formal holomorphic function (formal referring to
the fact that we have completed the ring of holomorphic functions in the m-adic topology)
and we have just shown that such an f is expressed as a formal power series. The coefficients
of this power series are necessarily in the field of definition of p, that is, in κ(p).

Having mentioned complex analysis, we may inquire into the connection of our algebraic
theory with the theory of complex analytic spaces . To avoid confusion, we call the usual
complex topology the norm topology . We proceed as follows:

(1) Let U ⊆ Cq be norm-open. Consider p power series f1, . . . , fp, norm-convergent on U .
Define the topological space ZU ⊆ U by

ZU = {(ξ1, . . . , ξq) ∈ U | fj(ξ1, . . . , ξq) = 0, with 1 ≤ j ≤ p}.

(2) Define a local holomorphic function on ZU , at ξ ∈ ZU , to be a holomorphic function

on some open Ũ ⊆ U such that ξ ∈ Ũ . Call two such functions f, g equal if and only
if f ↾ ZU = g ↾ ZU .

The pair (ZU ,OZU
), where OZU

denotes the collection of locally defined holomorphic
functions, is called a complex analytic space chunk .

It is quite clear what morphisms should be, and we get a category which is the analog
of the category of affine varieties. By gluing complex analytic space chunks together, we get
the concept and category of complex analytic spaces .

A complex algebraic variety, X , determines a unique complex analytic space, Xan, as
follows: First, assume that X ⊆ An and that X = V (A), where A ⊆ k[X1, . . . , Xn] is a
radical ideal. Take U = Cq and f1, . . . , fp some generators of A. Since these are polynomials,
they may be considered as power series, and obviously converge. We get Z = X(C), and
take all norm locally defined complex holomorphic functions on Z. This gives a complex
analytic space chunk Xan. If X is an abstract variety, it is obtained by polynomial map
gluing; hence, by holomorphic map gluing. Thus, each algebraic variety, X , yields a complex
analytic space, Xan. Clearly, we have a functor

X 7→ Xan.

This functor was studied by Jean-Pierre Serre in his famous paper [48], also know as GAGA.
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Theorem 2.27 Let X be an irreducible complex algebraic variety and let p ∈ X(C) be a
nonsingular point. If locally in the Zariski topology near p, the variety X may be embedded in
An, then there exist d of the coordinates (of An), say Zn−d+1, . . . , Zn, so that dZn−d+1, . . . , dZn
are linearly independent forms on TX,p, and there exists some ǫ > 0, and we have n − d
converging power series g1(Zn−d+1, . . . , Zn), . . ., gn−d(Zn−d+1, . . . , Zn), so that

(Z1, . . . , Zn) ∈ PD(p, ǫ) iff Zi − pi = gi(Zn−d+1 − pn−d+1, . . . , Zn − pn), i = 1, . . . , n− d.

Any choice of d of the coordinates Z1, . . . , Zn so that the corresponding dZi’s are linearly
independent on TX,p will serve, and the map

X ∩ PD(p, ǫ) −→ PD(0, ǫ)

given by
(Z1, . . . , Zn) 7→ (Zn−d+1 − pn−d+1, . . . , Zn − pn)

is an analytic isomorphism. Hence, if we take (X−SingX)an, it has the natural structure of
a complex analytic manifold. Furthermore, Xan is a complex analytic manifold if and only
if X is a nonsingular variety.

Proof . Since p is nonsingular, by the local complete intersection theorem (Theorem 2.23),
we can cut out X locally (in the Zariski topology) by f1, . . . , fn−d and then we know that

rk

(
∂fi
∂Zj

(p)

)

is maximal. By the convergent implicit function theorem (Theorem 2.21), there is some
ǫ > 0 and there are some power series g1, . . . , gn−d so that on PD(p, ǫ), we have

fi(Z1, . . . , Zn) = 0 iff Zi− pi = gi(Zn−d+1 − pn−d+1, . . . , Zn − pn) for i = 1, . . . , n− d.(∗)

The lefthand side says exactly that

(Z1, . . . , Zn) ∈ X ∩ PD(p, ǫ).

We get a map by projection on the last d coordinates

X ∩ PD(p, ǫ) −→ PD(0, ǫ),

whose inverse is given by the righthand side of equation (∗); and thus, the map is an analytic
isomorphism. By the formal implicit function theorem (Theorem 2.19),

C[[Z1, . . . , Zn]]/(f1, . . . , fn−d) ∼= C[[Zn−d+1, . . . , Zn]].

Hence, dZn−d+1, . . . , dZn are linearly independent on TX,p. If conversely, the last d coordi-
nates have linearly independent differentials dZn−d+1, . . . , dZn, then

dim TX,p ≤ d.
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But p is nonsingular, and thus, dZn−d+1, . . . , dZn form a basis of TX,p. Now, TAn,p is cut
out by df1, . . . , dfn−d, dZn−d+1, . . . , dZn, where f1, . . . , fn−d cut out X locally (in the Zariski
topology) at p, by the local complete intersection theorem. It follows that

rk

(
∂fi
∂Zj

(p)

)

is maximal (that is, n − d) and we can repeat our previous arguments. The last statement
of the theorem is just a recap of what has already been proved.

Remark: The three notions of dimension

(a) algebraic (by transcendence degree)

(b) combinatorial (by chains of subvarieties)

(c) differential geometric (by tangent space dimension)

are seen to be all the same.

A complex variety has two topologies: its norm topology, and its Zariski topology. Ob-
viously, every Zariski open is a norm open; and equally obviously, the converse is false.
However, we can make some comparison between the topologies, and this is what we turn to
now. We will need to know what a projective variety is and refer the reader to Section 2.5.

Proposition 2.28 (Topological comparison, projective case) If X is a projective complex
variety and U is Zariski–dense and Zariski–open, then U is norm–dense.

Proof . The proof will be given in Section 2.5. The projective case leads to the general case:

Proposition 2.29 (Topological comparison, general case) If X is a any complex variety and
U is Zariski–dense and Zariski–open, then U is norm–dense.

Proof . As usual, the argument reduces to the affine case; for assume that the argument
works in the affine case. Let X =

⋃
α Uα be a cover by Zariski-open affine varieties. Assume

that X0 is Zariski–dense and Zariski–open in X . Write X0,α for X0 ∩ Uα. For any S, let S

be the norm-closure of S and Ŝ be the Zariski-closure of S. Of course, S ⊆ Ŝ. The set X0,α

is Zariski–open in Uα and clearly, X0,α is Zariski–dense in Uα. By the affine case, X0,α is
norm–dense in Uα, that is,

X0,α ⊇ Uα.

But then,
X0 ⊇ X0,α ⊇ Uα

for all α, and thus,
X0 = X,
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and X0 is norm-dense in X .

Let us now assume that X ⊆ An is affine. We know that An ⊆ Pn and that An is Zariski-
open in Pn. Let X̃ be the Zariski–closure of X in Pn. We know that X0 is Zariski–open in
X and in X̃ , and that X0 is Zariski-dense in X̃, and hence in X . By Proposition 2.28, the
open X0 is norm-dense in X .

2.4 Nonsingular Varieties: Further Local Structure

Recall that in the interesection dimension theorem (Theorem 2.6), we examined the dimen-
sions of the irreducible components of the intersection of two varieties in Aq and showed by
counter-example that our results was not necessarily true if Aq was replaced by an arbitrary
variety. The trouble occurred at a singular point of the ambient variety (in our current
language). If we restrict attention to a neighborhood of a nonsingular point of the ambient
variety, the theorem remains true. Here is the exact statement:

Theorem 2.30 (Intersection dimension theorem: General form) Let X, Y, Z be irreducible
k-varieties, with X, Y ⊆ Z and Z separated. If p ∈ X ∩ Y and p is a nonsingular point on
Z, then we can write

X ∩ Y =

(⋃

α

Wα

)
∪Q,

where the Wα’s are the κ(p)-irreducible components of X ∩Y passing through p and Q is the
union of the other irreducible components, and further, we have

dimWα ≥ dimX + dim Y − dim Z

for all α.

Proof . Since we can base-extend from k to κ(p) and the dimension is preserved, by base-
extending, we may asume that κ(p) is k. By taking a big affine open subset around p, we
may further assume that X, Y, Z are affine. Let n = dimZ. As in the proof of Theorem 2.6,
we have the isomorphism

X ∩ Y ∼= (X
∏

Y ) ∩∆Z .

Since p is nonsingular on Z, by the local complete intersection theorem, we can pick g1, . . . , gn
so that dg1, . . . , dgn are linearly independent and cut out TZ,p.

Consider the functions f1, . . . , fn on Z
∏
Z given by

fi(z1, . . . , zn;w1, . . . , wn) = gi(z1, . . . , zn)− gi(w1, . . . , wn).

Clearly, fi ↾ ∆Z = 0, which implies that

∆Z ⊆ V (f1, . . . , fn).
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The differentials df1, . . . , dfn are linearly independent at (p, p) ∈ ∆Z , and by the local com-
plete intersection theorem (Theorem 2.23), we get

V (f1, . . . , fn) = ∆Z ∪ R,

where R is the union of components not passing through p. However, since Z is separated,
∆Z is a closed irreducible variety, and reverting to the original argument of Theorem 2.6, we
get

dimWα ≥ dimX + dim Y − dim Z.

To go further and understand the local structure of an irreducible variety near a non-
singular point on it, we need the following famous theorem first proved by Zariski (1947)
in the case at hand [59]. However, the theorem is more general and holds for an arbitrary
regular local ring as was proved by M. Auslander and D. Buchsbaum, and independently
Jean-Pierre Serre (all in 1959).

Theorem 2.31 Let X be an irreducible k-variety and let p be a closed point on X. If p is
nonsingular, then OX,p is a UFD.

In order to prove Theorem 2.31, we need and will prove the following algebraic theorem:

Theorem 2.32 If A is a local noetherian ring and if its completion Â is a UFD, then, A
itself is a UFD.

Proof of Theorem 2.31. Assume Theorem 2.32, then, as p is nonsingular,

ÔX,p ∼= κ(p)[[Y1, . . . , Yδ]],

for some δ, and the latter ring is a UFD, by elementary algebra. Therefore, Theorem 2.32
implies Theorem 2.31.

Proof of Theorem 2.32. The proof proceeds in three steps.

Step 1. I claim that for every ideal A ⊆ A we have

A = A ∩ AÂ.

Clearly, A ⊆ A ∩ AÂ. We need to prove that

A ∩ AÂ ⊆ A.

Pick f ∈ A ∩ AÂ, then, f ∈ A and

f =

t∑

i=1

αiai,
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and αi ∈ Â and ai ∈ A. Write
αi = α

(n)
i +O(m̂n+1),

where α
(n)
i ∈ A, and m is the maximal ideal of A. Then,

f =
∑

i

α
(n)
i ai +

∑

i

O(m̂n+1)ai,

and
∑

i α
(n)
i ai ∈ A. So,

f ∈ A+ Am̂n+1 = A+ Amn+1Â,

and this is true for all n. The piece of f in Amn+1Â lies in A, and thus, in mn+1. We find
that f ∈ A+mn+1 for all n, and we have

f ∈
⋂

n≥0

(A+mn+1) = A,

by Krull’s intersection theorem.

Step 1 1
2
. I claim that

Frac(A) ∩ Â = A.

This means that given f/g ∈ Frac(A) and f/g ∈ Â, then f/g ∈ A. Equivalently, this means

that if g divides f in Â, then g divides f in A. Look at

A = gA.

If f/g ∈ Â, then f ∈ gÂ, and since f ∈ A, we have

f ∈ A ∩ gÂ.

But gÂ = AÂ, and by Step 1, we find that

gA = A = A ∩ AÂ,

so, f ∈ gA, as claimed.

We now come to the heart of the proof.

Step 2. Let f, g ∈ A with f irreducible. I claim that either f divides g in A or (f, g) = 1

in Â (where (f, g) denotes the gcd of f and g).

Assuming this has been established, here is how we prove Theorem 2.32: Firstly, since
A is noetherian, factorization into irreducible factors exists (but not necessarily uniquely).
By elementary algebra, one knows that to prove uniqueness, it suffices to prove that if f is
irreducible then f is prime. That is, if f is irreducible and f divides gh, then we must prove
either f divides g or f divides h.
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If f divides g, then we are done. Otherwise, (f, g) = 1 in Â, by Step 2. Now, f divides

gh in Â and Â is a UFD, so that as (f, g) = 1 in Â we find that f divides h in Â. By Step
1 1

2
, we get that f divides h in A, as desired.

Proof of Step 2. Let f, g ∈ Â and let d be the gcd of f and g in Â. Thus,

f = dF, and g = dG,

where d, F,G ∈ Â, and
(F,G) = 1 in Â.

Let ordm̂ F = n0 (that is, n0 is characterized by the fact that F ∈ m̂n0 but F /∈ m̂n0+1).

Either F is a unit or a nonunit in Â. If F is a unit in Â, then n0 = 0, and f = dF implies
that F−1f = d; then,

F−1fG = g,

which implies that f divides g in Â. By Step 1 1
2
, we get that f divides g in A.

We now have to deal with the case where ord(F ) = n0 > 0. We have

F = lim
n 7→∞

Fn and G = lim
n 7→∞

Gn,

in the m-adic topology, with Fn and Gn ∈ A, and F − Fn and G−Gn ∈ m̂n+1. Look at

g

f
− Gn

Fn
=
gFn − fGn

fFn
.

Now,

gFn − fGn = g(Fn − F ) + gF − fGn

= g(Fn − F ) + dGF − fGn

= g(Fn − F ) + fG− fGn

= g(Fn − F ) + f(G−Gn).

The righthand side belongs to (f, g)m̂n+1, which means that it belongs to (f, g)mn+1Â.
However, the lefthand side is in A, and thus, the righthand side belongs to

A ∩ (f, g)mn+1Â.

Letting A = (f, g)mn+1, we can apply Step 1, and thus, the lefthand side belongs to
(f, g)mn+1. This means that there are some σn, τn ∈ mn+1 ⊆ A so that

gFn − fGn = fσn + gτn;

It follows that
g(Fn − τn) = f(Gn + σn);

so, if we let
αn = Gn + σn and βn = Fn − τn,

we have the following properties:
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(1) gβn = fαn, with αn, βn ∈ A,

(2) αn ≡ Gn (modmn+1) and βn ≡ Fn (modmn+1),

(3) Gn ≡ G (modmn+1Â) and Fn ≡ F (modmn+1Â).

Choose n = n0. Since ord(F ) = n0 > 0, we have ord(Fn0) = n0, and thus, ord(βn0) = n0.
Look at (1):

gβn0 = fαn0 ,

so
dGβn0 = dFαn0,

and, because Â is an integral domain,

Gβn0 = Fαn0.

However, (F,G) = 1 in Â and F divides Gβn0. Hence, F divides βn0, so that there is some

H ∈ Â with βn0 = FH and

ord(βn0) = ord(F ) + ord(H).

But ord(F ) = n0, and consequently, ord(H) = 0, and H is a unit. Since βn0 = FH , we see
that βn0 divides F , and thus,

F = βn0δ

for some δ ∈ Â. Again, ord(δ) = 0, and we conclude that δ is a unit. Then,

βn0δd = dF = f,

so that βn0 divides f in Â. By step 1 1
2
, βn0 divides f in A. But f is irreducible and βn0 is

not a unit, and so βn0u = f where u is a unit. Thus, δd = u is a unit, and since δ is a unit,
so is d, as desired.

The unique factorization theorem just proved has important consequences for the local
structure of a variety near a nonsingular point:

Theorem 2.33 Let X be an irreducible k-variety and let ξ ∈ X be a nonsingular k-point.
Given f ∈ OX,ξ, with f is irreducible and f(ξ) = 0, the locally defined subvariety, {x ∈ X |
f(x) = 0}, is an irreducible subvariety of codimension 1 in X. Conversely, if Y is a locally
defined codimension 1 subvariety of X through ξ, then, there is some irreducible f ∈ OX,ξ
so that near enough ξ, we have

Y = {x ∈ X | f(x) = 0} and I(Y )OX,ξ = fOX,ξ.
Lastly, if f is any locally defined holomorphic function on X and ξ is a point (not necessarily
nonsingular) so that f(ξ) = 0, then sufficiently locally near ξ, the zero locus, {x ∈ X |
f(x) = 0}, is a finite union of irreducible components through ξ, each of codimension 1.
If ξ is also nonsingular, then these irreducible branches at ξ correspond bijectively to the
irreducible factors of f in OX,ξ.
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Proof . Let ξ ∈ X be a nonsingular k-point, and f be in OX,ξ, with f irreducible. The
question is local on X , and we may assume that X is affine. Also,

OX,ξ = lim
−→

g /∈I(ξ)

Ag,

with A = k[X ]. Thus, we may assume that f = F/G, with G(ξ) 6= 0 and with F,G ∈ A.
Upon replacing X by XG (where XG is an open such that ξ ∈ XG), we may assume that f
is the image of some F ∈ A = k[X ]. The variety X is irreducible and X = V (p), where p is
some prime ideal. Near ξ (i.e., on some open affine subset U0 with ξ ∈ U0), let

P = {g ∈ k[Z1, . . . , Zn] | lg ∈ p+ (f), where l(ξ) 6= 0}, (∗)

and let m be the ideal of ξ on X . This means that m = {g ∈ k[X ] | g(ξ) = 0}. We have

p ⊆ P ⊆ m.

Reading the above in A, we get P ⊆ m, and in OX,ξ, we find from (∗) that Pe = fOX,ξ.
Thus, Pe is a prime ideal, because f is irreducible and OX,ξ is a UFD. Then, P is prime and
Y = Spec A/P is a variety locally defined by f = 0, and is irreducible. We have Y 6⊆ X ,
since f = 0 on Y but not on X , and we find that

dim(Y ) ≤ dim(X)− 1.

We will prove equality by a tangent space argument.

Claim. There is some affine open U ⊆ Y with ξ ∈ U so that for all u ∈ U : TY,u is cut
out from TX,u by the equation df = 0.

Let g1, . . . , gt be generators for P. Thus, dg1 = · · · = dgt = 0 cut out TY,u near ξ, i.e., in
some suitable open set U0 with ξ ∈ U0. By (∗), on U0, there exist l1, . . . , lt so that

ligi = pi + λif,

where pi ∈ p, and the λi’s are polynomials. Let l =
∏
li, and take

U = U0 ∩ {η | l(η) 6= 0}.

The set U is open and affine. By differentiating, we get

lidgi + (dli)gi = dpi + (dλi)f + λidf. (†)

On U ⊆ Y ⊆ X , we have

(1) f = 0 (in Y ).

(2) pi = 0 (in X).
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(3) gi = 0 (in Y ).

(4) li 6= 0.

(5) dpi = 0, as we are in TX,u, with u ∈ U .
In view of (†), we get

li(u)dgi(u) = λi(u)df(u).

Assume that df(u) = 0. Since li(u) 6= 0, we get dgi(u) = 0, which implies that the equation
df(u) = 0 cuts out a subspace of TY,u. Then, TY,u contains the hyperplane df = 0 of TX,u,
which implies that

dim(TY,u) ≥ dim(TX,u)− 1.

Since dim(Y ) = dim(TY,u) near ξ (but not necessarily at ξ) and dim(X) = dim(TX,u), we
get dim(Y ) ≥ dim(X)− 1, and thus, (by previous work),

dim(Y ) = dim(X)− 1.

Conversely, assume that Y is locally defined near ξ, and is of codimension 1. Replacing
X by this affine neighborhood, we may assume that Y ⊆ X , is globally defined, and of
codimension 1. Also recall that ξ is assumed to be nonsingular. We have the ideal I(Y )OX,ξ
in OX,ξ, and we can write

I(Y )OX,ξ = p1 ∩ · · · ∩ pt,

where the pj’s are minimal primes of OX,ξ, each of height 1. Since OX,ξ is a UFD, every pi
is principal, i.e., pi = fiOX,ξ, where fi is irreducible. As

p1 ∩ · · · ∩ pt = p1 · · · pt,

we get
I(Y )OX,ξ = fOX,ξ,

where f = f1 · · · ft. The above argument implies that I(Y ) = (F ) in some AG, where
A = k[X ]; G(ξ) 6= 0; G ∈ A. Thus, I(Y ) is locally principal. Observe also that if Y is
irreducible, then I(Y ) is prime; so, f = fj for some j, i.e., f is irreducible.

Now, consider f ∈ OX,ξ, where ξ is not necessarily nonsingular, and look at the local
variety through ξ defined by f = 0 (remember, f(ξ) = 0). The radical ideal A = I(Y ) (in
A = k[Z1, . . . , Zn]/p) defining Y has a decomposition

A = p1 ∩ · · · ∩ pt,

and since A =
√
A, the pj ’s are the minimal primes containing A (the isolated primes of A).

Let g1, . . . , gt be generators of A. The image of gj in OX,ξ has the form λjf (remember, Y
is locally principal by hypothesis). Since

OX,ξ = lim
−→

G/∈I(ξ)

AG,
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take G enough for g1, . . . , gt, and then the open XG so that gj = λ̃jF , where I(Y ) in AG is
just (F ), and F/G = f in OX,ξ. Thus,

A = I(Y ) =

s⋂

j=1

pj ,

where in the above intersection, we find only the primes surviving in OX,ξ, i.e., those with
pj ⊆ m, where m = I(ξ). By Krull’s principal ideal theorem (Zariski and Samuel [60],
Theorem 29, Chapter IV, Section 14), these pj’s are minimal ideals, and thus, the components
of Y have codimension 1.

If ξ is actually nonsingular, then these surviving pj’s are minimal in the UFD OX,ξ.
Hence, locally enough, each pj is principal; say pj = (fj). Then,

(f) = A = (f1) ∩ · · · ∩ (fs) = (f1 · · · fs);

so that
f = uf1 · · · fs

where u is a unit. The irreducible branches of Y through ξ are the irreducible factors of the
local equation f = 0 defining Y locally.

2.5 Projective Space, Projective Varieties and Graded

Rings

We begin by defining Pn. As a set, Pn(Ω) is the collection of all hyperplanes through the
origin in An+1(Ω). To specify a hyperplane H in An+1(Ω) is to give a linear form

a0X0 + a1X1 + · · ·+ anXn = 0,

where aj ∈ Ω. If we define the equivalence relation ∼ on An+1(Ω)− {0} so that

(a0, . . . , an) ∼ (b0, . . . , bn) iff (∃λ ∈ Ω∗)(bi = λai), 0 ≤ i ≤ n,

then, denoting the equivalence class of (a0, . . . , an) by (a0 : · · · : an), and calling such classes
homogeneous coordinates , we get a bijection

H ←→ (a0 : · · · : an),

where ai 6= 0, for some i, 0 ≤ i ≤ n. We can also view Pn(Ω) as the homogeneous set
(An+1(Ω) − {0})/Gm, where Gm is the multiplicative group variety. Here, the symbol
Gm, which is the multiplicative group variety, associates to each field K between k and
Ω the group K∗ under multiplication. The reader can check that Gm is the affine variety
Spec k[X, Y ]/(XY − 1). Given a field, L, such that k ⊆ L ⊆ Ω, we define Pn(L) as the set
of hyperplanes that are defined by some linear form with coefficients in L.
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Consider

Ui = {(a0 : · · · : an) | ai 6= 0} ⊆ Pn.

We have

Pn =

n⋃

i=0

Ui,

and Ui ∼= An, via the bijection

(a0 : · · · ai : · · · : an) 7→
(
a0
ai
, . . . ,

ai−1
ai

,
ai+1

ai
, . . . ,

an
ai

)
.

If we pull back the functions from An and install them on Ui, then Ui is an affine k-variety
isomorphic to An. Thus, Pn is a k-variety, for it is not hard to check that the gluing conditions
hold. In fact, given (X0 : · · · : Xn) ∈ Pn, define the symbols ξ

(i)
j as follows:

ξ
(i)
j =

Xj

Xi

.

Note that the following equations hold:

(a) ξ
(i)
i = 1.

(b) ξ
(i)
j ξ

(j)
i = 1, on Ui ∩ Uj .

(c) ξ
(j)
k ξ

(i)
j = ξ

(i)
k , on Ui ∩ Uj ∩ Uk.

Then, Ui = Spec[ξ
(i)
0 , . . . , ξ̂

(i)
i , . . . , ξ

(i)
n ], where the symbol ξ̂

(i)
i means ξ

(i)
i omitted, and we

get

Ui ∩ Uj = (Ui)ξ(i)j
= (Uj)ξ(j)i

.

To give a subvariety, V , of Pn, we specify it locally:

(a) On Ui, we have a closed subvariety specified by Spec k[Ui]/Ai, where
√
Ai = Ai.

(b) These subvarieties agree on Ui ∩ Uj for all i 6= j, which means that

(Ai)ξ(i)j
= (Aj)ξ(j)i

for all i 6= j.

(c) On the triple overlap Ui ∩ Uj ∩ Uk, the gluing conditions hold.
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Now, it is easy to see that the above conditions are equivalent to the fact that there
exist homogeneous polynomials F1, . . . , Fp in X0, . . . , Xn so that if we denote by f

(i)
l the

polynomial Fl dehomogenized at Xi, then Ai = (f
(i)
1 , . . . , f

(i)
p ), and conversely.

Recall that an ideal A ⊆ k[X0, . . . , Xn] is homogeneous if whenever f = f0+ · · ·+fm ∈ A,
where fi is the homogeneous component of f of degree i, then fi ∈ A for i = 0, . . . , m.
Clearly, the above condition is equivalent to the fact that A is generated by homogeneous
polynomials. So, we find that there is a bijection between k-closed subvarieties of Pn and
homogeneous ideals, A, of k[X0, . . . , Xn] so that

(1)
√
A = A.

(2) (X0, . . . , Xn)
h 6⊆ A for all h ≥ 1. (We say that A is a relevant ideal when condition (2)

holds.)

Given V ⊆ Pn, we can define the graded ring S = k[X0, . . . , Xn]/A, where A = I(V ) is
a homogeneous ideal satisfying (1) and (2). Conversely, given the ring k[X0, . . . , Xn]/A and
a homogeneous ideal, A, satifying (1) and (2), we get the k-closed subvariety V (A) in Pn by

V (A) = {(ξ0 : · · · : ξn) ∈ Pn(Ω) | f(ξ0, . . . , ξn) = 0, where f ∈ A and f is homogeneous}.

We denote this variety by Proj(S), where S = k[X0, . . . , Xn]/A.

� Unlike the affine case, it frequently happens

Proj(S) ∼= Proj(S ′)

as k-varieties, and yet S is not isomorphic to S ′ as graded rings.

The d-uple embedding illustrates this point:

Let M0, . . . ,MN be the monomials of degree d in the variables X0, . . . , Xn, ordered lexi-
cographically. Since there are

(
d+n
d

)
such monomials,

N =

(
d+ n

d

)
− 1.

We define the d-uple embedding, which is the map Φd : Pn → PN , as follows:

(ξ0 : · · · : ξn) 7→ (M0(ξ0, . . . , ξn) : · · · : MN (ξ0, . . . , ξn)).

This map is well-defined since ξi 6= 0 for some i, and the monomial Xd
i is in the list, so

ξdi 6= 0; the map Φd is clearly injective. We need to show that it is a morphism. For this,
consider the algebra k-homomorphism ϕd : k[Z0, . . . , ZN ]→ k[X0, . . . , Xn] defined so that

ϕd(Zj) =Mj(X0, . . . , Xn).
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If we localize at Zi, the effect on the righthand side is to localize at Mi(X0, . . . , Xn). Thus,
Φd is indeed a k-morphism, and moreover, if A = Ker ϕd, then A is a homogeneous ideal
generated by quadratic equations. Indeed, we can use the notation Zi0,...,in, where i0 + · · ·+
in = d and ij ≥ 0, to denote the N homogeneous coordinates of PN ; then the equations
(these are called the Plücker relations) are the quadratic equations

Zi0,...,inZj0,...,jn = Zh0,...,hnZk0,...,kn,

and they hold whenever

i0 + j0 = h0 + k0, · · · , in + jn = hn + kn.

We get an injection
ϕd : k[Z0, . . . , Zn]/A →֒ k[X0, . . . , Xn],

and it is easy to check that

Proj(k[Z0, . . . , Zn]/A) = V (A) →֒ PN

and that Φd : Pn → PN embeds Pn as a closed subvariety of PN . Yet, ϕd is not an isomor-
phism, since it is not surjective.

The meaning of the d-uple embedding can be explained as follows: Let H be a hyperplane
in PN given by the equation

N∑

j=0

αjZj = 0.

Applying ϕd, we get
N∑

j=0

αjMj(X0, . . . , Xn) = 0,

the equation of a hypersurface of degree d in Pn. Thus, we get a map ϕ∗d mapping hyperplanes
in PN to hypersurfaces in Pn, and this is clearly a bijection. Hence, the d-uple embedding,
Φd : Pn → PN , gives a bijection

H 7→ ϕ∗d(H)

between hyperplanes in PN and hypersurfaces of degree d in Pn. In a sense, we have “straight-
ened out” hypersurfaces in Pn to become hyperplanes in PN .

Let X = Φd(Pn) →֒ PN . Now, consider a hyperplane, H , in PN and look at H ∩ X .
Observe that

H ∩X =

{
(· · · : Mj(ξ0, . . . , ξn) : · · · )

∣∣∣∣∣
N∑

j=0

αjMj(ξ0, . . . , ξn) = 0

}

= {(ξ0 : · · · : ξn) ∈ Pn | (ξ0 : · · · : ξn) ∈ ϕ∗d(H)}.
Hence, under the d-uple map Φd, the hypersurface ϕ∗d(H) goes to the hyperplane section
H ∩X , where X is the image of Pn in PN .
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Example 2.9 First, consider the case d = 2 and n = 1, we have the map

(ξ0 : ξ1) 7→ (ξ20 : ξ0ξ1 : ξ
2
1) = (Z0 : Z1 : Z2).

The equation of the image of P1 in P2 is

Z2
1 = Z0Z2.

This is a conic in P2. More generally, the image of P1 under Φd is a curve of degree d in Pd.
This curve is the rational normal curve in Pd. The rational normal curve is nondegenerate,
i.e., it is not contained in any hyperplane of Pd (DX).

Now, when d = 3 and n = 1, the map Φd is

(ξ0 : ξ1) 7→ (ξ30 : ξ
2
0ξ1 : ξ0ξ

2
1 : ξ

3
1) = (Z0 : Z1 : Z2 : Z3).

The Plücker equations are then:

Z0Z3 = Z1Z2

Z2
1 = Z0Z2

Z2
2 = Z1Z3.

These are the equations of the twisted cubic, as the rational normal curve of degree 3 is
called.

Just as in the case of affine varieties, we can consider products of abstract and projective
varieties. In the following, most details will be left to the reader:

Let X, Y, Z be k-varieties, and πX : X → Z and πY : Y → Z be morphisms. Then,
X
∏
Z

Y exists as a k-variety, i.e., the functor from k-varieties to sets,

T 7→ Hom(T,X)×Hom (T,Z) Hom(T, Y )

is representable. To show this, we cover X, Y, Z by affine open varieties Xα, Yβ, Zγ. We can
arrange this so that πX ↾ Xα : Xα → Zγ and πY ↾ Yβ : Yβ → Zγ for all α, β and where γ
depends on α and β. Then, perform the following steps.

(1) Xα

∏
Zγ

Yβ exists by previous work;

(2) Check that on the category of k-varieties (not just affine varieties), the varietyXα

∏
Zγ

Yβ

represents the product functor (as above);

(3) Prove that

Xα

∏

Zγ

Yβ ∼= Xα

∏

Z

Yβ;
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(4) And finally, prove that (gluing)

⋃

α,β

(
Xα

∏

Z

Yβ

)
∼= X

∏

Z

Y.

However, while the product of projective varieties is certainly an abstract variety, it is
not completely obvious that it is a projective variety. This is true, and to prove it, we need
to introduce the Segre embedding . The Segre embedding is a morphism

Σ: Pr
∏

Ps −→ P(r+1)(s+1)−1.

Set-theoretically, the map Σ is given by

(x0 : · · · : xr; y0 : · · · : ys) 7→ (x0y0 : · · · : xiyj : · · · : xrys),

where the xiyj are ordered lexicographically. Let Z0, . . . , Z(r+1)(s+1)−1 be the coordinates in
P(r+1)(s+1)−1. We can also denote these variables by Zi j , where 0 ≤ i ≤ r and 0 ≤ j ≤ s–and
order them lexicographically. The algebra map

σ : S = k[Z0 0, . . . , Zr s] −→ k[X1, . . . , Zr]⊗ k[Y1, . . . , Ys],

given by
Zi j 7→ Xi ⊗ Yj,

gives by dehomogenizing at Zi j the map

σij : S(Zi j) −→ k[X1, . . . , Zr](Xi) ⊗ k[Y1, . . . , Ys](Yj). (∗)

We see that Spec S(Zi j) defines an affine open in P(r+1)(s+1)−1, and the righthand side of (∗)
defines the affine open Ui

∏
Uj in Pr

∏
Ps. These affine opens glue and give our morphism

(DX). To identify the image of the Segre morphism, take B = Ker σ. This is a homogeneous
radical ideal, and

Proj(S/B) = V (B) ⊆ P(r+1)(s+1)−1

is just the image Σ(Pr
∏

Ps) in P(r+1)(s+1)−1 (DX). The ideal, B, is generated by the quadratic
equations

Zi jZk l = Zk jZi l.

Example 2.10 Consider the Segre embedding Σ: P1
∏

P1 → P3, given by

((x0 : x1), (y0 : y1)) 7→ (x0y0 : x0y1 : x1y0 : x1y1) = (Z0 : Z1 : Z2 : Z3).

The quadratic Segre relation is the single equation:

Z1Z2 = Z0Z3.
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Figure 2.6: An hyperbolic paraboloid

Let Q denote the image variety Σ(P1
∏

P1). This is a nondegenerate quadric surface in P3.
There are two families of rulings (lines) in Q, they are p

∏
P1 and P1

∏
p, where p is any

point in P1. Let us look at Q over the field R. If we take Z0 = 0 to be the hyperplane at
infinity, then letting

z1 =
Z1

Z0
, z2 =

Z2

Z0
, z3 =

Z3

Z0
,

we find the equation of Q to be
z3 = z1z2.

This is a hyperbolic paraboloid in R3, and it is displayed in Figure 2.6.

We can also define the Veronese map:

V : Pn −→ P(n+1)2−1,

which is the composition

V = Σ ◦∆: Pn
∆−→ Pn

∏
Pn

Σ−→ P(n+1)2−1.

The image of Pn is a rational variety, and it is closed in P(n+1)2−1.

Remark: Look at Pn over C. Let H be the hyperplane whose equation is Z0 = 0. Then,
we have

Pn = (Pn −H) ∪H = An ∪H.
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However, the hyperplane H is in bijection with Pn−1; and so,

Pn = An ∪ Pn−1.

Repeating this argument, we get

Pn = An ∪ An−1 ∪ · · · ∪ A1 ∪ {1}.

This “cell decomposition” holds for Pn over any field. However, over C, we can compute the
cohomology of Pn because the boundaries of the cells have the right dimensions. We find
that

Hl(P
n,Z) =





Z if l = 2s, 0 ≤ s ≤ n.
(0) if l is odd.
(0) if l > 2n,

and the same for cohomology.

Remarks: (DX)

(1) Pn is geometrically irreducible.

(2) Pn is separated, and this is true of every projective variety.

(3) There exist nonprojective even nonalgebraic complex analytic manifolds. For example,
the quotient of C2 − {0} under the action given by z 7→ 2z is a complex analytic
manifold not embeddable in any PN for any N ≥ 0.

Just as in the affine case, we can analyze the dimensions of irreducible components of an
intersection, so in the projective case we can do the same. But here, the theorem is even
simpler because nonemptiness of the intersection is guaranteed under suitable conditions on
the dimensions of the intersecting varieties.

Theorem 2.34 (Projective intersection dimension theorem) Let V,W be irreducible projec-
tive varieties, with dim(V ) = r and dim(W ) = s. If r + s ≥ n, then V ∩W 6= ∅, and every
irreducible component of V ∩W has dimension at least r + s− n.

Proof . We reduce the proof to the affine case by considering the cones C(V ) and C(W ) in
An+1.1 In this case, we apply the affine version of the theorem (Theorem 2.6) (DX).

Projective varieties have the important property that the image of a projective variety
under a morphism is always closed. To prove this, we will need a simple lemma:

Lemma 2.35 If X, Y, Z are k-varieties and πX : X → Z and πY : Y → Z are morphisms,
and if πX is a closed immersion, then pr2 : X

∏
Z

Y → Y is a closed immersion. (Base

extension of a closed immersion is a closed immersion).

1If V = Proj S where S is a graded ring, then C(V ) is just Spec S.
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Proof . The question is local on X, Y, Z; so we may assume that X, Y, Z are affine. Assume
that X = Spec A; Y = Spec B; Z = Spec C. Since πX : X → Z is a closed immersion, we
have A = C/C, for some radical ideal, C. Then,

X
∏

Z

Y = Spec((A⊗C B)/N)

= Spec((C/C⊗C B)/N)

= Spec((B/CB)/N) →֒ Spec B = Y.

Having proved the lemma, we can now prove the main theorem.

Theorem 2.36 (Properness of projective varieties) A projective variety, V , is a proper va-
riety. This means that for every variety W ,

pr2 : V
∏

W −→W

is a closed map.

Proof . (1) We reduce the proof to the case where W is affine. Assume that the theorem
holds when W is affine. Cover W with affine opens Wα, so that W =

⋃
αWα. Check that

V
∏

W ∼=
⋃

α

(
V
∏

Wα

)
.

Let C ⊆ V
∏
W be a closed subvariety. If Cα denotes C ∩ (V

∏
Wα), then,

pr2(C) ∩Wα = pr2(Cα).

But, pr2(Cα) is closed in Wα, which implies that pr2(C) is closed in W .

(2) We reduce the proof to the case where V = Pn. Assume that the theorem holds for
Pn. Look at the closed immersion V →֒ Pn. By Lemma 2.35,

V
∏

W →֒ Pn
∏

W

is also a closed immersion. Hence, we have the commutative diagram

C � � // V
∏
W

pr2
""❊

❊❊
❊❊

❊❊
❊❊

// Pn
∏
n

W

pr2{{✇✇
✇✇
✇✇
✇

W ,

and this shows that we may assume that V = Pn.
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(3) Lastly, we reduce the proof to the case: W = Am. Assume that the theorem holds
for W = Am. By (1), we may assume that W is closed in Am, then we have the following
commutative diagram:

C � � // Pn
∏
W � � //

(pr2)W
��

Pn
∏

Am

(pr2)Am
��

W � � // Am

where the arrows in the top line are closed immersions, by Lemma 2.35. So,

(pr2)W (C) = (pr2)Am(C) ∩W,

and, since by hypothesis, (pr2)Am(C) is closed, and W is closed, we find (pr2)W (C) is also
closed.

We are now reduced to the essential case: Which is to prove that pr2 : Pn
∏

Am → Am

is a closed map. Let C be a closed subvariety of Pn
∏

Am. Then, C is the common solution
set of a system of equations of form

fj(X0, . . . , Xn; Y1, . . . , Ym) = 0, for j = 1, . . . , p, (†)

where fj is homogeneous in the Xj’s and we restrict to solutions for which Xj 6= 0 for some
j, with 0 ≤ j ≤ n. Pick y ∈ Am, and write y = (y1, . . . , ym); also write (†)(y) for the system
(†) in which we have set Yj = yj for j = 1, . . . , m.

Plan of the proof : We will prove that (pr2(C))
c (the complement of pr2(C)) is open.

Observe that

y ∈ pr2(C) iff (∃x)((x, y) ∈ C)
iff (∃x)(xj 6= 0 for some j, and (†)(y) holds).

Thus,
y ∈ (pr2(C))

c iff (∀x)(if (†)(y) holds, then xj = 0, for 0 ≤ j ≤ n).

Let A(y) be the ideal generated by the polynomials, fj(X0, . . . , Xn, y1, . . . , ym), occurring in
(†)(y). Hence,

y ∈ (pr2(C))
c iff (∃d ≥ 0)((X0, . . . , Xn)

d ⊆ A(y)).

Let
Nd = {y ∈ Am | (X0, . . . , Xn)

d ⊆ A(y)}.
Then,

(pr2(C))
c =

∞⋃

d=1

Nd.

Now,
Nd ⊆ Nd+1,
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and so,

(pr2(C))
c =

∞⋃

d>>0

Nd,

where d >> 0 means that d is sufficiently large.

Claim. If d > max{d1, . . . , dp}, where dj is the homogeneous degree of
fj(X0, . . . , Xn, Y1, . . . , Ym) in the Xi’s, then Nd is open in Am. This will finish the proof.

Write Sd(y) for the vector space (over k) of polynomials in k[y1, . . . , ym][X0, . . . , Xn] of
exact degree d. We have a map of vector spaces

ψd(y) : Sd−d1(y)⊕ · · · ⊕ Sd−dp(y) −→ Sd(y)

given by

ψd(y)(g1, . . . , gp) =

p∑

j=1

fjgj.

If we assume that ψd(y) is surjective, then all monomials of degree d are in the range of
ψd(y). Thus, A(y) will contain all the generators of (X0, . . . , Xn)

d, i.e.,

(X0, . . . , Xn)
d ⊆ A(y),

and this means

y ∈ Nd.
Conversely, if y ∈ Nd, then (X0, . . . , Xn)

d ⊆ A(y), and thus, A(y) contains every monomial
of degree d. But then, each monomial of degree d is in the range of ψd(y), and since these
monomials form a basis of Sd(y), the map ψd(y) is surjective.

Therefore, y ∈ Nd iff ψd(y) is surjective.

Pick bases for all of the Sd−dj ’s and for Sd. Then, ψd(Y ) is given by a matrix whose
entries are polynomials in the Yj’s. We know that ψd(y) is surjective iff rk ψd(y) = nd,
where nd = dim(Sd)(y). Therefore, ψd(y) will be surjective iff some nd × nd minor of our
matrix is nonsingular. This holds if and only if the determinant of this minor is nonzero.
However, these determinants for ψd(y) are polynomials q(Y1, . . . , Ym). Therefore, ψd(y) will
be surjective iff y belongs to the k-open such that some q(y) 6= 0. This proves that Nd is
open, and finishes the proof. QED

Remarks:

(1) Homogeneity in the Xi’s allowed us to control degrees.

(2) If Y is a separated k-variety, then for any morphism, ϕ : X → Y , the graph
Γϕ ⊆ X

∏
Y is closed.
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The argument used to establish (2) is a standard categorical argument. Note that

X

Γϕ

��

ϕ // Y

∆

��
X
∏
Y

ϕ
∏

id
// Y
∏
Y

is a product diagram, where
Γϕ(x) = (x, ϕ(x)).

To see this, replace X, Y , etc., by the functors they represent and, by choosing any test
variety T , we reduce the proof to the case where X, Y, etc. are sets. Observe that

Y
∏

Y
∏
Y

(X
∏

Y ) = {(y, (x, z)) | x ∈ X ; y, z ∈ Y ; and (y, y) = (ϕ(x), z)}.

Here, ∆: Y → Y
∏
Y and ϕ

∏
id : X

∏
Y → Y

∏
Y . This shows that y = z and y = ϕ(x),

and thus, the maps
(y, x, z) 7→ x

and
x 7→ (ϕ(x), x, ϕ(x))

are inverse isomorphisms.

Then, Γϕ is the base extension of the diagonal morphism ∆, which is a closed immersion,
as Y is separated. Therefore, Γϕ is a closed immersion, which implies that Γϕ(X) is closed
in Y , as claimed in (2).

The properness theorem for projective varieties has a number of important corollaries.

Corollary 2.37 If V is a proper k-variety (e.g., by Theorem 2.36, any projective variety)
and W is a separated k-variety, then any morphism ϕ : V →W is a closed map.

Proof . We factor ϕ : V → W as

V
Γϕ−→ V

∏
W

pr2−→W.

By remark (2) above, the map Γϕ is a closed map, and by Theorem 2.36, the map pr2 is
closed, and the result follows.

Corollary 2.38 Let V be a proper k-variety (e.g., by Theorem 2.36, any projective variety).
IfW is any quasi-affine variety (i.e., an open in an affine) or any affine variety, then for any
morphism ϕ : V → W , the image, Im ϕ, of ϕ is a finite set of points. If V is geometrically
connected, then ϕ is constant. In particular, every holomorphic function on V has finitely
many values and if V is geometrically connected, ϕ is constant.
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Proof . Since An is separated, W is separated. We have

V −→ W →֒ An,

and thus, we may assume that W = An. Pick j, with 1 ≤ j ≤ n, and look at

V −→ An prj−→ A1.

If we knew the result for A1, by a simple combinatorial argument, we would have the result
for An. Thus, we are reduced to the case W = A1. In this case, either Im ϕ = A1, or a finite
set of points, since A1 is irreducible. Furthermore, in the latter case, if V is geometrically
connected, then Im ϕ consists of a single point. We need to prove that ϕ : V → A1 is never
surjective. Assume it is. Consider the diagram

V
∏

A1

π2

%%❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏

ϕ
∏

id // A1
∏

A1

π2

��
A1

and let
D = {(x, y) ∈ A1 × A1 | xy = 1}.

The map ϕ
∏

id is onto. Therefore, (ϕ
∏

id)−1(D) is closed and

ϕ
∏

id : (ϕ
∏

id)−1(D)→ D

is surjective. Let C = (ϕ
∏

id)−1(D). By the definition of proper, pr2(C) is closed. However,
by surjectivity,

pr2(C) = π2(C),

and yet, π2(C) is k-open, a contradiction on the irreducibility of A1.

Corollary 2.39 (Kronecker’s main theorem of elimination) Consider p polynomials
f1(X0, . . . , Xn; Y1, . . . , Ym), . . ., fp(X0, . . . , Xn; Y1, . . . , Ym), with coefficients in k and homo-
geneous in the Xi’s (of varying degrees). Consider further the simultaneous system

fj(X0, . . . , Xn; Y1, . . . , Ym) = 0, for j = 1, . . . , p. (†)
Then, there exist polynomials g1(Y1, . . . , Ym), . . ., gt(Y1, . . . , Ym) with coefficients in k involv-
ing only the Yj’s so that (†) has a solution in which not all Xi’s are 0 iff the system

gj(Y1, . . . , Yn) = 0, for j = 1, . . . , t, (††)
has a solution. (The Xi’s have been eliminated).

Proof . The system (†) defines a closed subvariety C of Pn
∏

Am.

Claim. The set pr2(C), which, by Theorem 2.36, is closed in Am, gives us the system
(††) by taking the gj’s as a set of polynomials defining pr2(C). To see this, note that C = ∅
iff pr2(C) = ∅; note further that (x, y) ∈ C iff (†) has a solution with not all Xi’s all zero.
Consequently, (†) has a solution with not all Xi zero iff (††) has a solution in the Yj’s.
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2.6 Linear Projections and Noether

Normalization Theorem

Some special morphisms of projective space and associated varieties are extremely impor-
tant. They, and concatenations of them occur repeatedly throughout the theory. One such
morphism is projection from a point.

Let p ∈ Pn, and let H be a hyperplane such that p /∈ H . Consider the collection of lines
through p, and take any q ∈ Pn such that q 6= p. Then, p and q define a unique line lpq not
contained in H , since otherwise, we would have p ∈ H . The line lpq intersects H in a single
point, πp(q). This defines a map

πp : P
n − {p} −→ H,

called the projection onto H from p. We claim that this map is a morphism. For this, let

n∑

j=0

ajXj = 0

be an equation defining the hyperplane H ; let p = (p0 : · · · : pn) and q = (q0 : · · · : qn). The
line lpq has the parametric equation

(s : t) 7→ (sp0 + tq0 : · · · : spn + tqn),

where (s : t) ∈ P1. The line lpq intersects H in the point whose coordinates satisfy the
equation

n∑

j=0

aj(spj + tqj) = 0,

and we get

s

n∑

j=0

ajpj + t

n∑

j=0

ajqj = 0.

However,
∑n

j=0 ajpj 6= 0, since p /∈ H , and thus, we can solve for s in terms of t. We find
that lpq ∩H is the point with homogeneous coordinates

t

(
−
(∑n

j=0 ajqj∑n
j=0 ajpj

)
p0 + q0 : · · · : −

(∑n
j=0 ajqj∑n
j=0 ajpj

)
pn + qn

)
,

and this is, (
−
(∑n

j=0 ajqj∑n
j=0 ajpj

)
p0 + q0 : · · · : −

(∑n
j=0 ajqj∑n
j=0 ajpj

)
pn + qn

)
,

since t 6= 0, because p /∈ H . These coordinates are linear in the qj ’s, and thus, the projection
map is a morphism.
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We may perform a linear change of coordinates so that the equation of the hyperplane
H becomes

Xn = 0.

We get

πp(q0 : · · · : qn) = (l1(q0, . . . , qn) : · · · : ln(q0, . . . , qn) : 0),
where li(q0, . . . , qn) is a linear form, for i = 1, . . . , n. Furthermore, these n linear forms do
not vanish simultaneously for any q = (q0 : · · · : qn), unless q = p, which implies that they
are linearly independent.

Conversely, let us take any n linearly independent linear forms l1(X0, . . . , Xn), . . .,
ln(X0, . . . , Xn). These linear forms define some hyperplanes H1, . . . , Hn in Pn whose in-
tersection is a point p ∈ Pn. Then, we have the map πp : (Pn − {p}) → Pn−1, defined
by

πp(X0 : · · · : Xn) = (l1(X0, . . . , Xn) : · · · : ln(X0, . . . , Xn)).

Geometrically, πp is the projection from p onto the hyperplane Xn = 0. We have the following
corollary of Theorem 2.36:

Corollary 2.40 Let X ⊆ Pn be a projective variety, and let p ∈ Pn −X. Then, projection
from p, when restricted to X, is a morphism from X to Pn−1. Further, we have the following
properties:

(a) If X ′ = πp(X), then πp ↾ X : X → X ′ is a morphism.

(b) X ′ is closed in Pn−1.

(c) The fibres of πp ↾ X are finite.

Proof . The map πp is a morphism outside p, and since p /∈ X , it is a morphism on X . Since
X is closed in Pn, by Theorem 2.36, X ′ is closed in Pn−1. For (c), pick q ∈ X ′. Note that
π−1p (q) corresponds to the line lpq intersected with X . However, lpq 6⊆ X , since p /∈ X , and
thus, lpq ∩ X 6= lpq. Then, lpq ∩ X is closed in lpq, and since lpq has dimension 1, it follows
that lpq ∩X is finite.

We can iterate Corollary 2.40 to prove Noether’s normalization lemma in the projective
case.

Corollary 2.41 (Noether’s normalization lemma–projective case) Let X ⊆ Pn be an irre-
ducible projective variety, and assume that dim(X) = r < n. Then, there is a morphism
π : X → Pr such that the following properties hold:

(1) The fibres are finite and π is surjective.

(2) The projective coordinate ring, k[Z0, . . . , Zn]/I(X), is a finite k[Y0, . . . , Yr]-module.
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(3) If k is infinite or we allow ourselves a finite degree field extension, the Yi’s can be taken
to be linear functions of the Zi’s.

Proof . After a finite field extension if k is finite, there exists a p ∈ Pn − X . Project from
p. Corollary 2.40 says that πp(X) = X1 ⊆ Pn−1, and that the fibres are finite. Then,
dim(X1) = dim(X) = r, by the fibre dimension theorem. If r 6= n − 1, repeat the process.
We get a sequence of projections

π : X −→ X1 −→ · · · −→ X ′ ⊆ Pr.

Since X is irreducible, X ′ is also irreducible, and dim(X ′) = r = dim(Pr). Hence, X ′ = Pr,
since Pr is irreducible. The fibres of π are finite.

In order to prove (2), we only need to consider a single step, since being a finite module is
a transitive property, and we can finish by induction. Pick p ∈ Pn−X . Using a preliminary
linear transformation, we may assume that p = (0: · · · : 0 : 1) and that the linear forms lj
defining p are lj(Z0, . . . , Zn) = Zj, for j = 0, . . . , n− 1. Then,

πp(q) = (q0 : · · · : qn−1).

Our result is a question about the affine cones C(X) and C(X ′), whose rings are k[C(X)] =
k[Z0, . . . , Zn]/I(X) and k[C(X ′)] = k[Z0, . . . , Zn−1]/I(X

′), where the map of affine rings

k[C(X ′)] −→ k[C(X)]

is given by Zj 7→ Zj , j = 0, . . . , n − 1. There is some f ∈ I(X) such that f(p) 6= 0, since
p /∈ X . Let deg(f) = δ.

Claim. The monomial Zδ
n appears in f .

If not, the monomials appearing in f are of the form

Zǫ
nZ

α1
1 · · ·Zαn−1

n−1

where ǫ + α1 + · · ·+ αn−1 = δ and ǫ < δ. But then, some αi > 0, and these monomials all
vanish at p, a contradiction. Thus,

f(Z0, . . . , Zn) = Zδ
n + f1(Z0, . . . , Zn−1)Z

δ−1
n + · · ·+ fδ(Z0, . . . , Zn).

We know that the map

k[Z0, . . . , Zn−1] −→ k[Z0, . . . , Zn]/I(X)

factors through k[C(X ′)]. We only need to prove that k[Z0, . . . , Zn]/I(X) is a finite
k[Z0, . . ., Zn−1]-module. This will be the case if k[Z0, . . . , Zn]/(f) is a finite k[Z0, . . . , Zn−1]-
module. But k[Z0, . . . , Zn]/(f) is a free k[Z0, . . . , Zn−1]-module on the basis 1, Zn, . . . , Z

δ−1
n ,

and this proves (2) and (3).
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From this corollary, we can also derive another proof of Noether’s normalization lemma
in the affine case (DX).

The successive projections of Corollary 2.41 can be viewed as a projection from a linear
center. Let L be a linear subspace of Pn, which means that C(L), the cone over L, is a linear
subspace of An+1. Assume that dim(L) = δ, and let r = n − δ − 1. Then, we can define a
morphism πL : (Pn − L)→ Pr. Indeed, if L is cut out by n− δ = r + 1 hyperplanes defined
by linear forms l0, . . . lr, we let

πL(q0 : · · · : qn) = (l0(q0, . . . , qn) : · · · : lr(q0, . . . , qn)).

Geometrically, πL can described as follows: Let H be a linear subspace of Pn of dimension
n− δ − 1 = r, disjoint from L. Consider any linear subspace F of dimension δ + 1 = n− r
through L. Then,

dim(F ) + dim(H)− n = δ + 1 + r − n = 0.

By the projective version of the intersection dimension theorem, F ∩ H is nonempty, and
F ∩H consists of a single point, πL(F ). Thus, we get a map as follows: For every q /∈ L, if
Fq is the span of q and L, then dim(Fq) = δ + 1, and we let

πL(q) = Fq ∩H.

In Corollary 2.41, we can take the span of the successive points from which projections are
made (call it L), and we get πL : X → Pr as the resulting morphism.

We can also use Corollary 2.40 to investigate the degree of a curve. Given a curve
C ⊆ Pn, we want to find an open set, U , in P((Ωn+1)D) = (Pn)D (the hyperplane space) so
that H ∩ C is a constant number of points for all H ∈ U . First, assume that n > 3. Then,
the secant variety, Sec(C), of lines touching C in at least two points (including tangent lines)
has dimension 3. Therefore, Sec(C) is strictly contained in Pn, and we can pick some p such
that no line in Sec(C) passes through p. If we project C from p, we get a map

πp ↾ C : C −→ C ′ ⊆ Pn−1.

If q ∈ C, then lpq ∩C is the fibre over q of πp ↾ C, and since no line in Sec(C) passe through
p, every fibre consists of a single point. Also, the good hyperplanes for C ′ correspond to the
good hyperplanes for C through p. By varying p in Pn − Sec(C) (which means that p does
not belong to any line in Sec(C)), we see that induction reduces the proof to the case n = 3.
Actually, if C is nonsingular, then C ′ and C are isomorphic (this can be shown using the
formal implicit function theorem). Thus, we obtain another corollary.

Corollary 2.42 Every nonsingular projective curve C admits an embedding into P3. If X
is a nonsingular projective variety of dimension d, then X admits an embedding in P2d+1 as
a nonsingular variety (the secant variety has dimension 2d+ 1).
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We now have to deal with the case where C →֒ P3. Generally, Sec(C) = P3. Take any
p ∈ P3 and consider the projection from p onto P2. The hyperplanes in P2 correspond to
hyperplanes in P3 through p. Look at the lines in P3. They belong to the Grassmannian
G(2, 4), which has dimension 2(4−2) = 4. The lines through p form a subvariety of dimension
3. The family of lines

{lpq | lpq ∩ C 6= ∅}

has dimension 2, and the subfamily of those lines lpq such that lpq ∈ Sec(C) has dimension 1.
Thus, the fibre of πp above a point s in C ′ has cardinality strictly greater than 1 only on a
closed subset, Z, of C ′. It follows that C ′ has at most a finite number of extra singularities
besides those of C. Using the projection πp : C → C ′, we get an open set of hyperplanes H
in P3 through p such that H ∩C has a constant number of points (in P2, we avoid the finite
number of singularities).

Finally, we have C ′ ⊆ P2. But C ′ is a hypersurface, and thus, it is given by a single
equation

f(X0, X1, X2) = 0

of degree δ. Then, the lines cutting C ′ in δ distinct points are those missing a closed
algebraically defined set in P2, which concludes the proof.

A shorter and better proof can be sketched as follows: Consider the product variety
C
∏
(Pn)D, and the incidence variety

I = {(ξ,H) ∈ C
∏

(Pn)D | ξ ∈ H}.

It is a closed subvariety. Consider the projection

pr2 : I −→ (Pn)D.

By the intersection dimension theorem, pr2 is surjective. The fibre of H is the set

{(ξ,H) | ξ ∈ C ∩H}.

Assuming that C is nondegenerate (which means that C is not contained in any H), we find
that C ∩H is a finite number of points. Since I is a projective variety and pr2 is surjective,
pr2 is a closed map and has finite fibres. This implies (to be proved later on) that pr2 is a
finite morphism. Now, dim(I) = dim (Pn)D, and the proof of Chevalley’s theorem says that
there is some open U ⊆ (Pn)D so that

pr2 : pr
−1
2 (U) ∩ I −→ U

is an integral morphism. Then, there is a smaller open on which the cardinality of the fibres
is constant, as desired.



2.7. RATIONAL MAPS 141

2.7 Rational Maps

In projective geometry, there are many maps between varieties which are densely defined
yet not extendable to the whole space and hence, are not morphisms. These have important
geometric content and, in fact, predated the concept of morphism, which has occupied us in
the previous work.

Lemma 2.43 Let X, Y be varieties, with Y separated. For any two morphisms ϕ : X → Y
and ψ : X → Y and for any dense subset U ⊆ X, if ϕ = ψ on U , then ϕ = ψ on X.

Proof . Look at the diagram

X
∆X // X

∏
X

ϕ
∏
ψ // Y

∏
Y

U

OO

θ // Y.

∆Y

OO

By hypothesis, a morphism θ : U → Y making the diagram commute exits, as shown. Then,

(ϕ
∏

ψ) ◦∆X(U) ⊆ ∆Y .

By continuity,

(ϕ
∏

ψ) ◦∆X(U) ⊆ (ϕ
∏

ψ) ◦∆X(U) ⊆ ∆Y .

However, Y is separated, so that ∆Y = ∆Y , and since U is dense, we get

(ϕ
∏

ψ) ◦∆X(X) ⊆ ∆Y ,

A counterexample to the above lemma when Y is not separated is the variety constructed
as follows: Let V = A1 and U = A1 − {0}; and glue V to V along U , by the identity. We
get a variety W consisting of two half lines and a pair of points at the origin. We can define
two morphisms from U to W that agree on U , and yet, take distinct values at 0.

Remark: If we glue the two copies of V but we flip the second copy “upside down,” i.e., use
the gluing map x 7→ 1/x, then (a) for k = R, we get the circle RP1 = S1, and (b) for k = C,
we get the sphere CP1 = S2. It turns out that for the quaternions H, we get HP1 = S4.

Let U be a k-open and k-dense subset of a variety V and let ϕU : U → Z be a morphism
to a separated variety Z. We can define an equivalence relation among pairs (U, ϕU), as
follows: Given two pairs (U1, ϕU1) and (U2, ϕU2), where ϕU1 : U1 → Z and ϕU2 : U2 → Z are
morphisms, we say that (U1, ϕU1) and (U2, ϕU2) are equivalent, denoted by

(U1, ϕU1) ∼ (U2, ϕU2)
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iff ϕU1 = ϕU2 on U1 ∩ U2. We need to check that this is indeed an equivalence relation. The
only nontrivial fact is transitivity. If

(U1, ϕU1) ∼ (U2, ϕU2),

then ϕU1 = ϕU2 on U1 ∩ U2, and if

(U2, ϕU2) ∼ (U3, ϕU3),

then ϕU2 = ϕU3 on U2 ∩ U3. Consider G = U1 ∩ U2 ∩ U3. This set is k-open and k-dense in
U1 ∩ U3, and

ϕU1 = ϕU2 = ϕU3

on G. By Lemma 2.43, we have ϕU1 = ϕU3 on U1 ∩ U3.

Definition 2.12 Given two varieties V and Z where Z is separated, an equivalence class ϕ
of pairs (U, ϕU) as above is a rational map of V to Z. It is denoted by ϕ : V −−→ Z.

Given a rational map ϕ : V −−→ Z, we can define the k-open and k-dense subset

U =
⋃
{U | (U, ϕU) ∈ ϕ}.

Clearly, ϕU is defined as a morphism on U , and U is the largest k-dense, k-open on which
ϕU ∈ ϕ is a morphism. We summarize this in the following proposition:

Proposition 2.44 Every rational map ϕ : V −−→ Z admits a unique maximal k-open, k-
dense subvariety where it is defined as a morphism. Thus, a rational map to Z (separated)
is a morphism from a k-open, k-dense subset of V admitting no further extension as a
morphism.

We also introduce the following nomenclature and notation: We denote by Rat(X,Z) the
collection of all rational maps ϕ : V −−→ Z (Z is separated). We letMer(X) = Rat(X,A1)
be the set of rational functions on X , also called meromorphic functions on X . A rational
map ϕ : V −−→ Z whose image is k-dense in Z is called dominant , or dominating .

Let X,Z be separated varieties, assume that we have rational maps ϕ : X −−→ Z and
ψ : Z −−→X , and that U and V are the maximal domains of definition of ϕ and ψ. Assume
that ϕ−1(V ) is dense in X , and ψ−1(U) is dense in Y ; further that U ∩ ϕ−1(V ) is open and
dense in U and V ∩ ψ−1(U) is open and dense in V . If

ϕ ◦ ψ = id on V ∩ ϕ−1(U)
and

ψ ◦ ϕ = id on U ∩ ψ−1(V ),

then we say that ϕ and ψ are birational maps and birational inverses of each other. In this
case, we say that X is birationally equivalent to Y . Further, call ϕ birational if ψ, inverting
ϕ, as above, exists.
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� Two varieties might be birationally equivalent, but not isomorphic. For example, An is
birationally equivalent to Pn. Let H be any hyperplane complementary to An in Pn, and

let V = Pn − H . Then, the bijection sending An to V is a birational map. However, Pn is
proper but An is not, and Pn and An are not isomorphic.

Proposition 2.45 Given an irreducible variety X, the natural inclusion A1 →֒ P1 yields a
bijection

Rat(X,A1) ∼= Rat(X,P1).

Proof . The map Rat(X,A1) −→ Rat(X,P1) is clearly an injection. Let ϕ ∈ Rat(X,P1), and
assume that U is the domain of ϕ. If ϕ misses “∞” (where ∞ means the complement of A1

in P1), then ϕ maps X to A1, and we are done. Otherwise, consider the subset Z = ϕ−1(∞).
It is closed in X , and we let V = X −Z. Since X is irreducible, V is dense in X , and then,
the restriction, ψ, of ϕ to U ∩ V is a morphism ψ : U ∩ V → A1. Hence, ϕ comes from a
morphism from A to A1.

Remark: This is false for morphisms. The problem is that a morphism ϕ : X → P1 gives a
rational map ψ : X −−→ A1, but ψ does not necessarily extend to a morphism.

We define the categories Irred/k and FncFlds/k as follows: The objects of the category
Irred/k are all the irreducible separated k-varieties and the maps are dominant rational
morphisms. Isomorphism in this category is birational equivalence. The objects of the
category FncFlds/k are all the finitely generated fields over k; that is, fields of the form
Frac(A), where A is a finitely generated k-algebra which is a domain. The morphisms in
FncFlds/k are the k-monomorphisms (if necessary, we will assume that Frac(A) is separable
over k).

We have the following theorem showing that Irred/k and FncFlds/k are anti-equivalent:

Theorem 2.46 The functor X 7→ Mer(X) establishes an anti-equivalence of the two cate-
gories Irred/k and FncFlds/k. Hence, k-irreducible varieties are birationally equivalent iff
their function fields are isomorphic.

Proof . Let U be open in X . Then, ϕ : U → A1 gives ϕ ∈ Mer(X) = Rat(X,A1). However,
A1 is separated, so that giving ϕ in Rat(X,A1) is equivalent to giving ϕ in Rat(U,A1) for
any dense open U in X . Hence, the sheaf U 7→ Mer(U) is the constant sheaf on X .2 Pick
U0 ⊆ X , open, dense, affine. We know that

Rat(X,A1) = Rat(U0,A
1) = Frac(k[U0]),

and k[U0] is finitely generated as a k-algebra. This implies thatMer(X) is indeed a function
field. If ϕ : X −−→ Y is a dominant rational map, then pick ψ ∈Mer(Y ), that is, a rational

2See the Appendix for the definition of a sheaf.
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map from Y to A1. The rational map ψ is defined on an open dense set V ⊆ Y , so that
ϕ−1(V ) is open dense in X , and on ϕ−1(V ), we get

ψ ◦ ϕ : ϕ−1(V ) −→ A1,

a function inMer(X). The reader should check that

(1) Mer(Y ) −→Mer(X), as just given, is a k-injection.

(2) X 7→ Mer(X) is a cofunctor.

Backwards, first pick K of the form Mer(X) and L of the form Mer(Y ), and an in-
jection θ : L → K. Take V ⊆ Y open affine, so that Mer(V ) = Mer(Y ) and Mer(V ) =
Frac(k[V ]). Now, k[V ] = k[Z1, . . . , Zn]/I, where

√
I = I and the injection θ is determined

by θ(Z1), . . . , θ(Zn) ∈ Mer(X). There are some open dense subsets Uj such that θ(Zj) is
holomorphic on Uj; so, let U = U1 ∩ · · · ∩ Un, which is k-open, k-dense, and affine (by
choosing the Uj ’s affine). Then, θ(Zj) ∈ k[U ], which implies that we have the commutative
diagram

k[V ]

��

θ // k[U ]

��
Mer(Y )

θ
//Mer(X)

so that θ : k[V ] → k[U ] is injective. Hence, we get a morphism θ∗ : U → V with dense
image, and so, θ∗ ∈ Rat(X, Y ). We still have to prove that every function field is of the form
Mer(X). Let K be a finitely generated field extension over k. Then,

K = k(z1, . . . , zn) = Frac(k[z1, . . . , zn]).

There exist some indeterminates T1, . . . , Tn and a surjective map

ϕ : k[T1, . . . , Tn] −→ k[z1, . . . , zn]

whose kernel is a prime ideal p. Then,

k[V (p)] = k[T1, . . . , Tn]/p ∼= k[z1, . . . , zn],

and K =Mer(V (p)).

Remark: If K is separably generated over k, then V is a variety separably generated over
k.

Corollary 2.47 If X, Y are irreducible varieties, then X and Y are birationally equivalent
iffMer(X) ∼=Mer(Y ).

Corollary 2.48 If X is irreducible and separably generated over k, then X is birationally
equivalent to a hypersurface in An (or a hypersurface in Pn).
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Proof . Pick a separating transcendence basis for K = Mer(X) over k, say Z1, . . . , Zr
(dim(X) = r). Then, K/k(Z1, . . . , Zr) is separable algebraic and finitely generated, which
implies finite and separable. By Kronecker’s theorem of the primitive element (Zariski and
Samuel [60], Theorem 19, Chapter II, Section 9), there is some θ such that

K = k(Z1, . . . , Zr)(θ)

and θ satisfies an equation of the form

θn + α1(Z1, . . . , Zr)θ
n−1 + · · ·+ αn−1(Z1, . . . , Zr)θ + αn(Z1, . . . , Zr) = 0,

where αj(Z1, . . . , Zr) ∈ k(Z1, . . . , Zr) =Mer(Ar) =Mer(Pr). Clear denominators, and get
an equation of the form

β0(Z1, . . . , Zr)θ
n + β1(Z1, . . . , Zr)θ

n−1 + · · ·+ βn−1(Z1, . . . , Zr)θ + βn(Z1, . . . , Zr) = 0,

where βj(Z1, . . . , Zr) ∈ k[Z1, . . . , Zr]. Therefore, we get the hypersurface V of equation

β0(Z1, . . . , Zr)T
n + β1(Z1, . . . , Zr)T

n−1 + · · ·+ βn−1(Z1, . . . , Zr)T + βn(Z1, . . . , Zr) = 0

in Ar+1, or, homogenizing the βj ’s, in Pr+1. ButMer(V ) = K, by construction. By Corollary
2.47, sinceMer(V ) = K =Mer(X), the varieties X and V are birationally equivalent.

Recall that an irreducible variety X is normal iff for every x ∈ X , the local ring OX,x is
integrally closed inMer(X). This is equivalent to saying that X is covered by affine patches
and the coordinate rings of these patches are integrally closed inMer(X).

Proposition 2.49 If X is normal, then X is nonsingular in codimension 1. That is, the
singular locus, Sing(X), has codimension at least 2 in X.

Proof . Let x be chosen with dim({x}) = n − 1, where n = dim(X). We must show that
x /∈ Sing(X). (As usual, we assume separable generation over k). However, OX,x is one-
dimensional and integrally closed. Thus, OX,x is Noetherian, local, one-dimensional, and an
integrally closed domain, which implies that OX,x is a local Dedekind ring. So, OX,x is a
DVR (a discrete valuation ring, see Zariski and Samuel [60], Theorem 15, Chapter V, Section
6). This implies that OX,x is a regular local ring. Therefore, x is nonsingular.

Sometimes, a rational map to a suitable variety can be extended to a really big domain
of definition. The theorem below makes this precise and is used very often in the succeeding
theory of projective varieties and their generalizations.

Theorem 2.50 Let X be an irreducible variety which is nonsingular in codimension 1 (e.g.,
normal), and let Y be a quasi-projective variety (open subvariety in some projective variety).
Then, every rational map ϕ : X −−→ Y admits an extension to a rational map Φ: X −−→ Y
(where Y is the closure of Y in Pn), and the locus where Φ is not defined has codimension
at least 2 in X.3

3For example, when X is a surface, nonsingular in codimension 1, then the locus where Φ is possibly not
defined is just a finite set of points.
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Proof . We may assume that X is affine, since dom(ϕ) and dom(Φ) are open and dense for
any extension, Φ, of ϕ. Let ξ be generic for X , by hypothesis, Y →֒ Pn for some n, and by
composition, we get a rational map ϕ̃ : X −−→ Pn. If we show that every point x /∈ Sing(X)
is in dom(ϕ̃), then, as x is a specialization of ξ, we see that ϕ̃(x) is a specialization of ϕ(ξ),
and thus, ϕ̃(x) ∈ Y . Thus, we may assume that Y is closed and more, that Y = Pn. We are
down to the essential case where X is affine, irreducible, and Y = Pn.

We have ϕ(ξ) ∈ Pn, where ξ is generic for X . Thus, ϕ(ξ) is in one of the standard opens,
say ϕ(ξ) ∈ Uj = {(α) ∈ Pn | αj 6= 0.}. However, Uj is affine, so that there are holomorphic
functions θi (near ξ) such that

ϕ(ξ) = (θ0(ξ), . . . , θ̂j(ξ), . . . , θn(ξ)),

where, as usual, the hat over the argument means that it should be omitted. Each θj has a
denominator, and by multiplying through by all these denominators, we get

ϕ(ξ) = (Λ0(ξ) : · · · : Λj(ξ) : · · · : Λn(ξ)),

where Λi is holomorphic in X . Look at Λl in OX,x. Now, OX,x is a DVR, so let π be a local
uniformizer (i.e., mx = (π) = πOX,x). Write ordx(Λj) = αj (αj is the largest integer d such
that Λj ∈ md

x). If ϕ(x) is to exists, it is the point

(Λ0(x) modmx : · · · : Λn(x) modmx).

Each Λl(ξ) has the form
Λl(ξ) = παlMl(ξ)

where Ml is a unit in OX,x. One of the orders αl is minimal, say αr. Then, we have

Λl(ξ) = παrπαl−αrMl(ξ),

and so,

ϕ(ξ) = (παrπα0−αrM0(ξ) : · · · : παrπαn−αrMn(ξ))

= (πα0−αrM0(ξ) : · · · : Mr(ξ) : · · · : παn−αrMn(ξ)).

We obtain ϕ(x) by replacing ξ by x, and reducing mod mx. But Mr(ξ) 6= 0 (modmx), since
Mr is a unit in OX,x. Thus, ϕ(x) exists in Pn, as desired.

Corollary 2.51 Let X be an irreducible curve and Y a quasi-projective variety. If X is
normal, then every rational map ϕ : X −−→ Y extends to a morphism ϕ̂ : X → Y . In
particular, if Y is projective, then ϕ is already a morphism. Consequently if X and Y are
projective nonsingular curves, birational equivalence of X and Y is the same as isomorphism.
To classify nonsingular (projective) curves is the same as classifying function fields in one
variable (i.e., of dimension 1).
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2.8 Blow-Ups

In the last corollary of the previous section dealing with rational morphisms of curves,
we observed that for nonsingular curves, birational equivalence of nonsingular curves is
the same as isomorphism. This is far from being the case in every dimension bigger than
one. In fact, one tries to find in each birational equivalence class of higher dimensional
varieties a “simplest” examplar. The exact meaning of simplest will be discussed later on.
For surfaces, it turns out that in most cases there is a unique nonsingular surface in each
birational class; so, the reader will see that many varieties can be birationally equivalent to a
nonsingular variety, yet not isomorphic to it. To make a construction yielding nonisomorphic
yet birational varieties is the aim of this section. Here is the construction.

Consider An, Pn−1, pick some point p ∈ An, and choose coordinates (x1, . . . , xn) in An so
that p = (0, . . . , 0), and let (y1 : · · · : yn) be homogeneous coordinates in Pn−1.

Definition 2.13 The subvariety, Bp(An), of An
∏

Pn−1, is the variety defined by the equa-
tions

xiyj = xjyi 1 ≤ i, j ≤ n.

It is called the blow-up of An at p.

The restriction of the projection maps

An
∏

Pn−1

pr1

yyttt
tt
tt
tt
t

pr2

%%▲▲
▲▲

▲▲
▲▲

▲

An Pn−1

to Bp(An) yields the maps:

Bp(An)
πp

{{✇✇✇
✇✇
✇✇
✇✇ σp

$$❏❏
❏❏

❏❏
❏❏

❏

An Pn−1.

Look at πp : Bp(An)→ An. It is a morphism, and in fact, a birational map. Let
ξ = (ξ1, . . . , ξn), where ξ 6= p; what is π−1p (ξ)?

Since ξ 6= p, we have ξj 6= 0 for some j; then

π−1p (ξ) = {(ξ, y) | ξiyj = ξjyi, 1 ≤ i, j ≤ n}.

But ξj 6= 0, and thus,

yi =
ξi
ξj
yj,

so that

(y1 : · · · : yn) =
(
ξ1
ξj

: · · · : ξj−1
ξj

: 1 :
ξj+1

ξj
: · · · : ξn

ξj

)
= (ξ1 : · · · : ξn).
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Therefore, π−1p (ξ) consists of the single point

π−1p (ξ) = {((ξ1, . . . , ξn); (ξ1 : · · · : ξn))}.

As a consequence, the restriction of πp is an isomorphism

Bp(A
n)− π−1(p) ∼= An − {p}.

Now, for p, we have

π−1p (p) = {(0, y) | 0yj = 0yi, 1 ≤ i, j ≤ n} = {0} × Pn−1.

To simplify the notation, from now on, we will drop the subscript p in πp and σp, unless
confusion arises. The above yields the following proposition:

Proposition 2.52 The map π : Bp(An) → An is a surjective morphism that induces an
isomorphism between Bp(An)−π−1(p) and An−{p}. Each fibre over ξ 6= p is a single point,
and π−1(p) ∼= Pn−1.

Let us now look at all the lines through p. Parametrically, such a line L(α) is given by
(α1t, . . . , αnt), where αj 6= 0 for some j, and t is the parameter. If t 6= 0, we have a point
(α1t, . . . , αnt) ∈ An distinct from 0, and

π−1(α1t, . . . , αnt) = {((α1t, . . . , αnt); (α1 : · · · : αn))}.

So,

π−1(L(α) − {p}) = {((α1t, . . . , αnt); (α1 : · · · : αn)) | t 6= 0} ∼= L(α) − {p}.
Then,

π−1(L(α) − {p}) ∩ π−1(p) = {((0, . . . , 0); (α1 : · · · : αn))}.
Hence, we get the following proposition:

Proposition 2.53 Given a line L(α) through p in An, the line L(α) is defined parametrically
by (α1t, . . . , αnt), where αj 6= 0 for some j, and the fibre π−1(p) intersects the closure of
π−1(L(α) − {p}) in exactly one point ((0), (α1 : · · · : αn)). Hence, the correspondence

L(α) ←→ π−1(L(α) − {p}) ∩ π−1(p)

is a bijection between lines through the point p in An and points of π−1(p). Consequently,
the fibre above (α1 : · · · : αn) of the other projection, pr2 : Bp(An) → Pn−1, is (isomorphic
to) the line L(α). Thus, Bp(An)− π−1(p) is dense in Bp(An), and Bp(An) is irreducible.
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Proof . The only statements we haven’t proved are those following the word “Consequently.”
We have

pr−12 (α1 : · · · : αn) = {((z1, . . . , zn); (α1 : · · · : αn)) | ziαj = zjαi, 1 ≤ i, j ≤ n}.

Since αj 6= 0 for some j and the αj are fixed, the equations ziαj = zjαi define the line L(α).
Moreover, we saw that all points of Bp(An) lie in Bp(An)− π−1(p) or on the closure of some
line L(α). Hence, as

π−1(L(α) − {p}) ⊆ Bp(A
n)− π−1(p),

the points of Bp(An) lie in the closure of Bp(An)− π−1(p). But,

Bp(A
n)− π−1(p) ∼= An − {p},

the latter being irreducible. Thus, Bp(An) is irreducible (as the closure of an irreducible).

We also denote π−1(p) by E, and call it the exceptional locus , or exceptional divisor . It
is a Weil divisor (see Section 5.1).

Example 2.11 Consider the rational map ϕ : A2 −−→A2 given by

(x, y) 7→
(
x

y
,
y

x

)
.

Its open set of definition is the complement of the axes x = 0 and y = 0. Use coordinates
(z1, z2) in the image A2. Then,

z1 =
x

y
, z2 =

y

x
. (∗)

The image of ϕ is the curve z1z2 = 1. Embed A2 into P2 via the map

(z1, z2) 7→ (1 : z1 : z2).

Using homogeneous coordinates T0, T1, T2 in P2, we have

zj =
Tj
T0
, for j = 1, 2.

The map ϕ is now given by

x

y
=
T1
T0
,

y

x
=
T2
T0
. (∗′)

From (∗′), we get

T0x = T1y and T0y = T2x. (∗∗)
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Note that (∗∗) gives a rational map ϕ1 : A2 −−→ P2 extending ϕ to all of A2, except the
origin. Indeed, if x = 0 and y 6= 0, by (∗∗),

T0 = T1 = 0,

and we let
ϕ1(0, y) = (0 : 0 : 1).

On the other hand, if x 6= 0 and y = 0, by (∗∗),
T0 = T2 = 0,

and we let
ϕ1(x, 0) = (0: 1 : 0).

Now, ϕ1 : A2 −−→ P2 still has the origin as a point of indeterminacy . Let us blow up A2 at
the origin. We get B0(A2) ⊆ A2

∏
P1, given by the equation

xv = yu,

where we use (u : v) as homogeneous coordinates in P1. Then, we can extend ϕ1 to
Φ: B0(A2) −−→ P2, and we claim that Φ is defined everywhere, and is a morphism:

On points where x 6= 0 or y 6= 0, we have Φ = ϕ1. Assume x = y = 0. We know that
either u 6= 0 or v 6= 0.

(1) If u 6= 0 and v = 0, then
((0, 0); (u, 0)) 7→ (0 : 1 : 0).

(2) If u = 0 and v 6= 0, then
((0, 0); (0, v)) 7→ (0 : 0 : 1).

(3) If u 6= 0 and v 6= 0, then

((0, 0); (u, v)) 7→
(
1:

u

v
:
v

u

)
.

The reader should check that (1)–(3) actually defined Φ everywhere onB0(A2) as a morphism.

The procedure above is a general fact in dimension 2. Namely, if X is a normal surface
and ϕ : X −−→ Y is a rational map, where Y is a projective variety, then for the points
of indeterminacy, p1, . . . , pt, of ϕ, repeated blow-ups at p1, . . . , pt give a surface Z and a
morphism π : Z → X which is birational, and further there exists a morphism ψ : Z → Y so
that the following diagram commutes:

Z
π

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ ψ

  ❅
❅❅

❅❅
❅❅

❅

X
ϕ // Y.

This fact is a consequence of a theorem of Zariski, and the simplest example is the one
we have given using (1)–(3).
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A number of comments and remarks about blow-ups are in order:

Remarks:

(1) The blow-up Bp(An) depends only on a local neighborhood of p. Therefore, if X is
covered by open subsets isomorphic to An (e.g., Pn and the Grassmannians), then
Bp(X) makes sense (just remove the open neighborhood of p, do Bp(An), reglue).

(2) If p 6= q in An, then
Bq,p(A

n) = Bp,q(A
n).

We now define the blow-up of any affine variety X ⊆ An at a point p ∈ X . First, make
Bp(An). We know that

Bp(A
n)− π−1(p) ∼= An − {p},

and we have an inclusion X − {p} →֒ An − {p}, so
π−1(X − {p}) ∼= X − {p}.

Definition 2.14 The blow-up, Bp(X), of an affine variety X ⊆ An at a point p ∈ X is the
closure of π−1(X − {p}) in Bp(An).

What is π−1(p) ∩ Bp(X)? We can define X near p by some equations

f1(Z1, . . . , Zn) = · · · = ft(Z1, . . . , Zn) = 0.

Arrange coordinates so that p is the origin, and write

fi = f
(i)
di

+ f
(i)
di+1 + · · · ,

where f
(i)
di

is the lowest degree homogeneous form appearing in fi, with degree di, which is
at least one, since fi(0) = 0 (remember, p = 0). Look at the total inverse image in Bp(An)
of X near p. The equations are

fl(Z1, . . . , Zn) = 0, ZiYj − ZjYi = 0, where 1 ≤ l ≤ t, and 1 ≤ i, j ≤ n.

Here, we use homogeneous coordinates (Y1 : · · · : Yn) in Pn−1. Look at the patch, Ul, in Pn−1,
so that Yl 6= 0. We get

Zi =
Yi
Yl
Zl;

thus,

0 = fj(Z1, . . . , Zn) = fj

(
Y1
Yl
Zl, . . . ,

Yn
Yl
Zl

)

= f
(j)
dj

(
Y1
Yl
Zl, . . . ,

Yn
Yl
Zl

)
+ f

(j)
dj+1

(
Y1
Yl
Zl, . . . ,

Yn
Yl
Zl

)
+ · · ·

= Z
dj
l f

(j)
dj

(
Y1
Yl
, . . . ,

Yn
Yl

)
+ Z

dj+1
l f

(j)
dj+1

(
Y1
Yl
, . . . ,

Yn
Yl

)
+ · · ·

The total inverse image has two components:
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(a) A copy of Pn−1 when Zl = 0.

(b) When Zl 6= 0, the locus cut out by the equations

f
(j)
dj

(
Y1
Yl
, . . . ,

Yn
Yl

)
+ Zlf

(j)
dj+1

(
Y1
Yl
, . . . ,

Yn
Yl

)
+ · · · = 0, for j = 1, . . . , t.

The latter are the equations of Bp(X) on the local piece of An
∏

Pn−1 corresponding to
Yl 6= 0. By homogenizing, we get

f
(j)
dj

(Y1, . . . , Yn) +
Zl
Yl
f
(j)
dj+1(Y1, . . . , Yn) + · · · = 0. (∗)

Equations (∗) describe Bp(X) on the patch Yl 6= 0. We get the points on Bp(X) ∩ π−1(p)
when we take Z1 = · · · = Zn = 0 in equation (∗). Thus, for Bp(X) ∩ π−1(p), we get the
projective variety whose equations are

f
(j)
dj

(Y1, . . . , Yn) = 0, for j = 1, . . . , t.

Now, the tangent cone to X at p is defined to be the variety

Spec k[T1, . . . , Tn]/(f
(1)
d1
, . . . , f

(t)
dt
),

it is indeed a cone in An. Our discussion shows that

π−1(p) ∩Bp(X) = Proj(k[T1, . . . , Tn]/(f
(1)
d1
, . . . , f

(t)
dt
),

the projectivized tangent cone to X at p. We see that Bp(X) is X with the projectivized
tangent cone sewn in at p in place of p.

Let us give a few examples.

Example 2.12 Consider the cuspidal cubic, X , given by

Z2
2 = Z3

1 ,

and blow up the singular point p = (0, 0). The lowest degree term is Z2
2 , and we expect

the projectivized tangent cone to be Proj(k[Z1, Z2]/(Z
2
2)). As a variety (not a scheme, see

Chapter 3), this is Proj(k[Z1]) = P0, namely, a single point. We know that π−1(X) is the
variety given by

Z2
2 = Z3

1 and Z2Y1 = Z1Y2.

Consider the two affine patches Y1 6= 0 and Y2 6= 0.

Case 1: Y1 6= 0. From the equations, we get

Z2 =
Y2
Y1
Z1 = Z1U,
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where we let

U =
Y2
Y1
.

Note that introducing this new coordinate, U , has the effect that U = Z2

Z1
; so, U2 = Z1,

which means that U is integral over OX,p. We deduce that

Z2
1U

2 = Z3
1 ,

and this defines two components. The first component corresponds to Z1 = 0, in which case,
we get the affine part of the fibre π−1(p). The second component corresponds to

U2 = Z1.

This is a nonsingular curve; and above p (i.e., when Z1 = 0), we get the point U = 0
(actually, a double point, because the equation is U2 = 0).

Case 2: Y2 6= 0. From the equations, we get

Z1 =
Y1
Y2
Z2 = Z2V,

where we let

V =
Y1
Y2

=
1

U
.

We deduce that
Z3

2V
3 = Z2

2 ,

and this defines two components. The first component corresponds to Z2 = 0, in which case,
we get the other affine part of the fibre π−1(p). The second component corresponds to

Z2V
3 = 1.

This is a nonsingular curve. This time, we note that nothing lies over p, since Z2 = 0 does
not satisfy the equation Z2V

3 = 1. There is only one point over p in Bp(X), and it lies on
the part of the locus when Y1 6= 0.

Example 2.13 Consider the nodal cubic, X , given by

Z2
2 = Z2

1(Z1 + 1).

and blow up the singular point p = (0, 0). The lowest degree term is Z2
2 −Z2

1 , and we expect
the projectivized tangent cone to be Proj(k[Z1, Z2]/(Z

2
2 −Z2

1)). It consists of the two points
(1 : 1) and (1 : − 1). We know that π−1(X) is the variety given by

Z2
2 = Z2

1(Z1 + 1) and Z2Y1 = Z1Y2.

Consider the two affine patches Y1 6= 0 and Y2 6= 0.
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Case 1: Y1 6= 0. From the equations, we get

Z2 =
Y2
Y1
Z1 = Z1U,

where we let

U =
Y2
Y1
.

Note that introducing this new coordinate, U , has the effect that U = Z2

Z1
, and so, U2 = Z1+1,

which means that U is integral over OX,p. We deduce that

Z2
1U

2 = Z2
1(Z1 + 1),

and this defines two components. The first component corresponds to Z1 = 0, in which case,
we get the affine part of the fibre π−1(p). The second component corresponds to

U2 = Z1 + 1.

This is a nonsingular curve. Above p (i.e., when Z1 = 0), we get the two points U = ±1.
Case 2: Y2 6= 0. From the equations, we get

Z1 =
Y1
Y2
Z2 = Z2V,

where we let

V =
Y1
Y2

=
1

U
.

We deduce that
Z2

2 = Z2
2V

2(Z2V + 1),

and this defines two components. The first component corresponds to Z2 = 0, in which case,
we get the other affine part of the fibre π−1(p). The second component corresponds to

1 = V 2(Z2V + 1).

This is a nonsingular curve. Above p (i.e., when Z2 = 0), we get the two points V = ±1.

In the general case, how about the second projection σ : Bp(An)→ Pn−1? What are the
fibres?

Pick (y1 : · · · : yn) ∈ Pn−1. We have

σ−1(y1 : · · · : yn) = {((Z1, . . . , Zn); (y1 : · · · : yn)) | Ziyj = Zjyi, 1 ≤ i, j ≤ n},

with the yjs fixed. This is a line through the origin, in fact, the line describing (y1 : · · · : yn)
as a point of the dual space, (Pn−1)D, corresponding to the lines through (0) in An. This line
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is the tautological line of the point (y1 : · · · : yn). Thus, Bp(An) is a line family over Pn−1

(in fact, a line bundle see Section 5.1).

What about sections of Bp(An)?

We say that a function s : Pn−1 → Bp(An) is a holomorphic section if s is a morphism
and σ ◦ s = id. This means that s(q) ∈ σ−1(q), the line over q.

Proposition 2.54 Every section, s, of Bp(An) over Pn−1 is the trivial section, that is, we
have s(q) = 0 in the line σ−1(q).

Proof . Consider the composed morphism

Pn−1
s−→ Bp(A

n)
π−→ An.

Then, the image is reduced to a single point of An (see Corollary 2.38). We have s(y) ∈ ly =
σ−1(y), and we know that π ◦ s(y) = π ◦ s(z) for all z, since the image of the composed map
is a single point. The points s(y) each being in the line ly lying over y in Pn−1 go to a single
point in An, which lies on the image of every line ly considered as a line of An. Yet,

⋂

y∈Pn−1

ly = (0),

which implies that s(y) = 0 in each line ly.

Collapses  the

horizontal  line

Collapses  vertical

lines

An Pn−1

zy

Bp(An)

E = Pn−1

Figure 2.7: The line bundle Bp(An)
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Proposition 2.54, in contradiction to the simplified picture shown in Figure 2.7, shows
that Bp(An) is a twisted bundle (as we will see later, it is OPn−1(−1)).

Let’s now look at the exceptional divisor E = π−1(p) in Bp(An). We know that E has
codimension 1 (in fact, it is isomorphic to Pn−1). If πX is the projection from Bp(X) to X ,
then π−1X (p) = E ∩Bp(X). Also, E 6⊆ Bp(X), unless X is an open and p ∈ X .

Consider E as a subvariety of Bp(An). Look at the point ((0, . . . , 0); (y1 : · · · : yn)) ∈
E ⊆ Bp(An), where we view E as Pn−1. We have yl 6= 0 for some l, with 1 ≤ l ≤ n, and near
E on Bp(An) we have the equations

Ziyl = Zlyi, for all i = 1, . . . , n.

Locally on E, the equation yl = 1 gives affine coordinates, and locally on Bp(An), over the
open where yl 6= 0, we have

Zi = Zlyi.

The equation Zl = 0 gives E locally on Bp(An). Therefore, E indeed has codimension 1
and is given locally by one equation. Consequently, E is what is called a Cartier divisor
on Bp(An) (see Section 5.1). Hence, the exceptional divisor Bp(X) ∩ E of Bp(X) is also a
Cartier divisor on Bp(X) (see Section 5.1).

Obviously one wants to blow-up more than one point in a given variety. With our current
set-up, this is somewhat tricky to define rigorously. However, we can use geometric intuition
to at least describe what goes on. So, consider a subvariety Y in X , where Y is nonsingular
in X . Let TY be the union of all tangent spaces to Y , called the tangent bundle of Y , and
similarly for X . We have the exact sequence

0 −→ TY −→ TX ↾ Y −→ NY →֒X −→ 0,

where NY →֒X is a vector space family, whose fibres have dimension codim(Y →֒ X) (for all
of this, see Section 5.1). The vector space family NY →֒X is actually a vector bundle called
the normal bundle of Y in X . We want to blow-up Y as a subvariety of X . Since Y is
nonsingular in X , we know that locally, Y is given by d equations in the variables of X ,
where d is the codimension of Y in X . These equations give us a coordinate system locally
on X in which we can define a sort of complement, Z, to Y at X (in the C∞-case, this is
just the implicit function theorem), and Y intersects this complement Z in a point, p. Blow
up p = Y ∩ Z on Y . At p, we sew in P((NY →֒X)p), the projectivized fibre of the normal
bundle at p. If we do this for all p, we get the projectivized normal bundle of Y in X as
exceptional divisor. All this has been very intuitive, relying on the reader’s intuition in the
C∞-case with the norm topology. Later on, we shall make everything precise in a manner
which is correct and agrees with our intuition.

Question: For an affine variety Y , does the blow up of p on Y depend on the embedding
of Y in An? The answer is no.
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In the general case, where Y is a subvariety of X , let A be the ideal sheaf defining Y in
X . Make the graded ring

Pow(A) =
∐

n≥0

Antn.

Then, make Proj(Pow(A)). By definition, this is the blow-up, BA(X), of X , along A (which
we have called the blow-up of Y in X as above). We offer no proof at this stage that the
fancy definition, Proj(Pow(A)), agrees with previous notions of the blow-up or with our
C∞-intuition.

2.9 Proof of The Comparison Theorem

Recall that in Section 2.3, we gave a theorem comparing the norm topology and the Zariski
topology. There, we reduced the general case to the case of a projective variety; now, we
must prove this theorem in the projective case. In order to prove the projective comparison
theorem, we will need a refined version of Noether’s normalization.

Theorem 2.55 Let X ⊆ Pn be an irreducible projective variety of dimension r, let L be a
linear subspace of dimension n− r − 1 so that L ∩X = ∅, and let pL be the projection with
center L. For any ξ ∈ X, there is some linear subspace M of L of dimension n− r − 2, so
that the following properties hold:

(1) If π = pM ↾ X, then
(π)−1(π(ξ)) = {ξ}.

(2) pL factors as
pL = px ◦ π

according to the following commutative diagram, for any x /∈ pM(X):

Pr+1 − {x} px // Pr

X π
// pM(X)

OO

px

::tttttttttt

Proof . We have
pL(ξ) = L(ξ) ∩ Pr,

where L(ξ) is the join of L and ξ. Given y, we have

pL(y) = pL(ξ) iff y ∈ L(ξ).

Thus, y ∈ p−1L (pL(ξ)) iff y ∈ L(ξ). By the standard version of Noether’s normalization,
L(ξ) ∩X is a finite set containing ξ, i.e.,

L(ξ) ∩X = {ξ, η1, . . . , ηt}.
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Let L0(ξ) be a hyperplane in L(ξ) so that ξ ∈ L0(ξ) but ηj /∈ L0(ξ) for j = 1, . . . , t. Write
M = L0(ξ) ∩ L. Then, M is a hyperplane in L, since ξ /∈ L (recall that L ∩ X = ∅ and
ξ ∈ X). Observe that

M(ξ) = L0(ξ).

For any y ∈ X , we have

π(y) = π(ξ) iff y ∈M(ξ) ∩X iff y ∈ L0(ξ) ∩X.

But L0(ξ)∩X = {ξ}, by construction of L0(ξ). Thus, y ∈ (π)−1(π(ξ)) iff y = ξ, proving (1).

To prove (2) is now very easy. Take x so that x /∈ pM(X) and M(x) = L. The rest is
clear.

Theorem 2.56 (Projective comparison theorem) If X is a projective variety over C and X0

is Zariski-open and Zariski-dense in X, then X0 is C-open and C-dense in X.

Proof . (Mumford and Stolzenberg) We may assume (using the usual type of argument) that
X is irreducible. If so, X0 is automatically Z-dense. Pick ξ ∈ X −X0. We’ll show that ξ is
the limit in the norm topology of a sequence of points in X0. Now, dim(X) = r, and we can
pick M and L as in the refined version of Noether’s normalization theorem with respect to
ξ (Theorem 2.55). We also choose x /∈ pM(X). We may choose coordinates so that

(1) M is cut out by X0 = · · · = Xr+1 = 0.

(2) ξ = (1: 0 : · · · : 0).

(3) L is cut out by X0 = · · · = Xr, and

x = (0: · · · : 0︸ ︷︷ ︸
r+1

: 1).

Look at pL(X−X0) ⊆ Pr. The image is closed, and thus, contained in some hypersurface
f = 0, for some homogeneous polynomial, f(X0, . . . , Xr). Therefore,

{x ∈ X | f(pL(x)) 6= 0} ⊆ X0,

and we may replace X0 by the above open set. By (2) of Theorem 2.55, pM(X) has dimension
r, and pM(X) ⊆ Pr+1, which implies that pM(X) is a hypersurface. Thus,

pM(X) = {y = (y0 : · · · : yr+1) | F (y) = 0},

for some homogeneous form, F (Y0, . . . , Yr+1) (of degree d). The rest of the argument has
three stages:

Stage 1: Approximating in Pr. Since f 6= 0, there is some nontrivial (α0, . . . , αr) ∈ Cr+1

such that f(α0, . . . , αr) = 0 (because C is algebraically closed). Let

ξ0 = pL(ξ) ∈ Pr.
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By choice, ξ0 = (1: 0 : · · · : 0) ∈ Pr. Look at points

ξ0 + tα = (1 + tα0, tα1, . . . , tαr).

Then, f(ξ0 + tα) = f(1 + tα0, tα1, . . . , tαr) is a polynomial in t. However, a polynomial in
one variable has finitely many zeros. Thus, there exists a sequence (ti)

∞
i=1 so that

(1) f(ξ0 + tiα) 6= 0.

(2) ti → 0 as i→∞.

(3) ξ0 + tiα→ ξ0 as i→∞.

Stage 2: Approximating in Pr+1. We know that pM(X) is the hypersurface given by
F (X0, . . . , Xr+1) = 0, and x = (0: · · · : 0 : 1). Write F as

F (X0, . . . , Xr+1) = γXd
r+1 + a1(X0, . . . , Xr)X

d−1
r+1 + · · ·+ ad(X0, . . . , Xr). (∗)

Claim. There exists a sequence (bi) so that

(1) bi ∈ pM(X).

(2) bi → ξ0 + tiα (under px).

(3) limi→∞ bi = (1: 0 : · · · : 0) = pM(ξ).

In order to satisfy (2), the bi must be of the form

bi = (1 + tiα0 : tiα1 : · · · : tiαr : β(i)),

for some β(i) yet to be determined. We also need to satisfy (1); that is, we must have

F (1 + tiα0 : tiα1 : · · · : tiαr : β(i)) = 0.

We know that x /∈ pM(X), which implies that F (x) 6= 0, and since x = (0: · · · : 0 : 1), by
(∗), we must have γ 6= 0. The fact that pM(ξ) ∈ pM(X) implies that F (pM(ξ)) = 0. Since
pM(ξ) = (1 : 0 : · · · : 0), from (∗), we get ad(ξ0) = F (pM(ξ)) = 0. Also, by (∗), β(i) must be
a root of

γY d + a1(ξ0 + tiα)Y
d−1 + · · ·+ ad(ξ0 + tiα) = 0. (∗∗)

Thus, we get (2). To get (3), we need β(i) → 0 when i → ∞. Now, as i → ∞, ti → 0; but
the product of the roots in (∗∗) is

±ad(ξ0 + tiα)

γ
,
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and this term tends to 0 as i tends to infinity. Then, some root must tend to 0, and we can
pick β(i) in such a manner, so that limi→∞ β

(i) = 0. Thus, we get our claim.

Stage 3: Lifting back to Pn. Lift each bi in any arbitary manner to some ηi ∈ X ⊆ Pn. We
know that Pn is compact, since C is locally compact. Thus, the sequence (ηi) has a convergent
subsequence. By restriction to this subsequence, we may assume that (ηi) converges, and we
let η be the limit. Now, ηi ∈ X and X is closed, so that η ∈ X . We have

pM(η) = lim
i→∞

pM(ηi) = lim
i→∞

bi = pM(ξ),

since pM is continuous. Therefore,

η ∈ p−1M (pM(ξ)) = {ξ},

and thus, η = ξ. Now,

f(pL(ηi)) = f(px(pM(ηi))) = f(px(bi)) = f(ξ0 + tiα) 6= 0,

and thus, ηi ∈ X0. This proves that X0 is norm-dense.

2.10 Further Readings

Other presentations of the material of this chapter (some more complete, some less) can be
found in the references listed below: Shafarevich [53], Chapter I and II, and Dieudonné [13],
Chapter 1–6, are the closest in spirit; Hartshorne [33], Chapter 1; Mumford [43], Chapter 1
and 2, Mumford [42], Chapter 1, Fulton [17], Chapter 1, 2, 4, 6; Perrin [45], Chapter 1, 2,
4, 5; Kempf [36], Chapter 1, 2, 3, 6; Harris [31]. An excellent tutorial on algebraic geometry
can also be found in Danilov’s article in [11], and Volume I of Ueno [56] is worth consulting.
Although it is devoted to algebraic geometry over the complex field, Griffiths and Harris [20]
must be cited as a major reference in algebraic geometry. For a treatment of algebraic curves,
one may consult Griffith [19], Kendig [37], Miranda [41], Narasimham [44], Clemens [9], and
Walker [58]. As to general background in commutative algebra, we primarily recommend
Zariski and Samuel [60, 61], Atiyah and Macdonald [2], Kunz [38], and Peskine [46]. Other
useful sources include Eisenbud [14], Bourbaki [7] (Commutative algebra), and Matsumura
[40].



Chapter 3

Affine Schemes and Schemes in
General

In this chapter and succeeding chapters, we shall make heavy use of the material on sheaves
and cohomology which is placed in the appendices for the convenience of the reader. Occa-
sionally, we shall make a direct reference to material in the appendices.

In the development of algebraic geometry, from a historical perspective, we can see several
distinct periods. Of course, if one begins with “antiquity,” there is all the material in analytic
geometry in the sense of Descartes and his followers. But, the period which began essentially
with Riemann and ended roughly at the beginning of the twientieth century, was the first
where algebraic geometry per se was studied, albeit purely from a complex analytic viewpoint
and with function-theoretic tools. However, we should mention the algebraic work of the
german school of Halphen and Noether (together with the contributions of Hilbert) in the last
twenty years of the nineteenth century. Though this period ended around 1900 its spiritual
heirs are very active in the wonderful development of complex geometry and complex analysis
up to the present time.

The next period was dominated by the use of direct geometric intuitions, geometric
language and the introduction of topological ideas into algebraic geometry–principally at the
hand of the three great Italian geometers: Castelnuovo, Enriques and Severi (and the early
Zariski), together with Lefschetz and some others on the topological side. These methods,
though directly geometrically appealing, sometimes led to overlooking of certain important
(though degenerate) phenomena and consequently were prone to error in the hands of less
gifted practitionners than those mentionned above. Also, they were totally inadequate to
reveal the growing number-theoteric connections of algebraic geometry.

A new period was initiated principally by Zariski and Weil with important contributions
by Van der Warden. One may take the 1930’s as the beginning of this, newest, period. It
was characterized by heavy use and development of commutative algebraic machinery, it
revealed the connections with number theory, but unfortunately in its language of not every-
where defined maps, it seemed to be a place apart from the rest of burgeonning geometric
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mathematics. The first two chapters of these notes have given an exposition of some of the
material of this period, smoothed out by the introduction of everywhere defined maps and
guided by the material yet to come.

The rise of topology and in particular algebraic topology and the renaissance in complex
analysis, came together in the 1950’s in the work of Serre with the use of topology and the
sheaf-theoretic language for algebraic geometry. This work was taken up almost immediately
by Grothendieck and his followers who revamped, deepened and even revolutionized algebraic
geometry. It is this last period–the modern period–to which we turn in the rest of these notes.

From now on, all rings are assumed to be commutative with unit element (1), and ring
homomorphisms preserve unit elements.

3.1 Definition of Affine Schemes: First Properties

We have the category, LRS, of local ringed spaces (X,OX), where

1. X is a topological space.

2. OX is a sheaf of rings.

3. OX,x (the stalk of the sheaf OX at x ∈ X) is a local ring for every x ∈ X .

The morphisms of local ringed spaces are pairs (ϕ, ϕalg), where ϕ : X → Y is a continuous
map and ϕalg : OY → ϕ∗OX is a map of sheaves of rings over Y .

Recall that given a sheaf F on X , the sheaf ϕ∗F , called the direct image of F by ϕ, is
the sheaf on Y defined by

ϕ∗F(V ) = F(ϕ−1(V ))
for every open subset V of Y . Also, given a sheaf G on Y , we define the presheaf ϕPG on X
by

ϕPG(U) = lim
−→

V⊇ϕ(U)

G(V ),

where V ranges over open subsets of Y . In general, this is not a sheaf, and we define the
sheaf ϕ∗G on X , called the inverse image of G by ϕ, as the sheaf, (ϕPG)♯, associated with
ϕPG (in the terminology of Hartshorne [33], the sheafification of ϕPG).

� Beware that Hartshorne uses the notation ϕ∗G for something different from what has
just been defined here! His notation is ϕ−1G for the above, and his ϕ∗G will be considered

shortly.

From Appendix A, we know that the functors ϕ∗ and ϕ
∗ are adjoint, which means that

there is a natural (canonical) isomorphism

θ(F ,G) : HomS(X)(ϕ
∗G,F) −→ HomS(Y )(G, ϕ∗F),
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for all F ∈ S(X) and all G ∈ S(Y ), where S(X) denotes the category of sheaves on X
(taking values in some given category).

Thus, having a map ϕalg : OY → ϕ∗OX of sheaves of rings over Y is equivalent to having
a map ϕalg : ϕ∗OY → OX of sheaves of rings over X .

Because we are considering sheaves of rings whose stalks are local rings, in order for some
of our results to hold, we must demand that our morphisms be local morphisms of local rings.
This means the following: For every x ∈ X , the map ϕalg induces a ring morphism on stalks

ϕalg
x : OY,ϕ(x) −→ OX,x,

and we demand that
ϕalg
x : mY,ϕ(x) −→ mX,x,

where, as usual, m denotes the maximal ideal of the local ring in question.

We can define the values of a section (as some kind of numerical valued function) as
follows: For every σ ∈ Γ(U,OX) = OX(U), the “value” of σ at x is

σ(x) ∈ κ(x) = OX,x/mX,x.

Then, we have a better idea of what the notion of local homomorphism means. If U is an
open subset around ϕ(x) and a section σ has zero values on U , we want the section ϕalg(σ)
on ϕ−1(U) to have zero values, too.

Now, given a (commutative) ring A, we would like to make a local ringed space Ã, from
A. We proceed as follows:

The topological space X associated with the ring A is the set

X = {p | p is a prime ideal of A},

with the Zariski topology (also called the spectral topology), in which a closed set in X is a
set of prime ideals of the form

V (A) = {p ∈ X | A ⊆ p},

where A is any ideal of A.

The topological space X associated with the ring A is not Hausdorff, but it satisfies a
weaker separation property, the T0-separation property. A topological space X has the T0-
separation property (or is a T0-space, or a Kolmogoroff space), if for any two distinct points
x, y ∈ X , there is some open subset U ⊆ X so that either x ∈ U and y /∈ U , or x /∈ U and
y ∈ U . The following proposition will be needed later in Serre’s characterization of affine
schemes.

Proposition 3.1 If X is a quasi-compact T0-space, then every nonempty closed subset, F ,
of X contains some closed point (i.e., a point x ∈ X so that {x} = {x}).
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Proof . First, we claim that since X is quasi-compact, it has some minimal nonempty closed
subset. Dually, consider the family of proper open subsets U of X (i.e., those open subsets
U so that U 6= X), we claim that it is inductive. Indeed, if (Uα) is any chain of proper open
sets under inclusion, its union

⋃
α Uα is also open. Were

⋃

α

Uα = X,

then, by quasi-compactness, there would be a finite subfamily (Uα0 , . . . , Uαr) so that

X = Uα0 ∪ · · · ∪ Uαr .

However, (Uα) is a chain, so there is some αj with

X = Uα0 ∪ · · · ∪ Uαr = Uαj
,

which is a clear contradiction. Hence, by Zorn’s lemma, there is a maximal proper open
subset U of X , and its complement, U c, is a minimal, closed, nonempty subset of X .

Apply this property to the closed subset, F , of X . We find the required nonempty
minimal closed subset, F0, in F and we prove that F0 is reduced to a point. If not, there are
at least two distinct points x, y ∈ F0, and by the T0-separation axiom, there is some open
subset, V , so that one of x or y is in V and the other is excluded from V . Then, F1 = V c∩F
is a smaller closed subset of F which is nonempty, contradicting the minimality of F0.

The reader should check that:

V

(∑

i

Ai

)
=

⋂

i

V (Ai)

V (AB) = V (A ∩B) = V (A) ∪ V (B)

V (A) ⊆ V (B) iff
√
B ⊆

√
A,

where √
A =

⋂
{p ∈ X | A ⊆ p}.

An open base for the Zariski topology is the family of open sets

Xf = (V ((f))c = {p ∈ X | f /∈ p}.

We need a sheaf, OX , and it is defined as follows: For every open subset U in X ,

Γ(U,OX) =




σ : U −→

⋃

p∈U

Ap

∣∣∣∣∣∣∣

(1) σ(p) ∈ Ap

(2) (∀p ∈ U)(∃f, g ∈ A)(g /∈ p, i.e., p ∈ Xg)

(3) (∀q ∈ Xg ∩ U)
(
σ(q) = image

(
f
g

)
inAq

)
.
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One can check that OX is indeed a sheaf. Sometimes, OX is denoted Ã to render clear its
provenance from A. We can even do the same with an A-module, M; that is, we make an
OX -module, M̃ , as follows: For every open subset U in X ,

Γ(U, M̃) =




σ : U −→

⋃

p∈U

Mp

∣∣∣∣∣∣∣

(1) σ(p) ∈Mp

(2) (∀p ∈ U)(∃m ∈M, ∃g ∈ A)(g /∈ p, i.e., p ∈ Xg)

(3) (∀q ∈ Xg ∩ U)
(
σ(q) = image

(
m
g

)
inMq

)
.





Again, one can check that M̃ is indeed a sheaf. Also, Γ(U, M̃) is a Γ(U, Ã)-module for every

open U , and M̃ is an OX-module.

The ringed space (X,OX) = (X, Ã) is denoted Spec A. We also denote the underlying
space, X , by |SpecA|.

Theorem 3.2 The ringed space SpecA is an LRS. In fact, there is a canonical isomorphism

θ : (Ã)p ←→ Ap,

where p is a prime ideal. The map
A→ SpecA

is a cofunctor and establishes a full anti-embedding of commutative rings into the category
LRS. Moreover, for every f ∈ A, there is a canonical isomorphism

Mf
∼= Γ(Xf , M̃), for every A-module M,

where (X,OX) = Spec A. In particular, when f = 1, we get the isomorphisms

M ∼= Γ(X, M̃) and A ∼= Γ(X,OX).

Proof . Let p ∈ |Spec A| (a prime ideal of A), and let M be an A-module. Any ξ ∈ (M̃)p
(where (M̃)p is the stalk of M̃ at p) is represented by some pair (σ, U), where σ is some local

section σ ∈ Γ(U, M̃). Define

θ : (M̃)p →Mp

by
θ(ξ) = σ(p) ∈Mp.

If (τ, V ) and (σ, U) are equivalent sections representing ξ, then as p belongs to U ∩ V , we
can take any smaller open subset of U ∩ V containing p and we find that

σ(p) = τ(p),

so that θ is well–defined.

Given m/g ∈ Mp (where g /∈ p), look at m/g in Mg. This defines a local section, σ, on
Xg near p. Thus, the map is onto.
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That θ is injective is seen as follows: Assume that σ(p) = 0. In a smaller open set
containing p, the section σ looks like m/f , where m ∈M and f /∈ p. Since we are assuming
that σ(p) = 0, we have m/f = 0 in Mp. Thus, there is some h /∈ p so that hm = 0. We may
assume that Xh ⊆ Xf , and thus, on Xh, h is invertible, and thus σ ↾ Xh = 0. Therefore, the
element ξ represented by σ is zero.

Observe that we actually proved the following fact: If F is a sheaf of the form M̃ for
some A-module M and σ is any local section of F (i.e., σ ∈ Γ(U,F) for some open U), if
σ(p) = 0, then there is an open subset V ⊆ U with p ∈ V such that σ = 0 on V .

Next, we prove that Γ(Xf , M̃) ∼=Mf . Define a map from Mf to Γ(Xf , M̃) as follows:

m

f r
7→
(
p 7→ ιp

(
m

f r

))
, for all p ∈ Xf .

(a) This map is injective. Assume that the section

p 7→ ιp

(
m

f r

)

is zero. Thus,
m

f r
= 0 in Mp, for all p ∈ Xf .

Let
A = Ann(m) = {a ∈ A | am = 0}

be the annihilator of m. Then, for p ∈ Xf , there is some h ∈ A such that h /∈ p and hm = 0;
thus, h ∈ A, and yet, h /∈ p. This implies

A 6⊆ p,

and thus, p /∈ V (A). So, for every p ∈ Xf , we have A 6⊆ p. Consequently, we find that

Xf ∩ V (A) = ∅,

which means
V (A) ⊆ V (f) = (Xf)

c.

But then, f ∈
√
A; so, as A = Ann(m), we get

fnm = 0, hence
m

f r
= 0 in Mf .

The map is injective.

(b) Surjectivity is a bit harder. Let σ ∈ Γ(Xf , M̃). We can cover Xf by Xgi’s so that
the restriction, σ ↾ Xgi, of σ to Xgi is of the form mi/gi (in Mgi).
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Claim. Only finitely many gi’s are needed (this argument shows that Xf is quasi-
compact). Observe that

Xf ⊆
⋃

i

Xgi.

Thus,

V (f) ⊇ V

(∑

i

(gi)

)
,

and thus,

f ∈
√(∑

i

(gi)

)
.

This means that fn ∈∑i(gi) for some n ≥ 1, and thus, there exist some gi1, . . . , git so that

fn = α1gi1 + · · ·+ αtgit , where αj ∈ A.

Now, Xfn = Xf , because p is prime. However, fn /∈ p implies that gij /∈ p for some j
(1 ≤ j ≤ t) and thus, we must have p ∈ Xgij

for some j as above, and this shows

Xf ⊆ Xgi1
∪ · · · ∪Xgit

,

which proves our claim.

We may assume after renumbering that

Xf ⊆ Xg1 ∪ · · · ∪Xgt .

Now, σ = mi/gi on Xgi and σ = mj/gj on Xgj , and thus

mi

gi

∣∣∣∣Xgigj =
mj

gj

∣∣∣∣Xgigj .

By injectivity (part (a)), we must have

mi

gi
=
mj

gj
in Mgigj ,

so, there is some nij ≥ 0 with

(gigj)
nij (gjmi − gimj) = 0 in M.

Since there exist finitely many Xgi’s covering Xf , let N = max{nij}; it follows that

(gigj)
N(gjmi − gimj) = 0, for all i, j.

This can be written as

gNi g
N+1
j mi = gN+1

i gNj mj , for all i, j. (∗)
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However, we know that Xgi = XgN+1
i

, and these sets cover Xf . By the previous argument

(proof of the claim), there is some n ≥ 1 so that

fn =
t∑

i=1

βig
N+1
i .

Let

m =

t∑

i=1

βig
N
i mi.

By (∗), we get

gN+1
j m =

t∑

i=1

βig
N+1
j gNi mi =

(
t∑

i=1

βig
N+1
i

)
gNj mj = fngNj mj .

If we restrict to Xgi ⊆ Xf , we see, since gi and f are invertible on Xgi, that

mj

gj
=
m

fn
= σ ↾ Xgj .

Thus, there is some m/fn ∈ Mf having σ as image, and this proves surjectivity.

If X is an LRS, we let |X| denote the underlying topological space, and OX denote the
sheaf of rings. Assume that we have a map of rings θ : A→ B.

(1) Define the topological map |θ| : |Spec B| → |SpecA| by

|θ|(q) = θ−1(q), for every q ∈ |SpecB|.

Let V (A) ⊆ |Spec A|, then, q ∈ |θ|−1(V (A)) iff |θ|(q) ∈ V (A) iff θ−1(q) ⊇ A iff q ⊇ θ(A) iff
q ⊇ B · θ(A). Thus,

|θ|−1(V (A)) = V (B · θ(A)),
a closed set, and |θ| is continuous. (The reader should check It can be shown (DX) that

|θ|−1(|Spec A|f) = |Spec B|θ(f).)

(2) Let Y = SpecB and X = SpecA. We need a map from OX to |θ|∗OY , or, equivalently,
from |θ|∗OX to OY . Thus, for every open U ⊆ |X|, we need a map from Γ(U,OX) to
Γ(U, |θ|∗OY ). We may assume that U = |X|f , where f ∈ A. Then, by definition,

Γ(U, |θ|∗OY ) = Γ(|θ|−1(U),OY ),

but, we showed that
Γ(|X|f ,OX) = Af ,
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and our remark above shows

Γ(|θ|−1(|X|f),OY ) = Γ(|Y |θ(f),OY ) = Bθ(f).

The ring map θ : A→ B clearly induces a map from Af to Bθ(f).

[If one wishes to ue the inverse image of OX by |θ|, one sees that

(|θ|∗OX)q = (OX)|θ|(q) = A|θ|(q) = Aθ−1(q).

However, OY,q = Bq, and θ : A→ B induces a map from Aθ−1(q) to Bq. Observe that this is
a local homomorphism.]

The morphism just defined, namely, (|θ|, θa), is clearly functorial; and so, A 7→ SpecA is
indeed a cofunctor.

Let X = Spec A and Y = Spec B, and consider the ring of global sections, Γ(|X|,OX),
of OX . By the foregoing argument, Γ(|X|,OX) = A. If ϕ : SpecB → SpecA is a morphism,
we have a sheaf morphism ϕa : OX → |ϕ|∗OY ; so, given a section σ ∈ Γ(|X|,OX) = A, we
get the composition ϕa ◦ σ. This yields a map

σ 7→ ϕa ◦ σ

from Γ(|X|,OX) = A to Γ(|X|, |ϕ|∗OY ) = Γ(|Y |,OY ) = B, and we call this map Φ. The map
Φ commutes with taking stalks and restriction to opens, and so we have the commutative
diagram

A

��

Φ // B

��
A|ϕ|(q) // Bq.

However, the morphism of local ringed spaces, ϕ, is a local local morphism and the
diagram implies that |ϕ|(q) = Φ−1(q), showing our result.

Corollary 3.3 If F is a sheaf on X = Spec A of the form M̃ (where M is a module over
A) and if σ ∈ Γ(U,F) is a section of F over U and u ∈ U , then σ(u) = 0 iff there is a small
open set V = |X|h such that u ∈ V and σ ↾V= 0. In other words, the vanishing of a section
(qua-section) is an open condition).

Corollary 3.4 The functor M 7→ M̃ is an exact and full embedding of the category of A-
modules to the full subcategory of OX-modules (X = Spec A) of the form M̃ . In particular,

0 −→ M̃1 −→ M̃2 −→ M̃3 −→ 0

is exact iff
0 −→M1 −→M2 −→ M3 −→ 0

is exact.
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Corollary 3.5 For X = Spec A and A-modules, M and N , we have

M̃ ⊗A N = M̃ ⊗OX
Ñ .

If M = lim−→Mλ, then M̃ = lim−→ M̃λ. If M ′ and M ′′ are A-modules, then

˜
M ′
∐

M ′′ = M̃ ′
∐

M̃ ′′,

and if M ′,M ′′ ⊆M , then

M̃ ′ ∩M ′′ = M̃ ′ ∩ M̃ ′′.

Proof . (DX)

Corollary 3.6 Given two A-modules, M and N , we have

HomA(M,N) ∼= HomOX
(M̃, Ñ).

If M is finitely presented, then

˜HomA(M,N) = HomOX
(M̃, Ñ),

where HomOX
(−,−) is the sheaf of modules defined by

Γ(U,HomOX
(M̃, Ñ)) = HomOX↾U(M̃ ↾ U, Ñ ↾ U).

We leave this to the reader but only remark that one applies the functor HomA(−, N)
to the right-exact finite presentation sequence for M , and uses the five–lemma.

3.2 Quasi-Coherent Sheaves on Affine Schemes

Let X = (|X|,OX) be a ringed space. Given an OX -module, F , assume that there is a sheaf

morphism v : O(I)
X → F , where O

(I)
X is the coproduct sheaf defined as the sheaf associated

with the presheaf
U 7→ Γ(U,OX)(I), where I is any index set.

Note that to give a sheaf map ρ : OX → F is equivalent to giving a global section σ ∈
Γ(|X|,F). Indeed, assume that σ ∈ Γ(|X|,F). For every open U in X , we define a map ρU
from Γ(U,OX) to Γ(U,F) as follows: Given a ∈ Γ(U,OX), let

ρU(a) = a · (σ ↾ U).

Conversely, v : OX → F determines the global section

σ = ρX(1) ∈ Γ(|X|,F),
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where 1 is the unit element of the ring Γ(|X|,OX). Thus, we have a bijection

HomOX
(OX ,F) ∼= Γ(|X|,F).

More generally, sheaf maps ρ : O(I)
X → F and families (σi)i∈I of global sections, σi ∈

Γ(|X|,F), are in one–to–one correspondence, because there is an isomorphism

HomOX
(O(I)

X ,F) ∼=
∏

i∈I

HomOX
(OX ,F).

Definition 3.1 An OX -module, F , is generated by a family, (si)i∈I , of global sections if the

map s : O(I)
X → F induced by (si)i∈I is a surjective map of sheaves. The sheaf F is generated

by its sections if O(I)
X −→ F −→ 0 is exact for some index set I.

Definition 3.2 An OX-module, F , is quasi-coherent (QC) if for every x ∈ |X|, there is
some open subset, U , with x ∈ U , and some sets I, J so that

O(I)
X ↾ U −→ O

(J)
X ↾ U −→ F ↾ U −→ 0 is exact.

Definition 3.2 means that locally everywhere on |X|, the sheaf F is generated by its local
sections, and the sheaf of relations among these generators is also generated by its sections.
Generation by a family I is testable at each x. For, given a family of sections, s = (si)i∈I ,
this family generates F iff for every x ∈ |X|,

O(I)
X,x

s−→ Fx −→ 0 is exact.

Quasi-coherence is a local property, and surjectivity is testable stalkwise.

Definition 3.3 An OX -module, F , is finitely generated (fg) if for every x ∈ |X|, there is
some open subset, U , with x ∈ U , and some integer p > 0 so that

(OX ↾ U)p −→ F ↾ U −→ 0 is exact.

We also say that, F , is finitely presented (fp) if for every x ∈ |X|, there is some open subset,
U , with x ∈ U , and some integers p, q > 0 so that

(OX ↾ U)q −→ (OX ↾ U)p −→ F ↾ U −→ 0 is exact.

Note that a finitely presented sheaf is quasi-coherent.

An example of a very bad sheaf is the following: Let |X| = R, and let OX be the constant
sheaf (the sheaf of locally constant functions on |X|). The sheaf, F , is defined by

F(U) =
{
(0) if U is connected and 0 ∈ U
Z otherwise, U connected.

This is a subsheaf of OX , but it is not quasi-coherent. For,pPick any small interval
around 0, the only section of F ↾ U is 0. Therefore, there is no generation over U by this
family (consisting of one point).
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Proposition 3.7 Assume that X = Spec A. Then, for any A-module, M , the sheaf, M̃ , is
quasi-coherent.

Proof . Since M is an A-module, it has some presentation

A(I) −→ A(J) −→M −→ 0.

Sheafifying (by applying the operator )̃, we get the exact sequence

O(I)
X −→ O

(J)
X −→ M̃ −→ 0,

and M̃ is QC.

Say that i : |V | → |X| is an inclusion map where |V | is open in |X|. We claim that
(|V |,OX ↾ |V |) is a sub–ringed space of X = (|X|,OX). We need a sheaf map from OX to
i∗OX ↾ |V |. Let U be any open subset of |X|, then,

Γ(U, i∗OX ↾ |V |) = Γ(U ∩ |V |,OX ↾ |V |).

Since |V | is open, so is U ∩|V |, and the righthand side is just Γ(U ∩|V |,OX). The restriction
map ρUU∩|V | : Γ(U,OX) → Γ(U ∩ |V |,OX), is the required map. So, for any open |V | ⊆ |X|,
we have the ringed space (|V |,OX ↾ |V |). Let us abbreviate OX ↾ |V | by OV .

For ringed spaces, direct images and inverse images are important operations and inverse
images require a change from our previous notion. In the case of an open inclusion i : |V | →
|X|, we have the sheaf i∗F on X–which, of course, is an i∗OV -module. Yet, we have a map
ia : OX → i∗OV of sheaves of rings. Thus, i∗F can be viewed as an OX-module. Observe,
however, that all this did not depend on the fact that i is an open inclusion. Therefore,
given a map of ringed spaces ϕ : Y → X , we can view ϕ∗F as an OX -module. This is how
we define the push-forward or direct image, ϕ∗F , of the sheaf F of OY -modules.

Let ϕ : (Y,OY )→ (X,OX) be a map of ringed spaces, and let G be an OX-module. Then,
|ϕ|∗G is a sheaf of |ϕ|∗OX -modules. We also have a map ϕa : |ϕ|∗OX → OY . Therefore, |ϕ|∗G
and OY are |ϕ|∗OX -modules. Thus, we can form the tensor product

OY ⊗|ϕ|∗OX
|ϕ|∗G,

which is an OY -module. This OY -module is what we shall mean by ϕ∗G for a map ϕ of
ringed spaces.

It is instructive to see what (i∗F) ↾ |V | is in the case that i is the open inclusion
i : |V | → |X|. Let U ⊆ |V | be an open subset. Because U = U ∩ |V | is open in X , we have

Γ(U ∩ |V |,F) = Γ(U,F).

Therefore,
(i∗F) ↾ |V | = F .
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The functor, ϕ∗, is left adjoint to the functor, ϕ∗, which means that there are isomor-
phisms

HomOY
(ϕ∗G,F) ∼= HomOX

(G, ϕ∗F)
for all OY -modules F and all OX -modules G, where ϕ : (Y,OY )→ (X,OX).

Remark: If X = Spec A and M,N are A-modules, then, for any linear map u : M → N ,

we have K̃eru = Ker ũ, Ĩm u = Im ũ, and C̃oker u = Coker ũ.

If X = (|X|,OX) is a ringed space, then for every OX -module F , the module of gobal
sections on the underlying topological space, |X|, will henceforth be denoted Γ(X,F). Sim-
ilarly, we will write Γ(Xf ,F) instead of Γ(|X|f ,F).

Theorem 3.8 Suppose X = Spec A, and V is a quasi-compact open subset of |X|, and
further suppose F is a sheaf on V which is an OV -module (where OV = OX ↾ V ). Then, the
following properties are equivalent:

(1) There is some A-module, M , so that M̃ ↾ V ∼= F .

(2) There is a finite cover (Xfi)
t
i=1 of V so that for every i, 1 ≤ i ≤ t, we can find an

Afi-module Mi and we have F ↾ Xfi = M̃i.

(3) The sheaf F is quasi-coherent.

(4) (Serre’s lifting criterion, FAC [47])

(4a) For every f ∈ A such that Xf ⊆ V , for every s ∈ Γ(Xf ,F), there is some n ≥ 0
so that fns lifts to a section in Γ(V,F),

and

(4b) For every f ∈ A such that Xf ⊆ V , for every t ∈ Γ(V,F), if t ↾ Xf = 0, then
there is some n ≥ 0 so that fnt = 0 in Γ(V,F).

Proof . The implication (1) ⇒ (2) is trivial, since M̃ ↾ Xfi = M̃fi. Thus, in this situation,
Mi =Mfi .

(2)⇒ (3). Quasi-coherence of F is local on V . But on Xfi , the sheaf F is an M̃i, which
is quasi-coherent.

(3)⇒ (2). Locally everywhere on V , the sheaf F is the cokernel of some sheaf morphism

ϕ : O(J)
V ↾ U → O

(I)
V ↾ U.

We may take opens of the form Xfi , since they are a base of the topology. Then,

O(I)
V ↾ Xfi = Ã

(I)
fi
;
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so that, we have
A

(J)
fi
−→ A

(I)
fi
−→Mi −→ 0,

where Mi is the cokernel. Therefore, F ↾ Xfi = M̃i. Since V is quasi-compact, it is a finite
union of the Xfi’s, and (2) holds.

(2)⇒ (4). First, consider the special case where V = Xg and F = Ñ on V .

(4a) Pick f ∈ A such that Xf ⊆ Xg, and s ∈ Γ(Xf ,F). Since F = Ñ , by a previous
theorem,

Γ(Xf ,F) = Nf .

Thus, s = n/f r for some r ≥ 0 and n ∈ N . Of course, f rs = n ∈ Γ(Xg,F) = Γ(V, Ñ) = N .

(4b) Pick f ∈ A such thatXf ⊆ Xg, and t ∈ Γ(Xg,F) = Γ(V, Ñ) = N so that t ↾ Xf = 0.

Thus t/1 = 0 in Γ(Xf , Ñ) = Nf . By definition, this means that there is some l ≥ 0 so that
f lt = 0 in N .

Claim: Let V = Xg1 ∪ · · · ∪ Xgt, assume that F ↾ Xgi satisfies (4a) and (4b), and also
that F ↾ Xgigj satisfies (4a) and (4b). Then, F has the following stronger properties:

(4A) For every f ∈ A, for every s ∈ Γ(Xf ∩ V,F), there is some n ≥ 0 so that fns lifts to a
section in Γ(V,F).

(4B) For every f ∈ A, for every t ∈ Γ(V,F), if t ↾ Xf ∩ V = 0, then there is some n ≥ 0 so
that fnt = 0 in Γ(V,F).

Note that the special case shows that our F satisfies the hypotheses of the claim. Also,
by taking Xf ⊆ V , (4A) and (4B) imply (4a) and (4b) for F on V .

First, we prove (4B). We are given f ∈ A, t ∈ Γ(V,F), and we are assuming that
t ↾ Xf ∩ V = 0. Since V is covered by the Xgi’s, we get

t ↾ Xf ∩Xgi = 0.

However, Xf ∩ Xgi = Xfgi , and Xfgi has properties (4a) and (4b), by the special case. As
Xfgi ⊆ Xgi we find that there is some ni ≥ 0 so that

(fgi)
nit = 0 on Xgi.

This means that fnigni
i t = 0 on Xgi, but gi is invertible on Xgi, and thus, fnit = 0. Since

there are finitely many Xgi’s covering V , if we let n = max{ni}, we get

fnt = 0

on all the Xgi’s covering V , and (4B) holds on V .

Next, we prove (4A). We are given f ∈ A and s ∈ Γ(V ∩Xf ,F). The restriction, s ↾ Xgi,
of s to Xgi yields a section on Xf ∩Xgi, i.e., a section on Xfgi ⊆ Xgi. By (4a) in the special
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case, there is some ni ≥ 0 so that (fgi)
nis lifts to a section s′i ∈ Γ(Xgi,F). But gi is invertible

on Xgi , and thus, s′i = gni
i si, where si ∈ Γ(Xgi,F). Then,

gni
i si = s′i = fnigni

i s on Xf ∩Xgi ⊆ Xgi.

Therefore,
si ↾ Xf ∩Xgi = fnis on Xf ∩Xgi ⊆ Xgi,

since gi is invertible on Xgi. As usual, finitely many Xgi’s cover V , and by letting n =
max{ni}, we get that for i = 1, . . . , t, there is some si ∈ Γ(Xgi,F) so that

si ↾ Xf ∩Xgi = fns.

Do the si patch on V ? In general, they don’t, but we can circumvent this problem as
explained next.

Observe that si − sj = 0 on Xf ∩Xgi ∩Xgj = Xf ∩Xgigj , since

(si − sj) ↾ Xf ∩Xgigj = fns− fns = 0.

By the special case of (4b) applied to F ↾ Xgigj and because Xfgigj ⊆ Xgigj , there is some
mij ≥ 0 so that

(fgigj)
mij (si − sj) = 0 on Xgigj .

However, gigj is invertible on Xgigj , and by letting m = max{mij} (since there are finitely
many Xgi’s covering V ), we get

fmsi − fmsj = 0 on Xgigj .

Thus, the fmsi patch on all of V . Therefore, fm+ns lifts to a global section (in Γ(V,F)),
which we get by patching the fmsi. Thus, (4A) is proved. Since (4A) and (4B) are stronger
than (4a) and (4b), we have proved that (2) implies (4).

(4)⇒ (1). First step: We prove that (4a) and (4b), which hold for F and V , are inherited
on the Xgi ⊆ V .

Given Xf ⊆ Xg and s ∈ Γ(Xfg,F), since Xfg ⊆ Xg ⊆ V and (4a) holds for V , there is
some n ≥ 0 so that (fg)ns lifts to a section in Γ(V,F). By restricting this section to Xg,
we obtain the fact that (fg)ns lifts to a section in Γ(Xg,F). But g is invertible in Xg, and
thus, fns lifts to a section in Γ(Xg,F), which proves that (4a) holds for Xg and F ↾ Xg.

Given s ∈ Γ(Xg,F) and f ∈ A, such that Xf ⊆ Xg, assume that s ↾ Xfg = 0. Now,
Xg ⊆ V and (4a) holds for V . Thus, there is some m ≥ 0 so that gms extends to a section
in Γ(V,F). Since

gms ↾ Xfg = 0,

there is some p ≥ 0 so that
(fg)pgms = 0 on V,
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by (4b) applied to V . If we restrict to Xg, we get

f pgp+ms = 0 on Xg,

and, since g is invertible on Xg, we get f ps = 0 on Xg, which is (4b) for Xg.

The claim established in the proof that (2) ⇒ (4) now tells us that (4A) and (4B) hold
for V and F .

Second step: We need to define the module M . Consider the inclusion i : V → X , and
form i∗F , a sheaf on X . The sheaf i∗F is an OX module. Let

M = Γ(X, i∗F) = Γ(V,F).

This is an A-module, since A = Γ(X,OX). Next, I claim there is a sheaf map

M̃ 7→ i∗F .

To see this, consider any open Xf ⊆ X . We know that Γ(Xf , M̃) =Mf and

Γ(Xf , i∗F) = Γ(Xf ∩ V,F).

We need a map from Mf to Γ(Xf ∩ V,F). We have the restriction map
ρVXf∩V

: Γ(V,F)→ Γ(Xf ∩ V,F), and as M = Γ(V,F). So, we have a map

ρVXf∩V
: M → Γ(Xf ∩ V,F).

But f is invertible on Xf ⊇ Xf ∩ V ; so, by the universal mapping property of localization,
the map ρVXf∩V

: M → Γ(Xf ∩ V,F) factors through Mf , i.e.,

M −→Mf −→ Γ(Xf ∩ V,F).

The second map is the required one. These maps patch together on overlaps Xf ∩Xg (DX).
Since the Xf ’s cover X , we get our sheaf map

θ : M̃ −→ i∗F .

Now, we claim that θ is an isomorphism.

Pick any Xf ⊆ X , and any σ ∈ Γ(Xf , i∗F). Since

Γ(Xf , i∗F) = Γ(Xf ∩ V,F)

and since (4A) holds, there is some τ ∈ Γ(V,F) such that τ lifts fnσ for some n ≥ 0. But
Γ(V,F) =M ; so, τ ∈M . In Mf , we get have the element τ/fn, and θ(τ/fn) = σ, because

σ =
fnσ

fn
on Xf ∩ V.
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Thus, θ is surjective.

Assume that θ(m/f r) = 0. The element θ(m/f r) belongs to
Γ(Xf ∩ V, i∗F) = Γ(Xf ∩ V,F). Since f is invertible on Xf , we find that θ(m/1) = 0,
and (4B) implies that there is some l ≥ 0 so that f lθ(m/1) = 0 in Γ(V,F). Under the
identification Γ(V,F) =M , the element f lθ(m/1) is identified with f lm; and so f lm = 0 in
M . But then, m/f r = 0 in Mf . This proves injectivity, and finishes the proof.

Corollary 3.9 Let X = SpecA, and let V be a quasi-compact open subset of |X| and F be a
quasi-coherent sheaf of OV -modules. If i : V → |X| is the inclusion map, then the following
properties hold:

(1) The sheaf i∗F is a QC OX-module.

(2) Every QC sheaf, F , on V is the restriction of a QC OX-module.

Corollary 3.10 Let X = SpecA. An OX-module, F , is QC iff F = M̃ for some A-module
M . The functors M 7→ M̃ and F 7→ Γ(X,F) establish an equivalence of the categories
of A-modules and QC OX-modules. The functor F 7→ Γ(X,F) is an exact functor on the
category of QC OX-modules (when X = Spec A).

Since the category of A-modules has enough injectives, when X = Spec A the category
of QC OX -modules has enough injectives. Thus, we can resolve a QC OX -module F by QC
injectives on X . The functor Γ(X,−) yields the right derived functor

Hp
QC(X,F)

for every p ≥ 0. This right derived functor is not the correct object, however. What we really
want to do is to consider the category of all OX-modules (which also has enough injectives)
and take derived functors there. There is no reason why an injective in QC is injective in the
bigger category of all OX -modules. Also, for the special cohomology Hp

QC(X,F), our results
above yield

Corollary 3.11 Let X = SpecA, an affine scheme. For every QC OX-module F on X, we
have

Hp
QC(X,F) = (0)

for all p > 0.

Corollary 3.12 Let X = Spec A. Then, each QC OX-algebra has the form B̃ for some
A-algebra B. Every QC B̃-module (i.e., QC as B̃-module) is QC as an OX-module and has

the form Ñ for some B-module N .
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Proof . Let B be a QC OX-algebra. Then, by Theorem 3.8, B = B̃ for some A-module
B. We claim that B is an A-algebra. The fact that B is an algebra can be expressed in
categorical form by saying that there is an OX -linear map

µ : B ⊗OX
B −→ B,

and that some obvious diagrams commute. Thus, we have

µ : B̃ ⊗OX
B̃ −→ B̃,

and since

B̃ ⊗OX
B̃ ∼= B̃ ⊗A B,

we have

µ : B̃ ⊗A B −→ B̃,

from which we get a linear map

µ1 : B ⊗A B −→ B

which makes B an A-algebra, since the required diagrams are still commutative.

Now, let F be a QC B̃-module. To check that F is QC as Ã-module is local, and thus,
we may assume that we have an exact sequence

B̃(J) −→ B̃(I) −→ F −→ 0.

From this, we get an exact sequence

B(J) −→ B(I) −→ N −→ 0,

where N is the cokernel. Since B(I) and B(J) are A-modules, N is an A-module (and a

B-module), and further, Ñ = F . But Ñ is QC as OX -module and N is also a B-module.

So, F = Ñ for some B-module N .

Just as finitely generated modules form an interesting and amenable subcategory of all
modules, so in the category of OX-modules we have a distinguished subcategory consisting
of teh coherent modules.

Definition 3.4 Given a ringed space (X,OX) and an OX -module F , we say that F is
coherent if

(1) F is finitely generated as an OX-module, and

(2) For each n > 0 and for every open subset U ⊆ X , homomorphism ϕ : (OX ↾ U)n →
F ↾ U , the sheaf Ker ϕ is finitely generated.
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In his studies of several complex variables during the 1940’s, the mathematician Oka
discovered that the sheaf of germs of holomorphic functions on a complex space is coherent
in the above sense. But, while this definition is basically due to him, the actual definition is
due to Henri Cartan.

If F is a coherent sheaf on X , then, by (1), for every x ∈ |X|, there is some open subset
U with x ∈ U and a surjective homomorphism ϕU : (OX ↾ U)p → F ↾ U for some p > 0. By
(2), the kernel of this map is finitely generated, which means that there is some q > 0 and
a map from (OX ↾ U)q to (OX ↾ U)p so that

(OX ↾ U)q −→ (OX ↾ U)p −→ F ↾ U −→ 0 is exact.

Thus, a coherent sheaf, F , is quasi-coherent, and in fact, finitely presented.

� The sheaf OX need not be a coherent OX -module. For example, if X = Spec C[X1, . . .],

with countably many variables, then OX = ˜C[X1, . . .] is not coherent (because the ring
C[X1, . . .] is not Noetherian).

Remarks:

(1) The sheaf OX is a coherent OX -module iff for every open n > 0, U ⊆ X , and homo-
morphism ϕ : (OX ↾ U)n → OX ↾ U , the sheaf, Ker ϕ, is finitely generated.

(2) A sub OX -module of a coherent sheaf is coherent, provided it is finitely generated.

(3) If F ,G are coherent and ϕ : F → G, then Kerϕ, Imϕ, Cokerϕ, are coherent.

(4) If

0 −→ F −→ G −→ H −→ 0

is an exact sequence of OX -modules and two of the sheaves are coherent, then the third
one is coherent.

(5) If F ,G are coherent, then

(a) F ⊗OX
G is coherent, and

(b) HomOX
(F ,G) is coherent.

Proposition 3.13 Let X be an LRS, and assume that OX is a coherent sheaf. If F is an
OX-module, then F is coherent iff F is finitely presented.

Proof . We know that a coherent sheaf is always f.p. Conversely, since coherence and f.p.
are local, we may assume that U = X . Assume that

O(q)
X −→ O

(p)
X −→ F −→ 0 is exact.
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For finite p and q, the sheaves O(p)
X and O(q)

X are coherent iff OX is, as is easily shown by
induction using the exact sequence

0 −→ OX −→ O(p)
X −→ O

(p−1)
X −→ 0.

Let K = Ker (O(p)
X → F), since

O(q)
X −→ K −→ 0 is exact,

we see that K is finitely generated. But then, we have the exact sequence

0 −→ K −→ O(p)
X −→ F −→ 0,

and since K is a finitely generated submodule of a coherent OX -module, K itself is coherent.
Then, two of the sheaves in the sequence are coherent, therefore, so is F .

Theorem 3.14 Let X = Spec A, and assume that A is Noetherian. Then, the following
properties hold:

(1) Every open subset U of |X| is quasi-compact.

(2) OX is coherent.

(3) For any open U , the following are equivalent for an OU -module:

(a) F is coherent.

(b) F is QC and finitely generated.

(c) There is some finitely generated A-module M so that F ↾ U = M̃ .

Proof . (1) is clear.

(2) Since coherence is local, we can check it on a basis of open sets, namely, on the Xf ’s
(OX being clearly f.g.). Now, the sequence

O(n)
X ↾ Xf

ϕ−→ OX ↾ Xf −→ 0 is exact;

so, we get the exact sequence
Ãnf −→ Ãf −→ 0.

By taking global sections, we get the exact sequence

Anf −→ Af −→ 0.

Since Af is Noetherian, the kernel K is f.g., and thus, the fact that we have the exact
sequence,

Aqf −→ K −→ 0,
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for some q > 0, shows that K̃ is f.g., where K̃ = Kerϕ.

(3) (a)⇒ (b) is trivial.

(b) ⇒ (c). By Theorem 3.8, there is some A-module M such that M̃ ↾ U = F . We can
cover U by opens of the form Xf , and it is always the case that M = lim−→λ

Mλ, where Mλ

runs over the finitely generated submodules of M . Since M̃ ↾ Xf = F ↾ Xf , by (b), there is
some λ (depending on f) so that

M̃λ ↾ Xf = F ↾ Xf .

However, U is quasi-compact, and thus, finitely many Xf cover U . This implies that there
is some λ so that

M̃λ ↾ U = F ,
with Mλ finitely generated.

(c) ⇒ (a). We know that F is QC on U and for any small open Xf ⊆ U , we have the
exact sequence

Ãnf −→ F ↾ Xf −→ 0.

This comes from the module sequence

0 −→ K −→ Anf −→ Mf −→ 0,

and the kernel K is f.g., as Af is Noetherian. So, M̃f = F ↾ Xf is finitely presented, and
thus, is coherent, because OX is coherent, by (2), and F itself is coherent.

Corollary 3.15 Let X = Spec A, where A is Noetherian. If (U,OU) is an open in X with
inclusion map i : U → X, then for every coherent OU -module F , the OX-module, i∗F , is
coherent on X.

Corollary 3.16 Let X = Spec A, where A is Noetherian. For any QC OX-module F , we
have

F = lim−→λ
Fλ,

where Fλ is a coherent submodule of F .

Consider ϕ∗F , where ϕ : Spec B → Spec A, and where F is a QC OY -module. Here,
X = SpecA and Y = SpecB. We have a ring map from A to B. For any U ⊆ |X|, we have

Γ(U, ϕ∗F) = Γ(|ϕ|−1(U),F).

Now, assume that ϕ∗F is QC. Then, ϕ∗F = M̃ for some A-module M . We know that

M = Γ(|X|, M̃) = Γ(|X|, ϕ∗F) = Γ(|Y |,F).
Let us also assume that F is coherent on Y and that A and B are Noetherian. Using the
ring map from A to B, we see M = Γ(|Y |,F) would have to be finitely generated as an
A-module, for ϕ∗F to be coherent. This is generally false, as the following example shows:
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Example 3.1 Consider a field k, and let A1
k = Spec k[T ]. The scheme A0

k = Spec k consists
of a single point with k as stalk. We have the inclusion i : k → k[T ], and we get a morphism
ϕ : A1

k → A0
k. Let Y = A1

k and F = OY . The sheaf OY is coherent since k[T ] is Noetherian.

What is ϕ∗OY ? We know that ϕ∗OY = M̃ , where M = Γ(|Y |,OY ) = k[T ] as a k-module via
i : k → k[T ]. However, k[T ] is not a finitely generated k-module, which implies that ϕ∗OY
is not a coherent OX-module.

Consequently, the direct image of a coherent sheaf is not, in general, coherent. Corollary
3.15 is an exception and one needs more restrictive hypotheses on ϕ : Y → X in order that
the direct image, ϕ∗F , of the coherent OY -module, F , be coherent on X .

3.3 Schemes: Products, Fibres, and Finiteness Prop-

erties

Definition 3.5 A scheme X is a locally ringed space such that for every x ∈ |X|, there is
some open subset U with x ∈ U and (U,OX ↾ U) is isomorphic to Spec A for some ring A
(i.e., (U,OX ↾ U) is an affine scheme).

Thus, a scheme is an LRS that is locally an affine scheme. We denote the category of
schemes by SCH. We can carry over the material on quasi-coherent O-modules for affine
schemes to our present level of generality.

Proposition 3.17 Let X be a scheme. Then, an OX-module F is QC iff there is some open
cover (Ui)i∈I of |X| such that F ↾ Ui is QC as an OX ↾ Ui-module for every i ∈ I, and thus

iff for every open affine (Ui,OUi
) ∼= Spec AUi

, we have F ↾ Ui = M̃Ui
for some AUi

-module
MUi

.

The notion of a product or a fibred product is an extremely important and convenient
notion in studying geometry. The reader need only turn to Chapter 1 to see how often it
was used in the classical theory of varieties presented there. In the category of schemes, it
turns out that fibred products exist. Assume that we are given some schemes X, Y, Z and
some morphisms pX : X → Z and pY : Y → Z.

Theorem 3.18 In the category of schemes over Z, the product X
∏
Z

Y exists (and is unique

up to unique isomorphism).

Sketch of proof . We proceed in several steps.

Step 1. First, assume that X, Y, Z are affine, say X = SpecB, Y = SpecC, Z = SpecA.
Then, one checks that

X
∏

Z

Y = Spec(B ⊗A C).
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Step 2. Assume that X, Y are Z-schemes, that Z0 is an open subscheme of Z and that
X, Y are actually Z0-schemes (which means that pX and pY factor as X −→ Z0 →֒ Z and
Y −→ Z0 →֒ Z). Then, X

∏
Z

Y exists iff X
∏
Z0

Y exists, and if they exist, they are equal.

The reader should be able to check this without difficulty.

Step 3. Assume that X and Y are arbitrary, but that Z is affine. Then, X
∏
Z

Y exists.

Indeed, cover X by affine opens, Xα ,and Y by affine opens, Yβ. By (1), Xα

∏
Z

Yβ exists.

Clearly, they patch (DX). (But see the remark and lemma immediately below).

Step 4. Let Z be arbitrary. Cover Z by affine opens, Zγ, and let Xγ = p−1X (Zγ) and
Yγ = p−1Y (Zγ), which are schemes over Zγ. By (3), Xγ

∏
Zγ

Yγ exists, and by (2), it is equal

to Xγ

∏
Z

Yγ.

Step 5. In general, get an affine open cover, (Zγ), of Z, make Xγ

∏
Z

Yγ as in step 4, and

patch them together to make X
∏
Z

Y , as in step 3.

Remark: When we use (1) in step (3), we need to know that the product in the category
of affine schemes is the same as the product in the category of schemes. This follows from
the lemma:

Lemma 3.19 Let T be an arbitrary scheme and X an affine scheme, so that X = Spec A
and A = Γ(|X|,OX). Then,

HomSCH(T,X) ∼= Hom alg(Γ(|X|,OX),Γ(|T |,OT )). (∗)

Sketch of proof . If ϕ : T → X , we get a map Γ(X,OX) −→ Γ(T,OT ). Conversely, cover T by
affine opens, Tα. By restriction, the map Γ(X,OX) −→ Γ(T,OT ) yields a map Γ(X,OX) −→
Γ(Tα,OTα). Since X and Tα are affine, we get ϕα ∈ Hom(Tα, X), and these maps patch (as
the reader should check), so that we get a map in HomSCH(T,X).

Remark: The isomorphism (∗) shows that when X is affine, HomSCH(T,X) really depends
only on Spec Γ(|T |,OT ) (besides X). This, as described in Chapter 1, is the characteristic
property of affines in the category of schemes. That is, X is affine iff the morphisms from
an arbitrary scheme into X are exactly the morphisms from the affinization of the arbitrary
scheme.

The reader should show that coproducts also exist, and that finite products and coprod-
ucts of affines are affine (DX). However, infinite coproducts of affines are never affine.

Let us now consider fibres. Given x ∈ |X|, we claim that there is a morphism
ix : Spec κ(x)→ X , where κ(x) = OX,x/mx, the residue field at x. Clearly, we must have

|ix|(pt) = x.
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We need a map of sheaves from i∗xOX to OSpec κ(x). Thus, we need a map from (i∗xOX)pt to
κ(x). But

(i∗xOX)pt = OX,|ix|(pt) = OX,x,
and we need a map from OX,x to κ(x), for which we can use the projection onto the residue
field. Now, assume we have a morphism π : Y → X and combine it with ix : Spec κ(x)→ X
to make the fibred product Y

∏
X

Spec κ(x), with maps pr1 : Y
∏
X

Spec κ(x) → Y and

pr2 : Y
∏
X

Spec κ(x)→ Spec κ(x). By definition, we define the scheme π−1(x) by

π−1(x) = Y
∏

X

Spec κ(x).

The scheme π−1(x) is always considered as a Spec κ(x)-scheme.

Remarks:

(1) It is easily checked (DX) that if U is an affine open of X then

π−1(x) = π−1(U)
∏

U

Spec κ(x),

where π−1(U) = Y
∏
X

U . Thus, π−1(x) only depends on a local neighborhood of

x ∈ |X|.

(2) For such an open U , the scheme π−1(U) is covered by open affines Yα; so, π
−1(x) is

covered by the affines

Yα
∏

U

Spec κ(x) = Spec(Γ(Yα)⊗Γ(U) κ(x)).

Here, we write Γ(U) for Γ(U,OX) and Γ(Yα) for Γ(Yα,OY ).

(3) We also claim that there is a canonical morphism from Spec(OX,x) to X (where x ∈
|X|). Indeed, take any open affine U such that x ∈ |U |, and look at Γ(U,OU) =
Γ(U,OX). Then, the map

σ 7→ σ(x)

yields a map from Γ(U,OX) to OX,x, and this is a ring homomorphism. Thus, we get
a morphism from Spec(OX,x) to Spec(Γ(U,OX)) = U ⊆ X . Clearly, this map does not
depend on U , which gives our morphism Spec(OX,x) −→ X . (DX). The affine scheme,
Spec(OX,x), is called the local scheme at x.

(4) The local scheme Spec(OX,x) is contained in every affine open subscheme of X which
contains x.

(5) If X is a variety, Spec(OX,x) is not a variety, in general.
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(6) The underlying space |Spec(OX,x)| is neither open nor closed in |X|.
Some examples will illustrate the above remarks.

Example 3.2

(1) Observe that every scheme is a scheme over Spec Z. Indeed, having a morphism from
X to Spec Z is equivalent to having a ring morphism from Z to Γ(X,OX), and there
is always such a canonical ring morphism.

(2) Furthermore, Spec Z has two kinds of points: Points of the form p, where p is a prime
number, these are closed points, and the “fuzzy point” 0, the generic point. The generic
point is neither open nor closed, but it is dense. Given p ∈ |Spec Z|, what’s the local
scheme at p? The ring is Z(p), a DVR. The space of Spec Z(p) has two points, one
generic, the other a closed point. The map from Spec Z(p) to Spec Z sends the closed
point to p, and map generic point to generic point.

(3) For ξ ∈ |Spec Z|, what are κ(ξ) and Spec κ(ξ)? When ξ = 0 (the generic point), then
κ(ξ) = Q, and we get Spec Q. When ξ = p, a prime number, we get Z/pZ = Fp, and
we get Spec Fp.

(4) Given ξ ∈ |SpecZ|, we have π−1(ξ) = Xξ, a scheme over SpecQ if ξ = 0, and a scheme
over Fp, if p is a prime number. We call Xp the reduction of X mod p (it is a scheme
over Fp).

A general scheme can be quite wild and few deep theorems can be proved without some
kind of “taming hypotheses.” These usually deal with finiteness in one form or another and
they are of two types: Conditions on schemes, and conditions on morphisms. We begin with
conditions on schemes.

Definition 3.6 A scheme X is quasi-compact if |X| is quasi-compact as a topological space.
(That is, it can be covered by finitely many affine opens.)

Definition 3.7 Given some property P of schemes and a scheme X , we say that X is locally
P if for every x ∈ |X|, there is some affine open subset Ux with x ∈ |Ux|, and Ux has the
property P . We say that X is strongly locally P if for every affine open U ⊆ X , the scheme
U has P . (N.B., strongly locally P is not a standard locution).

Definition 3.8 (a) A scheme X is noetherian if X is quasi-compact and each of the
finitely many affines, Uα, covering X is of the form SpecAα, where Aα is a noetherian
ring.

(b) If a scheme X is strongly locally noetherian, then it is usually called locally noetherian,
and there is no confusion in terminology because having an affine open covering by
Spec’s of noetherian rings is equivalent to being strongly locally noetherian. Observe
that in (b), no assumption of quasi-compactness is made.
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(c) A scheme X is artinian if it is quasi-compact and each of the finitely many affine opens
covering X is of the form SpecAα, where Aα is an artinian ring (i.e., satisfies the DCC
condition).

(d) As in (b), strongly locally artinian is usually called locally artinian.

To use these finiteness conditions on schemes themselves, it is most convenient to isolate
properties of morphisms which allow them to come into play. First, observe that a morphism
π : Y → X of schemes can be viewed as a “moving algebraic family” of schemes, each one a
scheme over a field. Namely, Yx = π−1(x) is a scheme over the field κ(x).

Definition 3.9 A morphism π : Y → X is quasi-compact if X can be covered by affine
opens, Xα, so that π−1(Xα) = Xα

∏
X

Y = Yα is quasi-compact for every α.

It is easily shown that the condition of Definition 3.9 holds iff the inverse image π−1(U)
of every affine U ⊆ X is quasi-compact (DX).

Definition 3.10 (a) A morphism π : Y → X is a locally finite-type morphism, or an LFT-
morphism, if X can be covered by affine opens, Xα = Spec Aα, so that π−1(Xα) = Yα
can be covered by affine opens, Zαβ, where Zαβ = SpecBαβ , in which Bαβ is a finitely
generated Aα-algebra. Note that in the above definition, it is possible that there are
infinitely many Xα and that the covers of the Yα contain infinitely many schemes. The
notion of LFT-morphism is strongly local on both X and Y .

(b) A morphism π : Y → X is a finite-type morphism, or an FT-morphism, if π is quasi-
compact and LFT.

(c) A morphism π : Y → X is a locally finite-presentation morphism, or an LFP-morphism,
if it is LFT and the algebras Bαβ are finitely presented over Aα. Our morphism
π : Y → X is a finite-presentation morphism, or an FP-morphism, if it is FT and the
algebras Bβ

α are finitely presented over Aα, equivalently if it is LFP and quasi-compact.

(d) A morphism π : Y → X is an affine morphism if X can be covered by affine opens,
Xα, so that Yα = π−1(Xα) is again affine. (The reader should check that π is an affine
morphism iff π is strongly affine (DX).)

(e) A morphism π : Y → X is a finite morphism if it is affine and Γ(Yα) is a finite Γ(Xα)-
module. (Also, in this case, finite is the same as strongly finite (DX).)

(f) A morphism π : Y → X is quasi-finite if for every x ∈ |X|, the set |π−1(x)| is finite.

� Beware that finite implies quasi-finite, but the converse is false.
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(i) The morphism ϕ : SpecQ→ SpecZ is quasi-finite, but Q is not finitely generated as a
Z-module. Thus, ϕ is not a finite morphism.

(ii) Let Y = Spec C[S, T ]/(ST − 1) and X = Spec C[S]. Write ϕ for the projection map.
Every fibre is a single point. This morphism is affine, FT, quasi-finite, but not finite.

To use the above (many!) definitions, we need to investigate how these properties behave
w.r.t. base extension and perhaps descent. For this, we need open subschemes, closed
subschemes, general immersions, and separation.

Definition 3.11 A scheme (Y,OY ) is an open subscheme of a scheme (X,OX) if the follow-
ing hold:

(1) The space Y is open in X .

(2) There is an isomorphism OY ∼= OX ↾ Y .

A morphism (Z,OZ) → (X,OX) is an open immersion if there is some open subscheme
(Y,OY ) of (X,OX) and our morphism factors through an isomorphism
ϕ : (Z,OZ)→ (Y,OY ). That is,

(1) The space Z is homeomorphic to an open Y ⊆ X , and

(2) There is an isomorphism OZ ∼= OX ↾ Y .

A scheme (Y,OY ) is a closed subscheme of (X,OX) if the following hold:

(1) The space Y is closed in X .

(2) If i : Y → X is the inclusion map, then the sheaf map OX −→ i∗OY is surjective.

A morphism (Z,OZ) −→ (X,OX) is a closed immersion if it factors through an isomorphism
of (Z,OZ) with a closed subscheme of (X,OX).

Let C be a closed subset of X , where (X,OX) is a scheme. Then, there exists a unique
minimal structure of scheme on C, called the reduced induced structure. It is defined as
follows: Cover X by affine opens, Xα. Let Cα = Xα ∩C. These Cα are closed subsets of the
Xα, and we can write (Xα,Oα) ∼= Spec Aα. Points of Cα are prime ideals, p, of Aα. Let

Aα =
⋂
{p ∈ |Spec Aα| | p ∈ Cα}.

Then, Aα is a radical ideal (Aα/Aα has no nilpotents). The ideal Aα is maximal with respect
to the condition V (Aα) = Cα, so that V (Aα) = Cα. Write Yα instead of Spec(Aα/Aα). Of
course, |Yα| = Cα, and these schemes patch (DX). Patching them yields a scheme (Y,OY ),
which is a closed subscheme such that Y = C. Let us use the notation, Y0, for the scheme
just constructed; also, let i0 : Y0 → X be the natural inclusion, a closed immersion.
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The scheme Y0 enjoys a a universal mapping property: Given any scheme, Y , and any
closed immersion, i : Y → X , so that C ⊆ |i|(|Y |), there is a closed immersion j : Y0 → Y so
that

i0 = i ◦ j.
The reader should check this universal mapping property.

Let X be a scheme and let (Uα) be a cover of X by affine opens. We can recover OX ↾ Uα
from the ring Aα = Γ(Uα,OX) as Ãα. Let Nα be the nilradical of Aα, i.e.,

Nα = {ξ ∈ Aα | ξn = 0 for some n > 0}.

Clearly, the Nα patch on overlaps Uα ∩ Uβ . We get an OX -ideal, N , of OX , and we obtain
a scheme (X,OX/N ). This scheme is denoted by Xred and is called the reduced scheme of
X . It is just the reduced induced scheme structure on the topological space |X|. The map
X 7→ Xred is an endfunctor in the category of schemes.

We have defined the notions of open and closed subschemes and open and closed immer-
sions. A combination of them both yields the general notion of subscheme:

Definition 3.12 A subscheme (Y,OY ) of (X,OX) is a pair where Y is locally closed in X
and the sheaf map OX −→ i∗OY is surjective, where i : Y → X is the inclusion, and, as
before, a morphism (Z,OZ) −→ (X,OX) is an immersion if there is some subscheme (Y,OY )
of (X,OX) so that our morphism factors through an isomorphism (Z,OZ) −→ (Y,OY ).

Proposition 3.20 Let f : Y → X be a morphism of schemes. Then, f is an immersion,
resp. a closed immersion, resp. an open immersion iff

(1) The map |f | is a homeomorphism onto a locally closed subset of |X|, resp. a closed
subset of |X|, resp. an open subset of |X|, and

(2) For every y ∈ |Y |, the map fy : OX,f(y) → OY,y is a surjection, resp. a surjection, resp.
an isomorphism.

Remark: This is proved by doing the following steps:

(1) Reduce to the case where X is affine.

(2) Show that f∗OX is QC as OX -module.

(3) Finish up.

Remember, every scheme represents the functor of its points (from SCHo to Sets),

T 7→ X(T ) = HomSCH(T,X).
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If we have a morphism ϕ : Y → X , we get a map of sets ϕT : Y (T ) → X(T ), functorial in
T . If for all T , this map is an injection, then we say that ϕ : Y → X is a monomorphism
of schemes , the notion of monomorphism is obviously a categorical notion. Every closed
immersion is a monomorphism.

Just as in Chapter 1, we need a condition to replace the missing Hausdorffness of the
Zariski topology. This is the familiar notion of separation.

Definition 3.13 A morphism ϕ : Y → X of schemes is a separated morphism (or Y is
separated over X , or Y is a separated X-scheme) if the diagonal morphism

∆Y/X : Y −→ Y
∏

X

Y

is a closed immersion. We say that Y is a separated scheme if Y is separated over Spec Z.

Remarks:

(1) A morphism f : Y → X is a separated morphism iff X has an affine open cover (Uα)
so that, if Yα = f−1(Uα), then f ↾ Yα : Yα → Uα is a separated morphism for every α.
That is, separation is a local condition on X .

(2) Every monomorphism of schemes is separated.

(3) Every immersion (of any type) is separated.

Proof of (2) and (3). Assume that i : Y → X is a monomorphism. For every test
object T , we have

(Y
∏

X

Y )(T ) = Y (T )
∏

X(T )

Y (T ) = {(ξ, η) | ξ, η : T → Y, i ◦ ξ = i ◦ η}.

Since i is a monomorphism, we get ξ = η. Thus, we have an isomorphism
Y (T ) −→ Y (T )

∏
X(T )

Y (T ) via

ξ 7→ (ξ, ξ).

It follows that ∆Y/X is an isomorphism; and in particular, it is a closed immersion.

(4) Every morphism f : Y → X from an affine scheme to a scheme is separated, and thus,
every morphism of affine schemes is separated. Every affine scheme is separated.

Proof . To prove (4), we need only prove that an open immersion is separated. But an
open immersion is automatically a monomorphism; hence, it is separated.

Assume at first that every morphism between affine schemes is separated. Now, any
affine scheme is a scheme over SpecZ, and hence, the morphism from our affine scheme
to Spec Z is separated. This means exactly that our affine scheme is separated.
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If f : Y → X is an arbitrary morphism but Y is affine, then cover X by affines Xα so
that Y is covered by the Yα = f−1(Xα). Now, each f

−1(Xα) is an open subscheme of Y
and Y is separated. Hence, each f−1(Xα) is itself separated. Therefore, the morphism

f−1(Xα) −→ f−1(Xα)
∏

Xα

f−1(Xα)

is a closed immersion, and our first remark proves that f is a separated morphism.
Finally, we are reduced to the case assumed aboev: X and Y are affine. In this case,
let Y = Spec B and X = Spec A. Then

Y
∏

X

Y = Spec(B ⊗A B).

Our map ∆ = ∆Y/X is the map

Spec B −→ Spec(B ⊗A B),

given as the morphism corresponding to the multiplication m : B ⊗A B → B. But the
algebra map is surjective, and so we get a closed subscheme of Spec(B ⊗A B).

(5) An affine morphism is separated (by Remark (1)).

(6) For every scheme Y over X , the morphism ∆ = ∆Y/X is an immersion. The scheme Y
is separated over X iff ∆(|Y |) is closed in |Y ∏

X

Y |.

Proof . Cover X by open affines, Uα, and cover each f−1(Uα) by open affines V α
β . The

products V α
β

∏
X

V α
β are all open in Y

∏
X

Y . Yet,

V α
β

∏

X

V α
β = V α

β

∏

Uα

V α
β .

So, as ∆ ↾ V α
β takes V α

β into the product V α
β

∏
Uα

V α
β and the latter image is closed by

Remark (4), we see that the image of ∆ is closed in the open subscheme

⋃

α,β

V α
β

∏

X

V α
β .

On the ring level we already know by the reduction to affine covers that the morphism
is surjective. This proves that ∆ is an immersion and, of course, it will be a closed
immersion iff its image is closed.

Here is a useful criterion for separation:

Proposition 3.21 Let X be an affine scheme and f : Y → X a morphism. Then, f is
separated iff Y is covered by affine opens Uα so that
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(1) Uα ∩ Uβ is again affine.

(2) Γ(Uα ∩ Uβ ,OY ) is generated by the images of Γ(Uα,OY ) and Γ(Uβ,OY ).

Proof . Let ∆: Y → Y
∏
X

Y . The schemes Uα
∏
X

Uβ form an affine cover of Y
∏
X

Y , where

Uα
∏

X

Uβ = Spec(Bα ⊗A Bβ),

with Bα = Γ(Uα,OY ) and Bβ = Γ(Uβ,OY ). We have

∆−1(Uα
∏

X

Uβ) = ∆−1(pr−11 (Uα) ∩ pr−12 (Uβ))

= ∆−1(pr−11 (Uα)) ∩∆−1(pr−12 (Uβ))

= Uα ∩ Uβ.

Therefore, we get maps

∆: Uα ∩ Uβ −→ Uα
∏

X

Uβ. (†αβ)

This implies separation iff the map on line (†αβ) is a closed immersion for all α, β. But
then, if ∆ is a closed immersion, the affineness of Uα

∏
X

Uβ implies that Uα ∩ Uβ is affine

and the morphism ∆ comes from multiplication. Consequently, its ring satisfies (2), as the
multiplication is onto.

Conversely, assume that Uα ∩ Uβ is affine and its ring satisfies (2). Then, the map

Bα ⊗A Bβ −→ Γ(Uα ∩ Uβ,OY )

is surjective. So, ∆ is a closed immersion.

Example 3.3

(1) The affine line A1 with the origin doubled . Take two copies of A1, say Spec C[T ] and
Spec C[S]. Let U1 = Spec C[T ](T ) and U2 = Spec C[S](S), and glue them together by
sending T to S. The result is a scheme X , but X is not separated. To see this, let
U = SpecC[T ] →֒ X , it is affine open, and let V = SpecC[S] →֒ X , it is another affine
open. We have U ∩ V = U1 = U2, and U ∩ V is affine, with ring

C[T ](T ) = C[S](S).

We have an inclusion Γ(U,OX) −→ Γ(U ∩V,OX) which maps C[T ] −→ C[T, 1/T ], and
similarly with S. The ring generated by the images is not the whole of Γ(U ∩ V,OX),
and criterion (2) fails.
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(2) Let Y be the affine plane A2 with the origin doubled. Check that neither (1) nor (2)
is true.

Under good conditions on either a morphism or on the schemes themselves, inverse image
and direct image of quasi-coherent sheaves and coherent sheaves are again quasi-coherent
and coherent. Here is a standard proposition in this situation:

Proposition 3.22 Let f : Y → X be a morphism of schemes. Then the following properties
hold:

(1) If G is a QC OX-module, then f ∗G is a QC OY -module.

(2) Assume that X and Y are locally noetherian and G is a coherent OX-module. Then,
f ∗G is a coherent OY -module.

(3) If both X and Y are noetherian, or if f is quasi-compact and separated, and if F is a
QC OY module, then the direct image f∗F of F is a QC OX module.

Proof . First, note that by Hilbert’s basis theorem, Y is locally noetherian if f is a finite
type (or LFT) morphism and X is locally noetherian.

(1) The sheaf G is locally of the form

O(J)
X −→ O(I)

X −→ G −→ 0.

If we pull back this sequence back using f , we get

O(J)
Y −→ O

(I)
Y −→ f ∗G −→ 0

on f−1(U), for some small open U in X . This implies that f ∗G is QC.

(2) Locally on X , G has the form

O(q)
X −→ O

(p)
X −→ G −→ 0,

where p, q are finite, as OX is coherent, because X is locally noetherian. If we pull this
sequence back, we get

O(q)
Y −→ O

(p)
Y −→ f ∗G −→ 0,

which implies that f ∗G is f.p. on Y . But this implies that f ∗G is coherent, as OY is coherent
by the local noetherian nature of Y .

(3) The question is local on X (not Y ). Thus, we may assume that X is affine, say
X = Spec A, where A is noetherian. Then, Y = f−1(X) is finitely covered by affines Uα, as
either Y is noetherian or f is quasi-compact. Look at Uα ∩ Uβ .

(a) If Y is noetherian then Uα ∩ Uβ is a finite union of opens, Uαβj , for j = 1, . . . , t.
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(b) If, instead, f is separated, then Uα ∩ Uβ is affine, which implies that Uα ∩ Uβ = Uαβ1
(in the notation of (a)).

Claim. There is an exact sequence of sheaves

0 −→ f∗F −→
∏

α

(f ↾ Uα)∗(F ↾ Uα) −→
∏

α,β,j

(f ↾ Uαβj)∗(F ↾ Uαβj). (∗)

To se this, pick some open V ⊆ X . Then,

Γ(V, f∗F) = Γ(f−1(V ),F)
Γ(V ∩ Uα, (f ↾ Uα)∗F) = Γ(f−1(V ) ∩ Uα,F)

Γ(V ∩ Uαβj , (f ↾ Uαβj)∗F) = Γ(f−1(V ) ∩ Uαβj ,F).

However (Uα) is a cover of Y and the Uαβj cover Uα∩Uβ . Thus, (∗) is just the exact sequence
arising from the fact that f∗F is a sheaf. Since Uα is affine and f∗F is locally of the form
M̃ as a Ã-module (where M is a Γ(Uα,OY )-module), the direct image (f ↾ Uα)∗F is QC.
Similarly, as the Uαβj are affine, (f ↾ Uαβj)∗F is QC. Thus, the two right terms are QC,
which implies that f∗F is QC, as the kernel of a map of QC’s.

Remark: The reader should note that we have not proved a statement to the effect that
f∗ of a coherent module is coherent. Conditions under which this is true are much more
delicate and the theorem itself is quite a bit deeper (see Theorem 7.36).

Given two schemes X and Y , where Y is a closed subscheme of X , with closed immersion
i : Y → X , let

IY = Ker (OX −→ i∗OY ).

Theorem 3.23 If X and Y are two schemes, where Y is a closed subscheme of X, with
closed immersion i : Y → X, the sheaf of ideals, IY , of OX is QC. Conversely, if J is a QC
ideal of OX , then there exists a unique closed subscheme, X(J), of X whose ideal is J (in
the above sense). Therefore, the correspondence

Y → IY

is a bijection between closed subschemes of X and quasi-coherent ideals of OX . If X is locally
noetherian, then IY is coherent.

Proof . The morphism i : Y → X is quasi-compact (DX) and separated (from previous work).
Proposition 3.22 implies that i∗OY is a QC OX -module. Then, IY , which is the kernel of a
map of QC modules is also QC. Now, assume that J is a QC OX -module. Then, OX/J is
a QC OX -module, and a sheaf of local rings. Let C be the support of the sheaf OX/J, and
look locally on X . We know that OXα = Ãα, and Iα = Ãα, for some ideal, Ãα, of Aα. Thus,

Ãα/Aα = OXα/Iα,
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and
supp(Ãα/Aα) = supp(Aα/Aα),

which is just V (Aα); hence is closed in Xα. Consequently, C is closed in X . Set X(J) =
(C,OX/J). We get a closed subscheme of X .

Assume now that X is locally noetherian. Then, on some Xα, the ring Aα is a noetherian
ring. Therefore, (IY )α is a f.g. ideal, and thus, IY is a f.g. submodule of OX . Since X is
locally noetherian, OX is coherent, which implies that IY is coherent.

Sometimes, abstract arguments concerning properties of morphisms can help reduce
repetitive proofs in more concrete situations. In the following few pages, we shall use exactly
this kind of labor-saving (though abstract) device. Let P be some property of morphisms of
schemes. Consider the following statements:

(1) Closed immersions have P .

(1′) Immersions have P .

(2) P is stable by composition of morphisms.

(3) P is stable with respect to fibred products of morphisms.

(4) P is stable under arbitrary base extensions.

(5) Let f : X → Y and g : Y → Z be two morphisms, and assume that g ◦ f has P . If g is
separated, then f has P .

(5′) Let f : X → Y and g : Y → Z be two morphisms, and assume that g ◦ f has P , where
g is arbitrary. Then, f has P .

(6) If f has P , then fred has P (where, fred is the morphism induced by f on the reduced
schemes).

Proposition 3.24 Assume that (1) and (2) (or (1′) and (2)) hold for P . Then, (3) holds
iff (4) holds. Assume that (1), (2), (3) (resp. (1′), (2), (3)) hold for P . Then, (5) and (6)
hold (resp. (5′) and (6) hold).

Proof . (3) ⇒ (4). Assume (3). Now, the identity map, 1, on any scheme is a closed
immersion. By (1), 1S has P for every scheme S. If f has P , then f

∏
Y

1S has P by (3).

But the diagram
X

f

��

X
∏
Y

Soo

f
∏

1S

��
Y Soo
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shows that f
∏

1S is the base extension of f .

(4)⇒ (3). If f, g are given, then

f
∏

S

g = (f
∏

S

1) ◦ (1
∏

S

g),

but f
∏
S

1 and 1
∏
S

g have P by (4). Now, (2) implies that f
∏
S

g has P .

(5) (1, 2, 3)⇒ (5). Look at T
ϕ−→ S −→ Σ, morphisms of schemes. We have the diagram

T

ϕ

��

Γϕ // T
∏
Σ

S

ϕ
∏

Σ 1S

��
S

∆S/Σ

// S
∏
Σ

S.

This is a cartesian diagram (DX). The diagonal morphism ∆ is always an immersion and
if S is separated over Σ, then ∆ is a closed immersion. Let P be the property of being an
immersion or a closed immersion. Then, ((1) or (1′)) and (2) hold, and (3) also holds (DX).
Thus, Γϕ is an immersion or a closed immersion when S/Σ is separated.

Consider X
f−→ Y

g−→ Z. Now,

f = pr2 ◦ Γf .

Assume that g is separated. Then, pr2 is a base extension of g ◦ f in the diagram

X

g◦f

��

X
∏
Z

Y
pr1oo

pr2

��
Z Y.g

oo

By (4) and the hypothesis that g ◦ f has P , we get that pr2 has P . We know that Γϕ has P
by (1) or (1′). By (2), f has P .

(6) Look at the commutative diagram

Xred

��

fred // Yred

��
X

f
// Y.
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Assume that f has P . The vertical arrrows have P since they are closed immersions. Now,
(5) implies that fred has P .

In the course of the above proof, we have also proved:

Corollary 3.25 For every morphism, ϕ : X → Y , the graph morphism, Γϕ, is an immer-
sion. If X and Y are Z-schemes and Y/Z is separated, then Γϕ is a closed immersion as a
Z-scheme morphism.

We can apply our abstract situation by letting P be any of the properties: LFT, FT,
quasi-compact, locally noetherian, noetherian, quasi-finite, finite, artinian. In these cases,
(1) and (2) hold for P , and (3) also holds. Therefore, (4), (5), and (6) also hold for P . More
is true when P is the property of being separated. In this case, (1), (1′), (2), (3) hold, and
thus, (4), (5), (5′), (6) also hold. However, the converse of (6) is in fact true in this special
case:

Corollary 3.26 A morphism of schemes f is separated iff fred is separated.

Proof . If f is separated, we have already showed that fred is separated.

Conversely, assume that fred is separated. Look at the diagram

Xred

��

fred // Yred

��
X

f
// Y.

Going around the top implies that f ◦ (Xred →֒ X) is separated. But Xred →֒ X is a
homeomorphism of |Xred| and |X|. Thus, we get the result.

Even more is true. Let X and Y be schemes and let f : X → Y be a morphism. Assume
that |X| is a finite union of closed subspaces, |X|k, and give |X|k the reduced induced
structure. We get a closed subscheme, Xk, of X , with |Xk| = |X|k. Assume further that
|Y | is a finite union of closed subsets, |Y |k, make Yk similarly, and assume that there are
morphisms f ↾ Xk : Xk → Yk (we are assuming that the number of |X|k and |Yk| is the
same).

For example, we might take X to be a noetherian scheme, and the |X|k to be the irre-
ducible components of X , and similarly for Y . Write fk for f ↾ Xk.

A scheme is called integral if it is reduced and irreducible. The name arises from the
affine case, X = Spec A, for then, X is integral iff A is an integral domain (DX).

Proposition 3.27 Under the above set-up, f is separated iff the fk are separated for all k.
Hence, separation can be checked for integral schemes.
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Proof . Assume that f is separated. We have the commutative diagram

Xk

��

fk // Yk

��
X

f
// Y.

The lefthand side vertical arrow is a closed immersion. This implies that it is separated
and thus, going around the bottom is a separated morphism, which implies that the map
Xk −→ Y via the top is separated. But Yk −→ Y is a closed immersion, hence is separated,
and thus, fk is separated, by (5).

Conversely, assume that every fk is separated. Going around the top, since fk is sepa-
rated, the map Xk −→ Y is separated. But,

pr−11 (Xk) ∩∆X/Y (|X|) = ∆Xk/Y (|Xk|),

hence

∆X/Y (|X|) =
t⋃

k=1

∆Xk/Y (|Xk|).

However, ∆Xk/Y (|Xk|) is closed (as fk is separated), so we find that ∆X/Y (|X|) is closed.
We are now in the position to answer the question: Where are the varieties among the

schemes?

Let X be a k-variety (use a field Ω ⊇ k which is algebraically closed and of infinite
transcendence degree over k). Then, the following properties hold:

(1) X is a scheme over the field k, i.e., there is a scheme morphism X −→ Spec k.

(2) X is locally finite type over Spec k.

(3) X is reduced (which means that the rings OX,x have no nilpotents for all x ∈ |X|).

We also have the k-scheme, Spec Ω, and we get

X(Ω) = X(Spec Ω) = Hom k−schemes(Spec Ω, X).

The following proposition is not hard to prove and is left as an exercise.

Proposition 3.28 Let FFTred(k) be the category of schemes over Speck satisfying (1), (2),
(3), as above. Then, the functor

X 7→ X(Ω)

is an equivalence between the category FFTred(k) and the category of algebraic varieties over
k.
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Remark: The only slightly tricky thing is to check the correspondence between morphisms,
but here, the definitions given in Chapter 1 were explicitly designed to make this checking
easier.

Given a field, k, say that X is a generalized algebraic variety over k, if X is obtained by
gluing schemes of the form Spec(k[X1, . . . , Xnα)/Aα), where Aα is not necessarily a radical
ideal, i.e., we allow nilpotents in rings of generalized varieties.

In keeping with the above point of view of schemes as generalizations of varieties, we can
examine LFT-morphisms. Say f : X → Y is an LFT morphism. For any y ∈ |Y |, look at
the fibre

Xy = X
∏

Y

Spec κ(y).

Note that Xy is LFT over Spec κ(y). Therefore, Xy is a generalized algebraic variety over
κ(y). Thus, an LFT-morphism is exactly an algebraic moving family of generalized algebraic
varieties over fields κ(y), parametrized by Y .

3.4 Further Readings

Schemes were invented by A. Grothendieck in the late fifties. The first extensive presentation
of the theory of schemes appears in Volume I of the Elements de Géométrie Algébrique [22],
and then in slightly revised form in [30]. The legendary Elements de Géométrie Algébrique,
known as the “EGA’s,” was A. Grothendieck’s grand project (with the collaboration of Jean
Dieudonné) to rewrite the foundations of algebraic geometry in a monumental treatise in
twelve chapters. In fact, only the first four chapters were written over a period of eight
years (Grothendieck and Dieudonné [22, 30, 23, 24, 25, 26, 27, 28, 29]), comprising a total
of 1914 + 466 = 2380 pages! The material in our Chapter 3 can be found in EGA I [22],
Chapter I, and in its revised and expanded version EGA Ib [30] (Chapter I). This material
is also discussed extensively in Hartshorne [33], Chapter II. A more informal presentation of
schemes can be found in Mumford [43], and more leisurly treatments are given in Eisenbud
and Harris [15], Ueno [56], and Shafarevich [54]. Danilov’s survey [11] also contains a nice
and intuitive introduction to schemes.



Chapter 4

Affine Schemes: Cohomology and
Characterization

4.1 Cohomology and the Koszul Complex

In this section, we begin the study of cohomology over an affine scheme. Most of these results
originally appeared in Serre’s FAC [47]. On (L)RS’s, we have three categories of sheaves,
each contained in the next:

1. QCMod(X) = the category of quasi-coherent OX-modules.

2. Mod(X) = the category of OX -modules.

3. Ab(X) = the category of sheaves of abelian groups.

Every topological space is a ringed space, with sheaf of rings, OX , the locally constant
sheaf, Z, of integers. For this situation, Mod(X) = Ab(X).

Assume that X is a ringed space and that |X| has two topologies |X|1 and |X|2, and
further assume that |X|2 is coarser than |X|1 (recall, this means that every open of |X|2 is
an open of |X|1). Equivalently, the identity id : |X|1 → |X|2 is continuous. We would like a
ring map OX2 −→ id∗OX1 . Here are two examples:

Example 4.1

(1) Say that |X|2 is X with the Zariski topology, and |X|1 is X with the norm topology
(X is supposed to be a scheme over the complex numbers). Then, OX2 is the ordinary
sheaf of germs of functions, and OX1 is the sheaf of germs of holomorphic functions (in
the analytic sense).

(2) Assume that |X|2 is coarser that |X|1, and that OX2 = Z. Then, id : |X1| → |X2|
is continuous, and we have a map OX2 −→ i∗OX1 , no matter the sheaf OX1 . The

199
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categories Mod(X) and Ab(X) have enough injectives for every X . If id∗(F), where
F is injective, is acyclic, then there exists a spectral sequence (Leray, 1945)

Hp
2 (X,R

qid∗F) =⇒ H•1 (X,F)

converging to H•1 (X,F), for every sheaf F on |X|1.

If we are in the first situation of Example 4.1, where X is a scheme, then the Leray
spectral sequence exists. If further, our spectral sequence degenerates for F , i.e.,

Rqid∗F = (0) for all q > 0,

we say that the Zariski topology computes the “correct” cohomology of F (Recall that
Rqid∗F is the sheaf associated to the presheaf

U 7→ Hq
1(U,F),

where U is a Zariski open).

When we have degeneration, we get the edge isomorphism

Hp
Zar(X, id∗F) ∼= Hp

norm(X,F) for all p ≥ 0,

i.e., we get the following comparison theorem:

Hp
Zar(X,F ↾ Zar) ∼= Hp

norm(X,F),

where, of course, F ↾ Zar is another notation for id∗F . On the right, we have the “correct”
cohomology of F , and so cohomology in the Zariski topology indeed computes the “correct”
cohomology of F . This is one of Serre’s theorems, from GAGA [48]. For a scheme over
Spec C (perhaps quasi-compact) and F a quasi-coherent analytic OX -module, the spectral
sequence does degenerate.

As in Appendix B, there is also Čech cohomology, which even works for preshaves. Again,
as in Appendix B, there is the spectral sequence of Čech cohomology

Ep,q
2 = Ȟp(X,Hq(F)) =⇒ H•(X,F) if F is a sheaf.

Remember that

(a) Hq(F) is the presheaf given by

U 7→ Hq(U,F),

in the sense of derived functor cohomology.

(b) H0(F) = F , because F is a sheaf.
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Frequently in a short exact sequence, cohomological properties of the lefthand term have
a profound effect on the situation. Here is a case in point:

Proposition 4.1 Let F be a sheaf on a ringed space X. The following statements are
equivalent:

(1) H1(X,F) = (0).

(2) Ȟ1(X,F) = (0).

(3) Given G and G ′′ in Ab(X), suppose that 0 −→ F −→ G −→ G ′′ −→ 0 is exact, then

0 −→ Γ(F) −→ Γ(G) −→ Γ(G ′′) −→ 0 is also exact.

(3a) Statement (3), but this is true for F , G, G ′′ being OX-modules.

Proof . (1)⇒ (2). From the spectral sequence of Čech cohomology, we get the edge sequence

0 −→ Ȟ1(X,H0(F)) −→ H1(X,F) −→ . . .

However, H0(F) = F and (1) implies that H1(X,F) = (0), and thus, Ȟ1(X,F) = (0).

(2)⇒ (3). We are given an exact sequence

0 −→ F −→ G −→ G ′′ −→ 0

in Ab(X). Cover X by opens Uα, so that s ∈ G ′′(X) = Γ(X,G ′′), when restricted to each
Uα lifts to a section tα ∈ Γ(Uα,G), which is possible, by exactness. On Uα ∩Uβ, we have the
cochain gαβ = tα − tβ . In fact, gαβ is a cocycle in F , as gαβ goes to 0 in G ′′. Refining the
cover, we may assume by (2) that gαβ = uα − uβ, where uα ∈ Γ(Uα,F) and uβ ∈ Γ(Uβ ,F).
Thus,

tα − tβ = uα − uβ on Uα ∩ Uβ ,
and it follows that

tα − uα = tβ − uβ on Uα ∩ Uβ .
Therefore, tα − uα patch to a global section t ∈ G(X). Moreover, t goes to s in G ′′, as uα
goes to 0 for all α. Thus, G(X) −→ G ′′(X) is surjective, and since Γ is left exact, (3) holds.

(3) ⇒ (1). Take Q to be some injective sheaf containing F (which exists, since Ab(X)
has enough injectives). Let G = Q and G ′′ = Coker (F → Q); we have the exact sequence

0 −→ F −→ G −→ G ′′ −→ 0.

Make the (long) cohomology sequence

0 −→ Γ(F) −→ Γ(G) −→ Γ(G ′′) −→ H1(X,F) −→ H1(X,G) = (0),
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with H1(X,G) = (0), since G is injective. By (3), we get (1), namely H1(X,F) = (0).

Of course, (3) always implies (3a). Now, if F is an OX -module, we can repeat the
argument that (3) implies (1) with Q an injective OX -module containing F , and thus, (3a)
also implies (1).

We can apply Proposition 4.1 immediately viz :

Proposition 4.2 Let X be an affine scheme and F a QC OX-module. Then
H1(X,F) = (0), and thus, all of (1)-(3a) of Proposition 4.1 hold.

Proof . By Yoneda’s lemma, we know that H1(X,F) is isomorphic to Ext1OX
(OX ,F), i.e.,

isomorphic to extension classes of OX -modules

0 −→ F −→ G −→ OX −→ 0. (†)

Given s ∈ Γ(X,OX), there is some open cover (Uα) where sα = s ↾ Uα lifts to a section
tα ∈ Γ(Uα,G). Pick s = 1. Then, we have tα ∈ Γ(Uα,G), and tα goes to 1 in Γ(Uα,OX). But
tα corresponds to a map ϕα : OX ↾ Uα → G ↾ Uα so that

ϕα(1) = tα.

Therefore, the sequence

0 −→ F ↾ Uα −→ G ↾ Uα −→ OX ↾ Uα −→ 0 is exact,

and our remarks imply that it splits. Thus,

G ↾ Uα = F ↾ Uα
∐
OX ↾ Uα.

Now, F = M̃ and OX = Ã for some module M and some ring A, which implies that

G ↾ Uα =
˜

(M
∐

A) ↾ Uα,

and thus, that G is quasi-coherent, since X is affine. Consequently, G = Ñ for some module
N , and (†) implies that

0 −→M −→ N −→ A −→ 0 is exact.

Since A is free, this last exact sequence splits, which implies that (†) splits. Therefore, the
cohomology class of (†) is null, and H1(X,F) = (0), as desired.

Remark: We have not proved that Hp(X,F) = (0) for all p > 0 and for every QC OX-
module F (X being affine), because to do so is not a purely categorical matter. It mixes
resolving F by arbitrary injective OX -modules and the quasi-coherence of F itself. A module
which is quasi-coherent and injective in the category of QC-modules need not be injective
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in the larger category of all modules. Since we wish to prove that Hp(X,F) = (0) when X
is affine, p > 0, and F is a QC OX -module, we must go around this difficulty. There are
several methods available and we choose to use the Koszul resolution because that complex
is important in its own right and because the method is perfectly general. As so, we digress
to matters of pure algebra:

Let A be a ring and M a module over this ring. The Koszul complex is defined with
respect to any given sequence (f1, . . . , fr) of elements of A. We write

−→
f = (f1, . . . , fr).

Form the graded exterior power
∧•Ar. We make

∧•Ar into a complex according to the
following prescription: Since

•∧
Ar =

r∐

k=0

k∧
Ar,

it is a graded module, and we just have to define differentiation. Let (e1, . . . , er) be the
canonical basis of Ar, and set

dej = fj ∈
0∧
Ar = A,

then extend d to be an antiderivation. That is, extend d via

d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ.
For example,

d(ei ∧ ej) = fiej − fjei,
and

d(ei ∧ ej ∧ ek) = d(ei ∧ ej) ∧ ek + (ei ∧ ej) ∧ dek
= (fiej − fjei) ∧ ek + fk(ei ∧ ej)
= fiêi ∧ ej ∧ ek − fjei ∧ êj ∧ ek + fkei ∧ ej ∧ êk,

where, as usual, the hat above a symbol means that this symbol is omitted. By an easy
induction, we get the formula:

d(ei1 ∧ · · · ∧ eit) =
t∑

j=1

(−1)j−1fijei1 ∧ · · · ∧ êij ∧ · · · ∧ eit .

We denote this complex byK•(
−→
f ), i.e., it is the graded module

∧•Ar with the antiderivation
d that we just defined. This is the Koszul complex .

Given an A-module M , we can make two Koszul complexes for the module M , namely:

K•(
−→
f ,M) = K•(

−→
f )⊗AM,

K•(
−→
f ,M) = HomA(K•(

−→
f ),M).
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We can take the homology and the cohomology respectively of these complexes, and we get
the modules

H•(
−→
f ,M) and H•(

−→
f ,M).

For the cohomology complex, we need the explicit form of δ. Now,

Kt(
−→
f ,M) = HomA(

t∧
Ar,M),

and the family of elements of the form

ei1 ∧ · · · ∧ eit with 1 ≤ i1 < i2 < . . . < it ≤ r,

is a basis of
∧tAr; thus, HomA(

∧tAr,M) is isomorphic to the set of alternating functions,
g, from the set of ordered increasing sequences (i1, . . . , it) of length t in {1, . . . , r} to M .
Thus, the coboundary δ is given (on elements g ∈ HomA(

∧tAr,M)) by

(δg)(i1, . . . it+1) =

t+1∑

j=1

(−1)j−1fijg(i1, . . . , îj, . . . , it+1).

We have H0(
−→
f ,M) = Z0(

−→
f ,M) = Ker δ. (Note that K0(

−→
f ,M) = M , via the map

g 7→ g(1).) Then,
δg(ei) = fig(1) = fim,

so δf = 0 implies that fim = 0 for all i. We find that

H0(
−→
f ,M) = {m ∈M | Am = 0},

where A is the ideal generated by {f1, . . . , fr}. Also, it is clear that

H t(
−→
f ,M) = 0 if t < 0 or t > r.

Let us compute the top cohomology group Hr(
−→
f ,M). We have

Zr(
−→
f ,M) = Kr(

−→
f ,M) = HomA(

r∧
Ar,M) =M,

via the map g 7→ g(e1 ∧ · · · ∧ er). Now, Im δr−1 = Br(
−→
f ,M), but what is Br(

−→
f ,M)? If

g ∈ Kr−1(
−→
f ,M) is an alternating function on i1, . . . , ir−1, then

δr−1g(1, . . . , r) = (δr−1g)(e1 ∧ · · · ∧ er) =
r∑

j=1

(−1)j−1fjg(1, . . . , ĵ, . . . , r).

Therefore,
Br = f1M + · · ·+ frM,
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and we find that

Hr(
−→
f ,M) =M/(f1M + · · ·+ frM) =M/AM.

It is important to connect the Koszul homology and cohomology via the notion of Koszul

duality . This is the following: Consider Kt(
−→
f ,M), an element of Kt(

−→
f ,M) has the form

h =
∑

ei1 ∧ · · · ∧ eit ⊗ zi1...it , where 1 ≤ i1 < i2 < . . . < it ≤ r.

We define a map (the duality map)

Θ: Kt(
−→
f ,M) −→ Kr−t(

−→
f ,M)

as follows: Pick j1 < j2 < · · · < jr−t, and set

Θ(h)(j1, . . . , jr−t) = ǫzi1...it ,

where

(α) i1, . . . , it is the set of complementary indices of j1, . . . , jr−t taken in ascending order,

(β) ǫ is the sign of the permutation

(1, 2, . . . , r) 7→ (i1, . . . , it, j1, . . . , jr−t),

where both i1, . . . , it and j1, . . . , jr−t are in ascending order.

We find (DX) that
Θ(∂h) = δΘ(h),

where ∂ is the obvious map induced on H•(
−→
f ,M) by d on H•(

−→
f ). So, the isomorphism,

Θ, induces an isomorphism

Ht(
−→
f ,M) ∼= Hr−t(

−→
f ,M) for all t ≥ 0,

which is called Koszul duality .

We need one more definition to exhibit the main algebraic property of the Koszul complex.

Definition 4.1 The sequence
−→
f = (f1, . . . , fr) is regular forM if for every i, with 1 ≤ i ≤ r,

the map
z 7→ fiz

is an injection of M/(f1M + · · ·+ fi−1M) to itself.

Proposition 4.3 (Koszul) Let M be an A-module and let
−→
f be a regular sequence of length

r for M . Then, H i(
−→
f ,M) = (0) if i 6= r.
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Proof . By Koszul duality, we have to prove that Ht(
−→
f ,M) = (0), for all t > 0. We proceed

by induction on r. For r = 0, there is nothing to prove and the proposition holds trivially.

Let
−→
f ′ = (f1, . . . , fr−1), and write L• = K•(

−→
f ′ ,M). Note that

−→
f ′ is regular for M . By the

induction hypothesis,

Hp(
−→
f ′ ,M) = Hp(L•) = (0) for all p > 0.

Let

K• = (Kt(fr)) =

{
A if t = 0, 1,
(0) otherwise,

a complex with two terms. The differentiation, d, is given by

de = fr,

where e = 1 in A = A1. Now, make the complex

K• ⊗A L•.

(Recall that if C• and D• are two complexes of A-modules bounded below by 0, then C•⊗D•
is the complex defined by

(C• ⊗D•)t =
∐

i+j=t

Ci ⊗Dj,

and in which differentiation is given by

d(α⊗ β) = dC•
(α)⊗ β + (−1)degαα⊗ dD•

(β)).

The reader should check that

L• ⊗A K• = K•(
−→
f ,M).

(The reader should also check that, in general,

K•(
−→
f ) = K•(f1)⊗ · · · ⊗K•(fr).)

Claim. For every p ≥ 0, there is an exact sequence

0 −→ H0(K• ⊗Hp(L•)) −→ Hp(K• ⊗ L•) −→ H1(K• ⊗Hp−1(L•)) −→ 0. (∗)

First, assume the claim. If p ≥ 2, then p− 1 ≥ 1, and so,

Hp−1(L•) = Hp(L•) = (0).

Thus,

Hp(K• ⊗ L•) = Hp(
−→
f ,M) = (0) for p ≥ 2.
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When p = 1, we have H1(L•) = (0), and the exact sequence (∗) yields

H1(
−→
f ,M) = H1(K• ⊗H0(L•)).

By Koszul duality,

H0(L•) = Hr−1(L•) =M/(f1M + · · ·+ fr−1M),

and
H1(K• ⊗H0(L•)) = H0(K• ⊗H0(L•)).

Now, the latter module is the kernel of multiplication by fr on M/(f1M + · · · + fr−1M),
which, by the assumption of regularity, is zero. We obtain

H1(
−→
f ,M) = (0).

It only remains to prove our claim. There are two proofs of a general cohomological
lemma establishing that (∗) is exact.
Lemma 4.4 Let K• be a complex of A-modules, and assume that

(a) Kl = (0) if l 6= 0 or l 6= 1, and

(b) K0 and K1 are free A-modules.

Then, for any complex, L•, of A-modules, we have (∗) for all p.

The first proof uses the general homological Künneth formula, since the modules are free
(see Godement [18], Chapter 5, Section 5): There is a spectral sequence with E2-term

E2
pq = Hp(K• ⊗Hq(L•))

which converges to H•(K• ⊗ L•). On its lines of lowest degree, this spectral sequence gives
the “zipper sequence” (∗).

The second proof proceeds as follows: Make the complexes K0 and K1, in which Ki has
one term of degree i and d is the trivial differentiation. By freeness, we have the exact
sequence of complexes

0 −→ K0 ⊗ L• −→ K• ⊗ L• −→ K1 ⊗ L• −→ 0.

From this, we get the long exact homology sequence:

−→ Hp+1(K1 ⊗ L•) ∂−→ Hp(K0 ⊗ L•) −→ Hp(K• ⊗ L•) −→ Hp(K1 ⊗ L•) −→ · · · .
However, we have:

Hp(K0 ⊗ L•) = K0 ⊗Hp(L•)

and
Hp(K1 ⊗ L•) = K1 ⊗Hp−1(L•),

and ∂ = dK ⊗ 1. Therefore, we get (∗).



208 CHAPTER 4. AFFINE SCHEMES: COHOMOLOGY AND CHARACTERIZATION

4.2 Connection With Geometry; Cartan’s

Isomorphism Theorem

Having understood the Koszul complex in the abstract, let us apply it to the computation
of cohomology in geometric situations. To do this, first take another sequence (g1, . . . , gr)
and make −→

fg = (f1g1, . . . , frgr).

I claim that the map

K•(
−→
fg) −→ K•(

−→
f )

induced by the map
ϕ−→g : (ξ1, . . . , ξr) 7→ (g1ξ1, . . . , grξr)

is a chain map. From ϕ−→g , we obtain the map

∧•ϕ−→g :
•∧
Ar −→

•∧
Ar,

namely,
ei1 ∧ · · · ∧ eit 7→ gi1 · · · gitei1 ∧ · · · ∧ eit .

Now,

d−→
fg
(ei1 ∧ · · · ∧ eit) =

t∑

j=1

(−1)j−1fijgijei1 ∧ · · · ∧ êij ∧ · · · ∧ eit

and

ϕ−→g (d−→fg (ei1 ∧ · · · ∧ eit)) =
t∑

j=1

(−1)j−1fij (gi1 · · · git)ei1 ∧ · · · ∧ êij ∧ · · · ∧ eit

= (gi1 · · · git)
t∑

j=1

(−1)j−1fijei1 ∧ · · · ∧ êij ∧ · · · ∧ eit

= (gi1 · · · git)d−→f (ei1 ∧ · · · ∧ eit)
= d−→

f
(ϕ−→g (ei1 ∧ · · · ∧ eit)),

as contended.

Pick s, t such that 0 < s < t, if we write
−→
f p = (f p1 , . . . , f

p
r ), then we get a map

ϕ−→
f t−s

: K•(
−→
f t ) −→ K•(

−→
f s).

However, what we really need is the cochain complex map

ϕ•−→
f t−s

(M) : K•(
−→
f s ,M) −→ K•(

−→
f t ,M),
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which gives us an inductive system of cochain complexes. Therefore, we can take the induc-
tive limit

lim
−→
t

K•(
−→
f t ,M),

which we denote by C•((
−→
f ),M). Now, taking an inductive limit is an exact functor, and

therefore, lim−→ commutes with cohomology, which implies that if we denote by H•((
−→
f ),M)

the cohomology of C•((
−→
f ),M), then

H•((
−→
f ),M) = lim

−→
t

cohomology of K•(
−→
f t ,M)

= lim
−→
t

H•(
−→
f t ,M).

For the applications to geometry, the acyclicity of our complexes is an essential feature.
This acyclicity follows most readily from the construction of a “contracting homotopy.” It
is to this construction that we now turn: Pick some gi, with i = 1, . . . , r, and consider the
map

Eg• : K•(
−→
f ) −→ K•(

−→
f ),

defined via

Eg•(z) =

(
r∑

j=1

gjej

)
∧ z.

In particular, we have

Eg(ep) =

(
r∑

j=1

gjej

)
∧ ep =

r∑

j=1

gj(ej ∧ ep).

Observe that in each degree, Eg raises degrees by one. Look at d◦Eg+Eg ◦d, where d is one

of the differentials d−→
f

for some sequence
−→
f . For example, look at the effect of this map on

ep. We have

(d ◦ Eg)(ep) = d

(
r∑

j=1

gj(ej ∧ ep)
)

=

r∑

j=1

gj(fjep − fpej),

and

(Eg ◦ d)(ep) = Eg(fp · 1) = fpEg(1) = fp

(
r∑

j=1

gjej

)
.

Thus, we have

(d ◦ Eg + Eg ◦ d)(ep) =
(

r∑

j=1

gjfj

)
ep,
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which means that

d ◦ Eg + Eg ◦ d =

(
r∑

j=1

gjfj

)
id on K1(

−→
f ).

Of course, the reader should now realize that

d ◦ Eg + Eg ◦ d =

(
r∑

j=1

gjfj

)
id on Kt(

−→
f ) for all t ≥ 0.

Consequently, if there exist g1, . . . , gr so that

r∑

j=1

gjfj = 1,

then,
d ◦ Eg + Eg ◦ d = id,

and so, Eg is the required contracting homotopy. This yields the following proposition:

Proposition 4.5 If (f1, . . . , fr) generate the unit ideal of A, then for all modules M , the
complexes

K•(
−→
f t ), K•(

−→
f t ,M), K•(

−→
f t ,M), C•((

−→
f t ),M)

have trivial (co) homology in all dimensions, even 0.

(Note that if f1, . . . fr generate the unit ideal, then f t1, . . . f
t
r also generate the unit ideal.)

The applications to geometry of the Koszul complex follows by its connection with Čech
cohomology. The set-up is as follows: We have a scheme, X , and a sheaf, F , of OX-modules
which is QC, and we let A = Γ(X,OX) and M = Γ(X,F).

Pick f1, . . . , fr ∈ Γ(X,OX) = A, and write Xfi for the open in X where fi 6= 0.

� Beware that Xfi need not be affine.

Let

U =
r⋃

j=1

Xfj ,

and write {Uj → U} for the covering of U by the Uj = Xfj . We also need a finiteness
hypothesis on X :

Definition 4.2 A scheme X is nerve-finite if the following conditions hold:

(1) For all affine opens U, V of X , the open U ∩ V is quasi-compact.

(2) The scheme X is covered by finitely many affine opens Uα.
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Important nerve-finite schemes are:

(1) Those whose underlying space, |X|, is noetherian: i.e., |X| has the DCC on closed
subspaces.

(2) Those whose underlying space, |X|, is quasi-compact and for which X is separated.

We can augment Theorem 3.8 (the characterization of quasi-compact sheaves on affine
schemes) to those schemes which are nerve-finite by effectively repeating the relevant parts
of its proof–since the proof of Serre’s conditions in that theorem use only nerve-finiteness.
This yields the following proposition whose proof we leave to the reader:

Proposition 4.6 Let X be a nerve-finite scheme and let F be a QC OX-module. Then, for
every g ∈ Γ(X,OX) = A, the following properties hold:

(a) If σ ∈ Γ(X,F) and σ ↾ Xg = 0 in Γ(Xg,F), there is some n > 0 so that gnσ = 0.

(b) Given σ ∈ Γ(Xg,F), there is some n > 0 so that gnσ lifts to a section s ∈ Γ(X,F).

(c) Γ(Xg,F) =Mg (recall, M = Γ(X,F)).

Take a nerve-finite scheme, X , with a quasi-coherent sheaf, F , and let A and M be as
above. Define

Ui0...it = Xfi0 ···fit
=

t⋂

j=1

Xfij
,

by Proposition 4.6(c),
Γ(Ui0...it ,F) =Mfi0 ···fit

.

Observe that we can define Mfi0 ···fit
as an inductive limit. Namely, set M (n) = M for all

n ≥ 0, and write
ϕnm : M (m) −→ M (n)

for the map
ξ 7→ (fi0fi1 . . . fit)

n−mξ.

We map M (n) to Mfi0 ···fit
via

ξ 7→ ξ

(fi0fi1 . . . fit)
n
,

then, one easily sees that
Mfi0 ···fit

= lim
−→
n

(M (n), ϕnm).

Let Cp
n(M) denote the set of all alternating maps, g, such that

g : (i0, . . . , ip) 7→M (n), where 1 ≤ i0 < . . . < ip ≤ r.
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We have the isomorphism

Cp({Uj → U},F) ∼= lim
−→
n

Cp
n(M),

since the lefthand side consists of alternating maps to Γ(Ui0 ∩ · · ·∩Uip ,F) =Mfi0 ···fit
, which

is just the righthand side. However, there is a bijection between the collection of alternating
maps from (p + 1)-tuples, (i0, . . . , ip) to M (n), and maps from the wedges ei0 ∧ · · · ∧ eip to
the same module M (n). Consequently, we find a bijection

Cp
n(M) −→ Kp+1(

−→
fn,M),

which takes the map ϕnm to multiplication by
−−−→
fn−m. Thus, we get the isomorphism

Cp({Uj → U},F) ∼= lim
−→
n

Cp
n(M) ∼= lim

−→
n

Kp+1(
−→
fn,M) ∼= Kp+1((

−→
f ),M).

This is a chain map. From this map, we obtain the following proposition due to Serre (see
FAC [47]):

Proposition 4.7 If X is a nerve-finite scheme and F is a QC OX-module, and if we choose
f1, . . . , fr in Γ(X,OX) and write Uj = Xfj and U =

⋃t
j Uj, then:

(1) There is a chain isomorphism

Cp({Uj → U},F) ∼= Kp+1((
−→
f ),M) functorial in F ,

where M = Γ(X,F),
(2) There is an isomorphism

Hp({Uj → U},F) ∼= Hp+1((
−→
f ),M) for all p ≥ 1, functorial in F ,

and finally,

(3) There is a functorial exact sequence

0 −→ H0((
−→
f ),M) −→ M −→ H0({Uj → U},F) −→ H1((

−→
f ),M) −→ 0.

Proof . Assertion (1) is exactly what was proved above.

For (2), consider the following diagram (for p ≥ 1)

Cp−1({Uj → U}

δ

��

∼ // Kp((
−→
f ),M)

dp
��

Cp({Uj → U},F)

δ

��

∼ // Kp+1((
−→
f ),M)

dp+1

��

Cp+1({Uj → U},F) ∼ //Kp+2((
−→
f ),M).
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By (1), it is commutative, and so, (2) follows.

(3) For p = 0, we get the diagram

0

��

// K0((
−→
f ),M)

d0
��

C0({Uj → U},F)

δ

��

∼ // K1((
−→
f ),M)

d1
��

C1({Uj → U},F) ∼ //K2((
−→
f ),M).

However,

H0({Uj → U},F) = Ker δ ∼= Ker d1 = Z1((
−→
f ),M),

and we have the exact sequence

0 −→ B1((
−→
f ),M) −→ Z1((

−→
f ),M) −→ H1((

−→
f ),M) −→ 0,

by definition of cohomology. Thus,

0 −→ B1((
−→
f ),M) −→ H0({Uj → U},F) −→ H1((

−→
f ),F) −→ 0 is exact.

Now,

0 −→ Ker d0 −→ K0((
−→
f ),M)

d0−→ B1((
−→
f ),M) −→ 0, is exact,

and Ker d0 = Z0((
−→
f ),M) = H0((

−→
f ),M), while K0((

−→
f ),M) = M . The desired result is

obtained by splicing the two exact sequences.

Remarks:

1. Later on, we will see that Hp((
−→
f ),M) depends only on the ideal, A, generated by

f1, . . . , fr. If X is affine and Y is the subscheme V (A) = Spec(A/A), then this coho-
mology is just Hp

Y (X,F), the so-called local cohomology of X in F along Y .

2. All the functors H•(
−→
f t ,M), H•(

−→
f t ,M), H•((

−→
f ),M), are δ-functors.

Having established that the limiting Koszul cohomology is just the Čech cohomology
of the covering {Uj → U}, we now need a result due to Henri Cartan to make the final
application to the (derived functor) cohomology of affine schemes. This comes about by
relating Čech cohomology to the derived functor cohomology. As usual, we have the Čech
cohomology spectral sequence, denoted ŠS:

Ep,q
2 = Ȟp(X,Hq(F)) =⇒ H•(X,F),
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Figure 4.1: The second level of a spectral sequence

where X is a ringed spaced and F is a sheaf of abelian groups. Recall that Hq(F) is the
presheaf defined by

Γ(U,Hq(F)) = Hq(U,F),
where Hq(U,F) is the cohomology of F on the open set U defined via derived functors,
resolutions, etc.

Consider our spectral sequence whose second level is illustrated in Figure 4.1. Observe
that Ker dp,02 = Zp,0

3 = Ep,0
2 . Thus, we get the surjection

H(Ep,0
2 ) −→ Ep,0

3 .

If we repeat this argument with d3, d4, etc., we deduce that there is a surjection

Ep,0
2 −→ Ep,0

∞ −→ 0.

We know that Hr(X,F) is filtered by subgroups Hr(X,F)p, and

Hr(X,F) = Hr(X,F)0 ⊇ Hr(X,F)1 ⊇ · · · ⊇ Hr(X,F)r ⊇ (0),

because Ep,r−p
∞ is isomorphic to Hr(X,F)p/Hr(X,F)p+1 and E

p,r−p
∞ = (0) if p > r. If we set

p = r, we get

Er,0
∞
∼= Hr(X,F)r →֒ Hr(X,F).

Thus, we get the canonical map from Ȟr(X,F) to Hr(X,F) given by the composition

Ȟr(X,F) = Ȟr(X,H0(F)) = Er,0
2 −→ Er,0

∞ →֒ Hr(X,F).

This map is neither injective nor surjective in general.
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Lemma 4.8 Let X be a ringed space and G be a presheaf of abelian groups on X. If the
sheaf, G♯, generated by G is zero, then

Č0(X,G) = Ȟ0(X,G) = (0).

If F is any presheaf of abelian groups, then the presheaf Hq(F) generates the zero sheaf if
q > 0. Thus,

E0,q
2 = H0(X,Hq(F)) = (0) for all q > 0.

Proof . It suffices (for the first statement) to prove that Č0(X,G) = (0). Pick ξ ∈ Č0(X,G).
Then, there is an open cover {Uα → X} and ξ arises from this cover. For each x ∈ X , we
have

Gx = G♯x = (0),

by hypothesis. Hence, if x ∈ Uα, there is some open, Vx ⊆ Uα, with x ∈ Vx such that
ξ ↾ Vx = 0. Therefore, as the cover {Vx → X} refines {Uα → X}, and as ξ = 0 in {Vx → X},
we find that ξ = 0 in Č0(X,G).

Recall that Hq(F) is the presheaf given by

U 7→ Hq(U,F),

where U is any open subset of X . Now, we have the Godement canonical resolution

0 −→ F −→ C0(F) −→ C1(F) −→ · · · , (∗)

which is obtained by an inductive construction where we begin with the exact sequence:

0 −→ F −→ C0(F) −→ Coker 0(F) −→ 0.

Here, C0(F) is the sheaf whose sections over an open U consists in
∏

x∈U Fx. Of course,
Coker 0(F) is the cokernel presheaf arising from of the injection F −→ C0(F). Next, one
repeat the above with F replaced by Coker 0(F) and sets C1(F) = C0(Coker 0(F)), and so
on. Therefore, for any p > 0, we have

0

''PP
PP

PP
PP

PP
PP

PP 0

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆ 0

Coker p−1(F)

77♦♦♦♦♦♦♦♦♦♦♦♦♦

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

Coker p(F)

77♦♦♦♦♦♦♦♦♦♦♦♦♦

''◆◆
◆◆

◆◆
◆◆

◆◆
◆

Cp−1(F)

77♦♦♦♦♦♦♦♦♦♦♦
dp−1

// Cp(F)

88qqqqqqqqqq
dp // Cp+1(F).
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Applying the functor Γ(U,−) to the Godement resolution (∗), we get a complex whose
cohomology is H•(U,F). The diagram

0

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗ 0

''PP
PP

PP
PP

PP
PP

PP

Coker p−1F(U)

''PP
PP

PP
PP

PP
PP

Coker pF(U)

''PP
PP

PP
PP

PP
PP

Cp−1F(U)

66♠♠♠♠♠♠♠♠♠♠♠♠
dp−1(U) // CpF(U)

77♦♦♦♦♦♦♦♦♦♦♦ dp(U) // Cp+1F(U)

and the left-exactness of Γ(U,−) shows that

Zp(U,F) = Coker p−1F(U).

But the map

Cp−1(F) −→ Coker p−1(F)
is a surjection of sheaves, which means that if z ∈ Zp(U,F), there is a covering of U by
smaller opens, Vα, and z ↾ Vα comes from Cp−1(F)(Vα), for all α. Hence, z ↾ Vα is a
coboundary: And so, each ξ ∈ Hp(U,F) goes to zero in some Hp(Vα,F), for suitably small
Vα. It follows that Hp(F) = (0) for all p > 0 (note the analogy with the Poincaré lemma).
The last statement of the lemma follows from the first.

We are now ready to prove the Cartan isomorphism theorem (1951/1952).

Theorem 4.9 (Cartan) Let X be a ringed space and F be a sheaf of abelian groups on
X. Assume that X has a family, U , of open subsets, which cover X, and which satisfy the
following conditions:

(1) If U, V ∈ U , then U ∩ V ∈ U .

(2) The family, U , contains arbitrarily small opens. That is, for every x ∈ X and every
open subset, U , with x ∈ U , there is some open V ∈ U so that x ∈ V ⊆ U .

(3) For all U ∈ U and all p > 0, Ȟp(U,F) = (0).

Then, the canonical map

Ȟn(X,F) −→ Hn(X,F)
is an isomorphism for all n ≥ 0.

Proof . We begin with the following claim:

Claim. If U ∈ U , then for all p > 0, the canonical map

Ȟp(U,F) −→ Hp(U,F) is an isomorphism.



4.2. CONNECTION WITH GEOMETRY; CARTAN’S ISOMORPHISM THEOREM 217

Assume that the claim holds. Then, condition (3) implies that for every U ∈ U ,

Hq(U,F) = (0) for all q > 0.

By (2), the groups Čp(X,G) can be computed by using coverings and taking direct limits
chosen from U . However, by (1) and (3),

Čp(X,Hq(F)) = (0) for all p ≥ 0 and all q > 0.

This is because

Cp({Uα → X},Hq(F)) =
∏

α0,...,αp

Hq(F)(Uα0 ∩ · · · ∩ Uαp)

=
∏

α0,...,αp

Hq(Uα0 ∩ · · · ∩ Uαp ,F),

where α0, . . . , αp are distinct, and by (1), Uα0 ∩ · · · ∩ Uαp ∈ U , so by (3),

Hq(Uα0 ∩ · · · ∩ Uαp ,F) = (0).

Thus, we get in the spectral sequence (ŠS),

Ep,q
2 = Ȟp(X,Hq(F)) = (0) for all p ≥ 0 and q > 0.

The spectral sequence degenerates, and

En,0
2 = Ȟn(X,F) −→ Hn(X,F) is an isomorphism for all n ≥ 0.

It remains to prove the claim.

Note that as a consequence of Lemma 4.8, we get the isomorphism

Ȟp(X,F) ∼= Hp(X,F)

for p = 0, 1, and
Ȟ2(X,F) −→ H2(X,F)

is injective. Indeed, for p = 0, this is a tautology. Write the edge sequence

0 −→ E1,0
2 −→ H1 −→ E0,1

2
d2−→ E2,0

2 −→ H2,

and observe that E0,1
2 = (0), by Lemma 4.8; so, E1,0

2
∼= H1 and E2,0

2 −→ H2 is injective.

We now prove the claim by induction on p. The cases p = 0, and p = 1 have just been
verified. Assume that

Ȟq(X,F) ∼= Hq(X,F) for 0 ≤ q < n and for all U ∈ U .
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bc bc bc bc bc bc

bc bc bc bc bc bc

d2

q = n

En,0
2

Figure 4.2: The E2 terms of a lacunary spectral sequence

We may also assume that n ≥ 2. Pick U ∈ U , and apply the spectral sequence for X = U .
The open set U inherits a family U ′, whose opens are the form U ∩ V , with V ranging over
U . Look at Čp(U,Hq(F)) for 0 < q < n. This is the direct limit over covers (Uα) from U :

lim−→Cp({Uα ∩ U → U},Hq(F))

i.e.,

lim−→
∏

α0,...,αp

Hp(Uα0 ∩ · · ·Uαp ∩ U,F).

By (1), Uα0 ∩ · · · ∩ Uαp ∩ U ∈ U ′, and

Ȟq(V,F) ∼= Hq(V,F) for all q, with 0 < q < n,

where V = Uα0 ∩ · · · ∩ Uαp ∩ U ∈ U ′. By (3), the group Hq(V,F) vanishes. Thus,

Čp(U,Hq(F)) = (0) for all p ≥ 0 and 0 < q < n.

Therefore,
Ep,q

2 = Ȟp(U,Hq(F)) = (0) for all p ≥ 0 and 0 < q < n.

Consider the lacunary spectral sequence whose second level is illustrated in Figure 4.2.
The hypotheses imply that

En,0
3 = H(En,0

2 ) = En,0
2 .

The same argument shows that

En,0
4 = H(En,0

3 ) = En,0
3 ,

and this holds up to level r = n. Thus,

En,0
n = En,0

2 .
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bc bc bc bc bc bc

bc bc bc bc bc

p+ q = n

q = n

En,0
∞ = En,0

2

Figure 4.3: The E∞ terms of a lacunary spectral sequence

Now look at the En+1 terms. Note that dn+1 operates on E−1,nn+1 to get to En,0
n+1. However

E−1,nn+1 = (0), and thus

En,0
n+1 = En,0

2 ,

which implies that
En,0
∞ = En,0

2 .

Look at the E∞ terms. We know that E0,q
2 = (0) if q > 0, by Lemma 4.8. Thus,

E0,q
∞ = (0) if q > 0.

The ∞ level of our spectral sequence is illustrated in Figure 4.3. On the line p + q = n,
we get

Ep,n−p
∞ = (0) if 0 ≤ p < n,

and En,0
∞ = En,0

2 , by what we already proved. But, Hn
p /H

n
p+1
∼= Ep,n−p

∞ = (0), so

Hn = Hn
0 = Hn

1 = · · · = Hn
n = En,0

∞ = En,0
2 ⊇ (0) = Hn

n+1.

Therefore, En,0
2
∼= Hn, that is,

Ȟn(U,F) ∼= Hn(U,F).

The induction is completed and with it, the theorem.

4.3 Cohomology of Affine Schemes

Having investigated both homological methods and their applications to geometry in the
previous sections, we can now reap the consequences in the important case of affine schemes.
First, we use Serre’s proposition (Proposition 4.7) to get the following:
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Proposition 4.10 Let X be a nerve-finite scheme and let F a QC sheaf of OX-modules,
with global sections f1, . . . , fr ∈ Γ(X,OX), and write M = Γ(X,F). Assume the following
conditions:

(1) Each Xfi is a quasi-compact open (1 ≤ i ≤ r).

(2) There exist g1, . . . , gr ∈ Γ(U,OX) so that

r∑

i=1

gi(fi ↾ U) = 1 ↾ U, where U =
⋃r
j=1Xfj .

Then,

(1) Hp({Xfj → U},F) = (0) if p > 0,
and

(2) If X = U , then the map M = Γ(X,F) −→ H0({Ui → U},F) is an isomorphism.

Proof . Since the Xfi are quasi-compact, the open U =
⋃r
j=1Xfj is also quasi-compact.

Thus, we can reduce to the case where X = U , and where (2) is trivial. By Proposition 4.7,

Hq({Xfj → U},F) = Hq+1((
−→
f ),M), for q ≥ 1.

Then, by hypothesis (2) and the Koszul complex, the righthand side is (0). Thus,

Hp({Xfj → U},F) = (0) for all p > 0,

as claimed.

Here the first main result on the cohomology of an affine scheme.

Theorem 4.11 (Vanishing theorem for affines) Let X be an affine scheme and F be a QC
sheaf of OX-modules. Then,

Hq(X,F) = (0) for all q > 0.

Proof . In Cartan’s theorem (Theorem 4.9), take U to be the family of all affine opens of
the form Xf , where f ∈ Γ(X,OX). These open sets form a basis of the topology, and
Xf ∩Xg = Xfg, so that conditions (1) and (2) of that theorem are satisfied. Now, if we knew
that

Ȟp(Xf ,F) = (0) for p > 0 and all f,

then, by Cartan’s theorem, we would get the isomorphism

Ȟp(X,F) ∼= Hp(X,F).
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But, when f = 1, Cartan’s condition (3) is exactly that the lefthand side vanishes, and the
theorem would hold. Therefore, we have to show that if X is affine then

Ȟp(X,F) = (0) for p > 0.

Cover X by the Xfi, with only finitely many, since X is quasi-compact. As the Xfi form a
cover, the elements f1, . . . , fr generate the unit ideal. By Proposition 4.10, we have

Hp({Xfj → X},F) = (0) for all p > 0.

However, the Xfi are arbitrarily fine. Consequenlty, we get

Ȟp(X,F) = lim−→ Ȟp({Xfj → X},F)
= lim−→Hp({Xfj → X},F) = (0),

which completes the proof.

Corollary 4.12 Let π : X → Y be an affine morphism of schemes. Then, the following
facts hold:

(1) For all q > 0, we have Rqπ∗F = (0).

(2) The canonical morphism
Hn(Y, π∗F) −→ Hn(X,F)

is an isomorphism for every n ≥ 0.

Proof . We already know from before that Rqπ∗F is the sheaf associated with the presheaf

Rqπ∗F : U 7→ Hq(π−1(U),F),

where U is any open of Y . (Thus, R0π∗F = π∗F .) But we have the Leray spectral sequence
of a morphism (see Appendix B)

Ep,q
2 = Hp(Y,Rqπ∗F) =⇒ H•(X,F).

Thus, if Rqπ∗F = (0), then Ep,q
2 = 0 if q > 0, for all p ≥ 0. Consequently, (2) follows from

(1), by degeneration of the spectral sequence. We need to prove (1). However, for every
y ∈ Y ,

(Rqπ∗F)y = lim
U
(Rqπ∗F)(U), where y ∈ U,

and the righthand side is

lim
U
(Rqπ∗F)(U) = lim

U
Hq(π−1(U),F).

Take the neighborhood basis at y to consist of affines U . Then, π−1(U) is affine, since π is
an affine morphism. By the vanishing theorem (Theorem 4.11), we get

Hq(π−1(U),F) = (0).
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Corollary 4.13 Let π : X → Y be an affine morphism and θ : Y → Z be any morphism.
Then, the canonical map

Rpθ∗(π∗F) −→ Rp(θ ◦ π)∗(F)
is an isomorphism for all p ≥ 0 and all QC OX-modules F .

Proof . We have the spectral sequence of composed functors (see Appendix B)

Ep,q
2 = (Rpθ∗ ◦Rqπ∗)(F) =⇒ R•(θ ◦ π)∗(F).

However, π is affine, and therefore, Rqπ∗(F) = (0) for all q > 0. The spectral sequence
degenerates and gives the edge isomorphism

Ep,0
2 = Rpθ∗(π∗F) ∼= Rp(θ ◦ π)∗(F).

Corollary 4.14 Let X be a scheme, {Uα → X} be an open cover by affines (not necessarily
finite) so that Uα0 ∩ · · · ∩ Uαp is again affine for all p ≥ 0 (e.g., if X is separated). Then,
the canonical homomorphisms

Hp({Uα → X},F) −→ Hp(X,F)

are isomorphisms for all p ≥ 0 and all QC OX-modules F . Therefore, the cohomology of a
“good cover” computes the “real” cohomology.

Proof . We have the spectral sequence of a cover (see Appendix B)

Ep,q
2 = Hp({Uα → X},Hq(F)) =⇒ H•(X,F).

Look at Cp({Uα → X},Hq(F)). We have

Cp({Uα → X},Hq(F)) =
∏

α0,...,αp

Hq(F)(Uα0∩· · ·∩Uαp) =
∏

α0,...,αp

Hq(Uα0∩· · ·∩Uαp ,F) = (0)

for all q > 0, as Uα0 ∩ · · · ∩ Uαp ia affine and F is a QC OX-module (where α0, . . . , αp are
distinct). Therefore, the cohomology of the complex C•({Uα → X},Hq(F)) is zero, i.e.,

Hp({Uα → X},Hq(F)) = (0), for all q > 0 and all p ≥ 0.

Thus, the spectral sequence degenerates and we get the edge isomorphism

Ep,0
2 = Hp({Uα → X},F) ∼= Hp(X,F) for all p ≥ 0.

Remark: For a quasi-compact, separated scheme, if r is the minimum number of affine
opens in a cover, we have

Hq(X,F) = (0) if q ≥ r.
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Indeed, we can can compute Hq(X,F) using Hq({Uj → X},F). The maximum number
of opens is r, and we get (0) at the cochiain level from Cr(X,F) on, by the requirement
of alternation in our cochains. Thus, the top level nontrivial cohomology group is at most
Hr−1(X,F).

We can apply this immediately to projective space of dimension r over a field. For, here,
the minimum number of affines is r + 1; hence, beyond Hr, the cohomology vanishes.

Corollary 4.15 Let X be a separated quasi-compact scheme, and let f1, . . . , fr ∈ Γ(X,OX)
be some global sections of OX . Assume that Xfj is affine for j = 1, . . . , r. Letting U =⋃r
j=1Xfj , we have the isomorphisms

Hp(U,F) ∼= Hp+1((
−→
f ),M), for all p ≥ 1.

Here, M = Γ(X,F) and F is any QC OX-module. Furthermore, we have the exact sequence

0 −→ H0((
−→
f ),M) −→M −→ Γ(U,F) −→ H1((

−→
f ),M) −→ 0. (∗)

Proof . Let Uj = Xfj . Since X is separated and quasi-compact, we know by previous work
that

Hp({Uj → U},F) ∼= Hp+1((
−→
f ),M) for all p ≥ 1,

and we have the sequence (∗), as stated. However, corollary 4.14 shows that

Hp+1((
−→
f ),M) ∼= Hp({Uj → U},F) ∼= Hp(U,F).

Example 4.2 Let X = Ar
k, where k is an algebraically closed field. (This example can be

generalized to Ar
B, where B is a ring, and even further (DX).) Take for the fi the Ti in

A = Γ(X,OX) = k[T1, . . . , Tr] (the Ti are indeterminates), and let Uj = Ar
Tj
, the localization

of Ar at Tj. Then,

U =
r⋃

j=1

Uj = Ar − {(0, . . . , 0)},

the complement of the origin in Ar. We have

Hp(U,F) ∼= Hp+1((
−→
T ),M), for all p ≥ 1,

and the exact sequence

0 −→ H0((
−→
T ),M) −→M −→ Γ(U,F) −→ H1((

−→
T ),M) −→ 0. (∗∗)

Say r ≥ 2, and let p = r − 1. Then, we get

Hr−1(U,F) ∼= Hr((
−→
T ),M) =M/M0M,



224 CHAPTER 4. AFFINE SCHEMES: COHOMOLOGY AND CHARACTERIZATION

where M0 = (T1, . . . , Tr), the maximal ideal defining {0}. In our exact sequence (∗∗),

H0((
−→
T ),M) = {m ∈M | M0m = (0)}.

Consider the case where F = OX , i.e., M = A = Γ(X,OX). In this case, (
−→
T ) is a regular

sequence for M . Then, we know that

Hr((
−→
T ),M) = (0)

except for p = r, where A/M0A ∼= k 6= (0). We conclude that for r ≥ 2 and F = OX , we
get

Hp(U,OX) =





A if p = 0
(0) if 1 ≤ p ≤ r − 2
k if p = r − 1
(0) if p ≥ r.

Hence, we get:

(1) If r ≥ 2, U = Ar − {0} is not affine.

(2) (Hartogs) Given a global section f ∈ Γ(U,OX) (i.e., a holomorphic function on U), this
section extends uniquely to a global section in Γ(X,OX) (i.e., a holomorphic function
on X).

Corollary 4.16 Let X be affine and f1, . . . , fr ∈ A = Γ(X,OX). Then, Hp((
−→
f ),M) de-

pends only on the ideal, A, generated by (f1, . . . , fr).

Proof . Let U =
⋃r
j=1Xfj . We know that

U = V (A)c,

and

Hp(U, M̃) = Hp+1((
−→
f ),M), for all p ≥ 1.

We also have the exact sequence

0 −→ H0((
−→
f ),M) −→ M −→ Γ(U, M̃) −→ H1((

−→
f ),M) −→ 0.

Clearly, Hp(U, M̃) and the various modules in the sequence depend only on U .

We will need two more cohomological results of the same kind as Theorem 4.11.

Proposition 4.17 Let X be a scheme, and suppose

0 −→ F −→ G −→ H −→ 0

is an exact sequence of OX-modules for which F and H are QC. Then, G is also QC.
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Proof . Since the question is local on X , we may assume that X is affine. We have to verify
Serre’s conditions (a) and (b) for G. Since the cohomology of affines is trivial, we have the
following commutative diagram for every f ∈ Γ(X,OX):

0 // F(X)

res

��

v // G(X)

res

��

//H(X)

res

��

// 0

0 // F(Xf)
u // G(Xf) //H(Xf) // 0

(a) Assume that s ∈ G(X) and res(s) = 0 in G(Xf). Thus, s, the image of s in H(X), has
res(s) = 0. By Serre (a) for H, there is some n > 0 so that fns = 0 in H(X), and thus, fns
goes to 0 in H(X); so, fns comes from some t ∈ F(X). Now,

u ◦ res(t) = res(fns) = fnres(s) = 0.

By injectivity, we have res(t) = 0 in F(Xf), and so, there is some m > 0 so that fmt = 0 in
F(X), by Serre (a) for F . Finally,

fm+ns = 0 in G(X),

and Serre’s (a) holds for G.
(b) Assume that σ ∈ G(Xf). Then, σ ∈ H(Xf ), so, by Serre (b) for H, there is some

n > 0 with
fnσ = res(s), for some s ∈ H(X).

Now, by affineness, G(X) −→ H(X) is onto, and so, there is some t ∈ G(X) having s ∈ H(X)
as its image. Observe that

res(t) = res(t) = res(s) = fnσ = fnσ.

Thus,

res(t)− fnσ = u(τ),

for some τ ∈ F(Xf). Serre’s (b), applied to F , yields an m > 0 so that

fmτ = res(t̃)

for some t̃ ∈ F(X). We have

res(fmt)− fm+nσ = u(fmτ) = u(res(t̃)) = res(v(t̃)).

Thus,
res(fmt− v(t̃)) = fm+nσ,

and (b) holds for F .
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To investigate the higher direct images of a quasi-coherent OX -module, we will need to
sheafify the Čech complex of a cover. In this investigation, the cohomology of intersection
of affines will enter, and so, to guarantee an application of nerve-finiteness, we will need X
to be a quasi-compact and separated scheme.

Let {Uα → X} be an affine open cover of X , and let

ϕα0...αp : Uα0 ∩ · · · ∩ Uαp → X

be the open immersion associated with Uα0 ∩ · · · ∩ Uαp . We define Cp({Uα → X},F),
abbreviated by Cp(F), by

Cp(F) =
∏

α0,...,αp

(ϕα0...αp)∗(F ↾ (Uα0 ∩ · · · ∩ Uαp)),

where α0, . . . , αp are distinct (and there are only finitely many, since X is quasi-compact).
We know the following facts:

(1) Cp(F) = Cp({Uα → X},F) is a sheaf.

(2) (ϕα0...αp)∗(F ↾ (Uα0 ∩ · · · ∩ Uαp)) is a QC OX -module.

(3) Cp({Uα → X},F) is a QC OX-module.

(4) C•({Uα → X},F), which by definition is the coproduct
∐

p≥0 Cp(F) of the Cp(F), is a
QC OX-module.

(5) H•(C•({Uα → X},F)) is a QC OX -module, since the cohomology is computed as a
quotient of QC OX-modules.

Take V open in X . Then, we have

Γ(V, Cp({Uα → X},F)) =
∏

α0,...,αp

Γ(V, (ϕα0,...,αp)∗F)

=
∏

α0,...,αp

F(V ∩ Uα0 ∩ · · · ∩ Uαp)

= Cp({Uα ∩ V → V },F).
Consequently, we get

H•(Γ(V, C•({Uα → X},F))) = H•({Uα ∩ V → V },F),
for every open subset V . Now, if V is affine, Γ(V,−) is exact on the category of QC OX-
modules, which implies that cohomology commutes with Γ(V,−). Hence, for V affine open,
we get

H•({Uα ∩ V → V },F) = H•(Γ(V, C•(F))) = Γ(V,H•(C•(F))).
We can apply the above computation to prove that higher direct images of QC modules are
again QC in good cases.
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Theorem 4.18 Let X, Y be schemes and let π : X → Y be a quasi-compact, separated
morphism. If F is a QC OX-module, then Rqπ∗F is a QC OY -module for every q ≥ 0.

Proof . As the question is local on Y , we may assume that Y is affine. Now if V is affine
open and V ⊆Y, we claim that π−1(V ) −→ X is an affine morphism. This is an important
first step in the proof. It means that if W is an affine open in X , then π−1(V ) ∩W is again
affine. Look at X

∏
Y . Note that W

∏
V is an affine open in X

∏
Y . Also, observe that

Γπ(X) ∩ pr−11 (W ) ∩ pr−12 (V ) has as image under pr1 our set π−1(V ) ∩W , where Γπ is the
graph morphism corresponding to π. As usual, this can be checked by viewing products as
representing their functors and using a test object, so that we can pretend that the objects
are indeed sets. Then

Γπ(X) ∩ pr−11 (W ) ∩ pr−12 (V ) = {(a, b) | b = π(a), a ∈ W, b ∈ V }.

Clearly, a ∈ W ∩ π−1(V ), so we get our observation. Since pr−11 (W ) ∩ pr−12 (V ) ∼= W
∏

V ,

it is affine. Since Y is affine, Γπ is a closed immersion, and thus, Γπ(X) is closed. Hence,
Γπ(X)∩ pr−11 (W )∩ pr−12 (V ) is a closed subset of an affine, and thus, is affine. But the same
object is also open in Γπ(X); hence, an affine open in Γπ(X). On Γπ(X), the morphisms π
and pr1 are inverse isomorphisms. Therefore, π−1(V ) ∩W is affine, as claimed.

Since π is quasi-compact, X is covered by finitely many affine opens U1, . . . , Ur, and if
V is an affine open in Y , then each π−1(V ) ∩ Uj is again affine, by the claim that we just
established. Thus,

{π−1(V ) ∩ Uj → π−1(V )}
is an affine open cover of π−1(V ). Previous work implies that

H•(π−1(V ),F) ∼= H•({π−1(V ) ∩ Uj → π−1(V )},F) ∼= H•(Γ(V, π∗C•(F))),

and we just proved that since V is affine

H•(Γ(V, π∗C•(F))) ∼= Γ(V,H•(π∗C•(F))).

Thus, we have

H•(π−1(V ),F) ∼= Γ(V,H•(π∗C•(F))). (∗)

However, π∗C•(F) is a QC OX-module (by previous work), and thus, H•(π∗C•(F)) is again
a QC OX-module. It is also easily checked that for any two affine opens V ′ ⊆ V , we have
the commutative diagram

H•(π−1(V ),F)

��

∼ // Γ(V,H•(π∗C•(F)))

��
H•(π−1(V ′),F) ∼ // Γ(V ′, H•(π∗C•(F))).
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This implies by passing to the inductive limit that

(Rqπ∗F)y ∼= H•(π∗C•(F))y for all y ∈ Y

(isomorphism of stalks). However, isomorpphism (∗) show that we have a map of sheaves
R•π∗F −→ H•(π∗C•(F)) which we have just seen is an isomorphism on stalks. Therefore,

R•π∗F ∼= H•(π∗C•(F)),

and thus, R•π∗F is QC.

Corollary 4.19 Let X, Y be schemes and let π : X → Y be a quasi-compact, separated
morphism. Assume F is a QC OX-module. Then, for every affine open V in Y , we have

Γ(V,Rqπ∗F) = Hq(π−1(V ),F).

If Y itself is affine, this gives

Γ(Y,Rqπ∗F) = Hq(X,F),

and thus, Rqπ∗F = ˜Hq(X,F).

Corollary 4.20 Let X, Y be schemes, π : X → Y be a quasi-compact, separated morphism,
and assume that Y is also quasi-compact. If F is a QC OX-module, there is some r > 0
(independent of F) so that

Rqπ∗(F) = (0) for all q ≥ r.

In particular, when Y is affine, r may be taken to be the minimum number of affine opens
to cover X.

Proof . Since Y is quasi-compact, we may assume that Y is affine. Then,

Rqπ∗F = ˜Hq(X,F) = (0)

beyond the number of elements in an open affine cover of X , by Čech theory.

Remark: While we have proved under fairly general hypotheses that higher direct images of
QC sheaves are themselves QC, it is a far different matter for the same question as concerns
coherent sheaves. Coherence is a kind of finiteness property and may easily be lost if the
morphism π does not have strong finiteness properties itself. In particular, finite presentation
or finite type, are inadequate to guarantee the analog of Theorem 4.18. One really needs that
the fibres of the morphism π behave as do compact spaces in the norm topology–in our case,
this translates into the assumption that π is a proper morphism. We will return to the analog
of Theorem 4.18 in Section 7.1 but we will find that the proof is far more subtle. However,
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there are two cases where we can say right now that the push-forward of a coherent sheaf is
again coherent. The first is the case where Y is locally noetherian and f : X → Y is a finite
surjective morphism. The question of coherence of f∗F is of course local on Y , so we may
and do assume Y is an affine noetherian scheme. Then, by Corollary 4.20, as f is an affine

morphism, Rqf∗F = (0) if q > 0 and f∗F is just ˜Γ(X,F) as A-module, where Y = Spec A.
Now, X = SpecB for some finite A-module, B, and Γ(X,F) is a finitely generated B-module
as F is coherent (Theorem 3.14–recall B is noetherian). Consequently, Γ(X,F) is a finitely
generated A-module and Theorem 3.14, again, shows that f∗F is coherent.

The second case is when i : X → Y is a closed immersion. Here, i is an affine morphism;
so, Rqi∗F = (0), for q > 0 and all we need to prove is that i∗F itself is coherent when F is
coherent. This is the content of:

Proposition 4.21 If i : X → Y is a closed immersion and Y is locally noetherian, then
Rqi∗F is a coherent OY -module whenever X is a coherent OX-module.

Proof . The case q > 0 has already been proved and does not require the hypothesis of
local noetherianess on Y . Since the question of coherence is local on Y we may assume
that Y is affine, say Y = SpecA (and A is noetherian), and then X will be SpecA where

A = A/A, for some ideal, A, of A. Moreover, the sheaf F has the form M̃ for an A-module,
M . Under these conditions, the coherence of F is just the finite generation of M because A
(and hence A) is noetherian. But, i∗F is just the A-module M considered as A-module via
the homomorphism A −→ A. Hence, M as A-module is finitely generated; it follows that
i∗F is coherent.

4.4 Cohomological Characterization of Affine Schemes

One of the interesting uses of cohomology is that by viewing the cohomology of a scheme with
coefficients in a restricted class of QC sheaves, we can decide on the affiness or nonaffineness
of the given scheme. This fact was discovered by Serre [50] (1957), here is his theorem.

Theorem 4.22 (Serre) Let X be a quasi-compact scheme. Then, the following properties
are equivalent:

(1) The scheme, X, is affine.

(2) For all QC OX-modules, F , for all q > 0, we have Hq(X,F) = (0).

(3) For all QC OX-modules, F , we have H1(X,F) = (0).

(4) For all QC OX-ideals, I ⊆ OX , we have H1(X, I) = (0).

(5) There exist f1, . . . , fr ∈ Γ(X,OX) = H0(X,OX) so that
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(a) Each Xfi is affine, for i = 1, . . . , r.

(b) The ideal (f1, . . . , fr) is the unit ideal of Γ(X,OX).

Proof . The implication (1)⇒ (2) follows from Theorem 4.11. (2)⇒ (3) and (3)⇒ (4), are
trivial.

(4) ⇒ (5) (Serre’s argument). Let P be any closed point of X , and let U be any
affine open containing P . Since X is quasi-compact and a T0-space, such a point exists, by
Proposition 3.1. Let Y = U c, which is a closed set in X , and let

Ỹ = Y ∪ {P}.

There exist QC ideals I and Ĩ defining the reduced, induced, structure of scheme for Y and
Ỹ . We have Ĩ ⊆ I. Consider the following exact sequence of QC OX -modules:

0 −→ Ĩ −→ I −→ Cok −→ 0, (∗)

where Cok denotes the cokernel of Ĩ −→ I. If Q ∈ Y , then the localization of I at Q, namely
IQ, is IOX,Q. Since Y ⊆ Ỹ , we also have

ĨQ = IOX,Q = IQ,

and thus,
CokQ = (0).

If Q /∈ Ỹ , then
ĨQ = OX,Q = IQ,

and again,
CokQ = (0).

Therefore, Cok is a sheaf supported exactly at P , and at P , we have ĨP = mP , a maximal
ideal in OX,P . But P is not on Y , so IP = OX,P . We thus find that

CokP = κ(P ),

that is, the sheaf Cok is a “skyscraper sheaf.” If we apply cohomology to (∗), we get

H0(X, I) −→ H0(X,Cok) −→ H1(X, Ĩ),

and since (4) is assumed to hold, we get H1(X, Ĩ) = (0). Therefore, the map Γ(X, I) −→
κ(P ) is surjective. Thus, we can find there is some f ∈ Γ(X, I) so that f = 1modmP ; hence,
f(P ) 6= 0. Consider Xf and ξ ∈ Xf . We know that f(ξ) 6= 0, and so, if we had ξ ∈ Y , we
would get f(ξ) = 0, a contradiction. Therefore, ξ ∈ U , and Xf ⊆ U . Since f(P ) 6= 0, we
have P ∈ Xf . Let f = f ↾ U . Then, Xf = Uf , and Uf is affine because U is affine. Thus,
Xf is affine. Now,

V =
⋃
{Xf all such f}
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is an open subset of X that contains all closed points of X , by construction. By Proposition
3.1, we must have V = X , since otherwise, X − V would be a closed nonempty subset of X
without any closed point. Thus, we can cover X by the Xf ’s, and since X is quasi-compact,
there is a finite subcover, say Xf1 , . . . , Xfr , which yields (a).

We now prove that the elements f1, . . . , fr generate the whole of Γ(X,OX). The fi’s
induce a map

ϕ : OrX −→ OX
defined as follows: For any open subset U , and for every vector (a1, . . . , ar) ∈ OrX(U),

(ϕ ↾ U)(a1, . . . , ar) =
r∑

i=1

fiai.

Given any open U , observe that U is covered by the U ∩Xfi’s, and if ξ ∈ OX(U) is given,
let

b =
ξ

fi
on U ∩Xfi .

Then,
ϕ(0, . . . , 0, b, 0, . . . , 0) = ξ on U ∩Xfi.

Therefore, ϕ is surjective as a map of sheaves. If K = Kerϕ, we have the exact sequence

0 −→ K −→ OrX −→ OX −→ 0, (∗)

and K is quasi-coherent. Now, H1(X,K) = (0); to see this, proceed by induction on r. For
r = 1, since K is quasi-coherent, we have H1(X,K) = (0), by the hypothesis. Next, consider
the QC subsheaf, K ∩ Or−1X , of Or−1X . We have the commutative diagram

0 // Or−1X
// OrX // OX // 0

0 // K ∩ Or−1X

OO

// K

OO

// Q

OO

// 0,

where Q is the cokernel in the lower sequence and the two left vertical arrows are injections.
It is clear that the map Q −→ OX is also an inclusion, and so, Q is a QC ideal of OX .
Applying cohomology to the lower row, we get

(0) = H1(X,K ∩ Or−1X ) −→ H1(X,K) −→ H1(X,Q) = (0),

since H1(X,K ∩ Or−1X ) = (0), by the induction hypothesis, and H1(X,Q) = (0). Thus,
H1(X,K) = (0), as claimed. Applying cohomology to (∗), we get

Γ(X,OrX) −→ Γ(X,OX) −→ H1(X,K) = (0).

Therefore, globally, Γ(X,OX) is generated by the fi’s, and (b) holds.
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(5)⇒ (1). First, we note that for any scheme X , there is a map

can : X → Xaff ,

where Xaff = Spec Γ(X,OX). This is because Xaff being affine, there is an isomorphism

HomSCH(X,Xaff) ∼= Hom rings(Γ(Xaff),Γ(X)),

and Γ(Xaff) = Γ(X); so that we can take 1 on the righthand side and get the map can on
the lefthand side. We know that the Xfi ’s are affine and cover X . Also, Xfi ∩Xfj (= Xfifj )
is the localization of the affine Xfi, and thus, Xfi ∩ Xfj is affine. This cover by the Xfi is
consequently nerve-finite. By the usual reasoning, we have an isomorphism

Γ(Xfi ,OX) ∼= Γ(X,OX)fi .

Let Y = Xaff . Then,

Yfi = Spec Γ(X,OX)fi ∼= Spec Γ(Xfi,OX),

and (as Xfi is affine),

canX ↾ Xfi = canXfi
: Xfi −→ Yfi

is an isomorphism. Therefore,

canX : X −→
r⋃

i=1

Yfi

is an isomorphism. However, the ideal (f1, . . . , fr) is all of Γ(X,OX), which implies that

Y =
r⋃

i=1

Yfi.

This proves that

canX : X −→ Y =

r⋃

i=1

Yfi

is an isomorphism, and X is affine.

Corollary 4.23 If X is noetherian, then conditions (2), (3), (4) may be replaced by their
equivalent conditions:

(2a) For all coherent OX-modules, F , for all q > 0, we have Hq(X,F) = (0).

(3a) For all coherent OX-modules, F , we have H1(X,F) = (0).

(4a) For all coherent OX-ideals, I ⊆ OX , we have H1(X, I) = (0).
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Proof . The fact that (x) implies (xa) is trivial for x = 2, 3, 4. The converse implications
hold because every QC object is the direct limit of its coherent subobjects, and

H•(X,F) = lim
−→
α

H•(X,Fα),

with Fα coherent, as X is Noetherian.

Remark: Consider Ar, with r ≥ 2, and elements T1, . . . , Tr ∈ k[T1, . . . , Tr]. Let X =
Ar − (0). We know that each XTi is affine and that the XTi ’s cover X . Yet, X is not affine.
This is because T1, . . . , Tr do not generate the unit ideal. Therefore, Serre’s condition (5b)
is essential.

Theorem 4.24 Let X be a scheme and assume that I is a QC OX-ideal such that In = (0)
for some n ≥ 1. Let X0 be the scheme given by I. Then, X is affine iff X0 is affine.

Proof . If X is affine, then X0 is also affine, since it is a closed subscheme of an affine scheme.

Let us now assume that X0 is affine. As I is nilpotent, |X0| = |X|. Let Xk be the
subscheme determined by Ik+1. We prove by induction on k that Xk is affine. Observe that
the passage from Xk to Xk+1 involves the ideal Ĩ = Ik+1/Ik+2 of OX/Ik+2, and Ĩ satisfies
the equation

Ĩ2 = (0).

Therefore, we are reduced to the case I2 = (0). Since I2 = (0), the ideal I is also an OX/I-
module, and since X0 is determined by I, the sheaf OX0 is OX/I, and I is a QC OX0-module.
By Serre’s criterion (4), we have H1(X0, I) = (0), and since |X| = |X0|, we get

H1(X, I) = (0).

Let A be any OX-ideal. We have the exact sequence

0 −→ I −→ A+ I −→ (A+ I)/I −→ 0, (†1)

where (A+ I)/I is an OX/I = OX0-module. Applying cohomology to (†1), we get

H1(X, I) −→ H1(X,A+ I) −→ H1(X, (A+ I)/I),

but we showed that H1(X, I) = (0) and

H1(X, (A+ I)/I) ∼= H1(X0, (A+ I)/I) = (0),

since X0 is affine. Therefore,
H1(X,A+ I) = (0).

We also have the exact sequence

0 −→ A −→ A+ I −→ (A+ I)/A −→ 0. (†2)
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However, we have the isomorphism

(A+ I)/A ∼= I/I ∩ A,

and I/I ∩ A is an OX0-ideal. However, in the exact sequence

0 −→ I ∩ A −→ I −→ I/I ∩ A −→ 0, (†3)

all ideals are OX0-ideals. As X0 is affine and Γ(X0,−) is thus exact, we get that

Γ(X0, I) −→ Γ(X0, I/I ∩ A) −→

is surjective. Since |X| = |X0|, the sequence

Γ(X, I) −→ Γ(X, I/I ∩ A) −→ 0

is exact. We have the commutative diagram

Γ(X, I+ A) // Γ(X, (I+ A)/A)

Γ(X, I)

OO

// Γ(X, I/I ∩ A)

OO

// 0

where the second vertical arrow is an isomorphism. Therefore, the top horizontal map
Γ(X, I + A) −→ Γ(X, (I + A)/A) is surjective. By taking the cohomology of (†2), we get
that

H1(X,A) −→ H1(X,A+ I)

is injective. Yet, H1(X,A + I) = (0). So, H1(X,A) = (0), and we conclude by Serre’s
criterion that X is affine.

Corollary 4.25 Let X be a noetherian scheme. Then, X is affine iff Xred is affine.

Proof . Let N = N (X) be the nil-ideal of OX . Then, N is nilpotent as X is noetherian, and
we apply Theorem 4.24.

Remark: IfX is given and I is a QC ideal ofOX such that I2 = (0), then, forX0 determined
by I, we say that X is an infinitesimal extension of X0 by I. We proved that an infinitesimal
extension of an affine scheme is affine.

How does one make infinitesimal extensions of X0? How can one classify them? The
answers to these two questions turn out to be very important–of great use in making examples
of nonintuitive phenomena in algebraic geometry. In fact, these phenomena were exactly the
sort of phenomena which elluded (in the main) the efforts of the classical Italian geometers
of the early twentieth century. They did not possess a full cohomology theory, and we do.
We will return to these questions in the next chapter.
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4.5 Further Readings

The material on the cohomology of quasi-coherent sheaves over an affine scheme and the
Koszul Complex (Section 4.1) can be found in EGA IIIa [24], Section 1 (see also Serre [52],
Chapter IV, for the Koszul Complex). Cartan’s isomorphism theorem and most related
material (Section 4.2) is covered in Godement [18], Chapter V, and in Hartshorne [33],
Chapter III. The cohomology of affine schemes (Section 4.3) is discussed EGA IIIa [24],
Section 1, Hartshorne [33], Chapter III, and Ueno [57]. The cohomological characterization
of affine schemes (Section 4.4) is due to Serre in the case of coherent sheaves over algebraic
varieties (Serre [50]). The generalization to quasi-coherent sheaves appears in EGA II [23],
Section 5.2 (Le critère de Serre), page 97–99, and Hartshorne [33], Chapter III. In both of
these references, the proof is a bit sketchy. Danilov’s chapter in [10] contains an excellent
informal introduction to cohomological methods in algebraic geometry, and Dieudonné [12]
gives a fascinating account of the history of algebraic geometry up to 1970.
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Chapter 5

Bundles and Geometry

5.1 Locally Free Sheaves and Bundles

This chapter and the next two form the heart of the material in these notes. The language of
bundles and locally free sheaves together with the theorems one can prove about them strike
directly at the center of geometric questions in algebraic and complex analytic geomety. In
particular, the structure of the set of codimension one subspaces of a scheme is intimately
connected with the collection of line bundles on the scheme. Unfortunately, for higher
dimension, the connection to vector bundles is much weaker–but it is a beginning. In the
literature, constant use of the concepts and theorems of this and the next two chapters is
the norm.

Throughout this section, (X,OX) denotes a ringed space.

Definition 5.1 An OX-module, F , is locally free if for every x ∈ X , there is some open
subset, U , with x ∈ U , so that

F ↾ U ∼= (OX ↾ U)(I) = O(I)
X ↾ U

for some set I (possibly dependent on U). If for some covering family, (Uα), the sets, I, are
all finite, we say that F is locally free of finite rank .

We have the following basic proposition:

Proposition 5.1 Let (X,OX) be a ringed space, let F , G be two finitely presented OX-
modules, andM any OX-module. The following properties hold:

(1) If x ∈ X, the canonical map

θ : HomOX
(F ,M)x −→ HomOX,x

(Fx,Mx)

is an isomorphism.

237
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(2) If x ∈ X and Fx is isomorphic to Gx, then there is some open subset, U , with x ∈ U ,
so that F ↾ U −→ G ↾ U is an isomorphism.

Proof . (1) The question is local, even punctual, on X . Thus, we may assume that

OpX −→ OqX −→ F −→ 0 is exact.

We have the following commutative diagram:

0 //HomOX
(F ,M)x

θ
��

//HomOX
(OqX ,M)x

α

��

//HomOX
(OpX ,M)x

β

��
0 // HomOX

(Fx,Mx) // HomOX
(OqX,x,Mx) // HomOX

(OpX,x,Mx),

and α and β are isomorphisms, since

HomOX
(OqX ,M)x ∼=Mq

x and HomOX
(OqX,x,Mx) ∼=Mq

x.

By the five lemma, θ is an isomorphism.

Next, let ϕ : Fx → Gx and ψ : Gx → Fx be inverse isomophisms at x. By (1), there exist

some opensW, W̃ , with x ∈ W, W̃ , u ∈ HomOX
(F ↾W,G ↾W ), and v ∈ HomOX

(F ↾ W̃ ,G ↾
W̃ ), such that

ux = ϕ and vx = ψ.

Look at u ◦ v and v ◦ u on V = W ∩ W̃ . Both become the identity at x. Then, u ◦ v − id
and v ◦ u− id both go to 0 at x. Therefore, there is some open U ⊆ V such that

u ◦ v = id and v ◦ u = id on U , by (1).

Corollary 5.2 Given (X,OX), assume that OX is coherent. For every x ∈ X, for every
finitely presented OX,x-moduleM , there exists an open subset, U , with x ∈ U , and a coherent
O ↾ U-module G so that Gx =M .

Proof . Since M is finitely presented, we have an exact sequence

OpX,x
ϕ−→ OqX,x −→ M −→ 0.

Since OX is coherent, it is finitely presented as OX -module, and so is OpX . By Proposition
5.1 part (1), there is some open subset, U , with x ∈ U , and a map

u : OpX ↾ U → OqX ↾ U

so that ux = ϕ. Letting G = Coker u, we have a coherent OX ↾ U -module such that Gx =M .
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Corollary 5.3 If F is a locally free OX-module of finite rank and F has rank n(x) at some
x ∈ X, then there is some open subset, U , with x ∈ U , so that F ↾ U is locally free and of
rank n(x) on all of U . Hence, rk F = n is an open condition on X, and if X is connected
and F has finite rank, then F has constant rank.

Proof . Since F is locally free of finite rank, it is finitely presented, and at x,

Fx ∼= On(x)X,x .

By Proposition 5.1 part (2), there is some open subset, U , with x ∈ U , so that F ↾ U is
locally free and of rank n(x) on all of U .

If G is locally free, but not necessarily of finite rank, then the functor

M 7→ G ⊗OX
M

is exact on OX -modules. For any such G, we let

GD = HomOX
(G,OX),

and call GD the dual of G.

Remark: Having finite rank is the most important case for a locally free sheaf. Thus, from
now on, locally free means locally free of finite rank, unless otherwise specified . Of course,
F has finite rank iff FD has finite rank.

Proposition 5.4 If G is an OX-module, then for any OX-moduleM, there is a homomor-
phism

GD ⊗OX
M−→HomOX

(G,M). (∗)

Furthermore, if G is locally free, then (∗) is an isomorphism.

Proof . Let U be some open subset of X . For all (ξ, η) ∈ GD(U)×M(U), we have
ξ ∈ GD(U) = HomOX

(G ↾ U,OX ↾ U), and we define the map

(ξ, η) 7→ ξ · η ∈ Γ(U,HomOX
(G,M)) = HomOX

(G ↾ U,M ↾ U)

by associating to (ξ, η) the element ξ · η ∈ HomOX
(G ↾ U,M ↾ U) defined so that for every

x ∈ U and every sx ∈ Gx, the element sx is mapped to ξx(sx)ηx ∈ Mx. This map is bilinear,
and thus, it is equivalent to a linear map

GD(U)⊗M(U) −→ HomOX
(G,M)(U).

However, GD(U)⊗M(U) is just a presheaf, and when we sheafify, our map factors through
GD ⊗M. We get the homomorphism (∗). If we assume that G is locally free, then whether
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or not (∗) is an isomorphism is a purely local question. Thus, we may assume that G ∼= O(I)
X ,

in which case both sides are isomorphic toM(I) (remember, I is finite).

As a consequence, if G is locally free, then the functor

M 7→ HomOX
(G,M)

is exact, and thus, its right derived functors vanish, i.e.,

ExtrOX
(G,M) = (0) for all r > 0.

However, we have the local-global Ext-spectral sequence (see Appendix B)

Hp(X, ExtrOX
(G,M)) =⇒ Ext•OX

(G,M).

If G is locally free, we have just shown that the spectral sequence degenerates, which implies
that

Hp(X,HomOX
(G,M)) ∼= ExtpOX

(G,M) for all p ≥ 0.

This proves the following proposition:

Proposition 5.5 Let (X,OX) be a ringed space, and G be a locally free sheaf. Then, we
have the isomorphisms

Hp(X,GD ⊗M) ∼= Hp(X,HomOX
(G,M)) ∼= ExtpOX

(G,M).

If X is an affine scheme, then for QC OX-modules,M, we deduce that

ExtpOX
(G,M) = (0) for all p > 0.

As a consequence of Proposition 5.5, when X is affine, all multiextensions

0 −→M −→ Fp −→ · · · −→ F2 −→ F1 −→ G −→ 0

split (as well as the ordinary extensions, i.e., when p = 1).

We can also prove the following proposition, which is more general in some sense, and
less general in another sense:

Proposition 5.6 If F ,G are OX-modules, with G locally free of finite rank, and if there is
a given extension

0 −→ F −→ H −→ G −→ 0,

then, for every x ∈ X, there is some open subset, U , with x ∈ U , so that the sequence

0 −→ F ↾ U −→ H ↾ U −→ G ↾ U −→ 0

splits.



5.1. LOCALLY FREE SHEAVES AND BUNDLES 241

Remark: Here, (X,OX) need not be a scheme; so, vanishing of cohomology on sufficiently
fine opens may not hold.
Proof . The question is local on X . Thus, we may assume that G ∼= OnX for some n. Let
s1, . . . , sn be the canonical sections. Then, there is some open subset, U , so that the sections
s1, . . . , sn lift to sections t1, . . . , tn ∈ H(U). However, each section t ∈ H(U) defines a map
OX(U) −→ H(U), and thus, we get a map

OnX ↾ U = G ↾ U −→ H ↾ U

which splits the sequence.

Definition 5.2 An OX -module L on a ringed space (X,OX) is invertible if L is locally free
of rank 1.

Let L be any locally free OX -module (remember: finite rank). We have an isomorphism

LD ⊗ L ∼= HomOX
(L,L).

If L is invertible, more is true:

Proposition 5.7 For any invertible sheaf L, on the ringed space, (X,OX), there is a canon-
ical isomorphism

HomOX
(L,L) ∼= OX .

Proof . For any sheaf F , there is a canonical map

OX −→ HomOX
(F ,F).

Indeed, for any open subset U and any σ ∈ OX(U), multiplication by σ gives a map
F ↾ U −→ F ↾ U , and all these maps patch to yield the desired map. If F is invertible, then
our map

OX −→ HomOX
(F ,F)

is an isomorphism. For this, it is enough to check locally; and we may assume that F = OX .
But then, HomOX

(OX ,OX) ∼= OX , which concludes the proof.

If L is an invertible sheaf, then by taking global sections, we get an isomorphism

HomOX
(L,L) ∼= Γ(X,OX).

When X is compact (or proper), connected, and complex analytic, then Γ(X,OX) = C.
Therefore, in this case,

HomOX
(L,L) = End(L) ∼= C.

Also observe that if L is invertible, then

LD ⊗ L ∼= OX .
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From this, we get immediately

L⊗p ⊗ L⊗q ∼= L⊗(p+q), for all p, q ∈ Z

and

L⊗p ⊗ L⊗q ∼= HomOX
(L⊗−p,L⊗q) for all p, q ∈ Z.

We can check as well that if L andM are invertible, then L ⊗M is invertible. Therefore,
the isomorphism classes of invertible sheaves on (X,OX) form a group under ⊗. This group
if called the Picard group of X , and is denoted by Pic(X). It is a fundamental invariant of
X .

Proposition 5.8 Let A be a local ring and M be a finitely generated A-module. For any A-
module, M ′, if M ⊗AM ′ ∼= A, then M ∼= A. In particular, M ′ must then also be isomorphic
to A.

Proof . Reduce mod m (the maximal ideal of A). We get

M/mM ⊗κ(A) M ′/mM ′ ∼= κ(A).

Since these are vector spaces over the field κ(A), we must have rk(M/mM) = 1. By
Nakayama’s lemma, since M is finitely generated, it is generated by a single element ξ.
We have a surjective map A −→ M via 1 7→ ξ. The kernel of this map is the annihilator of
ξ: A = Ann(ξ). Now, A kills M ⊗AM ′ ∼= A, and thus, A kills A. This implies that A = (0),
and M ∼= A.

Proposition 5.9 Let (X,OX) be a local ringed space and assume that OX is coherent. If
L is a coherent OX-module, then the following are equivalent:

(1) L is invertible.

(2) There is some OX-module,M, so that

M⊗OX
L ∼= OX .

(3) For every x ∈ X, there is some open subset, U , with x ∈ U , and an OX-module, M,
so that

M ↾ U ⊗OX↾U L ↾ U ∼= OX ↾ U.

(4) For every x ∈ X, there is an OX,x-module,Mx, so that

Mx ⊗OX,x
Lx ∼= OX,x.
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Proof . The implications (1)⇒ (2), (2)⇒ (3), (3)⇒ (4), are clear. Assume (4). Since L is
coherent, it is finitely generated. Therefore, we can apply Proposition 5.8 (with M = Lx),
and we get

Lx ∼= OX,x.
But L is finitely presented because L is coherent, and so is OX , as OX is also coherent.
Apply Proposition 5.1 part (2). We find that there is some open subset, U , with x ∈ U , and
an isomorphism

u : L ↾ U → OX ↾ U.
However, this means that L is invertible.

Corollary 5.10 Proposition 5.9 also holds when X is a locally noetherian scheme or a
complex analytic space of finite dimension.

Proof . In the first case, we know that OX is coherent. In the second, the coherence of OX
is a fundamental theorem of Oka as reformulated by Cartan and Serre.

Given a ringed space (X,OX), the sheaf O∗X , also denoted Gm, is defined by setting

Gm(U) = Γ(U,OX)∗

for every open subset, U , of X . Here, Γ(U,OX)∗ is the group of units in the ring Γ(U,OX).
The following important theorem shows the relationship between the Picard group and the
cohomology of Gm:

Theorem 5.11 Let (X,OX) be a ringed space. There is a canonical isomorphism

H1(X,Gm) ∼= Pic(X).

Proof . The presheaf H1(Gm) is defined by

H1(Gm)(U) = H1(U,Gm).

By a familiar argument (Poincaré’s lemma), the associated sheaf is trivial, and thus,

Ȟ0(X,H1(Gm)) = (0).

Using the Čech spectral sequence (see Appendix B), we get the exact sequence

0 −→ Ȟ1(X,Gm) −→ H1(X,Gm) −→ Ȟ0(X,H1(Gm)) = (0).

Therefore, we have the isomorphism

Ȟ1(X,Gm) ∼= H1(X,Gm).
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For any U open in X , let us denote OX ↾ U by OU . Observe that the automorphism group,
AutOU

(OU), of the OU -module OU is isomorphic to the (multiplicative) group Γ(U,O∗X), via
the map sending any section t ∈ Γ(U,O∗X) to the automorphism u ∈ AutOU

(OU) defined by

ux(sx) = txsx, for all x ∈ U and all sx ∈ OX,x.

Let U = {Uα → X} be a cover of X . First, we define a map

ϕU : H
1({Uα → X},O∗X) −→ Pic(X).

Observe that a Čech cochain θ is defined by a family, (θαβ ), of sections θ
α
β ∈ Γ(Uα ∩Uβ ,O∗X),

that is, in view of the isomorphism

Γ(U,O∗X) ∼= AutOU
(OU),

by a family of automorphisms θαβ of OX ↾ Uα ∩ Uβ . Also, the cochain θ is a cocycle iff

(1) θβα = (θαβ )
−1.

(2) θαβ · θβγ = θαγ on Uα ∩ Uβ ∩ Uγ .

However, these are precisely the gluing conditions, and we can define the invertible sheaf Lθ
by gluing the free sheaves OUα together, via the gluing maps

θαβ : OUβ
↾ Uα ∩ Uβ −→ OUα ↾ Uα ∩ Uβ .

For later use, let
ψα(θ) : OUα → Lθ ↾ Uα

be the isomorphism on Uα, for every index α, and note that

θαβ = ψα(θ)
−1ψβ(θ) on Uα ∩ Uβ.

Thus θ = (θαβ ) in Z
1({Uα → X},O∗X) gives us an element of Pic(X). If η = (ηαβ ) is another

cocycle in Z1({Uα → X},O∗X), then, θ and η are cohomologous iff

ηαβ = ωα · θαβ · ω−1β (∗)

for some 0-cochain, ω, in C0({Uα → X},O∗X). But such a cochain is a family ω = (ωα) of
automorphisms of OUα , and the condition (∗) means that the invertible sheaves Lθ and Lη
are isomorphic. Here, the isomorphism is given by the local isomorphisms

ψα(η)ωαψα(θ)
−1 : Lθ → Lη on Uα,

which patch on Uα ∩ Uβ , by condition (∗) (DX). Therefore, we get a map

ϕU : H
1({Uα → X},O∗X) −→ Pic(X).
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If V = {Vα → X} is another cover of X refining U , the naturality of the gluing implies that
the following diagram commutes:

H1({Uα → X},O∗X)

��

ϕU

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

Pic(X)

H1({Vα → X},O∗X)
ϕV

66♠♠♠♠♠♠♠♠♠♠♠♠♠

By passing to the inductive limit, we get a map

ϕX : Ȟ1(X,O∗X) −→ Pic(X).

Since an inductive limit of injective maps is injective, to prove that the map ϕX is injective, it
is enough to prove that each ϕU is injective. However, if ϕU(θ) = 0, then the invertible sheaf
Lθ constructed from θ is trivial, i.e., Lθ ∼= OX . The image ψα(1) of the section 1 ∈ Γ(X,O∗X)
is some section ωα ∈ Γ(Uα,Lθ) (where ψα : OUα → Lθ ↾ Uα is the isomorphism.) Now, since
the automorphisms θαβ of OX ↾ Uα ∩ Uβ are just multiplication by θαβ , we have

ωα = θαβ · ωβ on Uα ∩ Uβ , for all α, β,

which implies that θ is the coboundary of ω. Thus, ϕU is indeed injective. The map ϕX is
surjective because every invertible sheaf comes from a cover where it is locally trivial, and
thus, is obtained by gluing, i.e., from a cocycle.

It remains to prove that ϕX is a group homomorphism. It is enough to prove this for
ϕU , since being a homomorphism is preserved by taking the inductive limit. Let θ and η be
two cocycles in Z1({Uα → X},O∗X) (by refining covers, we may assume that θ and η are
defined over the same cover). For each α, if aα = ψα(1), where ψα : OUα → Lθ ↾ Uα is an
isomorphism, we have

Γ(Uα,Lθ) = Γ(Uα,OUα)aα,

and similarly
Γ(Uα,Lη) = Γ(Uα,OUα)bα.

But the automorphisms θαβ and ηαβ act by multiplication, and so,

aα = θαβ · aβ and bα = ηαβ · bβ on Uα ∩ Uβ.

Now, Γ(Uα,Lθ ⊗ Lη) consists of linear combinations of the aα ⊗ bα’s, and since

aα ⊗ bα = (θαβ · aβ)⊗ (ηαβ · bβ) = θαβ · ηαβ (aβ ⊗ bβ),

we see that Lθ ⊗Lη does correspond to (θαβ · ηαβ ).
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Remark: Observe that the above proof holds for any arbitrary ringed space. Nowhere did
we use the fact that X is an LRS, that X is affine, etc. In particular, the result holds for X
a topological space and OX the sheaf of germs of Ck-functions (0 ≤ k ≤ ω), real or complex.
Moreover, because we were careful in the proof to use the proper definitions which do not
depend upon the commutativity of Gm, the same proof applies immediately to GL(n). Here,
we denote by GL(X, n) the sheaf of (nonabelian) groups defined so that for every open subset
U ⊆ X ,

Γ(U,GL(X, n)) = GL(Γ(U,OX)n),
the group of linear invertible maps of the free module Γ(U,OX)n ∼= Γ(U,OnX). It should
also be noted that Ȟ1(X,GL(n)) is generally only a set, and not a group, since GL(n)
is not abelian for n ≥ 2. The reader will find the definitions relative to nonabelian Čech
cohomology in Appendix B. We obtain the

Corollary 5.12 Let (X,OX) be a ringed space. There is a canonical isomorphism

Ȟ1(X,GL(n)) ≈ LFn(OX),

where LFn(OX) is the set of isomorphism classes of locally free OX-modules of rank n on
X.

Let us consider the complex analytic case. Let X be a complex analytic space, for
example, Xan, where X is a finitely generated scheme over C. If OX is the sheaf of germs of
holomorphic functions in the norm topology , we have the exponential sequence

0 −→ Z −→ OX exp−→ O∗X .

If X is a manifold, the local existence of a logarithm implies that the exponential map is
surjective. We can apply cohomology, and we get

0 // H0(X,Z) //H0(X,OX)
exp // H0(X,O∗X) EDBC

GF@A
// H1(X,Z) //H1(X,OX) // Pic(X) EDBC

GF
c

@A
// H2(X,Z) //H2(X,OX) // · · · ,

where the map c : Pic(X) → H2(X,Z) plays a special role. If X is a complex manifold, we
can examine the two cases:

(1) X is compact connected, for example, PmC .

(2) X is connected and simply connected.
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In the first case, H0(X,OX) = C and H0(X,O∗X) = C∗, and exp is onto.

In the second case, as X is simply connected, the map exp : H0(X,OX)→ H0(X,O∗X) is
surjective, as a single valued branch of the logarithm exists on X .

In both cases, the sequence

0 −→ H1(X,Z) −→ H1(X,OX) −→ Pic(X)
c−→ H2(X,Z) −→ H2(X,OX)

is exact. The map c takes an invertible sheaf of OX-modules to its first Chern class . The
kernel of c consists of the invertible sheaves with trivial Chern class, and Ker c is isomorphic
to H1(X,OX)/H1(X,Z). The kernel of c is usually denoted, Pic0(X). For X = PmC , we will
prove later that H1(X,OX) = (0). In this case, c : Pic(X) → H2(X,Z) is an injection. We
will also find that H2(X,OX) = (0).

If X is a curve of genus g, then

H1(X,OX) = Cg,

and

H1(X,Z) = Z2g,

a lattice in Cg. So, Pic0(X) is a torus.

To return to the general case, let f : Y → X be a morphism. If L is locally free of finite
rank, then f ∗L is also locally free as an OY -module and the rank is preserved. We claim
that there is a canonical map

f ∗(HomOX
(A,B)) −→ HomOY

(f ∗A, f ∗B)

for any two OX -modules A,B, not necessarily locally free. By adjointness, we need only give
a map

HomOX
(A,B) −→ f∗HomOY

(f ∗A, f ∗B).
Let U be an open subset of X . We have

Γ(U,HomOX
(A,B)) = HomOX

(A ↾ U,B ↾ U)
Γ(U, f∗HomOX

(f ∗A, f ∗B)) = Γ(f−1(U),HomOX
(f ∗A, f ∗B))

= HomOX
(f ∗A ↾ f−1(U), f ∗B ↾ f−1(U)).

Our map is

ξ 7→ f ∗(ξ),

and it patches on overlaps.

If A is locally free of finite rank, and f taking A to B is a map of OX-modules, then
injectivity, surjectivity, and isomorphism, are local properties on X ; so, we may assume
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that that A = OrX . For A = OrX , we see that HomOX
(OrX ,B) = Br and f ∗A = OrY .

Consequently,
HomOX

(f ∗OrX , f ∗B) = (f ∗B)r,
and our map above is

f ∗(Br) −→ (f ∗B)r,
which is an isomorphism, since r is finite. Therefore, if A is locally free of finite rank, the
map

f ∗(HomOX
(A,B)) −→ HomOY

(f ∗A, f ∗B)
is an isomorphism. If L is locally free and we let B = OX , then

f ∗(LD) = (f ∗L)D.

If L andM are locally free, we also have

f ∗(L⊗M) = f ∗L ⊗ f ∗M.

Moreover, if L andM are invertible, then

f ∗(L⊗p ⊗M⊗q) = (f ∗L)⊗p ⊗ (f ∗M)⊗q. (DX)

The reader should show that the diagram

H1(X,O∗X)

H1(f)

��

// Pic(X)

f∗

��
H1(Y,O∗Y ) // Pic(Y )

commutes.

Proposition 5.13 (Projection formula) Let X, Y be ringed spaces and let F be any OX-
module, and L be any locally free sheaf of finite rank. For any morphism f : Y → X, there
is an isomorphism

f∗(F)⊗OX
L ∼= f∗(F ⊗OY

f ∗L).

Proof . We always have a canonical map

L −→ f∗(f
∗L).

Thus, we get
f∗(F)⊗OX

L −→ f∗(F)⊗OX
f∗(f

∗L).
However, we always have the map

f∗(F)⊗OX
f∗(f

∗L) −→ f∗(F ⊗OY
f ∗L) (DX),
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and by composition, we get our map. As isomorphism is a local property, we may assume
that L = OpX . Then, the lefthand side is (f∗(F))p and the righthand side is f∗(Fp). However,
f∗ commutes with finite coproducts, and this finishes the proof.

Invertible sheaves on local ringed spaces have special properties. So we now assume
that (X,OX) is an LRS. If F is an OX -module, then for any x ∈ X , the stalk, Fx, is an
OX,x-module. We set

F(x) = Fx/mxFx,
a κ(x)-vector space, and call it the fibre of F at x. If u ∈ Γ(U,F), then ux, the image of u
in Fx gives us

u(x) = ux modmxFx.
We call u(x) ∈ F(x), the value of u at x.

Assume that L is an invertible sheaf and that u ∈ Γ(U,L) and x ∈ U , then, u(x) ∈ L(x).
Now, L(x) ∼= κ(x) noncanonically, and different isomorphisms are connected to one another
by multiplication by a nonzero element of κ(x). Thus, u(x) ∈ κ(x) does not make sense.
However, the statements, u(x) = 0 and u(x) 6= 0, do make sense.

Proposition 5.14 Let X be an LRS and L be an invertible sheaf on X. If x ∈ X and
u ∈ Γ(U,L) (where x ∈ U), then, the following facts are equivalent:

(1) ux generates the stalk Lx as an OX,x-module.

(2) u(x) 6= 0.

(3) There is some open V ⊆ U with x ∈ V and some section v ∈ Γ(V,L−1) so that v ⊗ u
is mapped to 1 in Γ(V,OX).

Proof . The equivalence (1) ⇐⇒ (2) follows from Nakayama’s lemma, and (3) =⇒ (2) is
trivial. We now prove (2) =⇒ (3). If u(x) 6= 0, then ux is a unit of OX,x. Since L is locally
trivial, near x, we may assume that L = OX . Then, there is some vx ∈ OX,x so that

vxux = 1.

By definition, there is some open set, W , with x ∈ W , and there is some v ∈ Γ(W,OX), so
that vx = v at x. Then,

(vu− 1)x = 0,

and so, there is an open subset V ⊆ U ∩W with x ∈ V , and

vu− 1 = 0, on V .

Given an invertible sheaf L, for any f ∈ Γ(X,L), let

Xf = {x ∈ X ↾ f(x) 6= 0 in L(x)}.
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By Proposition 5.14 (3), Xf is open. If L′ is another invertible sheaf on X , and f ′ ∈ Γ(X,L′),
then

Xf ∩Xf ′ = Xf⊗f ′.

Linear algebra constructions on locally free sheaves (of finite rank) preserve local freeness.
For example, if F and G are locally free sheaves of finite rank, then, the following properties
hold:

(1) F ⊗ G is locally free and
rk(F ⊗ G) = rk(F)rk(G).

(2) HomOX
(F ,G) is locally free and

rk(HomOX
(F ,G)) = rk(F)rk(G).

(3) FD, the dual sheaf of F , is locally free and of the same rank as F .

(4) HomOX
(F ,G) is isomorphic to FD ⊗OX

G.

(5)
∧pF , the pth exterior power (or wedge) of F , is locally free and

rk

(
p∧
F
)

=

(
n

p

)
,

where n = rk(F).

(6)
⊗pF = F⊗p, the pth tensor power of F , is locally free and

rk(F⊗p) = (rk(F))p.

(7) Sp(F), the pth symmetric power of F , is locally free of rank
(
n + p− 1

p

)
,

the number of monomials of degree p in n variables, where n = rk(F). Here, Sp(F) is
F⊗p/Sp, where Sp is the symmetric group on p elements operating on the factors.

Indeed, the reader can check easily (using finite presentation) that all these operations
commute with taking stalks and fibres.

Let s1, . . . , sp ∈ Γ(U,F) be some sections over U , for some open subset, U , of X . Then,

(s1 ∧ · · · ∧ sp)(x) = s1(x) ∧ · · · ∧ sp(x)

and
(s1 ∧ · · · ∧ sp)x = (s1)x ∧ · · · ∧ (sp)x.
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Consequently, as s1, . . . , sp are linearly independent at x iff s1(x) ∧ · · · ∧ sp(x) 6= 0, the set

{x ∈ X | s1, . . . , sp are linearly independent at x}

is open in X .

Proposition 5.15 Let U be open in X and F be a locally free sheaf of rank n. A necessary
and sufficient condition that there is an isomorphism

OnX ↾ U ∼= F ↾ U

is that there exist some sections s1, . . . , sn ∈ Γ(U,F) everywhere linearly independent on U .

Proof . If OnX ↾ U ∼= F ↾ U , take s1, . . . , sn to be the (images of the) canonical sections
e1, . . . , en of OnX .

Conversely, assume that we have s1, . . . , sn linearly independent on all of U . Each si gives
a map OX ↾ U −→ F ↾ U . Thus, we get a map OnX ↾ U −→ F ↾ U . We want to check that
it is an isomorphism. Since this is a local property on U , we may assume that F = OnX ↾ U .
At x ∈ U , the elements s1(x), . . . , sn(x) are linearly independent, and since rk(F) = n,
the elements s1(x), . . . , sn(x) form a basis at x. Consequently, the map sj(x) 7→ ej(x), for
j = 1, . . . , n, is an isomorphism at x. So, near x, it remains an isomorphism; and this
provides a local inverse to our map.

Proposition 5.16 Let F be a locally free sheaf of rank r and G be a locally free sheaf of rank
n ≥ r. Then, for every x ∈ X, a necessary and sufficient condition that a map u : F → G
be injective on some open U containing x, and that G ↾ U be the direct sum of F ↾ U (really
u(F ↾ U)) and another submodule H ⊆ G ↾ U , is that

u(x) : F(x)→ G(x)

be an injection.

Proof . Let U be an open subset containing x and choose U so that

(F ↾ U)
∐
H ∼= G ↾ U.

Taking stalks at x, we get

Fx
∐
Hx
∼= Gx.

Now, tensor with κ(x);

F(x)
∐
H(x) ∼= G(x).

Thus,
u(x) : F(x)→ G(x)

is injective.
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Conversely, assume that u(x) : F(x)→ G(x) is injective. Since F is locally free and our
question is local, we may assume that F = OrX . We have canonical sections e1, . . . , er of
OrX , so let sj = u(ej). At x, as u(x) is injective, s1(x), . . . , sr(x) are linearly independent.
Thus, there exist br+1, . . . , bn filling out a basis for G(x). However, G is locally free, so that
br+1, . . . , bn come from sections sr+1, . . . , sn in Γ(V,G) for some open subset V . Then,

s1(x), . . . , sr(x), sr+1(x), . . . , sn(x)

are linearly independent, and so, s1, . . . , sn are linearly independent on a small open U
around x. We can define a map On−rX ↾ U −→ G ↾ U via

fj 7→ sj,

for j = r+1, . . . , n, where the fjs are canonical sections ofOn−rX ↾ U . The image is isomorphic
to some locally free sheaf H ⊆ G ↾ U . Thus, we get

F(x)
∐
H(x) = G(x),

and on U ,

F
∐
H = G.

In geometry, in order to move linear algebra techniques into position to aid in arguments,
we need to have the concept of a space, V , over our given X , whose fibres are just vector
spaces. Moreover, it is necessary that such a space V not have any local complication in
order that well-known properties of linear algebra should carry over with minimal pain and
maximal effet. For ringed spaces, we have effectively already done this, in our notion of
locally free sheaf. Here is the connection:

Let An = Spec Z[T1, . . . , Tn], and if W = Spec A of X is an affine scheme, observe that

W
∏

Spec Z

Spec An = Spec A
∏

Spec Z

Spec Z[T1, . . . , Tn] ∼= Spec A[T1, . . . , Tn].

Write

An
W = Spec A[T1, . . . , Tn],

and more generally, if U is any scheme, we let

An
U = U

∏

Spec Z

Spec Z[T1, . . . , Tn] = U
∏

Spec Z

An.

Definition 5.3 A rank n vector bundle over the scheme, X, is a scheme, V , together with
a surjective morphism p : V → X (called projection) so that the following properties hold:
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(1) There is some open covering {Uα → X} of X and isomorphisms

fα : p
−1(Uα)→ An

Uα
= Uα

∏

Spec Z

An.

(This property is called local triviality .)

(2) For every α, the following diagram commutes:

p−1(Uα)
fα //

p
""❊

❊❊
❊❊

❊❊
❊❊

❊
Uα

∏
Spec Z

An

pr1zz✉✉✉
✉✉
✉✉
✉

Uα

(3) For all α, β, set

gβα = fβ ◦ f−1α ↾ AUα∩Uβ
;

we require that gβα be induced by a linear automorphism of OUα∩Uβ
[T1, . . . , Tn].

If V and W are vector bundles over X , by taking common refinements, we may assume
that they have the same trivializing cover. A morphism ϕ : V →W is an X-morphism (i.e.,
a morphism ϕ : V →W so that pU = pW ◦ ϕ) linear on fibres, i.e.,

ϕ ↾ Uα : Uα
∏

Ar → Uα
∏

As

is the identity on the first factor and a function with values in Hom lin(Ar,As). The notion
of isomorphism is clear. Note, for each x ∈ Uα, the stalk ϕx is a homomorphism

OX,x[T1, . . . , Ts] −→ OX,x[T̃1, . . . , T̃r]

which is the identity on the coefficients and takes each Tj to a linear form in T̃1, . . . , T̃r. As
x varies, the coefficients will vary.

Proposition 5.17 Let X be a scheme, F be a locally free OX-module (of finite rank) and
V be a vector bundle on X. Then, OX(V ), the sheaf of local sections of V over X, is locally
free of rank equal to rk(V ). There exists a vector bundle, V(F), of the same rank as F so
that the functors

V 7→ OX(V ) and F 7→ V(F)
establish an equivalence of the categories, Vect(X), of vector bundles over X and the category,
LF(OX), of locally free OX-modules (of finite rank).
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Proof . Check that U 7→ Γ(U, V ) where

Γ(U, V ) = {s : U → V | p ◦ s = id} = HomSCH(U,A
r)

is, in fact, a sheaf (DX). By definition, this is the sheaf OX(V ). For every x ∈ X , there is
some open subset, U , with x ∈ U , so that p−1(U) ∼= U

∏
Spec Z

Ar. Also, Γ(U, V ) is the set of

scheme maps s : U → Ar, but we have

HomSCH(U,A
r) = (HomSCH(U,A))

r

= HomAlg(Γ(A
1),Γ(U,OX ↾ U))r

= Γ(U,OX ↾ U)r
= Γ(U,OrX ↾ U).

Thus,
OX(V ) ↾ U ∼= OrX ↾ U,

and OX(V ) is locally free.

Now consider F . Form the dual sheaf, FD. We know that FD is locally free of the same
rank as F . We can form

⊗n(FD), a new locally free OX -module, and we form the tensor
algebra

T (FD) =
∐

n≥0

n⊗
(FD).

This is a noncommutative OX -algebra, and we take the quotient of T (FD) by the two-sided
ideal generated by the elements of the form

a⊗ b− b⊗ a.

This gives us the symmetric algebra of FD:

SOX
(FD) = SymOX

(FD) = T (FD)/(a⊗ b− b⊗ a).

It is easily checked that
SOX

(FD) ↾ U = SOX↾U(FD ↾ U).
As FD = OrX locally, for a small open U , we get

SOX
(FD) ↾ U = SOX↾U(OrX ↾ U) = SOU

(OrU ).

Now,

SOX
(FD) =

∐

n≥0

SnOX
(FD) =

∐

n≥0

n⊗
(FD/symmetrized),

and so, Sn(OrU) has as a basis the “monomials” in r variables, with S0(FD) = OX . Therefore,

S(OrX) ∼= OX [T1, . . . , Tr] ∼= OX ⊗Z Z[T1, . . . , Tr].
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Locally on X , i.e., on small enough affines, we have

SOX
(FD) ↾ U = OU [T1, . . . , Tr],

and so, we form Spec(SOX
(FD) ↾ U) ∼= U

∏
Ar, and glue via the data for FD. We get a

scheme Spec(S(FD)), and we set

V(F) = Spec(SOX
(FD)).

By our remarks above, this is a vector bundle on X . We still have to check that V does the
right thing on morphisms of schemes. Observe that if F −→ G is a morphism of sheaves,
we get a map GD −→ FD, and hence, SOX

(GD) −→ SOX
(FD). Then, we obtain a map of

schemes:
Spec SOX

(GD) −→ Spec SOX
(FD).

Thus, we defined a map V(F) −→ V(G). The reader should check that this gives an equiv-
alence of categories.

We can now carry over results about locally free sheaves to vector bundles. First, note
that for a locally free sheaf L, we can show using a finite presentation that

(Lx)D = (LD)x,

and thus,
(L⊗nx )D = (LD⊗n)x = ((L⊗n)D)x.

We also have
T (Lx) = T (L)x,

and passing to Sym and fibres (i.e., mod mx), we get

V(L)(x) = V(L(x)) = Ar(x)
κ(x).

We can also do linear algebra on vector bundles. The following properties hold.

(0) Γ(U,OX(V )) = Γ(U, V ) and Γ(U,F) = Γ(U,V(F)).

(1) V(HomOX
(F ,G)) = HomVect(V(F),V(G)), where HomVect(V,W ) is the vector bundle

whose fibres are Homκ(x)(V (x),W (x))–(the reader should have no difficulty making
sense of this).

(2) V(LD) = V(L)D

(3) V(F∐G) = V(F)∏V(G)

(4) V(F ⊗ G) = V(F) ⊗ V(G), where the tensor product means the vector bundle whose
fibres are the tensor products of the respective fibres.
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(5)
∧pV(F) = V(

∧pF)

(8) Sp(V(F)) = V(Sp(F))

(7) A necessary and sufficient condition that a morphism ϕ : V →W of vector bundles be
an injection with image a direct summand near x is that

ϕ(x) : V (x)→W (x)

be injective.

(8) Given s1, . . . , sp ∈ Γ(X, V ), where V is a vector bundle over X , we have

s1(x) ∧ · · · ∧ sp(x) = (s1 ∧ · · · ∧ sp)(x);

which implies that s1, . . . , sp are linearly independent at x iff s1, . . . , sp are linearly
independent near x, and also implies that for every s ∈ Γ(V,X), the set {x | s(x) 6= 0}
is open in X .

Proposition 5.18 Let ϕ : V → W be a morphism of vector bundles. Then, the following
properties hold:

(1) Imϕ is a sub-bundle of W and locally a direct summand of W iff rk(ϕ) is locally
constant.

(2) Kerϕ is a sub-bundle of V and locally a direct summand iff rk(ϕ) is locally constant.

(3) Under this rank condition, W/Imϕ is a vector bundle.

Proof . (1) The implication ⇒ is clear. Conversely, assume that rk(ϕ) is locally constant.
Our contention is a local question, and thus, we may assume that V is the trivial bundle
X
∏

Ar and that rk(ϕ) is constant. Pick x ∈ V . Consider ϕ(V )(x) ⊆ W (x). Let H(x) be a
complement in V (x) of Kerϕ(x). Make the trivial bundle

H = X
∏
H(x).

We have the injection of vector bundles

i : H → V,

and it has constant rank. Composing with ϕ, we get

ϕ̃ : H i−→ V
ϕ−→W,

and the following properties hold:

(a) ϕ̃(H) ⊆ ϕ(V ).
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(b) ϕ̃(x) is an injection at x.

By (7) above, ϕ̃ ↾ U is an injection of constant rank, and the image is locally a direct
summand, for some open U with x ∈ U . Pick y ∈ U . Then, we have

rk(ϕ̃(y)) = rk(ϕ̃(x)) = rk(ϕ(x)) = rk(ϕ(y)), (†)

where the last equation follows from the hypothesis of constant rank. However, (a) shows
that

ϕ̃(H) ↾ U = ϕ(V ) ↾ U,

and thus, ϕ(V ) is a sub-bundle and a direct summand on U .

(2) The implication ⇒ is also clear. Conversely, assume that rk(ϕ) is locally constant.
Again, our contention is a local question, and thus, we may assume that rk(ϕ) is constant.
Then, rk(ϕD) is constant, where ϕD : WD → V D. By (1), ImϕD is a vector bundle, locally a
direct summand, which implies that Coker (ϕD) is a vector bundle. As V D −→ Coker (ϕD)
is surjective, by dualizing again, we get the commutative diagram

Kerϕ

��

// V

��
(Coker (ϕD))D // V DD

with the bottom horizontal arrow an injection. The righthand side vertical arrow is a natural
isomorphism, and thus, the lefthand side vertical arrow is also a natural isomorphism, and
(by reasons of rank) Kerϕ is a vector bundle with the desired properties. For (3), we merely
note that W/Imϕ ≈ Coker ϕ.

Corollary 5.19 Let ϕ : V → W be a morphism of vector bundles. For any x ∈ X, there is
some open subset U with x ∈ U so that for every y ∈ U , rk(ϕ(x)) ≤ rk(ϕ(y)).

Proof . Use (†) from the proof of Proposition 5.18. Now, ϕ̃(H) ⊆ ϕ(V ) implies that

rk(ϕ̃(y)) ≤ rk(ϕ(y)).

But, by the first parts of (†), we get

rk(ϕ̃(y)) = rk(ϕ(x)),

and the corollary is proved.

Corollary 5.20 Suppose ϕ : V → W is a morphism of vector bundles. Then, the set

{x | ϕ(V )(x) is not a sub-bundle}

is closed in X and not equal to X.
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Since vector bundles and locally free sheaves correspond to one another and automor-
phisms of one become automorphisms of the other (property (1) before Proposition 5.18),
the classification of locally free sheaves as elements of a Čech cohomology group proved in
Corollary 5.12, carries over and we get:

Theorem 5.21 Let (X,OX) be a ringed space, and let r ∈ N, r ≥ 1. Then, vector bundles
(over X) of rank r are classified by Ȟ1(X,GL(X, r)).

We will use the notation Vectr(X) for the collection of rank r vector bundles over X ,
even though, as a set, it is just LFr(OX).
Example 5.1 Consider An+1 = An+1

C , let 0 be the the origin in An+1, and let V = B0(An+1)
be the blowup at 0. We know that V is the subvariety An+1

∏
Pn given by the equations

xiyj = xjyi,

where (x0, . . . , xn) are the coordinates in An+1 and (y0 : · · · : yn) are homogeneous coordinates
in Pn. Consider the second projection

pr2 : V → Pn.

We already know that the fibres are lines. We claim that V is a line bundle on Pn; for this,
we only have to check local triviality. As usual, let

Uj = {y = (y0 : · · · : yn) ∈ Pn | yj 6= 0}.
Look at V ↾ Uj , given by

V ↾ Uj = {(x, y) | xiyj = xjyi and yj 6= 0}.
Since yj 6= 0, we have

(x, y) ∈ V ↾ Uj iff xi =

(
yi
yj

)
xj ,

for all i 6= j. We can define the map σ : Uj → V by

σ(y0 : . . . : yn) =

〈
y0
yj
, . . . ,

yj−1
yj

, 1,
yj+1

yj
, . . . ,

yn
yj

; y0 : . . . : yn

〉
,

where yi 6= 0. Since the ith component of the “x-part” of the image of σ is 1, the map σ is
everywhere a nonzero section on Uj . Then, the map

θj : Uj
∏

A1 → V ↾ Uj

defined by

θj(y, λ) =

〈
λ
y0
yj
, . . . , λ

yj−1
yj

, λ, λ
yj+1

yj
, . . . , λ

yn
yj
; y0 : . . . : yn

〉
,

is a vector bundle isomorphism, showing that V ↾ Uj is isomorphic to a trivial bundle. As
an exercise, the reader should compute explicitly the transition functions of this bundle.
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In case X is a scheme over a field and W is a vector bundle on X whose rank is large
with respect to the dimension of X , then W may be “simplified” to a bundle of lower rank.
The precise statement is the following theorem due to Atiyah and Serre:

Theorem 5.22 Let X be a scheme over an algebraically closed field for which dim(X) = d
makes sense, and assume that X may be covered by countably many open subschemes, each
of which is quasi-compact. If W is a vector bundle on X of finite rank r and W is generated
by its sections (which means that the map Γ(X,W ) −→ W (x), via σ 7→ σ(x), is surjective
for all x ∈ X), then there is a trivial sub-bundle Ir−d of W of rank r − d, and an exact
sequence of bundle maps

0 −→ Ir−d −→ W −→W ′′ −→ 0,

where W ′′ is a vector bundle of rank at most d (of course, if r ≥ d, then W ′′ has rank d).

Proof . To begin, replace X by one of its quasi-compact open subschemes. For every closed
point x ∈ X , by hypothesis,

Γ(X,W ) −→W (x) −→ 0

is exact (via the map σ 7→ σ(x)). As W (x) is finite dimensional, some finite dimensional
subspace of Γ(X,W ), call it Γx, maps onto W (x). However, by previous work, we find that
there is some open U containing x so that the map U

∏
Γx −→ W ↾ U is surjective. We

can cover X by finitely many such open subsets and we get that there is a finitely generated
subspace of Γ(W,X) which generates W . Consequently, we may restrict attention to a finite
dimensional subspace of Γ(X,W ), call it W0, generating W . Let P0 = P(W0), and let

Ker (x) = Ker (W0 −→ W (x)).

Consider the Zariski closure, Z0, of

⋃

x∈X

P(Ker (x)).

Since dim(P(Ker (x)) = dim(P0)− rk(W ), we get

dim(Z0) = dim(X) + dim(P0)− rk(W ),

and thus,
codim(Z0,P0) = rk(W )− dim(X) = r − d.

In the general case, by hypothesis, X can be written as the union of a countable ascending
chain of opens, Xα, and for each Xα we can choose a projective space, Pα, as above, and
observe that

codim(Zα,Pα) = rk(W )− dim(Xα) = r − d
remains constant. Therefore, in the limit,

codim(Z,P) = rk(W )− dim(X) = r − d.
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By considering the limiting P as the projectivization of the limiting spaces of sections, there
is a projective subspace S of dimension r − d− 1 so that

S ∩ Z = ∅.

Then, S corresponds to a vector subspace Γ̃ of Γ(X,W ), and dim(Γ̃) = r − d. Consider

Ir−d = X
∏

Γ̃.

We have the map

ϕ : Ir−d −→ X
∏

Γ(X,W )
θ−→ W,

where θ(x, σ) = σ(x). However, Kerϕ = (0), since at x,

Ker (x) ∩ Γ̃ = (0),

by the choice of S. Thus, we have the exact sequence

0 −→ Ir−d −→ W −→W ′′ −→ 0,

where W ′′ is a vector bundle of rank at most d.

Let us draw some consequences of Theorem 5.22. Let
∧•W denote the highest wedge

power of W . Then,
•∧
W =

•∧
W ′′ ⊗

•∧
Ir−d ∼=

•∧
W ′′.

Now, when we come to Chern classes, we will see that the Chern class of a vector bundle is
equal to the Chern class of its highest wedge. Hence c1(W ) = c1(W

′′), where c1(W ) denotes
the first Chern class of W , etc.

Observe that in the complex case, we have an inclusion

Pic(X) −→ H2(X,Z).

If X is a curve and r ≥ 1, then the highest wedge,
∧•W ′′, of W ′′ is isomorphic to W ′′, as

W ′′ is already a line bundle. Thus, on a curve, the first Chern class of a vector bundle will be
easy to compute from the Atiyah-Serre theorem, provided we can make the latter effective.

5.2 Divisors

In studying algebraic varieties, or more generally schemes, the intuitive geometric idea of
studying subvarieties of codimension one is directly appealing. Unfortunately, to carry out
this idea we will need some restrictive assumptions on X . Moreover, if dim X is big then
each of the studied objects also has big dimension and this suggests an inductivee program.
The assumptions we need to carry out the germ of such a program are the following:
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(1) X is noetherian.

(2) X is reduced and irreducible.

(3) X is separated.

(4) For any x ∈ X , the local ring OX,x has dimension 1. That is, if {x} is a codimension
1 subscheme of X , then we require OX,x to be a regular local ring. This condition is
abbreviated by saying: X is regular in codimension 1.

Condition (1) is not too restrictive an assumption. It is merely a finiteness hypothesis.
For condition (2), the assumption that X is irreducible is again not too restrictive, because in
view of (1), X is a finite union of such. However, the assumption of reducedness is definitely
restrictive, because in “deforming” a variety, X , we will have to make use of nilpotent
elements in the structure sheaf. As for (3), this is again not very restrictive since most
varieties are glued together correctly out of their affine opens. Condition (4) is once again
rather restrictive. However, it is possible to arrange for (4) by a canonical procedure. To see
this, note that if X is normal then (4) is true. So, it suffices to pass to the normalization of
X in order to achieve (4) whenever normalization makes sense. Note as well that (4) holds
iff OX,x is a DVR for every x such that {x} is a codimension 1 subscheme of X . When
conditions (1)–(4) are met, we say that X is a W -scheme.

Example 5.2

1. The surface in A3 consisting of the cylinder based on the cuspidal cubic y2 = x3 is not
a W -scheme, because the entire line above x = y = 0 is singular on the surface.

2. A regular surface patch is a W -scheme.

3. A cone of equation z2 = xy is a W -scheme, because the singular point: (0, 0, 0) is of
codimension 2

Definition 5.4 A closed irreducible subscheme of X of codimension 1 (with the reduced
induced structure) is a prime divisor , and theWeil divisor group ofX , denoted by WDiv(X),
is the free abelian group on the prime divisors of X . Here, X is a W -scheme. The elements
of WDiv(X) are called Weil divisors or W -divisors .

Let X be a W -scheme, U = Spec A an open affine in X (so that A is a noetherian
domain), and let Mer(U) = Frac(A). We know that Mer(U) is independent of U , and
thus, Mer(U) =Mer(X). We denote byMer(X)∗ the set of nonidentically zero elements
inMer(X). Pick a prime divisor Y ⊆ X , and let y be its unique generic point (recall: Y is
irreducible). Then, OY,y is a regular local ring and thus, a DVR.

Given y, it determines Y ; this is the valuative criterion for separation (DX, see Section
3.3). Thus, we can write OX,Y instead of OX,y. Now,

Frac(OX,Y ) =Mer(X);
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So, if F ∈Mer(X)∗ is chosen, the number

ordY (F ) = ordy(F )

is defined. Hence, if we can prove that ordY (F ) = 0 for all but finitely many Y ’s, we get a
Weil divisor

∑

Y prime

ordY (F )Y ∈WDiv(X). (∗)

Proposition 5.23 We have ordY (F ) = 0 for all but finitely many Y ’s.

Proof . Let F ∈ Mer(X)∗. Then, there is some affine open U ⊆ X where U = Spec A, so
that F ↾ U is a morphism U −→ A1. Consider Z = X − U . It is closed and not equal to
X , and thus, since X is noetherian, Z is a finite union of irreducible components. Only at
most finitely many prime divisors, Y , can appear among these irreducible components. If
we exclude these, we may assume that F is holomorphic. Now,

ordY (F ) ≥ 0 for all Y ,

and

ordY (F ) > 0 ⇐⇒ F ∈ my

⇐⇒ the ideal A · F ⊆ my

⇐⇒ y ∈ V (F )
⇐⇒ Y ⊆ V (F ).

But V (F ) 6= X as F 6≡ 0 and V (F ) is closed. As X is noetherian, V (F ) is a finite union of
irreducible components. Thus, only finitely many Y ’s can appear when F is holomorphic.
Since finitely many Y ’s can appear in the complement, Z, of the holomorphic locus, only
finitely many Y ’s appear in the entire sum (∗), above.

We set
(F ) =

∑

Y prime

ordY (F )Y ∈WDiv(X),

and call it the W -divisor of F . Any such divisor is also called a principal W -divisor . The
group of principal W -divisors is denoted by PDiv(X).

It is easy to show that

(FG) = (F ) + (G)(
F

G

)
= (F )− (G)

(C) = 0
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if C is a constant. Thus, we have a homomorphismMer(X)∗ −→WDiv(X), and we set

WCl(X) = WDiv(X)/PDiv(X),

and call it the Weil class group of X .

Remarks:

(1) What is the kernel of the homomorphism Mer(X)∗ −→ WDiv(X)? To answer this,
let us introduce the notion of “codimension one skeleton of X .” This is just the
union of the codimension one subschemes of X , each considered as an atomic object.
Then O∗X ↾ (codimension one skeleton of X) is the kernel of the map Mer(X)∗ −→
WDiv(X). For, an element F is in this kernel iff F is in O∗X,Y for each codimension
one Y in X .

(2) The group WCl(X) is a fundamental invariant of the scheme X . It can be very subtle
to compute, and at times, the computed answer is surprising.

(3) Suppose f : X → Y is a morphism of W -schemes. If D is a prime divisor on Y ,
then f ∗(D) has codimension one in X . Hence, as X is a W -scheme, f ∗(D) is a linear
combination of prime divisors of X . Consequently, the map f ∗ takes Weil divisors on
Y to Weil divisors on X . Since f ∗ also takes Mer(Y ) to Mer(X), we find that f ∗

induces a map of WCl(Y ) to WCl(X).

Example 5.3 Let A be a noetherian domain. Then, A is a UFD iff A is normal and
WCl(Spec A) = (0). This is a standard argument from commutative algebra because a
noetherian domain has factorization and the factorization is unique iff every minimal prime
is principal. The reader should have no difficulty in completing the details based on these
ideas. What this example shows is that the subtle invariant, WCl(SpecA), plays the role of
ideal class group in number theory (which vanishes there iff one has unique factorization).
The reader with experience in number theory will recognize that computation of divisor class
groups is difficult, hence he should expect no less of Weil class groups.

Two facts are mainly used to determine Weil class groups.

Proposition 5.24 Let X be a W -scheme and Z be a closed subscheme (with the reduced

induced structure) with Z 6= X, and let U = X − Z. Then, the map WCl(X)
θ−→ WCl(U)

via ∑

Q prime

nQQ 7→
∑

Q prime, Q∩U 6=∅

nQ(Q ∩ U)

is well-defined and surjective. If codim(Z,X) ≥ 2, it is an isomorphism. If codim(Z,X) = 1
and Z is irreducible, then there exists an exact sequence

Z
θ−→WCl(X)

res−→WCl(U) −→ 0, (FI)
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where θ(1) = [Z]. Moreover, if we write Z =
⋃q
i=1 Yi, where each Yi is an irreducible

component of Z (with reduced induced structure), then there exists an exact sequence

q∐

i=1

Z
θ−→WCl(X)

res−→WCl(U) −→ 0, (FI′)

where θ(ei) = [Yi], and ei is the canonical generator (0, . . . , 1, . . . , 0︸ ︷︷ ︸
i

) of
∐q

i=1 Z.

Proof . Note that if Q ∩ U 6= ∅ then Q ∩ U is of codimension 1 in U and irreducible. Thus,
the righthand side of the map makes sense at the divisor level. Let F ∈Mer(X) =Mer(U).
Since

(F ) =
∑

Y prime

ordY (F )Y,

we get

(F ↾ U) =
∑

Y ∩U 6=∅

ordY (F )(Y ∩ U) = res(F ).

Thus, our map descends and we get res on class groups. Given W ⊆ U , a prime divisor of
U , let W be the closure of W in X with the reduced induced structure. Then

W ∩ U = W,

and W is a prime divisor of X . This shows that our map is onto. Nothing on either side of
our map involves Z’s of codimension ≥ 2, which implies that the map res is an isomorphism
in the case that codim(Z,X) ≥ 2.

For the rest of the proof, assume at first that Z has codimension 1 and is irreducible.
The kernel of the map is generated by the classes of prime divisors that miss U . The support
of such a divisor is ( ⋃

nQ 6=0, Q⊆Z, Q prime

Q

)
⊆ Z.

Now, Z is irreducible so each such Q is Z itself, and thus, any divisor in the kernel is of the
form dZ for some d ∈ Z. Consequently, we obtain the sequence (FI), as claimed, but note
that the map θ may not be injective.

If Z is not irreducible, then we can write Z =
⋃q
i=1 Yi, where the Yi’s are irreducible.

Note that Yi ∩ Yj for i 6= j has codimension at least two in X , consequently by the first part
of the proof, we may assume that Z is the disjoint union of the Yi’s. In this case, we will
use induction on q and the argument is the same as the case q = 2, which runs as follows:
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Consider the commutative diagram

0 0

Z
θ1 // WCl(X − Y2) //

OO

WCl(X − Y1 − Y2) //

OO

0

Z
θ1 // WCl(X)

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦
//

OO

WCl(X − Y1) //

OO

0

Z

θ2

OO

Z

θ2

OO

The reader should chase the diagram to find that the kernel of the diagonal arrow is exactly
the group generated by θ(e1) and θ(e2) (i.e., by [Y1] and [Y2] in WCl(X)).

Note that if A = k[T1, . . . , Tn], then

WCl(Spec A) = WCl(An) = (0).

Moreover, the same is true if A = D[T1, . . . , Tn], where D is a noetherian UFD. Hence,

WCl(An
D) = (0),

where D is a noetherian UFD.

Proposition 5.25 We have WCl(Pn) = Z.

Proof . Let Z and Z̃ be two hypersurfaces in Pn such that deg(Z) = deg(Z̃), but Z and Z̃
are not necessarily assumed irreducible. Then, there are some homogeneous forms f and
f̃ of the same degree d such that Z = V (f) and Z̃ = V (f̃). Let F = f/f̃ , then, F is a
meromorphic function on Pn, and

(F ) = Zdiv − Z̃div, (†)

where Zdiv stands for Z as a divisor. This means that if we write

f =

t∏

j=1

f
nj

j ,

where the fj’s are irreducible, and similarly for f̃ , then,

Zdiv =

t∑

j=1

njZj
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(and similarly for Z̃div), where Zj = V (fj) is a prime divisor. But then, by (†), we have

Zdiv ∼ Z̃div

in WDiv(Pn). We define a map from WDiv(Pn) to Z via

deg

(
t∑

j=1

njZj

)
=

t∑

j=1

njdeg(Zj).

Note that Ker (deg) consists of the principal divisors (by the above). Consequently, we get
an injection from WCl(Pn) to Z. This map is onto because hyperplanes go to 1.

Corollary 5.26 Let Z be an irreducible hypersurface of degree d in Pn, and write U =
Pn − Z. Then, U is an affine variety and WCl(U) = Z/dZ. In fact,

0 −→ Z −→WCl(Pn) −→WCl(U) −→ 0

is exact, where Z −→WCl(Pn) is induced by 1 7→ [Z]. If Z is not necessarily irreducible and
consists of the union of irreducible hypersurfaces Y1, . . . , Yq of dimensions d1, . . . , dq, then
WCl(Pn − Z) = Z/d1Z⊗ · · · ⊗ Z/dqZ.

Proof . By (FI) in Proposition 5.24, we know that

0 −→ Z −→WCl(Pn) = Z −→WCl(U) −→ 0

is exact, where Z −→WCl(Pn) is induced by 1 7→ [Z]. Since [Z] = d, we find that WCl(U) =
Z/dZ. For the second part of the corollary, we use the exact sequence (FI′) and note that
the group generated by [Y1], . . . , [Yq] is merely the subgroup rZ, where r = gcd(d1, . . . , dq).

The second fundamental fact is invariance under homotopy.

Proposition 5.27 Let X be a W -scheme. Then, X
∏

A1 is again a W -scheme, and the
projection pr1 : X

∏
A1 → X induces an isomorphism

WCl(X) −→WCl
(
X
∏

A1
)
. (FII)

Proof . First, we have to prove that X
∏

A1 is a W -scheme, and for this, the only problem is
nonsingularity in codimension one. Let x ∈ X∏A1, of codimension 1; there are two possible
cases:

The point x can be a vertical point, which means that x = pr1(x) has codimension 1 in
X . Then, pr−11 (x) is the fibre through x and te point x is generic for the fibre. In this case,

OX,x = (OX,x[T ])m
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where the localization is made at a maximal ideal, because x has codimension one in X . But
then, OX,x is a regular local ring.

The point x can be a horizontal point, which means that x = pr1(x) is generic in X . In
this case,

OX,x =Mer(X),

which implies that
OX,x = (Mer(X)[T ])m ,

where again the localization is made at a maximal ideal, as x has codimension one. (The
closure of x is a scheme whose projection down to X is dense in X , see Figure 5.1.)

X

X
∏

A1

x generic point

x̄ closure of x̄

closure of x

Figure 5.1: Case of a horizontal point

Now,Mer(X)[T ] is a PID and so its localization, OX,x, is a DVR. Therefore, X
∏

A1 is
indeed a W -scheme.

Given a divisor D in X , the divisor pr∗1(D) is a sum of vertical prime divisors with
appropriate multiplicities. So, we must show that each horizontal prime divisor is linearly
equivalent to a sum of such vertical divisors. Let ξ ∈ X be a generic point, and let

Ξ = pr−11 (ξ).

If we take D horizontal and look at D ∩ Ξ, we get a divisor on

Ξ = Spec(Mer(X)[T ]).
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Now,Mer(X)[T ]) is a PID and so its Weil class group is (0). Therefore, D∩Ξ is a principal
divisor, (F ), for some F ∈Mer(X)[T ]. However,

Mer(X)[T ] ⊆Mer(X
∏

A1),

thus, F ∈Mer(X
∏

A1). Consider the divisor, (F ), where F is now considered as an element
ofMer(X

∏
A1). Any horizontal component of (F ) projects down to a dense subset of X .

However, we chose ξ generic in X so each projection contains ξ. Therefore, any horizontal
component of (F ) meets Ξ. But (F ) ∩ Ξ is just D. Hence,

(F ) = D +
∑

i

Vi,

where the Vi are vertical fibres. Thus, D is equivalent to a vertical divisor, as claimed.

Example 5.4 Consider the cone C whose equation is

xy = z2

in A3. This cone has a singularity at the origin 0 = (0, 0, 0), and no other singularity. Let R
be the locus of

y = z = 0

in the cone C and give this locus the reduced-induced structure. Consider U = C − R.
Because R is given the reduced-induced structure, the locus R is isomorphic to Spec k[x]
(a simple algebraic way of seeing this is that when we set y = 0, our ring maps onto
k[x][z]/(z2 = 0), and when taking the reduced-induced structure, we just get k[x] by setting
z = 0). Consequently, U is obtained by inverting y:

U = C − R = Spec((k[x, y, z]/(xy − z2))y).

As y is invertible, we have

x =
z2

y
inOU

and thus,

U = C −R = Spec(k[y, z, y−1]) = Spec((k[y, z])y).

However, k[y, z] is a UFD, which implies that (k[y, z])y is also a UFD. Example 5.3 shows
that WCl(C − R) = (0), and then, (FI) implies that

Z −→WCl(C) −→ 0

is exact, where the first map is induced by 1 7→ [R]. Let’s look at y as a function on C.
What is the principal divisor (y)?
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When y = 0, on C, we get R or nR for some n. Thus,

(y) = nR.

Look at a generic point ζ on R. We must have ζ = (ξ, 0, 0), where ξ is transcendental. In
the local ring at ζ , note that x is invertible (there, it is equal to ξ 6= 0). Thus, in OC,ζ, the
equation xy = z2 implies

y =
z2

x
,

and, as x is a unit in OC,ζ,
ordR(y) = ordζ(y) = 2.

In other words, we conclude that

WCl(C) =

{
(0) if [R] = 0.
Z/2Z if [R] 6= 0.

We claim that [R] 6= 0. Were [R] = 0, then R would be (f) for some function f . Let p

be the prime ideal defining R. We must show that p is not principal. Now, y = z = 0 on
R; so y, z ∈ p. Compute at the origin, the singularity. Write m for the maximal ideal of
the origin on C. Then, m = (x, y, z). The Zariski-cotangent space at 0 to C is m/m2 and
x, y, z ∈ m/m2 are linearly independent, since 0 is singular, and dim(m/m2) = 3. Assume
that p is principal. Since 0 ∈ R, we have p ⊆ m and principality implies that there is some
f so that y = λf and z = µf . But then,

y = λf, z = µf,

and so, y, z are linearly dependent, a contradiction. We find, finally,

WCl(C) = Z/2Z.

Example 5.5 Consider the nonsingular quadric Q in P3 over an algebraically closed field.
In the four coordinates of P3, our quadric Q is given in matrix form as

X⊤AX = 0,

where A is the symmetric matrix of its coefficients andX represents the vector of coordinates.
If we change coordinates via a PGL(3), say X = BX ′, then Q becomes the quadric

X ′⊤CX ′ = 0,

where C = B⊤AB. However, symmetric matrices may be diagonalized in such a manner,
and as A is nonsingular, we find that after diagonalization, Q is given by

Q(x, y, w, z) = x2 + y2 + w2 + z2
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(we have used the algebraic closedness of k to incorporate the nonzero coefficients in our
variables so as to make all the coefficients 1). The well-known transformation

X = x+ iy, Y = x− iy, Z = −(w + iz), W = w − iz,

makes our diagonal quadric the quadric

XY = ZW.

We have already seen that this quadric is isomorphic to

P1
∏

P1.

So, on Q, we have two rulings R1 and R2. Hence, by (FI),

Z −→WCl(Q) −→WCl(Q−Rj) −→ 0, (Ej)

where the first map is induced by 1 7→ [Rj ]. Note that

Q− Rj
∼= P1

∏
A1.

By (FII), we have
WCl(Q−Rj) ∼= Z.

Look at exact sequence E1:

Z −→WCl(Q) −→WCl(Q− R1) = Z −→ 0, (E1)

where the first map is induced by 1 7→ [R1]. But (1) is the generator of WCl(P1) and the
map from WCl(P1) to WCl(P1

∏
A1) is the pullback map, and the image of 1 under the

pullback is just R2. This shows that the map 1 7→ [R2] is a splitting of the exact sequence
E1, that is,

0 −→ Z −→WCl(Q) −→ Z −→ 0

is split-exact. Consequently,
WCl(Q) = Z⊕ Z.

Therefore, every element of WCl(Q) is of the form (α, β), and the pair (α, β) is called the
type of the Weil divisor.

We can use our determination of WCl(Q) to make some tiny progress on an old problem.
The problem is the following. We have seen that the twisted cubic curve in P3 is not the
scheme theoretic intersection of two surfaces (3 is a prime and has no factor). But, is the
twisted cubic the set theoretic intersection of two surfaces?

Let Z be a surface in P3. We say that Z is well-positioned for Q iff Q 6⊆ Z. Then, Z ∩Q
is a divisor of Q. The surface Z is given by some form f . Look at f ↾ Q. We know that
f 6≡ 0 on Q, by hypothesis. If R is a prime divisor of Q and ρ is a generic point of R, then
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for any affine open U with R∩U 6= ∅, we find ρ ∈ R∩U . The function f ↾ U is well-defined,
and ordρ(f ↾ U) makes sense. It is easily checked that ordρ(f ↾ U) is independent of the
affine open, U , provided R ∩ U 6= ∅. We define ordR(Z ·Q) by

ordR(Z ·Q) = ordρ(f ↾ U)

and
(Z ·Q) =

∑

R

ordR(Z ·Q)R,

for all prime divisors R on Q. If, on the other hand, Z is not well positioned for Q, then, as
a divisor,

Z = rQ+
∑

Qα 6=Q

nαQα,

where the Qα are well positioned for Q. If H is any hyperplane well positioned for Q, let

F =
f 2r
H

f rQ
,

where fH and fQ are forms defining H and Q. Then,

(F ) = 2rH − rQ,

and thus,

Z + (F ) = 2rH +
∑

Qα 6=Q

nαQα.

This shows that Z ∼ Z̃, with Z̃ well positioned for Q. We write Z · Q = Z̃ · Q, and leave
it to the reader to check that Z̃ · Q is independent of Z̃, as long as Z̃ is well positioned for
Q. Thus, Z ·Q is well-defined for all Z. We call Z ·Q the intersection cycle of Z and Q. Of
course, if Z ∼ Z ′, we get Z ·Q = Z ′ ·Q. Thus, we obtain a map

WCl(P3) −→WCl(Q)

given by
Z 7→ Z ·Q.

Now, we have Z ∼ dH for some d and some good hyperplane; for instance, the hyperplane
X = 0 (Q is not contained in this hyperplane). Since Q is given by XY = ZW , we see that
Q ∩H consists of the two lines defined by

X = Z = 0 and X = W = 0.

The function f = X
Y

has ord = 1 on both of these lines, and these are the generating lines
for WCl(Q). Thus,

H ·Q = (1, 1),
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which implies that
Z ·Q = (d, d)

if deg(Z) = d.

Now, look at the twisted cubic C ⊆ P3. Parametrically, it is defined by

X = t3, Y = u3, Z = t2u,W = tu2.

Since XY = ZW , the cubic C lies on Q. To find out what C is in WCl(Q), look at the cone,
Γ, given by

W 2 = Y Z.

The intersection Γ ∩Q is given by

XY = ZW, W 2 = Y Z,

which implies that
XW 2 = XY Z = WZ2.

Either W = 0, or W 6= 0 and XW = Z2. If W = 0, then XY = 0 and Y Z = 0. This implies
that Y = 0, since otherwise, X = Z = W = 0, a point, which is a contradiction. Thus, the
intersection consists of the line Y = W = 0 and of the curve defined by

XY = ZW,W 2 = Y Z,XW = Z2,

which is the twisted cubic. As Γ ∩Q is the union of a line l and the twisted cubic, and as l
is one of the rulings, we find that l = (0, 1) in WCl(Q), and

C + l = Γ ·Q = (2, 2).

We conclude that C = (2, 1) in WCl(Q). This implies that there cannot be any surface Σ in
P3 so that, even as sets,

Σ ∩Q = C.

For if we had Σ ∩Q = C, then we would have Σ ·Q = ρC, for some ρ. But Σ has degree d,
and so, Σ ·Q = (d, d) in WCl(Q). On the other hand, we saw that ρC = (2ρ, ρ) in WCl(Q),
and now, (2ρ, ρ) = (d, d), which is impossible.

The previous discussion is much too restrictive for it limits the construction of the invari-
ant WCl(X) to those X which are W -schemes. P. Cartier (1957) had the idea of admitting
just divisors “given locally by one equation.” This idea would finesse the restrictions forced
on us by the previous discussion. While the idea is quite simple, perforce, a real execution
of this must be more abstract.

Let X be any scheme. Cover X by affine opens, Xα, and consider Aα = Γ(Xα,OX).
Let Sα be the set of all nonzero divisors of Aα, a multiplicative set. The rings S−1α Aα glue



5.2. DIVISORS 273

together on overlaps and give an OX -algebra, KX , the total fraction sheaf of OX . We have
an embedding OX −→ KX . Let K∗X be the sheaf of invertible elements of KX , which means
that

Γ(Xα,K∗X) = (S−1α Aα)
∗ =

{g
h
, g ∈ Sα, h ∈ Sα

}
.

Recall that O∗X is the sheaf given by

Γ(Xα,O∗X) = A∗α,

and that we have the exact sequence

0 −→ O∗X −→ K∗X .

Definition 5.5 The quotient sheaf K∗X/O∗X is a sheaf of abelian groups, denoted by DX ,
and called the sheaf of germs of Cartier divisors . A Cartier divisor on X is a global section
of DX , i.e., an element of Γ(X,DX).

Since

0 −→ O∗X −→ K∗X −→ DX −→ 0 (†)

is exact, every σ ∈ Γ(X,DX) yields an open covering by affine subschemes, Xα, and elements
fα ∈ Γ(Xα,K∗X), so that fα 7→ σ ↾ Xα under the map K∗X −→ DX . Hence, there are elements
θβα in Γ(Xα ∩Xβ,O∗X), so that

fβ = fα · θβα. (††)

Thus, every Cartier divisor, σ ∈ Γ(X,DX), yields a family (Xα, fα) satisfying condition (††).
Conversely, a family (Xα, fα) satisfying condition (††) determines a Cartier divisor.

Observe that for every gα ∈ Γ(Xα,O∗X), the family (Xα, fαgα) defines the same σ as
(Xα, fα).

If X is an integral scheme, which means that each Aα is an integral domain, then KX is
equal to the constant sheaf,Mer(X).

� The sheaf KX is not a constant sheaf in general. Merely take X = X1

∐
X2, for integral

schemes X1, X2 of different dimensions.

A principal Cartier divisor is a Cartier divisor arising from Γ(X,K∗X), i.e., it is given by
a family (Xα, f), where f ∈ Γ(X,K∗X), that is, f does not depend on α; to repeat: A divisor
σ is a principal Cartier divisor iff it belongs to the image of the natural map

Γ(X,K∗X) −→ Γ(X,DX).

Let us call such an f a generalized meromorphic function. For a Cartier divisor, (Xα, fα),
if the fα’s actually come from Γ(Xα,OX), we will call the divisor an integral divisor or an
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effective divisor . Note, these fα’s, while in Γ(Xα,OX) need not be units of Γ(Xα,OX)–that
would make our Cartier divisor trivial. We write CDiv(X) in place of Γ(X,DX) and define
the (Cartier) class group Cl(X) as the quotient

Cl(X) = CDiv(X)/Im (Γ(X,K∗X)).

If we apply cohomology to (†), we get the injection

δ : Cl(X) −→ Pic(X).

Note that line bundles are defined on all schemes (even ringed spaces), Cartier divisors are
defined on schemes, and Weil divisors are defined on W -schemes.

Here is the main proposition relating Weil divisors and Cartier divisors.

Proposition 5.28 If X is a Noetherian, normal, integral scheme, then X is a W -scheme,
and there are natural injections

CDiv(X) −→WDiv(X) and Cl(X) −→WCl(X).

Furthermore, if OX,x is a UFD for every x ∈ X, then the inclusions are isomorphisms.

Proof . Since X is Noetherian and integral, to prove that X is a W -scheme we need only
show that X is regular in codimension one. But X is normal, so OX,x is a normal one–
dimensional local ring if X is a point of codimension one. Such a local ring is a DVR,
therefore, is regular. We construct the map from CDiv(X) to WDiv(X) as follows: Pick
σ ∈ Γ(X,DX) = CDiv(X), then σ corresponds to a family {Xα, fα}, where the Xα are an
open covering and the fα are in K∗X . Let Q be a prime divisor on X and write ζ for his
generic point. If Q ∩ Xα 6= ∅, then ζ belongs to Xα and thus, ordζ(fα) makes sense, by
regularity in codimension one. Of course, we set

ordQ(fα) = ordζ(fα).

Should Q ∩Xα ∩Xβ be nonempty, then as

fβ = fαθ
β
α

with θβα ∈ Γ(Xα ∩Xβ,O∗X), we find that

ordζ(fβ) = ordζ(fα)

(of course, ζ belongs to Xα ∩Xβ). This show that ordQ(fα) is independent of α as long as
Q∩Xα ∩Xβ 6= ∅. Hence, we can define ordQ(σ) to be ordQ(fα) for any α with Q∩Xα 6= ∅,
and ordQ(σ) = 0 if Q ∩Xα = ∅. Our map is now defined by

σ 7→ D(σ) =
∑

Q

ordQ(σ)Q,
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and this is clearly a homomorphism.

We have to check that it is injective. If D(σ) = 0, then ordQ(fα) = 0 for all Q and all α.
This means that fα is a unit in the one–dimensional local ring OX,Q. However, X is normal,
so that

Γ(Xα,OXα) =
⋂

Q∩Xα 6=∅

OX,Q.

It follows immediately that fα is a unit in Γ(Xα,O∗X), that is, that σ comes from H0(X,O∗X).
Hence, σ = 0.

To see that Cl(X) maps toWCl(X), observe thatK∗X , for aW -scheme, is just the constant
sheaf Mer(X). If σ = {(Xα, f)}α is a principal Cartier divisor, then f is a meromorphic
function; so, D(σ) is just the principal Weil divisor (f). There results the map

Cl(X) −→WCl(X).

Given σ ∈ Cl(X), write, as usual, σ = (Xα, fα). Suppose that D(σ) = (f), for some
fixed f ∈Mer(X). Then, on Xα,

ordQ(fα) = ordQ(f)

for all Q with Q ∩Xα 6= ∅. By normality again, the element fα/f is a unit of Γ(Xα,OXα).
Consequently, σ equals (Xα, f) in CDiv(X); that is, σ is a principal Cartier divisor, which
proves our map

Cl(X) −→WCl(X)

is an indeed injective.

Assume now that X is locally factorial. Given any x ∈ X , any prime divisor Q gives us
a height–one prime in OX,x, or OX,x itself, corresponding to the case x ∈ Q, or x /∈ Q. But,
as X is locally factorial, the ideal of OX,x is just qxOX,x, where qx is either an irreducible
element (X ∈ Q) or the unit element 1 (X /∈ Q). Given D in WDiv(X), define an element
fx inMer(X) by

fx =
∏

Q

qordQ(D)
x ∈ Frac(OX,x) =Mer(X).

If we prove that there is some open subset, Ux, with x ∈ Ux, so that on Ux, the (locally)
principal divisor (fx) is equal to D, then these Ux will cover X , and they will define a Cartier
divisor, σ = (Ux, fx), and we have D(σ) = D. Consequently, all is reduced to the assertion
that there is an open subset, Ux, and that on Ux,

(fx) ∩ Ux = D ∩ Ux.

In the definition of fx, only finitely many Q appear, and each such Q is given by some
equations on an affine open, U , containing x (we can use the same affine open merely by
shrinking the possibly different affine opens, there being only finitely many Q). We also



276 CHAPTER 5. BUNDLES AND GEOMETRY

know that the element, qx, is defined on some small open about x, and we may take the
above affine open to be this open, and write qx simply as q. As Q is given by finitely many
equations, and as all these are multiples of qx on OX,x, we may shrink U even further an find
that the equations for Q on this open U are d(j)q, for j = 1, . . . , t. If we set

fU =
∏

Q

q
ordQ(D)
V ,

then at our x ∈ U , the elements fU and fx are the same. This means that in a possibly
smaller affine open, they agree and hence, D and fU define the same divisor on U .

Remark: It is known (Auslander-Buchsbaum [4], and Serre [52], Chapter IV, Section D.1,
Corollary 4 of Theorem 9) that all regular local rings are UFD’s. So, if X is regular, then our
UFD condition follows. In Bourbaki’s terminology, when OX,x is always a UFD, X is called
a locally factorial scheme. We know that if X is an ordinary variety and X is nonsingular,
then X is regular (Chapter 2, Theorem 2.31 (Zariski)).

Corollary 5.29 We have Cl(An) = (0), Cl(Pn) = Z, Cl((xy = z2)) = (0), and Cl(Q) =
Z⊕ Z, if Q is a nonsingular quadric in P3.

Remark: In the case of the cone (xy = z2), we showed that R, a conic generator, is not
principal. Hence, R is not in the image of the map Cl(X) −→ WCl(X), but OX,0 is not a
UFD.

5.3 Divisors and Line Bundles

When is the map

Cl(X)
δ−→ Pic(X) = H1(X,O∗X),

we get from the cohomology sequence, surjective? First, we examine the connection between
Cartier divisors and invertible sheaves.

Let D be a Cartier divisor on X , say given by (Uα, fα). Look at the module L ⊆ KX
defined as follows: On Uα, take the submodule

1

fα
(OX ↾ Uα) →֒ KX ↾ Uα.

On Uα ∩ Uβ, we appear to have two submodules

1

fα
(OX ↾ Uα ∩ Uβ) and

1

fβ
(OX ↾ Uα ∩ Uβ).



5.3. DIVISORS AND LINE BUNDLES 277

However, fβ/fα ∈ Γ(Uα ∩ Uβ ,O∗X), and thus, the submodules are identical. We get a sub-
module of KX , denoted by OX(D). The map

ϕα : OX(D) ↾ Uα −→ OX ↾ Uα

defined via multiplication by fα is an isomorphism of modules; therefore, OX(D) is invertible
and has an embedding

ιD : OX(D)→ KX .
There results a map

D ∈ CDiv(X) 7→ (OX(D), ιD),

where OX(D) ∈ Pic(X) and ιD is an embedding of OX(D) into KX .
Now, suppose we have an invertible sheaf which is a submodule, L, of KX . This means

that there are embeddings ιL : L → KX and ιL−1 : L−1 → KX . Then, there exists: A cover
{Uα} of X and, some isomorphisms

ψα : L ↾ Uα −→ OX ↾ Uα.

Since 1 ∈ OX ↾ Uα, we find an element

ξα = ψ−1α (1) ∈ L ↾ Uα →֒ KX ↾ Uα.

Thus, we have ιL(ξα) ∈ KX ↾ Uα. For simplicity of notation, we also denote ιL(ξα) by ξα.
Since L−1 is also embedded in KX , the ξα’s are non-zero divisors. Therefore, we get a Cartier
divisor D = (Uα, ξ

−1
α ), and OX(D) = L. Of course, for any D and D̃,

OX(D ± D̃) = OX(D)⊗OX(D̃)±1.

Say L = OX(D) is isomorphic (abstractly, not as submodules of KX) to OX(D̃). To ask

what this means is the same as setting E = D − D̃ and asking: What does it mean that
OX(E) ∼= OX?

We have an isomorphism ϕ : OX(E) → OX and an embedding ι : OX(E) → KX . Thus,
we get

F = (ι ◦ ϕ−1)(1) ∈ Γ(X,K∗X).
We also know that

OX(E) ↾ Uα =
1

eα
OX ↾ Uα →֒ KX .

Therefore,
1

eα
= F ↾ Uα,
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where we have absorbed a unit of OX ↾ Uα in the element eα, which is all right as we consider
abstract isomorphism. We find that eα lifts to 1/F on Uα, but 1/F is a global function, which
implies that eα comes from Γ(X,K∗X), and

E =

(
1

F

)
.

Thus,
E ∼ (0),

where, of course, we write E ∼ E ′ when and only when E −E ′ ∼ (0), and the latter simply
means that E − E ′ is principal. Running the argument backwards, we get the following
proposition:

Proposition 5.30 There is a bijection

D ←→ OX(D)

between Cartier divisors on X and invertible submodules of KX such that linear equivalence
of Cartier divisors corresponds to abstract isomorphism of invertible sheaves. We have an
inclusion

Cl(X) →֒ Pic(X),

and the following diagram commutes:

H1(X,O∗X)

��

Cl(X)

δ
88qqqqqqqqqq

&&▼▼
▼▼

▼▼
▼▼

▼▼

Pic(X)

Proof . We only need to prove the last part of the proposition. Let D be a Cartier divisor,
and assume that D is given by (Uα, fα). Recall that we have isomorphisms

OX(D) ↾ Uα −→ OX ↾ Uα

given by multiplication by fα. This implies that the transition functions gβα : OX ↾ Uα →
OX ↾ Uβ satisfy

gβα =
fβ
fα
.

From this, it is easy to see that

δ(D) = [(Uα ∩ Uβ , fβ/fα)],
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where the brackets mean “class of.”

We now make a momentary digression on the cycle map and the moving lemma. Let
Y →֒ X be a closed immersion, and let D ∈ CDiv(X). Then, D is given by (Uα, fα). We
will say that D is well positioned for Y if

fα ↾ Yα ∈ (S−1YαBα)
∗,

where Yα = Uα ∩ Y , the ring Bα = Γ(Yα,OY ), and Sα is its collection of nonzero divisors.
Then, (Yα, fα ↾ Y ) gives a Cartier divisor on Y denoted by D · Y . The divisor D · Y is
the intersection cycle of D and Y . Assuming that f ∈ Γ(X,K∗X), we require that (f) be
well-positioned for Y . This means

f ↾ Y ∈ Γ(Y,K∗Y )

and then,
(f) · Y = (f ↾ Y ).

We get a map from the subset consisting of well positioned C-divisors on X to C-divisors
on Y , and well positioned principal C-divisors on X map to principal C-divisors on Y .

Let us now assume that

Y →֒ X
θ→֒ PN

and let D be a Cartier divisor on X . Eventually, we will show that

(1) There is some embedding θ and some effective Cartier divisors τ, µ well positioned
vis-a-vis Y so that

D ∼ rτ − sµ,
where r, s ∈ Z are large enough. Then, we can set

D · Y = r(τ · Y )− s(µ · Y )

and

(2) The class of D · Y , as just defined, is independent of the embedding θ and of τ, µ, r, s.
Then, we get the moving lemma, due to Chow:

Moving Lemma If our varieties X and Y lie over a field, and if

Y →֒ X →֒ PN , (closed immersion)

then we can move any D ∈ CDiv(X) to another Cartier divisor, D′, so that D′ · Y
makes sense and D ∼ D′. This yields a homomorphism

Cl(X) −→ Cl(Y ).
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Note that we can use cohomology to give a crisper “proof” of the existence of this map
(intersection cycle class map), namely consider the diagram

Cl(Y ) // H1(Y,O∗Y )

Cl(X) // H1(X,O∗X).

OO

If we could show that the composed map Cl(X) −→ H1(Y,O∗Y ) factors through the top
horizontal inclusion, we would have the required cycle class map.

If X = P3 and Y = Q (a nonsingular quadric), we know that the moving lemma holds.
Therefore, we can define Y ·Y . We know that Y ∼ 2H , which implies that Y ·Y = 2(Y ·H),
that is, Y · Y is of type (2, 2).

We now go back to the question: When the map

Cl(Y ) −→ H1(X,O∗X)

is onto. Consider a vector bundle, V , of rank r on X . Assume that there is a section
σ ∈ Γ(X, V ). We know that there is an open cover, (Uα), and isomorphisms, ϕα

ϕα : V ↾ Uα → Uα
∏

Ar.

The transition functions gβα lie in GL(r, Uα ∩ Uβ). Since σ : X → V , we have
σα = σ ↾ Uα : Uα → V ↾ Uα;

ϕα ◦ σα : Uα → Uα
∏

Ar,

and pr1 ◦ ϕα ◦ σα = id. Let

pr2 ◦ ϕα ◦ σα = (f
(α)
1 , . . . , f (α)

r ),

where f
(α)
j ∈ Hom(Uα,A1), a holomorphic function on Uα. Note that the assertion: σ is a

section, is equivalent to the transition equations:

gβα(f
(α)
1 , . . . , f (α)

r ) = (f
(β)
1 , . . . , f (β)

r ). (∗)

Let
Zα(σ) = Zα = {x ∈ Uα | f (α)

j (x) = 0, j = 1, . . . , r}.
The closed subscheme, Zα(σ), of Uα patches with the corresponding closed subscheme, Zβ(σ),
on Uα∩Uβ , by (∗). Thus, we get a closed subscheme, Z(σ), corresponding to the section σ ∈
Γ(X, V ). Since rk(V ) = r, the scheme Z(σ) is defined locally by r equations. Consequently,
the subscheme, Z(σ), should have its proper codimension, i.e.,

min{r, dim(X)},
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where rk(V ) = r, at least for generic σ. Apply these considerations to the case: r = 1, line
bundles.

Let L be a line bundle on X , and assume that L has lots of sections . Then, every section,
σ, of L yields on each Uα a holomorphic function, hα, and if gβα is the transition function for
L on Uα ∩ Uβ, we get

hβ = gβαhα on Uα ∩ Uβ .
We say that σ is a good section of L if the hα’s are non-zero divisors in Γ(Uα,OUα). Under
these conditions, we can make the submodule, 1

hα
OUα , of Kα = KX(Uα), and we have

hβ
hα

= gβα ∈ K∗X(Uα ∩ Uβ).

So, if σ is a good section, then the following facts hold:

(1) The pairs (Uα, hα) define a Cartier divisor, D. This divisor is effective.

(2) We have L ∼= OX(D), because the transition functions for L are the gβα’s and the
transition functions for OX(D) are the hβ/hα, and they agree.

Write D ≥ 0 when D is an effective Cartier divisor. This defines a partial order on
CDiv(X). If X is a scheme over a field k, we get a cone called the effective cone.

Assume that L = OX(D) and that σ is some given good section of L. What about Z(σ),
i.e., what’s the relation between Z(σ) and D? The section σ yields (Uα, hα), where the hα’s
define the effective Cartier divisor Z(σ) ≥ 0, and

hβ = gβαhα on Uα ∩ Uβ .

However,

gβα =
fβ
fα
,

where (Uα, fα) defines D. We get

hβ =
fβ
fα
hα on Uα ∩ Uβ ,

and so,
hβ
fβ

=
hα
fα

on Uα ∩ Uβ .

Therefore, these quotients patch, and we get a generalized meromorphic function, F , in
Γ(X,K∗X), via

F ↾ Uα =
hα
fα
.
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Now, from

fαF = hα,

we see that

(F ) +D = Z(σ), with Z(σ) ≥ 0.

Conversely, if D ∼ E where E ≥ 0, then E = (Uα, hα), where hα ∈ OX(Uα) ∩ K∗X(Uα).
However, D = (Uα, fα), with fα ∈ K∗X(Uα), and as D ∼ E, there is some F ∈ Γ(X,K∗X) with

hα = fαF on Uα.

Then,

gβαhα = gβαfαF = fβF = hβ,

which implies that the section, σ, given on Uα by the functions hα, is a good section. We
have now proved most of the following proposition:

Proposition 5.31 Let X be a scheme, L a line bundle on X, and D a Cartier divisor
on X. If σ is a good section of L, then Z(σ) is an effective Cartier divisor on X, and
L ∼= OX(Z(σ)). Next, for OX(D), there is a bijection between

(1) The collection of good sections, σ, of OX(D) and

(2) The set of all “meromorphic” functions, F , on X, which satisfy the inequality

(F ) +D ≥ 0.

Moreover, there is a bijection among the following three sets:

(A) Good sections, σ, of OX(D) modulo the action of global invertible holomorphic func-
tions on X (where invertible holomorphic functions act on sections by multiplication).

(B) Effective Cartier divisors, E, with E ∼ D.

(C) Global “meromorphic” functions, F , with

(F ) +D ≥ 0,

modulo the action of Γ(X,O∗X), (F 7→ λF ).

Proof . Only (A), (B), (C), have not been proved yet. We need only check (A) and (B), and
for this, we need the following fact: If σ and τ are good sections of OX(D), and Z(σ) = Z(τ)
as Cartier divisors, then σ = λτ for some λ ∈ Γ(X,O∗X). Since Z(σ) = Z(τ), there are
elements qα ∈ Γ(Uα,O∗X) so that

hα = qαkα,
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where Z(σ) and Z(τ) are defined by hα, resp. kα on Uα. We know that {hα} and {kα} are
sections, and so

hβ = gβαhα,

which implies that

qβkβ = gβαqαkα = qαg
β
αkα = qαkβ on Uα ∩ Uβ .

Therefore,
(qβ − qα)kβ = 0, on Uα ∩ Uβ.

Since kβ is not a zero-divisor, we get

qβ = qα on Uα ∩ Uβ.

The functions, qα, therefore patch on the overlaps and thus define a global invertible holo-
morphic function.

If X lies over a field,k, then elements λ ∈ k∗ lie in Γ(X,O∗X). So,

{σ ∈ Γ(X,OX(D)) | σ is good}

is a k-vector space and

{σ ∈ Γ(X,OX(D)) | σ is good}/k∗ = P({σ ∈ Γ(X,OX(D)) | σ is good})

maps onto
{E | E ≥ 0, E ∼ D}.

This surjection is an isomorphism if Γ(X,O∗X) = k∗. If X is proper, we will show that
Γ(X,OX) = k. From now on, let us denote the set {σ ∈ Γ(X,OX(D)) | σ is good} by
Γgood(X,OX(D)).

We define |D| by
|D| = {E | E ≥ 0, E ∼ D},

and call |D| the complete linear system determined by D. Of course, when X is proper |D|
is just P(Γgood(X,OX(D)); hence, in this case, |D| has the structure of a projective space.

It turns out that for X a proper scheme over a field k, the dimension of Γ(X,OX(D)) is
finite, and this number is a very important invariant of the divisor D. The Riemann-Roch
problem, in its simplest form, is to compute the dimension of Γ(X,OX(D)) in terms of other,
simpler invariants of X and D. More generally we can say that the Riemann-Roch problem
is to compute

dim(H0(X,F)) = dim(Γ(X,F)),
where F is a QC sheaf on a given scheme X . Of course, the computation should be made in
terms of invariants of X and simpler invariants of F ; and further, as stated in our form, we
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have to assume that X is defined over a field. We shall return to these questions in Chapter
9.

Now, let D be an effective divisor of X and (Uα, fα) its “equations.” We know that
fα ∈ Γ(Uα,OX) ∩ Γ(Uα,K∗X), and the transition functions, gβα, for OX(D) are given by
gβα = fβ/fα. Hence, fβ = gβαfα, so that the fα’s define a good section σ. The subscheme,
Z(σ), is just defined locally by the ideal fαOX on Uα. However,

fαOX ⊆ OX ⊆ KX ,

and this locally free OX-module is just OX(−D). Thus, we have the following proposition:

Proposition 5.32 If D is an effective Cartier divisor on X, let Y be the locally principal
subscheme of X given by the “equations” D and write JY for the ideal sheaf of Y . Then,

(1) JY = OX(−D),

(2) The sequence
0 −→ OX(−D) −→ OX −→ OY −→ 0

is exact.

We have seen that divisors relate to line bundles and now must inquire into the difference
between the two concepts. Generally speaking, Cl(X) is a proper subgroup of Pic(X), but
there are conditions on X which will ensure the equality of the two groups. We will give just
two such criteria and not pretend to any real generality.

Proposition 5.33 Let X be a scheme and suppose that there is a line bundle, L, having the
following property:

(Amp) For every line bundle L on X, there exists an integer M(L) ≥ 1, so that if q ≥ M(L)
then L⊗ L⊗q has a good section.

Then, Cl(X) = Pic(X).

Proof . Apply (Amp) to L itself. If q ≥ N = M(L) − 1, then L⊗q has a good section. A
previous argument implies that

L⊗q ∼= OX(Dq),

for some Cartier divisor Dq. Pick any line bundle L, and let

M = max{M(L), N}.

Assume that q ≥M . Then, L⊗ L⊗q has a good section, which implies that

L ⊗ L⊗q ∼= OX(Eq),
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where Eq ∈ CDiv(X). Since q ≥ N , we also have

L⊗q ∼= OX(Dq),

and thus,
L ∼= OX(Eq)⊗OX(Dq)

−1 ∼= OX(Eq −Dq).

Remark: Since it is not clear if any X we know satisfies (Amp) or even how to satisfy
(Amp), we need a more tractable criterion.

Proposition 5.34 If X is an integral scheme (i.e., reduced and irreducible), then Cl(X) =
Pic(X).

Proof . The sheaf KX =Mer(X) is constant, as X is integral. Therefore, the sheaf KX is
flasque. As a consequence,

Hr(X,KX) = (0) for all r > 0,

see Appendix B. Similarly, the sheaf K∗X is flasque and

Hr(X,K∗X) = (0) for all r > 0.

However, we have the exact sequences

0 −→ OX −→ KX −→ PX −→ 0 (ML)

and

0 −→ O∗X −→ K∗X −→ DX −→ 0, (W)

where, PX is, by definition, the quotient sheaf, in exact sequence (ML). Applying cohomology
to the sequence (W), we get

0 // H0(X,O∗X) // H0(X,K∗X) // CDiv(X) EDBC
GF@A

// Pic(X) // H1(X,K∗X) = 0.

This shows that the map Cl(X) −→ Pic(X) is onto, and thus, an isomorphism.

Exact sequences (ML) and (W) have many interesting and important consequences. If
we continue the cohomology sequences arising from (ML) and (W) in the case where KX is
flasque (e.g., if X is an integral scheme) then we obtain the isomorphisms

(a) Hr(X,DX) ∼= Hr+1(X,O∗X) for all r ≥ 1, and
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(b) Hr(X,PX) ∼= Hr+1(X,OX) for all r ≥ 1.

Now, the cohomology of OX is, in many cases, a tractable group to compute; so, isomor-
phism (b) gives us information about the cohomology of PX . The cohomology of O∗X is, in
general, more difficult to compute. But in the complex analytic case we can connect OX and
O∗X . In this case, we have the exponential sequence

0 −→ Z −→ OX exp−→ O∗X −→ 0.

Moreover, for any scheme, X we have the exact sequence

0 −→ O∗X −→ GL(n+ 1) −→ PGL(n) −→ 0,

where, by definition, PGL(X, n) is the quotient sheaf, and the map O∗X −→ GL(X, n+1) is
the diagonal map. Note that Im (O∗X) is contained in the center of GL(n + 1). It is known
that this condition guarantees the existence of a partial long cohomology exact sequence

0 // Γ(X,O∗X) // Γ(X,GL(n + 1) // Γ(X,PGL(n)) EDBC
GF@A

// Pic(X) // H1(X,GL(n+ 1)) // H1(X,PGL(n)) EDBC
GF@A

// H2(X,O∗X).

However, in this partial cohomology exact sequence, the terms H1(X,GL(n + 1)) and
H1(X,PGL(n)) are just sets with a distinguished element. The first term, H1(X,GL(n+1)),
is already known to us as Vect(n + 1, X) and we shall shortly have an interpretation of the
second term, H1(X,PGL(n)). If, in addition, X is proper over an affine scheme, then the
first part of the sequence consisting of the global sections is already exact by itself. As a
consequence, we get the exact sequence

0 −→ Pic(X) −→ Vect(n+ 1, X) −→ H1(X,PGL(n)) −→ H2(X,O∗X), (†)

where X is proper over an affine base.

We would like to apply the exponential sequence; for this, assume now that X is a variety
over C. We have the corresponding analytic space, Xan, as previously explained, and the
exact sequence

0 −→ Z −→ OXan
exp−→ O∗Xan −→ 0.
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Taking the cohomology sequence, we get

0 // Z // Γ(Xan,OXan)
exp // Γ(Xan,O∗Xan) EDBC

GF@A
// H1(Xan,Z) // H1(Xan,OXan) // Pic(Xan) EDBC

GF@A
// H2(Xan,Z) // H2(Xan,OXan) // H2(Xan,O∗Xan) EDBC

GF@A
// H3(Xan,Z) // · · ·

If X is proper over C then, as above, Γ(Xan,OXan) = C, and the existence of the logarithm
shows that the first part of the sequence consisting of the global sections is already exact. If
we assume more, we can say more. For example, if X ⊆ Pr as a closed subvariety then the
analytic cohomology and the algebraic cohomology will agree by the results of GAGA due
to Serre [48]. That is,

Hk(Xan,OXan) = Hk(X,OX),
and

Hk(Xan,O∗Xan) = Hk(X,O∗X) for all k ≥ 0.

Then, we have

0 // H1(Xan,Z) //H1(X,OX) // Pic(X) EDBC
GF@A

// H2(Xan,Z) //H2(X,OX) // H2(X,O∗X) EDBC
GF@A

// H3(Xan,Z) // · · ·

Now, Xan is a complex analytic space and Hk(Xan,Z) is the Betti (= ordinary) cohomol-
ogy. The group H1(Xan,Z) is a discrete subgroup of H1(X,OX) and we shall show that
H1(X,OX)/H1(Xan,Z) is a complex torus. Consequently, Pic(X) has as a subgroup a com-
plex torus with a quotient a subgroup of the discrete group H2(Xan,Z). When we have
studied Chern classes, it will turn out that the map Pic(X) −→ H2(Xan,Z) is exactly the
map from a line bundle to its first Chern class. For now, let X = Pr. Then, Xan = PrC and
we know that

H t(PrC,Z) =





(0) if r is odd.
Z if r is even.
(0) if t > 2r.

We will see in the next section that

Hp(PrC,OPr) = (0) for all p > 0
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and

H0(PrC,OPr) = C.

In particular, we find that

Pic(PrC) = Z

(as we already knew) and

H2(PrC,OPr) = (0),

We shall prove this latter fact in a moment in discussing the interpretation of
H1(X,PGL(n)).

But first, we use the former fact: Pic(Prk) = Z, where k is a field. It shows that a line
bundle over Pnk is of the form

OPn(H)⊗q,

where H is some hyperplane and q ∈ Z, i.e., of the form OPn(qH). The usual notation for
OPn(qH) is OPn(q). Let us assume momentarily that q > 0, and look at OPn(q). We know
that an equation for a Cartier divisor corresponding to qH is

Zq
0 = 0,

where (Z0 : · · · : Zn) are the homogeneous coordinates on Pn. Cover Pn by the usual affine
opens

Uj = {(Z0 : · · · : Zn) | Zj 6= 0}, where j = 0, . . . , n.

On U0, our divisor is given by the function 1. On Uj , for j > 0, our divisor is given by the
function (

Z0

Zj

)q
.

We also have

gij =
(Z0/Zj)

q

(Z0/Zi)q
=

(
Zi
Zj

)q
.

Note: this also holds for q < 0. Thus, these gij’s are the transition functions for OPn(q). A
section, σ ∈ Γ(Pn,OPn(q)), is a family of holomorphic functions, σj , on Uj with

σj = gijσi on Ui ∩ Uj .

We know

σj = hj

(
Z0

Zj
, . . . ,

Zn
Zj

)
, where hj is a polynomial.

For patching as a section, we need to have

hj

(
Z0

Zj
, . . . ,

Zn
Zj

)
=
Zq
i

Zq
j

hi

(
Z0

Zi
, . . . ,

Zn
Zi

)
on Ui ∩ Uj for all i, j.
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This means:

Zq
jhj

(
Z0

Zj
, . . . ,

Zn
Zj

)
= Zq

i hi

(
Z0

Zi
, . . . ,

Zn
Zi

)
for all i, j. (∗)

Go back to the case q > 0. Equation (∗) show that each hj is the dehomogenization of a
singe form h of degree q in the variables Z0, . . . , Zn. If q < 0 the equation (∗) is impossible
as the reader should easily check. Now, it turns out that we even have

H2(PnA,OPn
A
) = (0)

when A is a commutative ring and PnA means the projective space over SpecA–a concept to
be introduced in Chapter 7–but that we use here for the convenience of the reader in stating
the next proposition (set A = k, a field in the next proposition to see a statement that we
have actually proved).

Proposition 5.35 For Pnk , with k a field, the Cartier divisor classes are in bijection with Z
via the map

q 7→ OPn(qH).

Moreover, the space of global sections, Γ(Pn,OPn(q)), is given by

Γ(Pn,OPn(q)) =

{
vector space of all forms of degree q, if q ≥ 0,
(0), if q < 0.

Later, we shall generalize Proposition 5.35 to take care of the case where k is replaced
by a commutative ring, A. For now, we use it to prove the following proposition:

Proposition 5.36 (Fundamental theorem of projective geometry)

Autk(P
n
k) = PGL(n, k).

Proof . Let σ ∈ Autk(Pnk). Then, the map σ∗ : L 7→ σ∗L is a k-automorphism of Pic(Pnk). As
Pic(Pnk) = Z, we get

σ∗ = ±1.
Also,

σ∗(OPn(1)) = OPn(±1)
since OPn(1) is a generator. We can find f ∈ Γ(Pn,OPn(1)), with f 6= 0, and then

σ∗f ∈ Γ(Pn,OPn(±1)) and σ∗f 6= 0.

But Γ(Pn,OPn(−1)) = (0), so σ∗ = id. Therefore, σ takes hyperplanes to hyperplanes. It
follows that (DX) σ is linear, and we are done.

Proposition 5.36 helps us interpret the group H1(X,PGL(n)). Recall that in the case
of GL(n), the cohomology group H1(X,GL(n)) was identified with the isomorphism classes
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of rank n vector bundles on X (see Theorem 5.11). The reader should look at the proof
of this theorem and see that the sole place where GL(n) entered the argument was in the
description of the automorphisms of the fibres of the total space of the vector bundle. Exactly
the same argument applied to a projective fibre bundle (space Y over X , locally trivial on
X , modeled as the product U

∏
F (U open in X , and F a fixed space–the fibre) whose fibre,

F , is Pnk), shows that the isomorphism classes of these are in bijective correspondence with
the elements of H1(X,PGL(n)). Of course, we have used the fundamental fact that the
automomorphisms of the fibre, Pn, comprise the group PGL(n, k). Now, the exact sequence
(†) (after Proposition 5.34) shows that a necessary and sufficient condition that a projective
fibre bundle with fibre Pn arises by “projectivizing” a vector bundle of rank n + 1 is that
the image in H2(X,O∗X) of the cohomology class, α, representing our projective fibre bundle
vanishes. In this way, some elements of H2(X,O∗X) arise as “obstructions” to viewing a given
projective fibre bundle as a projectivization of a vector bundle of one–higher rank.

For projective space, Pn, we can make an interpretation of the line bundles OX(q) in a
geometric fashion. We shall first do this for the case q = ±1.

We know that B0(An+1) is a line bundle on Pn (over a field k ⊆ Ω). We also showed that
there are no nonzero sections (see Chapter 2, Proposition 2.54). So,

B0(A
n+1) = OPn(q) with q < 0.

Let Uj be the standard open, as usual, and let α = (α0 : · · · : αn) ∈ Uj. The fibre in B0(An+1)
over α is the line Lα given by

Zk = αkt, where t ∈ Ω, and Z0, . . . , Zn are coordinates on An+1.

The local never-zero trivializing section, σj , is given

σj(α) =

〈
α0

αj
, . . . ,

αn
αj

〉
,

point on Lα corresponding to t = 1/αj. Thus, σj gives the isomorphism

Uj
∏

A1 −→ B0(A
n+1) ↾ Uj ,

via

〈α, t〉 7→
(〈

tα0

αj
, . . . ,

tαj−1
αj

, t,
tαj+1

αj
, . . . ,

tαn
αj

〉
; (α0 : · · · : αn)

)
,

the last tuple on the right-hand side representing the point, α, of Uj. The inverse

ϕj : B0(A
n+1) ↾ Uj −→ Uj

∏
A1

is given by
((tβ0, . . . , tβn); (β0 : · · · : βn)) 7→ ((β0 : · · · : βn), tβj).
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Then,

gij

(
βk
βj

)
=
βk
βi

implies that gij is multiplication by
βj
βi

=
(
βi
βj

)−1
, which implies that q = −1. We see that

B0(A
n+1) ∼= OPn(−1).

Now, for a geometric view of OPn(1). Let P ∈ Pn+1, and choose coordinates so that

P = (0: · · · : 0 : 1).

View Pn →֒ Pn+1 as the hyperplane Zn+1 = 0, and let B = Pn+1 − {P}. Project B onto Pn.
Given any Q in the hyperplane, the fibre of the projection is the line lPQ. By our choice of
coordinates, the projection is given by

π(α0 : · · · : αn+1) = (α0 : · · · : αn),

and the equation of lPQ is

(u : t) 7→ (uα0 : · · · : uαn : t), where Q = (α0 : · · · : αn).

We have
A1 = lPQ − {P} ⊆ B = Pn+1 − {P},

and the equation of this affine line is

τ 7→ (α0 : · · · : αn : τ) (where τ = t/u).

So, B is a line family, and it is locally trivial. For if Q ∈ Uj , define

σj(Q) = σj(α0 : · · · : αn) = (α0 : · · · : αn : αj);

we get an everywhere nonzero function from Uj to B. Thus, B is a line bundle. The section,
σj , gives the trivialization

Uj
∏

A1 −→ B ↾ Uj ,

where
(Q, t) 7→ (α0 : · · · : αn : tαj).

The inverse isomorphism is

ϕj : B ↾ Uj −→ Uj
∏

A1,

given by

ϕj(β0 : · · · : βn+1) =

〈
(β0 : · · · : βn),

βn+1

βj

〉
.
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For the transition functions, gij, as gijσj = σi, we find that gij is multiplication by βi
βj
. Thus,

q = 1, and B = OPn(1). More geometrically, hyperplanes in Pn+1 are given by equations of
the form

n+1∑

j=0

ajZj = 0.

The hyperplanes, H , through P form a Pn; namely, in the above, an+1 = 0. So, the cor-
respondence is H ←→ (a0 : · · · : an). The rest of the hyperplanes fill out a copy of An+1;
namely, these are the hyperplanes given by equations of the form

n∑

j=0

ajZj + Zn+1 = 0, (∗)

because they correspond to homogeneous coordinates (a0 : · · · : an : an+1) with an+1 6= 0. Let
−→a = (a0, . . . , an) and H−→a be the hyperplane given by (∗). Pick Q = (α0 : · · · : αn) ∈ Pn

(recall that P = (0: · · · : 0 : 1)), then the intersection, H−→a ∩ lPQ, of H−→a with the line lPQ
is the point (

α0 : · · · : αn : −
n∑

j=0

ajαj

)
,

since the points on the line lPQ other than P have coordinates (α0 : · · · : αn : t). Define

σ−→a (Q) = H−→a ∩ lPQ.

The map, σ−→a , gives a section of our bundle. Conversely, if σ is a section of our bundle,
then σ(Pn) is contained in Pn+1. Now, σ(Pn) is closed (by Theorem 2.36, since σ is a proper
map) and irreducible. It is also of dimension n since σ is injective. Therefore, σ(Pn) is
an irreducible hypersurface. Since σ is a section, σ(Pn) ∩ lPQ is a single point, and thus,
deg(σ(Pn)) = 1. So, σ(Pn) must be a hyperplane in Pn+1 − {P}. Therefore, the maps:

−→a 7→ σ−→a

and
σ 7→ σ(Pn) = H

establish an isomorphism between An+1, the hyperplanes not through P , i.e., the linear
forms

∑n
j=0 ajZj , and the sections of our bundle. There is only one line bundle on Pn whose

sections are the linear forms
∑n

j=0 ajZj, and we find once again the line bundle OPn(1).

In case q is not ±1, we can make similar geometric arguments to interpret the total
spaces of these line bundles. Namely, consider the q-uple embedding Pn −→ PN , where
N =

(
n+q
q

)
− 1 (see Section 2.5), and apply the above to PN to give an interpretation of

OPN (±1). Then, the pull back of OPN (±1) to Pn gives the bundles OPn(±q). Hence, as the
reader should verify, we obtain a description of the total spaces of OPn(±q).
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5.4 Further Readings

Locally free sheaves, bundles, and divisors are key concepts in algebraic geometry. These
concepts are covered quite extensively in Chapter II and III of Hartshorne [33], although
bundles are relegated to the exercises. Locally free sheaves are discussed in EGA I ([22,
30]), and Cartier divisors are introduced in EGA IVd ([29], Section 21). A more informal
discussion of all these concepts can also be found in Danilov’s survey [11], and in Shafarevich
[54].
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Chapter 6

Tangent and Normal Bundles; Normal
Sheaves and Canonical Sheaves

6.1 Flat Morphisms–Elementary Theory

Morphisms in algebraic geometry, say f : X → Y , can be thought of as families of schemes,
f−1(y), each over its corresponding residue field, κ(y), with the consistency of the family be-
ing guaranteed by the fact that the fibres all come from one scheme X . However, this direct
and easy notion of a family of schemes is usually not a correct mathematical embodiment
of our intuitive notion of a “continuously varying” family over Y . For example, if X is the
blowup of a point of Y , then even the fibre dimension jumps. And, when the fibre dimen-
sion does not jump, what guarantee have we that more subtle invariants of the fibre vary
continuously–which is to say, for discrete invariants, remain locally constant? The algebraic
notion of flatness (originally due to Serre [48]), seems to capture the desired continuity we
see in our minds quite efficiently indeed. This will come out over an extended sequence of
results, some of which will be proved in this section and others of which will be taken up
later on.

Definition 6.1 Let f : X → Y be a morphism and F a QC OX-module. We say that
F is flat over Y at x ∈ X if Fx is a flat OY,f(x)-module (recall that there is a ring map
fa : OY,f(x) → OX,x, and since Fx is an OX,x-module, it can also be viewed as a OY,f(x)-
module). We say that F is flat over Y if it is flat over Y at x for all x ∈ X . Finally, f is
flat if OX is flat over Y . This means that OX,x is a flat OY,f(x)-module for all x ∈ X .

An easy case with which to begin is when f : X → Y is a finite flat surjective morphism.
Let us call such an X a finite flat cover of Y . Let us also assume at first that X and Y are
integral schemes (reduced and irreducible). Then, there is an inclusion of fields

Mer(Y ) →֒ Mer(X),

and it is a finite extension. The degree, δ, of this extension is called the degree of the
morphism. Even if X and Y are not integral but if Y is locally noetherian, then OX is a

295
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finite rank locally free OY -module. If Y is also connected, this rank is constant and is just
the degree δ introduced above in the integral case. Let V be a vector bundle of rank n over
X . We can view V as a locally free sheaf, thus coherent, and f∗(V ) is again a coherent
OY -module (see remark after Corollary 4.20). We have the following useful lemma:

Lemma 6.1 Let f : X → Y be a proper morphism. If U is any nonempty open set in X,
there exists a maximal open W ⊆ Y so that f−1(W ) ⊆ U . The set W is nonempty iff there
exists a closed point y ∈ Y so that C ∩ f−1(y) = ∅, where C = X − U .

Proof . As above let C = X − U , which is closed in X . Then, D = f(C) is closed in Y
(since f is proper). Let W = Y − D. Note that W 6= ∅ iff f(C) 6= Y . If ξ ∈ f−1(W ),
then f(ξ) ∈ W , which implies that f(ξ) /∈ D. Thus, ξ /∈ C, so that ξ ∈ U . That W is
maximal should be clear. Now, the closed points of Y are dense in Y , and the condition
C ∩ f−1(y) = ∅ is exactly the condition that y /∈ D. Since D is closed in Y , it equals Y iff
it is dense, that is if and only if D contains every closed point of Y .

Proposition 6.2 If X and Y are schemes, with Y locally noetherian and connected, and if
f : X → Y is a finite flat cover of degree δ, then the direct image, f∗V , of any rank n vector
bundle, V , on X is again a vector bundle on Y , but of rank nδ.

Proof . The question being local on Y we may and do assume Y is a noetherian affine
connected scheme. As in the remark after Corollary 4.20, the sheaf f∗V is coherent and of
the form M̃ , where M is a B-module (X = Spec B, Y = Spec A, and B is a finite flat
A-module), and by hypothesis is localy free as B-module. If p is a prime of A, then Mp is a
flat Ap-module–and so, Mp is a free finitely generated Ap-module. By the usual persistence
of pointwise (stalk) properties to small open sets around the points, we see that M is a
locally free A-module. This means exactly that f∗V is a vector bundle. The rank of f∗V is
manifestly nδ.

If L ∈ Pic(X), then f∗L ∈ Vectδ(Y ). Hence, we can form
∧δ(f∗(L)), and this is an

element of Pic(Y ). We will denote
∧δ(f∗(L)) by NX/Y (L), and call it the “norm” of L. In

the case that X and Y are integral schemes, what is NX/Y on Cartier divisors?

We know that Mer(X) is a degree δ extension of Mer(Y ). This view of Mer(X) is
properly speaking a view of f∗Mer(X) as sheaf on Y . If U is a sufficiently small affine open
of Y , we can arrange matters so that

(1) f∗OX ↾ U is free of rank δ over OY ↾ U (as f is finite, flat, surjective.

(2) A basis used in (1) is a gain a basis of f∗Mer(X) overMer(Y ).

Over this open, each section σ ∈ Γ(f−1(U),OX) or σ ∈ Γ(f−1(U),Mer(X)) acts as a linear
transformation on its respective module via the formula

Tσ(τ) = σ · τ.
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By applying this to our basis, we find a matrix for Tσ and the determinant of this matrix
(which is the determinant of Tσ as linear transformation and is independent of the basis) is
an element of the respective module OY or Mer(Y ) and is the norm of σ in the sense of
linear algebra. Let us denote this norm by NX/Y (σ). We therefore obtain the commutative
diagram

0 // O∗X
NX/Y

��

//Mer(X)∗

NX/Y

��

// DX

��

// 0

0 // O∗Y //Mer(Y )∗ // DY // 0

(6.1)

where the righthand vertical arrow comes from the two lefthand side vertical ones, and we
actually have maps of sheaves because on any overlaps of affines the norm computed in
the two different bases is the same. Now, for a matrix, its determinant is just its highest
wedge (as a linear transformation of one-dimensensional free modules). Since NX/Y is a
Čech-cochain map, diagram 6.1 extended by cohomology gives us the diagram

0 // Γ(X,O∗X)
NX/Y

��

//Mer(X)∗

NX/Y

��

// CDiv(X)

��

// H1(X,O∗X)

��

// 0

0 // Γ(Y,O∗Y ) //Mer(Y )∗ // CDiv(Y ) // H1(Y,O∗Y ) // 0.

(6.2)

But then, the righthand vertical map is just given by the norm map of diagram 6.1 applied
to representing cocycles and the latter is just the highest wedge as remarked above. Thus,
in diagram 6.2, the righthand vertical map is what we call the norm of a line bundle. This
shows that the norm map of lines bundles when viewed in the context of Cartier divisors is
just the map induced by the obvious norm mapMer(X) −→Mer(Y ).

Take Q ∈ Pic(Y ). Then, f ∗Q ∈ Pic(X). On Cartier divisors, let Q = (Oα, gα), with
gα ∈Mer(Y ); then,

f ∗Q = (f−1Oα, gα),

where gα ∈Mer(X), asMer(Y ) →֒ Mer(X). Form NX/Y (f ∗(Q)) ∈ Pic(Y ), then, we find

NX/Y (f ∗Q) = (Oα,NY/Xgα) = (Oα, g
δ
α),

because gα ∈Mer(Y ). Therefore,

NX/Y (f ∗Q) = Q⊗δ,

or δQ, a C-divisor.
For Weil divisors, when they make sense,

f ∗(P ) =
∑

Q⊆X prime
Q−→P

ordQ(f
−1(P ))Q,
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for any prime W -divisor, P , of Y . If Q is a prime divisor on X , then NX/Y fQ is inMer(Y )∗,
and

NX/Y (Q) =
∑

P⊆Y prime

ordP (NX/Y fQ)P.

Here, fQ is a generator of the maximal ideal of OX,Q defining Q as prime divisor. Hence, we
obtain the following proposition:

Proposition 6.3 If X, Y are integral schemes with Y locally noetherian and f : X → Y is
a finite flat cover of degree δ, then there is a morphism

NX/Y : Pic(X)→ Pic(Y )

and the composition

Pic(Y )
f∗−→ Pic(X)

NX/Y−→ Pic(Y )

is just multiplication by δ. We have the following formulae for Cartier divisors:

NX/Y (Uα, gα) = (Oα,NX/Y gα),

where f−1(Oα) ⊆ Uα,
f ∗(Uα, gα) = (f−1(Uα), gα),

with gα ∈Mer(Y ) ⊆Mer(X). For Weil divisors:

f ∗(P ) =
∑

Q⊆X prime
Q−→P

ordQ(f
−1(P ))Q,

for any prime W -divisor, P , of Y and

NX/Y (Q) =
∑

P⊆Y prime

ordP (NX/Y fQ)P,

where fQ is the element of OX,Q defining Q as prime divisor.

Assume that there is a notion of degree deg : Pic(Y ) → Z on Y . Then, we get a degree
on Pic(X) via

degX(L) = degY (NX/YL).
We have

degXf
∗(L) = degY (NX/Y (f ∗(L))) = δdegY (L).

We can apply this to any irreducible projective variety X ⊆ PN of dimension n over a field.
By Noether normalization, there is a finite covering map f : X → Pn.

** Steve, this needs fixing
Now, we can prove (using part (3) of the fibre dimension theorem, Theorem 2.9) that

there is an open, U , of Pn where our map f is actually finite and flat from f−1(U) to U .
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ButMer(X) andMer(Y ) are constant sheaves, so the norm continues to make sense even
when restricted to f−1(U). Thus, if we take a Cartier divisor on X , with local equations,
gα, we get a divisor on Pn from the local equations NX/Pngα–because the zeros and poles of
NX/Pngα and NX/Pngβ are the same on a sufficiently small open in Pn. **

If we are over an algebraically closed field, then Pic(Pn) = Z, we have a notion of degree,
thus, the degree is defined on all line bundles on projective irreducible varieties over an
algebraically closed field. Take g ∈Mer(X). This yields the trivial bundle (g), and

NX/Y ((g)) = (NX/Png).

Therefore,
degX((g)) = degPn((NX/Png)) = 0.

Corollary 6.4 On a projective irreducible variety, X, over an algebraically closed field, for
any g ∈Mer(X), we have deg((g)) = 0. So, the number of zeros of g is equal to the number
of poles of g.

Flat morphisms have good behavior with respect to cohomology. The situation is as
follows: We have a finite-type separated morphism, f : X → Y , between schemes, where Y
is locally noetherian. Take any locally noetherian scheme, Y ′, and any morphism, θ : Y ′ → Y ,
and let F be a QC OX-module on X . We can form the fibred product X ′ = X

∏
Y

Y ′, and

we obtain the following diagram:

X
∏
Y

Y ′

f ′

��

θ′ // F QC sheaf

f.t. separated

��
Y ′

θ
// Y ; loc. noeth.

Then, we can form two QC sheaves on Y ′, and we claim that there is a canonical morphism,
can, between these two sheaves:

can: θ∗(Rpf∗)(F) −→ (Rpf ′∗)(θ
′∗(F)).

To give a morphism can as above is equivalent to giving the corresponding morphism:

(Rpf∗)(F) −→ θ∗(R
pf ′∗)(θ

′∗(F)).

Pick some open U in Y . We know that (Rpf∗)(F) is the sheaf associated to the presheaf

U 7→ Hp(f−1(U),F).

The righthand side is the sheaf

U 7→ (Rpf ′∗)(θ
′∗(F)(θ−1(U))).
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But this is the sheaf associated to the presheaf

U 7→ Hp(f ′
−1
(θ−1(U)), θ′

∗
(F)).

However,
f ′
−1
(θ−1(U)) = (θ ◦ f ′)−1(U) = (f ◦ θ′)−1 = θ′

−1
(f−1(U)).

Thus, the RHS is associated to the presheaf

U 7→ Hp(θ′
−1
(f−1(U)), θ′

∗
(F)).

Let Z = f−1(U). Then, the LHS is associated to the presheaf

U 7→ Hp(Z,F),

and the RHS is associated to the presheaf

U 7→ Hp(θ′
−1
(Z), θ′

∗
(F)).

The contravariant nature of cohomology implies that there is a map

θ′
∗
: Hp(Z,F) −→ Hp(θ′

−1
(Z), θ′

∗
(F)).

Therefore, we get a map, can, from the LHS presheaf to the RHS presheaf, and, by the
universal property of sheafification, we get the desired map of sheaves.

Proposition 6.5 Under our circumstances, if θ is flat, the canonical homomorphism

can: θ∗(Rpf∗)(F) −→ (Rpf ′∗)(θ
′∗(F))

is an isomorphism.

Proof . The whole statement is local on Y and Y ′. Thus, we may assume that Y = Spec A,
Y ′ = Spec A′, and that A and A′ are noetherian rings. In this case, we know that

(Rpf∗)(F) = ˜Hp(X,F)

and
(Rpf ′∗)(F ′) = ˜Hp(X ′,F ′),

where F ′ = θ′∗F . Further,

θ∗(Rpf∗)(F) = ˜Hp(X,F)⊗A A′.

We have the map
can : Hp(X,F)⊗A A′ −→ Hp(X ′,F ′);
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we must show that this is an isomorphism. Since f is finite type, X and X ′ are noetherian,
separated, and thus, affine open covers of each are both nerve-finite. Hence, cohomology of
our QC sheaves, F and F ′, may be computed by the Čech method. Cover X by affines Uα.
Then, X ′ is covered by affines U ′α = θ′−1(Uα) (since θ′ is an affine morphism). The Čech
complex for X ′,F ′ is

C•(U ′α,F ′) = {
∏

α0<...<αp

F ′(U ′α0
∩ · · · ∩ U ′αp

)}p≥0

= {
∏

α0<...<αp

F ′(Uα0 ∩ · · · ∩ Uαp)
′}p≥0

= {
∏

α0<...<αp

F(Uα0 ∩ · · · ∩ Uαp)⊗A A′}p≥0.

Thus, there is an isomorphism

Č•({Uα → X},F)⊗A A′ −→ Č•({U ′α → X ′},F ′).

But computing cohomology commutes with −⊗A A′, since A′ is flat over A.
Given a morphism f : X → Y , for every y ∈ Y we have

Xy = f−1(y),

the fibre, a scheme over Spec(κ(y)). Hence, a morphism “really is” an algebraic family of
schemes parametrized by the base, each scheme of the family being a fibre, and defined over
varying base fields: κ(y). We get a behavior closer to our intuition if f is l.f.t., even better
if f is f.t. Look at a QC sheaf, F , on X and write Fy for the pullback of F to Xy. Inside

Y is the scheme, Y ′, which is just {y} with reduced induced structure. On it, there is the
constant sheaf κ(y).

Proposition 6.6 If f : X → Y is a f.t. separated morphism, if Y is locally noetherian, and
if y ∈ Y , then, we have the isomorphisms

Hp(X,F ⊗OY
κ(y)) ∼= Hp(Xy,Fy) for all p ≥ 0.

Proof . Consider the diagram of schemes and morphisms

Xy

fy

��

� � // X
∏
Y

Y ′

pr2
��

� � // X

f

��
Spec κ(y) �

� // Y ′ �
� // Y.

In this diagram, X ′ = X
∏
Y

Y ′ and Y ′ are closed subschemes of X and Y respectively and

Spec κ(y) is dense in Y ′. A pictorial sketch of the situation is shown in Figure 6.1.
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Y ′ (solid segment)

y (gray shaded generic point)

X ′ (entire rectangle)

Xy (gray shaded non-closed fibre)

Figure 6.1: Illustration of the proof of Proposition 6.6.

Here, the shaded line on Y represents the (possibly) nonclosed point y, and the shaded
region of X represents the (possibly) nonclosed fibre Xy.

Write I for the quasi–coherent ideal of OY defining the scheme Y ′ (so, OY ′ = O/I),
then OX′ = OX/f ∗I · OX . Both F and κ(y) are OY -modules and F ′ = F ⊗OY

κ(y) is a
sheaf concentrated on Y ′. Let us assume the following lemma which we shall prove after
Proposition 6.6:

Lemma 6.7 Let i : X ′ → X be a closed immersion and F a sheaf on X whose support is
contained in X ′. Then,

Hp(X,F) ∼= Hp(X ′,F).

By this lemma, applied to the sheaf F ′ and the scheme X ′, we see that

Hp(X,F) ∼= Hp(X ′,F ′) = Hp(X ′,F ⊗OY
κ(y)).

However, Fy = F ′y. Therefore, we may and do assume that X , Y and F are replaced by X ′,
Y ′, and F ′. But now, y is generic in Y and Spec κ(y) −→ Y is a flat morphism. Hence, we
may apply Proposition 6.5 which says that

Hp(X,F ⊗OY
κ(y))⊗OY

κ(y) ∼= Hp(Xy,Fy).

Now, Hp(X,F ⊗OY
κ(y)) is already a κ(y)-module, and thus,

Hp(X,F ⊗OY
κ(y))⊗OY

κ(y) = Hp(X,F ⊗OY
κ(y)).

Proof of Lemma 6.7. Look at i∗G (where G is a sheaf on X ′). Since X ′ is closed, i∗G is the
extension by 0 outside X ′. Resolve G on X ′ by flasque sheaves:

0 −→ G −→ G•(G).
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Applying i∗ to this resolution, we get an acyclic resolution. But flasque sheaves are preserved
under i∗, and thus, we get a resolution

0 −→ i∗G −→ i∗G
•(G),

which gives the same cohomology.

Remarks: Each of the following statements is easy to prove:

(1) Every open immersion is a flat morphism.

(2) Any composition of flat morphisms is flat.

(3) Any base extension of a flat morphism is flat.

� Under descent, flatness may not be preserved.

(4) If F is a QC f.g. OX-module and X is locally noetherian, then F is flat over X iff F
is locally free. Also observe that the hypotheses imply that F is coherent.

6.2 Relative Differentials; Smooth Morphisms

A natural desire is to immitate as well as possible the elementary formalism of differentials
and differential forms (familiar from analysis) in our present, rather abstract, context. This
turns out to be quite possible to do and gives rise to the notion of relative differentials
corresponding to a morphism of schemes. However, the notion of tangent and normal bundle
does not make very much sense if our schemes are not regular (with regular local rings). The
notion of dual of a sheaf, is perfectly general. We start in the affine, i.e., algebraic, case.

Let A be a ring and B an A-algebra. For any B-module M , we have a functor

M 7→ DerA(B,M).

This functor is representable, and the representing object, Ω1
B/A, (a B-module) comes with

a map d ∈ DerA(B,Ω
1
B/A). There is a functorial isomorphism

HomB(Ω
1
B/A,M) ∼= DerA(B,M)

via

ϕ 7→ ϕ ◦ d.
Recall the construction of Ω1

B/A: We have the map

B ⊗A B m−→ B,
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where m is multiplication. If I = Ker (m), it turns out that I/I2, as a B-module, is Ω1
B/A.

Also, the derivation, d, is given by

db = 1⊗ b− b⊗ 1 (mod I2).

The B-module, Ω1
B/A, is called the module of relative differentials of B over A. We have the

following facts:

If A′ is an A-algebra and B′ = B ⊗A A′, then

(D1) Ω1
B′/A′ = Ω1

B/A ⊗B B′.

Apply (D1) to A′ = S−1A, where S ⊆ A is a multiplicative set. We get

(D2) Ω1
S−1B/S−1A

∼= S−1Ω1
B/A.

If S ⊆ B is a multiplicative set, then

(D3) Ω1
S−1B/A

∼= S−1Ω1
B/A.

Fact (D3) implies that we can patch modules of relative differentials on affines and make
Ω1
X/Y , in the case that f : X → Y is a morphism of schemes. We can also do this directly as

follows: Assume that we have a morphism f : X → Y . Consider the immersion

∆X/Y : X → X
∏

Y

X.

The image is locally closed; so, in some open, U , of the product it is given by a QC ideal, I,
of OU = OX ∏

Y
X ↾ U . Look at I/I2, and pull it back by ∆, to get the OX -module

∆∗X/Y (I/I
2).

This is also Ω1
X/Y , for schemes X, Y (DX).

Property (D1) becomes the following property in terms of schemes: Assume that there
are morphisms f : X → Y and g : Y ′ → Y . The product diagram

X
∏
Y

Y ′ X ′

��

pr1 // X

f

��
Y ′ g

// Y

gives

(D1′) Ω1
X′/Y ′ = pr∗1Ω

1
X/Y .
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We call Ω1
X/Y the sheaf of relative differentials of X over Y (or relative 1-forms of X over Y ).

It mainly depends on the structure of f , not on Y . Again, the differential, d : OX → Ω1
X/Y ,

is given by
db = 1⊗ b− b⊗ 1 (mod ∆∗X/Y I

2).

Remark: For one case f : X → Y , we can easily compute Ω1
X/Y . This is the case where X

is the total space of a vector bundle of rank r over Y . Then, everywhere locally on Y ,

X ∼= Y
∏

Ar.

Thus, locally, X = Spec B, where B = A[T1, . . . , Tr], and Y = Spec A. We find that Ω1
X/Y

is Ω1
B/A locally, and Ω1

B/A is the free B-module on the generators dT1, . . . , dTr. Thus, Ω1
X/Y

is a locally free sheaf of rank r on X .

Now, look at rings A,B,C and maps A −→ B −→ C. Then, we get the exact sequence

(D4) Ω1
B/A ⊗B C −→ Ω1

C/A −→ Ω1
C/B −→ 0.

For schemes, given morphisms

Z
θ−→ Y −→ X,

we get the exact sequence

(D4′) θ∗(Ω1
Y/X) −→ Ω1

Z/X −→ Ω1
Z/Y −→ 0.

An important special case is the case where B −→ C is surjective, i.e., C = B/B for some
ideal B ⊆ B. Now, when B −→ C is surjective, we have Ω1

C/B = (0), because

HomC(Ω
1
C/B,M) ∼= DerB(C,M) = (0), for all M.

In this special case, we have the map

δ : B/B2 → Ω1
B/A ⊗B B/B,

given by
δ(b) = db⊗B 1.

We get the exact sequence

(D5) B/B2 δ−→ Ω1
B/A ⊗B B/B −→ Ω1

(B/B)/A −→ 0.

For schemes:
Z

i−→ Y −→ X

where i is a closed immersion, we have the exact sequence

I/I2 −→ Ω1
Y/X ↾ Z −→ Ω1

Z/X −→ 0,
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where I is the ideal sheaf in OY defining Z.

(D6) Let B be an A-algebra which is a localization of a finitely generated A-algebra, B0.
Then, Ω1

B/A is a finitely generated B-module.

Proof . We have B = S−1B0, and hence,

Ω1
B/A = Ω1

S−1B0/A
= S−1ΩB0/A.

Thus, we are reduced to the case where B = B0. In this case, we have

B = B0 = A[T1, . . . , Tr]/B.

Then, Ω1
B/A is a homomorphic image of the free B-module on dT1, . . . , dTr, which implies

that it is finitely generated. In fact, we find that

Ω1
B/A =

(
r∐

i=1

BdTi

)
/(df | f ∈ B).

For the rest of this chapter, we assume that all schemes are locally noetherian.

Definition 6.2 The morphism f : X → Y is a smooth morphism (or X is smooth over Y )
iff the following conditions hold:

(1) f is flat.

(2) f is a finite-type morphism.

(3) Ω1
X/Y is a locally free OX -module (so, under our hypotheses, it has finite rank).

The following theorem whose proof will be relegated to the exercises gives equivalent
conditions for smoothness of a morphism.

Theorem 6.8 Let X, Y be locally noetherian schemes and f : X → Y a finite-type mor-
phism. Then, the following statements are equivalent:

(1) X is smooth over Y and Ω1
X/Y has rank r (constant on the connected components of

X).

(2) (Jacobian criterion) For any x ∈ X, there exist affine open subschemes Spec B of X
and Spec A of Y , with x ∈ Spec B and y = f(x) ∈ Spec A, so that

B ∼= A[T1, . . . , Tn]/(f1, . . . , fn−r),

and

J =

(
∂fi
∂Tj

)

has maximal rank, n − r; i.e., some (n − r) × (n − r) minor of J has an invertible
determinant (in B).
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(3) (Infinitesimal lifting criterion) Given any infinitesimal extension of Artinian local rings

0 −→ I −→ C̃ −→ C −→ 0

with I2 = (0), and given the commutative diagram (of solid arrows)

Spec C

��

θ //X

f

��
Spec C̃

Θ

<<

θ̃

// Y

there exists an extension Θ: Spec C̃ → X of θ, shown as the dotted arrow, making the
diagram commute.

Remarks:

(1) Obviously, the equivalence (1) ⇐⇒ (2) above, is our version of a fact familiar from
elementary differential geometry (see also the material of Chapter 2, Sections 2.2 and
2.3).

(2) We can define f : X → Y to be étale iff it has (1) and (2) of Definition 6.2, and

(3) Ω1
X/Y = (0).

There is a corresponding theorem to our Theorem 6.8 for étale morphisms. It says

Theorem 6.9 Let X, Y be locally noetherian schemes and f : X → Y a finite-type mor-
phism. Then, the following statements are equivalent:

(1) X is étale over Y .

(2) (Jacobian criterion) For any x ∈ X, there exist affine open subschemes Spec B of X
and Spec A of Y , with x ∈ Spec B and y = f(x) ∈ Spec A, so that

B ∼= A[T1, . . . , Tn]/(f1, . . . , fn),

and

J =

(
∂fi
∂Tj

)

has maximal rank, n; i.e., J has an invertible determinant (in B).
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(3) (Infinitesimal lifting criterion) Given any infinitesimal extension of Artinian local rings

0 −→ I −→ C̃ −→ C −→ 0

with I2 = (0), and given the commutative diagram (of solid arrows)

Spec C

��

θ //X

f

��
Spec C̃

Θ

<<

θ̃

// Y

there exists a unique extension Θ: Spec C̃ → X of θ, shown as the dotted arrow,
making the diagram commute.

(3) From the Jacobian criterion, X is smooth over Y of relative dimension r iff locally,
f : X → Y factors as f : X −→ Ar

Y −→ Y , where X −→ Ar
Y is étale and Ar

Y −→ Y is
the structure morphism (cf. the exercises).

(4) The Jacobian criterion in the étale case says that an étale morphism is quasi-finite.
Therefore, if f : X → Y is étale, the fibres are finite and there is no ramification. So,
f : X → Y étale is the analog of a covering space from topology; but, in topology (even
in the C∞-category), a covering map is a local homeomorphism or diffeomorphism.
This is false for étale morphisms in algebraic geometry. The problem is that there is
no implicit function theorem! All these matters will be explicated in the exercises.

Example 6.1 Let Y = Speck and X = SpecK, where k is not algebraically closed and K/k
is a finite separable extension. Then SpecK is étale over k. If k is, as usual, an algebraic
closure of k (or even a separable closure), then we have

K ⊗k k = k
∏
· · ·
∏

k
︸ ︷︷ ︸

[K : k]

,

(in the category of rings) and

Spec(K)
∏

Spec k

Spec k ∼=
∐

[K : k]

Spec k.

Consequently, over k, the scheme SpecK becomes localy isomorphic to Spec k.

The reader will have noticed the similarity of material in our present (abstract) case with
material presented in the section of Chapter 2, dealing with the implicit function theorem
and nonsingularity (Section 2.3). In fact, we have the following more explicit relationship
between our present material and that presented in Chapter 2:
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Proposition 6.10 Let X be an algebraic variety over an algebraically closed field, k, and
assume X is equidimensional with dim(X) = d. Then, X is regular (i.e., every OX,x is a
regular local ring) iff X is smooth over Spec k and rk(Ω1

X/k) = d. Hence, X is non-singular

iff X is smooth over k and rk(Ω1
X/k) = dim(X). (Of course, X is assumed equidimensional.)

Proof . In going from smoothness etc. to regularity of OX,x, we may assume that x is a

closed point of X . Because if x0 is a closed point in {x}, then OX,x is a localization of OX,x0 ,
and localizations of regular local rings are again regular (Serre [49]). Let x be a closed point
of X , then d = dim(OX,x). Look at the maps

k −→ OX,x −→ k = κ(x).

(Recall that since k is algebraically closed, κ(x) = k). Apply (D5) with B = mx. We get

mx/m
2
x

δ−→ Ω1
OX,x/k

⊗ κ(x) −→ Ω1
κ(x)/k −→ 0 is exact. (∗)

However, Ω1
κ(x)/k = (0), since κ(x) = k.

Claim. The map, δ, is an isomorphism. To see this, by local freeness of Ω1
OX,x/k

, it suffices

to show the dual map, δD, is an isomorphism. But the dual of (∗) is the exact sequence

0 −→ Hom k(Ω
1
X,x ⊗ k, k)

δD−→ Hom(mx/m
2
x, k).

By Proposition 2.16 part (1) and the fact that rk(Ω1
X,x) = d, the map δD is an isomorphism.

Then, the dimension of mx/m
2
x is just d; by definition, OX,x is then regular.

Conversely, when x ∈ X is closed and OX,x is regular, from dim(OX,x) = d = dim(X),
we find that

dim(Ω1
X,x ⊗ k) = d.

If x ∈ X is generic, then Ω1
X,x is the localization of Ω1

X,x0
–where, x0 is closed. Hence,

Ω1
X,x0 ⊗OX,x0

K = Ω1
K/k,

where K is OX,x. But the transcendence degree of K/k is just the rank of Ω1
K/k as a K-

module, since K is separably generated over k (remember, k is algebraically closed, and thus,
perfect). Our result now follows from

Lemma 6.11 Let A be a noetherian local domain and M a finitely generated A-module. If

dim(M ⊗A κ(A)) = dim(M ⊗A Frac(A)), (∗∗)

then M is free of rank the common dimension.
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Proof . Let d be the common dimension in (∗∗). Since M is f.g., by Nakayama’s lemma, we
have the exact sequence

0 −→ A −→ Ad −→M −→ 0.

If we tensor with K, the sequence remains exact as K is flat over A, and we get

0 −→ A⊗A K −→ Kd −→M ⊗A K −→ 0.

But,M⊗AK has rank d as K-space, which implies that A⊗AK = (0) and thus, A is entirely
torsion. Yet A is contained in the free module Ad, a torsion-free module, so that A = (0)
and M is free.

In Proposition 6.10 we made heavy use of the fact that the rank of Ω1
X/k was precisely

the dimension of X . There are times where we merely know that Ω1
X/k is locally free but are

ignorant of its exact rank. In these cases the following theorem is frequently of use:

Theorem 6.12 Let X be an irreducible nonsingular variety over k, where k is algebraically
closed, and let n = dim(X). Suppose Y is an irreducible closed subscheme of X over k.
Then, Y is nonsingular iff

(1) Ω1
Y/k is locally free, and

(2) In the exact sequence of (D5), where I is the ideal sheaf of Y in X, we have exactness
on the left:

0 −→ I/I2 δ−→ Ω1
Y/k ↾ Y −→ Ω1

Y/k −→ 0.

When Y is nonsingular, then I/I2 is a locally free, rank r (= codim(Y,X)) OY -module and
I is locally generated by r elements.

Proof . Assume that (1) and (2) hold. By Proposition 6.10, we must show that rk(Ω1
Y/k) =

dim(Y ). Let q = rk(Ω1
Y/k), then I/I2 is a locally free sheaf of rank n−q. By Nakayama, I is

locally generated (as an ideal) by n− q elements. Thus, we can conclude that dim(Y ) ≥ q.
Now, pick a closed point y ∈ Y . Look at my/m

2
y. By previous work,

my/m
2
y
∼= Ω1

OY,y/k
⊗ k.

Since rk(Ω1
Y/k) = q, we get

dim(my/m
2
y) = q ≥ dim(OY,y) = dim(Y ).

This implies that dim(Y ) = q, and therefore, Y is nonsingular. Note, in this case, we know
that I/I2 is locally free of rank n− q = codim(Y,X), and I is locally generated by r = n− q
elements.

Now assume that Y/k is nonsingular. Proposition 6.10 implies that Ω1
Y/k is locally free

and has rank q = dim(Y ). Since Y and X are nonsingular, by Theorem 2.23, Y is a local
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complete intersection. Thus, I is locally generated by n − q elements, and I/I2 is locally
free of rank n− q (see Lemma 6.11). As the ranks are correct, (D5) implies (2). The rest of
the theorem has been remarked above.

A frequent occurrence in algebraic geometry is a situation where one has some geometrical
object in or on a scheme and one wishes to see which if any of its properties persist when we
restrict to sufficiently general subschemes of X . For example, say we are given a connected
subscheme, Z, of a scheme X and we ask if Z∩Y is again connected for general subschemes,
Y , or X . Or, given a vector bundle on X having a specific property, P , does the bundle
when restricted to general subschemes of X retain this property. Of course, stated with
this vagueness, either the desired results are false or unprovable. However, with sufficient
restrictions they form a very interesting class of questions in algebraic geometry. The earliest
theorem proved in this vein is that of Bertini. Its setup is as follows: We have a closed
subvariety, Y , of Pn = X , we assume Y is nonsingular and irreducible and place ourselves
over an algebraically closed field, k. Then the question becomes: Is H ∩Y again nonsingular
and irreducible for sufficiently general hyperplanes, H? The next theorem—the classical
Bertini theorem—gives an answer with precision. In Bertini’s honor, theorems of this sort
are usually called Bertini theorems.

Theorem 6.13 (Bertini) Let Y ⊆ Pn be a closed, irreducible, nonsingular variety over an
algebraically closed field k. Write Hyp(Pn) for the projective space classifying all hyperplanes
in Pn. There is a Zariski open (hence dense) subset U ⊆ Hyp(Pn) so that for every H ∈ U ,
the intersection H ∩ Y is everywhere regular and connected if dim(Y ) ≥ 2. That is, almost
every hyperplane section of a nonsingular irreducible variety of dimension at least 2 is again
irreducible and nonsingular (note, in the presence of regularity, irreducible is equivalent to
connected).

Proof . We would like to apply the irreducibility criterion: Theorem 2.11. Pick y closed in
Y , and let Bad(y) be the set of all hyperplanes through y so that either

(1) Y ⊆ H , or

(2) Y 6⊆ H but y is a nonregular point of H ∩ Y .

Pick some fixed hyperplane H0 with y0 /∈ H0 ∩ Y and Y 6⊆ H0. Recall that hyperplanes
are zeros of sections, σ, of OPn(1). Write Hσ for the hyperplane: σ = 0. We have H0 = Hσ0

for some σ0. Look at σ/σ0, a meromorphic function on Pn. This function has a pole at H0,
i.e., it is holomorphic on Pn −H0. Hence

σ

σ0
↾ (Y − (Y ∩H0))

is holomorphic on Y − (Y ∩H0). Define the linear map

Φy : Γ(P
n,OPn(1))→ OY,y/m2

y
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by

Φy : σ 7→
(
σ

σ0

)
∈ OY,y/m2

y.

Now, y ∈ Y ∩ H means that σ vanishes at y (here H = Hσ), i.e., σ
σ0
∈ my. When is

y ∈ Y ∩H a singular point of Y ∩H? This happens if there are no linear terms in σ/σ0 at
y, i.e., everywhere σ

σ0
∈ m2

y. Hence, y is nonsingular on Y ∩H iff Φy(σ) = 0. Also, Y ⊆ H
iff σ/σ0 = 0 on Y . Thus, we get H ∈ Bad(y) iff the σ defining H lies in Ker (Φy), and thus

Bad(y) = P(Ker (Φy)).

What’s the dimension of Bad(y)?

Note that Φy is surjective onto OY,y/m2
y. Indeed, we get the constants from Φy(λσ0). As

my is generated by the linear forms in T0, . . . , Tn, the coordinates of Pn, and as σ ranges over
all linear forms, this implies surjectivity. Therefore,

dim(Ker (Φy)) = dim(Γ(Pn,OPn(1)))− dim(OY,y/m2
y).

However, dim(Γ(Pn,OPn(1))) = n + 1, and we have the exact sequence

0 −→ my/m
2
y −→ OY,y/m2

y −→ OY,y/my (= κ(y) = k) −→ 0,

since y is a closed point and k is algebraically closed. Now, y is nonsingular, so

dim(my/m
2
y) = dim(Y ) = r (say),

and thus,
dim(Ker (Φy)) = n+ 1− (r + 1) = n− r.

We find,
dim(Bad(y)) = n− r − 1

and this is independent of y. In particular, note that for every y ∈ Y , there is some bad
hyperplane containing y. Now, consider the variety Y

∏
Hyp(Pn), and in it, the Bertini set

B ⊆ Y
∏

Hyp(Pn)

defined by
(y,H) ∈ B iff H ∈ Bad(y).

Clearly, B is a closed subvariety (under the reduced induced structure) and our points (y,H)
are the closed points. As usual, we consider the projections

pr1 : Y
∏

Hyp(Pn)→ Y and pr2 : Y
∏

Hyp(Pn)→ Hyp(Pn).

Since Y
∏

Hyp(Pn) is projective, the maps are proper. We know that the fibres of pr1 are
all projective spaces, of constant dimension n− r− 1, thus, irreducible; by the irreducibility
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criterion, B is irreducible and its dimension is r + n − r − 1 = n − 1. The image of B
in Hyp(Pn) ∼= Pn is then irreducible, of dimension at most n − 1, and closed. If U is the
complement of Im (B) under pr2, then H ∈ U means that H /∈ Bad(y) for all y ∈ Y . This
means, U is the desired open set of good hyperplanes. For connectivity of Y ∩ H when
dim(Y ) ≥ 2, we will wait until the next Chapter (see Section 7.4, Remark (1) after Theorem
7.29).

Remark: As hyperplanes through a point form a closed subvariety (strictly contained) of
Hyp(Pn), we can throw these out for finitely many points and still retain the Bertini open
set of good hyperplanes.

Nomenclature:

1. Ω1
X/Y is the sheaf of relative differentials (or relative 1-forms of X over Y ).

2. Ω1
X/Y is also called the relative cotangent sheaf of X over Y , and, if Ω1

X/Y is a bundle,
then it is called the relative cotangent bundle of X over Y .

3. The dual of Ω1
X/Y , that is, (Ω

1
X/Y )

D, is called the relative tangent sheaf of X over Y ,

denoted TX/Y ; and when Ω1
X/Y is a bundle, we call TX/Y the relative tangent bundle of

X over Y .

4. If I is the ideal sheaf defining Z as an S-subscheme of X (here, X lies over S), then
I/I2 is called the conormal sheaf of Z in X .

5. If I is a bundle, it is called the conormal bundle of Z in X and its dual is the normal
bundle of Z in X .

If i : Z → X (closed immersion), then observe that

I/I2 = I⊗OX
OX/I = I⊗OX

OZ = I ↾ Z = i∗I.

Thus, I/I2 is a sheaf on Z. Say S = Spec k, where k is algebraically closed, and suppose X
and Y are nonsingular, then we know that

0 −→ I/I2 −→ Ω1
X/k ⊗OX

OZ −→ Ω1
Z/k −→ 0 (†)

is exact, and all are locally free. Taking duals, we get

0 −→ TZ/k −→ TX/k ↾ Z −→ (I/I2)D −→ 0.

Therefore, (I/I2)D is the normal bundle of Z in X , denoted by NZ →֒X, explaining our
terminology above.
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Definition 6.3 The sheaf

ΩrX/Y =
r∧
Ω1
X/Y

is the sheaf of relative r-forms of X/Y . It is a bundle if X is smooth over Y . The highest
wedge of Ω1

X/Y , denoted ωX/Y (ωX/Y =
∧•Ω1

X/Y ) is called the relative canonical bundle of

X/Y . It is a line bundle on X , and any Cartier divisor representing ωX/Y is called a relative
canonical divisor of X over Y . (When Y = Spec k and k is algebraically closed, occurrences
of the word “relative” are omitted.)

Again, assume that Z →֒ X is a closed immersion, and that X lies over Spec k, where
k is algebraically closed. Further assume that Z and X are nonsingular, irreducible over k.
Let I be the ideal sheaf defining Z. From (†), we get

0 −→ I/I2 −→ Ω1
X/k ↾ Z −→ Ω1

Z/k −→ 0,

which implies that

ωX ↾ Z = ωZ ⊗
•∧
I/I2.

We know that I/I2 is a rank r (= codim(Z →֒ X)) bundle on Z, so that

•∧
I/I2 =

r∧
I/I2.

Therefore, moving
∧r

I/I2 to the other side, we get

ωZ = (ωX ↾ Z)⊗
(

r∧
I/I2

)D

.

As a result, we get

Proposition 6.14 (Adjunction formula) If Z is a closed Y -subscheme of X where both X
and Z are smooth over Y , then

ωZ/Y = (ωX/Y ↾ Z)⊗OX

r∧
NZ →֒X = ωX/Y ⊗OX

OZ ⊗OX

r∧
NZ →֒X .

Here, r = codim(Z →֒ X).

Consider the special case where r = 1, so that Z has codimension 1 in X . Then, Z is a
Cartier divisor in X and I is equal to OX(−Z). Therefore,

I/I2 = I⊗OX
OX/I = I⊗OX

OZ = OX(−Z) ↾ Z = OZ(−Z),

and
NZ →֒X = (I/I2)D = OX(Z) ↾ Z = OZ(Z).
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Thus, when r = 1, the adjunction formula reads:

ωZ = ωX ⊗OX
OZ ⊗OX

OX(Z).

We can express the adjunction formula in terms of the canonical divisors associated with ωX
and ωZ , especially in the case r = 1. Since

NZ →֒X = OX(Z) ↾ Z

and Z is the divisor associated with OX(Z), we see that OX(Z) ↾ Z is just Z · Z, as divisor
on Z. Then, ωX ⊗ OX(Z) corresponds to the Cartier divisor KX + Z (where KX is the
canonical divisor associated with X). From all this, the adjunction formula becomes the
following classical formula involving intersection cycles:

KZ = (KX + Z) · Z = KZ · Z + (Z2).

As an application of the adjunction formula, we will determine ωZ when Z is a nonsingular
hypersurface of degree d in Pn over an algebraically closed field. We will see in the next
Chapter that we have the Euler sequence

0 −→ Ω1
Pn −→

∐

n+1

OPn(−1) −→ OPn −→ 0.

This implies the important formula:

ωPn =

•∧∐

n+1

OPn(−1) = OPn(−(n+ 1)).

If Z is a nonsingular hypersurface of degree d in Pn, then IZ = OPn(−d). Thus,
NZ →֒Pn = OPn(d); so,

ωZ = ωX ⊗OX(Z)⊗OZ = OPn(−(n+ 1))⊗OPn(d) ↾ Z = OZ(d− (n+ 1)). (∗)

An important special case occurs if Z is a nonsingular hypersurface of degree n + 1 in
Pn. Then, ωZ is the trivial bundle on Z. This includes, for example, curves of degree 3
in P2 (elliptic curves), surfaces of degree 4 in P3 (K3-surfaces), and quintic 3-folds in P4

(Calabi-Yau 3-folds). In general, such hypersurfaces are called Calabi-Yau hypersurfaces .

If d < n + 1, then ωZ has no global sections. These hypersurfaces form a special class
of hypersurfaces whose detailed study is possible—among them are the Fano varieties (see
Chapter 7). Of course, the generic hypersurfaces have large degree, and so there are plenty
of global sections of ΩZ . Now, as a general fact the important geometry associated with any
sheaf is exactly the geometry contained in the collection of its global sections. (For example,
the sheaf OPn(d) has as global sections all the hypersurfaces of degree d of Pn.) We want to
see the geometric content of the sheaf ωZ and sheaves derived from it.
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Definition 6.4 Given a nonsingular variety X over an algebraically closed field k, we define
the rth plurigenus of X denoted pr(X), by

pr(X) = dimk(H
0(X,ω⊗rX )).

When r = 1, the plurigenus p1(X) is also denoted by pg(X), or pg, and it is called the
geometric genus of X . When X is a nonsingular curve, the genus pg is also denoted simply
by g.

The notion of plurigenus was studied extensively by Castelnuovo, Enriques, and Severi.
When r = 1, the geometric genus, p1(X), is the number of linearly independent holomorphic
d-forms on X , where d = dim(X). Let Z be a nonsingular hypersurface in Pn of degree d
over an algebraicaly closed field. What is pg(Z)? We have the defining exact sequence

0 −→ OPn(−d) −→ OPn −→ OZ −→ 0,

and tensoring with OPn(d), we get

0 −→ OPn −→ OPn(d) −→ OZ(d) −→ 0.

If we now tensor with OPn(−(n + 1)) and use the adjunction formula (∗), we get

0 −→ OPn(−(n + 1)) −→ OPn(d− (n + 1)) −→ ωZ −→ 0.

Applying cohomology, we get

0 −→ 0 −→ H0(Pn,OPr(d− (n+ 1))) −→ H0(Z, ωZ) −→ H1(Pn,OPn(−(n + 1))).

From the next Chapter (Theorem 7.35), if we assume n ≥ 2,

H1(Pn,L) = (0) for any line bundle L.
Hence, we get

H0(Z, ωZ) ∼= H0(Pn,OPr(d− (n + 1))).

If d < n+ 1, then pg(Z) = 0.

If d = n+ 1, then pg(Z) = 1.

If d > n+1, then pg(Z) is the number of monomials in n+1 variables of degree d−(n+1).
This means,

pg(Z) =

(
d− 1

d− (n+ 1)

)
=

(
d− 1

n

)
.

In particular, when n = 2, i.e., for Z a nonsingular plane curve, we get the genus

g =

(
d− 1

2

)
=

(d− 1)(d− 2)

2
if d > n+ 1.

Thus, when d = 1, 2, we have g = 0, and when d = 3, we get g = 1, the elliptic case. When
d = 4, we get g = 3. Therefore, no nonsingular curves of genus 2 embed in the plane.
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6.3 Further Readings

Flatness was invented by Serre in the early fifties. Flatness is discussed extensively in EGA
IVb ([27], Chapter IV) and EGA IVc ([28], Chapter IV), and also in Bourbaki [7] (Algèbre
Commutative, Chapter 1). It is also discussed in Matsumura [40] (Chapter 3, Section 7 and
Chapter 8), Hartshorne [33] (Chapter 3, Sections 9 and 10), and Mumford [43] (Chapter
3). Smooth and étale morphisms are discussed in EGA IVd ([29], Chapter IV) and in the
last two references. Derivations and relative differentials are discussed in EGA IVa ([26],
Chapter 0, Section 20), Matsumura [40] (Chapter 9), Hartshorne [33] (Chapter 2, Section
8), Mumford [43] (Chapter 3), Shafarevich [54] (Chapter VI), and Bourbaki [5] (Algèbre,
Chapter III).
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Chapter 7

Projective Schemes and Morphisms

7.1 Projective Schemes

Experience shows that the most important case in algebraic geometry is the case of projec-
tive varieties and the generalizations of them which we shall make in this section, namely,
projective schemes. We already have considerable experience in projective matters (Chapter
2) and what we do here will be an extension whose structure should not be too surprising.

Projective schemes arise from the consideration of graded rings and homogeneous ideals.
So, it’s best to begin with these.

Let B be a graded ring, i.e.,

B =
∐

n∈Z

Bn, and Bm · Bn ⊆ Bm+n.

For any element b ∈ B, if b ∈ Bn for some integer n, then b is called homogeneous , or a form,
and the integer n is the degree of b, denoted deg(b). Any b ∈ B can be written as a finite
sum b = b1 + · · ·+ bk, where each bi belongs to some Bni

(with ni 6= nj whenever i 6= j), and
each bi is called a homogeneous component of b.

If A is a ring, we shall assume that the graded ring, B, is an A-algebra, so that each Bn

is an A-module, and we have maps

A −→ B0 →֒ B.

Graded rings come in all types and some are more amenable to the notions of geometry we
want to stress than others. For example, there is no guarantee that elements of degree one
generate B in any of the senses one can imagine. In topology, one frequently meets with rings
having generators in many higher degree components. However, for our purposes, emphasis
will be placed on those graded rings in which all generators appear in degree one. Let us call
such graded rings, good graded rings (ggr), a nomenclature which is by no means standard.
That is, B is a good graded ring if

319
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(1) B =
∐

n≥0Bn, i.e., B is non-negatively graded, and

(2) B+ =
∐

n≥1Bn is generated, as an ideal, by B1.

This is equivalent to saying that SymB0
(B1) −→ B is surjective.

Recall that an ideal B is a homogeneous ideal of B if

B =
∐

n∈N

B ∩Bn.

This means that each homogeneous component of an element of B is again in B. Ideals
which are simultaneously homogeneous and prime will, of course, be called homogeneous
prime ideals . Testing primeness in a homogeneous ideal can be done using forms. Each
non-negatively graded ring, B, gives rise to a scheme as follows:

Let
X = {p | p is a homogeneous prime ideal of B and B+ 6⊆ p}.

A homogeneous prime ideal, p, such that B+ 6⊆ p is called relevant . We take as basis for
open sets, the sets

X(f) = {p ∈ X | f /∈ p}
where f ∈ Bi for some i ≥ 1—that is, f is to be a form. Thus, the closed sets are exactly
the sets

V (A) = {p ∈ X | A ⊆ p, where A is homogeneous and relevant}
Clearly,

V ((f)) = (X(f))
c.

Having made the underlying topological space, X , of our proposed scheme (X,OX), we now
need the sheaf part. For any p ∈ X , let

B(p) =

{
ξ

η
| ξ, η ∈ B, with ξ and η forms, deg(ξ) = deg(η) and η /∈ p

}
⊆ Bp,

and if f is a form in B, write

B(f) =

{
ξ

f r
| ξ ∈ B, with ξ a form and deg(ξ) = r deg(f)

}
⊆ Bf .

The sheaf OX can now be defined as follows:

For any open subset, U , of X , define

Γ(U,OX) =




F : U →

⋃

p∈U

B(p)

∣∣∣∣∣∣∣

(1) F (p) ∈ B(p)

(2) (∀p ∈ U)(∃ forms f, g ∈ B)(g /∈ p, deg(f) = deg(g))

(3) (∀q ∈ X(g) ∩ U)
(
F (q) = image

(
f
g

)
inB(q)

)
.
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This is a sheaf of local rings, and for every x = p ∈ X ,

OX,x = B(x).

We define Proj(B) to be the local ringed space, (X,OX), just defined . This is our general-
ization of a projective variety. Of course, we must first check that Proj(B) is a scheme.

Proposition 7.1 Given a non-negatively graded ring B, the local ringed space, Proj(B), is
a scheme.

Proof . All we need to check is that (X(f),OX ↾ X(f)) is affine. In fact, we shall show that

(X(f),OX ↾ X(f)) ∼= Spec(B(f)).

To do this, for each homogeneous ideal, B, of B, let

θ(B) = (BfB) ∩B(f), an ideal of B(f).

If p ∈ X(f), then θ(p) ∈ |Spec(B(f))|, which gives the map on spaces. Now, it should be clear
that (DX)

B(p) = (B(f))θ(p),

and the reader can complete the proof that

X(f)
∼= Spec(B(f)), as schemes.

Remarks:

(1) The gluing of Proposition 7.1 shows that Proj(B) is a separated scheme.

(2) If B is a ggr, then the X(f), where f ∈ B1, cover Proj(B). Otherwise, we would have
B1 ⊆ p, and then, B+ ⊆ p, because B is a ggr, contradicting that p is relevant.

Of course, as in the general theory, we want to make sheaves of OX -modules, and of
course, the good ones must come from graded B-modules. Recall that a module M is a
graded B-module if

M =
∐

n∈Z

Mn and Br ·Ms ⊆Mr+s.

The localization M(p) is defined in the same way as B(p), namely

M(p) =

{
ξ

η
| ξ ∈M, η ∈ B, with ξ, η homogeneous, deg(ξ) = deg(η) and η /∈ p

}
,

and similarly for M(f).

The sheaf, M ♯, of OX -modules we make from M is defined as follows:
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For any open subset U of X ,

Γ(U,M ♯) =




F : U →

⋃

p∈U

M(p)

∣∣∣∣∣∣∣∣∣

(1) F (p) ∈M(p)

(2) (∀p ∈ U)(∃ homogeneous ξ ∈M)(∃ form g ∈ B)
(g /∈ p and deg(ξ) = deg(g))

(3) (∀q ∈ X(g) ∩ U)
(
F (q) = image

(
ξ
g

)
inM(q)

)
.





This is a sheaf of OX -modules, and

M ♯ ↾ X(f) = M̃(f),

as the reader can check; therefore, M ♯ is a QC OX -module.

Remarks:

(1) If B is noetherian and M is f.g., then M ♯ is coherent as OX -module.

(2) If B0 is noetherian, B1 is a f.g. B0-module and B is a ggr, then B is noetherian.

(3) We have the ring inclusion B0 →֒ B, if we localize at f , where f is a form in B+, we
get a morphism

Spec B(f) −→ Spec B0.

These maps patch, and yield the structure morphism

Proj B −→ Spec B0.

Example 7.1 Projective space over a ring.
Let A be a ring and write B = A[X0, . . . , Xn]. We have B0 = A. Note that B is a ggr, and
let Z = Proj B. Then, the Z(Xj)’s cover Z for j = 0, . . . , n. We have

Z(Xj) = Spec B(Zj)

= Spec(A[X0, . . . , Xn](Xj))

= Spec

({
f

Xr
j

| f ∈ B, f is a form, deg(f) = r

})
,

and since f is a form,
1

Xr
j

f(X0, . . . , Xn) = f

(
X0

Xj
, . . . ,

Xn

Xj

)
.

Thus,

Z(Xj) = Spec

(
A

[
X0

Xj

, . . . ,
Xn

Xj

])
= An

A.

This Z is what we mean by projective n-space over A and we denote it by PnA. So,

PnA = Proj(A[X0, . . . , Xn]).
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Remarks:

(1) Note that we have not defined projective space over a ring A by saying what are
its points (with values anywhere)—projective space is merely defined as the scheme
obtained by gluing correctly the right number of affine spaces.

(2) In the case n = 0, we get

P0
A = Proj(A[X ]) = Spec A,

as the reader easily sees.

(3) If ξ is a geometric point of SpecA, then the fibre of PnA over ξ is just the scheme Pnκ(ξ),
that is, the algebraic variety: Projective n-space over κ(ξ).

(4) If we start with A = Z, then we make PnZ. It is easy to see that (DX)

PnA ∼= PnZ
∏

Spec Z

Spec A.

Later on, we will make PnX where X is any scheme, and in fact, we’ll find that

PnX ∼= PnZ
∏

Spec Z

X.

A central feature of projective geometry is the shifting of degrees in modules. Let M be
a B-module,

M =
∐

n∈Z

Mn,

then for any q ∈ Z, we can make the new graded B-module

M(q) =
∐

n∈Z

M(q)n, where M(q)n =Mq+n.

Of course, this gives us B(q), a new module over B.

Note that the tensor product of two graded modules over the graded ring, B, is again a
graded module. To see this, let M and N be our graded modules and B be our graded ring.
Consider the tensor product M ⊗B0 N . Of course, this is the coproduct

∐

r,s

Mr ⊗B0 Ns,

and it is graded by assigning to each piece Mr ⊗B0 Ns the degree r + s. But M ⊗B N is the
quotient of M ⊗B0 N by the submodule generated by the elements

ξ ⊗B0 bη − bξ ⊗B0 η,
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with b ∈ B, a form. This submodule is homogeneous, and so the quotient M ⊗B N is again
graded. Note, further, that every b ∈ B(q) is equal to b · 1, where b ∈ B and 1 ∈ B(q)−q.
Hence, M(q) =M ⊗B B(q).

If X = Proj B, we can form

(1) (M(q))♯.

(2) (B(q))♯, which we denote by OX(q) (As B♯ = OX , this notation is consistent.)

(3) F(q), for any OX -module, F , where F(q) is defined to be F ⊗OX
OX(q). The module,

F(q), is the Serre q-twist of F .

Proposition 7.2 Assume that B is a ggr. Then, the following properties hold:

(1) OX(q) = (B(q))♯ is a line bundle on X = Proj(B).

(2) If M and N are graded B-modules, then (M ⊗B N)♯ =M ♯ ⊗OX
N ♯.

(3) (M(q))♯ =M ♯(q) =M ♯ ⊗OX
OX(q).

(4) OX(q + q′) = OX(q)⊗OX
OX(q′) = OX(q)(q′).

(5) Let C be another graded ring, and let θ : C → B be a graded homomorphism (i.e.,
θ : Ci → Bi, so, preserves the grading). Then, there is a canonical open set
U ⊆ X = Proj(B) and a morphism of schemes ϕ : U −→ Y = Proj(C), and U is the
maximal open for such a morphism. Further,

ϕ∗(OU(q)) = (ϕ∗OU )(q).

(6) ϕ∗(OY (q)) = OX(q) ↾ U = OU(q).

Proof . (1) We can cover X by its standard opens X(f), where f has degree 1 (because B is
a ggr). I claim: OX(q) ↾ X(f) is the trivial line bundle.

We have
OX(q) ↾ X(f) = B̃(q)(f),

and

B(q)(f) =

{
ξ

f r
| deg(ξ) = r in B(q)

}
=

{
ξ

f r
| ξ ∈ Bq+r

}
.

Consider the map B(f) −→ B(q)(f) via η 7→ f qη. This is an isomorphism as f is invertible
on X(f). But, we have 1 7→ f q, which implies that f q is a free generator of B(q)(f), and
OX(q) ↾ X(f) is trivial.

(2) Look at

(M ⊗N)♯ ↾ X(f) = ˜(M ⊗N)(f),
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wich arises from the degree 0 part of (M ⊗ N)f , i.e., the degree 0 part of Mf ⊗ Nf . These
are finite linear combinations of elements of the form

m

fa
⊗ n

f b
, where deg(m) + deg(n) = a+ b.

Now, m/fa need not have degree 0 in Mf , nor n/f
b in Nf . So, let deg(m) = α, then,

m

fa
=
mfα

fafα
= fα−a

m

fα
,

and similarly for n/f b. We get

m

fa
⊗ n

f b
=
m

fα
⊗ n

fa+b−α
.

As deg(n) = a+b−α, we see that (M⊗N)(f) =M(f)⊗N(f). Now, we pass to the associated
sheaves on the affine X(f), and on X(f), we get

(M ♯ ⊗N ♯) ↾ X(f) =M ♯ ↾ X(f) ⊗N ♯ ↾ X(f).

Clearly, these isomorphisms patch, and (2) is proved. We also have

M(q)♯ = (M ⊗ B(q))♯ =M ♯ ⊗OX(q) =M ♯(q),

and
OX(q + q′) = B(q + q′)♯ = (B(q)(q′))♯ = OX(q)⊗OX(q′),

which proves (3) and (4).

(5) The map θ : C → B takes C+ to B+, but need not be onto. Pick a relevant prime
ideal, p, and look at θ−1(p). Observe that

C+ 6⊆ θ−1(p) iff θ(C+) 6⊆ p.

Now, we define ϕ so that |ϕ| = θ−1, which implies that

U =
⋃

c∈C+

X(θ(c)).

The rest of the proof is as in the affine case together with twisting arguments.

Observe that C0 and B0 play no role in defining U . There is a map C0 −→ B0, which
induces the morphism ϕ0 : Spec B0 → Spec C0. If C+ −→ B+ is surjective, then our map
above is defined everywhere and we have the commutative diagram

Proj B

��

ϕ // Proj C

��
Spec B0 ϕ0

// Spec C0.
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We have constructed QC OX -modules when X = Proj(B) from graded B-modules. We
want to go backwards from OX -modules to graded modules—in the affine case, this was
accomplished merely by taking global sections. It turns out that if we have an OX -module
of the form M ♯, only the degree 0 part of M is connected to the global sections of M ♯.
Consequently, merely taking global sections is totally insufficient for our purposes. However,
it is now clear that we should attempt to use all the Serre twists of our sheaf, and then we
might be successful. All these ideas were pioneered by Serre in FAC [47]. So, assume that
F is a QC OX-module, where X = ProjB and B is a ggr. Following Serre, we define F ♭ by

F ♭ =
∐

n∈Z

Γ(X,F(n)), here F(n) = F ⊗OX
OX(n).

Claim. F ♭ is a graded B-module; of course, the elements of degree n are to be global
sections of F(n).
Proof . Pick x ∈ Bd and ξ ∈ F ♭n = Γ(X,F(n)). We have Bd = B(d)0. We claim that x gives
us a global section of OX(d). Look at X(f), where f has degree 1. We have

x

1
∈ B(d)(f) = Γ(X(f),OX(d) ↾ X(f)),

and these patch (no denominators). Therefore, x ∈ Γ(X,OX(d)). Now,
x⊗ ξ ∈ Γ(X,OX(d))⊗ Γ(X,F(n)),

and there is a map

Γ(X,OX(d))⊗ Γ(X,F(n)) −→ Γ(X,OX(d)⊗F(n)) ∼= Γ(X,F(d+ n)) = F ♭d+n.
Set x · ξ = image(x⊗ ξ).

Remarks:

(1) We have seen above that an element of degree 0 in B(d) gives rise to a global section
of OX(d) (= B(d)♯). The same is true for elements of degree 0 of M(d)—these give
rise to global sections of M ♯(d).

(2) What happens if we do the ♯ construction then the ♭, and the opposite order? That is,
consider the functors

M  M ♯  (M ♯)♭ and F  F ♭  (F ♭)♯.
In general, M is not the same as (M ♯)♭, but F is the same as (F ♭)♯, at least for
quasi-coherent F .

Obviously, we must investigate the discrepancy between M and (M ♯)♭. It turns out
that the discrepancy is “concentrated in low degrees.” Consequently, we need some formal
language for isolating low degrees. Let us agree that if P is a property of graded modules,
we will say that Pn holds for n >> 0 if Pn holds for all n ≥ N for some given (large) N ∈ N.
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Definition 7.1 Let M be a graded module over a graded ring B.

(1) We say that M is a (TN)-module if Md = (0) for d >> 0.

(2) A map ϕ : M → N of graded modules is a (TN)-isomorphism (resp. (TN)-injection,
(TN)-surjection) if Ker (ϕ) and Coker (ϕ) are (TN) (resp. Ker (ϕ) is (TN), Coker (ϕ)
is (TN)).

(3) M is a (TF)-module if M is (TN)-isomorphic to a finitely generated B-module.

(4) B is a special good graded ring (sggr) if

(a) B is a ggr.

(b) B1 is a finitely generated B0-module.

(c) B0 is a finitely generated k-algebra, for some field k.

Remarks:

(1) Proj(B) = ∅ iff B is a graded (TN) A-algebra.

(2) An sggr is noetherian and Z, while a noetherian ggr is not an sggr.

Suppose B is a ggr, M is a graded B-module, and F is a QC OX-module (with X =
Proj(B)). Then there exist canonical maps

α : M → (M ♯)♭ and β : (F ♭)♯ → F .

First, we construct α as follows: Given ξ ∈ Md, we have ξ ∈ M(d)0, and this gives us a
global section of M(d)♯, i.e., we get ξ′ ∈ Γ(X,M(d)♯). However, M(d)♯ =M ♯(d), and so,

ξ′ ∈ Γ(X,M ♯(d)) = ((M ♯)♭)d.

Set α(ξ) = ξ′.

Next, we construct β by patching consistent maps

Γ(X(f), (F ♭)♯) −→ Γ(X(f),F).

Observe that Γ(X(f), (F ♭)♯) = F ♭(f). Pick ξ ∈ F ♭(f). Then,

ξ ∈
{
η

f r
| deg(η) = r

}
,

and of course, η ∈ Γ(X,F(r)). Since f r is invertible in X(f), the element f−r is in
Γ(X(f),OX(−r)). Then, we have

1

f r
⊗ η ∈ Γ(X(f),OX(−r))⊗ Γ(X,F(r)),
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and since there is a canonical map

Γ(X(f),OX(−r))⊗ Γ(X,F(r)) −→ Γ(X(f),OX(−r)⊗F(r)) = Γ(X(f),F),

we can check that the map:

ξ 7→ image

(
1

f r
⊗ η
)

is well defined and that these maps patch. This gives us our map β.

To prove that the maps α and β have the properties hinted at above, we need a slight
generalization of the propositions concerning extensions of sections from an open set and
restrictions of sections to an open set (Theorem 3.8(4)). This is:

Theorem 7.3 (Section theorem) Let X be a quasi-compact scheme, L a line bundle on X,
f ∈ Γ(X,L), and F a QC OX-module. The following properties hold:

(a) Let σ ∈ Γ(X,F) and assume that σ ↾ Xf = 0. Then, there is some n > 0 so that

σ ⊗ fn = 0 in Γ(X,F ⊗ L⊗n).

(b) Assume that X is covered (finitely) by affine opens, Ui, so that

(i) L ↾ Ui is trivial for all i.

(ii) Ui ∩ Uj is a again quasi-compact, for all i, j.

Then, the extension property holds, i.e., given any τ ∈ Γ(Xf ,F), there is some n > 0
so that fn ⊗ τ ∈ Γ(Xf ,L⊗n ⊗ F) extends to a global section in Γ(X,L⊗n ⊗ F).

Proof . Use the same argument as before in Theorem 3.8(4).

Observe that the hypotheses of Theorem 7.3 are satisfied if X is quasi-compact and
separated, or X is noetherian. Of course, Proj(B) (with B a ggr) is separated. If B1 is a
finitely generated B0-module, then Proj(B) is also quasi-compact. Now, we use Theorem
7.3 to prove the following theorem:

Theorem 7.4 (Serre) Let X = Proj B, where B is a ggr, write F for a QC OX-module,
and M for a graded (TF) B-module. The following properties hold:

(1) If B is an sggr, then α : M → (M ♯)♭ is a (TN)-isomorphism.

(2) β : (F ♭)♯ → F is an isomorphism.

(3) If B = A[T0, . . . , TN ], then α : B → (B♯)♭ = O♭X is an isomorphism.

Proof .
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(1) The proof of (2) follows from the section theorem (Theorem 7.3) and is left to the
reader. (Use the section theorem).

(2) ** The proof of (1) needs to be supplied. Is it used in (1)? Is the assumption (TF)
necessary? **

(3) Let us prove (3), next.

Look at (O♭X)d = Γ(X,OX(d)). Any σ ∈ Γ(X,OX(d)) is a collection of local sections

σi = σ ↾ X(Ti) ∈ Γ(X(Ti),OX(d)) = B(d)(Ti).

Thus, we have

σi =
ξi
T ri
, with ξi ∈ B(d)r = Bd+r.

Therefore, σi is an element of degree d in BTi . In summary, if σ ∈ O♭X , then σ is determined
by N + 1 local sections, σi ∈ BTi, that fit together on BTiTj . Since the Tj ’s are non-zero
divisors, localization at Tj gives injections

B −→ BTj and BTj −→ BTiTj .

Looking in the ring BT0···TN , we get

O♭X =

N⋂

j=0

BTi in BT0···TN .

The homogeneous elements of BT0···TN are of the form

f(T0, . . . , TN )

T a00 · · ·T aNN
,

where f(T0, . . . , TN) is a form in T0, . . . , TN . By factoring powers T bii out of f(T0, . . . , TN),
since B is a polynomial ring, we see that each homogeneous element of BT0···TN has the
unique form

T α0
0 · · ·T αN

N g(T0, . . . , TN), (∗)

where αj ∈ Z and no power of Tj divides g for any j. But (∗) shows that our element is
in BTj iff αl ≥ 0 for all l 6= j. Since this has to hold for every j, we must have αj ≥ 0 for
j = 0, . . . , N , and so our element is in B.

Our proof yields the following corollary:
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Corollary 7.5 If M is a graded B-module and B is a ggr with generators T0, . . . , TN for B1

as a B0-module, then

(M ♯)♭ = Ker

(
N∏

j=0

MTj

−→
−→

N∏

i,j=0

MTiTj

)
.

If further, the localization maps

M −→ MTj and MTj −→MTiTj

are all injective, then

(M ♯)♭ =
N⋂

j=0

MTi in MT0···TN .

Remark: Let M,N be two B-modules. Then, any homomorphism ϕ : M → N gives rise to
a homomorphism

ϕ(≥ d) :
∐

t≥d

Mt →
∐

t≥d

Nt.

Of course, if we are given a homomorphism from
∐

t≥dMt to
∐

t≥dNt, then we can get a
homomorphism from

∐
t≥eMt to

∐
t≥eNt for every e ≥ d. Consequently, the B-modules

HomB

(∐
t≥dMt,

∐
t≥dNt

)
form an inductive mapping system. We define

((Hom))B(M,N) = lim−→HomB

(∐

t≥d

Mt,
∐

t≥d

Nt

)
.

This makes graded B-modules into a new category, and in fact the same ideas can be
applied to graded rings. Note that ϕ is a (TN)-isomorphism when ((ϕ)) ∈ ((Hom))B is an
isomorphism and M is (TF) iff it is ((Hom))B-isomorphic to a finitely generated B-module.
Also, M is (TN) iff it is zero in the new category. Therefore, Serre’s result says that for an
sggr, the functors

M  M ♯ and F  F ♭

establish an equivalence of categories between the category of graded finitely generated B-
modules with ((Hom))-morphisms and the category of coherent OX -modules, when X =
Proj(B).

Remark: ** Remark from Steve goes here **

As a consequence of Theorem 7.4 (2), we get the following important fact: Let Y be a
closed subscheme of PNA over A. Then, Y is defined by a QC ideal sheaf IY in OPN

A
. Now,

B = A[T0, . . . , TN ] is a ggr. Therefore,

IY (n) = IY ⊗OPN
A
(n)
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and OPN
A
(n) is a line bundle. From the sequence 0 −→ IY −→ OPN

A
, we get the exact

sequence
0 −→ IY (n) −→ OPN

A
(n),

by tensoring with OPN
A
(n); thus,

0 −→ Γ(X, IY (n)) −→ Γ(X,OPN
A
(n)) is exact for all n.

As a result,
0 −→ I♭Y −→ O♭PN

A
is exact.

By Theorem 7.4 (3), O♭
PN
A
= B = A[T0, . . . , TN ]. Therefore, I♭Y = I is a homogeneous ideal

of B and as Y is a scheme over A, the ideal I is contained in B+. Now, B/I is a ggr,
B −→ B/I is surjective and maps B1 −→ (B/I)1. Thus, we get a map

Proj(B/I) −→ Proj(B) = PNA ,

a closed immersion. The ideal of this latter closed subscheme is given by the ideal sheaf

I♯ = (I♭Y )
♯ = IY ,

by Theorem 7.4 (2). Therefore, Y = Proj(B/I), and this proves both statements of the
following proposition:

Proposition 7.6 Given PNA and a closed A-subscheme, Y , of PNA , there exists a homogeneous
ideal I of B = A[T0, . . . , TN ], with I ⊆ B+, so that

Y = Proj(B/I).

A n.a.s.c. that Y , a scheme over A, be a closed subscheme of PNA for some N is that
Y = Proj(B) for a ggr B (over A = B0) with B1 a finitely generated A-module.

Recall that
PNA = PNZ

∏

Spec Z

Spec A.

For any scheme S, we define PNS by:

PNS = PNZ
∏

Spec Z

S.

We have a morphism π : PNS → PNZ , and we set

OPN
S
(1) = π∗OPN

Z

(1).

When S = Spec A, it is clear that this definition of OPN
A
(1) agrees with the old definition.

When S = Spec A and A (= k) is a field we can show that OPN
k
(1) is just our old OPN (1),

the hyperplane bundle ((DX)—the sections are linear forms). Now, on an arbitrary affine

scheme, SpecA, nontrivial line bundles, L = L̃, usually exist. If B is a ggr over A, then the
coproduct

∐
n≥0Bn ⊗A L⊗n is a new ggr over A. Therefore, we can form Proj of this new

ggr. Concerning the two Proj’s, we have
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Proposition 7.7 For any ring, A, and any line bundle, L, over SpecA there is a canonical,
functorial isomorphism

ΘL : P
′ = Proj(B′) = Proj

(∐

n≥0

Bn ⊗A L⊗n
)
−̃→ Proj(B) = P.

Here, B is a ggr over A and L is the sheaf corresponding to an invertible A-module, L; also,
we have set B′ =

∐
n≥0Bn ⊗A L⊗n.

Proof . Pick some n ≥ 0, and an open affine of Spec A where L is trivial and call c the
generator of L over this affine; consider the map

Bn −→ Bn ⊗A L⊗n

given by taking each generator of B1 to c times that generator. Since c is invertible over
the given affine open, this map is an isomorphism. Since Proj is formed by gluing the ratios
xi/xj (the xi being the generators of B1), we see that our isomorphism

Bn −→ Bn ⊗A L⊗n (mult. by c)

is independent of c. Hence, we get the desired isomorphism of Proj
(∐

n≥0Bn ⊗A L⊗n
)
to

Proj(B).

Note that under the isomorphism, ΘL, the “fundamental sheaf”, OP ′(1), is exactly
Θ∗L(OP (1)) ⊗A π

′∗(L), where π and π′ are the respective structure morphisms of P and
P ′ over X .

In keeping with the general program of “schemifying and sheafifying” algebraic objects
such as modules and rings (instituted in all generality by Grothendieck [EGA]), we need to
generalize the notion of Proj(B), so that we can replace SpecA by any scheme. Take X to
be some scheme and call a sheaf of OX-algebras, B, a quasi-coherent graded OX-algebra iff
locally (over open affine U) on X , the sheaf B is isomorphic to a graded A-algebra, where
A is the ring of global sections of OX ↾ U . For such OX -algebras, B, we can perform the
construction of Proj on a covering family of open affines, Uα, of X and they glue together to
give us a scheme over X which we call Proj(B). Of course, Proj(B) comes with a fundamental
sheaf, OP (1), where we have denoted Proj(B) by P . Locally over π−1(U), our sheaf OP (1) is
just the old O(1) constructed for an affine base, U . Also, we have the notion of good graded
OX -algebra, again denoted ggr, and this means that B is generated by the OX-module B1 as
an OX-algebra. Equivalently, it means that B is the image of SymOX

(B1) under the canonical
map

SymOX
(B1) −→ B.

In particular, if E is a quasi-coherent OX-module, we can take B to be SymOX
(E). The

resulting Proj is denoted P(E) and is called the projective fibre scheme over X corresponding
to E .
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We must now generalize the Serre functors ♯ and ♭. For ♯, which is from graded B-modules
to sheaves on Proj(B), we merely restrict our graded module, M, to π−1(U), where U is
affine open in X , and perform the ♯ on this restriction thereby obtaining (M ↾ π−1(U))♯, a
sheaf on ProjU(B ↾ U). Then, we observe that these glue together to give the quasi-coherent
OP -module,M♯; where, as usual, P = Proj(B).

Again, as usual, we will restrict to the case that B is a ggr as OX-algebra. In this
case, Proposition 7.2 generalizes to the following (of course, if B =

∐
n≥0 Bn, then B(q) =∐

n∈Z Bq+n):

Proposition 7.8 For a base scheme, X, assume B is a ggr as OX-algebra. Then, if P
denotes Proj(B), we have:

(1) OP (q) = (B(q))♯ is a line bundle on P .

(2) IfM and N are graded B-modules, then (M⊗B N )♯ =M♯ ⊗OP
N ♯.

(3) (M(q))♯ =M♯(q) =M♯ ⊗OP
OP (q).

(4) OP (q + q′) = OP (q)⊗OP
OP (q′).

(5) If C is another OX-ggr and if θ : C → B is a graded homomorphism (preserves degrees),
then, there is a canonical open set, G(θ), contained in P = Proj(B) and a morphism
of schemes

(G(θ),OP ↾ G(θ)) Θ−→ Q = Proj(C),
and G(θ) is the maximal open for such a morphism. Further,

Θ∗(OG(θ)(q)) = (Θ∗OG(θ))(q).

(6) Θ∗(OQ(q)) = OP (q) ↾ G(θ) = OG(θ)(q).

The proofs are obtained simply by covering the base, X , by open affines and applying
Proposition 7.2 for these affines.

For the functor, ♭, we take a QC OP -module, F , and twist it by O(q) for each q ∈ Z.
Now recall that the analog of the global sections functor of affine geometry is the direct
image functor for general geometry. Hence, we set

F ♭ =
∐

n∈Z

π∗(F(q)),

where π is the structure morphism P −→ X and we have written F(q) for F ⊗ OP (q), as
in the proposition above. The sheaf, F ♭, is a graded B-module, because the action of B on
it can be defined on the various open sets of the form π−1(U), where U is affine open in X .
Moreover, F ♭ is quasi-coherent as OX -algebra.
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Just as in the discussion following Proposition 7.2, we have the finiteness notions of (TF)
and (TN). Further, globalizing the Serre construction of the maps α and β by the obvious
patching, we deduce the existence of canonical maps

α :M 7→ (M♯)♭ and β : (F ♭)♯ 7→ F .

(Of course we always assume B is a ggr over OX .) And, again from Theorem 7.3, we deduce
the following globalization of Serre’s theorem (Theorem 7.4):

Theorem 7.9 Write P = Proj(B), where B is a ggr over OX (X a scheme) and let F be a
QC OP -module andM a graded (TF) B-module. Then we have:

(1) If B is an sggr over OX (this just means that B1 is finitely generated as B0-module and
that B0 is a coherent OX-module while X is a finite type k-scheme with k a field), then
the map α :M→ (M♯)♭ is a (TN)-isomorphism.

(2) The map β : (F ♭)♯ → F is an isomorphism.

(3) If B = OX ⊗Z Z[T0, . . . , TN ], then α : B → (B♯)♭ = O♭P is an isomorphism.

Remark: If B is OX ⊗Z Z[T0, . . . , TN ], then Proj(B) is just PNX .

7.2 Projective Fibre Bundles

Let us now restrict ourselves, momentarily, to the case that X = SpecA, and let E be an
A-module. Write E for the QC sheaf, Ẽ, on X . Consider P = P(E) = Proj(SymA(E)). Of
course, E = degree one components of SymA(E). If S is any graded QC OP(E)-module, then

we know π∗(S) = ˜Γ(P(E),S) and we have seen that in such a situation there is a map

S0 −→ π∗(S) = ˜Γ(P(E),S).

Apply this to the case where S = ˜SymA(E)(1); we get

E = Ẽ −→ π∗( ˜SymA(E)(1)) = π∗(OP (1)).

That is, we obtain a map
π∗P (E) −→ OP (1).

However, the latter map is surjective because it corresponds to the map

E ⊗ SymA(E) −→ SymA(E)(1)

and SymA(E) is a ggr.
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Now, consider an A-morphism from an A-scheme, T , into P(E); call it ϕ. From the exact
sequence

π∗P (E) −→ OP (1) −→ 0,

we obtain the pullback exact sequence

π∗T (E) = ϕ∗(π∗P (E)) −→ ϕ∗(OP (1)) −→ 0.

Let us write L for ϕ∗(OP (1)).
We can be more explicit with this map: Suppose f ∈ E is considered as a generator

from SymA(E)1. Then, we can localize P(E) at f ; that is, form P(E)(f), and this is merely
Spec(S(f)) where S stands for SymA(E). Take an open affine, U , in ϕ−1(P(E)(f)), say
U = Spec(B). Then, our map, ϕ, restricted to U just comes from an A-algebra map

∗ : S(f) → B; and the sheaf ϕ∗(E) ↾ U is just Ẽ ⊗A B. As for L, when we restrict to U it is

just ˜S(1)(f) ⊗S(f)
B (remember, B is an S(f)-algebra by (∗)). And now, our map (over U) is

induced by a map
E ⊗A B −→ S(1)(f) ⊗S(f)

B

and the latter is given by

x⊗ 1 7→ f

1
⊗ ∗

(
x

f

)
. (†)

Our map π∗T (E) −→ L −→ 0 yields a surjection

SymOT
(π∗T (E)) −→ SymOT

(L)

and
π∗T (SymOX

(E)) = SymOT
(π∗T (E)),

hence we obtain the surjection

π∗T (SymOX
(E)) −→

∐

n≥0

L⊗n. (††)

Once again, we can be more explicit: On affine patches as above, the lefthand member is
simply Sn(E)⊗A B (= Sn(E ⊗A B)), while the righthand member is (S(1)(f) ⊗S(f)

B)⊗n =
(Sn)(f) ⊗A B. The map between the two is just the map induced by (†) on the n-fold
symmetric powers, namely

s⊗ 1 7→
(
f

1

)⊗n
⊗ ∗

(
s

fn

)
.

To recapitulate, a T -point of P = P(E) yields a line bundle, L, on T and a surjection

π∗T (E) −→ L −→ 0. (†††)
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Conversely, given such a line bundle, L, and surjection (†††), we obtain the surjection (††).
Because it is a surjection, we obtain the morphism

Proj(
∐

n≥0

L⊗n) −→ Proj(π∗T (SymOX
(E))) = T

∏

Spec(A)

P(E) pr2−→ P(E).

But T ∼= Proj(
∐

n≥0L⊗n), and so, we finally get a T -point,

ϕL : T = (Proj(
∐

n≥0

L⊗n))→ P(E),

of P by composition.

Our discussion above has proved most of

Theorem 7.10 If X is a scheme and E is a quasi-coherent OX-module, then for any X-
scheme, T , the points, ϕ, of P = P(E) with values in T are in one-to-one correspondence with
equivalence classes of pairs, (L, ψ) in which L is a line bundle over T and ψ is a surjection
of π∗T (E) to L. The equivalence relation on pairs is: (L, ψ) ∼ (L′, ψ′) iff there exists an
OT -isomorphism, α, of L to L′ rendering the diagram

L

α

��

π∗T (E)

ψ
<<①①①①①①①①①

ψ′
""❊

❊❊
❊❊

❊❊
❊

L′

commutative.

Proof . First of all, by the usual gluing on affines, we may assume that X is SpecA. (The
gluing is most easily seen by using the explicit form of the morphisms given above.) In this
case, all that remains is to show that equivalent pairs give the same morphism T −→ P(E)
and conversely. If we have the commutative diagram

L

α

��

π∗T (E)

ψ
<<①①①①①①①①①

ψ′
""❊

❊❊
❊❊

❊❊
❊

L′
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then we get the commutative diagram of graded algebras

∐
n≥0 L⊗n

α

��

SymOT
(π∗T (E))

ψ
66♥♥♥♥♥♥♥♥♥♥♥♥

ψ′
((PP

PP
PP

PP
PP

PP

∐
n≥0 L

′⊗n.

Now, taking Proj of the latter diagram, we obtain the same morphism of T −→ P(E) from
either (L, ψ) or (L′, ψ′), because T is identified with Proj(

∐
n≥0 L⊗n) (resp. Proj(

∐
n≥0 L

′⊗n))
and these identifications agree via Proj(α).

** Proof of the converse needs to be written **

Remark: The manipulations above correspond to the dow–to–earth statement that, in or-
dinary projective space over a field, the points (z0 : · · · : zn) and (λz0 : · · · : λzn) are the
same. More precision in this remark will be given below.

There are several important special cases of Theorem 7.10. The first is

Corollary 7.11 If X is a scheme and E is a QC OX-module, then the X-points of P = P(E)
are in one-to-one canonical correspondence with the QC submodules, F , of E such that E/F
is an invertible sheaf.

Proof . By the theorem, the X-points of P are in one-to-one correspondnce with classes of
pairs, (L, ψ), in which ψ is a surjection from E to L. Let F = Ker ψ. Note that when
(L, ψ) and (L′, ψ′) are equivalent, we get the same F . Conversely, given F , we can use an
automorphism of E mapping F to itself and the two quotients, L,L′ are then equivalent.

The second case is when E = ON+1. In this case, P(E) is just PNX . Theorem 7.10 yields

Corollary 7.12 The T -points of PNX are in one-to-one correspondence with pairs, (L, ψ), in
which L is an invertible OT -module and ψ is a surjection from ON+1

T to L.

Hence, PNX represents the functor

T  {(L, ψ) | L ∈ Pic(T ) and ψ : ON+1
T −→ L −→ 0 is exact}.

For many purposes, the formulation of Corollary 7.11 is more convenient. To formulate
it a bit better, introduce the following notation for an X-scheme, T :

HypX(T, E) =
{
F
∣∣∣∣
(1) F is a QC OT -submodule of π∗T (E).
(2) π∗T (E)/F is an invertible OT -module.

}
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Fix E and let T vary over the X-schemes. Say S is another X-scheme and S
β−→ T is an

X-morphism. We have the exact sequence

0 −→ F −→ π∗T (E) −→ L −→ 0,

where L is invertible. Since β∗ is right-exact, we get the exact sequence

β∗(F) −→ β∗(π∗T (E)) = π∗S(E) −→ β∗(L) −→ 0.

But, pullback of an invertible sheaf is invertible, and so, the map F  Im (β∗(F) −→ π∗S(E))
gives a map HypX(T, E) −→ HypX(S, E). Clearly, this shows that T  HypX(T, E) is a
cofunctor from X-schemes to Sets. Corollary 7.11 can now be reformulated as

Corollary 7.13 The scheme P = P(E) and its invertible sheaf OP (1) represent the functor
HypX(−, E).

Notice that the fixing of the invertible sheaf, OP (1), removes the ambiguity of the equiv-
alence relation mentioned in Theorem 7.10. In fact, we can again reformulate Corollary 7.13
as follows:

Corollary 7.14 There is a one-to-one correspondence between invertible OT -modules, L,
which are quotients of π∗T (E) and morphisms, θ : T → P = P(E), so that θ∗(OP (1)) = L.
(Similarly, of course, when E is ON+1

X and P = PNX .)

Theorem 7.10 shows that for a scheme, X , the projective space PNX is not defined as one
might have imagined. Instead, it is defined via line bundles and global sections. The reason
for this is that on the base scheme X there are nontrivial line bundles and these are hidden
when we just have X = Spec k, where k is a field. We now have two definitions of PNX as a
functor in the case that X = Spec k with k a field. Do they agree? Our map above (locally
given by (†)) is just the map

t ∈ X 7→ (s0(t) : · · · : sN(t)) ∈ PNk (old definition)

and so, in fact, they do agree. This explicit form of our map is used all the time.

But we can be a little more general, yet. All that is necessary is that the line bundles
on X all be trivial. For example, if X is Spec(local ring). When this happens, we have the
more ordinary description of the X-points of P(E):

Corollary 7.15 Assume that Pic(X) is trivial. Write H̃ for the subset of the Γ(X,OX)-
module Γ(X, ED) corresponding to those homomorphisms E −→ OX which are surjective.

Then, the X-points of P(E) are in one-to-one correspondence with H̃/Gm(Γ(X,OX)).
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Proof . Since Γ(X, ED) is HomOX
(E ,OX), the elements of H̃ correspond to surjections

E ψ−→ OX −→ 0.

Further, since Pic(X) is trivial, these ψ just correspond to the pairs (OX , ψ) mentioned in
Theorem 7.10. The equivalence relation of the theorem is just multiplication by an element of
Gm(Γ(X,OX)), because these invertible sections are the isomorphisms OX −→ OX making
the diagram

OX

��

E

ψ
>>⑤⑤⑤⑤⑤⑤⑤⑤

ψ′
  ❇

❇❇
❇❇

❇❇
❇

OX
commute.

Corollary 7.15 supplies the precise form of the remark at the end of the proof of Theorem
7.10. As a final remark in this chain of results, note that the special case of Corollary 7.11
actually implies the full content of Theorem 7.10. To see this, note that the X-morphisms
T −→ P = P(E) correspond uniquely to their graphs in T

∏
X

P . The latter are just the T -

points of T
∏
X

P . But, T
∏
X

P is just P(π∗T (E)). According to Corollary 7.11, the T -points

of P(π∗T (E)) are in one-to-one correspondence with the QC OT -submodules of π∗T (E) whose
quotients are invertible. That is, the points of P(π∗T (E)) correspond to exact sequences

0 −→ F −→ π∗T (E) −→ L −→ 0 (∗)

where F is a submodule of π∗T (E) and L is invertible. But, this is just the description of
the T -points of P(E) as in the conclusion of Theorem 7.10, because the equivalence relation
corresponds to keeping F fixed and identifying all the L’s one can get from an exact sequence
(∗).

The construction of the projective fibre space, P(E), gives a good mechanism in which to
view the generalization of the Segre morphism of Chapter 2. First, observe that if we have
two QC OX -modules, E ,F , and a surjection from E to F , then we get an obvious closed
immersion E −→ F and, as mentioned above, base extension of P(E), say by πT : T → X ,
just gives P(π∗T (E)). For the Segre morphism, we have:

Proposition 7.16 There is a natural closed immersion

PX(E)
∏

X

PX(F) −→ PX(E ⊗OX
F).

This is the Segre morphism.
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Proof . Let P1 be PX(E) and P2 be PX(F), and write Q for P1

∏
X

P2. Then, on Q, we have

the invertible OQ-module:

OP1(1)⊗X OP2(1) = pr∗1(OP1(1))⊗OQ
pr∗2(OP2(1)).

This will play the role of OQ(1). Now, we know there are surjective homomorphisms:

π∗1(E) −→ OP1(1), π∗2(F) −→ OP2(1),

where, πi is the structure morphism, Pi −→ X . Thus, we get a surjection

q∗(E ⊗OX
F) −→ OQ(1), (∗)

where q is the structure morphism of Q over X . But, a surjection from q∗(E ⊗OX
F) to a line

bundle on Q (in this case, OQ(1)), is exactly a morphism from Q to P(E ⊗ F), by Theorem
7.10. This is the Segre morphism. What we must show is that it is a closed immersion.
However, this is a local question on X ; so, we may and do assume that X is affine–call it
Spec A.

The modules E and F are then Ẽ and F̃ , for some A-modules E and F . To check that
the Segre morphism in this case is a closed immersion we will compute it on suitable affine
opens of Q. Pick e ∈ E and f ∈ F and look at the affine open, U = P1(e)

∏
X

P2(f). This is

Spec of a ring, and that ring is

(SymE)(e) ⊗A (SymF )(f),

which we will denote by B. Now, our line bundle, OQ(1) is merely the sheaf given by the
module (SymE)(e) ⊗A (SymF )(f) and over our affine open it is generated by e

1
⊗ f

1
. Then,

the surjection (∗) corresponds to the map

x⊗ y ⊗ b 7→ b
(x
1
⊗ y

1

)
,

where x and y are elements of E, F , respectively and b is an element of B. Note that x
1
is

indeed the ratio of elements of degree 0 and similarly for y
1
. Then, for the symmetric algebras

the maps one degree-one pieces is just

x⊗ y 7→
(x
e

)
⊗
(
y

f

)
.

In P(E ⊗ F) the corresponding affine open into which the Segre morphism maps U is
P(E ⊗ F )(e⊗f). And on the algebras, this map is given by

(x⊗ y)(e⊗f) 7→
(x
e

)
⊗
(
y

f

)
. (†)

Since the open sets P(E⊗F )(e⊗f) cover P(E⊗F ) because the e⊗ f generate SymA(E⊗F ),
all we need to prove is that the Segre morphism is a closed immersion on these particular
affines. But, that will happen if (†) is surjective, and this is certainly true.

Remarks:
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(1) The reader should check that the Segre morphism commutes with base extension.

(2) What about the coproduct of E and F as modules? We find that the coproduct of the
schemes P(E) and P(F) has a closed immersion into P(E∐F).

After the multitude of abstractions of this section, it will be refreshing to have a concrete
and constructive example. We will restrict ourselves to the case where X = Spec(k) where
k is a field and P(E) is just PN .

Example 7.2 Linear systems; hypersurface embedding.

(1) Take Z = Pnk and L = OPn(q) with q > 0. A basis for the global sections of L is the
set of monomials M0, . . . ,MN of degree q in n+ 1 variables, and

N =

(
n + q

q

)
− 1.

According to (††), we have a map

q−uple : Pnk → PNk

given by

(X0 : · · · : Xn) 7→ (M0(X) : · · · : MN (X)), where X = (X0, . . . , Xn).

This is the q-uple embedding . We know that (q−uple)∗(OPN (1)) = OPn(q). This shows
that hyperplanes in PNk (zeros of sections of OPN (1)) correspond to the zeros of sections
of L = OPn(q). The latter are hypersurfaces of degree q in Pnk . Hence, our map, q−uple,
“straightens out” hypersurfaces of degree q in Pnk and makes them into hyperplanes in
PNk .

Recall that if L ∈ Pic(Z) and σ is one of its global sections then we get a Cartier
divisor, Z(σ), so that OZ(Z(σ)) ∼= L (cf. Proposition 5.31). In our case, when we
have a morphism θ : Z → PNS , it corresponds to N + 1 sections of a line bundle,
L, on Z (so that the N + 1 sections generate everywhere). Consequently, we have
N + 1 Cartier divisors Z(s0), . . . , Z(sN), and the condition that s0, . . . , sN generate
L is exactly that no point of Z is in the intersection of these divisors. Of course, we
recall also that two divisors D and E are linearly equivalent when and only when their
line bundles OZ(D) and OZ(E) are isomorphic. So, in the present situation, all the
Cartier divisors Z(si), Z(sj) are linearly equivalent. The same is true for Z(s), where
s is any linear combination of s1, . . . , sN . This means that what we have is a family of
linearly equivalent Cartier divisors on Z. The fact that: Given a point t ∈ Z, at least
one divisor from our family does not pass through t (which is the condition that the
morphism θ : Z → PNS is everywhere defined) has a special name. For a given family
of linearly equivalent divisors on Z, say F , a point t in Z is a base point of F if all the
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divisors of F pass through t. Thus, θ is everywhere defined iff our family, F , has no
base points.

The collection of sections of L spanned by s0, . . . , sN is a linear space, V . The cor-
responding projective space (i.e., the space of hyperplanes of our linear space) is just
our family, F , of linearly equivalent divisors. Consequently, PNk is best written Pk(V ),
and our map θ takes Z to Pk(V ). Each divisor from F corresponds to a hyperplane
in Pk(V ). So for each hyperplane, H , of Pk(V ), the divisor θ∗H is an effective Cartier
divisor on Z lying in F .

Let C be a curve of degree d in Pn, and let C(q) be the image of C under the q-uple
embedding. Write H for a hyperplane in PN , and look at H · C(q). This corresponds
to the divisor on C(q) corresponding to the line bundle OPN (1) ↾ C(q). But then,
(q−uple)∗(H · C(q)) is a divisor of the line bundle (q−uple)∗(OPN (1) ↾ C); that is, it
is equal to the divisor of OPn(q) ↾ C, which is just qH · C. Here, H is a hyperplane in
Pn. Thus,

#(H · C(q)) = q(#(H · C)) = qd,

and
deg(C(q)) = qd = q deg(C).

(2) Take Z = Pnk , again, and L a line bundle on Z. However, don’t take enough sections
to generate. What happens?

Say, we take L = OPn
k
(1) and use the sections s0, . . . , sn−1. Then, the set

Z̃ = {t ∈ T | sj(t) = 0, 0 ≤ j ≤ n− 1}

is a closed set where θ is not defined, namely the set consisting of the point

P = (0: · · · : 0 : 1).

Then, the open set U = Z − Z̃ is just Pnk − {P}, and θ is defined on U and given by

(X0 : · · · : Xn) 7→ (X0 : · · · : Xn−1).

So, we see that θ : (Pnk − {P})→ Pn−1k is simply the projection from P .

Generally, Z̃ 6= ∅, and if (s0, . . . , sn) are chosen in Γ(Z,L) but don’t generate, then

codim(Z̃) is n+ 1, in general, and we get the morphism

θL↾U : U → P(W ((s))),

whereW ((s)) is the subspace of Γ(T,L) generated by (s) = (s0, . . . , sn). It follows that
our line bundle, L, and the “inadequate” collection of its sections (s0, . . . , sn) gives us
a rational map θ : Z −−→ P(W ((s))). So we see that a linear system with base points
gives rise to a rational map from Z into the appropriate projective space.
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Remember that given a line bundle, L, the sections of L give effective divisors, all equiv-
alent to one another. Given a subspace, V ⊆ Γ(X,L), if s0, . . . , sN form a basis of V , the
map ϕL : X −−→ P(V ) given by

ξ 7→ (s0(ξ) : · · · : sN(ξ)),

which, we shall assume to be a morphism, sends the effective divisors, D, with OX(D) = L,
to hyperplanes in V . Each effective divisor goes to a distinct hyperplane, all the hyperplanes
are covered; when the divisor is given by the linear combination

∑N
j=0 αjsj , the corresponding

hyperplane is just given by the equation
∑N

j=0 αjsj = 0. From this, we see that the points
of P(V ) are in one-to-one correspondence with the linear system of these effective divisors
and from now on, we will make this identification. When V = Γ(X,L), the linear system
is called a complete linear system. The ususal notation for a complete linear system, one of
whose divisors is D is |D|.

Consider P2
k, where k is algebraically closed, and six points P1, . . . , P6 in general position.

This means that no three of our points are collinear, and not all lie on a conic. Examine the
complete linear system given by

W = Γ(P2
k,OP2

k
(3)),

so that W is spanned by all cubic monomials in three variables T0, T1, T2. There are 10 such
monomials, and thus the dimension of the linear system P(W ) is 9 (= 10−1). Note that our
linear system consists exactly of the divisors on P2 which are the zeros of linear combinations
of cubic monomials. That is, our linear system consists exactly of the cubic curves in P2.

Look at the subsystem, V , consisting of all of the cubics through P1, . . . , P6. As these
points are in general position, the subspace, V , has dimension 4 = 10 − 6 (DX), and P(V )
has dimension 3. There are no other base points besides P1, . . . , P6. Letting
X = P2 − {P1, . . . , P6}, we get a morphism

Φ: X → P3.

Take P,Q ∈ X , with P 6= Q. Then, we have seven points P, P1, . . . , P6, and the space of
cubics through these seven points has dimension at least 2, i.e., it is at least a P2. The
cubics through the eight points P,Q, P1, . . . , P6 form at least a P1. If the cubics through
the seven points form a P3, then the cubics through the eight points form a P2, and, if the
cubics through the seven points form a P2, then the cubics through the eight points form
a P1. In any case, there is an open set of cubics through P, P1, . . . , P6 and not through Q.
Let P ∗ = Φ(P ), Q∗ = Φ(Q). Then, there exists an open set of hyperplanes through P ∗

not through Q∗, which implies that P ∗ 6= Q∗. Therefore, Φ is injective (set-theoretically).
Consider the case k = C. From complex geometry, Φ is an embedding of manifolds iff it is
injective on tangent spaces (actually, this is also true in the algebraic case). This means that,

given any P ∈ X and any pair of tangent vectors (−→v ,−→w ) at P , there exist curves C1 and

C2 through P with C1 having tangent vector −→v at P and C2 having tangent vector −→w at
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P . But, to give a cubic curve, C, through P1, . . . , P6 and having a given tangent vector, −→v ,
at P , is to give eight conditions on te cubic, namely: The six of passing through P1, . . . , P6,
the seventh of passing through P and the eighth of having a given tangent vector at P .
Consequently such curves form a hyperplane in our linear system P(V ). So, given P,−→v ,−→w ,
we can consider the nonempty open subset of P(V ) off the hyperplane determined by P and
−→v and this open intersects the hyperplane determined by P and −→w (of course, −→v 6= −→w ).
Any curve, C1, in the first hyperplane and any curve, C2, in the second hyperplane and in
the open will do. Therefore, we get an embedding (in fact, a closed immersion)

X →֒ P3.

Consider the blowup, BP2,P1,...,P6
of P2 at the six points P1, . . . , P6 (also denoted B, for short),

and write Ei for the exceptional line corresponding to the point Pi in the blowup. Given
a point, P ′i , on Ei, i.e., a tangent vector, −→v , at Pi, there is a curve, C, in the blowup,
B, passing through P ′i . Let us consider the proper transform of all the curves from our
linear system, P(V ), on B. These form a linear system on B (what is the corresponding line

bundle?) and it is easy to see that it gives a morphism Φ̃ taking B to P3. We obtain the
commutative diagram

B

π

��

Φ̃

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

P2
Φ

//❴❴❴❴ P3,

where we have written the embedding Φ: X → P3 as a rational map from P2 to P3. The new
map, Φ̃ : B → P3 clearly separates points because the only problem might arise for points on
an exceptional divisor and here to separate points is merely to separate tangent directions at
the corresponding Pi. It also separates tangent directions. In fact, the only question arises
from a point, P ′i , on an exceptional divisor, Ei. Here, our curves in P2 all pass through Pi,

which gives six conditions, and we fix the tangent direction, −→v , at Pi, corresponding to the
point P ′i–this gives a seventh condition. Of course, just as above, we now have room in our
family to separate the next higher order contact at Pi among our cubic curves.

And so, we obtain an embedding

Φ̃ : BP2,P1,...,P6
→ P3.

In fact, as BP2,P1,...,P6
is proper we deduce that Φ̃ is a closed immersion. Now B is smooth,

so its image Σ = Im (Φ̃) is a smooth surface in P3. What is deg(Σ)?

Take two generic hyperplanes H,H′ in P3, and consider

H ∩H′ ∩ Σ.

Then, H corresponds to a cubic, C, and H′ corresponds to a cubic, C ′, and both C and C ′

pass through each exceptional line E1, . . . , E6. The image, Φ̃(C), of C cuts the exceptional
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line Ei once, in general. For, to pass through twice means either that we have two distinct
tangent directions at Pi (i.e., C has a node at Pi) or that we have a tangent direction and that
C has order of contact 2 with it (i.e., C has a cusp at Pi). But, an open set of these curves
has neither of these conditions and so we can choose a curve C from this open set which goes
through each Pi exactly once. Pick H′ to miss all six points Φ̃(C)∩E1, . . ., Φ̃(C)∩E6. Since
C and C ′ have distinct tangent vectors at P1, . . . , P6, and since #(C · C ′) = 9, by Bezout’s
theorem for curves in the plane, the six intersections of C and C ′ in P1, . . . , P6 yield as a
remainder only three further intersections. Consequently,

H ∩H′ ∩ Σ = Φ((C · C ′)− {P1, . . . , P6}),

which implies that
#(H ∩H′ ∩ Σ) = 3.

Therefore, Σ is a nonsingular cubic surface.

What is the dimension of the space of such cubic surfaces? We can apply PGL(3) to P3

and get a new Σ. We can also vary the points P1, . . . , P6. We have dim(PGL(3)) = 15, and
the choice of P1, . . . , P6 gives two parameters for each Pi (coordinates), and thus, 12 further
parameters. This looks like 27 degrees of freedom. However, we could use PGL(2) on P2

and not change Σ. Since dim(PGL(3)) = 8, we expect 19 = 27− 8 degrees of freedom. The
cubic surfaces form a P19 and the nonsingular ones form an open subset in P19. Since we
have a family of dimension 19, our Σ’s are almost all the nonsingular cubics in P3. In fact,
they are all of them.

What about the 27 lines on a nonsingular cubic?

Let Li = Φ̃(Ei), i = 1, ..., 6. We get six curves. Given i and j, the line Lij determined

by Pi and Pj has a proper transform on B, call it Lij , again. Let Mij = Φ̃(Lij), for i 6= j,
i, j = 1, . . . , 6. We get fifteen more curves. Any five points in P2 (in general position)
determine a conic. Let Qj be the conic through {P1, . . . , P6} − {Pj}, and write, Qj , again

for the proper transform of Qj on B. Now, let Nj = Φ̃(Qj). This yields six more curves.

Claim: All the curves Li, Mij , Nj , are lines on Σ.

Pick a hyperplane, H, in P3. We know that H corresponds to a cubic curve passing
through P1, . . . , P6. A point on Ei is just a tangent vector at Pi and we can find an open set
of the cubics having this tangent vector and no higher-order contact at Pi. This means that
on B, the proper transform of our cubic cuts Ei just once; hence, H · Li = 1. Thus, Li is a
line. For the curves Mij, we observe that the line PiPj gives vectors, −→vi , at Pi and, −→vj , at
Pj. Now, an open set of the cubics, C, passing through P1, . . . , P6 has neither the vector

−→vi
nor the vector −→vj as tangents at Pi, respectively Pj. Such cubics cut the line PiPj in three
points, two of which are Pi and Pj and their proper transforms miss each other on Ei and
Ej respectively. This leaves exactly one intersection on B for the proper transform of C and
Lij . So, on Σ, the hyperplane, H, corresponding to C cuts Mij just once; and Mij is then a
line.
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Consider a cubic curve through all the points P1, . . . , P6. Pick a conic, Qj , through
the points P1, . . . , P6, omitting Pj . This conic determines five tangent vectors, namely its
tangents at the five points of the P1, . . . , P6 it goes through. For each of those tangent
vectors we get a closed subvariety of all the cubics through P1, . . . , P6, namely those also
having the given tangent vector at the given point. The union of these five closed varieties
fails to exhaust the irreducible variety of cubics through P1, . . . , P6. So, for any C in the
open set of cubics remaining, the intersection of C and Qj—which consists of six points with
multiplicities—is actually six distinct points: The original five and one further point. When
we blow up, the proper transform of the conic and our cubic go through distinct points
on the exceptional lines corresponding to the five chosen points. Hence, on B, the proper
transform of Qj and C intersect just once. Therefore, the hyperplane, H, corresponding to
our cubic cuts Nj just once; so, Nj is a line.

We have seen that the 27 seven curves: the Ei, the Mij and the Nj are all lines in P3

contained in Σ. These are the 27 lines in Σ. The reader can consider their geometry—all
will follow from our description of them as images of proper transforms on B.

The cubic, Σ, is isomorphic to the blowup surface, B. Hence Pic(Σ) is isomorphic to
Pic(B). But the only new divisors on B are the exceptional loci, E1, . . . , E6. It is not hard
to show (DX) that these are distinct in Pic(Σ), and so Pic(Σ) is Z7 because we have the
further divisor class of proper transforms of ordinary lines in P2. This is a further example
of the fact that the map Pic(P3) −→ Pic(Σ) corresponding to the injection Σ →֒ P3 need
not be surjective.

7.3 Projective Morphisms

Recall that in Chapter 2, we defined projective varieties as closed subvarieties of PNk . Obvi-
ously, the correct definition in our now more general case of schemes, X , over a base, S, is
that such a scheme is projective over S when it is a closed S-subscheme of PS(E) for some
E . Of course, this is a relative notion, referring as it does to the morphism X −→ S. Here
for the record, is the official definition.

Definition 7.2 If X is a scheme over S, then the morphism, X −→ S, is a projective
morphism (we also say X is projective over S) iff there exists a closed S-immersion of X to
PS(E), for some f.g. QC OS-module, E . The morphism X −→ S is quasi-projective iff we
merely have an S-immersion to PS(E).

There is an important generalization of the notion of projective morphism, namely:

Definition 7.3 If X is a scheme over S, then the morphism, X −→ S, is a proper morphism
(we also say X proper over S) iff

(1) X is separated over S.
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(2) X −→ X is a finite-type morphism.

(3) The map X −→ X is universally closed , that is, for every T over S, the morphism
pr2 : X

∏
S

T → T is a closed map.

Of course, if X is projective or even quasi-projective over S, then the morphism X −→ S
is a separated morphism. However, projective morphisms have a further crucial property:
They are proper. We proved this in Chapter 2 (Section 2.5, Theorem 2.36) and the proof
there is sufficiently general for us to merely modify it slightly to give our assertion. Here it
is:

Theorem 7.17 If X −→ S is a projective morphism, then for any scheme, T , over S, the
morphism pr2 : X

∏
S

T → T is a closed map.

Proof . The statement is local on S, so we may and do assume that S is affine, say
S = SpecA, and then if we cover T by affine opens we may even assume T is affine. Now,
X is Proj(S), where S is a good graded A-algebra. Consequently, the above remarks reduce
us to proving that the morphism Proj(S) −→ SpecA is a closed map (if T = SpecB,
then pr2 : Proj(S)

∏
SpecA

SpecB → SpecB is just the map Proj(SB) −→ SpecB.) As a last

reduction, we need only prove that the image of Proj(S) itself in SpecA is closed. For, if C
is a closed subset of Proj(S), then C possesses a scheme structure so that, as scheme, C is
Proj(S ′). But then, the image of C would be closed, as required.

We now face the essential case: The image of Proj(S) in SpecA, where S is a good graded
A-algebra, is closed in SpecA. A point z in SpecA is in the image iff π−1(z) is nonempty
(of course, π is the map Proj(S) −→ SpecA). But the fibre π−1(z) is just Proj(S ⊗A κ(z)),
and so, π−1(z) is empty iff the algebra S ⊗A κ(z) is a (TN)-algebra over κ(z). This means
S ⊗A κ(z) = (0) iff n >> 0; now Sn is a f.g. A-module, so by Nakayama’s lemma, we find
(Sn)z = (0) for n >> 0 iff z /∈ image(π). Write An for the annihilator of Sn as A-module,
then our condition is that An is an irrelevant ideal when tensored up to Az. But, as S is
a ggr we find that Sn · S1 = Sn+1 for n >> 0, which means that An ⊆ An+1. Write A for⋃
n>>0An. Then, π

−1(z) = ∅ iff z /∈ V (A). Therefore, the image of Proj(S) is exactly V (A).

Remark: It is very instructive for the reader to compose the above proof with the proof
of Theorem 2.36 in Chapter 2, Section 2.5. They are the same proof but the extra details
and precision in the proof of Theorem 2.36 come about because varieties are simpler than
schemes.

Now, we face a problem: How can one tell, by looking at X itself (over S) whether X is
projective or quasi-projective? Observe that if we could embed X into PS(E), more generally
even if there were just a morphism from X to PS(E), the pullback of OP(E)(1) would be a
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distinguished line bundle on X . This suggests that we examine the line bundles on X to
check if they might be a pullback of some OP(E)(1). By experience, the correct concepts are
what are called ample and very ample line bundles on X . These are the bundles to which
we now turn our attention.

Definition 7.4 Let X be a scheme and L be a line bundle on X . We say that L is ample
on X iff for all coherent OX-modules, F , there is some N(F) so that for every n ≥ N(F),
the sheaf F ⊗ L⊗n is generated by its global sections.

Remark: The definition of ampleness makes no reference to a base scheme S. Thus, it is
an absolute notion as opposed to a notion relative to the morphism X −→ S. That this
notion is a step in the correct direction is the content of the following theorem of J.P. Serre
FAC [47].

Theorem 7.18 (Serre) Let X be a projective scheme over Spec A, where A is noetherian
and the fibre bundle into which X is embedded is given by a coherent A-module, E . Write
L = OX(1) for the pullback of OPA(E)(1) under the closed immersion i : X →֒ PA(E). Then,
L is ample on X.

Proof . The proof proceeds in two steps.

(1) Reduction to the case where X = PA(E).
Let F be a coherent sheaf on X . Then, as i is a closed immersion, i∗F is coherent on

PA(E) (c.f. Proposition 4.21). Now, we know that

(i∗F)(n) = i∗(F(n)),

since A is noetherian. Now,

Γ(PA(E), (i∗F)(n)) = Γ(PA(E), i∗(F(n))) = Γ(X,F(n)) = Γ(X,L⊗n ⊗F).

So, if the sequence

OMPA(E) −→ i∗F(n) −→ 0 is exact for for n >> 0,

then the sequence

OMX −→ L⊗n ⊗ F −→ 0 is also exact for n >> 0,

and the reduction is achieved.

(2) Now, we may assume that X = PA(E).
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Since PA(E) = Proj(SymA(E)), where Ẽ = E , there are standard opens, Ui = PA(E)(fi),
where f1, . . . , fN are generators of E. (Remember, we assumed E is coherent, so, E is f.g.)
Then, since A is noetherian, F ↾ Ui is the tilde of a f.g. Ai-module where

Ai = (SymA(E))(fi) = A

[
f0
fi
, . . . ,

fN
fi

]
.

We can write F ↾ Ui = M̃i, and Mi has generators β
(i)
j , for j = 1, . . . , z(i) (as Ai-module).

Each β
(i)
j is a section of F ↾ Ui. By Serre’s extension lemma, there is some Ni so that

fNi
i ⊗ β(i)

j extends to a global section of L⊗Ni ⊗ F , where fi is a section of L = OP(E)(1).

Pick N which works for all i = 0, . . . , N . Then, fNi ⊗ β(i)
j extends to a global section tij of

L⊗N ⊗F , and
tij ↾ Ui = fNi ⊗ β(i)

j .

Now, (L⊗N ⊗ F) ↾ Ui is equal to M̃i for some module, Mi. We know from previous work
that the map

ξ 7→ fNi ⊗ ξ
takes Mi isomorphically onto Mi. Pick x ∈ PA(E), then there is some Ui so that x ∈ Ui,
and on Ui, the global sections trs ↾ Ui have among them the generators for (L⊗N ⊗ F) ↾ Ui.
Thus, at x, they generate the stalk, and therefore, N will do for F . This proves that L is
ample.

Remarks:

(1) If S is a noetherian scheme, then S is covered by finitely many affines, each of which
is noetherian, and so, by applying the argument to these affines and taking N large
enough, it is clear that we obtain the

Corollary 7.19 Assume X −→ S is a projective morphism, where S is a noetherian scheme
and E is coherent. Write L = OX(1) for the pullback of OPS(E)

(1) under the closed immersion
X −→ PS(E). Then, L is ample on X.

(2) Suppose X is an S-scheme and L is a line bundle on X . Further assume that we choose
a finite number of global sections of L, say R of these. Then we get the not necessarily
surjective map of OX-modules

π∗(OS)R −→ L
where π is the structure morphism X −→ S. By Theorem 7.10 and its corollaries, we
obtain a rational map:

X = Proj(Sym(L)) −−→ PRS .

If we can arrange that L is ample, then we find that some power of L is generated by
its global sections, at least when X is locally noetherian (for: L is finitely generated,
coherence is a local property, and f.g. modules over noetherian rings are coherent.)
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If, in addition, X is actually noetherian, then its power, L⊗N , is generated by a finite
number of its global sections, and replacing the original ample L by this power, we
find the morphism

X = Proj(Sym(L⊗N)) −−→ PRS ,

where R is now the number of sections needed to generate L⊗N . Hence, from an ample
L on a noetherian X , we deduce a closed immersion, X −→ PRS , for some R. This
property of ample line bundles will be discussed further when we consider the notion
of being very ample.

Proposition 7.20 Let X be a scheme, then properties (1)–(3) below are equivalent for a
line bundle, L, on X. Furthermore, we also have property (4).

(1) L is ample.

(2) L⊗m is ample for all m > 0.

(3) L⊗m is ample for some m > 0.

(4) IfM is another line bundle and L andM are ample, then L ⊗M is ample.

Proof . (1) ⇒ (2) follows from the definition. (2) ⇒ (3) is trivial. Now, for (3) ⇒ (1).
Assume that L⊗m is ample for some m, and that F is coherent. Write

Fj = F ⊗ L⊗j,

for j = 0, . . . , m− 1. Then, we know that there is some Nj so that for all t ≥ Nj , the sheaf
Fj ⊗ (L⊗m)⊗t is generated by its sections. Let

N = m · max
0≤j≤m−1

{Nj}.

Take t ≥ N . We can write

t = mθ + k, where 0 ≤ k ≤ m− 1.

Then, we have

F ⊗ L⊗t = (F ⊗ L⊗k)⊗ (L⊗m)⊗θ = Fk ⊗ (L⊗m)⊗θ.
Since t ≥ N , we find θ ≥ max{Nj}, and thus, the righthand side is generated by its sections,
which implies that L is ample.

(4) Assume that L andM are ample. Apply ampleness of L to L itself. Thus, there is
some N so that for all s ≥ N , the sheaf L⊗(s+1) is generated by its sections. Pick a coherent
sheaf, F , and consider

Fk = F ⊗ L⊗k,
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where 0 ≤ k ≤ N − 1. Write Nk for the integer for Fk that works for the ample sheaf M.
Let

N = (N + 1) · max
0≤k≤N−1

{Nk}.

We must prove that for t ≥ N , the sheaf (L⊗M)⊗t ⊗F is generated by its sections. Now,
as t ≥ N , we can write

t = (N + 1)θ + k, with 0 ≤ k ≤ N and θ ≥ max{Nj}.

But,

(L ⊗M)⊗t ⊗F = (L⊗k ⊗ F)⊗ L⊗(N+1)θ ⊗M⊗t

= Fk ⊗M⊗t ⊗
(
L⊗(N+1)

)⊗θ
.

The sheaf Fk ⊗ M⊗t is generated by its sections by choice of t, and the other sheaf,(
L⊗(N+1)

)⊗θ
, is also generated by its sections by the above. Hence, their tensor product

is generated by its sections and we are done.

Serre’s Theorem (Theorem 7.18) has several important corollaries.

Corollary 7.21 (Serre’s generation theorem) Let X be a projective scheme over the scheme
S, where S is assumed noetherian and the OS-module, E , for which X is contained in PS(E)
is coherent. If F is a coherent sheaf on X, then there is a vector bundle, V, so that

(1) V = Lm, for some line bundle, L, and

(2) there is a surjection, V −→ F .

Proof . The sheaf F(n) = F ⊗ OX(n) is generated by finitely many sections if n >> 0,
because our hypotheses guarantee that X is a noetherian scheme and Theorem 7.18 implies
that OX(1) is then ample. Thus, we have an exact sequence

OmX −→ F(n) −→ 0.

Twisting by OX(−n), we get the exact sequence

(OX(−n))m −→ F −→ 0,

and we let V = (OX(−n))m, for n >> 0.

Corollary 7.22 Under the same hypotheses for X as in Corollary 7.21, if F is a coherent
sheaf on X, then there is the Syzygy resolution

· · · −→ E2 −→ E1 −→ E0 −→ F −→ 0, (Syz(F))

where each Ei is a vector bundle of the form Ei = Lmi
i , for some line bundle, Li, and some

mi > 0.
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Proof . By Corollary 7.21, we have

E0 −→ F −→ 0

with E0 of the required form. Let K0 = Ker (E0 −→ F). Then, K0 is coherent. We can apply
Corollary 7.21 again to get

E1 −→ K1 −→ 0.

We finish the proof by induction.

In order to state the third corollary, we need the definitions of the Grothendieck groups
Kcoh(X) and Kvect(X). We define Kcoh(X), the definition of Kvect(X) being similar. We let
Kcoh(X) be the quotient of the free group generated by all the coherent sheaves on X by the
subgroup generated by expressions of the form F −F ′ − F ′′, where

0 −→ F ′ −→ F −→ F ′′ −→ 0 is exact.

Corollary 7.23 (Hilbert–Serre) Let X be a projective scheme over Spec k, with k a field.
If X is smooth over Spec k, then the Syzygy resolution (Syz(F)) stops after dim(X) terms.
Thus,

0 −→ En −→ · · · −→ E2 −→ E1 −→ E0 −→ F −→ 0 is exact,

where each Ei is a vector bundle and for i = 0, . . . n−1, the bundle Ei is of the form Ei = Lmi
i ,

for a line bundle, Li, and some mi > 0. Hence, the natural map

Kvect(X) −→ Kcoh(X)

is an isomorphism.

Proof . This is just Hilbert’s theorem on chains of Syzygies (1893): If M is a f.g. graded
module over k[X0, . . . , Xn] and the ring k[X0, . . . , Xn] is nonsingular (which means that all
homogeneous localizations are regular), then the Syzygy sequence

0 −→ Fd −→ · · · −→ F2 −→ F1 −→ F0 −→M −→ 0

stops, where Fd is locally free and d ≤ dim k[X0, . . . , Xn].

We have been dealing with closed subschemes of PS(E) for coherent E and noetherian S.
The finiteness conditions are placed on E and S in order that there is some bounded power
of the ample L which will tensor a given coherent F into another coherent but generated
by a finite number of its sections. However, we have been begging the question of when a
given S-scheme, X , can actually be embedded as a closed subscheme of PS(E) for some E .
For this, we make the definition:

Definition 7.5 IfX is a scheme over S and L is a line bundle onX , then L is very ample over

S iff there is an immersion X
i−→ PS(E), with E QC as OS-module and L = i∗(OPS(E)

(1)).
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Of course, all this definition does is to change the question above to: When is a given line
bundle on a given X over S very ample? In his paper FAC [47], Serre gave one reduction of
this question:

Theorem 7.24 (Serre) Let X be a finite-type scheme over a noetherian scheme, S. Choose
a line bundle, L on X, then, L is ample on X iff some tensor power, L⊗m, of L is very
ample over S. (Here, m > 0.)

Proof . First, assume that S = Spec A, with A a noetherian ring and that L⊗m gives an
immersion into PNA (Of course, as we are assuming L⊗m is very ample, it really gives an
immersion into PS(E), for some QC E . Thus, our assumption is a special case.) Let X be
the closure of X in PNA . By hypothesis, j : X → X is an open immersion. Pick a coherent
sheaf, F , on X , then j∗F is QC on X. Now, there is some F ′ ⊆ j∗F so that

(1) F ′ is coherent on X, and

(2) F ′ ↾ X = F .

By Serre’s ampleness’s theorem (Theorem 7.18), there is some q >> 0 so that F ′⊗OX(q)
is generated by its global sections. But then,

L ⊗OX(q) = F ′ ⊗OX(q) ↾ X
is generated by sections, and (L⊗m)⊗q does the job.

Continue with the assumption that S = SpecA, as above. Assume now that L is ample.
Pick x ∈ X , let U be some affine open with x ∈ U , where L ↾ U is trivial, and let Y = X−U .
Then, Y is given by a QC-ideal, IY , chosen so that Y has the reduced induced structure.
The assumptions on X imply that IY is coherent. Then, there is some q >> 0 so that
IY ⊗L⊗q is generated by its global sections; thus, there is some s ∈ Γ(X, IY ⊗L⊗q) so that
s(x) 6= 0, i.e., s(x) 6∈ mx(IY ⊗ L⊗q). Look at Xs. This is an open set, and x ∈ Xs. The
sequence 0 −→ IY −→ OX is exact, and thus, the sequence

0 −→ IY ⊗ L⊗q −→ L⊗q is exact,

which implies that
s ∈ Γ(X, IY ⊗ L⊗q) →֒ Γ(X,L⊗q).

Since s vanishes on Y , we have Xs ⊆ U . Look at s ↾ U . We have

s ↾ U ∈ Γ(U, (L ↾ U)⊗q) = Γ(U,OU),
as L ↾ U is trivial. The fact that

f = s ↾ U ∈ Γ(U,OU)
implies thatXs = Uf , and thus, Xs is affine. To recapitulate the above few lines of argument,
we have proved: For every x ∈ X , there is some q(x) >> 0 and some s ∈ Γ(X,L⊗q(x)) such
that
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(1) Xs is open affine.

(2) L ↾ Xs is trivial.

(3) x ∈ Xs.

Since X is quasi-compact, X is covered by finitely many of the Xsi ’s. Now, for any k ∈ N,
Xs = Xs⊗k . Hence, we may replace L⊗q(x) and s by some fixed q and finitely many sections
s1, . . . , sr of L⊗q. Write Ai for the ring Γ(Xi,OXi

), this is a finitely generated A-algebra. So,

there exist some b
(i)
j , so that b

(i)
j generate Ai as an A-algebra, with

b
(i)
j ∈ Γ(Xi,OXi

) = Γ(Xi,L ↾ Xi).

By Serre’s extension lemma, there is some Ni so that sNi
i ⊗ b(i)j extends to a global section tij

of L⊗Ni ⊗L = L⊗(Ni+1), for each j. In the usual way, we may assume that all Ni are equal,
say equal to N . Consider all the global sections sN+1

i , tij and use them to define a morphism

X −→ PMA .

(We know that the Xi cover X and hence that the map is a morphism.) Let Ti and Tij be
the homogeneous coordinates corresponding to sN+1

i and tij . Our map is given by

θi : A

[
Tj
Ti
,
Tij
Ti

]
→ Ai,

via
Tj
Ti
7→ sN+1

j

sN+1
i

and
Tij
Ti
7→ sNi

sN+1
i

b
(i)
j =

b
(i)
j

si
,

and thus, θi is a surjection. Therefore, each θi is a closed immersion

θi : Xi → Ui,

where

Ui = SpecA

[
Tj
Ti
,
Tij
Ti

]
.

Hence, our map, θ, is the composition

θ : X =

r⋃

i=1

Xi →֒
r⋃

i=1

Ui −→ PMA ,

where the first map is a closed immersion and the second map is open.

We have completed the proof of the equivalence in the special case that S is SpecA and
that when L⊗q is very ample we embed in PNA . To get the general case, first consider the
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assumption on S. Since S is noetherian, it is covered by finitely many open affines, SpecA,
with A noetherian. Write π for the structure morphism, X −→ S, and Xj for π

−1(Vj), where
V1, . . . , Vt are the open affines which cover S. If L is ample on X , then L is ample on each
π−1(Vj) and so by taking the maximum of the numbers, qi, that work for each π−1(Vi) we
obtain a single tensor power, L⊗q, so that each L⊗q ↾ π−1(Vj) is very ample. Then, L⊗q itself
very ample over S according to the following lemma whose proof will be given at the close
of this proof:

Lemma 7.25 If π : X → S is a quasi-compact morphism and L is an invertible OX-module,
then L is very ample over X iff the following conditions hold:

(a) π∗L is QC on S,

(b) π∗π∗L −→ L is surjective,

(c) The morphism, X −→ PS(π∗(L)), induced by (b) is an immersion.

However, as the reader will see in the proof of this lemma the definition of very ample
involves immersions into P(E). We have treated the special case E = ONS . So now, we must
show that, in our situation, we actually get a morphism to PNS . Now, given E , it is the direct
limit of its coherent submodules. Our immersion corresponds to a surjection of sheaves

π∗(E) −→ L⊗m −→ 0.

Now, π∗(E) is lim−→
α

π∗(Eα), where the Eα’s are the sheaves corresponding to the finitely

generated submodules, Eα, of E. Also, π is the structure morphism, X −→ S. Since X is
noetherian, we can cover it by finitely many affine opens, say U1, . . . , Ur. On each of these,
we obtain the surjection

π∗(E ↾ Uj) −→ L⊗m ↾ Uj −→ 0.

Moreover, we can choose the Uj’s as a trivializing cover for the bundle L⊗m. Therefore, on
Uj , the bundle L⊗m ↾ Uj is generated by one element and this element is in the image of
π∗(Eα ↾ Uj), for some α. Since the Uj are finite in number, there is one α which works for
all of X . This means that in the diagram

π∗(E) // L⊗m // 0

π∗(Eα) //

OO

L⊗m

the lower horizontal arrow is surjective. Hence, the immersion X −→ PA(E) actually is an

immersion X −→ PA(Eα) . Now, Eα = Ẽα and Eα is a homomorphic image of Anα. It
follows that PA(Eα) is embedded in Pnα

A . Thus, we may and do assume that our L⊗m gives
an immersion X −→ PNA .
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We have just given the full proof that ampleness implies that some tensor power, L⊗q, of
L is very ample over S. There remains the converse statement, which we know to be true
when S = Spec A. So, cover S by affine opens, V1, . . . , Vt, and write Xi for π

−1(Vi). Then,
by the converse statement, for each Spec Ai (= Vi), there is some tensor power, (L⊗m)⊗qi,
which works for any given coherent sheaf, Fi, on Xi. That is, Fi ⊗ (L⊗m)⊗qi is generated
by its global sections. If F is a given coherent sheaf on X , write Fi for F ↾ Xi and take q̃
to be the maximum of the qi’s. Then, F ⊗ (L⊗m)⊗q̃ ↾ Xi is generated by its sections and,
in the usual way, using Serre’s extension of section lemma, we may increase q̃ to some q so
that F ⊗ (L⊗m)⊗q is generated by its global sections over X . Hence, L is ample.

Proof of Lemma 7.25. Assume that L is very ample over S, then L induces an immersion,
j : X → PS(E), for some QC OX -module, E . Then, we have a surjection π∗(E) −→ L.
However, there is a canonical factorization

π∗(E) −→ π∗π∗(L) −→ L, (†)

and so, the homomorphism π∗π∗(L) −→ L is surjective. Moreover, as j is an immersion, X
is separated over S, hence, π is both separated and quasi-compact. But then, π∗(L) is QC.
And, lastly, condition (c) follows because the surjection (†) gives rise to a surjection

π∗SymS(E) −→ π∗SymS(π∗(L)) −→
∐

n≥0

L⊗n.

Hence, we obtain the diagram
PS(π∗(L))

��

X

::tttttttttt

$$❏❏
❏❏

❏❏
❏❏

❏❏

PS(E)
showing that X −→ PS(π∗(L)) is an immersion. Conversely, set E = π∗(L), which is QC by
(a). Then, by (b) and (c) we obtain an immersion j : X → PS(π∗(L)) = PS(E). But then,
by Theorem 7.10, we obtain the surjection

π∗π∗(L) = π∗(E) −→ L,

and L is j∗(OP(E)(1)). So, L is very ample.

7.4 Some Geometric Applications

In this section, we shall work over a given field, k. Whenever necessary, we shall assume
that k is algebraically closed and perhaps of characteristic zero.
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Take a scheme, X , over k and consider two Cartier divisors D and E on X . Let’s assume
that D and E are effective. When is it that D is linearly equivalent to E (D ∼ E) for
effective divisors on X?

Recall that D ∼ E means that
D −E = (f),

where f ∈ Mer(X) is some meromorphic function f : X → P1. For simplicity, let’s assume
that X is irreducible over k. The graph, Γf , of f is then a Cartier divisor on X

∏
P1 (Here,

we have omitted the notation that our product is taken over Speck). Consider the projection
pr2 : X

∏
P1 → P1. It can be checked that if f is nonconstant, then the graph Γf (as scheme)

is flat over P1. (In fact, this is a local question on both X and P1 so we can assume X is
irreducible and affine, say X = Spec A. Then, Γf = Spec(A[T ]/(T − f)), where T is the
coordinate on A1, and we see that T − f is the local equation for Γf as Cartier divisor. But
pr2 : Γf → P1 is given algebraically by the map

k[T ] −→ k[f(ξ1, . . . , ξN)]

(here, ξ1, . . . , ξN are coordinates on X), and k[f(ξ1, . . . , ξN)] is torsion-free as k[T ]-module
because f is nonconstant. But k[T ] is a P.I.D., so Γf is flat.) We have the closed immersion

X(0) →֒ X
∏

P1,

and X(0) is a C-divisor on X
∏

P1 (with local equation T = 0), and similarly for

X(∞) →֒ X
∏

P1.

Therefore, we have the intersection cycles X(0) · Γf and X(∞) · Γf , in which we consider
these cycles as divisors on X(0) and X(∞), respectively, whose local equations are f and 1/f ,
respectively. We find that

f−1(0) = X(0) · Γf ,
and similarly,

f−1(∞) = X(∞) · Γf .
So, D − E = (f) implies that there is some divisor, Γ, on X

∏
P1 with D = X(0) · Γ and

E = X(∞) · Γ. (Of course, Γ = Γf .) The picture is shown in Figure 7.1.

Consequently, we find that D − E is the boundary, ∂Γ, of Γ in the sense of homology.
Linear equivalence is a special case of homology with linear base P1.

We can use PN instead of P1. In this case, if f is a morphism, X −→ PN , and Γf is its
graph as Cartier divisor in the scheme X

∏
P1, then we may choose two points P0 and P∞,

in PN and consider the line P0P∞ in PN to get a P1. By restricting our graph Γf to the
subscheme X

∏
P1 →֒ X

∏
PN , we find the linear equivalence of the divisors f−1(P0) and

f−1(P∞). Obviously, this geometric notion is susceptible of generalization: Take a morphism,



358 CHAPTER 7. PROJECTIVE SCHEMES AND MORPHISMS

bc bc bc

bc bc bc

P1

X

0

∞

X(0)

X(∞)

Figure 7.1: Interpreting linear equivalence as a special case of homology

f : X → S, where X is a scheme (irreducible) and S is a curve. We have the graph Γf , again
a C-divisor on X

∏
S. We can say that

D ≈ E iff XP · Γf = D and XQ · Γf = E,

for some P,Q ∈ S, where XP = pr−12 (P ) and XQ = pr−12 (Q). This is algebraic equiva-
lence. Note that linear equivalence implies algebraic equivalence; which, in turn, implies
homological equivalence.

We can even look at a wider equivalence, torsion equivalence. Say that

D ≈∼ E iff (∃n > 0)(nD ≈ nE).

Clearly, torsion equivalence and algebraic equivalence are the same after we tensor with Q.

There is yet another equivalence: Numerical equivalence. For two divisors D and E on
X , we say that D is numerically equivalent to E, denoted D ≡ E, iff

deg(D · C) = deg(E · C) for all curves C in X.

Recall that D · C means the Cartier divisor corresponding to the line bundle OX(D) ↾ C.
And the degree (deg(D · C)) is just the degree of this line bundle.

Generally, we have strict implications (no converse implications)

D ∼ E ⇒ D ≈ E ⇒ D ≈∼ E ⇒ D ≡ E,

and D numerically equivalent to E implies homological equivalence of D and E.

It is instructive to view all these equivalence relations for line bundles. Choose two line
bundles, L andM on X . We know that L andM are isomorphic means exactly the same
as linear equivalence for divisors. For algebraic equivalence, consider the scheme X

∏
S

(S is a curve, as above) and pick two points P and Q on S. Of course, XP and XQ will
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denote pr−12 (P ) (resp. pr−12 (Q)) and both are isomorphic to X itself. Then, L will be called
algebraically equivalent toM iff there is some line bundle, N , on X

∏
S so that under the

isomorphisms X ∼= XP and X ∼= XQ, we have

L ∼= N ↾ XP and M∼= N ↾ XQ.

Write Pic0(X) for the set of line bundles on X algebraically equivalent to 0. Torsion
equivalence is now quite easy. Namely, L ≈∼M iff there exists m >> 0 so that L⊗m ≈M⊗m.
That is, torsion equivalence is the same as algebraic equivalence on a curve. Write Picτ (X)
for the set of all line bundles torsion equivalent to 0.

For numerical equivalence the situation is as sketched above. That is, L is numerically
equivalent toM iff for all curves in X , say C, we have

deg(L ↾ C) = deg(M ↾ C).

The above notions of equivalence give rise to the decreasing filtration of Pic(X) by sub-
groups:

Pic(X) ⊇ Picτ (X) ⊇ Pic0(X).

It turns out that in characteristic zero the group, Num(X), defined as

Num(X) = Pic(X)/{L ∈ Pic(X) | L ≡ 0}

is also given by Pic(X)/Picτ (X).

Theorem 7.26 (Néron-Severi) In characteristic zero, for a proper irreducible smooth va-
riety, X, (reduced structure) over an algebraically closed field, k, the group Num(X) is a
finitely generated abelian group (called the Néron-Severi group).

Proof . We have not really discussed proper maps but the following proof using, as it does
the notions of algebraic topology, permits us to also use the method of analysis because our
field, k, may be assumed to be the complex numbers.1 In this case, we have the exponential
sequence

0 −→ Z −→ OX −→ O∗X −→ 0,

and by cohomology we get the exact sequence

0 −→ H1(X,Z) −→ H1(X,OX) −→ Pic(X) −→ H2(X,Z).

Now, as X is proper over C, it is compact as a topological space in the norm topology and it
is a connected smooth manifold, by hypothesis. Suppose L ∈ Pic(X) goes to zero under the

1The latter reduction is a consequence of what is sometimes called the “Lefschetz Principle”: Since X is
defined by finitely many polynomials on its finitely many affine open patches, by adjoining all the coefficients
of these polynomials to the rationals, we obtain a field embeddable into the complex numbers over which X
is defined. Consequently we may replace X by its base extension to C–it remains irreducible because of our
hypotheses and as we are in characteristic zero base extension incurs no nilpotent elements.
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connecting homomorphism Pic(X) −→ H2(X,Z). Remember that by Poincaré duality, the
finitely generated group H2(X,Z) is isomorphic to H2n−2(X,Z), where n is the dimension
of X . The connecting homomorphism associates to L the homology class of the divisor of
L. Since L goes to zero, this homology class is zero and by Poincaré duality the intersection
of this class with any embedded (real) surface in X is zero (homologically). But then, for
any algebraic curve, C, of X , we can consider C as a real surface in X and the degree of the
intersection of this surface with the homology class of the divisor of L is just the degree of
L ↾ C. As the homology class of the divisor of L vanishes, so does the degree of L ↾ C. This
means that L is numerically equivalent to zero. We have proved that Num(X) is embedded
in H2(X,Z). By compactness, H2(X,Z) is finitely generated and therefore so is Num(X).

Remark: The above argument is due to Severi. The contribution of Néron was to remove
the analytic aspect of the argument and prove the theorem in much wider generality.

When X is a curve over C, we can use the exponential sequence and just observe that the
connecting homomorphism is the degree map. For, on a connected curve there is just one
generator for H2(X,Z). Moreover, for curves, it turns out that ≈, ≈∼ ,≡ are all the same.
Therefore

Picτ = Pic0 = H1(X,OX)/H1(X,Z).

Now, H1(X,Z) is a 2g-dimensional lattice, where g is the (topological) genus of X . That is,
when we view X as a real closed and orientable surface, g is the number of its handles. It
follows that Pic0 is an abelian Lie group, indeed it is a torus and further that Num(X) = Z.

In the case under consideration, namely when X is a proper irreducible variety over an
algebraically closed field, we can be more precise about embedding X in projective space.
That is, we can be more precise about when a line bundle (equivalently its linear system)
is very ample on X over k. Let us restrict attention at first to linear systems of divisors
because of the direct intuitive geometric feelings we obtain from them.

Definition 7.6 Let D be a linear system on X . We say that D separates points if for all
pairs of closed points P,Q, there is some D ∈ D so that

P ∈ Supp(D) and Q /∈ Supp(D).

In terms of line bundles, if our linear system is given by a subspace, V ⊆ Γ(X,L), there
must be some σ ∈ Γ(X,L) so that

σ(P ) = 0 and σ(Q) 6= 0.

We say that D separates tangent vectors if given any closed point P ∈ X and any nonnull

vector
−→
t ∈ TP (X), there is some D ∈ D with P ∈ D and

−→
t /∈ TP (D).
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In terms of the line bundle, L, and the subspace, V ⊆ Γ(X,L), we need:
σ ∈ V ; σ(P ) ∈ mPLP (i.e., σ(P ) = 0), and yet, σ(P ) /∈ m2

PLP . More generally, the map
V −→ mP/m

2
P given by σ 7→ σ(P ) should be surjective.

This second condition can be explained more intuitively as follows: Let P be any closed

point, and let D1 ∈ D so that P ∈ D1. Pick some
−→
t ∈ TP (D1) ⊆ TP (X) (where

−→
t 6= −→0 ).

Then, there is to be some D2 ∈ D so that P ∈ D2, and yet,
−→
t /∈ TP (D2). In other words,

D1 and D2 are not tangent at P .

Notice that the conditions (1) and (2) are extremely local, namely almost punctual, on
X . In fact, condition (2) just involves the “first infinitesimal neighborhood” of P . They give
rise to Theorem 7.27:

Theorem 7.27 (Embedding Criterion) Let X be a proper scheme over an algebraically
closed field k, and let D be a linear system on X. Then, the following are equivalent.

(1) D yields a closed immersion X →֒ Pnk (for some n).

(2) (A) D separates points of X.

(B) D separates tangent vectors.

We will prove the embedding criterion a bit later, but now we want to give its application
in the case that X is a curve over k. First, recall that |D| consists of the projective space

{g ∈Mer(X) | D + (g) ≥ 0}/(mult. by nonzero constants).

Instead of |D|, for questions of dimension, we may examine the vector space

Γ(X,OX(D)) = L(D) = {g ∈Mer(X) | D + (g) ≥ 0} ∪ {0}.

Now, in a natural way, L(D−P ) appears as subspace of L(D). Namely, choose g ∈ L(D−P ),
then (g) +D − P ≥ 0. Hence,

(g) +D − P + P = (g) +D ≥ 0,

i.e., g ∈ L(D). Moreover, g ∈ L(D) is not in L(D − P ) iff (g) + D when expressed as a
nonnegative sum of points has no P in it. I claim: Either L(D − P ) = L(D) or else their
dimension differs by one.

This claim can be proved very simply from the Riemann-Roch theorem (below). However,

it is instructive to prove it directly. Given two elements h and h̃ of L(D) with neither in

L(D − P ), we know that (h) +D ≥ 0 and (h̃) +D ≥ 0. As h (resp. h̃) is not in L(D − P ),
the divisors (h) +D and (h̃) +D do not contain P . So,

ordP (h) + ordP (D) = ordP (h̃) + ordP (D) = 0;
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hence, ordP (h) = ordP (h̃). The ratio h̃/h is then a local unit at P , hence near P . Let λ be

the value of h̃/h at P , this is a nonzero complex number.

Consider the function h̃−λh and pick any pointQ ofX . We know ordQ(λh)+ordQ(D) ≥ 0

and ordQ(h̃) + ordQ(D) ≥ 0. It follows that

ordQ(h̃− λh) + ordQ(D) ≥ 0, for any Q in X.

However, by our choice of λ, ordP (h̃− λh) > ordP (h), and we find

ordP (h̃− λh) + ordP (D) > ordP (h) + ordP (D) ≥ 0,

which proves that P appears in the effective divisor (h̃− λh) +D. That is, h̃− λh = f lies

in L(D − P ). But then, h̃ = λh+ f and so the dimension of L(D)/L(D − P ) = 1.

In a similar (slightly more cumbersome) argument, we can prove that

dim(L(D)/L(D − P −Q)) ≤ 2

(even when P = Q). From these inequalities we deduce that the conditions (2)A and (2)B
of Theorem 7.27 read in this case:

(A) For every closed point P ∈ X ,

dim|D − P | = dim|D| − 1.

(B) For all closed points P,Q ∈ X (where P = Q is possible),

dim|D − P −Q| = dim|D| − 2.

The problem with (A) and (B), at our present state of knowledge, is that we have no
criterion, yet, for deciding the truth of (A) and (B) in terms of D. This problem evaporates
when we make use of the Riemann-Roch theorem for curves. We shall give a general proof
of the Riemann-Roch theorem for projective varieties in Chapter 9 and another proof for
curves in Section 7.6. Here, we just want to state and use the theorem for curves. Let X be
a proper smooth connected curve over an algebraically-closed field k, and D be any divisor
on X . We define the Euler characteristic of OX(D) by

χ(X,OX(D)) = dimH0(X,OX(D))− dimH1(X,OX(D)).

Then, the Serre duality theorem (c.f. Section 7.6) implies that

χ(X,OX(D)) = dimH0(X,OX(D))− dimH0(X,ωX ⊗OX(−D)),

and the statement of the Riemann-Roch theorem is that

dimH0(X,OX(D))− dimH0(X,ωX ⊗OX(−D)) = deg(D) + 1− g,
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where g = pg(X).

The origin of the theorem is with Riemann (1857) who proved that if deg(D) > 0, then

dimH0(X,OX(mD)) = m deg(D) + 1− g, when m >> 0.

It was his student Roch who supplied the error term betwen H0(X,OX(D)) and
deg(D) + 1− g. Note that we can restate the RR theorem as

dimH0(X,L)− dimH0(X,ωX ⊗ LD) = deg(L) + 1− g, where L is a line bundle.

Applying RR to L = OX and remembering that H0(X,OX) ∼= k, we find that

1− dimH0(X,ωX) = 0 + 1− g.

Consequently,
dimH0(X,ωX) = g = pg.

If we let L = ωX , since ω
D
X ⊗ ωX ∼= OX , we get

dimH0(X,ωX)− 1 = deg(ωX) + 1− g.

Hence,
deg(ωX) = 2g − 2.

Further,
deg(TX) = deg(ωDX) = 2− 2g.

If we choose L with deg(L) < 0, we have H0(X,L) = (0). Otherwise, there is some
σ ∈ H0(X,L) so that σ 6= 0, and if L = OX(D), our σ corresponds to a function F ∈
Mer(X), so that (F ) +D ≥ 0. But

deg((F ) +D) = deg(F ) + deg(D) = deg(D) = deg(L) < 0.

This is impossible because (F ) +D ≥ 0.

Now apply this to the case when deg(L) > 2g − 2. In this case,

deg(ωX ⊗LD) = 2g − 2− deg(L) < 0,

and from the above we get the vanishing theorem:

Theorem 7.28 (Vanishing theorem) On a proper smooth connected curve X of genus g, if
deg(L) > 2g − 2, then

(1) H0(X,ωX ⊗LD) = (0)

and

(2) dimH0(X,L) = deg(L) + 1− g.
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Again, write L as OX(D) and apply the vanishing theorem to the complete linear system
|D| (recall that |D| = P(H0(X,OX(D))). Let’s look at deg(D) ≥ 2g. Let P ∈ X , then,

deg(D − P ) ≥ 2g − 1 > 2g − 2,

and the vanishing theorem implies that

dim|D| = deg(D)− g and dim|D − P | = deg(D − P )− g = dim |D| − 1. (∗)

Thus, |D| separates points, i.e., |D| has no base points; we get a morphism
X −→ Pdeg(D)−g. If we assume slightly more, namely deg(D) ≥ 2g + 1, then not only do we
have conclusions (∗) but also

dim|D − P −Q| = dim |D| − 2

because of
deg(D − P −Q) ≥ 2g − 1 > 2g − 2.

Therefore, D is very ample and |D| gives an embedding into Pdeg(D)−g. The degree of X as
a subvariety of projective space in this embedding is deg(D).

Because of its importance, let’s restate our conclusion as

Theorem 7.29 (Embedding theorem for curves) If X is a proper smooth connected curve
over an algebraically closed field (char. 0) and if D is a divisor of degree ≥ 2g + 1 on X,
then

(1) D is very ample on X over k.

(2) |D| embeds X into Pdeg(D)−g.

(3) The degree of the image curve is exactly deg(D).

Before proving the embedding criterion we want to give some classical terminology from
the theory of curves and further discuss the meaning of the cohomology of Pn with coefficients
in a Serre twist of an ideal sheaf of OPn.

On a curve, X , a linear system of degree d and projective dimension r is called (according
to Halphen and Max Noether around 1880) a grd. For example, when a curve possesses a g12
without base points, we get a morphism X −→ P1, which makes X into a degree 2 cover of
P1. In this case, X is referred to as a hyperelliptic curve. If X possesses a g1n that separates
points, then X is called an n-gonal curve and the g1n makes X into an n-fold cover of P1.

Let’s work over an affine base, X = SpecA. Assume that Y →֒ PnA is a closed embedding.
We have the exact sequence

0 −→ IY −→ OPn −→ OY −→ 0.
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Twisting by d, we obtain the exact sequence

0 −→ IY (d) −→ OPn(d) −→ OY (d) −→ 0.

Taking cohomology, we get

0 // H0(Pn, IY (d)) // H0(Pn,OPn(d)) // H0(Y,OY (d)) EDBC
GF@A

// H1(Pn, IY (d)) // H1(Pn,OPn(d))

(†)

Recall that H0(Pn,OPn(d)) consists of forms of degree d in the ring A[T0, . . . , Tn], and their
zero’s are the hypersurfaces of degree d. We have σ ∈ H0(Pn, IY (d)) iff σ is a form of degree
d and σ ↾ Y = 0. Thus,

H0(Pn, IY (d)) 6= (0)

iff Y is contained in some hypersurface of degree d. Consequently, Y is nondegenerate (not
contained in any hypersurface) iff

H0(Pn, IY (d)) = (0).

Recall that P(H0(Pn,OPn(d))) is the complete linear system of hypersurfaces of degree d in
Pn. We have

OY (d) = OY ⊗OPn(d) = OPn(d) ↾ Y.

This says that P(H0(Y,OY (d))) is the complete linear system on Y corresponding to the
bundle OY (d) and the image in P(H0(Y,OY (d))) of the divisors in P(H0(Pn,OPn(d))) is the
set of divisors coming from the intersection with divisors in Pn of the complete linear system
OPn(d). We will see in the next section that for n ≥ 2,

H1(Pn,OPn(d)) = (0)

for all d. From the exact sequence (†) it follows that the sequence

H0(Pn,OPn(d)) −→ H0(Y,OY (d)) −→ H1(Pn, IY (d)) −→ 0 is exact.

Therefore, the obstruction to the trace of the complete linear system of degree d on Pn (i.e.,
the intersection of the complete linear system with Y ) being complete on Y is H1(Y, IY (d)).

Terminology .

(1) We say that Y is d-normal in Pn if

H0(Pn,OPn(d)) −→ H0(Y,OY (d)) is surjective.

(2) We say that Y is linearly normal if it is 1-normal.
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(3) We say that Y is arithmetically normal (projectively normal in Pn) if it is d-normal for
every d ≥ 0.

If Y is smooth and A is an algebraically closed field, k, we proved in Section 7.1 that

O♭Y =
∐

d≥0

H0(Y,OY (d))

is the integral closure of the projective coordinate ring k[T0, . . . , Tn]/I
♭
Y in its fraction ring

=Mer(Y ). But then, the exact sequence

0 −→ I♭Y −→ O♭Pn −→ O♭Y −→
∐

d≥0

H1(Pn, IY (d)) −→ 0

shows that k[T0, . . . , Tn]/I
♭
Y is isomorphic to O♭Y = integral closure(k[T0, . . . , Tn]/I

♭
Y ) iff Y

is d-normal for every d ≥ 0. Consequently, Y is projectively normal (Y being smooth)
iff its projective coordinate ring is integrally closed . As localizations (at prime ideals) of
integrally closed rings are themselves integrally closed, we see that projective normality
implies normality . For smooth hypersurfaces, Y , their ideal sheaves, IY , are line bundles;
so, we have

H1(Pn, IY ) = (0) when Y is a smooth hypersurface.

Remarks:

(1) When k is an algebraically closed field and n ≥ 2, then H1(Pn, IY ) = (0) iff Y is
connected. To see this, consider the exact sequence

0 −→ IY −→ OPn −→ OY −→ 0

and apply cohomology. We get

0 −→ H0(Pn, IY ) −→ H0(Pn,OPn) −→ H0(Y,OY )
−→ H1(Pn, IY ) −→ H1(Pn,OPn) = (0).

The last vanishing is because n ≥ 2 and OPn is a line bundle, as we will see in the
next section. Now, H0(Pn,OPn) = k and H0(Pn, IY ) consists of those elements of k
(constants) which vanish on Y , i.e., 0. So, we deduce the exact sequence

0 −→ k −→ H0(Y,OY ) −→ H1(Pn, IY ) −→ 0.

Of course, H0(Y,OY ) contains the constants, k. The exact sequence shows that
H0(Y,OY ) is exactly k when and only when H1(Pn, IY ) = (0). Thus, Y is connected
iff H1(Pn, IY ) = (0).

In particular, hypersurfaces in Pn are connected. Next, complete intersections of con-
nected varieties are connected (DX). This gives us the Bertini connectivity statement
(of Theorem 6.13).
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(2) Look at a linear system, D = P(V ), on X and the separation condition on tangent
vectors. It says that if V ⊆ Γ(X,L) (where L = OX(D)), then the map

V −→ mP/m
2
P

is surjective for all points P ∈ X . Since V consists of the pullback of the linear forms
on P(V ), the statement: V −→ mP/m

2
P onto, implies that

mP(V ),P −→ mX,P/m
2
X,P

is also onto. As these are cotangent spaces, this says: For every P ∈ X(k) (here, k is
an algebraically closed field), where P is a closed point, we have an embedding

TP (X) →֒ TP (P(V ))

and X(k) is embedded in P(V ), as in differential geometry.

We now return to the embedding criterion.

Proof of Theorem 7.27. If the linear system, D, embeds X in PNk , then the divisors of D
correspond to the hyperplanes in PNk (DX). But, the collection of all hyperplanes clearly
separates points and separates tangent vectors.

For the converse, assume that (A) and (B) hold. We know that (A) implies that D gives
a morphism ϕ : X → PNk . Since X is proper, the image is closed.2 We know from (A)
that the morphism induced by D separates all closed points; thus, it is injective on closed
points. Since X is proper, it is separated, and closed points are dense, which implies that
ϕ : X → PNk is injective. Then, ϕ : X → PNk is an injective, continuous, closed map, and
thus, it is a homeomorphism onto its image.

We still have to prove that it is an embedding. In the complex analytic case, (B) would
finish the proof, by the implicit function theorem. In the algebraic case, we have to show
that

OPN −→ ϕ∗OX
is surjective. This can be checked locally at P , for every closed point P . By the finiteness
theorem (to be proved later), ϕ∗OX is coherent as OPN -module. So, we have the following
for A = OPN ,P and B = (ϕ∗OX)P = OX,P (because ϕ is a homeomorphism of X onto its
image):

(1) ϕ : κ(A)→ κ(B) is an isomorphism, since

κ(A) = A/mA
∼= k ∼= B/mB = κ(B).

2One of the aspects of a proper morphism is that it is universally closed. However, since we are dealing
with geometry over an algebraically closed field, the reader can consult Chapter 2 as well.
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(2) mA/m
2
A −→ mB/m

2
B is surjective (by (B)).

(3) B is a finitely generated A-module (coherence of ϕ∗OX).

We will use (1)–(3) to prove an algebraic substitute for the desired consequence of the
absent implicit function theorem.

Lemma 7.30 Let A,B be noetherian local rings and θ : A → B be a local homomorphism.
Assume that

(1) θ : κ(A)→ κ(B) is an isomorphism.

(2) mA/m
2
A −→ mB/m

2
B is surjective.

(3) B is a finitely generated A-module.

Then, θ is surjective.

Proof . We give two proofs. The first proof uses Nakayama twice.

Proof 1. Consider the inclusion mAB →֒ mB. By (2), the map mAB −→ mB/m
2
B is onto,

and thus, mAB generates mB mod m2
B. By Nakayama (for the ring B and module mAB), we

get
mAB = mB.

Now, (1) yields the isomorphism

θ : κ(A)→ B/mAB,

since κ(B) = B/mB
∼= B/mAB. Consider 1 ∈ A, and look at B as A-module. By (3), it

is f.g. But, by our reformulated property (1), the element 1 generates B modulo mAB. By
Nakayama (module B, ring A, generating element 1), we get that 1 generates B. This shows
that θ : A→ B is onto.

We can apply Lemma 7.30 to finish the proof of Theorem 7.27. Now, for the second proof
of Lemma 7.30.

Proof 2. We use the formal implicit theorem (Theorem 2.19). This is no surprise as we
know the complex implicit function theorem is needed in the complex case. Complete A and
B, getting Â and B̂. We have

B̂ = Â⊗A B
because B is f.g. We can express Â and B̂ as quotients of formal power series, where ξ1, . . . , ξs
generate mA and η1, . . . , ηt generate mB, and by (2), we get a map θ̂, as shown below:

k[[ξ1, . . . , ξs]]

θ̂
��

// Â

��

// 0

k[[η1, . . . , ηt]] // B̂ // 0
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By the formal implicit function theorem (Theorem 2.19), using hypothesis (2), we find θ̂ is

surjective. Thus, the map Â −→ B̂ is surjective. We have

A

��

// Â

��

B // B̂

where the right vertical map is surjective. As in Section 2.2 (using Krull’s intersection
theorem), we can prove that

(image Â) ∩ B = imageA.

However, (image Â) = B̂ implies that (imageA) = B, and θ is onto.

Because of its importance we can reformulate, in terms of dimensions, the criteria for
base point freeness and very ampleness on a curve:

Theorem 7.31 Let C be a proper, smooth curve over an algebraically closed field k. If D
is a Cartier divisor on C, then:

(1) |D| has no base point iff for every P ∈ C(k),

dim |D − P | = dim |D| − 1.

(2) |D| is very ample iff for all P,Q ∈ C(k),

dim |D − P −Q| = dim |D| − 2.

Proof . Consider any closed point P ∈ C(k). Then, OC(−P ) is the ideal sheaf of P and OP ,
the sheaf of functions at P , is the skyscraper sheaf, κ(P ), at P . We have the exact sequence

0 −→ OC(−P ) −→ OC −→ κ(P ) −→ 0.

Twist it by OC(D). We get the exact sequence

0 −→ OC(D − P ) −→ OC(D) −→ κ(P ) −→ 0.

Apply cohomology, to get

0 −→ H0(C,OC(D − P )) −→ H0(C,OC(D)) −→ κ(P ).

Now, κ(P ) = k because k is algebraically closed; so

dimH0(C,OC(D − P )) ≥ dimH0(C,OC(D))− 1.
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That is,

dim |D| ≤ dim |D − P |+ 1. (∗)

Just as in the discussion following Theorem 7.27, the map |D − P | −→ |D| is given by
∆ 7→ ∆+ P , and |D − P | consists exactly of those D′ ∈ |D| so that P ∈ D′. Our condition
on dimensions is equivalent to |D− P | 6= |D| by (∗) and just as before, this means P is not
a base point of |D|. This proves (1). Note that we have already proved this directly in the
discussion following Theorem 7.27.

To prove (2), we first assume that P 6= Q. The condition on dimension holds iff P and
Q each make the dimension drop by exactly one. By (1), this holds if Q is not a base point
for |D − P |. But, Q is not a base point for |D − P | iff there is some D′ ∈ |D − P |, with
P ∈ D′ but Q /∈ Supp(D′). This means that |D| separates P and Q.

Now, assume that P = Q. Again, P is not a base point for |D − P |. This means that
there is some D′ ∈ |D| so that P appears in D′ with multiplicity 1.

Claim. The point P has multiplicity 1 in D′ iff dim(TP (D
′)) = 0.

Let f be the local equation for D′ at P . So, f must vanish at P and have a nonzero
linear term at P iff the multiplicity of P is 1 in D′. The tangent space TP (D

′) is cut out
from TP (C) by the vanishing of the linear term of f (i.e., df). Thus, there is a nonzero linear
term iff

dim(TP (C)) = dim(TP (D
′)) + 1.

But C is a smooth curve, so that dim(TP (C)) = 1, and thus

dim(TP (D
′)) = 0.

Therefore, our condition on multiplicity 1 means that any nonzero
−→
t ∈ TP (C) is not in

TP (D
′), i.e., tangent vectors are separated, and the proof is complete.

Corollary 7.32 The linear system |D| is ample on C iff deg(D) > 0.

7.5 Finiteness Theorems for Projective Morphisms

Having studied the various properties of projective varieties and projective schemes which
do not explicitly use cohomology, but, as seen with the statement of Riemann-Roch, really
do involve cohomology, it is time to face squarely the issue of cohomology for projective
schemes. At first, we deal with the simplest case: That of projective n-space over a ring.
Here, the results of Chapter 4, Sections 4.1, 4.2 and 4.3; most especially Proposition 4.7 and
Corollary 4.15 are the main tools. The reader is urged to review this material, now.

However, a slight generalization of these results is necessary in order to take into account
the grading. This generalization is analogous to the generalization mentionned in Theorem
7.3. In this case, we shall give it in more explicit detail.
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We fix a scheme, X , a line bundle, L, on X and we form the OX -module

L♭ =
∐

n∈Z

Γ(X,L⊗n) def
= B.

Pick elements, f0, . . . , fr in B1 (we could pick the fi of any degree di, but the case di = 1
for all i is the most important), and write Ui = Xfi , and U =

⋃
i Ui. We examine the open

cover {Ui −→ U} and for every quasi-coherent OX-module, F , we set

Hp(U,F(∗)) =
∐

n∈Z

Hp(U,F ⊗ L⊗n)

Hp({Ui −→ U},F(∗)) =
∐

n∈Z

Hp({Ui −→ U},F ⊗ L⊗n).

Notice that each of Hp(U,F(∗)) and Hp({Ui −→ U},F(∗)) is a graded B-module. We also
obtain the graded B-module ∐

n∈Z

Γ(X,F ⊗ L⊗n) def
= M.

(Observe that when X is Proj(C) where C is a graded ring, we could take L = OX(1) and
then M would just be F ♭, Also, we have taken the elements f0, . . . , fr from B1, which in
the projective case would just be C1 and one sees that this is exactly how we generalize the
Serre section theorem (Theorem 7.3).)

If X is nerve-finite, we find (as usual, cf. Proposition 4.6) that

Γ(Ui0···ip,F(∗)) = H0(Ui0···ip ,F(∗)) =Mi0···ip,

and, as in Chapter 4,

Mi0···ip = lim−→
n

M (n);

but, now this is an isomorphism of graded B-modules . To see this, we need to define the
degree of elements in M (n). Say, ξ is the image in lim−→

n

M (n) of an element, x, of degree d

from M (n) =M with its usual grading. Remember that M (n) maps to Mi0···ip via

x 7→ x

(fi0 · · · fip)n
.

On the righthand side, the image of x has obvious degree d− n(p+1); hence, when ξ comes
from x in M (n), we give ξ the degree: deg(x)−n(p+1). One checks that this is well-defined.
Then, by construction, the map

lim−→
n

M (n) −→ Mi0···ip
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is a global isomorphism. Similarly, lim−→
n

Cp
n(M) is a graded B-module and there is a graded

isomorphism
Cp({Ui −→ U},F(∗)) ∼= lim−→

n

Cp
n(M).

For the Koszul complex lim−→
n

K•(
−→
fn,M), we again define degrees as above: If g(ei0 ∧· · ·∧eip)

is a cochain whose values lies in the degree d part of m, we give g the degree d − n(p + 1).
Once, made, this is well-defined. There results the graded isomorphism

Cp({Ui −→ U},F(∗)) ∼= Cp+1((
−→
f ),M) = lim−→

n

Kp+1(
−→
fn,M).

Of course, this is a chain map and so from Chapter 4 (Proposition 4.7 and Corollary 4.15),
we get:

Proposition 7.33 If X is a nerve-finite scheme and B, F and M are as given above, then
there exist canonical, functorial isomorphisms (of degree 0) of graded B-modules

Hp({Ui −→ U},F(∗)) ∼= Hp+1((
−→
f ),M), for all p ≥ 1.

and a functorial exact sequence of graded B-modules

0 −→ H0((
−→
f ),M) −→M −→ H0({Ui −→ U},F(∗)) −→ H1((

−→
f ),M) −→ 0.

Moreover, if each Xfi is affine, then the above isomorphisms and exact sequence become

Hp(U,F(∗)) ∼= Hp+1((
−→
f ),M), for all p ≥ 1.

and

0 −→ H0((
−→
f ),M) −→M −→ H0(U,F(∗)) −→ H1((

−→
f ),M) −→ 0

(again, as graded, degree 0, maps).

Corollary 7.34 If B is a ggr and f0, . . . , fr ∈ B1 are elememnts which generate B over B0,
set X = Proj(B), and choose a graded B-module, M , then

Hp(X,M ♯(∗)) ∼= Hp+1((
−→
f ),M), for all p ≥ 1

and

0 −→ H0((
−→
f ),M) −→M −→ H0(U,M ♯(∗)) −→ H1((

−→
f ),M) −→ 0 (†)

is exact. Here, Hp(X,M ♯(∗)) means
∐

nH
p(X,M(n)♯).
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Proof . We take F = M ♯ in our proposition, observe that the Xfi are indeed affine, and as
the fi0 , . . . , fir generate, we find X =

⋃
iXfi.

Note that as the functors M  Γ(Ui0···ip,M
♯(∗)) are exact, and as our isomorphisms of

the cochain complexes are chain maps, we actually get isomorphisms which make the obvious
diagrams in the long exact cohomology sequence commute.

Finally, we can apply our corollary to prove:

Theorem 7.35 (Serre) Let A be a ring and let X = PNA . Then, the following properties
hold:

(1) For every d,
Hr(X,OX(d)) = (0) for all r, 0 < r < N.

(2) There is a natural isomorphism t : HN(X,ωX)→ A, called the trace map.

(3) For every d, the A-modules H0(X,OX(d)) and HN(X,OX(d)) are finitely generated
free modules and the natural morphism

H0(X,OX(d))⊗HN(X,OX(−d)⊗ ωX) −→ HN(X,ωX) ∼= A

is a perfect duality of A-modules.

Proof . Consider B = A[T0, . . . , TN ], then PNA = Proj(B) and we take for M the module B
itself. Of course, we take fj = Tj and what we must compute is

H•((
−→
T ), B).

But, the sequence T0, . . . , TN is regular for B; hence, by Koszul result (Proposition 4.3)

Hp((
−→
T ), B) = (0) if p 6= N + 1, HN+1(

−→
T n, B) = B/(T n0 , . . . , T

n
N )B.

Observe that HN+1(
−→
T n, B) is a free A-module on the monomials T j00 , . . . , T

jN
N , where

0 ≤ jl ≤ n and 0 ≤ l ≤ N . Now, we take the limit as n 7→ ∞. Remember that

B/(Tm0 , . . . , T
m
N )B −→ B/(T n0 , . . . , T

n
N)B

is given by multiplication by (T n−m0 , . . . , T n−mN ). To identify the limit, the easiest thing to
do is to observe that we have an isomorphism

B/(Tm0 , . . . , T
m
N )B −̃→ 1

Tm0 · · ·TmN
B/B, (∗)

where 1
Tm
0 ···T

m
N
B is considered a submodule of B

[
1
T0
, . . . , 1

TN

]
. Pick any tuple, (p0, . . . , pN)

of positive integers, take N ≥ max{pj} and set

ξ(n)p0···pN
= image of T n−p00 · · ·T n−pNN in B/(T n0 , . . . , T

n
N)B.
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On the one hand, the degree of this element in B(n) is (N + 1)n −∑N
i=0 pi − (N + 1)n,

and on the other hand, the degree of its image (1/(T p00 · · ·T pNN )) in 1
Tn
0 ···T

n
N
B/B is manifestly

−∑N
i=0 pi. What this shows is that the map

lim−→
n

B/(T n0 · · ·T nN ) −→ B

[
1

T0
, . . . ,

1

TN

]
/B

is an isomorphism (of degree 0) of graded B-modules, where on the lefthand side we use

the “correct” notion of degree. Consequently, HN+1((
−→
T ), B) is free on the generators

1/(T p00 · · ·T pNN ), where each pj ≥ 0 and the degree of this generator is its obvious degree:

−∑N
i=0 pi.

And now, by untwisting the components degree by degree, we obtain the conclusion:

Hp(X,OX(d)) = (0) if p 6= 0, N. (†)

The canonical map

α : B −→ O♭X = H0(X,OX(∗))
is bijective (that the Koszul sequence (†) gives the map α is a consequence of the fact
that Čech cohomology computes the “real” cohomology). Consequently, H0(X,OX(∗)) is
a free A-module and H0(X,OX(d)) is free on the basis T p00 · · ·T pNN , where 0 ≤ pj ≤ d and
p0 + · · ·+ pN = d.

For p = N + 1, our argument above shows that

HN+1(X,OX(d)) =





(0) if d ≥ −N
free with basis 1

T
p0
0 ···T

pN
N

, where

pj ≥ 0 and p0 + · · ·+ pN = |d| if d ≤ −(N + 1).

Since ωX ∼= OX(−(N +1)) (cf. Chapter 6), the module HN+1(X,ωX) is free on one gen-
erator, 1

T0···TN
. Notice that, this generator is exactly what one gets from the Euler sequence

which computes ΩX = OX(−(N + 1)). Consequently, the map announced in statement (2)
is indeed a natural isomorphism.

And finally, the modules H0(X,OX(d)) (free on T i00 · · ·T iNN , where i0 + · · ·+ iN = d) and

HN(X,ωX ⊗OX(−d)) (free on 1
(T0···TN )

(
1

(T
q0
0 ···T

qN
N )

)
, where qj ≥ 0 and q0 + · · ·+ qN = d) are

obviously dual under the pairing

T i00 · · ·T iNN ⊗
1

(T0 · · ·TN)

(
1

(T i00 · · ·T iNN )

)
7→ 1

(T0 · · ·TN)
.

That this pairing is the cup-product is a simple computation.
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Remark: When F is a locally free sheaf and X is a projective nonsingular scheme over an
algebraically closed field k, then

FD ⊗ ωX
is called the Serre dual of F . We will sometimes denote it as F (SD).

Recapping statement (3) of the above theorem, we have the most basic case of Serre’s
duality theorems: If X = PNA , then the natural pairing

H0(X,OX(d))⊗HN(X,OX(d)(SD)) −→ HN(X,ωX) ∼= A,

a perfect duality of free, finitely generated A-modules.

Using Theorem 7.35, we get Serre’s form of the finiteness theorem for projective mor-
phisms:

Theorem 7.36 (Serre) Let S be a locally noetherian scheme and X be a projective schexme
over S, with structure morphism π : X → S. Write OX(1) for the pullback of OPN

S
(1) under

the embedding X →֒ PNS . Then, the following properties hold:

(1) (Finiteness) For every coherent sheaf F on X, the derived functors, Rpπ∗F , are co-
herent on S, for all p.

(2) If S is noetherian,

π∗π∗F(n) −→ F(n) is surjective for all n >> 0.

(3) Assume that S is noetherian, and let L be ample on X. For every coherent sheaf, F ,
on X, there exists some n0(F) so that for all n ≥ n0(F), we have

Rpπ∗(F ⊗ L⊗n) = (0) if p > 0 (the “vanishing theorem”).

Proof . All statements are local on S. Thus, we may assume that S = Spec A, where A is
noetherian.

(1) We have a closed immersion i : X → PNA , and F is coherent on X . Since i is a closed
immersion, we know that i∗F is also coherent (c.f. Proposition 4.21). By the Leray spectral
sequence, we have

Hp(PNA , R
qi∗F) =⇒ H•(X,F).

But i is affine, which implies that the spectral sequence degenerates (c.f. Chapter 4, Corollary
4.12) and thus

Hp(PNA , i∗F) ∼= Hp(X,F), for all p ≥ 0. (†)

Now, we also showed that

Rpπ∗F = ˜Hp(X,F).
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Thus, we need only show that Hp(X,F) is a finitely generated module, and (†) says that
we may assume that X = PNA . By Corollary 7.19, there is a vector bundle E such that
E =

∐
M OX(−q) and the sequence

∐

M

OX(−q) = E −→ F −→ 0 is exact if q >> 0.

Let K = Ker (E −→ F). From the exact sequence

0 −→ K −→ E −→ F −→ 0, (††)

and the fact that F and E are coherent, we find that K is also coherent. We will finish the
proof by using descending induction on p. If p > N , we get

Hp(X,F) = (0),

which is obviously f.g. Assume by induction that for all coherent sheaves G, the module
Hp(X,G) is f.g. over A. Apply cohomology to (††). We get

· · · −→ Hp−1(X, E) −→ Hp−1(X,F) −→ Hp(X,K) −→ · · · (∗)

However,

Hr(X, E) =
∐

M

Hr(X,OX(−q)),

and by (1) and (3) of Theorem 7.35, we find that Hr(X, E) is f.g. for all r. By the induction
hypothesis, Hp(X,K) is f.g., and since A is noetherian, this implies Hp−1(X,F) is f.g., and
completes the induction.

(2) We have

π∗F(n) = ˜H0(X,F(n)), as A-module.

We obtain the exact sequence
∐

H0(X,F(n))

OX −→ π∗π∗F(n) −→ 0.

However, if n is large enough, F(n) is generated by its sections, which says that

∐

H0(X,F(n))

OX −→ F(n) −→ 0 is exact, for n >> 0.

But now, the diagram

∐
H0(X,F(n))OX // π∗π∗F(n)

��

// 0

∐
H0(X,F(n))OX // F(n) // 0

n >> 0
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shows immediately that π∗π∗F(n) −→ F(n) is also surjective for n >> 0.

(3) We first show (3) when L = OX(1), which is very ample. First, I claim that if n is
sufficiently large,

Hn(X,F(n)) = (0).

To see this, note that, for large n, the sheaf F(n) is generated by its global sections, that
is,
∐

M OX −→ F(n) −→ 0 is exact, where M is some finite set. We can twist even further
and deduce

∐

M

OX(r) −→ F(n+ r) −→ 0 is exact, for all r ≥ 0. (∗)

Now, apply cohomology to the exact sequence which results from (∗) when we adjoin the
kernel, K, and look at the highest dimension term:

∐

M

HN(X,OX(r)) −→ HN(X,F(n+ r)) −→ HN+1(X,K) = (0).

However, by Theorem 7.35, the lefthand side of the above exact sequence is dual to
∐

M

H0(X,OX(−r)⊗ ωDX).

But, if r is large, the zeroth cohomology will vanish as negative degree bundles never have
global sections. Hence our assertion is true for N . That is, we have proved there exists an
in integer, ν(N), so that if N ≥ ν(N), then Hn(X,F(n)) = (0).

Now, by descending induction we will prove: If if p > 0, there exists an integer ν(p) so
that Hp(X,F(n)) = (0) whenever n ≥ ν(p). The case p = N has been established. If it is
true for all p and coherent sheaves, F , we apply cohomology to the exact sequence

0 −→ K −→
∐

M

H0(X,OX(r)) −→ F(n+ r) −→ 0

and look at the terms

· · · −→
∐

M

Hp−1(X,OX(r)) −→ Hp−1(X,F(n+ r)) −→ Hp(X,K) −→ · · · .

Here, p − 1 ≥ 1, and the lefthand side vanishes if r > ν(p), the function ν depending on
K. Consequently, we deduce Hp−1(X,F(n + r)) = (0). We have only finitely dimensions
involved, so take n0(F) = max{ν(1), . . . , ν(N)}, then Hp(X,F(n)) = (0) if p > 0 and
n ≥ n0(F).

We now consider any ample line bundle L. There is some m so that L⊗m is very ample.
We can repeat the above argument, and we get the vanishing if we twist by powers of L⊗m.
Apply this to the coherent sheaves Fk = F ⊗ L⊗k, for k = 0, . . . , m − 1. Then, by using
Serre’s argument involving the division algorithm (c.f. the proof of Proposition 7.20), we
complete the proof.

It turns out that the vanishing is characteristic of ampleness.
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Proposition 7.37 Let A be a noetherian ring, X a proper scheme over Spec A, and L a
line bundle over X. Then, L is ample on X iff the vanishing statement holds, i.e., for every
coherent sheaf F on X, there is some n0(F) so that

Hp(X,F ⊗ L⊗t) = (0) for p > 0 and all t ≥ n0(F).

Proof . We know by part (3) of the previous theorem that ampleness implies the vanishing
statement; so, all we need prove is the converse. That is, assuming vanishing of the higher
cohomology and given any coherent sheaf, F , on X we must find an integer, n0(F), so that
for all n ≥ n0(F) the sheaf F ⊗ L⊗n is generated by its global secions.

The beginning of the argument is in fact a repetition of Serre’s argument from the char-
acterization of affine schemes by cohomology (cf. Theorem 4.22).

Pick a closed point, P , of X and let IP be the ideal of {P}. From the exact sequence

0 −→ IP −→ OX −→ OX/IP = k(P ) −→ 0

we get by tensoring with F the exact sequence

0 −→ IPF −→ F −→ k(P )⊗F −→ 0. (∗)

Here, k(P ) is a skyscraper sheaf and IPF is the image of IP ⊗ F in F . Now, tensor the
sequence (∗) with L⊗n, which leaves the sequence exact because L is locally free:

0 −→ IPF ⊗ L⊗n −→ F ⊗L⊗n −→ k(P )⊗ F ⊗ L⊗n −→ 0

and apply cohomology. As IPF is coherent, there is an n0(IPF) so that n ≥ n0(IPF)
implies that

Γ(X,F ⊗ L⊗n) −→ Γ(X, k(P )⊗F ⊗ L⊗n) −→ 0 is exact

(here, we have used the vanishing hypothesis). As k(P ) is a skyscraper sheaf, the A-module
Γ(X, k(P )⊗ F ⊗ L⊗n) is the module (F ⊗ L⊗n)P ⊗OX,P

k(P ). By Nakayama’s lemma, the
stalk (F ⊗L⊗n)P is generated by the global sections of F ⊗L⊗n for all n ≥ n0(IPF). Now,
F ⊗L⊗n is coherent, so there exists a neighborhood, U(P, n), of P (depending on n) so that
the global sections of F ⊗ L⊗n generate the sheaf F ⊗ L⊗n ↾ U(P, n); for all n ≥ n0(IPF)
(cf. Appendix A, Section A.7, Proposition A.26 or Proposition A.18). Apply this argument
to the case F = OX . Then, if we write n0(P ) for n0(IPF) and V (P ) for U(P, n0(P )), we
find that

L⊗n0(P ) ↾ V (P ) is generated by its global sections.

Secondly, apply the argument above successively to the sheaves F ⊗ L⊗r, for r = 0, 1, . . .,
n0(P )− 1. We obtain the neighborhoods, U(P, r), where F ⊗L⊗r is generated by its global
sections. Consequently, on

U(P ) = V (P ) ∩ U(P, 0) ∩ U(P, 1) ∩ · · · ∩ U(P, n0(P )− 1)
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all the sheaves:

L⊗n0(P ),F ,F ⊗ L, . . . ,F ⊗ L⊗(n0(P )−1)

are generated by their global sections. And now the familiar argument with the division
algorithm will help us finish the proof. Namely, given n ≥ n0(P ), we write

n = k n0(P ) + r, 0 ≤ r ≤ n0(P )− 1,

so that

F ⊗ L⊗n = (F ⊗ L⊗r)⊗ (L⊗n0(P ))⊗k. (†)

Each of the sheaves on the righthand side of (†) is generated by its global sections on U(P ).
Thus, F ⊗ L⊗n is generated by its global sections on U(P ) for all n ≥ n0(P ).

Lastly, the open sets U(P ) cover X and, as X is finite type over SpecA, it is quasi-
compact. For the finitely many U(P ) necessary to coverX we take n0(F) to be the supremum
of the various n0(P ). This n0(F) clearly works.

Remark: If we put together all the results of this section we se that we proved the

Theorem 7.38 Suppose π : X → S is a proper morphism and S is a noetherian scheme.
Then for any line bundle, L, on X the following are equivalent:

(1) L is ample on X.

(2) There exists an n so that L⊗n is very ample on X.

(3) There exists N so that for every n ≥ N , the sheaf F⊗n is very ample on X.

(4) For every coherent sheaf F on X there is an integer n0(F) so that

Rpπ∗(F ⊗ L⊗t) = (0), for p > 0 and all t ≥ n0(F).

7.6 Serre Duality Theorem, Some Applications And

Complements

Let X be a proper scheme over a field, k, and assume that dimX = n. Note that Hn(X,−)
is a right exact functor. Indeed, given an exact sequence

0 −→ F ′ −→ F −→ F ′′ −→ 0,

we get
Hn(X,F ′) −→ Hn(X,F) −→ Hn(X,F ′′) −→ Hn+1(X,F ′) = (0).
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Look at the cofunctor
F 7→ Hn(X,F)D.

This is a left exact cofunctor. Is it representable? In other words, is there a coherent sheaf
ω0
X and some t ∈ Hn(X,ω0

X)
D (i.e., t : Hn(X,ω0

X)→ k, a trace map), so that

Hom (F , ω0
X)
∼= Hn(X,F)D functorially (via t).

From general facts about representable functors, if it exists, (ω0
X , t) is unique up to unique

isomorphism. Grothendieck proved, in the sixties, that (ω0
X , t) always exists for X proper

over Spec k and a quicker proof was given by Pierre Deligne. The sheaf ω0
X is called the

dualizing module for X , and t is called the trace map. The reason for this terminology will
become apparent, soon. For now, observe that (3) of Serre’s computation of the cohomology
of Pnk (Theorem 7.35) appears to imply that ωPn

k
is the dualizing module for Pnk . We say it

appears to show it because in our formulation of Theorem 7.35, the duality is proved only
for F = OX(d). We can repair that immediately:

Theorem 7.39 (Serre Duality for Pnk) Let X = Pnk , with k a field, then

(1) There is an isomorphism Hn(X,ωX)
t∼= k.

(2) For every coherent OX-module, F , there is a functorial (in F)) pairing

ExtlOX
(F , ωX)⊗k Hn−l(X,F) −→ Hn(X,ωX) ∼= k

which is a perfect duality of finite dimensional vector spaces.

Proof . Statement (1) follows immediately from (2) of Serre’s computation for projective
space (Theorem 7.35).

To prove (2), first examine the case l = 0. It asserts that there is a functorial pairing

HomOX
(F , ωX)⊗k Hn(X,F) −→ Hn(X,ωX) ∼= k

whic is a perfect duality of finite dimensional vector spaces. For the existence of the pairing,
note that if ϕ ∈ HomOX

(F , ωX), then Hn(ϕ) : Hn(X,F) −→ Hn(X,ωX) ∼= k is a linear
functional on Hn(X,F). Hence, our pairing is

(ϕ, ξ) 7→ t(Hn(ϕ)(ξ)) ∈ k.

When F = OX(q), we find that

HomOX
(F , ωX) = HomOX

(OX(q), ωX)
∼= HomOX

(OX ,OX(q)D ⊗ ωX)
= Γ(X,OX(q)D ⊗ ωX)
= H0(X,OX(−q)⊗ ωX).
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And then, part (3) of Serre’s computation of the cohomology of projective space shows that
the duality is perfect for l = 0 and F = OX(q). Obviously, it is therefore valid when
l = 0 and F is a coproduct of OX(q)’s. Now, by the corollary of Serre’s generation theorem
(Corollary 7.22) there is an exact sequence

(OX(−q′))r −→ (OX(−q))s −→ F −→ 0.

We already know that Hn(X,−)D is a left-exact cofuncor, so apply it to the above exact
sequence, and obtain the commutative diagram

0 // Hn(X,F)D // Hn(X, (OX(−q))s)D // Hn(X, (OX(−q′))r)D

0 // HomOX
(F , ωX)

OO

// HomOX
((OX(−q))s, ωX)

OO

// HomOX
((OX(−q′))r, ωX)

OO

in which the righthand two vertical arrows are isomorphisms by what has been proved. The
five-lemma new completes the case: l = 0, any F .

I claim the functors
F  ExtlOX

(F , ωX)
are coeffaceable cofunctors for l > 0. Once again, this follows from the corollary of Serre’s
generation theorem. Namely, we know there is an exact sequence

(OX(−q))r −→ F −→ 0, for q >> 0 and some r,

hence
ExtlOX

(OX(−q), ωX) = H l(X,HomOX
(OX(−q), ωX)).

(cf. Proposition 5.5). However, ωX is coherent, so by Serre’s vanishing theorem (Theorem
7.36 part (3)) the cohomology groups H l(X,ωX(q)) vanishes if q >> 0. But, our cohomology
group H l(X,HomOX

(OX(−q), ωX)) is just H l(X,ωX(q)). Thus, ExtlOX
(OX(−q), ωX) van-

ishes when q >> 0. This proves the coeffeability of ExtlOX
(−, ωX). Therefore, the cofunctor

F  HomOX
(F , ωX)

is a universal δ-cofunctor, and for such functors any map in degree 0 to another δ-cofunctor
extends uniquely to all degrees. But, for the δ-cofunctor Hn(X,−)D, we have a map from
the case l = 0 proved above. This gives the functorial map

ExtlOX
(F , ωX) −→ Hn−l(X,F)D.

If we now prove that the δ-cofunctor Hn(X,−)D is itself universal, then we find a map in
the opposite direction

Hn−l(X,F)D −→ ExtlOX
(F , ωX)

inverting the previous map—that is, the theorem will be proved.
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Once again coeffaceability follows from Serre’s generation theorem: We have the exact
sequence

(OX(−q))r −→ F −→ 0, for q >> 0 and some r,

and the consequent map

Hn−l(X,F)D −→ (Hn−l(X,OX(−q))r)D

in which the latter group is (0) if l > 0 and q >> 0. This is the coeffaceability of our
cofunctor.

Corollary 7.40 (Of the proof) If X is a projective scheme over a field, k, then the existence
of a dualizing module, ω0

X , implies that there are functorial maps

ExtlOX
(F , ω0

X) −→ Hn−l(X,F)D.

Proof . All we used in the above argument for the existence of these maps when X = Pnk was
that the cohomology of OX(q) is zero in positive degrees when q >> 0 and Serre’s generation
theorem for X , plus the functorial property of dualizing modules (namely, that it represents
the left-exact cofunctor F  Hn(X,F)D).

Our problem now is to prove the existence of dualizing modules for projective schemes
over fields. This is:

Theorem 7.41 If X −→ PNk is a closed immersion and X has codimension r in PNk , then
the sheaf

ω0
X = ExtrO

PN
k

(OX , ωPN
k
)

is a dualizing sheaf for X.

Proof . First, we prove Extl
PN
k
(F , ωPN

k
) vanishes for l < r, for every coherent OX -module,

F . Write G for the latter sheaf (for fixed l < r), and observe that G is coherent. By the
generation theorem for q >> 0, the sheaf G(q) will be generated by its sections. If then all
global sections of G(q) are zero for q >> 0, we would find G(q) = (0). But, G(q) = G⊗OPN

k
(q),

and OPN
k
(q) is locally free, so G would have to be zero. Therefore, we are reduced to proving

that the global sections of G(q) vanish when q >> 0.

Now,
Γ(PNk ,G(q)) = H0(PNk , ExtlO

PN
k

(F , ωPN
k
(q))).

I claim that
H0(PNk , ExtlO

PN
k

(F , ωPN
k
(q))) = ExtlO

PN
k

(F , ωPN
k
(q)).

To see this, first consider the case of F = OPN
k
(z), for some integer z; this is not a sheaf on

X , but because of its form we can analyze both sides and then make the argument for F
below. For simplicity of notation, we abbreviate PNk as P.
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The sheaf ExtlOP
(OP(z), ωP(q)) vanishes for all l > 0 and all q and z because OP is locally

free. Hence, the spectral sequence

Hp(P, ExtlOP
(OP(z), ωP(q))) =⇒ Ext•OP

(OP(z), ωP(q))

degenerates for all q and z. We obtain the isomorphisms

Hp(P,HomOP
(OP(z), ωP(q))) ∼= ExtpOP

(OP(z), ωP(q)). (∗)

Now,
HomOP

(OP(z), ωP(q)) = ωP(q − z),
so that if q >> 0 the groups

Hp(P,HomOP
(OP(z), ωP(q)))

all vanish for p > 0. We have proved that

ExtpOP
(OP(z), ωP(q)) = (0), if p > 0 and q >> 0.

So, our claim is proved for l > 0 and the special sheaf OP , for any z. We need to check the
case l = 0, when p = 0. But, (∗) yields our equation at once.

To treat the case of an arbitary coherent sheaf on X we will use induction on l. The case
l = 0 is trivial. Now, the sheaf F is a coherent OP-module as well as a coherent OX -module.
By the corollary of Serre’s generation theorem (Corollary 7.22), we have the exact sequence

0 −→ K −→ OP(−z)s −→ F −→ 0, (†)

for some z and some s ≥ 1. If we know our equation for all coherent F in the cases < l,
then applying Ext•OP

to (†), we get

Extt(OP(−z)s, ωP(q))→ Extt(K, ωP(q))→ Extt+1(F , ωP(q))→ Extt+1(OP(−z)s, ωP(q)).

When t ≥ 1, the ends vanish if q >> 0, so

Extt(K, ωP(q)) ∼= Extt+1(F , ωP(q))

and if t = 0 we have

0 −→ Hom (F , ωP(q)) −→ Hom (OP(−z)s, ωP(q)) −→ Hom (K, ωP(q))

−→ Ext1(F , ωP(q)) −→ (0) (A)

is exact when q >> 0. For the global Ext, (†) yields

Extt(OP(−z)s, ωP(q))→ Extt(K, ωP(q))→ Extt+1(F , ωP(q))→ Extt+1(OP(−z)s, ωP(q)).
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When t ≥ 1, the ends vanish if q >> 0 (as proved above) and we get

Extt(K, ωP(q)) ∼= Extt+1(F , ωP(q)), for t ≥ 1 and q >> 0.

When t = 0, we get

0 −→ Hom(F , ωP(q)) −→ Hom(OP(−z)s, ωP(q)) −→ Hom(K, ωP(q))

−→ Ext1(F , ωP(q)) −→ (0) (B)

if q >> 0.

Look at the induction step for t ≥ 1, first. The sheaf K is coherent and we have the
commutative diagram

H0(P, Extt(K, ωP(q))

��

∼ // H0(P, Extt+1(F , ωP(q))

��

Extt(K, ωP(q))
∼ // Extt+1(F , ωP(q))

and on the lefthand side, by induction, the vertical arrow is an isomorphism; so, the induction
step works provided t ≥ 1.

In the case t = 0, the exact sequence (A) can be split into two exact sequences

0 −→ Hom (F , ωP(q)) −→ Hom (OP(−z)s, ωP(q)) −→ cok −→ 0

and
0 −→ cok −→ Hom (K, ωP(q)) −→ Ext1(F , ωP(q)) −→ (0).

We apply cohomology to these two exact sequences (over P = PNk ) and twist a little more
to kill the terms involving H1(P,−). Then, we can resplice the cohomology sequences and
obtain

0 −→ H0(P,Hom (F , ωP(q))) −→ H0(P,Hom (OP(−z)s, ωP(q)))

−→ H0(P,Hom (K, ωP(q))) −→ H0(P, Ext1(F , ωP(q))) −→ (0), q >> 0. (C)

For the global Hom, we have (B), which, combined with (C) yields an obvious commutative
diagram which provides the induction step from 0 to 1. So, finally, our claim

Γ(PNk ,G(q)) = H0(PNk , ExtlO
PN
k

(F , ωPN
k
(q))) = ExtlO

PN
k

(F , ωPN
k
(q))

for all l ≥ 0 and q >> 0 is proved.

By Serre Duality for PNk , the group on the righthand side is dual to HN−l(PNk ,F(−q)).
However, F(−q) has support on the closed set X , therefore we have the isomorphism

HN−l(PNk ,F(−q)) ∼= HN−l(X,F(−q)).



7.6. SERRE DUALITY THEOREM, APPLICATIONS AND COMPLEMENTS 385

But, l < r, so N− l > N−r = dim(X); so, the last cohomology group vanishes. This proves

ExtlO
PN
k

(F , ωPN
k
) = (0), for l < r. (∗)

Consider the isomorphism of functors

HomOX
(F ,HomOP

(G,H)) ∼= HomOP
(F ⊗OX

G,H).

Set G = OX , then we obtain

HomOX
(F ,HomOP

(OX ,H)) ∼= HomOP
(F ,H). (∗∗)

The lefthand side of (∗∗) is a composed functor and so (∗∗) yields the spectral sequence of
composed functors

Ep,l
2 = ExtpOX

(F , ExtlOP
(OX ,H)) =⇒ Ext•OP

(F ,H).

When H = ωP , equation (∗) shows Ep,l
2 = (0) if l < r. So, a picture of level 2 of the spectral

sequence is:

bc bc bc bc bc bc

d2

l = r

E2

0

0

Figure 7.2: The E2 level of the spectral sequence

Hence, E0,r
2 = E0,r

3 = · · · = E0,r
∞ .

Now, look at the ∞-level of the spectral sequence (see Figure 7.3).

All the dots on the line p + l = r with l < r are zero. But, the dots on this line are the
filtration quotients of ExtrOP

(F , ωP), and so, we find

ExtrOP
(F , ωP) ∼= E0,r

∞ = E0,r
2 = HomOX

(F , ExtrOP
(OX , ωP)) = HomOX

(F , ω0
X)
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bc

bc

bc

bc

bc

l = r

E∞

0
p+ l = r

Figure 7.3: The E∞ level of the spectral sequence

(by definition of ω0
X), functorially in F . We apply Serre Duality for P = PNk , it gives

ExtrOP
(F , ωP) is dual to HN−r(P,F).

The latter group is just Hd(X,F) because F has support in X , and r = codim(X); of course,
d = dim(X). Consequently

HomOX
(F , ω0

X) is dual to Hd(X,F),

that is,
HomOX

(F , ω0
X)
∼= Hd(X,F)D.

Now, set F = ω0
X and take the identity map on the lefthand side to obtain the element

t ∈ Hd(X,ω0
X)

D—the trace map. Therefore, indeed, (ω0
X , t) is a dualizing sheaf.

Remark: Corollary 7.40 shows that the existence of ω0
X begins the duality (case p = 0) and

gives the pairing

ExtpOX
(F , ω0

X)⊗Hn−p(X,F) −→ Hn(X,ω0
X)

t−→ k,

which pairing is uniquely determined by the case p = 0. The problem is in extending the
duality from p = 0 to the case when p > 0. We shall see below that this is directly related
to the part of the second level of the spectral sequence

Ep,l
2 = ExtpOX

(F , ExtlO
PN
k

(OX , ωPN
k
)) =⇒ Ext•O

PN
k

(F , ωPN
k
),

above the line l = r, shown shaded in Figure 7.4.
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bc bc bc bc bc bc bc l = r

E2

0

?

Figure 7.4: The E2 level of the spectral sequence; obstruction to the duality

Along the line l = r, the groups are Ep,r
2 , where

Ep,r
2 = ExtpOX

(F , ω0
X),

and these are exactly the groups appearing in the duality pairing.

In all the following remarks, we will need to recall some facts about the notion of depth
of a module. All these are quite standard commutative algebra (cf. Matsumura [40] Serre
[52], Eisenbud[14]). The reader should skip these remarks now and proceed immediately to
the Serre Duality theorem which follows, pausing only in the proof when the relevant fact is
necessary. We have included more facts than actually needed; it seems reasonable to do this
as they are part of a piece.

Remarks:

(1) If A is a ring and M is an A-module, then an M -sequence is just what we called a regular sequence in
Definition 4.1. That is, a sequence of elements a1, . . . , ar of A so that ai is not a zero divisor for the
module M/(a1M + · · ·+ ai−1M). If all the ai lie in an ideal, A, then we use the locution M -sequence
from A. Because we have discussed M -sequences in Chapter 4 in connection with the Koszul complex,
the following results will not be a surprise:

If A is noetherian and M is f.g. then the following are equivalent:

(a) There exists an M -sequence (a1, . . . , ar) from A.

(b) ExtlA(A/A,M) = (0) for l < r.

(c) ExtlA(N,M) = (0) for l < r provided N is f.g. and Supp(N) ⊆ V (A).

In the following remarks we always assume that M is f.g. and A is noetherian.
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(2) The notion of a maximal M -sequence from A should be clear, its cardinality (also called the length of
this M -sequence) depends only on M and A. This length is the A-depth of M , denoted depthA(M).
We have

depthA(M) = n iff ExtlA(A/A,M) = (0) for l < r and ExtnA(A/A,M) 6= (0).

(3) When A is local and A is its maximal ideal, we merely write depth(M) instead of depthA(M). We
have

depth(Mp) = (0) iff p ∈ Ass(M) and depth(Mp) ≥ depthp(M).

In fact,
depthA(M) = inf{depth(Mp) | p ∈ V (A)}.

(4) If A is local and M 6= (0), then

depth(M) ≤ dim(A/p) for every p ∈ Ass(M).

In particular
depth(M) ≤ dim(M)

(where dim(M) is by definition the dimension of A/Ann(M)). So the depth is ∞ iff M = (0).

(5) Usually, the notion of M -sequence from A depends on the order of the elements chosen but, if A ⊆
J (A) (= Jacobson radical of A), then an M -sequence from A is independent of the order of its
elements.

(6) Because of (4), when A is local, special attention is paid to those M for which depth(M) = dim(M).
These are the Cohen-Macaulay modules (we also include M = (0) as Cohen-Macaulay). Let us write
C-M, instead of Cohen-Macaulay. A local ring is C-M if it is so as module over itself. When M is
C-M over A, we have:

(a) depth(M) = dim(A/p) for all p ∈ Ass(M); thus, M has no embedded primes (this is the
geometric meaning of Cohen-Macaulay).

(b) If M 6= (0) and a1, . . . , ar is part of an M -sequence, then M/(a1M + · · ·+ai−1M) is again C-M
and

dim(M/(a1M + · · ·+ ar−1M)) = dim(M)− r.

(The local geometric content of this statement should be clear.)

(c) For all p ∈ SpecA, the module Mp is C-M over Ap.

(d) If, for any ideal, A, we define

ht(A) = inf{ht(p) | p ∈ V (A)},

then when A is C-M
ht(A) + dim(A/A) = dim(A).

(7) In any noetherian ring, consider ideals, A, generated by r elements and having ht(A) = r. Call such
an ideal unmixed provided A/A has no embedded primes. This is a directly geometric notion about
V (A) = Spec(A/A), as a subscheme of SpecA—it is the origin of this whole collection of ideas and was
initiated by F.S. Macaulay (about 1915). We say that unmixedness holds in A iff all A (r generators,
ht(A) = r) are unmixed. This is a local property: Unmixedness holds in A iff unmixedness holds in
Ap (for all p) iff unmixedness holds in Am (for all maximal m).

And now, we have: The following are equivalent:

(a) Unmixedness holds for A.
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(b) Ap is C-M for all p ∈ SpecA.

(c) Am is C-M for all m ∈ MaxA.

(8) If we agree to call a noetherian ring a Cohen-Macaulay ring whenever unmixedness holds in it (by
(7), this agrees with the use of C-M in the local case), then Macaulay’s theorem is the following:

Theorem 7.42 (Macaulay) If A is a C-M ring then so is A[X1, . . . , Xn]. In particular, the rings
k[X1, . . . , Xn] (k a field) and Z[X1, . . . , Xn] are C-M.

(9) If A is noetherian local and M is a f.g. A-module, suppose that projdim(M) <∞ (recall
projdim(M) ≤ α iff ExtlA(M,−) = (0) when l > α). Then,

projdim(M) + depth(M) = depth(A).

This equality is due to Auslander and Buchsbaum [3]. When A is C-M, remark (6) shows that we
have the equality

projdim(M) + depth(M) = dim(A).

(10) Every regular ring is C-M.

(11) Serre [52] called attention to the following conditions on noetherian rings, A:

(Sr) : (∀p ∈ SpecA)(depth(Ap ≥ min{r, ht(p)}).

A ring, A, is C-M iff it has condition (Sr) for every r.

Theorem 7.43 Let X be a projective scheme over an algebraically closed field k. Write
d = dim(X), suppose OX(1) is a very ample sheaf, and denote by ω0

X the dualizing sheaf for
X. Then, the following are equivalent:

(1) X is Cohen-Macaulay and equidimensional (all components have the same dimension).
(Being Cohen-Macaulay means that all its local rings are Cohen-Macaulay.)

(2) In the spectral sequence, Ep,l
2 = ExtpOX

(F , ExtlOP
(OX , ωP)) =⇒ Ext•OP

(F , ωP), the terms

Ep,l
2 vanish for l > r and all p ≥ 0.

(3) (Serre Duality) For all coherent sheaves, F , on X, the pairings

Extl(F , ω0
X)⊗k Hd−l(X,F) −→ Hd(X,ω0

X)
t−→ k

are perfect duality pairings of finite dimensional vector spaces over k for all l ≥ 0.

(4) For all locally free F on X and all q >> 0,

H l(X,F(−q)) = (0) if l < d.

Proof . (1) =⇒ (2). Choose any closed point, x, of X . By our assumption, the local ring
OX,x is d-dimensional and C-M; hence, depth(OX,x) = d. Now, OP,x acts on OX,x through
the surjection OP,x −→ OX,s; so, the depth of OX,x as OP,x-module is again d. By Remark
(9) above,

projdim(OX,x) = depth(OP,x)− d = N − d = r,
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because P is smooth so Remark (10) says P is C-M and therefore depth(OP,x) = dim(OP,x) =
N . From the definition of projdim, we find that

ExtlOP,x
(OX,x, ωP) = (0) if l > r.

But,
ExtlOP

(OX , ωP)x = ExtlOP,x
(OX,x, ωP,x),

and we find that ExtlOP
(OX , ωP) = (0) if l > r; this proves (2).

(2) =⇒ (3). Assume Ep,l
2 = (0) for l > r, so that actually, Ep,l

2 = (0), for all l 6= r. Then,
the spectral sequence degenerates and we obtain

Ep,r
2
∼= Extp+rOP

(F , ωP).

By Serre Duality for P, we get that Extp+rOP
(F , ωP) is dual to H

N−(p+r)(P,F) = Hd−p(P,F).
But, F has support in X , so the last group is actually Hd−p(X,F)—which gives the duality
for X .[

Actually, all these isomorphisms are natural in the following sense: The diagram

ExtpOX
(F , ω0

X)⊗Hd−p(X,F)

�� ��

// Hd(X,ω0
X)

��

t // k

Extp+rOX
(F , ωP)⊗Hd−p(P,F) // HN(P, ωP)

t // k

(†)

commutes. Here the two left arrows are isomorphisms and the rightmost arrow comes about
as follows: Consider the sheaf HomOP

(OX ,G), where G is a sheaf on P. From the exact
sequence

0 −→ IX −→ OP −→ OX −→ 0,

we obtain the inclusion HomOP
(OX ,G) →֒ HomOP

(OP ,G) = G and hence, we have the
inclusion

H0(P,HomOP
(OX ,G)) →֒ H0(P,G).

Both side are left-exact functors of G, so, when we take derived functors we obtain the map

R•HomOP
(O,G) −→ R•H0(P,G) = H•(P,G). (∗)

On the lefthand side we have just Ext•OP
(OX ,G), and also the spectral sequence

Hp(P, ExtlOP
(OX ,G)) =⇒ Ext•(OX ,G). (††)

Now, set G = ωP, then Ext•(OX ,G) = (0) if l < r; hence, Ep,l
∞ = (0) for l < r in spectral

sequence (††). It follows that Ep,r
∞ is the subobject (in the filtration) of Extp+rOP

(OX , ωP).
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However, the maps d2 taking Ep,r
2 to Ep+2,r−1

2 are all zero, and the same for the higher
levels of the spectral sequence. We get a surjective map Ep,r

2 −→ Ep,r
∞ , and coupled with the

inclusion Ep,r
∞ −→ Extp+rOP

(OX , ωP), we obtain the map

Ep,r
2 −→ Extp+rOP

(OX , ωP) −→ Hp+r(P, ωP),

where the righthand arrow comes from (∗). Take p = d = dim(X) and obtain

Hd(X,ω0
X) = Hd(P, ω0

X) −→ HN(P, ωP).
]

(3) =⇒ (4). Take a locally-free sheaf, F , on X and apply duality to the sheaf F(−q).
We obtain

H l(X,F(−q)) is dual to Extd−lOX
(F(−q), ω0

X)

and the latter group is just Extd−lOX
(OX ,FD ⊗OX

ω0
X(q)), because F is locally free. However,

ExttOX
(OX ,−) is just H l(X,−). Therefore, we deduce H l(X,F(−q)) is dual to

Hd−l(X, (FD ⊗OX
ω0
X)(q)). Since l < d, the Serre vanishing theorem shows that the latter

group vanishes if q >> 0, i.e. (4).

(4) =⇒ (1). In the statement of (4) choose F to be OX . By (4), we obtain

H l(X,OX(−q)) = (0) if l < d and q >> 0.

But, OX(−q) has support in X and so, our group is just H l(PN ,OX(−q)), and the lat-
ter is dual to ExtN−lOP

(OX(−q), ωP), by Serre Duality for PN . Therefore, our cohomology

group is dual to ExtN−lOP
(OX , ωP(q)). We know for q >> 0 that this last group is just

H0(PN , ExtN−lOP
(OX , ωP(q))) (see the claim in Theorem 7.41). Now,

ExtN−lOP
(OX , ωP(q)) = ExtN−lOP

(OX , ωP)(q)

and if q >> 0, this last group is generated by its sections. By (4), these global sec-
tions vanish (l < d); and so, the sheaf ExtN−lOP

(OX , ωP)(q) = (0). Consequently, the sheaf

ExtN−lOP
(OX , ωP) = (0), and all its stalks must vanish. Therefore, we find

ExtN−lOP,x
(OX,x, ωP,x) = (0) if l < d

and x is any closed point of X . But, ωP,x = OP,x because ωP is a line bundle, and now
one sees simply that if an Ext-group over OX,x vanishes when the righthand argument is
OX,x it must vanish for all righthand arguments. Therefore, projdim(OX,x) ≤ N − d, as
OP,x-module. By Remark (9) again, we find that depth(OX,x) ≥ d. Yet,
depth(OX,x) ≤ dim(OX,x), and for some x, we have dim(OX,x) = d. Therefore, for all closed
points x ∈ X , we have

d ≥ dim(OX,x) ≥ depth(OX,x) ≥ d,

and so, X is equidimensional and Cohen-Macaulay.



392 CHAPTER 7. PROJECTIVE SCHEMES AND MORPHISMS

Corollary 7.44 (Enriques-Severi-Zariski Lemma) Let X be a normal, projective variety
over an algebraically closed field, k, and assume that dim(X) ≥ 2. Then, for all locally-free
F on X and all q >> 0,

H1(X,F(−q)) = (0).

Proof . Serre showed in [52]? that normality of a ring, A, is equivalent to condition (S2) of
Remark (11) and condition (R1): For each prime, p, of height 1, the ring Ap is regular. If
we choose x to be a closed point of X , then as dim(X) ≥ 2, condition (S2) implies that
depth(OX,x) ≥ 2. Now, F is locally free; so, Fx = OtX,x, for some t. Thus, depth(Fx) ≥ 2.
By Remark (9), projdim(Fx) as OP,x-module satisfies

projdim(Fx) ≤ N − 2.

Therefore, as in the proof of (1) =⇒ (2), we get

ExtlOP
(F ,−) = (0), if l ≥ N − 1.

However, by Serre Duality for P, the vector space ExtlOP
(F , ωP) is dual to H

N−l(P,F); so,
for any q the vector space ExtN−1OP

(F(−q), ωP) is dual to H
1(P,F(−q)). Now,

H1(P,F(−q)) = H1(X,F(−q)),

and
ExtN−1OP

(F(−q), ωP) = ExtN−1OP
(F , ωP(q)).

We are reduced to proving that ExtN−1OP
(F , ωP(q)) = (0) if q >> 0; yet we know that for all

q >> 0 the latter space is isomorphic to H0(PN , ExtN−1OP
(F , ωP(q))). The coefficient sheaf of

this H0 vanishes and we are done.

Corollary 7.45 Let X be an integral, normal, projective scheme of dimension n = dim(X)
≥ 2 over an algebraically closed field k, and let Y be a closed subset of X. Assume that Y
is the support of a divisor D, where D is effective and ample on X. Then, Y is connected.
Hence, in Bertini’s theorem, the hyperplane sections are connected when dim(X) ≥ 2.

Proof . As
Supp|mD| = Supp|D|,

since D is ample, we may assume that D is very ample. Therefore, D = OX(1) for some
embedding X →֒ PMk . Let Yp be the scheme given by pD. Then, |Yp| = Y . We have the
exact sequence

0 −→ OX(−p) −→ OX −→ OYp −→ 0.

Taking cohomology, we get

H0(X,OX) −→ H0(Y,OYp) −→ H1(X,OX(−p)).
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By Lemma 7.44, we have
H1(X,OX(−p)) = (0)

for p >> 0. Thus,
H0(X,OX) −→ H0(Y,OYp)

is surjective. But
H0(X,OX) = k,

and k ⊆ H(Y,OYp), which implies that

H0(Y,OYp) = k,

and Y is connected.

Remark: There are two ways to proceed from our present position. The first involves more
generality and is indicated by the spectral sequence used to prove the Serre Duality. One
wants a duality statement valid for proper morphisms or perhaps finite type morphisms, and
so on. Necessarily, these are more abstract and less informative (c.f. Hartshorne [32]). We
choose the second way: Less generality and more precision.

Instead of a Cohen-Macaulay subscheme of PNk , let us look at the more special case of
a local complete intersection. In this case, we can be quite precise about the nature of the
dualizing sheaf ω0

X :

Theorem 7.46 If X is a closed subscheme of PNk which is a local complete intersection of
codimension r, then

ω0
X = ωPN

k
⊗

r∧
NX →֒PN

k
.

So, ω0
X is a line bundle on X and if X is nonsingular it is ωX , the canonical line bundle on

X.

Proof . We can cover PNk = P by affine opens and on these opens X is actually a complete
intersection. Call such an open, U ; then, on U the ideal sheaf, I, of X is generated by
some global sections, f1, . . . , fr, in Γ(U,OP ↾ U). As P is regular (hence C-M), the elements
f1, . . . , fr give a regular sequence in Γ(U,OU). But then, the Koszul complex (Chapter 4)
gives a resolution of Γ(U,OU)/(f1, . . . , fr):

K•(
−→
f ) −→ Γ(U,OU) −→ Γ(U,OU)/(f1, . . . , fr) −→ 0, (K)

here, we have separated out K0(
−→
f ) = Γ(U,OU), for clarity. By taking sheaves, we obtain

the corresponding resolution of OX :

K̃•(
−→
f ) −→ OP ↾ U −→ OX ↾ U −→ 0. (K̃)
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To compute Ext•OP
, we use (K̃) after we apply to it HomOP

. By Proposition 4.3, we find

ExtlOP
(OX , ωP) = (0), if l < r and

ω0
X ↾ U = ExtrOP

(OX , ωP) ∼= ωP/(f1, . . . , fr)ωP
∼= ωP ⊗OP

OX ↾ U.

The last isomorphism depends on the choice of the basis f1, . . . , fr of the ideal sheaf I. If
g1, . . . , gr is another basis for I, say gj =

∑r
i=1 cijfi, then the exterior powers of the matrix

(cij) gives an isomorphism of the complex K•(
−→
f ) to K•(

−→g ). On Kr(
−→
f ), which computes

Extr, we have det(cij) as the multiplier in the isomorphism. That is, the diagram

ExtrOP
(OX , ωP) ↾ U

∼ // ωP/(f1, . . . , fr)ωP

det(cij)

��

∼ // ωP ⊗OP
OX ↾ U

det(cij)

��
ExtrOP

(OX , ωP) ↾ U
∼ // ωP/(g1, . . . , gr)ωP

∼ // ωP ⊗OP
OX ↾ U

commutes.

Now, I/I2 is free over U with basis f1, . . . , fr (or basis g1, . . . , gr) and so,
∧r

I/I2 is free
of rank 1 with basis f1 ∧ · · · ∧ fr (resp. g1 ∧ · · · ∧ gr). The isomorphism from f1 ∧ · · · ∧ fr to
g1 ∧ · · · ∧ gr is just multiplication by det(cij). Therefore, by tensoring with (

∧r
I/I2)

D
, we

obtain the commutative diagram:

ExtrOP
(OX , ωP) ↾ U

∼ f ′s // ωP ⊗OP
OX ↾ U

det(cij)

��

∼ f ′s // ωP ⊗OP
OX ⊗ (

∧r
I/I2)

D

ExtrOP
(OX , ωP) ↾ U

∼ g′s // ωP ⊗OP
OX ↾ U

∼ g′s // ωP ⊗OP
OX ⊗ (

∧r
I/I2)

D
.

Thus, the isomorphisms on the righthand side patch over the covering by the U ’s and we get

ω0
X = ExtrOP

(OX , ωP) −̃→ ωP ⊗OP

r∧
NX →֒PN ,

because NX →֒PN is (I/I2)D (cf. Chapter 6, Section 6.2). The last statement is an immediate
consequence of the adjunction formula (Proposition 6.14).

Notice that when X is nonsingular this gives the nonobvious isomorphism

Hd(X,ωX)
t−→ k.

Even for X a curve, it is not an obvious map (even though it is true that H1(X,ωX) is
one-dimensional when X is a curve).
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Consequently, by specializing to a case where computations are available we have made
the Serre Duality a bit more explicit. We can make it more explicit yet if we specialize in
a slightly different direction: Namely assume of our sheaf F that it is locally-free on X . In
this case, we have

ExtlOX
(F , ω0

X) = H l(X,FD ⊗OX
ω0
X).

To see this, observe that FD ⊗OX
ω0
X is HomOX

(OX ,FD ⊗OX
ω0
X). Now, since F is locally

free
FD ⊗OX

ω0
X = HomOX

(OX ,FD ⊗OX
ω0
X)
∼= HomOX

(F , ω0
X).

Hence,
H l(X,FD ⊗ ω0

X)
∼= H l(X,HomOX

(F , ω0
X)),

and the latter group is just ExtlOX
(F , ω0

X).

Putting this together with the abstract statement of Serre Duality, we deduce the special
case originally proved by Serre:

Corollary 7.47 Under the hypotheses of the duality theorem (Theorem 7.43), if F is locally-
free, the duality pairing is just

H l(X,F)⊗Hd−l(X,FD ⊗OX
ω0
X) −→ Hd(X,ω0

X)
t∼= k.

An even more interesting special case is the case when we restrict both X to be nonsin-
gular and F to be a line bundle OX(E), where E is a Cartier divisor on X . Write KX for
the canonical divisor on X , so that ω0

X = ωX = OX(KX). Then, Serre Duality becomes:

Corollary 7.48 If X is a nonsingular projective scheme over the algebraicaly closed field,
k, and if E is any Cartier divisor on X, the Serre pairing

H l(X,OX(E))⊗Hd−l(X,OX(KX − E)) −→ Hd(X,OX(KX))
t∼= k

is a perfect pairing of finite dimensional vector spaces.

Serre Duality theorem leads immediately to a proof of the Riemann-Roch theorem for
curves, a theorem we already used in Section 7.4. If F is a coherent sheaf on the projective
d-dimensional scheme, X , we define

χ(X,F) =
d∑

i=0

(−1)i dimkH
i(X,F).

The function χ is an Euler function on Coh(X), that is, for any exact sequence

0 −→ F ′ −→ F −→ F ′′ −→ 0,

we have χ(X,F) = χ(X,F ′) + χ(X,F ′′). The case of most importance for us now is when
d = 1, that is, X is a curve and X is nonsingular. Then, χ(X,F) is just

dimH0(X,F)− dimH1(X,F).
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Theorem 7.49 (Riemann-Roch For Line Bundles on X) If X is a smooth, proper curve
over an algebraically closed field, k, then for all line bundles OX(D) on X:

dimH0(X,OX(D))− dimH0(X,OX(KX −D)) = degD + 1− g.
Here, KX is the canonical divisor on X and g is the genus of X.

Proof . Every proper curve is projective and so Serre Duality applies. Observe that by Serre
Duality, the lefthand side of Riemann-Roch is just the Euler function χ(X,OX(D)). Pick a
closed point, P , of X and consider either one of the exact sequences

0 −→ OX(−P ) −→ OX −→ OP −→ 0 (A)

0 −→ OX −→ OX(P ) −→ OP −→ 0. (B)

Note that OP is a skyscraper sheaf supported at P , i.e., the stalk of OP is zero outside P
and at P it is κ(P ) = k.

Given D, if P appears in D with positive multiplicity use (A) and if P appears with
negative multiplicity use (B); we get

0 −→ OX(D − P ) −→ OX(D) −→ OP −→ 0 (A′)

0 −→ OX(D) −→ OX(D + P ) −→ OP −→ 0. (B′)

For the function χ (omitting the argument X for simplicity of notation), exact sequence (A′)
gives

χ(OX(D)) = χ(OP ) + χ(OX(D − P )) = 1 + χ(OX(D − P )),
while for (B′), we get

χ(OX(D)) = χ(OX(D + P ))− 1.

In either case, OX(D − P ) or OX(D + P ) contains P with smaller absolute value of its
multiplicity and so we can use induction on the sum of the absolute values of the multiplicities
in D and obtain:

χ(OX(D)) = degD + χ(OX).
Now,

χ(OX) = dimH0(X,OX)− dimH1(X,OX)
= dimH0(X,OX)− dimH0(X,KX) = 1− g.

There is also a version of Riemann-Roch for vector bundles on a curve:

Theorem 7.50 (Riemann-Roch For Vector Bundles on X) If X is a smooth, proper curve
over an algebraically closed field, k, and if E is a vector bundle on X, then

dimH0(X,OX(E))− dimH0(X,OX(ωX ⊗ED)) = deg
( •∧

E
)
− (rkE)(1− g).

Here,
∧•E is the highest wedge of E, a line bundle.
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Proof . Again, X being proper and a curve is projective; so, we may use Serre Duality. We
use induction on rkE, the case rkE = 1 being Riemann-Roch for line bundles above. By
the Atiyah-Serre Theorem (Theorem 5.22), there is an exact sequence

0 −→ OX −→ E −→ Ẽ −→ 0,

and rk Ẽ = rkE − 1. Further,
∧•E =

∧• Ẽ, hence, by induction as

χ(OX(E)) = χ(OX(Ẽ)) + χ(OX),

we find

1− g + deg
( •∧

Ẽ
)
+ (rk Ẽ)(1− g) = χ(OX(E)).

And so, Serre Duality on the righthand side and simple addition on the lefthand side finish
the proof.

** Remember: Exercise on RR on surfaces **.

If we use Serre Duality for some special line bundles, we obtain interesting results for a
nonsingular projective variety of dimension d. As usual, we write ΩX/k for the rank d bundle
of one-forms on X , and write ΩpX/k for

∧p ΩX/k. This latter is the bundle of p-forms on X ;
here, 0 ≤ p ≤ d. The natural pairing

Ωd−pX/k ⊗ ΩpX/k −→ Ωd−pX/k

∧
ΩpX/k = ωX

gives the duality
Ωd−pX/k

∼= (ΩpX/k)
D ⊗ ωX .

(This is a simple exercise and will be left to the reader.) We can apply Serre Duality to
deduce that

Hd−q(X,Ωd−pX/k) is dual to Hq(X,ΩpΩ/k).

Traditionally, the dimension of Hq(X,ΩpΩ/k) is denoted hp,q and is called the p, q-Hodge

number of X . What we have shown is that hp,q = hd−p,d−q on a d-dimensional nonsingular
projective variety, X . The numbers hp,q are important invariants of X ; they help to classify
these vartieties.

** Exercise 1: cohomology class of a subvariety and mention the Hodge conjecture. **

** Exercise 2: Computation of hp,q on Pd and perhaps other varieties. **

As we have remarked, while Hd(X,ΩX) is one-dimensional (X is nonsingular and d-
dimensional) as yet we do not know how to compute the all important trace map from it to
k, even for curves . All we know is that the trace map exists. But for curves, there is another
approach which gives an explicit computation of the trace map. From now on, write X for
a proper, smooth curve, ΩX for its sheaf of one-forms, ΩK for the module of differentials
of K/k (where K =Mer(X)) = stalk of ΩX at the generic point. Finally, if P is a closed
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point of X , write ΩP for the stalk of ΩX at P . Recall that at P we have a valuation of K:
ordP , namely, the order of zero or pole of a function (from K) at P . The computation of
the trace map will be done in terms of the notion of residue at P , this is a classical notion
from complex analysis, but we can abstract it as follows:

Theorem 7.51 (Existence and Uniqueness of ResP ) If X is as above and P is any closed
point of X then there exists a unique k-linear map, ResP : ΩK → k, having the properties:

(a) If ξ ∈ ΩP , then ResP (ξ) = 0.

(b) If f ∈ K∗, then ResP (f
rdf) = 0 if r 6= −1.

(c) ResP

(df
f

)
= ordP (f).

Proof . (In characteristic zero.) First, we will show that (a), (b) and (c) determine ResP
and so, uniqueness will follow. In this part of the proof no use of characteristic zero will be
necessary.

Choose P and let t be a local uniformizing parameter in OP . Then, dt generates ΩK as
a K-vector space; so, any element of ΩK has the form fdt, for some f ∈ K. As OP is a
valuation ring of K, the function f can be written

f =

−1∑

i=−N

cit
i + g, for someN <∞.

Here, the ci ∈ k and g ∈ OP . Thus,

fdt =
−2∑

i=−N

cit
idt+ c−1

dt

t
+ gdt.

Now, gdt ∈ ΩP , so (a), (b) and (c) and linearity imply immediately that

ResP (fdt) = c−1. (∗)

This proves uniqueness, once ResP exists with properties (a), (b) and (c). Existence is
more problematical. If one takes, as is natural, property (∗) as the definition, one must
show independence of t. This is not easy in characteristic p > 0 (see Serre [51]), but in
characteristic 0 (which we are assuming) we can use analysis. Namely, by the Lefchetz
principle we may asume k = C. Then, if z is another uniformizer there exist locally-defined
holomorphic functions

z = α(t) = at +O(t2), a ∈ C∗

t = β(z) =
1

a
z +O(z2),
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relating t and z. We notice that by (∗) and the Cauchy residue theorem, the residue as
defined by (∗) is just

1

2πi

∫

γ

fdt,

where γ is a small, simple closed curve about P in the local patch on X . If we change
variables, t = β(z), the curve γ shifts yet the value of the integral remains the same as the
integral is independent of the curve up to its homology in the punctured disk about P , and
this is determined by the winding number of γ about P . However, this winding number is
the same for α(γ) because α(t) has a simple zero at P . Thus, the definition given by (∗) is
in fact independent of the uniformizing parameter.

** Exercise on the existence of the residue a la Tate. **

The residue is a local invariant as we have defined it and we have all these local invariants,
one for each point P ∈ X . Given a differential ξ ∈ ΩK , it has but finitely many poles and so,
ResP (ξ) is almost always zero. Therefore, the sum

∑
P∈X ResP (ξ) makes sense. The local

residues are not independent because of the main fact:

Theorem 7.52 (Global Residue Theorem) If X is a smooth, proper curve over k (k alge-
braically closed), then ∑

P∈X

ResP (ξ) = 0.

Proof . (In characteristic zero). We apply Stokes theorem to the Riemann surfaceX . Observe
that the differential ξ is holomorphic outside a finite number of points, P1, . . . , Pn. Draw
about each of these points a small circle. The complement, C, of the union of the disks
defined by these circles has their union as a boundary and by Stokes

0 =

∫

C

dξ =

n∑

j=1

∫

γPj

ξ =

n∑

j=1

ResPj
(ξ).

What is the connection of this material with the trace map? Recall Chapter 5 that since
X is irreducible the sheaf K(X) consisting of the meromorphic functions is the constant
sheaf on X and so it is flasque. Also, the sheaf PX = K(X)/OX is flasque; so,

0 −→ OX −→ K(X) −→ PX −→ 0

is a flasque resolution of OX . Now,

PX =
∐

P∈X

(iP )∗(K(X)/OP ),

as remarked in Chapter 5 (** Steve, where in Chapter 5? **) (here, iP is the closed immersion
of {P} →֒ X). Tensor the flasque resolution of OX by ΩX—we get a flasque resolution of
ΩX :

0 −→ ΩX −→ K(X)⊗OX
ΩX −→

∐

P∈X

(iP )∗(ΩK/ΩP ) −→ 0.
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We can apply cohomology to this sequence and obtain a piece of the long cohomology exact
sequence:

0 −→ H0(X,ΩX) −→ ΩK −→
∐

P∈X

(ΩK/ΩP ) −→ H1(X,ΩX) −→ 0.

Now define a map from
∐

P∈X(ΩK/ΩP ) to k via (ξP ) 7→
∑

P ResP (ξP ).

By the global residue theorem, this map is 0 on ΩK and therefore it descends to a map

H1(X,ΩX) −→ k.

Since dimX = 1, we find ΩX = ωX and the map above is the trace map.

Serre duality is also valid for compact, complex manifolds and holomorphic bundles
on them (as shown by Serre himself using an analytic proof). In the case that k is an
algebraically-closed field of characteristic zero one can prove further theorems, not provable
in characteristic p > 0, and the proofs of these theorems use analysis and perhaps some
differential geometry.

Typical of the above theorems is the circle of ideas concerning the Kodaira vanishing
theorem. In discussing this theorem, we’ll assume k = C (as we may by the Lefchetz princi-
ple) and furthermore we will not give proofs—they depend both on analysis and differential
geometry. Indeed, for the Kodaira theorem, M. Raynaud gave a counterexample in char-
acteristic p > 0. However, the statements are clear and connect with what we have done
above.

In the following, assume that X is a compact, complex, analytic manifold . The first
famous theorem is due to Hodge and it says that the cohomology with complex coefficients
of such an X is the coproduct of the cohomology of the holomorphic differential forms:

Theorem 7.53 (Hodge Decomposition) Let X be a compact, complex manifold, then for all
n ≥ 0

Hn(X,C) =
∐

p+q=n

Hq(X,ΩpX).

A differential form of type (p, q) is one which in local coordinates everywhere has the
form

α =
∑

(r),(s)

α(r),(s)(z, z) dzr1 ∧ · · · ∧ dzrp ∧ dzs1 ∧ · · · ∧ dzsq .

When α is a (1, 1)-form, the coefficients αrs form a matrix and we say that α is a positive
(1, 1)-form provided the matrix −iαrs is a positive definite Hermitian symmetric matrix.
(i.e, αrs = iβrs, where βrs is positive definite Hermitian symmetric). Let’s write α > 0 for
this. If E is a holomorphic line bundle on X , then c1(E) lies in H2(X,C) and by Hodge
c1(E) has a decomposition according to the coproduct

H2(X,C) = H2,0
∐

H1,1
∐

H0,2.
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Call the bundle, E, positive iff c1(E) ∈ H1,1 and is represented there by a positive (1, 1)-form.
(Recall the Dolbeault theorem:

0 −→ ΩpX(E) −→ Dp,0
X (E)

∂−→ Dp,1
X (E)

∂−→ Dp,2
X (E)

∂−→ · · ·

is a resolution of ΩpX(E). Here, Dp,q
X (E) is Dp,q

X ⊗OX
OX(E) and Dp,q

X is the OX-module of
C∞-(p, q) forms on X .) Also, call E negative when ED is positive.

Examples.

(1) The hyperplane bundle, OPN (1), on PNC is positive (DX).

(2) The tensor product of two positive bundles is positive; hence, OPN (d) is positive if
d > 0.

(3) If a tensor power of a bundle is positive, then the bundle itself is positive.

(4) An ample bundle on X is positive.

With the notion of positive bundle we can state Nakano’s generalization of Kodaira’s
vanishing theorem (Nakano [?] (1955), Kodaira [?] (1953)).

Theorem 7.54 (Kodaira/Nakano Vanishing Theorem) Suppose X is a compact, complex
n-dimensional manifold and E is a holomorphic line bundle on X.

(1) If E ⊗∧n T (X) is positive, then

Hp(X,OX(E)) = (0), for p > 0 and

(2) If E is negative then

Hq(X,ΩpX(E)) = (0), when p + q < n.

Corollary 7.55 (Original Kodaira Vanishing Theorem) Hypotheses on X and E as above,
then (1) as above and

(2) If E is negative, then
Hq(X,OX(E)) = (0), if q < n.

Note that the corollary (part (2)) is just the case p = 0 of the theorem.

To connect Kodaira’s theorem with projective geometry let’s suppose that X is a closed,
smooth subvariety of PnC. Write L for the line bundle E ⊗∧n T (X) and assume that L is
ample (hence positive by our remark above). Then, E = L ⊗ ωX and we get the form of
Kodaira’s theorem for smooth projective varieties:
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Corollary 7.56 If X is a smooth projective variety and L is an ample line bundle on X,
then

(1) Hp(X,OX(L⊗ ωX)) = (0), if p > 0 and

(2) Hp(X,OX(LD)) = (0), if p < n.

Notice that (1) and (2) of Kodaira’s theorem are equivalent by Serre Duality. If we
apply Serre Duality to statement (2) of Nakano’s vanishing theorem and use the fact that
ΩpX(E)

D ⊗ ωX is isomorphic to Ωn−pX (ED), then we find that (2) becomes

Hr(X,ΩsX(E
D)) = (0), if ED is positive and r + s > n.

The use of Kodaira’s theorem is in answering the question of when a compact, complex
manifold is actually a projective variety. To understand this, observe that on a complex
manifold there are lots of C∞ Hermitian metrics. When gαβ is such a metric, we can make
the associated (1, 1)-form:

[gαβ] =
∑

α,β

gα,β(z, z) dzα ∧ dzβ.

The metric, gαβ, is called a Kähler metric iff [gαβ ] is a closed (1, 1)-form and then X is a
Kähler manifold iff it admits a Kähler metric. So, Kähler manifolds are special kinds of
complex manifolds.

Examples.

(1) PNC admits the Fubini-Study metric which is Kähler.

(2) Any smooth complex projective variety is thus Kähler using the restriction of the
Fubini-Study metric.

Now, H1,1 ⊆ H2(X,C) and Hodge [?] called attention to the fact that if X is projective,
algebraic, then its Kähler form comes fromH2(X,Z) (with obvious 1

2πi
factors). In his honnor

a Kähler manifold whose Kähler metric comes from H2(X,Z) is called a Hodge manifold .
Hodge conjectured that every Hodge manifold was, in fact, projective algebraic. Using
his vanishing theorem, Kodaira proved that Hodge manifolds admit a closed holomorphic
embedding into projective space and hence, by Chow’s theorem [?] or by Serre’s GAGA [48],
every Hodge manifold is projective algebraic.

Since positive line bundles, coherent sheaves, etc. make sense for compact, complex man-
ifolds one can ask if Kodaira’s vanishing theorem can be generalized. Recall that Nakano’s
generalization concerned differential forms with coefficients negative bundles. There have
been many generalizations of Kodaira’s theorem, perhaps the following is representative:
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Theorem 7.57 (Grauert’s Vanishing Theorem) If X is a compact, complex holomorphic
manifold, E a positive holomorphic line bundle on X and F is a coherent (analytic) sheaf
on X, then there exists µ0(F) so that if µ ≥ µ0 we have

Hp(X,OX(E)⊗µ ⊗F) = (0), p > 0.

(That is, positive implies ample.)

In preparation for Chern classes, we need to define the projective bundle P(E) associated
with a locally free sheaf E of rank r. We assume that we are in the following situation that
we denote by (H).

We have a locally noetherian scheme X and S is a graded OX-algebra (S =
⋃
d≥0 Sd), so

that

(1) S0 = OX .

(2) S is generated as an algebra over S0 = OX by S1.

(3) S1 is coherent as OX -module.

Note that we basically have a “sheafified” ggr. Let U be some affine open in X . Then,
we have

S ↾ U = S̃U ,

where SU is some AU -algebra where AU = Γ(U,OU), and SU is graded. We make Proj(SU).
Observe that if f ∈ AU , then

Proj(SU)(f) = Proj(SUf
) = π−1(Uf ),

where π : Proj(SU) → U . This implies that these schemes patch, and we get Proj(S), a
scheme over X .

Remarks:

(1)

(Proj(S)) ↾ π−1(U) = Proj(SU).

(2) Proj(S) is proper over X and locally projective. We will write

Proj(SU) →֒ PnU
U .

� The scheme Proj(S) is not necessarily projective over X .
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(3) Y = Proj(S) always has an OY (1): Just patch the OProj(SU )(1) together.

(4) Assume that S = OX [T0, . . . , Tn]. Then,

Proj(S) = PnX .

(5) Take E , a locally free sheaf of rank r on X . Make ED and Sym(ED). The situation (H)
holds, and we set

P(E) = Proj(Sym(ED)),
the projective bundle over X determined by E . Note that the reason for using ED instead
of E is that given a morphism between E1 and E2, the arrows P(E1) ↾ U −→ P(E2) ↾ U
go in the right direction.

The maps α and β from Serre’s Theorem 7.4 are relativized as follows. Letting π : P(E)→
X be the projection morphism,

β : S = Sym(ED) −→
∐

l

π∗(OP(E)(l))

is an isomorphism. This implies the following facts.

(1)
π∗(OP(E)(l)) = (0)

if l < 0.

(2a)
π∗(OP(E)) = OX .

(The fibres of π are connected).

(2b)
π∗(OP(E)(1)) = ED.

(2c)
π∗ED −→ OP(E)(1)

is surjective (this is the same as saying that OP(E)(1) is generated by sections).

(3)
(Rpπ∗)(OP(E)(l)) = (0)

if 0 < p < r, where r = rg(E), and all l.

(4)

ωP(E) =

(
π∗

r∧
ED
)
(−r).
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(5) P(E) represents the functor

HomX(T,P(E)) = {(L, ψ) | L ∈ Pic(T ), π∗TED
ψ−→ L −→ 0}.

The reason for (4) is that, as usual, with the Euler sequence

0 −→ Ω1
Pn −→

∐

n+1

OPn(−1) −→ OPn −→ 0,

we have the Euler bundle sequence

0 −→ Ω1
P(E) −→ π∗ED(−1) −→ OP(E) −→ 0.

7.7 Blowing Up

The notion of blowing-up is the main means for producing non-flat modifications of a scheme
in a natural way. As we shall see, the problem of reducing or resolving singularities of varieties
(reduced, irreducible schemes over a field) is couched in terms of forming a new variety from
the old by a sequence of appropriate blowings-up.

In Chapter 2 we introduced the notion of blowing-up a point on a variety. Here, we’ll
begin with the most general notion and show that it agrees with the simplest case which we
have already defined.

Let X be a scheme and J be a QC OX -ideal. We introduce the graded OX -algebra

PowOX
(J) =

∐

n≥0

JnT n,

where J0 stands for OX and T is an indeterminate (which serves to keep track of degrees).
Of course, each Jn is QC and PowOX

(J) is a QC good, graded OX-algebra. If X is locally
noetherian and J is cohherent, then all the Jn will be coherent. If J is just f.g. as OX -module
then, all the Jn are also f.g. In any case, we can form

BJ(X) = Proj(PowOX
(J))

and we call BJ(X) the blowing-up of X along J. Since J is a QC-ideal, it corresponds to
a closed subscheme, Y , of X . We also denote BJ(X) by BY (X) and say that BY (X) is the
blowing-up of X along Y or with center Y . On BY (X) we have the natural invertible sheaf
OB(1).

If U is an affine open in X , then Γ(U,PowOX
(J) ↾ U) is a graded Γ(U,OX ↾ U)-algebra,

and BY (X) is glued together from the schemes Proj(Γ(U,PowOX
(J) ↾ U)). Each of the latter

has a surjective morphism to U , so we get the natural, surjective structure morphism

π : BY (X)→ X.
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As for the sheaf, OB(1), on π−1(U) it is given by the graded Γ(U,PowOX
(J) ↾ U)-module

Γ(U,PowOX
(J) ↾ U)(1) =

∐

n≥0

Γ(U, Jn+1T n+1 ↾ U).

� The morphism BY (X) −→ X is not projective unless J is a f.g. OX-ideal, for part of the
definition of projective morphism is that it be a finite-type morphism.

Say our open, U , is the complement of Y , where Y is defined by J. As J ↾ U is just
OX ↾ U , we find that

π−1(U) = Proj
(∐

n≥0

OUT n
)
−̃→ U.

Hence, outside of Y , the blow-up morphism BY (X) −→ X is an isomorphism. This is what
we had in mind when speaking of a “modification” of X by the process of blowing-up; we
change X only over Y .

Example 1. As mentioned above, in Chapter 2 we considered the blow-up of a point of
An
k . Let’s consider the above definition in this case. Of course, we take our point, P , to be

the origin; so, J—the ideal defining P—is just (X1, . . . , Xn) in the ring A = k[X1, . . . , Xn].
Now,

PowA(J) =
∐

r≥0

(X1, . . . , Xn)
rT r =

∐

r≥0

(X1T, . . . , XnT )
r.

We have a map
A[Y1, . . . , Yn] −→ PowA(J),

by sending Yl to XlT . This is a surjection. What is the kernel? Because we have a map
of graded rings the kernel is generated by homogeneous forms in the Y ’s. When one writes
down a form of degree z in the Y ’s with coefficients polynomials in the X ’s, one finds that it
goes to zero when and only when our expression contains monomials of degree z in the X ’s
times monomials of degree z in the Y ’s which agree under the switch Xi ←→ Yi and appear
with opposite signs. For example,

R(X, Y ) = X5
1X2X

2
3Y

3
1 Y

5
2 −X3

1X
5
2Y

5
1 Y2Y

2
3 .

Let us continue with this example which renders the general case clear. We factor:

R(X, Y ) = X3
1X2Y

3
1 Y2(X

2
1X

2
3Y

4
2 −X4

2Y
2
1 Y

2
3 )

= X3
1X2Y

3
1 Y2(X1X3Y

2
2 +X2

2Y1Y3)(X1X3Y
2
2 −X2

2Y1Y3).

So, we have only to examine X1X3Y
2
2 −X2

2Y1Y3. But, the latter is

X2Y1(X3Y2 − Y3X2) +X2Y3(Y1X2 −X1Y2).

A simple generalization shows our kernel is generated by the set

{XiYj −XjYi | 1 ≤ i, j ≤ n}.
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This shows that BPAn is just the subscheme of

Pn−1A = Proj(A[Y1, . . . , Yn])

defined by the Y -homogeneous equations

XiYj −XjYi = 0, for 1 ≤ i, j ≤ n,

exactly as defined in Chapter 2.

Notice that E = π−1(Y ) is Proj(PowOX
(J)⊗OX

OY ), and since OY is OX ↾ J, we find

E = π−1(Y ) = Proj
(∐

n≥0

Jn/Jn+1
)
.

But, SymOY
(J/J2) is Jn/Jn+1; hence,

E = π−1(Y ) = Proj(SymOY
(J/J2)).

We call E the exceptional locus of the blow-up.

If ϕ : Z →W is a morphism of scheme, then we have |ϕ| : |Z| → |W |, the corresponding
morphism of the underlying topological spaces. If J is an ideal of OW , then |ϕ|−1(J) is an
|ϕ|−1OW -ideal. We know there is a ring map |ϕ|−1OW −→ OZ , so the ideal generated by
the image of |ϕ|−1(J) in OZ is an OZ-ideal; it is OZ · |ϕ|−1(J) and it is also the image of
ϕ∗(J) via the natural map

ϕ∗(J) = |ϕ|−1(J)⊗|ϕ|−1OW
OZ −→ OZ .

Let’s denote OZ · |ϕ|−1(J) by ϕ•(J) and refer to it as the inverse image ideal of J in OZ .
(Because tensor product is only right-exact, ϕ•(J) may very well be different from ϕ∗(J).)

Now, for the morphism π : BY (X)→ X , the ideal π•(J) is just

J · PowOX
(J) = J ·

∐

n≥0

Jn =
∐

n≥0

Jn+1.

However, we’ve already noted that the later module is OB(1). Therefore, ϕ•(J) is the invert-
ible ideal OB(1) on BY (X). These remarks prove

Proposition 7.58 If X is a scheme and Y is a closed subscheme with corresponding QC
ideal J, then

(1) If J is f.g. the scheme B = BY (X) is projective over X.

(2) In general, the inverse image ideal, π•(J), is the invertible OB-module OB(1); and, in
fact, the inverse image ideal π•(Jn) is OB(n), for all n ≥ 0.
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(3) The scheme E = π−1(Y ) equals Proj(Sym(J/J2)). (Recall that J/J2 is the conormal
sheaf of Y in X.)

(4) The scheme E = π−1(Y ) is defined, as subscheme of BY (X), by the invertible ideal
OB(1). That is, E is a Cartier divisor on B.

(5) If U denotes the complement of Y in X, then the morphism

π : π−1(U)→ U

is an isomorphism.

Proof . All we need to prove is (4). Now, E is defined by π•(J) according to (3) and, by (2),
this is just OB(1).

One can still be a little more precise about the basic injection OB(1) −̃→ π•(J) →֒ OB.
Namely, we have the inclusions Jn+1 →֒ Jn and there results a degree 0, injective, OB-module
map

Pow+
OX

(J)(l + 1) →֒ PowOX
(J)(l), all l ∈ Z.

But, Pow+
OX

(J)(l+ 1) and PowOX
(J)(l+ 1) are (TN)-isomorphic, therefore we get the sheaf

injection
σl : OB(l + 1)→ OB(l).

When l = 0, this is our basic injection

σ0 : OB(1)→ OB.

whose image is just the ideal π•(J).

When l = −1, however, we get

s = σ−1 : OB → OB(−1).

Of course, s corresponds to a section of OB(−1) over B, we continue to refer to this section
by the letter s and call it the canonical section of OB(−1). By some standard commutative
diagram which will be left to the reader, it is not hard to see that σl is given in terms of s
as follows:

We know OB(l) is OB(1)⊗l, hence we get the map

OB(l + 1) = OB(l + 1)⊗OB
OB 1⊗s−→ OB(l + 1)⊗OB

OB(−1) = OB(l)

which is just σl. The repeated composition

OB(l) −→ OB(l − 1) −→ OB(l − 2) −→ · · · −→ OB(1) −→ OB
is then just the map 1⊗ s⊗l (here, 1 = identity map on OB(l)).

In terms of the canonical section, s, we can describe the space underlying E:
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Proposition 7.59 For the blow-up π : BY (X) → X, if E = π−1(Y ) designates the excep-
tional locus, then |E| is just the set of zeros of the canonical section, s. So, s defines the
Cartier divisor, E.

Proof . We can check this pointwise, so choose x ∈ BY (X). Write ξx for a choice of generator
of OB(1)x, then we know that ξx ⊗ sx generates the stalk of π•(J) at x. Thus, ξx ⊗ sx is a
unit (i.e., x /∈ |E|) iff sX /∈ mxOB(−1)x iff s(x) 6= 0.

Suppose the OY -module, J/J2 is locally free on Y . Then, we know that its dual is the
normal bundle to Y in X . We also know that the condition that J/J2 be locally free will
be satisfied when Y is smooth. In the locally free case, by (3) of Proposition 7.58, our
exceptional locus is exactly P(ND

Y →֒X); so, the blow-up along Y is obtained by excising Y
from X and inserting in its place the projectivized conormal bundle to Y in X . Now, we’ve
defined projective space in terms of hyperplanes in an affine space. The dual projective
space is defined in terms of the lines in the affine. Consequently, our P(ND

Y →֒X) is just the
bundle whose fibre at each point of Y is the space of lines in the fibre of the normal bundle
to Y in X at the corresponding point of Y . This bundle is what most authors define as the
projectivized normal bundle to Y in X . The glueing of X with Y removed to the insertion
of the projectivized normal bundle is clear: Follw along a line normal to Y and connect to
the point of P(ND

Y →֒X) which corresponds.

Suppose that Z is a closed subscheme of X and Y is a closed subscheme of Z. Then, we
seem to have two notions of the blow-up of Z along Y :

(1) BY (Z) in our sense as Proj(PowOZ
(J), where J defines Y in Z and

(2) Blow-up X along Y to get BY (X), consider π−1(Z−Y ) and take its closure in BY (X).
(This was the way BP (Z) was defined in Chapter 2, Section 2.8, where Z was there a
closed subvariety of Pnk and P was a point of Z.) This second process gives what is
usually called the strict transform (or proper transform) of Z under the blow-up of Y
in X .

Do the two processes agree? Of course, the answer had better be “yes.” And in fact, the
blow-up enjoys a lifting property which will imply the affirmative result.

Proposition 7.60 (Lifting property of blowing-up) Suppose X is a scheme, J is a QC, f.g.,
OX-ideal and BJ(X) is the blowing-up of X along J. Given a morphism ϕ : Z → X assume
that ϕ•(J) is an invertible ideal of OZ . Then, there exists a unique morphism ψ : Z → BJ(X)
lifting ϕ in the sense that the diagram below

BJ(X)

π
��

Z

ψ
<<①①①①①①①①①

ϕ
// X

(†)

commutes.
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Proof . Cover X by affines. If we can prove the result here, the uniqueness of our lifts
shows they glue together to give the global morphism. Therefore, we may and do assume
X = SpecA, J = J̃ , where J is a f.g. A-ideal and then, B = BJ(X) is just Proj(PowA(J)).
Write α0, . . . , αr for the generators of J , then of course there is a surjection of graded algebras

θ : A[T0, . . . , Tr]→ PowA(J) =
∐

n≥0

JnT n

via Tj 7→ αjT . From this, we get the closed immersion B →֒ PrA. Note that the kernel of θ
is generated by all forms F ∈ A[T0, . . . , Tr] so that F (α0, . . . , αr) = 0.

For the morphism Z −→ Z write L instead of ϕ•(J), then the images, sj , of the αj ’s—
considered as global sections of OZ—are global sections of L that generate L everywhere on
Z. Consequently, by the characterization of morphisms to PnA (Corollary 7.12), there exists
a unique morphism

ψ̃ : Z → PnA

so that
(
ψ̃
)∗
(OPn

A
(1)) = L and si =

(
ψ̃
)−1

(Ti), where Ti is considered as a global section of
OPn

A
(1).

The morphism ψ̃ will actually factor through the subscheme B of PnA provided all the
forms of Ker θ (the ideal defining B in PnA) vanish on s0, . . . , sr. if F ∈ Ker θ and has degree
d, then F (s0, . . . , sr) ∈ Γ(Z,L⊗d) is the image of F (α0, . . . , αr). Yet, we’ve already remarked
that F (α0, . . . , αr) = 0; so, we get our diagram (†), as required.

We need to prove the uniqueness of the lifted morphism ψ (perhaps it does not come

from ψ̃). If ψ exists, then ϕ•(J) = ψ•(π•(J)), where π•(J) is an ideal of OB. Since π•(J) is
OB(1), we get

L = ϕ•(J) = ψ•(OB(1)).
Now, ψ∗(OB(1)) −→ ψ•(OB(1)) = L is a surjective map and (by Nakayama) surjective
maps of locally free equal (finite) rank sheaves on LRS’s are isomorphisms, we see that
ψ∗(OB(1)) = L. The commutativity of our diagram shows that the sections s0, . . . , sr are
the pullbacks of α0T, . . . , αrT , and these are just the pullbacks of T0, . . . , Tr (as sections of

OPn
A
(1)). Therefore, our morphism ψ really does come from a morphism ψ̃, and so uniqueness

of the ψ̃ yields the uniqueness for ψ.

Based on our proposition, we can answer the question about the differing notions of
blowing-up.

Corollary 7.61 If θ : Z → X is a morphism and J is a f.g. QC OX-ideal and we set
I = θ•(J), then there exists a unique morphism, θ̃ : BI(Z)→ BJ(X), so that the diagram

BI(Z)
πZ

��

θ̃ // BJ(X)

πX
��

Z
θ

// X
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commutes. When θ is a closed immersion, so is θ̃.

Proof . The existence and uniqueness of θ̃ follows directly from the proposition. All we need
to prove is the last statement. We have PowOX

(J), PowOZ
(I) and further I = θ•(J). But,

Z is a closed subscheme of X so there is a surjection OX −→ OZ . It follows immediately
that J maps onto I under this surjection; thus, we get the surjective map of graded rings
PowOX

(J) −→ PowOZ
(I). Of course, this shows θ̃ is a closed immersion.

In the situation described by the closed immersion Y →֒ Z →֒ X , the blow-ups being
separated morphisms, it follows immediately that the strict transform of Z in BY (X) is just
BY (Z) (as a subscheme of BY (X)). This answers our question and it shows that “embedded
blow-up” is actually intrinsic (being just the abstract blow-up).

Example 2. Here, we will apply the blowing-up procedure to a singular surface in A3. The
equation we’ll consider is

f(x, y, z) = x2 − z3(z − y2).
It is easy to see that the y-axis, given by x = z = 0 is contained in our surface. The partial
derivatives of f w.r.t. x, y, z are

∂f

∂x
= 2x,

∂f

∂y
= 2yz3,

∂f

∂z
= −4z3 + 3z2y2.

Hence, the singular locus (which is the set where f and its partial derivatives simultaneously
vanish) is exactly x = z = 0. A picture of the real points of this surface is shown in Figure
7.5.

Figure 7.5: The surface X : f(x, y, z) = 0.

We blow up the singular locus inside our surface X . By our corollary, it is the same to
blow-up the line x = z = 0 in A3 and to take the strict transform of X in this blow-up.
Since the ideal definining the line is given by two generators, we need two variables u, v
and form P1

A3 = Proj(k[x, y, z][u, v]) and consider the locus given by the orginal equation
f(x, y, z) = 0 and the new relation xv − uz = 0. There are two patches to the P1 given by
u 6= 0, respectively v 6= 0. If u 6= 0, set ξ = v

u
, then z = xξ. We substitute this in f(x, y, z)

and obtain the equation

x2(1− xξ3(x− y2)) = 0. (∗)

Excising the singular locus from the surface means looking at the points of the surface where
either x or z is 6= 0. Since z = xξ, we must assume x 6= 0. From (∗), we get

1− xξ3(x− y2) = 0.
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Now, for the closure of the smoth part of the surface in this coordinate patch, we let x and z
got to 0. Our above equation leads to the contradiction 1 = 0; hence, there are no points of
the strict transform in this patch. In the second patch (where v 6= 0), we set η = u

v
. Then,

x = ηz and once again we obtain an equation

η2z2 − z3(z − y2) = 0.

For the regular locus, x and z cannot simultaneously vanish, so z 6= 0. We obtain

η2 − z(z − y2) = 0.

For the closure, let z go to 0, then η2 = 0. Hence, our strict transform cuts the exceptional
locus in one point but tangent there. Now, η = u

v
and v 6= 0; hence we have only to deal

with the affine patch v = 1. So, the proper transform of our surface is given by

u2 − z(z − y2) = 0. (∗∗)

We can relabel this equatin by setting u = x. A sketch of the blow-up situation is given in
Figure 7.6.

Figure 7.6: The surface X after blowing-up the line x = z = 0.

We now have the new equation

g(x, y, z) = x2 − z(z − y2).

Once again, a check of the partial derivatives shows the only singularity is at the origin
x = y = z = 0.

We now blow up the origin in A3. The ideal of the origin is given by three generators:
x, y, z. And so, we need homogeneous coordinates u, v, w and we form P2

A3 and examine the
subvariety whose equations are:

g(x, y, x) = 0

xv − yu = 0

xw − zu = 0

yw − zv = 0.

Here, there are three patches: u 6= 0; v 6= 0; w 6= 0. Let us look at the patch where u 6= 0.
Set ξ = v

u
and η = w

u
so that y = xξ and z = xη. Upon substitution into g = 0 we obtain

x2(1− η2 + ηξ2) = 0.
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Outside the singular locus, one of x, y, z must not be zero. If x = 0, so are y and z; so,
x 6= 0. We cancel in the equation above and then to find the closure let x, y, z go to 0. This
gives the equation

h(η, ξ) = 1− η2 + ηξ2.

By ckecking its partial derivatives, we find that the surface h = 0 has no singularities. The
(u, v, w)-form of h = 0 is

u2 − w2 + wv2 = 0. (∗∗∗)

There remain the patches v 6= 0 and w 6= 0. However, all we need to examine are the
pieces of those patches where u = 0. So, assume v 6= 0 and u = 0. Write α = u

v
= 0 and

β = w
v
, then x = αy = 0 and z = βy. To be off the singular locus we need to have y 6= 0.

Upon substitution in our equation g(x, y, z) = 0, we obtain the equation

y2(−β2 + βy) = 0.

We may cancel y and let y and z go to 0. This shows that β2 = 0 and gives one further
point of tangency to the exceptional locus. On the affine patche where v 6= 0 we may take
v = 1 and then our equation is

u2 − w2 + w = 0.

This is nonsingular.

There remains just the point where u = v = 0 and w 6= 0. An easy check shows that the
strict transform does not go through this point.

Consequently for the singular surface sketched above, two blow-ups suffice to resolve
singularities of our surface. Notice that had the origin been less singular than it actually
was, one blow-up would have sufficed.

Example 3. We can use the blowing-up process to construct an example of a smooth, proper
3-fold which is not projective. The example we choose is due to H. Hironaka in his thesis
[34]. We start with a nonsingular projective 3-fold over C and with two nonsingular curves,
γ and γ̃, on X so that γ and γ̃ meet transversally in exactly two points P and Q. There are
many ways to find such an X and curves γ, γ̃. For example, we could take X = P3

C and γ a
line and γ̃ a conic intersecting γ. More generally, take any two curves in P3

C which intersect
transversally at points R1, . . . , Rq and blow up R2, . . . , Rq−1. Then, X = BR2,...,Rq−1P

3
C and

γ, γ̃ = the strict transforms our two curves will do.

In any case, take such an X and γ, γ̃. Consider X − {Q} and blow up γ in X − {Q}
to get Bγ(X − Q). Let γ̃(P ) be the strict transform of γ̃ on Bγ(X − Q). Now blow up
Bγ(X −Q) along γ̃(P ) and get Bγ̃(P )(Bγ(X −Q)). Repeat the same process replacing Q by
P and interchanging the roles of γ and γ̃. We obtain Bγ(Q)(Bγ̃(X − P )). A picture of these
various blow-ups in shown in Figure 7.7.
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Figure 7.7: Hironaka’s example of a 3-fold which is not projective

Over X−P −Q, by the lifting property, the two blow-ups in either order are isomorphic;
so, we can glue together the two parts:

Bγ̃(P )(Bγ(X −Q)) and Bγ(Q)(Bγ̃(X − P ))

along their overlap. This gives a new variety X over C. Also, α (resp. β) is the generic
point of γ (resp. γ̃) and lα (resp. lβ) is the generic fibre in the projectivized normal bundle
sewn in by blowing up. Now, on Bγ(X − Q), lα is algebraically equivalent to lP (write:
lα ≈ lP ). Therefore, on Bγ̃(P )(Bγ(X − Q)), we have lα ≈ lP + λP , while lβ ≈ λP . Similarly,
on Bγ̃(X − P ), we have lβ ≈ lQ and on Bγ(Q)(Bγ̃(X − P )), we have lβ ≈ lQ + λQ while
lα ≈ λQ. On the glued variety, X , we get

λQ ≈ lα ≈ lP + λP and λP ≈ lβ ≈ lQ + λQ.

Eliminate λP from these two algebraic equivalences and obtain

λQ ≈ lP + lQ + λQ,

hence
lP + lQ ≈ 0.

Were X projective, the algebraic curves (both are P1’s) would each have a degree and degrees
add under addition of cycles and are preserved by algebraic equivalence (c.f. Section 7.4 and
the discussion in the next section on flat families). Since the degree of lP and lQ is positive,
the algebraic equivalence lP + lQ ≈ 0 would be impossible in this case. Hence. X is not
projective. However, X is proper because properness can be checked locally on the base and
over the opens X −Q or X − P our X is projective hence proper.

It turns out that blowing-up a QC ideal is a very general process as we are going to
see below. Because of this, to use blowing-up in an efficient manner we must restrict to
specialized centers for blowing-up and to less than general schemes. We shall now restrict
ourselves to irreducible varieties by which we always mean reduced, irreducible, separated,
finite-type schemes over a field k, and we’ll assume k is algebraically closed. Of course, we
must now check that BY (X) is again a variety.

Proposition 7.62 If X is a variety over k and J is a coherent OX-ideal then BJ(X) is again
a variety. Moreover, the map π : BJ(X) → X is a birational, surjective, proper morphism
and if X is quasi-projective or projective then so is BJ(X) and π is a projective morphism.

Proof . PowOX
(J) is a sheaf of integral domains, so BJ(X) is reduced and irreducible. We

know that π : BJ(X)→ X is proper (properness is local on the base and over an affine, BJ(X)
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is just an ordinary projective scheme so that it is proper, by Theorem 7.17 or Theorem 2.36.)
Therefore, π is a separated and finite-type morphism and so BJ(X) is indeed a variety.

Let Y be the closed subscheme of X defined by J then Y 6= X and so the nonempty open
U = X − Y is dense. Now, π : π−1(U) → U is an isomorphism and π−1(U) is also dense in
BJ(X); so, π is a birational morphism. We already know that π is surjective.

Suppose that X is either projective or quasi-projective. Then, there exists an ample
invertible sheaf, L, on X so that J⊗L⊗n is generated by its global sections if n >> 0. Now,
X is noetherian so only finitely many sections are necessary. Consequently, we obtain the
surjection

OX [T0, . . . , TN ] −→ PowOX
(J⊗L⊗n).

This gives the closed immersion

Proj(PowOX
(J⊗L⊗n)) −→ PNX .

But, Proj(PowOX
(J ⊗ L⊗n)) is isomorphic to Proj(PowOX

(J)) = BJ(X), and so, BJ(X) is
a closed subscheme of PNX . (We already know BJ(X) embedded in P(E), but here, we have
proved the stronger assertion that it sits inside ordinary projective space over X .) Since π
is a projective morphism, the scheme BJ(X) is quasi-projective or projective according as X
is so.

Now we face the proof that blowing-up a coherent ideal is a very general process . This
is the following

Theorem 7.63 Suppose X is a quasi-projective variety and θ : Y → X is a birational pro-
jective morphism where Y is another variety. Then, there exists a coherent ideal J ⊆ OX
and an X-isomorphism BJ(X) −̃→ Y .

Proof . The morphism θ is projective and we are in the noetherian situation so there is a
closed immersion i : Y → PrX , so that

PrX

��
Y

i
>>⑥⑥⑥⑥⑥⑥⑥

θ // X

commutes. Write i∗(OP(1)) = L, an invertible sheaf on Y . Then, θ∗(L) is a coherent
OX -module and we can form

S = OX ∐
∐

d≥1

θ∗(L)dT d.

This S is a QC OX -algebra, but it may not be a ggr because S1 = θ∗(L) may not generate
it.

To remedy this, we use the q-uple embedding, that is, we form

S(q) =
∐

d≥0

Sdq.
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We’ll show that if q >> 0, then S(q) is generated by its S(q)
1 = Sq. If we show this for

each affine of an affine open cover of X , then, X being quasi-compact, it will be true for X .
Therefore, we may assume X is affine, say X = SpecA. Note that A is a f.g. k-algebra.
Now, recall that if S is a ggr and S1 is a f.g. A-module, then for any f.g., graded S-module,
M , we have a (TN)-isomorphim

M −→ (M ♯)♭ =
∐

d

Γ(ProjS,M ♯(d)).

Further, if W →֒ PrA is Proj(A[T0, . . . , Tr]/I), it follows that

A[T0, . . . , Tr]/I −→ ((A[T0, . . . , Tr]/I)
♯)♭ =

∐

d

Γ(ProjS,OProjS(d))

is a (TN)-isomorphism. (c.f. Theorem 7.4.) Our Y is given as Proj(A[T0, . . . , Tr]/I) corre-
sponding to its closed immersion Y →֒ PrA and so, the algebra S = A ∐∐d≥1 θ∗(L)dT d is
(TN)-isomorphic to A[T0, . . . , Tr]/I and the latter is an sggr.

When we couple the closed immersions Y →֒ PrA with the q-uple embedding (for some
q >> 0) PrA →֒ PNA , we replace S by S(q) and then the latter is a ggr as we’ve just seen.
Therefore, we now have Y ∼= ProjS and S is a ggr as OX -algebra.

Were θ∗(L) an ideal, J, of OX , then S would be PowOX
(J) and we’d be done. Here, we’ll

see that “fractional ideals”’ enter the picture. Recall that Y is reduced and irreducible so its
sheaf of meromorphic functions, Mer(Y ), is constant . Further, we can find an embedding
L −→Mer(Y ), so L is a subsheaf ofMer(Y ) (c.f. Proposition 5.30.) Now, θ∗ is left-exact,
hence θ∗(L) →֒ θ∗(Mer(Y )). However, θ is birational therefore, θ∗(Mer(Y )) = Mer(X);
and so, θ∗(L) →֒ Mer(X). We want to show that θ∗(L) has “bounded denominators.”

Consider the “ideal of denominators” (θ∗(L) −→ OX), where

(θ∗(L) −→ OX) = {ξ ∈ OX | ξθ∗(L) ⊆ OX}.

(The above definition makes sense locally on affine patches and defines an OX-ideal.) I
claim (θ∗(L) −→ OX) is coherent. Of course, this is a local question, and on an affine, θ∗(L)
corresponds to a f.g. A-submodule ofMer(X). So, we can take common denominators for
its generators and get (θ∗(L) −→ OX) is f.g. on affine patches. As A is noetherian, the
coherence of (θ∗(L) −→ OX) follows.

Now, X is assumed quasi-projective, so there exists an ample invertible sheaf, M, on
X . Therefore, (θ∗(L) −→ OX) ⊗M⊗q is generated by its (finitely many) global sections if
q >> 0. In particular, there exits a nonzero section

OX −→ (θ∗(L) −→ OX)⊗M⊗q, if q >> 0;

hence, a nonzero map
M−⊗q −→ (θ∗(L) −→ OX)
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(bounded denominators!). But then, by definition,

M−⊗q · θ∗(L) →֒ OX ,
so, J =M−⊗q θ∗(L) is a coherent OX -ideal.

Finally, we will prove that Y ∼= BJ(X). Since Y = ProjS, we find, of course, that

Y = Proj

(∐

d≥0

(M−⊗dq ⊗ Sd)
)
,

so we have to show that Jd =M−⊗dq⊗Sd, for all d ≥ 1. Of course, θ∗(L⊗d) ⊆Mer(X) (just
as with d = 1, θ∗(L) ⊆Mer(X)) andM is invertible (so flat) henceM−⊗dq⊗Sd =M−dq Sd.
Now, S is a ggr and J =M−q θ∗(L) =M−q S1, so we find the natural surjection

Jd −→M−qd Sd, d ≥ 1.

However, both are subschemes ofMer(X) and the diagram

Mer(X)

Jd

;;✈✈✈✈✈✈✈✈✈✈
//M−dq Sd

ff▼▼▼▼▼▼▼▼▼▼

commutes. We see that the lower arrow is injective and we are done.

Remark: Our theorem shows that blowing-up a coherent ideal is a very general process.
It gives us all birational morphisms from a quasi-projective variety to another. Obviously,
if we wish to understand birational projective morphisms as the result of a sequence of
blowings-up, we will need to choose the centers of these blowings-up to be as simple as we
possibly can make them.

One of the ways we can understand the blowing-up is to view it as the graph of a birational
map. Recall that a rational map from one projective variety, X , to another, Y , is just an
equivalence class of morphisms, ϕ : U → Y , where U is a dense open of X and ϕ : U → Y
and ψ : V → Y are equivalent iff ϕ ↾ (U ∩ V ) = ψ ↾ (U ∩ V ). Obviously, there is a maximal
open subvariety of X on which ϕ is defined and X −{this open} is called the indeterminacy
locus of the rational map ϕ.

Take a rational map ϕ : X −−→ Y , let U be its domain of definition, then in U
∏
Y we

have the graph, Γϕ↾U , of ϕ in our ususal sense. This is a closed subvariety of U
∏
Y . Take the

closure, Γϕ, of Γϕ↾U in X
∏
Y ; this closure is called the graph of the rational map, ϕ. Observe

that the graph of ϕ is a closed subvariety of X
∏
Y . (It turns out that in characteristic 0

one can characterize rational maps as exactly those set maps from opens U ⊆ X to Y for
which the closure of the graph of the set map is a variety in X

∏
Y . Unfortunately, this is

not true in characteristic p > 0, as the Frobenius map x 7→ xp from A1 to itself will show.)
The second projection, pr2, takes our graph Γϕ to a closed subvariety in Y and this closed
subvariey is always called the image of ϕ.
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� The image of ϕ is not the usual kind of image for it can happen that there is a point y
in the image and no point x where ϕ is defined so that ϕ(x) = y.

We can also define the inverse image of a subvariety, Z, of Y by

ϕ−1(Z) = pr1(pr
−1
2 (Z)).

In the other direction, we can take some subvariety, T , of X and form pr2(pr
−1
1 (T )). This

is called the image of T under ϕ or the total transform of T . We can also restrict ϕ to T
(meaning take the dense open U , intersect it with T , make the morphism taking U ∩ T to
Y and close up its graph). Then, ϕ ↾ T is a rational map T −−→ Y , and so we can form its
image. Unfortunately this image is not equal to the image of T , it is smaller, and is called
the proper transform of T . The reader should take as rational map the inverse of a blow-up
morphism and check these concepts for himself. Note that the maximal open of X on which
our rational map, ϕ, is defined is just a variety birational to the original X ; and so, to be
a rational map just means that ϕ is a morphism on a variety birational to X . The concept
that replaces surjectivity in this order of things is the notion of dominance, where we recall
that ϕ : X −−→ Y is dominant iff the image of ϕ (in the sense of rational maps) is all of Y .
Of course all this means is that ϕ(U) = Y .

Remark: In the complex case there is a famous theorem of Chow which says that a com-
plex submanifold of PrC is actually a projective algebraic variety. So, if ϕ : X → P1 is a
meromorphic function on our complex submanifold of Pr then, the graph of ϕ is a complex
submanifold of P1

∏
Pr. By Chow’s theorem, this graph is algebraic and by the charac-

terization of rational maps in characteristic zero as set maps whose graphs are algebraic
subvarieties, we deduce that ϕ is a rational function.

Example 4. Quadric surfaces in P3.

Let Q be the quadric surface in P3 whose equation is z0z3 − z1z2 = 0. The point
P = (0: 0 : 0 : 1) is in Q and we can form the projection map from P defined on P3 − {P}
to P2, which in our chosen coordinates has the form:

πP : (z0 : z1 : z2 : z3) 7→ (z0 : z1 : z2).

Restrict πP to Q and we obtain a rational map from Q to P2. Now, in general, projection
from a point P ∈ Pn to Pn−1 is a rational map from Pn to Pn−1 and let P̃n be the graph
of this rational map in Pn

∏
Pn−1. Then, the reader should check that the graph of the

projection in this case together with its map pr1 : P̃n → Pn is exactly the blowing-up of Pn

at the point P . In the case of a quadric when n = 3, the graph of the restriction of πP to Q
is precisely the blowing-up of Q at P , that is, the proper transfrorm of Q in BP (P3).
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We can go a little further in our example by considering the second projection of
ΓπP ⊆ Q

∏
P2 to P2. As a diagram of morphisms and rational maps the situation is

Q∏P2

ΓπP

OO

pr1

{{①①
①①
①①
①①
①

pr2

##●
●●

●●
●●

●●

Q πP
//❴❴❴❴❴❴❴❴❴❴ P2

Let w0, w2, w2 be homogeneous coordinates on P2, then ΓπP is the subvariety defined by the

equations

z0z3 = z1z2

z0w1 = z1w0

z0w2 = z2w0

z1w2 = z2w1.

Write E, as usual, for the exceptional locus of the blow-up at P , i.e., E = pr−11 (P ). We
know E is a projective line. Now pr2 maps E to P2, and we want to see what the image of
E is. Cover P2 by the opens, w0 6= 0, w1 6= 0, w2 6= 0. On the first open where w0 6= 0, we
let ξ = w1/w0, and η = w2/w0, then our equations give us

z0ξ = z1, z0η = z2 and z0z3 − z20ξη = 0.

Off the exceptional locus, we must have z0 6= 0, else z0 = z1 = z2 = 0 and we are at P . Thus,
we find z3 = z0ξη and then to find the proper transform we let z0 go to 0. We find z3 = 0.
Hence, on the patch w0 6= 0, the only possible point above P is (0 : 0 : 0 : 0), a non-point,
that is, for w0 6= 0 there is no point of the proper transform.

Take w0 = 0 but w1 6= 0. Let u = w0/w1 = 0, and v = w2/w1. Then, z0 = z1u = 0, and
z2 = z1v. The last equation of ΓπP gives us

0 = z1z3u = z21v.

Of course, outside E, the coordinate z1 can’t be zero, so we cancel it in the above and deduce
that z1v = 0. Let z1 go to zero, then there is no restriction on v, so v is arbitrary.

Lastly, we take w2 6= 0 while w0 = w1 = 0 and find there is one extra point. Therefore,
pr2(E) is exactly the line w0 = 0.

Now look at the projection pr2 : ΓπP → P2. Notice that if w0 6= 0 and we examine
pr−12 (w0 : w1 : w2) we get the equations

z0ξ = z1, z0η = z2, z0z3 − z20ξη = 0,
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where ξ = w1/w0 and η = w2/w0. Now, z0 6= 0 because z0 = 0 implies z1 = z2 = 0 and then
our inverse image intersects E, and we know the intersection is empty when w0 6= 0. Thus,
we can cancel z0 in the last equation and get the equation

z3 = z0ξη.

It follows immediately that above the point (1 : ξ : η) there is exactly one point

((z0 : z0ξ : z0η : z0ξη); (1 : ξ : η)).

Now examine the case that w0 = 0, and look at the point (0 : 1 : 0), i.e., w1 6= 0 and w2 = 0.
Our equation gives us z0 = z2 = 0 and z1 and z3 are arbitrary and therefore pr2 is not
one-to-one. Over the other point (0 : 0 : 1), we find z0 = z1 = 0 and again, the map pr2 is
not one-to-one. If w1 6= 0 and w2 6= 0, then z0 = 0 and z1 = (w1/w2)z2, therefore z1 and z2
vanish or don’t vanish simultaneously. If both are 0 only one point lies above, namely

((0 : 0 : 1); (0 : w1 : w2)).

If neither vanishes, then z1 = (w1/w2)z2 and z0z3 = z1z2 = 0, yet z1 6= 0 and z2 6= 0, a
contradiction. So, above (0 : w1 : w2), we have exactly one point. In conclusion, the map pr2
is not one-to-one exactly over the points Q = (0: 1 : 0) and R = (0: 0 : 1) and the inverse
images are lines. Observe that ΓπP is an algebraic variety mapping to P2 and that at two
points Q and R, the inverse image under pr2, is a codimension one subvariety. By the lifting
property of blow-ups we obtain the isomorphism

BQ,R(P2) −̃→ ΓπP .

So, the picture is exactly the one shown in Figure 7.8.

Figure 7.8: A rational map from Q to P2 and its graph

Here, LQ and LR are the images of EQ and ER under pr1, while LP is the image of EP
under pr2. Thus, there is a birational map (not a morphism in any direction) between our
quadric Q and P2. It blows up a point, P , of Q and blows down the two lines passing through
P on Q and in the other direction it blows up two points, Q,R, of P2 and blows down the
line joining them.

Suppose X−−→Pn is a rational map. Can we find successive subvarieties, Yi, in successive
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blow-ups, Xi, with Y0 = Y ⊆ X so that our rational map fits into a diagram

Xt

��

ϕ̃

��✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲

...

��
X1

��
X ϕ

//❴❴❴❴ Pn

where Xi+1 = BYi(Xi) and ϕ̃ : Xt → Pn is a morphism? Observe that in Example 4 we have
exactly this situation. Here is a general theorem about this situation.

Theorem 7.64 Suppose that X −→ Y is a scheme over Y and L is a line bundle on X.
Suppose further we are given sections s0, . . . , sn ∈ Γ(X,L) so that on an open U ⊆ X they
generate L. Then, for the morphism

ϕL : U → PnY

given by these sections, there exists a QC ideal, J, of OX and there exists a morphism

ϕ̃ : BJ(X)→ PnY

so that the diagram
BJ(X)

π
��

ϕ̃

��✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺

X

U

;;①①①①①①①①①① ϕL // PnY

commutes. In particular, when X is a variety (Y = Spec k) and ϕL is a rational map we can
use blowing-up to resolve the indeterminacy locus. The support of OX/J is exactly X − U .

Proof . Of course we may assume that Y is affine as the question is local on Y . Write F for
the subsheaf of L generated by s0, . . . , sn. Cover X by opens Xα so that L ↾ Xα is a free
OXα-module. Then, ψα : L ↾ Xα → OXα denotes our isomorphism and so, ψα(F ↾ Xα) is an
ideal in OXα . On the overlaps Xα ∩Xβ, the isomorphisms ψα and ψβ do not patch but are
related one to the other by multiplication by gα/gβ, which is a unit on Xα ∩Xβ. Hence, the
ideals ψα(F ↾ Xα) and ψβ(F ↾ Xβ) are the same on Xα ∩Xβ and therefore, we obtain a QC
ideal, J, of OX by glueing.
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Since F = L exactly on U we deduce that J = OX exactly on U and therefore,
SuppOX/J = X − U .

Take BJ(X), we know that π•(J) is an invertible sheaf of ideals on BJ(X). Therefore,

the global sections π∗(s0), . . . , π
∗(sn) of π

∗(L) generate an invertible subsheaf, L̃, of π∗(L).
However, an invertible sheaf and generating sections are exactly what we need to give a
morphism ϕ̃ : BJ(X) → PnY and on π−1(U), since L̃ and L are the same, our morphism is
just ϕL.

The reader should examine the simplest example: ϕ : A2 → P1 given by

(x, y) 7→ (x : y)

and go through the proof of the theorem to see that all we have done is to blow up the origin.

Staying in the classical case again, there is the notion of linear system and basepoint.
We know that our line bundle L and our sections s0, . . . , sn give a linear system D on X ,
namely we look at all divisors linearly equivalent to the loci

∑
cjsj = 0. The basepoint

locus is given by s0 = s1 = · · · = sn = 0, call it Y and U = X − Y is the locus where our
linear system gives a morphism to projective space. The theorem says we can blow up the
basepoint locus and obtain a new linear system on the blow-up without basepoints.

One of the main applications of blowing-up is to the question of resolution of singularities .
This is the following problem: Given a variety X over a field k (we assume k = k), find a

proper birational morphism X̃ −→ X so that X̃ is nonsingular, i.e. a manifold. By Theorem
7.63, at least in the projective case, we know that X̃ = BJ(X) for some QC ideal J. We want

some control over the morphism X̃ −→ X and this means to make successive blowing-ups
from X with known kinds of centers. There is also the question of embedded resolution of
singularities. Here, X →֒ W , where W is already a nonsingular variety. The problem is to
find a nonsingular variety W̃ and a proper birational map π : W̃ →W so that

(1) The strict transform, X̃ , of X in W̃ is nonsingular.

(2) π−1(X) is a divisor with normal crossings (i.e., if Z1, . . . , Zs are the irreducible com-
ponents of π−1(X) meeting at some point P and if f1, . . . , fs are the local equations of
these irreducible components, then the f ’s are part of a regular sequence in OP , which
means of course, that f1, . . . , fs are linearly independent modulo m2

P . The latter also
means that the equation f1f2 · · · fs = 0 describes π−1(X) at P .)

One can show that the morphism X̃ −→ X induced by π is independent of the embedding
X →֒ W .

The history of this problem and attempts at its solution is very long. For the case of
curves both resolution and embedded resolution were settled by M. Noether and G. Halphen
in the nineteenth century. In the early twentieth century, the Italian School by its synthetic
method gave a proof for surfaces and a rigorous proof over C was first given by R.J. Walker in
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1935 [?], while Zariski gave an algebraic proof valid in characteristic zero in 1939 [?]. Further,
in 1944, Zariski settled embedded resolution for surfaces (char. 0) [?] and resolution for 3-
folds, again in characteristic zero [?]. In his thesis in 1956, Abhyankar proved resolution for
surfaces in characteristic p > 0 and in 1966 he gave a proof for 3-folds valid in characteristic
p > 5. However, in 1964, Hironaka proved both resolution and embedded resolution in
characteristic zero but for all dimensions. One the consequences of Hironaka’s theorem is
the following result:

Theorem 7.65 Suppose X and X ′ are projective varieties in characteristic zero and both
are nonsingular. If ϕ : X −−→X ′ is a rational map, then there exists a morphism X̃ −→ X
which is birational and proper and given by a finite succession of blowings-up with nonsingular
varieties as centers and there exists a morphism ϕ̃ : X̃ → X ′ so that the diagram

X̃

��

ϕ̃

  ❅
❅❅

❅❅
❅❅

❅❅
❅❅

X ϕ
//❴❴❴❴ X ′

commutes.

It is this theorem which is most often used in applications of Hironaka’s resolution of
singularities to problems in algebraic geometry, partial differential equations, etc.

If one will allow a change of function fields by finite extension, i.e., not insist on bira-
tionality in the theorem above, then the morphism X̃ −→ X is called an alteration and
De Jong has proved the above theorem for alterations in any characteristic [?]. De Jong’s
theorem suffices for almost all the applications in which Hironaka’s theorem was used even
though it is weaker. But, it holds in all characteristics.

Hironaka proposed an interesting combinatorial game in connection with the problem of
resolving singularities. Write, as usual, N for the natural numbers (0, 1, 2, . . .). The game is as
follows: One starts with a finite set of points, A, in Nn ⊆ Rn

≥0 and forms B = conv(A)+Rn
≥0,

where B is simply the positive convex hull of A (see Figure 7.9).

bc

bc

bc
bc bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

(0, 0)

A
B

Figure 7.9: Positive convex hull B of A in Nn
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There are two players P1 and P2 and they make their moves by the following process:
P1 chooses a nonempty subset, J , of {1, . . . , n} and P2 responds by choosing some j ∈ J .
Then, the set A is changed by taking the j-component of each of its points and replacing
that component with the sum of the components of it indexed by the chosen J .
(P = (α1, . . . , αn) 7→ (α1, . . . , αj−1,

∑
k∈J αk, αj+1, . . . , αn).) We obtain a new set A′ and we

form again B′ = conv(A′)+Rn
≥0. And now, players P1 and P2 make their moves with the new

set A′. And so the game goes. How is the winner determined? Simply this: player P1 wins
after finitely moves if the positive convex hull B has become an orthant, i.e., B = v + Rn

≥0,
for some vector v. If this never occurs, P2 wins. Hironaka’s problem is to show that P1 has
a winning strategy no matter how P2 chooses his moves.

The case n = 2 is not only instructive, it is easy. For then, there are exactly three choices
for P1: J = {1}, J = {2}, or J = {1, 2}. If P1 picks either of the first two, of course he
forces P2’s move and the new “board” A′ is identical to A. So, P1’s only choice is J = {1, 2}.
But then, the change of board is just effected by a shear either horizontally (or vertically)
and the shearing factor is larger the larger the y (resp. x) coordinate. So, it is clear that P1

will win.

What has this to do with singularities? Simply this: The points of A are the exponents of
the monomials in our polynomial equations defining the possibly singular variety. Hironaka’s
game corresponds to blowing-up, e.g., take the equation defining the cuspidal cubic
y2−x3 = 0. Either perform the blowing-up z = x/y or w = y/x, then in the first case zy = x
so the equation becomes y2(1−yz3) = 0. The points of the initial board are (0, 2), (3, 0), while
the points of the second board are (0, 2), (3, 3). Notice that (3, 3) is exactly the transform of
(3, 0) under the upward shear corresponding to P2’s choice of j = 2. Had P2 chosen j = 1,
we would have had the blow-up w = y/x.

While Hironaka’s game is trivial if n = 2, it is already nontrivial if n = 3.

Finally, here is another example of blowing-up to resolve singularities.

Example 5. Consider the surface x2 = z2(z−y2) whose singular locus is given by x = z = 0.
A picture of this surface, S, appears in Figure 7.10.

Figure 7.10: The surface x2 = z2(z − y2)

Our surface S is embedded in A3 and we blow up the singular locus x = z = 0 and then
take the proper transform of S. The equation of the blow-up of A3 is

xw2 − zw1 = 0

in A3
∏

P1. We have two patches, w1 6= 0 and w2 6= 0 and we let ξ = w2/w1 on the first
patch and η = w1/w2 on the second. Then, off the singular locus of S and on the first patch
we have

x2 = x2ξ2(xξ − y2).
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Since x cannot be 0, we can cancel x2 and get the equation of the proper transform

1 = ξ2(xξ − y2).

Note that as x goes to 0 we find 1 = −ξ2y2 and so, if y 6= 0, the proper transform meets the
exceptional locus in the two points

(
(0, y, 0);

(
1: ± i1

y

))
.

When y = 0, the proper transform does not meet this part of the exceptional locus. On the
second patch where w2 6= 0 and off the singular locus of S, we find the equation

z2η2 = z2(z − y2).

Of course, z 6= 0, so we can cancel and obtain the equation of the proper transform in the
second patch

η2 = z − y2.
When z goes to 0, we get η2 = −y2 and so, if y 6= 0 the proper transform meets the
exceptional locus in the two points

((0, y, 0), (±iy : 1)).

However, when y = 0, our proper transform meets the exceptional locus tangentially in the
point

((0, 0, 0); (0 : 1)).

The two parts of the proper transform are nonsingular hypersurfaces.
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Chapter 8

Proper Schemes and Morphisms

In the last chapter we made a fairly extensive study of what is perhaps the most impor-
tant class of morphisms in algebraic geometry–projective morphisms. In the applications it
turns out that one is faced frequently with morphisms which are not projective and yet are
well-behaved in their topological properties. These morphisms are the analogs in algebraic
geometry of the maps of topological spaces which are “relatively compact”–that is, the maps
so that the inverse image of a compact set is compact. Notive that the base space need not be
compact (a standard example is the open unit disk or the punctured unit disk) but, the fibres
are always compact. These are the morphisms wich are called proper morphisms . The reader
might review both Theorem 2.36 of Chapter 2, Section 2.5 and Theorem 7.17 of Chapter 7,
Section 7.3; these theorems assert that projective morphisms are proper morphisms.

8.1 Proper Morphisms

We begin by recalling the formal definition of a proper morphism from Section 7.3.

Definition 7.3 If X is a scheme over S, then the morphism, X −→ S, is a proper morphism
(we also say X proper over S) iff

(1) X is separated over S.

(2) X −→ X is a finite-type morphism.

(3) The map X −→ X is universally closed , that is, for every T over S, the morphism
pr2 : X

∏
S

T → T is a closed map.

Remark: It is not clear at the outset that there exist non-projective proper morphisms. In
fact, for a curve over a field, properness and projectivity coalesce. If X is a surface over a field
and X is smooth, then again, properness and projectivity coalesce (at least in characteristic
zero).

427
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The following examples show that indeed there exist non-projective yet proper mor-
phisms. Moreover, they occur by deforming projective morphisms; so, it is clear that they
are a part of the natural landscape and not some isolated pathology.

** Examples to be supplied **

Having seem the existence of non-projective yet proper morphisms, there is an obvious
question of how close they are. This question was considered by W.L. Chow and he proved
the following theorem:

Theorem 8.1 (Chow’s Lemma) If S is a scheme and X is a separated finite-type S-scheme,
assume one of:

(α) S is noetherian or

(β) S is quasi-compact and X has only finitely many irreducible components.

Then,

(1) There exists a quasi-projective S-scheme, X ′, and an S-morphism, f : X ′ → X, which
is both surjective and projective.

(2) One can choose X ′ and f : X ′ → X so that there is an open, U , of X for which f−1(U)
is dense in X ′ and f is an isomorphism of f−1(U) and U .

(3) If X is irreducible or reduced, X ′ may be chosen with the same property

f−1(U)

f↾U

||②②
②②
②②
②②
②

// X ′

f

{{①①
①①
①①
①①
①①

//

��

""❋
❋❋

❋❋
❋❋

❋❋
PX(F)

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦❦

U // X

##❍
❍❍

❍❍
❍❍

❍❍
❍ PS(E)

{{✇✇
✇✇
✇✇
✇✇
✇

X

where X ′ −→ PX(F) is a closed immersion and X ′ −→ PS(E) is an immersion.

Proof . The main case is when X is an irreducible scheme. For, suppose the result is known
in this case. If hypothesis (α) holds, X itself is noetherian and so has only finitely many
components; and if (β) holds we have assumed only finitely many components. Give each
reducible component, Xj, its reduced structure and consider the scheme, X ′j, assumed to
exist in the irreducible case. Write X ′ =

∐
j X

′
j and let f be the morphism f : X ′ → X

induced by the morphisms X ′j −→ Xj −→ X . The scheme X ′ is projective over X because

ProjX(S1
∏
· · ·
∏
Sr) =

r∐

i=1

ProjX(Si).
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Of course, by the theorem in the irreducible case, each X ′j many be chosen to be reduced
and so, X ′ is reduced, which would prove (3) in the general case. As for (2), consider the
open Ui in Xi and write

Ũi = Ui ∩
(⋃

j 6=i

Xj

)c
= Ui ∩

(⋂

j 6=i

Xc
j

)
.

Take U to be the union of these Ũi. The removal of
(⋃

j 6=iXj

)
∩Xi from Ui to form Ũi is

necessitated because X ′ is the disjoint union of the X ′i. A picture of this situation is shown
in Figure 8.1.

Figure 8.1: Construction of X ′ in Chow’s lemma

It follows (by a formal argument or just by looking at the picture) that f−1(U) and U are
isomorphic via f . Hence, the irreducibility statement of (3) is also proved. Finally, (1) holds
as each X ′j is certainly X-projective, so therefore is the finite disjoint union, X ′. Surjectivity
is built in.

We are now reduced to the case X is irreducible. Consider the finite-type morphism
π : X → S. By definition, we can cover S by finitely many affine opens, Sα, so that each
Xα = π−1(Sα) is itself covered by finitely many affine opens, Xβ

α . Moreover, each Γ(Xβ
α ,OXβ

α
)

is a finitely generated Γ(Sα,OSα)-algebra. Thus, X
β
α −→ Sα is a quasi-projective morphism,

and as Sα −→ S is an open immersion, the composition, π ↾ Xβ
α : X

β
α → S is quasi-projective.

It follows that for each α and β there is an open immersion, ϕβα : X
β
α → P β

α , where P
β
α is a

projective S-scheme. Write U =
⋂
α,βX

β
α ; each Xβ

α is open, hence dense in X (remember,
X is irreducible), therefore, U is open and dense in X . But then, we have the morphism

ϕ : U −→ P =
∏

α,β

P β
α

induced by the ϕβα; that is, the diagrams

U

��

// P

prβα
��

Xβ
α

// P β
α

(†)

commute. Now, we have two morphisms, U −→ X and U −→ P ; so, we get the immersion
ψ : U → X

∏
S

P . If hypothesis (α) holds, then X
∏
S

P is certainly noetherian, while if (β)

holds it is quasi-compact, In either case, the closure of the scheme induced on the subspace,
ψ(U), by X

∏
S

P exists; this is our scheme X ′.
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We have the morphism

U
ψ′

→֒ X ′
g→֒ X

∏

S

P,

in which ψ′ is an open immersion and g is a closed immersion. Now, define f to be the
composed morphism

f : X ′
g→֒ X

∏

S

P
pr1−→ X

and θ to be the composed morphism

θ : X ′
g→֒ X

∏

S

P
pr2−→ X.

Of course, as X
∏
S

P is projective over X , our morphism f : X ′ → X is projective.

There are several things to prove:

(a) f ↾ f−1(U) : f−1(U) −→ U is an isomorphism and f itself is surjective.

(b) θ is an immersion (so that X ′ is indeed quasi-projective over S).

(c) If X is reduced, so is X ′. (Note that irreducibility of X ′ follows as f−1(U) is irreducible
being isomorphic to U by (a).)

(a) Look a the diagram

U

��❂
❂❂

❂❂
❂❂

❂❂

ψ′

// X ′

f

��

g //X
∏
S

P

pr1{{①①
①①
①①
①

X

,

it commutes, so f(X ′) contains the dense open set, U , of X . However, f is the composition
of closed morphisms, so it is closed. Hence, f(X ′) = X .

To see that f is birational (i.e., f−1(U) ∼= U via f), write U ′ = g−1(U
∏
S

P ) and note that

the scheme structure on it is induced by X ′. However, in the standard way, the immersion
ψ : U → X

∏
S

P factors as

U
Γ−→ U

∏

S

P −→ X
∏

S

P,

where Γ is the graph morphism of ϕ : U → P . The scheme P is separared, so Γ is a closed
immersion. Now, as remarked, the scheme whose closure is X ′ has as closure in U

∏
S

P the

scheme U ′, but Γ is a closed immersion, so this scheme is already closed in U ′; hence, it is
U ′. Since ψ : U → X

∏
S

P is an immersion we find that f ↾ U ′ and ψ′ : U → U ′ ⊆ X ′ are
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inverse isomorphisms. (Since U ′ = f−1(U) and X ′ is the closure of U ′, we see that u′ is dense
in X ′ and X ′ is indeed irreducible.)

(b) We now must show that

θ : X ′
g→֒ X

∏

S

P
pr2−→ X

is an S-immersion. Of course, this is a local question on X ′ and will be achieved by finding
a convenient open cover of X ′ where immersion can be proved.

We have the open immersions ϕβα : X
β
α → P β

α , so let Y β
α be ϕβα(X

β
α), each Y β

α is then
an open of the corresponding P β

α . Then, there are the projections prβα : P → P β
α , so let

W β
α = (prβα)

−1(Y β
α ). The W

β
α are opens in P . Finally, set

(Xβ
α)
′ = f−1(Xβ

α)

(Xβ
α)
′′ = θ−1(W β

α ).

Both (Xβ
α)
′ and (Xβ

α)
′′ are families of opens in X ′; the convenient one will turmn out to

be (Xβ
α)
′′. As f is surjective, it is clear that the (Xβ

α)
′ form an open cover of X ′. Suppose

we can show that (Xβ
α)
′ ⊆ (Xβ

α)
′′ for all α and β, then the latter will be an open cover of X ′,

too. Assume for the moment the statement (Xβ
α)
′ ⊆ (Xβ

α)
′′.

TheW β
α are an open cover of θ(X ′), and θ will therefore be an immersion if each θ ↾ (Xβ

α)
′′

is an immersion into W β
α . To prove this local immersion property, consider the morphism

wβα : W
β
α

prβα−→ Y β
α

(ϕβ
α)

−1

−→ Xβ
α →֒ X,

and use the hypothesis that X is separated over S to deduce that the graph morphism, Γβα,
of wβα is a closed immersion

Γβα : W
β
α −→W β

α

∏

S

X.

Write T βα for the image of W β
α in W β

α

∏
S

X , of course, T βα is closed in the latter scheme. I

claim there is a morphism

zβα : U
′ → W β

α ,

so that the diagram

U ′

vβα ##❋
❋❋

❋❋
❋❋

❋❋
❋❋

zβα //W β
α

Γβ
α{{✇✇

✇✇
✇✇
✇✇
✇✇

X
∏
S

W β
α

(††)
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commutes, where vβα is the canonical injection. To see this, by definition of the product, we
need to prove that the two arrows

U ′
vβα−→ X

∏

S

W β
α

pr1−→ X and U ′
vβα−→ X

∏

S

W β
α

pr2−→W β
α

wβ
α−→ X

are the same map. However, this is clear from the commutativity of the diagram

U ′ �
� //

��

(Xβ
α)
′ //W β

α ⊆ P

prβα

��
U � � // Xβ

α
// Y β
α ⊆ P β

α ,

(∗)

which in turn is commutative because of the commutativity of (†). So, we do indeed get the
morphism zβα : U

′ →W β
α , factoring the canonical injection via the graph, as shown in (††).

From diagram (††), we see that T βα contains the scheme U ′, and so–as X ′ is the closure
of U ′–the scheme T βα also contains the scheme induced by X ′ on its open (Xβ

α)
′′. But, the

second projection

X
∏

S

W β
α −→ W β

α

is an isomorphism of T βα and W β
α ; therefore, we finally find the immersion of (Xβ

α)
′′ into W β

α ,
via θ.

To finish this part of the proof it remains to show the assumed assertion: (Xβ
α)
′ ⊆ (Xβ

α)
′′.

Now, g−1(Xβ
α

∏
S

P ) is the scheme that X ′ induces on (Xβ
α)
′. So, it is the closure of U ′ in

(Xβ
α)
′. Look at the diagram exactly analogous to (∗) but with (Xβ

α)
′ replacing (Xβ

α)
′′. The

righthand inner square of this diagram:

(Xβ
α)
′

f

��

θ // P

prβα

��
U

ϕβ
α // P β

α ,

(∗∗)

will commute (by separation of P and P β
α over S) provided the outer square analog of

(∗):
U ′

f

��

θ // P

prβα

��
U

ϕβ
α // P β

α ,
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also commutes. But, the latter is just (†), which commutes. But, (∗∗) implies immediately
that (Xβ

α)
′ ⊆ (Xβ

α)
′′ by their definitions, as contended.

(c) We need only prove that if X is reduced, so is X ′. But, if X is reduced, so is U ;
therefore, so is U ′ as it is isomorphic to U . Then, X ′, as the closure of U ′, is again reduced.

Corollary 8.2 (Chow’s Lemma, proper case) If S is a scheme and X is proper over S and
if either

(α) S is noetherian or

(β) S is quasi-compact and X has only finitely many irreducible components,

then we can find a projective S-scheme, X ′, and a surjective morphism, f : X ′ → X, so
that there is an open, U , in X whose inverse image, f−1(U), is dense in X ′ and f is an
isomorphism of f−1(U) and U . We can choose X ′ irreducible if X is irreducible and X ′

reduced is X is reduced. In case X is irreducible the surjective morphism f : X ′ → X is
birational.

Proof . This is just our theorem but with the extra assertion that X ′ is projective over S.
However, the composed morphism X ′ −→ X −→ S makes X ′ a proper scheme over S
because the first morphism (X ′ −→ X) is projective hence proper and the second morphism
(X −→ S) is assumed proper. Then, X ′ is both proper and quasi-projective (by Theorem
8.1); so, it is projective.

Remark: If X ′ −→ X is surjective and if X ′ is itself S-projective, then X will be proper
provided it is separated and finite-type over S. (This statement is essentially the converse
of Chow’s lemma in the proper case.)

8.2 Finiteness Theorems for Proper Morphisms;

Applications

In Chapter 4, Section 4.3, after we proved that for reasonable morphisms the higher-direct
images of QC sheaves were themselves QC, we mentioned that for coherent sheaves the
situation was more difficult. For projective morphisms, the Serre finiteness theorem (Chapter
7, Section 7.5). Here, we face the general case of a proper morphism. Of course, an obvious
idea is to somehow use Chow’s lemma (our Theorem 8.1) to get the Serre theorem to apply.
But, it is not at all obvious how to do this. The essential trick is due to Grothendieck and
is contained in the next theorem. But first, we need some terminology.

If A is an abelian category and Ã is a subclass of Ob(A), we say that A is thick when it
has the following property: Given an exact sequence

0 −→ A −→ B −→ C −→ 0
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of A if any two of the three objects A,B,C are in Ã, then so is the third.

For example, in Appendix A, we showed that the subclass of coherent OX -modules in
the abelian category of all OX -modules is thick. Let us also call Ã very thick whenever it is
both thick and satisfies:

If A is a cofactor of an object in Ã (i.e., A
∐
B is in Ã) then A itself in in Ã.

In addition we need another property of a subclass, K̃, of the abelian category, Coh(OX),
of coherent OX -modules, this time connected with a closed subset, X̃ , of X . This is:

K̃ is strongly X̃-dense in Coh(OX) iff for every irreducible closed subset, Y , of X̃ , with

generic point y, there exists a coherent OX -module, G, in K̃ whose stalk , Gy, at y, is a one-

dimensional κ(y)-space. The subclass K̃ is X̃-dense in Coh(OX) iff for all irreducible closed

Y ⊆ X̃ there is a coherent OX -module, G, whose support is Y and which belongs to K̃.

Remarks:

(1) The terminology “thick” is not what one finds in EGA–there one finds (unfortunately)

the overworked word “exact.” However, it is clear why Ã should be called thick.

(2) As for the concept of denseness, first observe that because it is the stalk of G at y (not
the fibre of G at y) which is a one-dimensional κ(y)-space, the support of such a G is
exactly Y . (It is contained in Y as one should be able to see immediately, and it is all

of Y being closed and containing the generic point.) So, strong X̃-denseness implies

X̃-denseness. Moreover, X̃-denseness merely says that

K̃ ∩ (part of Coh(OX) with support = Y ) 6= ∅

for every irreducible Y ⊆ X̃ .

Having explained the terminology we can prove

Theorem 8.3 (Unscrewing Lemma) If X is a noetherian scheme and X̃ is a closed subset

of X, and if we are given a subclass, K̃, of Coh(OX) so that either

(I) K̃ is thick in Coh(OX) and strongly X̃-dense there, or

(II) K̃ is very thick in Coh(OX) and X̃-dense there,

holds, then every coherent OX-module with support in X̃ is already in K̃. In particular, when
X̃ = X, we obtain K̃ = Coh(OX).
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Proof . We use noetherian induction; that is, if we write P (Z) for the statement: A coherent

OX -module with support in Z is already in K̃, we must prove

whenever Y is closed in X̃ and if for all Y ′ closed and strictly contained in Y we know P (Y ′)
is true, then P (Y ) is true.

So, take Y closed in X̃ , assume for each closed Y ′ < Y every sheaf, M, with support
contained in Y ′ is already in K̃, and take a sheaf F whose support is in Y , we must show
F ∈ K̃. Give Y its reduced structure as scheme so that Y is defined by a coherent ideal.
I, of OX . Now, X is noetherian, F is coherent and the support of F is in Y , so there is
an integer n > 0 with GnF = (0). For any integer, k, with 1 ≤ k ≤ n, we have the exact
sequence

0 −→ Ik−1F/IkF −→ F/IkF −→ F/Ik−1F −→ 0.

By ordinary induction on k we must prove the sheaf Ik−1F/IkF is in K̃ and then F will

be in K̃ because K̃ is thick. The latter sheaf is killed by I, therefore we may and do
assume IF = (0). This means that F = i∗(i

∗(F)), where i : Y → X is the canonical closed
immersion. There are two cases:

Case A: Y is reducible. We have Y = Y ′ ∪ Y ′′ with closed subsets Y ′ < Y and Y ′′ < Y .
Again, give Y ′ and Y ′′ their reduced scheme structures, defined by the coherent ideals, I′

and I′′ of OX . If we set F ′ = F ⊗OX/I′ and F ′′ = F ⊗OX/I′′, we get the homomorphisms
F −→ F ′ and F −→ F ′′. Therefore, we deduce a map θ : F → F ′∐F ′′ and the question
is local where everything is affine. So, if z /∈ Y ′ ∩ Y ′′, either I′z = OX,z or I′′z = OX,z. In
the either case, the map θz is bijective. Hence, Ker θ and Coker θ have their supports in
Y ′ ∩ Y ′′. But Ker θ and Coker θ are coherent sheaves, and so by our assumption lie in K̃.
Then, the exact sequence

0 −→ Im θ −→ F ′
∐
F ′′ −→ Coker θ −→ 0

shows that Im θ is in K̃ because, F ′ and F ′′ are there (assumption) and K̃ is thick. Now,
the exact sequence

0 −→ Ker θ −→ F −→ Im θ −→ 0

proves that F is in K̃, and case A is proved. Notice that the density of K̃ was not used in
this part of the proof.

Case B : Y is irreducible—hence integral. Here, we will need some form of the X̃-density
of K̃.

First assume (I): K̃ is thick and strongly X̃-dense. For y, the generic point of Y we have
OY,y = κ(y) and Fy = (i∗(F))y is a finite-dimensional κ(y)-space because i∗(F) is coherent.
As K̃ is strongly X̃-dense, there is a coherent OX -module, G, with

(α) G ∈ K̃.

(β) Gy is a one-dimensional κ(y)-space.
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So, there is some κ(y)-isomorphism Gmy ∼= Fy. But, both F and G are OX -coherent, so the
iomorphism come from an isomorphism

Gm ↾W ∼= F ↾W

for some open neighborhood, W , of y in X (coherence implies finite presentation, cf. Ap-
pendix A, Corollary A.20).

Write H for the graph of this last isomorphism; it is a coherent OW -submodule of
(Gm∏F) ↾ W isomorphic to both Gm ↾ W and F ↾ W . Because Gy is a finite-dimensional
κ(y)-space, the sheaf Gm has support exactly Y (as already mentioned) and so the sheaf

Gm∏F has support eaxctly Y . Consequently, there is a coherent OX -module, H̃, contained
in Gm∏F so that

(i) H̃ ↾ (X − Y ) = (0) and

(ii) H̃ ↾W = H.

Look at the two projections Gm∏F −→ Gm and Gm∏F −→ F , and restrict them to

the submodule H̃. We get the OX -module maps

ϕ : H̃ → Gm and ψ : H̃ → F .

On the open, W , these maps are isomorphisms, and on X − Y they are also isomorphisms
because both sides are (0). Thus, the kernel and cokernel of ϕ and ψ have their supports
in Y −W ∩ Y ; and this a proper closed subset of Y . Our assumption shows that Ker ϕ,
Coker ϕ, Ker ψ, Coker ψ all lie in K̃. Also G ∈ K̃ and therefore, by thickness, Gm ∈ K̃. We
deduce as before from ϕ that H̃ ∈ K̃. And now, we deduce again as before from ψ that
F ∈ K̃.

Now, assume (II). Here, the sheaf G has a stalk of dimension n > 0 at y (because the
support of G is exactly Y ). This means that for some m and q, we have an isomorphism

(Gy)m ∼= (Fy)q.

We continue exactly the same argument as above and deduce that F q = F
∐
· · ·
∐
F

︸ ︷︷ ︸
q

lies

in K̃. But now, K̃ is very thick, so F ∈ K̃.
We can finally prove the finteness theorem for proper morphisms. In the proof we will

use the following easy lemma:

Lemma 8.4 Suppose
F1

u−→ F2 −→ F3 −→ F4
v−→ F5

is an exact sequence of OX-modules and F1, F2, F4, F5 are all coherent. Then, F3 is
coherent.
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Proof . From our exact sequence, we get the short exact sequence

0 −→ Coker u −→ F3 −→ Ker v −→ 0. (∗)

We also have the short exact sequences

0 −→ Im u −→ F2 −→ Coker u −→ 0

and

0 −→ Ker v −→ F4 −→ Im v −→ 0.

If we prove that both Coker u and Ker v are coherent, then (∗) implies F3 is coherent. From
the last two exact sequences, we need only prove Im u and Im v are coherent. However,
both are locally f.g. because they are images of coherent sheaves. But then, as subsheaves of
coherent sheaves, being locally finitely generated they are themselves coherent. (cf. Remark
(3) just after Definition A.6 in Appendix A).

Theorem 8.5 (Finiteness Theorem for Proper Morphisms) If Y is locally noetherian and
π : X → Y is a proper morphism, then for each coherent OX-module, F , the OY -modules
Rqπ∗(F) are all coherent (q ≥ 0).

Proof . The question is local on Y , so we may assume Y is noetherian. As π is proper, X
is also noetherian. Now, let K be the subclass of Ob(Coh(OX)) consisting of those coherent
sheaves F for which the conclusion of the theorem is true. Of course, 0 ∈ K.

I claim that K is very thick.

For, suppose that

0 −→ F ′ −→ F −→ F ′′ −→ 0

is a short exact sequence of coherent OX -modules then we get the piece of the long exact
sequence of derived functors

Rq−1π∗F −→ Rq−1π∗F ′′ −→ Rqπ∗F ′ −→ Rqπ∗F −→ Rqπ∗F ′′ −→ Rq+1π∗F ′ −→ Rq+1π∗F .

(a) If F ′ and F ′′ are in K, we use

Rq−1π∗F ′′ −→ Rqπ∗F ′ −→ Rqπ∗F −→ Rqπ∗F ′′ −→ Rq+1π∗F ′

and deduce from the lemma that Rqπ∗F is coherent and so, F ∈ K.

(b) If F and F ′′ are in K, we use

Rq−1π∗F −→ Rq−1π∗F ′′ −→ Rqπ∗F ′ −→ Rqπ∗F −→ Rqπ∗F ′′

and proceed as in (a); we get F ′ ∈ K.
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(c) If F ′ and F are in K, we use

Rqπ∗F ′ −→ Rqπ∗F −→ Rqπ∗F ′′ −→ Rq+1π∗F ′ −→ Rq+1π∗F

and proceed as above.

Hence, K is thick. If F ∈ K has the form F ′∐F ′′, with F ′ coherent, then from the split
exact sequence

0 −→ F ′ −→←− F −→←− F ′′ −→ 0

we find that
Rqπ∗F = Rqπ∗F ′

∐
Rqπ∗F ′′.

Now, Rqπ∗F is coherent and hence, is locally f.g.; so, Rqπ∗F ′ is locally f.g. However, it is
quasi-coherent (Chapter 4, Theorem 4.18) and Y is noetherian. (Another way to see the
same thing is that Rqπ∗F ′ is a submodule, locally f.g., of the coherent OX-module Rqπ∗F .
Thus, Rqπ∗F ′ is coherent.) And, so F ′ ∈ K; this proves our claim that K is very thick.

We must now pove that K is X-dense in Coh(OX). Suppose we can show the following
statement: If X −→ Y is proper (Y locally noetherian, of course) and X is irreducible, then
there is an F ∈ K so that Fx 6= (0), where x is generic in X. Then we will be done as
follows:

Choose any irreducible subscheme, Z, of X and let i be the closed immersion Z →֒ X .

The composed morphism Z
i−→ X

π−→ Y is proper. By our statement there exists a coherent
OZ-module, G, so that G ∈ KZ and Gz 6= (0), where z is the generic point of Z. This means
that the support of G is equal to Z, and Rq((π ◦ i)∗G) is coherent. But, i∗G is a coherent
OX -module (cf. Proposition 4.21, Chapter 4) with (i∗G)z 6= (0) and the spectral sequence of
composed functors

Rpπ∗(R
qi∗G) =⇒ R•(π ◦ i)∗(G)

degenerates because i is an affine morphism (so, Rqi∗G = (0) when q > 0, cf. Corollary 4.12,
Chapter 4). Therefore, we have the isomorphism

Rqπ∗(i∗G) ∼= Rq(π ◦ i)∗(G),

and the righthand side is coherent. So, i∗G is the sheaf in KX (= K) we need in order to
show that K is X-dense.

Finally, we are reduced to proving the italicized statement above. It is here that we
use Chow’s lemma. By it, there exists a morphism, ϕ : X ′ → X , which is X-projective
and X ′ is irreducible and, moreover, X ′ is projective over Y by Corollary 8.2. Since ϕ is
projective, X ′ possesses an ample OX′-module, call it L. (Of course, we write OX′(n) to
refer to twisting OX′ by L⊗n.) Apply Serre’s finiteness theorem (cf. Chapter 7, Theorem
7.36) to the morphism ϕ; this gives:

(i) Rqϕ∗OX′(n) is OX -coherent, for all n ≥ 0 and all q ≥ 0.
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(ii) Rqϕ∗OX′(n) = (0), for every q > 0 provided only that n ≥ n0, for some fixed n0.

(iii) The morphism ϕ∗ϕ∗(OX′(n)) −→ OX′(n) is surjective if n >> 0.

We pick n big enough to satisfy (ii) and (iii) above. Write F for ϕ∗OX′(n). From (iii),
we find that Fx 6= (9), where x is generic for X . Now, we need to ptove Rqπ∗F is coherent
for all q (i.e., F ∈ K). But, π ◦ ϕ : X ′ → Y is projective; hence, Rq(π ◦ ϕ)∗(OX′(n)) is
coherent for all n and q ((i) for the projective morphism π ◦ ϕ). Use the spectral sequence
of composed functors to obtain

Rpπ∗(R
qϕ∗(OX′(n))) =⇒ R•(π ◦ ϕ)∗(OX′(n)),

and observe that by (ii), Rqϕ∗(OX′(n)) = (0) for all q > 0. The spectral sequence therefore
degenerates and we obtain the isomorphism

Rqπ∗(F) ∼= Rq(π ◦ ϕ)∗(OX′(n))

and the righthand side is coherent.

We single out two cases for special mention:

Corollary 8.6 If Y is locally noetherian and π : X → Y is a proper morphism, then π∗F is
a coherent OY -module whenever F is a coherent OX-module. (Case q = 0 of the theorem.)

Corollary 8.7 Suppose that Y = SpecA and A is a noetherian ring and that π : X → Y is
a proper morphism. If F is any coherent OX-module, then the cohomology groups Hq(X,F)
are finitely generated A-modules for every q ≥ 0.

Proof . We know thatRqπ∗F is ˜Hq(X,F) (cf. Chapter 4, Corollary 4.19). As A is noetherian,
the only way Rqπ∗F will be coherent is for Hq(X,F) to be finitely generated.

Remark: When A = k, a field, then the cohomology groups, Hq(X,F) are finite dimen-
sional vector spaces over k. This corresponds to the well-known topological statement that
for compact topological spaces cohomology with coefficients in the base field is finite dimen-
sional in all dimensions. It shows that proper is the correct analog of compactness in the
norm topological case.

There is a slight generalization of the finiteness theorem that is very useful:

Corollary 8.8 Assume that Y is locally noetherian, that π : X → Y is a finite-type mor-
phism and that F is a coherent OX-module whose support is proper over Y . Then, Rqπ∗F
is coherent for all q ≥ 0.
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Proof . The conclusion is again local on Y and so we may assume Y is noetherian and
hence X is noetherian. Give Supp(F) its reduced induced scheme structure, call it Z, then

Z
j→֒ X −→ Y is a proper morphism. If I is the ideal sheaf of OX defining Z, then there

is an integer N so that INF = (0). Just as in the proof of the untwisting lemma, we use
induction on N to reduce to the case that IF = (0). This means that F = j∗G, where
G = j∗F . Now, G is coherent on Z, so the spectral sequence of composed functors

Rpπ∗(R
qj∗(G)) =⇒ R•(π ◦ j)∗G

degenerates (because j is an affine morphism) and yields the isomorphism

Rqπ∗F = Rqπ∗(j∗(G)) ∼= Rq(π ◦ j)∗G.

But the righthand side is coherent since π ◦ j is proper as remarked above.



Chapter 9

Chern Classes and the Hirzebruch
Riemann-Roch Theorem

9.1 Chern Classes

In order to minimize the amount of preliminaries, we assume that X is a nonsingular projec-
tive connected variety over C. Let n = dim(X). We have the cohomology groups Hr(X,Z),
0 ≤ r ≤ 2n. They have no torsion, and thus are free, and they are dual to the homology
groups Hr(X,Z). Poincaré duality implies that

Hr(X,Z) = (H2n−r(X,Z))D.

Assume that Y ⊆ X and that Y has codimension r as complex algebraic variety. Then,
the homology class of Y is 2r-codimensional, i.e., in H2n−2r(X,Z). By Poincaré duality,
H2n−2r(X,Z) is isomorphic to H2r(X,Z). The intersection of Y and Z in X (we may have to
move Y and Z to have a good intersection) corresponds to the cup product of cohomology
classes.

Let E be a locally free sheaf of rank r on X . We want elements cj(E), where
cj(E) ∈ H2j(X,Z),

the Chern classes of E . We define

c(E)(t) = 1 + c1(E)t+ · · ·+ cn(E)tn

to be the Chern polynomial of E .
The following conditions on Chern classes are required.

Definition 9.1 Chern classes satisfy the following conditions.

(CI) (Naturality) Let ϕ : Y → X be a morphism and E a locally free sheaf on X . Then,

cl(ϕ
∗E) = ϕ∗(cl(E))

in H•(Y,Z).

441
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(CII) (Euler property) Let A(X) = H•(X,Z), as graded ring. If

0 −→ E ′ −→ E −→ E ′′ −→ 0

is exact (where E , E ′, E ′′ are locally free sheaves), then

c(E)(t) = c(E ′)(t) c(E ′′)(t).

(CIII) (Normalization) Let E = L = OX(D) for some divisor D on X (D = its cohomology
class in H2(X,Z)). Then,

c1(OX(D)) = D.

Given X and E , take a test scheme T over X , with πT : T → X . We get π∗TED on T .
Look at flags

π∗TED = Fr ⊇ Fr−1 ⊇ · · · ⊇ F1 ⊇ F0 = (0),

so that

(1) Fj is a locally free OT -module.

(2) Fj/Fj−1 = Lj is invertible.

These are complete T -flags for π∗TED. We have the functor on X-schemes

T 7→ {complete T -flags for π∗TED}.

This is representable, the object representing it is the flag scheme of E over X , denoted by
FX(E). Observe that

FX(E) Φ−→ P(E) −→ X.

The mapping Φ is obtained by sending the flag

π∗TED ⊇ Fr−1 ⊇ · · · ⊇ F1 ⊇ (0)

to π∗TED ⊇ Fr−1, and then, to the surjection

π∗TED 7→ π∗TED/Fr−1

(using the fact that P(E) represents the functor HomX(T,P(E)).)

Remark: For every p ∈ P(E), the fibre at p is “FP(E)(Fr−1),” a lower dimensional flag.

If we admit that FX(E) exists as a scheme and that we have a morphism Θ: FX(E)→ X ,
then Θ∗ED has an FX(E)-flag (DX). Then,

Θ∗ED ⊇ Fr−1 ⊇ · · · ⊇ F1 ⊇ (0),
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with invertible sheaves Lj = Fj/Fj−1 on FX(E), j = 1, . . . , r. Apply this to ED. Over
FX(ED), we have the “splitting”

Θ∗E ⊇ Fr−1 ⊇ · · · ⊇ F1 ⊇ (0),

with Lj on FX(ED). However,

c(Θ∗E)(t) =
r∏

j=1

c(Lj)(t) =
r∏

j=1

(1 +Djt),

where Dj ∈ A(FX(ED)), by (CII) and (CIII). If we have Chern classes on X , then (CI)
implies that

c(Θ∗E)(t) = Θ∗(c(E)(t)),
and then,

Θ∗(c(E)(t)) =
r∏

j=1

(1 +Djt).

If the map Θ∗ : A(X)→ A(FX(ED)) is injective, two ways of defining Chern classes agree in
A(FX(ED)), and hence on X .

Proposition 9.1 The Chern polynomial c(E)(t) is unique if Θ∗ : A(X) → A(FX(ED)) is
injective.

The proof that Θ∗ : A(X)→ A(FX(ED)) is injective proceeds by induction and uses the
fact the fibres of FX(ED) −→ P(ED) are projective bundles, similarly for P(ED) −→ X , and
reduce to the case P(ED) −→ X by a spectral argument due to Armand Borel.

We now turn to the existence of Chern classes. Given π : P(E) → X , it turns out that
A(P(E)) = H•(P(E),Z) is an A(X) = H•(X,Z)-algebra free as an A(X)-module, of rank
r = rk(E), and it is generated by

1, H,H2, . . . , Hr−1,

where H is the cohomology class of the hyperplane bundle OP(E)(1) (H ∈ H2(P(E),Z)). The
map A(X) −→ A(P(E)) is injective. Thus, Hr is a linear combination of 1, H,H2, . . . , Hr−1

with coefficients in H•(X,Z). We get

Hr + α1H
r−1 + α2H

r−2 + · · ·+ αr = 0. (∗)

Observe that αj ∈ H2j(X,Z). We let

cj(E) = αj.

Since
P(ϕ∗E) = ϕ∗(P(E)),
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we get (CI). Assume that E = OX(D) ∈ Pic(X). In this case, P(E) = X ,

OP(E)(1) = ED = OX(−D),

and thus, H = −D. Thus, (∗) implies (since r = 1) that

−D + α1 = 0,

that is, α1 = D. Thus,
c(OX(D))(t) = 1 +Dt,

and (CIII) holds. To prove (CII) requires more work.

Computations .

(1) The splitting principle suggests the introduction of the Chern roots of E . Write

c(E)(t) = 1 + c1(E)t+ · · ·+ cr(E)tr =
r∏

j=1

(1 + γjt),

where γj is the jth Chern root. Then,

cj(E) = σj(γ1, . . . , γr),

where σj is the jth symmetric function in r variables. Thus, we can compute for E as if it
were a sum of line bundles whose Chern classes are γ1, . . . , γr. As an illustration, we get the
following.

(a) c(E ⊗ F)(t) =∏i,j(1 + (γi + δj)t).

(b) c(E∐F)(t) = c(E)(t) c(F)(t) =∏i(1 + γit)
∏

j(1 + δjt).

(c) c(ED)(t) =∏j(1− γit), and thus, cj(ED) = (−1)jcj(E).

(d) c(
∧d E)(t) =∏j1<...<jd

(1 + (γj1 + · · ·+ γjd)t).

(e) c(SdE)(t) =∏m1+···+mr=d
(1 + (m1γ1 + · · ·+mrγr)t).

(2) Given E , twist by OX , to get E(n). If n >> 0, the sheaf E(n) has lots of sections, and
it is generated by these sections. Pick σ1, . . . , σr, generic sections of E(n) (where rk(E) = r).
If q ≤ r, consider

σ1 ∧ · · · ∧ σr−q+1,

a non-generic section of
∧r−q+1 E . The zero locus turns out to have codimension q and is

the carrier of cq(E(n)). By (a),

c(E(n))(t) =
r∏

j=1

(1 + (γj + nH)t),

where the γj’s are the Chern roots of E (and H is the class of the hyperplane bundle, as
before).
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Example 9.1 Assume that r = 2, and that c1, c2 are known for E(n). We have

c(E(n))(t) = (1 + (γ1 + nH)t)(1 + (γ2 + nH)t)

= 1 + (γ1 + γ2 + 2nH)t+ (γ1γ2 + (γ1 + γ2)nH + n2H2)t2

= 1 + (c1(E) + 2nH)t+ (c2(E) + n(c1(E) ·H) + n2(H ·H))t2.

This implies that

c1(E(n)) = c1(E) + 2nH

c2(E(n)) = c2(E) + n(c1(E) ·H) + n2(H ·H).

Thus, we can solve for c1(E) and c2(E).

Let p1, . . . , pn be some indeterminates and look at

1 + p1z + p2z
2 + · · ·

Give pj some degree dj (generally, dj →∞ as j →∞.) We consider functions K from power
series to power series (with first term 1)

K

(
∞∑

j=0

pjz
j

)
=

∞∑

j=0

Kj(p1, . . . , pj)z
j .

Such a function is called multiplicative and the family {Kj(p1, . . . , pj)}∞j=1 a multiplicative
sequence if every identity

∞∑

j=0

pjz
j =

(
∞∑

j=0

p′jz
j

)(
∞∑

j=0

p′′j z
j

)

is equivalent with an identity

∞∑

j=0

Kj(p’s)z
j =

(
∞∑

j=0

Kj(p
′’s)zj

)(
∞∑

j=0

Kj(p
′′’s)zj

)
.

We can construct such sequences. Observe that if we know

K(1 + z) =

∞∑

j=0

Kj(1, 0, . . . , 0)z
j

then we know K in general. Introduce the formal roots γj’s. Look at

1 + p1z + · · ·+ pnz
n = (1 + γ1z)(1 + γ2z) · · · (1 + γnz),
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and apply K. We get

n∑

j=0

Kj(p’s)z
j =

n∏

j=1

K(1 + γjz) =
n∏

j=1

(
∞∑

l=0

Kl(γj, 0, . . . , 0)z
l

)
.

So, given a power series
Q(z) = 1 + h1z + h2z

2 + · · ·+,
consider K defined by

K(1 + z) = Q(z).

For convenience, we now change notation: Let z = t2 and make c1, . . . , cr via the equation

∞∑

j=0

(−1)jpjzj =
(
∞∑

k=0

(−1)kcktk
)(

∞∑

l=0

clt
l

)
.

Now, where we had Kj(p’s) we have Tj(c’s). The relationship is as follows. Given Q(z), we
make the Kj(p’s). Let

Q̃(z) = Q(z2).

Then, we can make from Q̃(z) the sequence K̃l(c’s), and we get

Kj(p’s) = K̃2j(c’s), K̃2j+1(c’s) = 0.

We have the following two facts.

Proposition 9.2 The following properties are equivalent for power series.

(1) In Tn(c1, . . . , cn), substitute cj =
(
n+1
j

)
. Then, T (c1, . . . , cn) = 1.

(2) The coefficient of tk in Q(t)k+1 is 1.

(3) T1(c1) = 1
2
c1 and the coefficient of ck1 and the coefficient of ck in Tk(c1, . . . , ck) are

equal.

Proposition 9.3 There exists a unique power series having the above properties, namely

Q(t) =
t

1− e−t .

Remark: If X is a nonsingular variety, the Chern classes of X are by definition the Chern
classes of its tangent bundle. What are the Chern classes of Pn? We have the exact sequence
(Euler sequence)

0 −→ Ω1
Pn −→

∐

n+1

OPn(−1) −→ OPn −→ 0.
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We get
c(Ω1

Pn)(t) = (1−Ht)n+1 modHn+1,

that is,
n∑

j=0

(−1)jcj(Pn)tj =
n∑

j=0

(−1)j
(
n+ 1

j

)
Hjtj ,

and thus,

cj(P
n) =

(
n+ 1

j

)
Hj.

Now, introduce the Chern roots (cj = cj(X)),

n∑

j=0

cjt
j =

n∏

l=1

(1 + γlt),

and apply Q. We get
n∑

j=0

Tj(c1, . . . , cj)t
j =

n∏

l=1

γlt

1− e−γlt .

Definition 9.2 Given a nonsingular projective variety X of dimension n, the (unique) poly-
nomial

∑n
j=0 Tj(c1, . . . , cj)t

j is the (total) Todd polynomial of X , denoted by td(X)(t). The
coefficient Tn(c1, . . . , cn) is called the Todd genus of X , and is denoted by td(X).

Example 9.2 Consider a curve X , i.e, dim(X) = 1. Then, γ1 = c1. We need the term of
degree 1 in

c1t

1− e−c1t .

We have

e−z = 1− z + z2

2!
− z3

3!
+
z4

4!
+O(z5)

1− e−z = z − z2

2!
+
z3

3!
− z4

4!
+ O(z5)

1

1− e−z =
1

z
+ α0z + α1z

1 + α2z
2 + α3z

3 +O(z4).

Thus, by multiplication, we get

1 = 1 +

(
−1
2
+ α0

)
z +

(
1

6
− α0

2
+ α1

)
z2 +O(z3),

and

α0 =
1

2
, α1 =

1

12
.
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We get
c1t

1− e−c1t = c1t

(
1

c1t
+

1

2
+
c1
12
t

)
+O(t3) = 1 +

c1
2
t+O(t2).

Thus, for curves, the Todd genus td(X) is given by

td(X) =
1

2
c1 = −

1

2
K,

where K is the class of the canonical bundle, K ∈ H2(X,Z). Under the isomorphism

H2(X,Z) ∼= Z

(evaluate on [X ] ∈ H2(X,Z)), we get

td(X) = −deg
(
1

2
K

)
= −1

2
(2g − 2) = 1− g.

Now, assume that X is a surface, i.e., dim(X) = 2. We have

1 + c1t+ c2t
2 = (1 + γ1t)(1 + γ2t)

and

td(X)(t) =
γ1t

(1− e−γ1t)
γ2t

(1− e−γ2t) .

Thus,

td(X)(t) =

(
1 +

1

2
γ1t+

1

12
γ21t

2 +O(t3)

)(
1 +

1

2
γ2t+

1

12
γ22t

2 +O(t3)

)

= 1 +
1

2
(γ1 + γ2)t+

(
1

12
(γ21 + γ22) +

1

4
γ1γ2

)
t2 +O(t3)

= 1 +
1

2
c1t+

(
1

12
((γ1 + γ2)

2 − 2γ1γ2) +
1

4
γ1γ2

)
t2 +O(t3)

= 1 +
1

2
c1t+

1

12
(c21 + c2)t

2 +O(t3)

Therefore, for a surface,

td(X)(t) = 1 +
1

2
c1t +

1

12
(K2 + c2)t

2.

We are now ready to the Hirzebruch–Riemann–Roch theorem.
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9.2 Hirzebruch–Riemann–Roch Theorem

Let E be a vector bundle of rank r on X , and let γ1, . . . , γr be the Chern roots of E . Write

ch(E)(t) =
r∑

j=1

eγit,

the Chern character of E . We have

ch(E)(t) = r +

∞∑

k=1

1

k!
sk(γ1, . . . , γr)t

k,

where
sk(γ1, . . . , γr) = γk1 + · · ·+ γkr .

Thus, we have

ch(E)(t) = rk(E) + c1t+
1

2
(c21 − 2c2)t

2 + · · · .

The computation from 1(a) show that

ch(E ⊗ F)(t) = ch(E)(t) ch(F)(t).

We can also check that
ch(E ⊕ F)(t) = ch(E)(t) + ch(F)(t).

Hence, the Chern character is a ring homomorphism

ch: Kvect(X)→ H•(X,Z),

where Kvect(X) is the Grothendieck group associated with vector bundles. Let dim(X) = d.
Given a vector bundle E of rank r on X , let

χ(X, E) =
d∑

i=0

(−1)idimH i(X, E),

the Euler characteristic of the vector bundle E . Also, let T (X, E) be the degree d part of

ch(E)(t) td(X)(t)

evaluated on [X ].

Theorem 9.4 (Hirzebruch–Riemann–Roch) Let X be a complex, compact, nonsingular, pro-
jective variety and E a vector bundle of rank r on X. Then,

χ(X, E) = T (X, E).
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In general, we denote the Chern classes of E by e1, . . . , er, and the Chern classes of X
(really, of TX) by c1, . . . , cn. Let us unravel what Theorem 9.4 says in the case of a curve
and of surface, when E is a line bundle.

(1) X is a curve, i.e., dim(X) = d = 1, and E = OX(D), where D is a divisor. Then, we
have

ch(E)(t) = 1 +Dt

td(X)(t) = 1 +
1

2
c1(X)t

ch(E)(t) td(X)(t) = 1 +

(
D +

1

2
c1(X)

)
t.

The degree 1 part evaluated at [X ] is
(
D +

1

2
c1(X)

)
[X ] = deg(D) + 1− g.

Therefore, we get the Riemann-Roch theorem for curves:

dimH0(X,OX(D))− dimH1(X,OX(D)) = deg(D) + 1− g.

Using Serre duality, we get the usual version

dimH0(X,OX(D))− dimH0(X,OX(K −D)) = deg(D) + 1− g.

(2) Now, consider surfaces, i.e., dim(X) = 2, and still a line bundle E = OX(D). Since
c1 = −K, We have

ch(E)(t) = 1 + e1t+
1

2
e21t

2

td(X)(t) = 1− 1

2
Kt+

1

12
(K2 + c2)t

2.

The degree 2 part is

−1
2
(K · e1)t +

(
1

2
e21 +

1

12
(K2 + c2)

)
t2,

and evaluated at [X ], we get

1

2
(D2 −K ·D) +

1

12
(K2 + c2),

and thus, the Riemann-Roch for surfaces is

dimH0(X,OX(D))−dimH1(X,OX(D))+dimH2(X,OX(D)) =
1

2
(D−K)·D+

1

12
(K2+c2).

Let us now give a quick proof of the Riemann-Roch theorem for curves and line bundles
OX(D).
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Theorem 9.5 Let X be a complete nonsingular curve over an algebraically closed field k.
Then, if X has genus g and canonical class K, for any divisor D on X, we have

dimH0(X,OX(D))− dimH0(X,OX(K −D)) = deg(D) + 1− g.
Proof . For every P ∈ |D|, we have the two exact sequences

0 −→ OX(−P ) −→ OX −→ κ(P ) −→ 0 (a)

0 −→ OX −→ OX(P ) −→ κ(P ) −→ 0. (b)

First, assume that D is effective. Tensor (a) with OX(D). We get

0 −→ OX(D − P ) −→ OX(D) −→ κ(P ) −→ 0.

Using cohomology, take χ(X,−). We get

χ(X,OX(D)) = χ(X,OX(D − P )) + 1.

We proceed by induction. If D = 0, the formula says

dimH0(X,OX)− dimH1(X,OX) = 0 + 1− g.
However, by Serre duality,

dimH1(X,OX) = dimH0(X,ωX) = g,

the genus of X , and
H0(X,OX) ∼= k,

because X is a projective variety, and thus, dimH0(X,OX) = 1. By induction, we get

χ(X,OX(D − P )) = deg(D − P ) + 1− g = deg(D)− 1 + 1− g = deg(D)− g,
and thus,

χ(X,OX(D)) = deg(D) + 1− g.
Now, assume that D is arbitrary. We can write D = D1 −D2, where D1, D2 ≥ 0. For any
P ∈ |D2|, using (b), we get

0 −→ OX(D) −→ OX(D + P ) −→ κ(P ) −→ 0.

Again, by taking χ(X,−), we get

χ(X,OX(D + P )) = χ(X,OX(D)) + 1. (∗)
By induction, we get

χ(X,OX(D + P )) = deg(D + P ) + 1− g = deg(D) + 1 + 1− g = deg(D) + 2− g,
and by (∗),

χ(X,OX(D)) = deg(D) + 1− g.
Then, we reduce the proof in the case of a general divisor to the case an effective divisor,
which completes the proof.
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Appendix A

Sheaves and Ringed Spaces

A.1 Presheaves

Let X be a topological space. If T denotes the topology on X , then T is completely specified
by and completely specifies a certain category which we shall denote by Cat T . The objects
of Cat T are the open sets in X . If U and V are open sets of X , we set

Hom (U, V ) =

{
∅ if U 6⊆ V
{incl} if U ⊆ V

where {incl} is the set with one element: The natural inclusion map U →֒ V . Let C be
an arbitrary category (for example C might be the category of sets, the category of groups,
the category of rings, etc—the reader is urged to think of C as the category of sets until he
becomes more facile with the material to be presented.)

Definition A.1 A presheaf F , with values in C on X is a (contravariant) functor from
(Cat T )o to C.

Observe that to give a presheaf on X (with values in C) we must give for each open set
U of X , and object F(U), of C and these objects must “fit together” according to the rule:
If V ⊆ U , there is a map in C, denoted ρUV taking F(U) −→ F(V )—frequently called the
restriction from U to V—so that if

V ′ ⊆ V ⊆ U, then ρUV ′ = ρVV ′ ◦ ρUV .

Here are some examples of preshaves, they are taken from the literally infinite number
available in mathematics.

(1) X is an arbitrary topological space, C is the category of rings, and F is the presheaf
given by:

F(U) = all real-valued continuous functions defined on U .

453
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(Clearly F(U) is a ring under the usual operations of addition and multiplication of
functions). We must still give the collection of maps ρUV ∈ Hom(F(U),F(V )), but in
this case our choice is clear:

ρUV (f) = f ↾ V.

That is, ρUV is what we are used to calling the restriction from U to V ; in fact, the
terminology associated with ρUV in the general case comes from just this example. The
presheaf F is called the presheaf of germs of real-valued continuous functions on X .

(2) Again X is to be an arbitrary topological space. Let C be any category and let A be
any object of C. For each open U in X , let F(U) = A and let ρUV be the identity map
A −→ A for each V ⊆ U . These data define a presheaf called the constant presheaf on
X and usually denoted, A. Of particular importance is the presheaf Z, where Z is the
group of integers—so C is the category of abelian groups in this case.

(3) Let X be the field of complex numbers with its usual topology. For each open set U of
X , let F(U) be the holomorphic complex-valued functions on U (resp. the meromor-
phic complex-valued functions on U), and let ρUV be the usual restriction of functions.
We obtain the presheaf called the presheaf of germs of holomorphic (resp. meromor-
phic) functions on X .

(4) (Partial generalization of (2)) Let X be an arbitrary topological space; let C be the
category of abelian groups—AB. Given an open set U of X , let ZU be defined as
follows:

ZU (V ) =
∐

Hom (V,U)

Z =

{
(0) if V 6⊆ U
Z if V ⊆ U

If V ′ ⊆ V then ZU(V ) −→ ZU(V ′) is clear; it is the identity map if V ⊆ U and the
zero map otherwise. This prescription yields a presheaf ZU for each open set U of X ;
hence, yields an infinite family of presheaves. When U = X , we obtain the presheaf Z
of example (2).

Problem A.1 (Generalization of (4)). Let X be as in (4), C as in (4). Let F be a presheaf
of sets on X and let A be an abelian group. For each U in X set

AF(U) =
∐

F(U)

A = {functions : F(U) −→ A with finite support}.

Make AF into a presheaf on X . How does one choose F , A in order that AF = ZU?

Now the presheaves on X with values in C form a category themselves which we will
denote P(X,C). To see this, one need only define the notion of morphism between presheaves
and check the required axioms. This is done as follows: Given F ,G objects of P(X,C), a
morphism σ from F to G is a consistent collection of morphisms σ(U) : F(U)→ G(U), one
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for each U in CatT . Consistency is understood in the sense that whenever V ⊆ U the
diagram

F(U) σ(U) //

ρUV
��

G(U)
ρUV
��

F(V )
σ(V )

// G(V )

commutes. So a morphism of presheaves is nothing but a “natural transformation” of func-
tors. That this definition of morphism satisfies the category axioms is obvious.

If C = AB, we write P(X) instead of P(X,AB). Let F ,G be presheaves of abelian
groups on X ; let σ : F → G be a morphism of presheaves. Consider the following two
functors F ′,G ′′ on X :

F ′(U) = Ker (F(U) σ(U)−→ G(U)) = Ker σ(U)

G ′′(U) = Coker (F(U) σ(U)−→ G(U)) = Coker σ(U).

One checks easily that F ′,G ′′ are presheaves of abelian groups on X and that we have
canonical morphisms

F ′ −→ F , G −→ G ′′.

The presehaf F ′ is called the kernel of σ and the presheaf G ′′ is called the cokernel of σ.
Given a sequence of presheaves

F ′ σ−→ F τ−→ F ′′

we shall say that this sequence is exact if and only if for every U of CatT , the corresponding
sequence

F ′(U) σ(U)−→ F(U) τ(U)−→ F ′′(U)

is exact (as a sequence of abelian groups). A moment’s thought shows that F ′ σ−→ F is
injective (i.e. F ′(U) −→ F(U) is injective for all U) if and only if Ker σ = 0, and a similar
statement holds for surjective. In this way, the category P(X) behaves just like the category
AB; hence it is an abelian category.1

Problem A.2 Show that the presheaves ZU form a system of generators for P(X) in the
sense of Grothendieck [21]. Deduce that P(X) contains “sufficiently many injectives.” How
many of the axioms AB 1, 1∗, etc., can you prove for P(X)?

1The reader who wants the precise definition of abelian category can consult Grothendieck [21] or Freyd
[16]; he can also trivially check that P(X) is an abelian category according to these definitions.
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A.2 Sheaves

A sheaf is a special type of presheaf. Briefly, the problem which sheaves solve is the repre-
sentation of a consistent collection of local data on a topological space as a mathematical
entity. That is, one frequently is given data valid in a neighborhood of each point x ∈ X ,
consistent in the sense that these data agree on overlaps, and one wishes to incorporate all
the data into one mathematical object. On the surface, it appears that a presheaf is just the
correct object; however, implicit in the requirement that our object represent the data is the
requirement that it be reconstructable from (or be determined by) the local data. It is just
this requirement which presheaves fail to satisfy. For example, if X is a space consisting of
two disjoint, connected components, and if F ,G are the presheaves given by

F = constant presheaf Z on X

G(U) =

{
Z if U is in one component
Z
∐

Z if U intersects both components non-trivially

then F and G are “locally isomorphic” by a globally defined map; that is, they look the same
in a suitable neighborhood of each point, but they are NOT the same presheaf.

The first sentence of this section betrays our point of view; we consider sheaves as “spe-
cial” presheaves. There is another fruitful way to look at sheaves which is slightly more to
an analyst’s or topologist’s taste. Both view-points give the same results and it is wise to
know both as there are situations where one is technically simpler to handle than the other.

To define the notion of sheaf we need the concept of an (open) covering. Let {Ui −→ U}
be a family of morphisms in Cat T (i.e., the Ui are open subsets of U). We say that the
given family lies in Cov T or is a covering of U if and only if

⋃

i

Ui = U.

Suppose {Ui −→ U} ∈ Cov T ; then for any presheaf F on X and any index i, we obtain a
morphism F(U) −→ F(Ui). Therefore, by varying i, we obtain the morphism

α : F(U) −→
∏

i

F(Ui).

(This assumes, of course, that the category C posseses products—a situation which holds
for all the categories we will consider below, sets, groups, modules, etc.) For fixed i and
varying j, we have the canonical morphisms Ui ∩ Uj −→ Ui; hence, we deduce a morphism
F(Ui) −→

∏
iF(Ui ∩ Uj). Upon taking the product of these morphisms over all i, we get

the morphism

β1 :
∏

i

F(Ui) −→
∏

i,j

F(Ui ∩ Uj).
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In the same manner, varying i not j and taking the product over all j, we obtain

β2 :
∏

i

F(Ui) −→
∏

i,j

F(Ui ∩ Uj).

Given this preparation we can now state our definition.

Definition A.2 A sheaf, F on X is a presheaf which satisfies the axioms:

(S) For every family {Ui −→ U} ∈ Cov T the sequence

F(U) α−→
∏

i

F(Ui)
β1−→−→
β2

∏

i,j

F(Ui ∩ Uj)

is exact.

(Recall that for categories C based on sets, a sequence

F ′
α′

−→ F
β′
1−→−→
β′
2

F ′′

is exact if and only if α′ maps F ′ bijectively onto the set of all elements of F whose image
in F ′′ under β ′1 and β ′2 agree. Exactness makes sense in an arbitrary category as well—we
omit the definition and refer the reader to [??].)

A few examples will clarify the intuitive content of the definition of a sheaf. Note that
the question of exactness in (S) can be broken down into two questions:

(a) (Uniqueness): Are two elements ξ, η ∈ F(U) equal if when restricted to each set of an
open covering they become equal?

(a) (Existence): Given a collection of elements ξi ∈ F(Ui) whose restrictions to the overlaps
Ui ∩ Uj agree for every i and j, does there exist an element in F(U), say ξ, whose
restriction to Ui is ξi for every i? That is, can we “patch together” the elements ξi to
form a “globally defined” element ξ?

In the light of this remark, it is trivial to see that the presheaves of Examples 1 and 3
(of Section A.1) are sheaves. They will be called sheaves of germs of continuous functions
(resp. holomorphic) functions hereafter. What about example 2? There is a serious reason
why the constant presheaf A is not a sheaf (except in the trivial case).

Proposition A.1 Let X be a locally connected space, and let F be a sheaf of sets on X.
If U is any open subset of X and {Ui} is the family of connected components of U , then
{Ui −→ U} ∈ Cov T and

F(U) ∼=
∏

i

F(Ui).
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Proof . The Ui are open in U by local connectedness, and clearly form a covering of U . If
we apply axiom (S) to this covering, we deduce the exact sequence

F(U) α−→
∏

i

F(Ui)
β1−→−→
β2

∏

i,j

F(Ui ∩ Uj).

Now, for i 6= j, Ui ∩ Uj = ∅; hence F(Ui ∩ Uj) = {∅}. It follows immediately that β1 = β2
for every element of

∏
iF(Ui), and the exactness of our sequence completes the proof.

The proposition demonstrates that the closest a sheaf can come to being constant is to
be locally constant, that is, constant on connected open sets.

Our main object now will be to construct from each given presheaf of sets, a corresponding
sheaf—called the associated sheaf to the presheaf.

Let U be an open set in X and let {Ui −→ U}i∈I and {U ′λ −→ U}λ∈Λ be two coverings
of U . By a map ǫ from {Ui −→ U}i∈I to {U ′λ −→ U}λ∈Λ we mean a map of the index set
I, to the index set Λ, say ǫ again, such that for every i ∈ I, we have Ui ⊆ U ′ǫ(i). Frequently,

{Ui −→ U} is called a refinement of {U ′λ −→ U} if there is a map ǫ as above. Let F be a
presheaf on X , and define for any open covering {Ui −→ U} the set H0({Ui −→ U},F) by

H0({Ui −→ U},F) = Ker

{∏

i

F(Ui)
β1−→−→
β2

∏

i,j

F(Ui ∩ Uj)
}
.

Here, Ker {F
β−→−→
β′

G} means the set of all ξ ∈ F such that β(ξ) = β ′(ξ) in G.

Lemma A.2 Let F be an arbitrary presheaf of sets on X, let U be any open subset of X,
let {Ui −→ U}, {U ′λ −→ U} be two coverings of U ; finally let ǫ be a map from {Ui −→ U}
to {U ′λ −→ U}. Then ǫ induces a map ǫ∗ from H0({U ′λ −→ U},F) to H0({Ui −→ U},F)
and any two maps from {Ui −→ U} to {U ′λ −→ U} induce the same map on the sets H0.

Proof . The inclusions Ui −→ U ′ǫ(i) induce maps F(U ′ǫ(i)) −→ F(Ui) for each i ∈ I; hence we

have a map
∏

λF(U ′λ)
ǫ∗1−→ ∏

iF(Ui). In a similar manner, we obtain the map
∏

λ,µF(U ′λ ∩ U ′µ)
ǫ∗2−→∏

i,j F(Ui ∩ Uj), and the diagram

∏F(Ui) //
//
∏F(Ui ∩ Uj)

∏F(U ′λ)
//
//

ǫ∗1

OO

∏F(U ′λ ∩ U ′µ)
ǫ∗2

OO

is commutative. It follows that ǫ∗ exists as claimed.

We have now to prove the important part of the lemma which says that for any two
maps ǫ and ǫ′ from the covering {Ui −→ U} to the covering {U ′λ −→ U}, we have ǫ∗ = ǫ

′∗.
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If α, β are indices in either I or Λ, we shall let ραβ denote the restriction map from F(U ′α)
to F(U ′β) when it exists, and in a similar way ραβγ will denote the restriction map from

F(U ′α) to F(U ′β ∩U ′γ) (and ραβγ denotes the restriction map from F(U ′α ∩U ′β) to F(Uγ) when
Uγ ⊆ U ′α ∩ U ′β). With this notation, the maps ǫ∗1 and ǫ∗2 can be rendered very explicitly.
An element of

∏F(U ′λ) is a function whose value at λ ∈ Λ is in the set F(U ′λ); hence, if
ξ ∈∏F(U ′λ),

(ǫ∗1ξ)i = ρ
ǫ(i)
i ξǫ(i)

(ǫ
′∗
1 ξ)i = ρ

ǫ′(i)
i ξǫ′(i).

Now, if ξ ∈ H0({U ′λ −→ U},F), then

ρλλµξλ = (β1ξ)λµ = (β2ξ)λµ = ρµλµξµ. (∗)

Since Ui ⊆ U ′ǫ(i) ∩ U ′ǫ′(i), we deduce

ρ
ǫ(i)
i = ρ

ǫ(i) ǫ′(i)
i ρ

ǫ(i)
ǫ(i) ǫ′(i); ρ

ǫ′(i)
i = ρ

ǫ(i) ǫ′(i)
i ρ

ǫ′(i)
ǫ(i) ǫ′(i).

Thus,

(ǫ∗1ξ)i = ρ
ǫ(i) ǫ′(i)
i ρ

ǫ(i)
ǫ(i) ǫ′(i)ξǫ(i) = ρ

ǫ(i) ǫ′(i)
i ρ

ǫ′(i)
ǫ(i) ǫ′(i)ξǫ′(i) = (ǫ

′∗
1 ξ)i,

as required. Observe that equation (∗) was used in the middle equality.

Lemma A.2 is the most important special case of a general result on homotopies between
maps in the theory of Čech Cohomology (Chapter B, Section B.3).

Our next objective is to define Čech “cohomology groups” using the notion of direct mapping
family. Recall that if I is an index set which is a directed preorder and if we have a direct mapping
family {Fi}i∈I , which means that for all i, j ∈ I with i ≤ j, there is a map ρij : Fi → Fj so that

ρii = id

ρik = ρjk ◦ ρij

for all i, j, k ∈ I with i ≤ j ≤ k, then the direct limit (or inductive limit), lim−→Fi, is defined as
follows: First, form the disjoint union

∐
i∈I Fi. Next, let ∼ be the equivalence relation on

∐
i∈I Fi

defined by:
fi ∼ fj iff ρik(fi) = ρjk(fj) for some k ∈ I with k ≥ i, j,

for any fi ∈ Fi and any fj ∈ Fj . Finally, the direct limit lim−→Fi is given by

lim−→
i∈I

Fi =

(∐

i∈I

Fi

)
/ ∼ .

For every index i ∈ I, we have the canonical injection ǫi : Fi →
∐
i∈I Fi, and thus, a canonical map

πi : Fi −→ lim−→Fi, namely
πi : f 7→ [ǫi(f)]∼.



460 APPENDIX A. SHEAVES AND RINGED SPACES

(Here, [x]∼ means equivalence class of x modulo ∼.) It is obvious that πi = πj ◦ ρij for all i, j ∈ I
with i ≤ j. Note that if each Fi is a group or a ring, then lim−→Fi is also a group or a ring. For
example, in the case where each Fi is a group, we define addition by

[fi] + [fj ] = [ρik(fi) + ρjk(fj)], for any k ∈ I with k ≥ i, j.

The direct limit lim−→Fi is characterized by the important universal mapping property : For every G

and every family of maps θi : Fi → G so that θi = θj ◦ ρij , for all i, j ∈ I with i ≤ j, there is a
unique map, ϕ : lim−→Fi → G, so that

θi = ϕ ◦ πi, for all i ∈ I.

We apply the above construction to the preorder of domination among open coverings.

Given two coverings {Ui −→ U} and {U ′λ −→ U}, we shall write
{Ui −→ U} ≥ {U ′λ −→ U} and say that {Ui −→ U} dominates {U ′λ −→ U} (or refines
{U ′λ −→ U}) if there is a map {Ui −→ U} −→ {U ′λ −→ U}. Clearly, the relation of
domination partially orders the coverings of U and turns the set of such coverings into a
directed set. According to Lemma A.2, the sets H0({Ui −→ U},F) form a direct mapping
family on this directed set of coverings of U , for the map between sets H0({U ′λ −→ U},F),
H0({Ui −→ U},F) depends only on the domination relation. Consequently, it is legitimate
to pass to the direct limit over all coverings of U in the mapping family H0({Ui −→ U},F).
The direct limit is denoted Ȟ0(U,F) and is usually called the zeroth Čech cohomology group
of U with coefficients in F . For the present purposes, we adopt the slightly simpler notation
F (+)(U) for Ȟ0(U,F). Thus,

F (+)(U) = lim−→
{Ui→U}

H0({Ui → U},F)

(the direct limit over all coverings {Ui → U} of U .)

Remark: As pointed out by Serre (see FAC [47], Chapter 1, §3, Subsection 22), there is a set-
theoretic difficulty when defining the direct limit F (+)(U) with respect to the collection of all
coverings of U , since the collection of all coverings of an open set is not a set (the index set is
arbitrary). This difficulty can be circumvented by observing that any covering {Ui −→ U}i∈I is
equivalent to a covering {U ′λ −→ U}λ∈Λ whose index set Λ is a subset of 2X . Indeed, we can take
for {U ′λ −→ U}λ∈Λ the set of all open subsets of X that belong to the family {Ui −→ U}i∈I . As we
noted earlier, if {Ui −→ U}i∈I and {U ′λ −→ U}λ∈Λ are equivalent, then there is a bijection between
H0({Ui −→ U},F) and H0({U ′λ −→ U},F), so that we can define

F (+)(U) = lim−→
{Ui→U}

H0({Ui → U},F)

with respect to coverings {Ui → U} whose index set I is a subset of 2X . Another way to circumvent

the problem is to use a device due to Godement ([18], Chapter 5, Section 5.8).

Now observe that U  F (+)(U) is itself a presheaf. For if V ⊆ U and if {Ui −→ U} is a
covering, then {Ui ∩ V −→ V } is a covering, and clearly there is a natural map
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H0({Ui −→ U},F) −→ H0({Ui ∩ V −→ V },F). From the universal mapping property of
direct limits it follows that we obtain a map F (+)(U) −→ F (+)(V ). One checks very easily
that these data do indeed describe a presheaf F (+).

The point of all the above is that F (+) while, in general, not a sheaf, is much closer to
being a sheaf than F is. In fact, we shall show that F (+) satisfies the following axiom weaker
than axiom (S):

Axiom (+) If {Ui −→ U} ∈ Cov T , then F(U) −→∏
iF(Ui) is injective.

Theorem A.3 Let F be a presheaf of sets on the space X, then the presheaf F (+) satisfies
axiom (+). For any presheaf G, if G satisfies axiom (+), then G(+) is a sheaf. Consequently,
for any presheaf F , F (+)(+) is a sheaf. If F is an arbitrary presheaf, there is a natural map
F −→ F (+) and the presheaf F (+)(+) satisfies the following universal property: Every map of
the presheaf F into a sheaf G factors uniquely through the canonical map of F into F (+)(+).

Proof . Let ξ1, ξ2 belong to F (+)(U) and assume ξ1 and ξ2 have the same image in F (+)(Ui)
for each i. Since

F (+)(U) = lim−→ H0({Vα → U},F),

the elements ξ1 and ξ2 can be represented by elements ξ1, ξ2 in H0({Vα → U},F) for some
covering {Vα → U} of U . When this is done, the image of ξ1 (resp. ξ2) in F (+)(Ui) is
represented by the image of ξ1 (resp. ξ2) in H

0({Vα∩Ui → Ui},F). However, ξ1 and ξ2 have
the same image in F (+)(Ui) for every i; hence, there is a covering {Wαi −→ Ui} dominating
{Vα ∩ Ui → Ui} such that the images of ξ1 and ξ2 agree in

∏
αF(Wαi). When both α and

i vary, {Wαi −→ U} is a covering which dominates {Vα −→ U} and for which ξ1, ξ2 have
equal image in

∏
α,iF(Wαi). It follows immediately from the definition of F (+) that ξ1 = ξ2.

Now assume that the presheaf G satisfies axiom (+). We contend that the map
H0({U ′λ −→ U},G) −→ H0({Ui −→ U},G) induced by a refinement of coverings
{Ui −→ U} ≥ {U ′λ −→ U} is always injective. To see this, let ǫ be the map of coverings
{Ui −→ U} −→ {U ′λ −→ U}, and consider the diagram of coverings

{Ui ∩ U ′λ}
π

yyss
ss
ss
ss
s

π′

%%❑❑
❑❑

❑❑
❑❑

❑❑

{Ui} ǫ //

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲

{U ′λ}

xxrrr
rr
rr
rr
rr

U

Since {Ui ∩ U ′λ −→ U ′λ} for fixed λ is a covering, and since G satisfies (+), we deduce that

θ :
∏

λ

G(U ′λ) −→−→
∏

i,λ

G(Ui ∩ U ′λ)
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is injective. However, θ when restricted to H0({U ′λ −→ U},G) is precisely the map π
′∗;

hence, π
′∗ is an injection. But Lemma A.2 shows that π∗ ◦ ǫ∗ = π

′∗; hence, ǫ∗ is indeed an
injection.

Let {Ui −→ U} be a covering, and let ξ ∈ H0({Ui −→ U},G(+)) be given. We must
show that ξ is the image of some element of G(+)(U). Let ξi be the ith component of ξ, (so
ξi ∈ G(+)(Ui)), and choose for each i a covering {Vαi −→ Ui} and an element
ξi ∈ H0({Vαi −→ Ui},G) representing ξi. Then we have the following diagram of coverings

{Vαi}

��

{Vαi ∩ Uj}oo

��

{Vαi ∩ Vβj}oo

��
{Ui}

��

{Ui ∩ Uj}oo

��

{Ui ∩ Uβj}oo

��
U {Uj}oo {Vβj}.oo

The element ξi induces an element ξ
(1)
i,j ∈ H0({Vαi ∩ Uj −→ Ui ∩ Uj},G), and similarly, ξj

induces an element ξ
(2)
i,j ∈ H0({Ui∩Vβj −→ Ui∩Uj},G). Since ξ ∈ H0({Ui −→ U},G(+)), the

elements ξ
(1)
i,j and ξ

(2)
i,j represent the same element of G(+)(Ui ∩ Uj). Therefore, ξ

(1)
i,j and ξ

(2)
i,j

“become equal” in some covering of Ui ∩ Uj which is a common refinement of the coverings

{Vαi ∩ Uj −→ Ui ∩ Uj}, {Ui ∩ Vβj −→ Ui ∩ Uj}.

However, we have just proven that the induced maps on H0 are always injections (since

G satisfies (+)), and it follows from this that ξ
(1)
i,j and ξ

(2)
i,j become equal in any common

refinement of the above coverings. In particular, ξ
(1)
i,j and ξ

(2)
i,j become equal in∏

α,β G(Vαi ∩ Vβj), which proves that ξ ∈ H0({Vαi −→ U},G). Hence, ξ ∈ G(+)(U) as

required, and G(+) therefore is a sheaf.

The identity covering {U −→ U} is dominated by every covering; hence we obtain the
map

F(U) = H0({U −→ U},F) −→ lim H0({Ui −→ U},F) = F (+)(U).

Moreover, if G is a sheaf, and {Ui −→ U} is a covering of U , then consideration of the
commutative diagram ∏F(Ui ∩ Uj) //

∏G(Ui ∩ Uj)

∏F(Ui)

OO OO

//
∏G(Ui)

OO OO

F(U)

OO

// G(U)

OO
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shows that any map F −→ G factors through F (+) in a unique way. This proves the universal
mapping property of the sheaf associated to a presheaf, and completes the proof of Theorem
A.3.

Notation: The sheaf associated to the presheaf F will be denoted F#. The sheaf F# is
sometimes called the sheafification of F .

There is a second way of constructing the sheaf associated to a given presheaf, this is the
method of étalé spaces—it is more classical than the double limit method adopted above.
If X is a topological space, then the pair (E, π) consisting of a topological space E and a
surjective map π : E → X is an étalé space over X if and only if π is a local homeomorphism.
If (E, π) is a such a space and U is an open subset of X , then a continuous map σ : U → E
is called a section of E if and only if (π ◦ σ)(x) = x for every x ∈ U . (The word “section”
is short for cross-section and the origin of this word is obvious from the diagram showed in
Figure A.1).

π σ

X

E

( )
U

σ(U)

Figure A.1: A section of some étalé space

Given (E, π) over X , let E0(U) (= Γ(U,E)) denote the set of sections of E over U .
The family of sets E0(U) is a presheaf in the obvious way, and it is trivial to verify that
E0 is actually a sheaf. So with every étalé space (E, π) over X , one has a canonical sheaf
associated, E0, usually called the sheaf of germs of continuous sections of E. The nub of the
second method consists in associating to the presheaf F an étalé space (F̃ , π) and then in

passing to the sheaf F̃0.

Let x ∈ X be a chosen point and let Jx denote the family of open sets of X containing
x. The set Jx is directed by defining that U ≥ V whenever U ⊆ V . If F is a presheaf on X ,
we may then form the direct limit

lim−→
U∈Jx

F(U) = Fx,

which is called the stalk of F at x. Observe that if F is a sheaf of groups or rings, Fx is a
group (resp. ring) for each x ∈ X .

The notion of stalk allows us to give a very precise formulation of the principle that
sheaves are determined locally on X . This is
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Proposition A.4 Let F ,G be sheaves of sets over X, let ϕ : F → G be a morphism. For
each x ∈ X, the morphism ϕ induces a map ϕx : Fx → Gx; ϕ is an isomorphism if and only
if ϕx is an isomorphism for all x ∈ X.

Proof . Choose x ∈ X , and let U ∈ Jx. Then ϕ gives rise to a map F(U) −→ G(U), which
when coupled with the canonical G(U) −→ Gx, gives us the mapping F(U) −→ Gx. it is easy
to check that the latter map commutes with restriction to smaller open sets; so it factors
through the direct limit, Fx of the sets F(U). Clearly, if ϕ is an isomorphism so is ϕx for
each x.

Now suppose ϕx is an injection for each x. Given an open set U , let ξ, η be chosen in
F(U) and assume that ϕ(ξ) = ϕ(η). For each x ∈ U , ϕ(ξ)x = ϕ(η)x (here ϕ(ξ)x is the image
of ϕ(ξ) in Gx, etc.). As ϕx(ξx) = ϕ(ξ)x, we deduce that ξx = ηx for each x ∈ U . This means
that there exist open sets Ux for each x ∈ U , with x ∈ Ux and ρUUx

(ξ) = ρUUx
(η). But the

family {Ux −→ U} is an open covering, and ξ, η go to the same element of
∏

xF(Ux) under
the mapping F(U) −→∏

xF(Ux). Since F is a sheaf, this implies that ξ = η.

Finally, let α ∈ G(U) be chosen, then as ϕx is surjective for each x ∈ U , there exist
elements ξx in Fx such that ϕx(ξx) = αx. The elements ξx arise from elements ξ′x ∈ F(Ux)–
where the sets Ux are open neighborhoods of x. Since ϕ(ξ′x)x = αx, there is a smaller
neighborhood Vx of x such that ρUx

Vx
(ξ′x) = ρUVx(α). We may therefore assume that Ux = Vx.

If y is another point in U , let ξ′xy be the restriction of ξ′x to Ux∩Uy and let ξ′yx be the similar
restriction of ξ′y. Then

ϕ(ξ′xy) = ρUUx∩Uy
(α) = ϕ(ξ′yx).

Since ϕ is injective (by the above paragraph), this shows that ξ′xy = ξ′yx. It follows from
the second part of the sheaf axiom for F that there exists an element ξ ∈ F(U) such that
ρUUx

(ξ) = ξ′x for every x ∈ U . Clearly, ϕ(ξ) = α, which proves that ϕ is surjective.

Theorem A.5 Let F be a presheaf of sets on X. There is associated to F an étalé space,
(F̃ , π) in a canonical way such that for every x ∈ X,

Fx = π−1(x).

If F̃0 is the sheaf of germs of sections of F̃ , then as a sheaf, F̃0 is canonically isomorphic to
F#. Every sheaf is the sheaf of germs of sections of its associated étalé space.

Proof . For each x ∈ X form the stalk, Fx, at x. Let F̃ be the disjoint union of the sets
Fx as x varies over X , and define π : F̃ → X by the rule: π takes all of Fx onto x. Then
the equation Fx = π−1(x) is automatic, and all that is lacking is the definition of a suitable

topology on F̃ . If the open set U is given and x ∈ U is chosen, then there is a map
ρU,x : F(U) −→ Fx. Let s ∈ F(U), and let ρU,x(s) be denoted s̃(x). For fixed U , and varying

x, we obtain s̃(x) ∈ Fx (each x); hence, s̃ is a function from U to F̃ . Moreover, by the
definition of π, we have (π ◦ s̃)(x) = x for each x ∈ U . It is easily seen that if t = ρUV (s), for

V ⊆ U , then t̃ is the restriction of s̃ to V in the sense of functions . We give F̃ the finest
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topology that renders the maps s̃ continuous for every s ∈ F(U) and every U ∈ CatT . Thus
a set E ⊆ F̃ is open if and only if

(∀U)(∀s ∈ F(U))({x ∈ U | s̃(x) ∈ E} is open in X).

If U is open in X , and V is another open set in X , then for every s ∈ F(V ), we have

s̃−1(π−1(U)) = U ∩ V ; hence, π is continuous. Moreover, s̃(U) is open in F̃ by definition,

and π maps s̃(U) homeomorphically onto U . Thus, (F̃ , π) is an étalé space, as required.

The mapping s 7→ s̃ takes F(U) into F̃0(U) for each U , and is a map of the presheaf F
into the sheaf F̃0. As such it factors through the associated sheaf F# to F , and we obtain
the map of sheaves F# −→ F̃0. If we show that F#

x = Fx and (F̃0)x = Fx, then Proposition

A.4 will imply that F# is isomorphic to F̃0. Since F (+) = F whenever F is a sheaf, the
remaining statement of Theorem A.5 will follow from the equality F# = F̃0.

The equality (F̃0)x = Fx follows immediately from the definitions. We now show that

F (+)
x = Fx, which will complete the proof. If s and t are two elements of Fx whose images

s′ and t′ are equal in F (+)
x , then they are representing elements σ, τ ∈ F(U)—for some U

containing x—whose images σ′, τ ′ ∈ F (+)(U) are equal. Hence, there is a covering
{Uα −→ U} such that σ′α = τ ′α for every α (where σ′α (resp. τ ′α) is the α

th component of σ′

(resp. τ ′)). But the point x belongs to one of the Uα, and for this α, the elements σ′α and τ ′α
are representatives of s and t; hence, s = t. Given any element s of F (+)

x , it is represented by
some element σ of F (+)(U)—U being an open neighborhood of x. The element σ, in turn, is
represented by a family (σα) of elements of F(U) corresponding to a covering {Uα −→ U}.
One of the Uα contains x, and for this α, the element σα represents a element r of Fx.
Clearly, the image of r in F (+) is s.

Remark: Theorem A.5 show that the functor (E, π)  E0 is an equivalence of categories
between the category of étalé spaces over X and the category of sheaves of sets over X .

Given a sheaf, F , over a topological space X, for every open subset U of X, the set (resp.
group, ring, etc.), F(U), is called the set (resp. group, ring, etc.) of sections of F over U and is
also denoted Γ(U,F), the notation being justified by the fact every sheaf is the sheaf of germs of
sections of its étalé space. A section σ ∈ F(X) = Γ(X,F) over X is called a global section of F
over X. For every section σ ∈ F(U) = Γ(U,F), where U is any open subset of X, for every x ∈ U ,
we let σx (or occasionally σ(x)) denote the image of σ under the canonical map F(U) −→ Fx (the
germ of σ over U at x). A sheaf G over X is a subsheaf of the sheaf F if and only if G(U) is a
subset of F(U) (resp., subgroup, if F is a sheaf of abelian groups) for every open subset U of X,
and the restriction maps ρG

U
V (resp. homomorphisms) are induced (by restriction and corestriction)

by the corresponding maps ρF
U
V (for all open U, V with V ⊆ U). The reader should check that the

étalé space G̃ associated with G is an open subset of the étalé space F̃ associated with F , and that
conversely, the sheaf of sections associated with an open subset of an étalé space E is a subsheaf of
the sheaf of section of E. Assume further that F is a sheaf of abelian groups. The support of the
sheaf F is the set, SuppF , of all x ∈ X such that Fx 6= (0).
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Problem A.3 Let F be a sheaf and (E, π) its associated étalé space. Let U be an open
subset of X , and let s and t be sections of E over U . Show that the set of all x ∈ U for
which s(x) = t(x) is an open subset of U . If the topology on E is Hausdorff, prove that the
set where s(x) = t(x) is closed in U . Hence, show that if E is Hausdorff, two sections which
agree at a point agree in the whole connected component of that point (analytic continuation
of sections). If X is a complex analytic manifold and F is its sheaf of germs of holomorphic
functions, is E Hausdorff? Answer the same question if X is a topological space and F is
the sheaf of germs of continuous functions on X .

Problem A.4 Let F be a sheaf over X and suppose furthermore that F satisfies axiom (S)
for arbitrary sets and arbitrary coverings from X . (That is, remove all mention of openness

from axiom (S).) Show that for each set T in X , F(T ) = (Γ(T, F̃ )) is the set
∏

x∈T Fx.

A.3 The Category S(X), Construction of

Certain Sheaves

By S(X) we shall mean the full subcategory (i.e., all morphisms) of P(X) formed by the
sheaves (of abelian groups) of P(X). (Similarly for S(X, E), where E stands for the category
of sets.) We have two functors relating S and P:

(a) i : S → P, the functor which regards a sheaf as a presheaf, and

(b) #: P → S, the functor which assigns to each presheaf its associated sheaf.

Theorem A.6 The category S(X) is an abelian category. The functor i is left-exact and
the functor # is exact. Moreover, the functors i and # are adjoint (in the sense of Kan
[35]), that is

HomP(G, iF) ≃ HomS(G#,F)
for every presfeaf G and every sheaf F over X.

Proof . Let F and G be sheaves of abelian groups on X , and let θ : F → G be a morphism.
We can form the two presheaves

U  Ker (F(U) −→ G(U))
U  Coker (F(U) −→ G(U)).

Of these, a simple argument shows that the first is a sheaf, while the second need not be
a sheaf. Define Ker θ to be the former sheaf and Coker θ to be the sheaf associated with
the latter presheaf. The reader may check that with these definitions of Ker θ and Coker θ,
S(X) forms an abelian category.

That i is left-exact follows immediately from the fact that the presheaf kernel and sheaf
kernel coincide. The adjointness property of the functors i and # is merely another way



A.3. THE CATEGORY S(X), CONSTRUCTION OF CERTAIN SHEAVES 467

of stating the universal mapping property of the sheaf associated to a presheaf. It remains
only to prove that # is an exact functor. Now, the functor (+): P(X) → P(X) given by
F  F (+) is left-exact as one easily checks. It follows from this that i ◦ # = (+) ◦ (+)
is also left-exact. However, as i is left-exact and fully faithful (i.e., i(F) = (0) if and only
if F = (0)), one finds that # is left-exact. So all that is necessary is to prove that # is
right-exact. Let F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of presheaves, and observe
that by the adjointness of # and i we have an isomorphism

HomP(F , iG) ≃ HomS(F#,G)

for every sheaf G over X . Hence, in the commutative diagram

0 // HomP(F ′′, iG)

��

// HomP(F , iG)

��

// HomP(F ′, iG)

��

0 // HomS(F ′′#,G) // HomS(F#,G) // HomS(F ′#,G),

exactness in the top row implies exactness in the bottom row. But we have assumed
F ′ −→ F −→ F ′′ −→ 0 is exact, so that the top row of our diagram is exact. Thus, for
every sheaf G, the bottom row of the diagram is exact; this implies that the sequence
F ′# −→ F# −→ F ′′# −→ 0 is exact.

A less category–theoretic proof of the exactness of # may be given as a consequence of
the following proposition.

Proposition A.7 Let F ,G ∈ S(X) and let θ : F → G be a morphism. Then θ is injective
(resp. surjective, bijective) if and only if for every x ∈ X, the induced map θx : Fx → Gx is
injective (resp. surjective, bijective). A sheaf F is zero if and only if all its stalks are zero.

Proof . Since passage to stalks is an exact functor (trivial because a presheaf and its associ-
ated sheaf have the same stalks), and application of the last statement to the sheaves Ker θ,
Coker θ will yield the first statements. Consequently, only the last statement requires proof.

Now, obviously, if F is zero so are all its stalks. Assume all the stalks of F are zero.
Given any open set U , and any ξ ∈ F(U), since ξx is zero in Fx for each x ∈ U , there is
an open neighborhood Ux of x in U such that ξ′x = ρUUx

(ξ) vanishes. But {Ui −→ U} is
a covering and ξ goes to zero under the map F(U) −→ ∏

xF(Ux). As F is a sheaf, ξ is
zero—completing the proof.

The proof that # is exact is now obvious. Namely, if F ′ −→ F −→ F ′′ −→ 0 is exact in
P , then certainly

F ′x −→ Fx −→ F ′′x −→ 0

is exact as a sequence of abelian groups. As F#
x = Fx, etc., we deduce that

F ′#
x −→ F#

x −→ F
′′#
x −→ 0
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is exact for every x. Proposition A.7 shows that F ′# −→ F# −→ F ′′# −→ 0 is exact in S.
The proof of Theorem A.6 illustrates a very basic principle: If one wishes to make a

cetain (functorial) construction on sheaves, one first does the construction for presheaves,
and then passes to the associated sheaf . The following illustrations of this process are worth
more than any further explanation.

(a) Cokernel of a map of sheaves (as in Theorem A.6). If θ : F → G is a map of sheaves,
form the presheaf cokernel

U  Coker (F(U) −→ G(U)),

and pass to the associated sheaf. The result is Coker θ.

(b) Direct sum of sheaves . Let {Fα} be a family of sheaves and form the “presheaf direct
sum of the Fα,” i.e., the presheaf

U  
∐

α

Fα(U).

The associated sheaf to this presheaf is the direct sum of the Fα in S(X). Hence, S(X)
has direct sums.

(c) Direct products of sheaves . Let {Fα} be a family of sheaves and form the “presheaf
direct product of the Fα,” i.e., the presheaf

U  
∏

α

Fα(U).

In this case, one obtains a sheaf, so U  
∏

αFα(U) is the direct product of the Fα in
S(X). Hence, S(X) has products.

(d) Direct limits of sheaves . Let {Fλ} be a direct mapping family of sheaves over the
directed index set Λ. The “presheaf direct limit”’ of the Fλ is the presheaf given by

U  lim−→
λ

Fλ(U).

Its associated sheaf is the direct limit of the Fλ in S(X). Observe (exercise) that for
every x ∈ X , (

lim−→
λ

Fλ
)

x

= lim−→
λ

(Fλ)x.

(e) Projective (Inverse) limits of sheaves . Let {Fλ} be an inverse mapping family of
sheaves over the directed index set Λ. The “presheaf inverse limit”’ of the Fλ,

U  lim←−
λ

Fλ(U)

is actually a sheaf; hence it is the inverse limit of the Fλ in S(X).
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(f) Torsion subsheaf of a sheaf . Let F a sheaf, then F(U) has a torsion subgroup tF(U)
for each U . The presheaf

U  tF(U)
is actually a sheaf, called the torsion subsheaf , tF , of F . The quotient F/tF of F
by its torsion subsheaf (i.e., the cokernel of 0 −→ tF −→ F) is called the torsion-free
quotient of F . It is an easy exercise to verify that (F/tF)(U) is a torsion free group
for every U . One obtains the decomposition

0 −→ tF −→ F −→ F/tF −→ 0

of every sheaf into its torsion and torsion-free pieces.

(g) Tensor-product of two sheaves . Let F ,G be two sheaves, and form the presheaf tensor
product of F and G (over Z),

U  F(U)⊗ G(U).
The sheaf associated to this presheaf is the tensor product of F and G in S(X). Observe
(exercise) that for every x ∈ X ,

(F ⊗ G)x = Fx ⊗ Gx.

(h) Sheaf of germs of homomorphisms from F to G. Let F ,G be two sheaves over X . If
U is an open subset subset of X , we may define two “new sheaves” F ↾ U and G ↾ U ,
called the restrictions of F (resp. G) to U , as follows:

(F ↾ U)(V ) = F(V ), (G ↾ U)(V ) = G(V ) for V ⊆ U.

These are sheaves over U . Consider the presheaf

U  HomS(U)(F ↾ U,G ↾ U).
It is actually a sheaf, called the sheaf of germs of homomorphisms from F to G, and
denoted Hom (F ,G). We have a canonical homomorphism

Hom (F ,G)x −→ Hom(Fx,Gx),
but this is neither injective nor surjective in general.

Problem A.5 Show that an injective sheaf is injective as a presheaf, i.e., the functor i
preserves injectives.

Problem A.6 For any open set U of X , define the section functor , ΓU , by

ΓU(F) = F(U).
(Sometimes, the set F(U) is denoted Γ(U,F).) Show that ΓU is a left-exact functor.

Problem A.7 If 0 −→ F ′ −→ F is an exact sequence of sheaves, and if C denotes the
presheaf cokernel of F ′ −→ F , prove that C satisfies axiom (+). Deduce that C(+) is the
sheaf cokernel of F ′ −→ F .
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A.4 Direct and Inverse Images of Sheaves

Let X, Y be topological spaces and let f : X → Y be a continuous map from X to Y .

(a) Direct Image. Let F be a sheaf on X . For each open set V in Y , the set f−1(V ) is
open in X . Define a presheaf on Y by

V  F(f−1(V )).

This is actually a sheaf , called the direct image of F by f , denoted f∗F . Thus

Γ(V, f∗F) = (f∗F)(V ) = F(f−1(V )) = Γ(f−1(V ),F).

(b) Inverse Image. Let G be a sheaf on Y . If x ∈ X , consider the set Gf(x). There is
a sheaf, F , whose stalk at x ∈ X is the set Gf(x); it is called the inverse image of G by
f , denoted f ∗G. Thus, f ∗G is a sheaf over X , and (f ∗G)x = Gf(x). (This is an example
of a construction where knowledge of the stalk-theoretic approach to sheaf theory is very
helpful.)

To define the sections of the inverse image of G over an open set, one proceeds as follows:
Given an open set U of X , let IfU be the family of all open V in Y with the property that
f(U) ⊆ V . Now, the sets G(V ) form a direct mapping family as V ranges over IfU ; hence,
we obtain the presheaf, fPG, on X by setting

fPG(U) = lim−→
V ∈IfU

G(V ).

The sheaf associated to this presheaf is f ∗G. To see this, note that the stalk of f ∗G at x ∈ X
is just the limit lim−→U∈Jx

(fPG)(U) (recall, Jx denotes the family of open sets of X containing

x.) Thus,

(fPG)x = lim−→
U∈Jx

lim−→
V ∈IfU

G(V ) = Gf(x),

the latter equality because f is continuous from X to Y .

Remark: Suppose that f is an open map (as well as being continuous). Then the directed
set IfU has a final element, f(U); hence the presheaf fPG is given by U  G(f(U)). It is
easy to see that, under these circumstances, fPG satisfies axiom (+). However, even if f is
open, fPG need not be a sheaf. If f is a monomorphisms (into), then fPG is a sheaf; hence
coincides with f ∗G.

If f : X → Y is the inclusion map, i.e., X is a subspace of Y , then f ∗G is called the
restriction of G to X , and is denoted G ↾ X . If F is a sheaf on X , then f∗F is the sheaf on
Y given by

Γ(U, f∗F) = Γ(U ∩X,F).
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Theorem A.8 Let X, Y be topological spaces, and let f : X → Y be a continuous map.
Then the functor f∗ : S(X) → S(Y ) is left-exact, the functor f ∗ : S(Y ) → S(X) is exact,
and these two functors are adjoint, i.e., there is a natural isomorphism

θ(F ,G) : HomS(X)(f
∗G,F) −→ HomS(Y )(G, f∗F)

for every F ∈ S(X) and G ∈ S(Y ).

Proof . That f∗ is left-exact is trivial. To prove that f ∗ is exact, one examines the stalk-
theoretic definition and uses Proposition A.7. The details are easy and will be omitted.
Let us prove that f ∗ is the left-adjoint of f∗. Let ξ take f ∗G to F in S(X). There is a
map of presheaves fPG −→ f ∗G, and this, when coupled with ξ yields a map of presheaves
ξ′ : fPG → F . Hence, for every open set U in X , we obtain a map

ξ′(U) : fPG(U)→ F(U).

Now for every open V of Y , such that f(U) ⊆ V , we have a mapping G(V ) −→ fPG(U).
Hence, for all U and V with f(U) ⊆ V , we deduce a map

ξ′(U, V ) : G(V )→ F(U).

Given V , let U = f−1(V ). Certainly F (U) ⊆ V , so we obtain from the above a map

ξ̃(V ) : G(V )→ F(f−1(V )) = f∗F(V )

which is easily seen to be a map of sheaves. Set θ(F ,G)(ξ) equal to ξ̃. The procedure above,
run in reverse with obvious modifications, yields a map inverse to θ(F ,G), and completes
the proof.

Corollary A.9 Let the hypotheses be as in Theorem A.8. Let F be a sheaf on X, G a sheaf
on Y . Then there are canonical maps

canX f : f
∗f∗F −→ F

canY f : G −→ f∗f
∗G.

Proof . In the theorem, set G = f∗F . Then

θ(F ,G) : HomS(X)(f
∗f∗F ,F) −̃→ HomS(Y )(f∗F , f∗F)

is an isomorphism. The inverse image of the identity map f∗F −→ f∗F under θ is canX f .
In a similar manner one constructs canY f .

Example. let X be an arbitrary topological space, let Y be the one point space, and let
f : X → Y be the map collapsing all of X to the one point of Y . If F is a sheaf on X , then
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f∗F is the sheaf on Y whose stalk at the unique point of Y is the set F(X). If G is a sheaf
on Y (i.e., if the set G(Y ) is given), and if U is a nonempty open subset of X , then

fPG(U) = G(f(U)) = G(Y ).

Hence, fPG is the constant presheaf (with value G(Y )) on X , and f ∗G is the sheaf generated
by the constant presheaf U  G(Y ).

Let us apply this to the case in which G = f∗F for a sheaf F on X . Then f ∗f∗F is the
sheaf generated by the constant presheaf U  F(X) (U open in X), and our canonical map
f ∗f∗F −→ F is exactly the one induced by the map of presheaves
F(X) = fPf∗F(U) −→ F(U) given by the restriction from X to U . It follows that canX f
is neither injective nor surjective in general .

Problem A.8 Give an example to show that canY f is neither injective nor surjective in
general.

Problem A.9 Let X, Y, Z be three topological spaces, let f : X → Y , g : Y → Z be con-
tinuous maps, and let h = g ◦ f . Show that as functors, h∗ and g∗ ◦ f∗ are equal, and that
h∗ = f ∗ ◦ g∗.

Problem A.10 A space X is irreducible if it is not the union of two closed proper subspaces.
(We assume X 6= ∅.) A sheaf F on any space X is locally associated to a constant presheaf
if every point of X has an open neighborhood U such that F ↾ U is the sheaf associated to
some constant presheaf on U . Suppose that X is irreducible. Prove that the following three
conditions are equivalent:

(a) F is a constant presheaf on X .

(b) F is the sheaf associated to a constant presheaf on X .

(c) F is locally associated to a constant presheaf.

A.5 Locally Closed Subspaces

A subspace Y of a topological space X is locally closed in X if and only if for each y ∈ Y ,
there is an open neighborhood of y in X , say U(y), such that Y ∩ U(y) is closed in U(y).

Example.
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bc

bc

Figure A.2: Example of a locally closed set

A square whose interior and bold face edge excluding circled points make up Y .

Remark: The following are equivalent:

(a) X is locally closed in X .

(b) Y is the intersection of an open set and a closed set in X .

(c) Y is open in its closure, Y .

Let X be a topological space and let F be a sheaf of abelian groups on X . If M is an
arbitrary subspace of X , the support of a section σ ∈ Γ(M,F ↾M) is the set, Supp σ, of all
x ∈M such that σx 6= 0.

Lemma A.10 Let X be a topological space and let F be a sheaf of abelian groups on X. Let
M be an arbitrary subspace of X and let σ ∈ Γ(M,F ↾M). Then the support of σ is closed
in M .

Proof . Look at the complement, C, of the support of σ in M . If x ∈ C, σx = 0. Now, Fx is
the inductive limit over all open neighborhoods U (of x in M) of the groups (F ↾ M)(U).
The element σ ∈ Γ(M,F) induces on each such U its restriction, σ ↾ U , in Γ(U,F ↾ M), and
σx is the image of these restrictions in the direct limit Fx. Since σx = 0, and since 0 ∈ Fx is
the image of the element 0 in (F ↾ M)(U) for each U , it follows by the definition of direct
limit that there exists an open U in M such that σ ↾ U = 0. Hence, this open neighborhood
U (of x in M) lines in C, and this proves that C is open in M .

Locally closed subspaces are extremely important in algebraic geometry and sheaf theory
because of the following extension theorem.

Theorem A.11 Let Y be a locally closed subspace of X, and let F be a sheaf of abelian
groups on Y . Then there exists a unique sheaf F on X such that F ↾ Y = F and
F ↾ (X − Y ) = (0).



474 APPENDIX A. SHEAVES AND RINGED SPACES

Remark: The sheaf F is called F extended by zero outside Y .

Proof . Let us first prove that F is unique. This will be done by characterizing the group
F(U) in terms of the sheaf F . Assume then that we have a sheaf F on X which when
restricted to Y gives F and when restricted to X − Y is zero. Consider the map

ρUU∩Y : F(U) −→ F(U ∩ Y ) = F(U ∩ Y ).
(Here, F(U ∩ Y ) is the group of sections over U ∩ Y of the étalé space associated with F .)
Suppose that σ ∈ F(U) and ρUU∩Y (σ) = 0. For any x ∈ U , when x /∈ Y ,
σx ∈ (F ↾ (X−Y ))x = (0) and when x ∈ Y , σx = ρUU∩Y (σ)x = 0. Hence, σx = 0 for all x ∈ U ,
that is, ρUU∩Y is injective. Which elements of F(U ∩Y ) come from F(U)? Obviously, exactly

those elements σ of F(U ∩ Y ) which can be extended continuously to functions σ : U → F̃
which vanish outside Y . By Lemma A.10, the support of such a σ is closed in U . But the
support of σ is exactly the support of σ; so we deduce that the elements σ of F(U ∩ Y )
which come from F(U) are exactly those whose support is closed in U (not only in U ∩ Y ).
Hence,

F(U) = {σ ∈ F(U ∩ Y ) | Supp σ is closed in U}, (∗)
and this proves the uniqueness of F .

Actually it does more, for the presheaf U  F(U), where F(U) is defined by (∗) is
easily seen to be a sheaf. We claim that this sheaf is the required extension by zero of F . If
x ∈ X − Y , then clearly Fx = (0); so F vanishes outside Y . Suppose x ∈ Y − Y , and let U
be an open neighborhood of x in X . If σ ∈ F(U), then Supp σ is closed in U . As x is not in
Y , x in not in Supp σ. Consequently, there exists an open subset, V , of U , such that x ∈ V
and V ∩ Supp σ = ∅. Since U is open in X , so is V ; hence Fx, which is the limit of F(V )
over all such V , is zero.

Finally, we must prove that F ↾ Y is F . It is here that we must use the local closedness of
Y—the rest of the proof being valid with no hypotheses on Y . If π is the inclusion mapping
Y →֒ X , then F ↾ Y is precisely π∗F . From Theorem A.8, we deduce the isomorphism

HomS(Y )(π
∗F ,F) ≃ HomS(X)(F , π∗F).

However, we know from Section A.4 that π∗F is the sheaf U  F(U∩Y ); hence, there exists
a morphism from F to π∗F . This proves that we have a morphism from F ↾ Y = π∗F to
F as sheaves on Y ; and to prove these sheaves isomorphic, we need to prove only that our
morphism gives an isomorphism on the stalks. Let y ∈ Y , then as Y is locally closed , there
is an open neighborhood, U , of y in X such that U ∩ Y is closed in U . The same is true for
any open subset V of U . But then equation (∗) shows that for such V , F(V ) = F(V ∩ Y );
hence for y ∈ Y , we have Fy = Fy.

Let Y be locally closed in X , and let F be a sheaf of abelian groups on X . By the
truncation of F outside Y , we mean the sheaf FY defined by

FY = F ↾ Y .
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Observe that FY ↾ Y = F ↾ Y and F ↾ (X − Y ) = (0).

If Y is open in X , then from Section A.4 one has

(F ↾ Y )(U ∩ Y ) = F(U ∩ Y )
for any open subset U of X . Consequently,

FY (U) = {σ ∈ F(U ∩ Y ) | Supp σ is closed in U}.
If σ ∈ F(U ∩ Y ), and Supp σ is closed in U , then σ defined by σ ↾ (U ∩ Y ) = σ and σ = 0
outside Y , is an element of F(U), and this gives us an injection FY −→ F whenever Y is
open in X . If Y is closed in X , then it follows from the definition of FY that
FY (U) = (F ↾ Y )(U ∩ Y ).
Theorem A.12 Let Y be a closed subspace of X, and let F be a sheaf of abelian groups on
X. Then the sequence

0 −→ FX−Y −→ F −→ FY −→ 0 (∗∗)
is exact, where the map F −→ FY is the restriction of sections.

Proof . Let U be open in X , then, as above, F(U) = (F ↾ Y )(U ∩ Y ). Hence, the map
σ 7→ σ ↾ (U ∩ Y ) of F(U) to FY (U) is defined; it is clearly surjective (examine the stalks).
Now an element σ of F(U) goes to zero in FY (U) if and only if its support is contained in
U − (U ∩ Y ). Since U − (U ∩ Y ) = U ∩ (X − Y ), this shows that σ goes to zero in FY (U) if
and only if it comes from FX−Y (U).

Remark: The exact sequence (∗∗) will be called the exact sequence associated to the closed
subspace Y .

Our results on extension of sheaves by zero give us another characterization of locally
closed subspaces. This characterization clearly shows that Theorem A.11 is valid only for
locally closed subspaces.

Proposition A.13 Let Y be a subspace of the topological space X. Then the following are
equivalent:

(a) Y is locally closed in X.

(b) Given any sheaf, F , of abelian groups on X there exists a sheaf FY on X such that
FY ↾ Y = F ↾ Y and FY ↾ (X − Y ) = (0).

Proof . (a) ⇒ (b) is the content of Theorem A.11 and succeeding remarks. Let us prove
(b)⇒ (a). Let F be the “constant” sheaf Z on X (i.e., the sheaf associated to the constant
presheaf Z) and assume (b) holds for F . If y ∈ Y , then (FY )y contains the element 1; hence,
there exists an open neighborhood U(y) of y in X and a section s ∈ Γ(U(y),FY ) such that
s(y) = 1. By choosing U(y) small enough, we may assume that s ↾ (U(y) ∩ Y ) ≡ 1. On
U(y)− (U(y)∩Y ), the section s must vanish by hypotesis (b); hence U(y)∩Y is the support
of s over U(y). Lemma A.10 shows that U(y) ∩ Y is closed in U(y), as required.



476 APPENDIX A. SHEAVES AND RINGED SPACES

Proposition A.14 Let X be a topological space, and let F be the sheaf associated to the
constant presheaf A—where A is a ring. Let G be a subsheaf of F such that Gx is an ideal in
Fx = A for each x ∈ X. Then for each a ∈ A, the set of all x ∈ X such that a ∈ Gx is open
in X. If A is noetherian and x ∈ X, then for all y sufficiently close to x, we have Gx ⊆ Gy.

Proof . Since F is associated to the constant presheaf A the sections of F are precisely the
locally constant functions with values in A. To say that a ∈ Gx is to say that there exists a
section of F having the value a at x. It follows that this section has the value a near x, that
is,

Ua = {x | a ∈ Gx}
is open. If A is noetherian, and x is given, then Gx has a finite basis a1, . . . , ar. The
intersection Ua1 ∩ · · · ∩ Uar = U is the set of all y such that Gx ⊆ Gy. Since U is open, we
are done.

Corollary A.15 Under the same hypotheses as Proposition A.14, save that A = Z, each
ideal Gx corresponds to a number n(x) ≥ 0, and the function x 7→ n(x) has the following
properties:

(a) For all y close to x, n(y) divides n(x).

(b) For all n ≥ 0, the set of all x such that n(x) divides n is open in X.

If X is compact, the function n(x) takes only finitely many values.

Proposition A.14 and its corollary will be used to prove Theorem A.16 below, which is
of interest in the cohomology of algebraic varieties. We denote the sheaf associated to the
constant presheaf Z by Z.

Theorem A.16 Let X be a compact space and let G be a subsheaf of the sheaf Z on X.
Then G possesses a finite composition series whose quotients have the form ZY for locally
closed subspaces Y of X.

Proof . Each Gx has the form n(x)Z where the function n(x) satisfies properties (a) and (b)
of the corollary. Let U be the set of all x ∈ X such that n(x) 6= 0. Since Z is a Hausdorff
étalé space, the set U is open in X . For each integer r ≥ 1, the condition n(x) ≤ r is an
open condition (i.e., is satisfied on an open set) because every divisor of an integer is less
than or equal to that integer. Hence,

Ur = {x ∈ U | n(x) ≤ r}

is an open subset of U , and we have the ascending chain

U1 ⊆ U2 ⊆ · · · ⊆ U.
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Since X is compact, there exists an integer n ≥ 1 such that Un = U . Let Gr be the sheaf
GUr , then we have the composition series

G1 ⊆ G2 ⊆ · · · ⊆ Gn = G.

Clearly, G1 is isomorphic to ZU1 . Given r > 1, let Yr be the locally closed subspace Ur−Ur−1.
The sheaf Gr/Gr−1 is concentrated on Yr, and as n(x) is constantly equal to r on Yr, it is
obvious that Gr/Gr−1 is isomorphic to ZYr (as abelian groups!).

Problem A.11 Let Y be an arbitrary subspace of X . Show that every sheaf of abelian
groups F on Y is the restriction of a sheaf F̃ on X . (Hint: If π : Y → X is the inclusion, let

F̃ = π∗F .) Show that π∗F is not concentrated (in general) on Y unless Y is closed.

Problem A.12 Let Y and Z be locally closed in X and let F be a sheaf of abelian groups
on X . Show that (FY )Z = FY ∩Z . Deduce that FY is both a quotient of a subsheaf of F
and a subsheaf of a quotient of F . Prove also that FY = ZY ⊗Z F . Deduce that the functor
F  FY is exact.

Problem A.13 Show that the sheaves ZU , for any open subset U of X , are those associated
to the presheaves ZU of Example 4, Section A.1. Deduce that the sheaves ZU are a set of
generators for the category S(X) (in the sense of [Grothendieck [21]). Prove moreover that
every sheaf F ∈ S(X) is a quotient of a direct sum of the ZU .

Problem A.14 A category (abelian, with generators) is called locally notherian when its
generators are noetherian objects (i.e., every ascending chain of subobjects is eventually
stationary). Is S(X) a locally noetherian category?

Problem A.15 Prove the converse of Proposition A.14. That is, show that any subsheaf G
of the sheaf F for which

Ua = {x | a ∈ Gx}
is always open (all a ∈ A) has the property that Gx is an ideal for every x ∈ X . Deduce that
there is a one to one correspondence between sheaves of ideals of Z and functions x 7→ n(x)
from X to the non-negative integers having the property that for y close to x, n(y) divides
n(x).

A.6 Ringed Spaces, Sheaves of Modules

Definition A.3 A ringed space is a pair (X,OX) consisting of a topological space X and a
sheaf of rings OX on X . The space X is called the underlying space of the ringed space; the
sheaf OX is called the structure sheaf of the ringed space.
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In what follows, we shall always assume that OX is a sheaf of commutative rings with
unity. This assumption is not necessary, but it is the situation most often encountered in
geometry. By abuse of notation, a ringed space (X,OX) will often be denoted X—except
when this will cause cause confusion because of several possibilities for the structure sheaf.

Ringed spaces form a category if one defines morphisms as follows: Let (X,OX), (Y,OY )
be ringed spaces. By a morphism ϕ from (X,OX) to (Y,OY ) we mean a pair (|ϕ|, ϕ̃),
where |ϕ| is a continuous map X −→ Y and ϕ̃ is a homomorphism of sheaves of rings

OY −→ |ϕ|∗OX (or, what is the same, a homomorphism ˜̃ϕ from |ϕ|∗OY to OX). Observe
that the map on the sheaf level is contravariant to the map of ringed spaces, while the map
of underlying spaces is covariant to the map of ringed spaces.

Remark: We will also use the notation ϕalg or even ϕa for ϕ̃.

If M is a subspace of X , then (M,OX ↾ M) is a ringed space, and it is trivial to verify
that there exists a canonical map of ringed spaces (M,OX ↾ M) −→ (X,OX). This map

is called the injection of M into X . If (X,OX) ϕ−→ (Y,OY ) is a map of ringed spaces,
the composition (M,OX ↾ M) −→ (X,OX) −→ (Y,OY ) is called the restriction of ϕ to

(M,OX ↾ M). A trivial verification shows that if |ϕ| is injective and ˜̃ϕ is surjective, then ϕ
is a monomorphism in the category of ringed spaces [??].

Let X be a ringed space. An OX-module or sheaf of modules over X is a sheaf of
abelian groups, F , such that for every open U in X , the group F(U) is an OX(U)-module
in a functorial way (i.e., in a way compatible with restriction to smaller open sets). More
explicitly, this means that the diagram

OX(U)× F(U)

(ρO
U
V ,ρF

U
V )

��

// F(U)

ρF
U
V

��
OX(V )× F(V ) // F(V )

commutes for any two open subsets U, V with V ⊆ U .). It is obvious that OX-modules form
an abelian category . The sheaf OX is an OX-module, and any subsheaf of OX which is an
OX -module under the obvious action is called a sheaf of ideals on X or an OX-ideal .

Ringed spaces and sheaves of modules are fundamental to the study of modern geometry–
whether it be algebraic geometry, differential geometry, several complex variables, etc. Here
are examples of ringed spaces.

(1) Let X be a topological space and let OX be the sheaf of germs of continuous (resp.
differentiable, C∞) real (resp. complex) valued functions on X . Then (X,OX) is a
ringed space. In particular, if X is a Cp-manifold, we may take OX to be the sheaf of
germs of Cp-functions on X . Hence, for each x ∈ X , OX,x is the ring of equivalence
classes of Cp-functions locally defined at x under the relation: f is equivalent to g if
and only if there exists a suitable neighborhood of x, say U , such that f ↾ U = g ↾ U .
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(2) If X is a complex analytic manifold (think of an open subset of C), let OX be the sheaf
of germs of holomorphic functions on X . Then (X,OX) is a ringed space. The rings
OX,x are integral domains for each x ∈ X . LetMx be the fraction field of OX,x, and
letM be the union of theMx. ThenM is a sheaf if the topology is chosen so that

Γ(U,M) =





σ | ∃f, g ∈ OX(U))(g(x) 6= 0 for all x ∈ U)
and

(∀x ∈ U)
(
σ(x) =

f(x)

g(x)

)
.





The sheafM is called the sheaf of germs of meromorphic functions on X ; its sections
over U are called meromorphic functions on U . The sheafM is an OX-module, indeed,
OX is a subsheaf ofM andM is really an OX -algebra.

For each U open in X , let O∗X(U) (resp. M∗(U)) denote the invertible sections of OX
(resp. M) over U . Then, O∗X , M∗ are sheaves of abelian groups on X , and O∗X is a
subsheaf of M∗. The quotient sheaf M∗/O∗X is called the sheaf of germs of divisors
on X ; its sections over X are the divisors on X . Since the sequence

0 −→ O∗X −→M∗ −→M∗/O∗X −→ 0

is exact, to give a global section ofM∗/O∗X (i.e., a divisor on X) is to give a covering
{Ui −→ X} of X and a collection of invertible meromorphic functions fi ∈ M∗(Ui)
such that on Ui ∩ Uj, the function fi/fj is an invertible holomorphic function. Each
meromorphic function f induces a divisor on X in an obvious way; this divisor is called
a principal divisor of X , or the divisor of the function f . Two functions yield the same
divisor if and only if their ratio is a nonzero global holomorphic function. When X
is compact, it is known that such functions must be constant (“Liouville’s theorem”);
hence, two meromorphic functions on a compact, complex analytic manifold have the
same divisor if and only if their ratio is constant.

(3) Let A be a commutative ring with unity. If X is the set of all prime ideals of A (the
prime spectrum of A), then X is a topological space in a natural way. Namely, we give
X the Zariski Topology defined by: The set, V , of prime ideals x ∈ X is closed in X if
and only if there exists an ideal A of A, such that V is precisely the set of prime ideals
of A which contain A. Since V depends on A, we write V (A) for V . Observe that the
sets Uf = {x ∈ X | f 6∈ x} are open for every f ∈ A, and that these sets are a basis
for the Zariski topology on X . Every element f of A may be considered a function on
X by decreeing that the value of f at x is the residue of f modulo the prime ideal x.
So

f(x) = f(mod x) in A/x = κ(x).

From this it follows that f vanishes at x if and only if f ∈ x; hence, Uf is precisely the
set of point of X where f does not vanish.
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For each x ∈ X , let Ax be the localization of A at the prime ideal x. Given an open
subset U of X , we set Ã(U) = Γ(U, Ã) equal to the ring of all functions f̃ from U to⋃{Ax | x ∈ U} which satisfy

(1) f̃(x) ∈ Ax, for all x ∈ U , and
(2) (∀x ∈ U)(∃ open V containing x, and f, g ∈ A) such that

(a) Uf ⊆ V and

(b) For all x ∈ V , f̃(x) =
g(x)

f(x)
in Ax.

One checks without difficulty that U  Ã(U) is a sheaf whose stalk at x is Ax. (See

Example 2 and the sheafM.) The sheaf Ã, now called OX , is called the sheaf of germs
of holomorphic functions on X . The pair (X,OX) is a ringed space, denoted SpecA,
and is called an affine scheme.

When X is an affine variety in the sense of Chapter 1, then the affine ring, A(X),
of X determines an affine scheme (Y,OY ) as above. In this case, X corresponds to
the subspace of Y which consists of all the maximal ideals of A(X), and (X,OY ↾ X)
determines and is determined by X . Hence every affine variety is a ringed space.
Actually X determines and is determined by (Y,OY ), as we shall show in Chapter ??.

If X is irreducible, each OX,x is an integral domain, and we can repeat the definitions
and arguments of Example 2 to obtain the meromorphic functions and divisors on
X . In this case, the sheaf M is merely the sheaf associated to the constant presheaf
k(X)–where, as in Chapter 1, k(X) is the field of rational functions on X .

Let (X,OX) be a ringed space, and let F ,G be OX-modules. Using Section A.3 as a
model, one easily constructs the sheaves F ⊗OX

G and HomOX
(F ,G) as well as the group

HomOX
(F ,G). For example, F ⊗OX

G is the sheaf associated to the presheaf

U  G(U)⊗OX(U) G(U).

The stalk of F ⊗OX
G at x ∈ X is Fx ⊗OX,x

Gx, while we have a canonical map

(HomOX
(F ,G))x −→ HomOX,x

(Fx,Gx)

which is neither injective nor surjective in general. The functor F ⊗OX
G is right-exact

(in both arguments), commutes with direct limits (hence, with arbitrary direct sums), and
Ox ⊗OX

G (resp. F ⊗OX
OX) is canonically isomorphic to G (resp. F). The functors

HomOX
(F ,G) and HomOX

(F ,G) are left-exact (in both arguments), and HomOX
(OX ,G)

is canonically isomorphic to G. For each OX -module, F , the sheaf HomOX
(F ,OX) is called

the dual of F and is usually denoted F̌ , or FD. If I is any set of indices, the direct sum of
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copies of OX indexed by the set I is denoted O(I)
X ; an OX -module is free if it is of the form

O(I)
X for some index set I.

Let (X,OX), (Y,OY ) be ringed spaces, and let ϕ : (X,OX) → (Y,OY ) be a morphism.
Let F be an OX -module and let G be an OY -module. Then |ϕ|∗OX is a sheaf of rings on
Y and |ϕ|∗F is a |ϕ|∗OX-module. However, we have a map ϕ̃ : OY → |ϕ|∗OX of sheaves of
rings on Y , and this permits us to make |ϕ|∗F into an OY -module. This OY -module will be
called the direct image of F by ϕ, and will be denoted ϕ∗F .

In the same way, |ϕ|∗OY is a sheaf of rings on X and |ϕ|∗G is a |ϕ|∗OY -module. Now

there exists a map ˜̃ϕ : |ϕ|∗OY → OX of sheaves of rings, so that OX may be considered a
|ϕ|∗OY -module. This being said, the tensor product of |ϕ|∗OY -modules

|ϕ|∗G ⊗|ϕ|∗OY
OX

is defined and is an OX-module in a natural way. This OX -module will be called the inverse
image of G by ϕ, and will be denoted ϕ∗G.

The following properties of the operations ϕ∗ and ϕ
∗ are easily checked and will be left

to the reader as exercises.

(a) ϕ∗ and ϕ
∗ are functors, ϕ∗ is left-exact and ϕ

∗ is right-exact.

(b) If F ,F ′ are OX -modules, then there is a canonical homomorphism (or functors)

ϕ∗(F)⊗OY
ϕ∗(F ′) −→ ϕ∗(F ⊗OX

F ′).

(c) If G,G ′ are OY -modules, then there is a canonical isomorphism (or functors)

ϕ∗(G)⊗OX
ϕ∗(G ′) −̃→ ϕ∗(G ⊗OY

G ′).

(d) Hypotheses as in (b), then there is a canonical homomorphism (of functors) of OX-
modules

ϕ∗(HomOX
(F ,F ′)) −→ HomOY

(ϕ∗(F), ϕ∗(F ′)).

(e) Hypotheses as in (c), then there is a canonical homomorphism (of functors) of OX-
modules

ϕ∗(HomOY
(G,G ′)) −→ HomOX

(ϕ∗(G), ϕ∗(G ′)).
(See Theorem A.17 below for the essential step in the proof.)

(f) The functor ϕ∗ commutes with direct limits and arbitrary direct sums.

(g) If ψ : (Y,OY )→ (Z,OZ) is another map of ringed spaces, then (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗ and
(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.
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Theorem A.17 Let (X,OX) ϕ−→ (Y,OY ) be a morphism of ringed spaces and let F be an
OX-module, G an OY -module. Then there is a canonical isomorphism (of functors)

HomOX
(ϕ∗G,F) −̃→ HomOY

(G, ϕ∗F).

Hence, the functors ϕ∗ and ϕ∗ are adjoint.

Proof . Given a homomorphism ξ : ϕ∗G → F as OX -modules, the canonical homomorphism
|ϕ|∗G −→ ϕ∗G yields by composition a homomorphism of |ϕ|∗OY -modules ξ′ : |ϕ|∗G → F .
Theorem A.8 show that we have a map G −→ |ϕ|∗F of abelian sheaves, say ξ′′, and one
checks that ξ′′ is really a map of OY -modules G −→ ϕ∗F .

Conversely, from a map η : G → ϕ∗F of OY -modules, we deduce a map η̃ : |ϕ|∗G → F of
|ϕ|∗OY -modules. Upon tensoring with OX , we obtain a map η̃∗ : ϕ∗G → F of OX-modules.
It is easy to see that ξ 7→ ξ′′ and η 7→ η̃∗ are inverse isomorphisms, and the proof is complete.

Remark: Theorem A.17 has the same corollary as Theorem A.8.

Let (X,OX) be a ringed space and let F be an OX -module. To give a homomorphism
OX −→ F is the same as giving a global section of F , i.e., an element of Γ(X,F). So

HomOX
(OX ,F) −̃→ Γ(X,F).

This follows from the fact that HomOX
(OX ,F) −̃→ F , but it is worthwhile to recall the

proof. If ξ is an OX-homomorphism of OX to F , then ξ(X) maps Γ(X,OX) to Γ(X,F).
The image of the unit section, 1, in Γ(X,OX) is a section s = ξ(X)(1) in Γ(X,F). If U is
open in X and t is a section of OX over U , then t = t ·1, and, as ξ is an OX -homomorphism,
we obtain

ξ(U)(t) = t · ξ(U)(1) = t · ρXU (s).
This shows that ξ 7→ ξ(X)(1) is an injection, and a trivial argument shows it is bijective as
well.

If we apply the italicized statement to the sheaf O(I)
X , we obtain

HomOX
(O(I)

X ,F) −̃→
∏

I

HomOX
(OX ,F) −̃→ Γ(X,F)I .

Hence, there is a one to one correspondence between OX-homomorphisms O(I)
X −→ F and

families of global sections {si}i∈I of F .
We say that F is generated by the sections {si}i∈I if and only if the corresponding map

O(I)
X −→ F is surjective. This amounts to saying that for each x ∈ X , the stalk Fx is

generated (as OX,x-module) by the elements {(si)x | i ∈ I}. We say that F is generated by

its (global) sections if and only if there is some subset I of Γ(X,F) such that O(I)
X −→ F is

surjective.
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Remark: There exist OX -modules which are not generated by their sections, even locally .
For example, take for X the space of real numbers and for OX the constant sheaf Z. Let U
be the open subset of X consisting of the complement of the origin x = 0, and let F = ZU
(notation as in Section A.5). Let V be any connected neighborhood of the origin, then F ↾ V
has only the zero section over V , hence is not generated by its sections over V—no matter
how small V .

If ϕ : (X,OX) → (Y,OY ) is a morphism of ringed spaces, and if F is an OX -module
generated by its section, then the map canX ϕ : ϕ

∗ϕ∗F → F is surjective. For if {si}i∈I is
a generating family of sections for F , then the elements si ⊗ 1 are sections of ϕ∗ϕ∗F whose
images under canXϕ are exactly the sections si, i ∈ I. The converse is not generally true,
for if it were, every sheaf would be generated by its sections (take ϕ = id), and this is false
as we know.

In algebraic geometry and related topics such as complex analytic manifolds, the ringed
spaces which arise are most often local ringed spaces . By this we mean that for each x ∈ X ,
the stalk, OX,x, of OX at x is a local ring. In this case, we let mx denote the maximal ideal
of OX,x, and let κ(x) be the residue field at x, so κ(x) = OX,x/mx.

Let (X,OX) and (Y,OY ) be local ringed spaces. If ϕ : (X,OX)→ (Y,OY ) is a morphism

of ringed spaces, then ˜̃ϕ maps |ϕ|∗OY to OX . In particular, for x ∈ X , ˜̃ϕx maps OY,|ϕ|(x) to
OX,x. Now it may happen that ˜̃ϕx does not map m|ϕ|(x) into mx; hence, does not induce a
map κ(|ϕ|(x)) to κ(x). This situtation vitiates most of the advantages inherent to the study
of local ringed spaces (as opposed to ringed spaces), so it is to be avoided. The best way

to do this, is to consider only those morphisms ϕ for which ˜̃ϕx maps m|ϕ|(x) into mx (hence,
induces an injection κ(|ϕ|(x)) −→ κ(x).) Such morphisms are called local morphisms . The
collection of all local ringed spaces and local morphisms between them forms a category (a
subcategory of the category of ringed spaces) denoted LRS. In the sequel, whenever we have
a morphism of local ringed spaces we shall always assume that it is a local morphism.

One final topic in the pot-pourri of results of this section concerns the gluing of ringed
spaces . Suppose we are given a collection (Xi,OXi

) of ringed spaces. Assume that for each
pair (i, j), we have open sets Uij ⊆ Xi, Uji ⊆ Xj, and an isomorphism
ϕji : (Uij ,OXi

↾ Uij) → (Uji,OXj
↾ Uji) of ringed spaces. We subject this data to the three

conditions

(a) For all i, Uii = Xi and ϕii = id,

(b) For all triples (i, j, k), the map

ϕ′ji = ϕji ↾ Uij ∩ Uik : (Uij ∩ Uik,OXi
↾ Uij ∩ Uik) −→ (Ujk ∩ Uji,OXj

↾ Ujk ∩ Uji)

is an isomorphism, and

(c) For all triples (i, j, k), ϕ′ik = ϕ′ij ◦ ϕ′jk.
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(Condition (c) is calleld the gluing condition for the morphisms ϕij).

Then we claim that there exists a ringed space (X,OX) and an open subspace X ′j of X
such that, each ringed space (X ′j,OX ↾ X ′j) is naturally isomorphic to (Xj,OX). The ringed
space (X,OX) is said to be obtained from the collection (Xi,OXi

) by gluing along the Uij
via the ϕji.

To obtain (X,OX) we first construct X . Let Z be the disjoint union of the spaces Xi

with the obvious topology. On Z we introduce a relation ∼ by: If x ∈ Xi, y ∈ Xj, then
x ∼ y if and only if x ∈ Uij , y ∈ Uji, and |ϕ|ji(x) = y. Our axioms imply that ∼ is an
equivalence relation, and Z/ ∼ with the quotient topology is the space X . The space X
possesses open subspaces, X ′i, homeomorphic to Xi for all i.

For the structure sheaf OX , first note that our axioms show that the three sets

Uij ∩ Uik, Ujk ∩ Uji, Uki ∩ Ukj

are all homeomorphic to X ′i∩X ′j∩X ′k (under the homeomorphisms Xi ←→ X ′i, etc.). Hence,
we may transfer the structure of ringed spaces to each X ′i; call the transfered sheaf OX′

i
. If

x ∈ X , then for at least one i, x ∈ X ′i; and the stalk OX′
i,x

is independent of which i we
choose. Since every small open neighborhood of x is in some X ′j , there is a unique way
to make a sheaf on X whose stalks at x is OX′

i,x
. This is the sheaf OX , and we have

OX ↾ X ′i = OX′
i
. It follows that (X,OX) fulfills our claim.

A.7 Quasi-Coherent and Coherent Sheaves. Sheaves

with Various Finiteness Properties

Let (X,OX) be a ringed space. Not all OX-modules are equally important. Experience
in analytic and algebraic geometry has shown that prime importance be accorded to the
coherent and quasi-coherent OX-modules. Along with these two types there are important
related classes, the sheaves of finite type and finite presentation.

Definition A.4 Let F be an OX-module. The sheaf F is of finite type over X if and only if
for every x ∈ X , there is an open neighborhood U of x and an integer n (perhaps depending
upon U), such that F ↾ U is a homomorphic image of OnX ↾ U . The sheaf F is of finite
presentation over X if and only if for every x ∈ X , there is an open neighborhood U of x
and integers m,n (perhaps depending upon U), such that F ↾ U is the cokernel of a map
OmX ↾ U −→ OnX ↾ U .

Observe that these properties are local on X . That is, finite type means that locally F
is a homomorphic image of finitely many copies of OX , and similarly for finite presentation.
To verify these conditions at x, one may work in any small open neighborhood of the point
x.
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Observe as well that: Any homomorphic image of an OX -module of finite type is of finite
type, finite direct sums of OX -modules of finite type are of finite type, and if F ′, F ′′ are
OX -modules of finite type and

0 −→ F ′ −→ F −→ F ′′ −→ 0

is exact, then F is an OX -module of finite type.

Problem A.16 If F is an OX -module of finite type, then Fx is a finitely generated OX,x-
module for each x ∈ X . The converse is false.
Hint . Look at the example of the second remark in Section A.6.

If F is any OX -module, the support of F is the set

SuppF = {x ∈ X | Fx 6= (0)}.

Proposition A.18 Let F be an OX-module of finite type, and let s1, . . . , sn be sections of F
over an open neighborhood, U , of a point x ∈ X whose images in Fx generate Fx. Then there
exists an open neighborhood V ⊆ U of x, such that F ↾ V is generated by s1 ↾ V1, . . . , sn ↾ V .
In particular, the support of an OX-module of finite type is closed.

Proof . Since F is of finite type, there exists a neighborhood of x, which we may suppose to
be U , and a finite family of sections σ1, . . . , σr which generate F over U . As x ∈ U , and as
(s1)x, . . . , (sn)x generate Fx, there exist sections ξij of OX over some open set W ⊆ U such
that at x,

(σj)x =
∑

i

(ξij)x(si)x.

This implies that on some neighborhood V of x, V ⊆W ⊆ U , we have σj =
∑

i ξijsi. Thus,
for any y ∈ V , (σj)y is a linear combination of the (si)y; as the (σj)y generate Fy, so do the
(si)y. If x /∈ SuppF , then the zero section generates Fx, so the zero section generates F in
a neighborhood of x, i.e., for all y near x, Fy = 0.

Suppose ϕ : (X,OX) → (Y,OY ) is a morphism of ringed spaces and that G is an OY -
module of finite type. Then ϕ∗G is an OX-module of finite type. To see this, let x be a
chosen point of X and let V be an open neighborhood of |ϕ|(x) in Y such that the sequence

OrY ↾ V −→ G ↾ V −→ 0

is exact. Since |ϕ|∗ commutes with restriction and is exact, we obtain that

(|ϕ|∗OY )r ↾ |ϕ|−1(V ) −→ |ϕ|∗G ↾ |ϕ|−1(V ) −→ 0

is exact. Now tensor the above with OX ; we obtain that

OrX ↾ |ϕ|−1(V ) −→ ϕ∗G ↾ |ϕ|−1(V ) −→ 0
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is exact, as required.

The direct image of an OX-module of finite type need not be of finite type as OY -module.

Sheaves of finite presentation behave somewhat better than sheaves of finite type. Of
course finite direct sums of OX-modules of finite presentation are of finite presentation. The
same is true of the inverse image of an OX-module of finite presentation by an adaptation
of the argument used above for sheaves of finite type.

Proposition A.19 Let F be an OX-module of finite presentation, then for any OX-module
G the canonical homomorphism

(HomOX
(F ,G))x −→ HomOX,x

(Fx,Gx)

is an isomorphism. If we assume only that F be of finite type, then the canonical homomor-
phism is injective.

Proof . If F = OX the result is trivial. Hence, it is also true for F = OnX , where n is a positive
integer. Now assume only that F is of finite presentation. On an open neighborhood U of
x, we have the exact sequence

OmX ↾ U −→ OnX ↾ U −→ F ↾ U −→ 0.

Since we pass to the limit over smaller and smaller open V contained in U , we might as well
assume X = U and supress U in the argument. (The above argument will be condensed in
the future to the catch-phrase: “The probelm is local on X , so we may assume that ...”)

Now the stalk functor is exact, and the functors

HomOX
(−,G), HomOX,x

(−,Gx)

are left-exact. If we apply these functors in the indicated order to the exact sequence, we
deduce the commutative diagram

0 // (HomOX
(F ,G))x
θ1
��

// (HomOX
(OnX ,G))x
θ2
��

// (HomOX
(OmX ,G))x
θ3
��

0 //HomOX,x
(Fx,Gx) //HomOX,x

(OnX,x,Gx) //HomOX,x
(OmX,x,Gx).

Since θ2, θ3 are isomorphisms (as we have observed), the five lemma shows that θ1 is an
isomorphism. Were F merely of finite type, our diagram would be missing the righthand
column, and we could only conclude that θ1 is injective.

Corollary A.20 Let F and G be OX-modules of finite presentation. Suppose there is a
point x such that Fx is isomorphic to Gx. Then there is a neighborhood, U , of x such that
F ↾ U is isomorphic to G ↾ U .
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Proof . Let ξ : Fx → Gx and η : Gx → Fx be inverse isomorphisms. Proposition A.19 shows
that there is an open neighborhood, V , of x and homomorphisms ϕ, ψ of F ↾ V −→ G ↾ V ,
resp. G ↾ V −→ F ↾ V , which induce ξ, resp. η at x. The compositions ϕ ◦ ψ and ψ ◦ ϕ
are endomorphisms of G, resp. F which become the identity automorphism at x. It follows
from this that there is a neighborhood U ⊆ V of x on which ϕ ◦ ψ and ψ ◦ ϕ become the
identity.

Definition A.5 An OX -module F is quasi-coherent (QC) on X if and only if for every
x ∈ X there is an open neighborhood, U , of x such that F ↾ U is the cokernel of a map
O(I)
X −→ O

(J)
X , where the sets I and J may depend upon U .

The notion of quasi-coherence is a generalization of that of finite presentation to which it
reduces when the sets I and J are guaranteed finite for a covering family of open sets of X .
Of course, arbitrary direct sums of QC modules are QC, and inverse images of QC modules
are QC .

In algebraic geometry, we shall see that the QC sheaves play a role which is the direct
generalization of that played by modules over a ring. In this context, it is natural to ask for
an analog in sheaf theory of the family noetherian modules over a ring. This leads to the
most important class of OX -modules, the coherent OX-modules.

Definition A.6 An OX -module F is coherent if and only if it is of finite type and satisfies
the following condition: For every open subset U ⊆ X , every integer n > 0, and every
homomorphism ξ : OnX ↾ U → F ↾ U , the sheaf Ker ξ is of finite type.

Observe that the following statements hold:

(1) If F is coherent, then F is of finite presentation and the support of F is closed.

(2) A finitely presented sheaf need not be coherent because OX need not be coherent.

(3) If F is a coherent sheaf and F ′ is an OX-submodule then F ′ is coherent provided F ′
is of finite type.

(4) The inverse image of a coherent OY -module need not be a coherent OX-module.

Theorem A.21 Let (X,OX) be a ringed space, and let

0 −→ F ′ −→ F −→ F ′′ −→ 0

be an exact sequence of OX-modules. If any two of the three modules are coherent, so is the
third.
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Proof . (a) Suppose that F , F ′′ are coherent. To show that F ′ is coherent, we need show
only that F ′ is of finite type. Given x ∈ X , since F is of finite type, there is a neighborhood
U of x, an integer n > 0, and a surjection

ξ : OnX ↾ U −→ F ↾ U −→ 0.

Since the problem is local onX , we may assume U = X ; hence, we may suppress U . Consider
the following diagram:

Ker ξ

��

η // Ker (θ ◦ ξ)

��
0

��

// OnX
ξ
��

id // OnX
θ◦ξ
��

// 0

0 // F ′ // F
θ

// F ′′ // 0.

Since F ′′ is coherent, Ker (θ◦ξ) is of finite type. The snake lemma yields the exact sequence.

Ker (θ ◦ ξ) −→ F ′ −→ 0,

so F ′ is of finite type, as required.

(b) Suppose that F ′, F are coherent. Clearly F ′′ is of finite type. Let U be open in X ,
ξ : OnX ↾ U → F ′′ ↾ U , and let K be the kernel of ξ over U . Our problem is local on X , so
given x ∈ X there is a neighborhood V of x and a surjection η : OmX ↾ V → F ′ ↾ V . By
restricting attention to V , we may assume that V = X . Because OnX is free, we may lift ξ
to a map of OnX to F ; and hence, we obtain the commutative diagram

Ker θ

��

//K

��
OmX

η

��

// On+mX

θ
��

// OnX
ξ
��

// 0

0 // F ′

��

// F // F ′′ // 0

0.

The snake lemma yields the exact sequence

Ker θ −→ K −→ 0,

and, as Ker θ is of finite type (because F is coherent), so is K.
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(c) Finally, suppose F ′, F ′′ are coherent. Certainly F is of finite type. Let U be open in
X , ξ : OnX ↾ U → F ↾ U , and let K be the kernel of ξ. As usual, we may assume U = X .
Let τ be the map F −→ F ′′, and let J be the kernel of the map τ ◦ ξ : OnX −→ F ′′. Since
F ′′ is coherent, J is of finite type; moreover, by construction the map J −→ OnX −→ F
factors through F ′. Given x ∈ X , there is a small neighborhood V of x and a surjection
OpX ↾ V −→ J ↾ V −→ 0. Once again we may assume V = X . Let u be the composition
OpX −→ J −→ OnX , then the map ξ induces a map ξ of Coker u into F ′′. Moreover, by
construction the mapping ξ is an injection. We obtain the commutative diagram

Ker η

��

// K

��

// 0

��
OpX

η

��

u
// OnX

ξ

��

// Coker u

ξ

��

// 0

0 // F ′ // F // F ′′ // 0,

and the snake lemma yields the exact sequence

Ker η −→ K −→ 0.

Since F ′ is coherent, Ker η is of finite type, and we are done.

Corollary A.22 Any finite direct sum of coherent OX-modules is a coherent OX-module.

Corollary A.23 If F and G are coherent OX-modules and ξ : F → G is a homomorphism,
then Ker ξ, Coker ξ, and Im ξ are coherent OX-modules. If F and G are coherent OX-
submodules of a coherent OX-module H, then F + G and F ∩ G are coherent.

Proof . The image of ξ is a submodule of finite type of the coherent OX-module G, so it is
coherent. Theorem A.21 applied to the exact sequences

0 −→ Ker ξ −→ F −→ Im ξ −→ 0

0 −→ Im ξ −→ G −→ Coker ξ −→ 0

shows that Ker ξ and Coker ξ are coherent. The sheaf F + G is of finite type, and is a
submodule of H; hence, it is coherent. Since the sequence

0 −→ F ∩ G −→ F −→ H/G

is exact, Theorem A.21 shows that F ∩ G is coherent. (Use the exact sequence
0 −→ G −→ H −→ H/G to show that H/G is coherent.)

Proposition A.24 Let F and G be coherent OX-modules. Then F⊗OX
G andHomOX

(F ,G)
are coherent.
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Proof . Since F is coherent it is of finite presentation, and since the question is local on X ,
we may assume that F has a global finite presentation. Thus,

OpX −→ OqX −→ F −→ 0

is exact. Tensor this with G over OX ; we obtain

Gp −→ Gq −→ F ⊗OX
G −→ 0.

Corollary A.23 shows that F ⊗OX
G is coherent.

The same argument repeated with HomOX
(−,G) instead of − ⊗OX

G yields the exact
sequence

0 −→ HomOX
(F ,G) −→ Gq −→ Gp,

and another application of Corollary A.23 completes the proof.

Let A be an OX-algebra. We shall say that A is coherent if and only if A is a coherent
OX -module. In particular, OX is coherent (as sheaf of rings) if and only if for every open
set U and every homomorphism ξ : OnX ↾ U → OX ↾ U , the kernel of ξ is of finite type as
OX-module. (Clearly, OX is of finite type.) This statement says that the OX -module of
relations among any finite family of sections of OX (over U) is finitely generated.

Remark: The last statement contains the historical origins of the notion of coherence. M.
Oka proved that the sheaf of germs of holomorphic functions on a complex analytic manifold
is coherent in the above sense (of relations); this was the starting point of the investigations
of Serre and Cartan on complex anayltic manifolds. For more details see the historical notes
at the end of this chapter.

Proposition A.25 Suppose that OX is coherent. Then an OX-module F is coherent if and
only if it is of finite presentation.

Proof . If F is coherent, it is of finite presentation. Suppose F is of finite presentation, then
locally on X the sequence

OpX −→ OqX −→ F −→ 0

is exact. By Corollary A.23, F is coherent.

Given a ringed space (X,OX), for any open subset U of X , the sheaf OX ↾ U is also
denoted OU .

Proposition A.26 Let OX be coherent, let F be a coherent OX-module, and let M be a
submodule of finite type of Fx for some point x ∈ X. Then there exists an open neighborhood
U of x and a coherent OU -module G of F ↾ U such that Gx −̃→M .
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Proof . Since F is coherent it is of finite type; hence at x, there is an integer q > 0 such that

OqX,x −→ Fx −→ 0

is exact. Now we know that M is of finite type, so that there is an integer v > 0 and a
commutative diagram

0

��
OvX,x
j
��

//M

i

��

// 0

OqX,x // Fx // 0

where the dotted map j exists because OvX,x is a free module. Since OX is coherent, so is
OvX ; hence OvX is of finite presentation. It follows from Proposition A.19, that j is induced
by a homomorphism λ : OvX ↾ U → OqX ↾ U for some small neighborhood U of x. We may
choose U small enough so that OqX ↾ U −→ F ↾ U −→ 0 is exact. Then we obtain the
diagram

OvX ↾ U
λ−→ OqX ↾ U

π−→ F ↾ U −→ 0.

Let K be the kernel of π ◦ λ and θ be the injection K −→ OvX ↾ U . Set G equal to Coker θ.
Then Gx−̃→M by construction, G is of finite type, and being an OU -submodule of F ↾ U , G
is coherent.

Corollary A.27 In order that OX be coherent, it is necessary that the intersection of two
finitely generated ideals of OX,x be finitely generated for every x ∈ X.

Proposition A.28 Suppose OX is coherent and M is an arbitrary OX,x-module of finite
presentation. Then there exists an open neighborhood U of x and a coherent OU -module, F ,
such that Fx −̃→M .

Proof . The sequence

OpX,x
ξ−→ OqX,x −→M −→ 0

is exact for some integers p and q. Since OX is coherent, the module OpX is of finite pre-
sentation, so the map ξ is induced by a homomorphism u : OpX ↾ U → OqX ↾ U for some
open neighborhood U of x (by Proposition A.19). Let F = Coker u, then F is coherent and
Fx −̃→M .

Theorem A.29 Let OX be coherent and let J be a coherent sheaf of ideals. Then an OX/J -
module F is coherent if and only if F is coherent as an OX-module. In particular, OX/J
is coherent as a sheaf of rings.
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Proof . Clearly F is of finite type as OX -module if and only if F is of finite type as OX/J -
module. Suppose F is coherent as OX-module, and let ξ : (OX/J )n ↾ U → F ↾ U be a given
homomorphism. Let K ′′ be the kernel of ξ and let K be the kernel of the composed map

OnX ↾ U −→ (OX/J )n ↾ U −→ F ↾ U.
Then the commutative diagram

0 // J n

id

��

// K

��

// K ′′

��
0 // J n

��

// OnX

��

// (OX/J )n

��

// 0

0 // 0 // F id // F // 0

(where we have assumed U = X) and the snake lemma yields the exact sequence

0 −→ J n −→ K −→ K ′′ −→ 0.

This shows that K ′′ is of finite type, i.e., F is OX/J -coherent. In particular, since J is
coherent, OX/J is OX -coherent; hence OX/J is coherent as OX/J -module, i.e., as a sheaf
of rings.

Conversely, if F is OX/J -coherent it is of finite presentation—and we may assume F
possesses a global finite presentation. Then the exact sequence

(OX/J )p −→ (OX/J )q −→ F −→ 0,

the fact (proven above) that OX/J is coherent (over OX) and Corollary A.23, show that F
is OX -coherent.

The inverse image of a coherent sheaf is, in general, not coherent. However, there is one
important case in which it is coherent.

Proposition A.30 Let ϕ : (X,OX)→ (Y,OY ) be a morphism of ringed spaces, and assume
OX is a coherent sheaf of rings. Then the inverse image of any coherent OY -module is a
coherent OX-module.

Proof . Any coherent OY -module, F , is of finite presentation. Since the problem is local on
X , we may assume F possesses a global finite presentation:

OpY −→ OqY −→ F −→ 0.

Apply the right-exact functor ϕ∗ to this sequence; we deduce

OpX −→ OqX −→ ϕ∗F −→ 0

is exact. As OX is coherent, we are done.

Remarks:
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(1) If F and G are two OX -modules which are locally isomorphic (that is, for every x ∈ X ,
there is an open neighborhood U of x and an isomorphism ϕ : F ↾ U → G ↾ U), and
if one is QC, coherent, of finite type, or of finite presentation, so is the other. As the
reader has observed, this remark has been used extensively in the above proofs.

(2) The finiteness notions of this section do not behave well under direct image. In fact,
we shall give sufficient conditions for the direct image of a QC sheaf to be QC in
Chapter 3, only for the category of “preschemes.” The corresponding problem for
coherent sheaves is very much deeper, and we shall give the solution (due to Serre and
Grothendieck [??]) in Chapter 7.

Problem A.17 Let OX be coherent. Prove that an OX -submodule of OnX is coherent if
and only if it is of finite type. Deduce that the sheaf of relations among a finite number of
sections of a coherent sheaf is a coherent sheaf.

Problem A.18 Let F be an OX -module, J a sheaf of ideals of OX . Define a canonical
map J ⊗OX

F −→ F . The image of this map will be called JF . Now assume F is coherent
and J is coherent. Show that JF is coherent.

Problem A.19 There is a canonical homomorphism

OX −→ HomOX
(F ,F)

for any OX-module F . It is defined by sending s ∈ OX(U) to multiplication by s in
HomOX↾U(F ↾ U,F ↾ U). By definition the annihilator of F is the kernel, J , of the
canonical homomorphism OX −→ HomOX

(F ,F). Suppose OX is coherent and F is coher-
ent as OX-module. Prove that the annihilator, J , of F , is a coherent OX -module. Prove
also that Jx is the annihilator of the OX,x-module Fx.

Problem A.20 Let (X,OX) be a ringed space, and assume X is compact. Let F and G be
OX -modules with G of finite type. If F is the direct limit of OX -modules Fλ , and if there
is a surjection u : F → G, show that for some λ, the induced map Fλ −→ G is surjective.

Problem A.21 There is one case for which direct images behave well with respect to the
finiteness properties: finite type, QC, coherent. Let (Y,OY ) ϕ−→ (X,OX) be a morphism
of ringed spaces; assume that Y is a closed subspace of X and that OX = ϕ∗OY . Show
that a necessary and sufficient condition that an OY -module, F , be of finite type (resp. QC,
coherent) is that the OX -module ϕ∗F be of finite type (resp., QC, coherent.).
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A.8 Locally Free Sheaves

Definition A.7 Let (X,OX) be a ringed space. An OX -module F is locally free if and only
if for each x ∈ X , there is an open neighborhood U of x such that F ↾ U is isomorphic to
O(I)
X ↾ U for some index set I. (Of course, I may depend upon U). If for each U , I is a finite

set, then F is locally free of finite rank . If for each U the finite sets I have the same number
of elements, n, then F is locally free of rank n. A localy free sheaf of rank one is called an
invertible sheaf.

The following properties of locally free sheaves are easily deduced from Definition A.7
and the material of Section A.7.

(1) If F is a locally free OX -module of finite rank, then for all x ∈ X , Fx is a finitely
generated free OX,x-module, say of rank n(x). The function x 7→ n(x) is locally
constant; hence if X is connected, any locally free OX-module of finite rank is a localy
free OX-module of rank n for a unique integer n.

(2) Every locally free OX -module is QC. If OX is coherent so is every locally free OX-
module of finite rank.

(3) If F is locally free, the functor G  F ⊗OX
G from OX -modules to OX -modules is

exact.

Henceforth, all locally free OX-modules will be of finite rank, except for explicit mention
to the contrary .

Proposition A.31 Let F , G be OX-modules. Then there is a canonical homomorphism (of
functors)

FD ⊗OX
G −→ HomOX

(F ,G).
(Recall, F̌ = FD, the dual of F , is HomOX

(F ,OX)). When F is locally free, this homo-
morphism is an isomorphism.

Proof . Since FD = HomOX
(F ,OX), we need to define a homomorphism

HomOX
(F ,OX)⊗OX

G −→ HomOX
(F ,G).

Let U be open in X , let u ∈ Γ(U,HomOX
(F ,OX)) = HomOX↾U(F ↾ U,OX ↾ U), and let

g ∈ G(U). Assign to the pair (u, g) that homomorphism of F ↾ U into G ↾ U which at x
maps fx ∈ Fx to ux(fx)gx (where gx is the image of g in Gx and ux is the image of u in
HomOX,x

(Fx,OX,x)). To check that this mapping is an isomorphism when F is locally free,
note that as the problem is local on X , we may assume F = OnX . Since the map is functorial,
we may even assume that n = 1. In this case, the lefthand side is canonically isomorphic to
G, as is the righthand side; and out map is the identity.
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Corollary A.32 If F is an invertible OX-module so is its dual FD. Moreover, there is a
canonical isomorphism

FD ⊗OX
F −̃→OX ;

and FDD is isomorphic to F .

Proof . The question of invertibility being local, we may suppose that F = OX . Then FD
is also OX ; hence FD is invertible. By Proposition A.31, we have a canonical isomorphism

FD ⊗OX
F −→ HomOX

(F ,F);

so we must prove that HomOX
(F ,F) is isomorphic to OX . (It is certainly locally isomorphic

to OX). However, we have define (Problem 3, Section A.7) a canonical homomorphism
OX −→ HomOX

(F ,F) for any OX -module F . Once a homomorphism is globally defined,
to check that it is an isomorphism is a local problem. Hence, we may assume that F = OX ;
in this case, the result is trivial.

Now for any OX -module, F , there is a canonical homomorphism F  FDD. If F is
invertible, so is FDD, therefore, upon assuming (as we may) that F = OX , we deduce that
FD ⊗OX

F −̃→OX .

Proposition A.33 Suppose that (X,OX) is a local ringed space and that F is an OX-module
of finite type. If there exists an OX-module G such that F ⊗OX

G is isomorphic to OX , then
for all x ∈ X, Fx is a module isomorphic to OX,x. If both OX and F are coherent, then F
is invertible.

Proof . For each x ∈ X , we have (F ⊗OX
G)x = Fx⊗OX,x

Gx; so (for given x) our hypotheses
amount to: Let M and M ′ be A-modules, where A is a local ring and M is of finite type
and assume M ⊗AM ′ ≃ A. We must prove, M ≃ A. Now,

A/mA ≃ A/mA ⊗A (M ⊗AM ′) ≃M/mAM ⊗A/mA
M ′/mAM

′,

where, as usual, mA is the maximal ideal of A. It follows from this that both M/mAM and
M ′/mAM

′ are one dimensional vector spaces over A/mA. Thus, M = Aξ + mM , for some
element ξ of M not in mAM . Nakayama’s lemma implies that M = Aξ. Moreover, the
annihilator of ξ in A will also annihilateM⊗AM ′ ≃ A; hence, it is zero. This proves a 7→ ξa
is an isomorphism of A onto M , as required. When OX and F are coherent, they are of
finite presentation, so Proposition A.19 shows that F is invertible.

Remark: If F and F ′ are invertible sheaves, so is their tensor product (the question is local,
so we may assume F = OX and it becomes trivial). For n ≥ 1, let F⊗n denote the tensor
product of n copies of F and let F⊗(−n) = (F−1)⊗n.2 If we set F⊗0 = OX , then the foregoing
results yield a canonical functorial isomorphism

F⊗m ⊗F⊗n ≃ F⊗(m+n)

2F−1 = FD for invertible sheaves.
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for every pair of integers (m,n). Were the class of invertible sheaves on X a set, it would
form a group under the tensor product. (Actually, the equivalence classes of isomorphic
invertible sheaves on X form a group, as shown in Section 4.4.) Continuing to talk as
if invertible sheaves form a group, we see that OX plays the role of the identity element,
and that Proposition A.33 shows that the terminology “invertible” is well chosen. For that
proposition shows that a “formally” invertible sheaf (in the sense of the “group under ⊗”)
over a local ringed space is really invertible, provided proper finiteness assumptions are made.

Proposition A.34 Let (X,OX) ϕ−→ (Y,OY ) be a morphism of ringed spaces. Then the
inverse image of a locally free (resp. invertible) OY -module is a locally free (resp. invertible)
OX-module. For locally free OY -modules, inverse image commutes with taking the duals.
Consequently, for every integer n, ϕ∗(G⊗n) is canonically isomorphic to (ϕ∗(G))⊗n (for any
sheaf G on Y ).

Proof . If two OY -modules are locally isomorphic, so are their inverse images. Since inverse
image commutes with direct sums, and since ϕ∗(OY ) = OX , the first statements are proved.

According to property (e) of Section A.6, there is a canonical homomorphism

ϕ∗(HomOY
(G,OY )) −→ HomOX

(ϕ∗(G),OX).

When G is locally free, this map is an isomorphism as one sees by checking locally—in which
case one may assume G = OnY . The last statement follows from the definition and from the
fact that inverse image commutes with tensor product (property (c) of Section A.6).

If (X,OX) is a local ringed space and U is an open set in X then for any OX-module F
and any section s over U , we set s(x) equal to the residue class of s(x) modulo mxFx (Here,
s(x) is the image of s in Fx, for x ∈ U ; earlier, we also used the notation sx.) We shall say
that s(x) is the value of s at x, and that s vanishes at x if s(x) is zero, i.e., s(x) ∈ mxFx.

Let Us be the set of all x ∈ U such that s(x) 6= 0.

Locally free sheaves have special properties on local ringed space. One such property is
expressed in Proposition A.33; here is another.

Proposition A.35 Let (X,OX) be a local ringed space, let F be an invertible OX-module,
and let f be a global section of F (i.e., a section over X). Then for each x ∈ X the following
three properties are equivalent:

(a) fx generates Fx.

(b) f(x) 6= 0 (i.e., x ∈ Xf).

(c) There is an open neighborhood U of x and a section g of F−1 over U , such that the
canonical image of f ⊗ g in Γ(U,OX) is the identity section.
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Proof . The problem is local on X ; so we may assume that F = OX . In this case (a) and
(b) are clearly equivalent, and (c) implies (b). If (b) holds, then fx is invertible at x; that
is, there is an element γ ∈ OX,x with fxγ = 1. But this implies that there is an open
neighborhood U of x, and a section g ∈ Γ(U,OX) such that gx = γ, and fg = 1 on U . This
is property (c) for the case F = OX .

Corollary A.36 Let (X,OX) be a local ringed space, and let f be a section of OX over an
open set U . Then there exists a section g of OX over Uf such that gf = 1 on Uf . That is,
if a section f of OX does not vanish on a set, it is invertible there.

Proof . By property (c) of Proposition A.35, f is locally invertible on Uf . But all these
inverses may be patched together to give a “global” inverse on Uf because our module is
globally isomorphic to OX (not just locally) and Γ(U,OX)∗ is a group for each open U .
(Here, Γ(U,OX)∗ is the set of invertible sections on U .)

Corollary A.37 Under the hypotheses of Proposition A.35, the set Xf is open in X.

Problem A.22 Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of OX-modules
and suppose that F ′′ is locally free. Then for each x ∈ X , there is an open set U containing
x such that F ↾ U is isomorphic to the direct sum F ′ ↾ U∐F ′′ ↾ U .

Problem A.23 Let the hypotheses be as in Proposition A.35, and let F ′ be a second in-
vertible sheaf on X with global section g. Prove that Xf ∩Xg = Xf⊗g.

Problem A.24 Assume (X,OX) is a local ringed space. Let F and G be locally free OX-
modules and let ξ : F → G be a homomorphism. Then a necessary and sufficient condition
that there exist an open neighborhood U of x ∈ U , such that ξ ↾ U be injective and G ↾ U
be the direct sum of ξ(F) ↾ U and a locally free submodule H of G ↾ U is that ξx : Fx → Gx
induce an injection of vector spaces Fx/mxFx −→ Gx/mxGx.
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Appendix B

Cohomology

B.1 Flasques and Injective Sheaves, Resolutions

We shall lay the foundations, here, for the cohomology theories of the next two sections. In
what follows, (X,OX) will be a ringed space and S(X,OX) will denote the abelian category
of OX -modules. Of course, S(X) is an abbreviations for S(X,Z).

The notion of injective resolution is basic to the foundations of cohomology theory. Let
C be an abelian category (the reader should think of C as S(X,OX)). Recall that an object,
I, in C is an injective if for every pair of objects, A and B, in C, every morphism, f : A→ I,
and every monomorphism, h : A → B, there is some (not necessarily unique) morphism,

f̂ : B → I, so that
f = f̂ ◦ h,

as in the following commutative diagram:

0 // A

f
��

h // B

f̂��
I

It is well-known that I is an injective iff Hom(−, I) is (right) exact.
Definition B.1 Let F be an object of an abelian category, C. An acyclic resolution of F
is an exact sequence

0 −→ F −→ Q0 −→ Q1 −→ Q2 −→ · · ·
in C. An injective resolution of F is an acyclic resolution for which all the Qi (with i ≥ 0)
are injective objects of C.

We shall say that C has enough injectives whenever each object, F , of C is isomorphic
to a subobject of an injective (object) of C; that is, whenever we are given F , there should
be an injective, Q, and an exact sequence

0 −→ F −→ Q, in C.

499
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The standard sufficient condition for the existence of injective resolutions in C is the
following:

Proposition B.1 Let C be an abelian category with enough injectives. Then every object,
F , of C has an injective resolution.

Proof . By hypothesis there is an exact sequence

0 −→ F
i−→ Q0

with Q0 injective. If F1 is the cokernel of i, then F1 may be embedded in an injective object,
Q1,

0 −→ F1
i1−→ Q1.

Let F2 be the cokernel of i1, and repeat the argument. An obvious induction yields the exact
sequence

0 −→ Fj
ij−→ Qj

ξj−→ Fj+1 −→ 0, j = 0, 1, · · ·
with Qj injective for all j ≥ 0 and with F0 = F and i0 = i. If we set

uj = ij+1 ◦ ξj : Qj −→ Qj+1,

then the sequence

0 −→ F −→ Q0
u0−→ Q1

u1−→ Q2
u2−→ Q3 −→ · · ·

is the desired injective resolution of F .

Remark: Suppose X is a class of objects of C. We may speak of X-resolutions (acyclic
resolutions in which each Qi is an object of X), and may also ask if C possesses enough
X-objects. The same argument as given in Proposition B.1 show that if C possesses enough
X-objects, then every object of C has an X-resolution.

Now, injective resolutions would be useless were it not for the fact that they possess a
“quasi-uniqueness” property. To explain this, we need the notion of homotopy between maps
of resolutions.

Definition B.2 Let F and F ′ be objects of C, and let

0 −→ F −→ Q0
u0−→ Q1 −→ · · · (∗)

and

0 −→ F ′ −→ Q′0
u′0−→ Q′1 −→ · · · (∗)′
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be acyclic resolutions of F and F ′. Suppose that ξ : F → F ′ is a morphism. By a morphism
(ξi) from (∗) to (∗)′ over ξ, we mean a collection of morphisms

ξi : Qi → Q′i, i = 0, 1, · · ·

such that the diagram
0 // F

ξ

��

// Q0

ξ0
��

// Q1

ξ1
��

// · · ·

0 // F ′ // Q′0 // Q′1 // · · ·
is commutative. A homotopy , s, between two morphisms (ξi) and (ηi) of (∗) to (∗)′ (over ξ),
denoted (ξi) ∼ (ηi), is a collection of morphisms

si : Qi → Q′i−1 i = 1, 2, · · ·

such that for every i ≥ 1,
ηi − ξi = u′i−1 ◦ si + si+1 ◦ ui,

while η0 − ξ0 = s1 ◦ u0, as illustrated in the diagram below:

· · · // Qi−1

ρi−1

��

ui−1 // Qi

si

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤

ρi

��

ui // Qi+1

si+1

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤

ρi+1

��

// · · ·

· · · // Q′i−1 u′i−1

// Q′i u′i

// Q′i+1
// · · · ,

where ρi = ηi − ξi. If a homotopy between (ξi) and (ηi) exists, we say they are homotopic.

Here is the“quasi-uniqueness” of injective resolutions.

Theorem B.2 Let F and F ′ be objects of C, let (∗) be an acyclic resolution of F and assume
(∗)′ is an injective resolution of F ′. If ξ : F → F ′ is a morphism then there exists a morphism
(ξi) from (∗) to (∗)′ over ξ. Any two morphisms over ξ are homotopic. Consequently, any
two injective resolutions of F have the same homotopy type; that is, there are morphisms (ξi)
and (ηi) from one to the other and back over the identity whose compositions are homotopic
to the identity.

Proof . We shall construct the morphism (ξi) by induction on i. To begin with, the mor-
phisms ξ : F → F ′ and F ′ → Q′0 yield a morphism F → Q′0. Since Q

′
0 is injective, and (∗) is

acyclic, the diagram
0 // F

��

// Q

ξ0��
Q′0
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may be completed by the addition of the morphism ξ0, as shown. Now, assume by induction
that the morphisms ξi have been constructed for i < n in such a way that the required
diagram is commutative, and consider the following diagram:

Qn−2
// Qn−1

u′n−1◦ξn−1

��

// Qn

ξn||
Q′n

Since Q′n is injective, since (∗) is exact, and since the composition map

Qn−2 −→ Qn−1 −→ Q′n

is zero, there is an extension of u′n−1 ◦ ξn−1 to a morphism ξn : Qn → Q′n. Existence of a
morphism over ξ is thereby assured.

Suppose that (ξi) and (ηi) are morphisms over ξ. To construct a homotopy, we shall once
again proceed by induction on i. The diagram

F // Q0

η0−ξ0
��

u0 // Q1

s1~~
Q′0

may be completed by the addition of the morphism s1 as shown, because the upper sequence
is exact, Q′0 is injective, and F −→ Q0 −→ Q′0 is the zero map. Assume by induction
that the morphisms si have been constructed for i < n and that they satisfy the required
conditions. In diagram

Qn−2
// Qn−1

ζ

��

u0 // Qn

sn||
Q′n−1

where ζ is the morphism ηn−2 − ξn−2 − u′n−2 ◦ sn−1, the upper row is exact, the morphism

Qn−1 −→ Qn−1
ζ−→ Q′n−1 is zero (as one checks), and Q′n−1 is injective. It follows that there

exists a morphism sn : Qn → Q′n−1 rendering the above diagram commutative. The sequence
(sn) constructed in this manner is the desired homotopy.

If we are given two injective resolutions of F

0 −→ F −→ Q0 −→ Q1 −→ · · · (∗∗)

and

0 −→ F ′ −→ Q′0 −→ Q′1 −→ · · · (∗∗)′
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then the identity map may be raised in both directions to morphisms of resolutions, say
(ξi) : (∗∗)→ (∗∗)′ and (ηi) : (∗∗)′ → (∗∗). The compositions (ξi ◦ ηi), (ηi ◦ ξi) must then be

homotopic to the identity, as the identity morphism is a lifting of F
id−→ F in each resolution

(∗∗), (∗∗)′.

Remarks:

(1) For the first two statements of Theorem B.2, (∗)′ need not be an injective resolution
of F ′, but merely an injective complex over F ′. That is, each Q′i should be injective
but in place of exactness, we require only that u′n ◦ u′n−1 = 0 for every n.

(2) The reader should not despair over the lack of intuitive meaning in the notions of
resolution and homotopy. We will see the intuitive content of these notions, as well as
an honest uniqueness theorem (to be deduced from Theorem B.2) in the next section.

Proposition B.3 Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence in the category
C, and let

0 −→ F ′ −→ Q′0 −→ Q′1 −→ · · ·
and

0 −→ F ′′ −→ Q′′0 −→ Q′′1 −→ · · ·
be injective resolutions of F ′ and F ′′. Then there exists an injective resolution

0 −→ F −→ Q0 −→ Q1 −→ · · ·

of F , such that for each i, the sequence 0 −→ Q′i −→ Qi −→ Q′′i −→ 0 is exact and the
obvious diagrams commute.

Proof . The proof is entirely straightforward, and is an excellent exercise in the techniques
of this section. It will be left to the reader.

We now come back to earth and consider the category S(X,OX) of OX -modules.

Proposition B.4 The category S(X,OX) possesses enough injectives. Consequently, every
OX-module has an injective resolution of OX-modules.

First Proof . The category S(X,OX) is abelian with good direct sums and generators. (The
sheaves OX ↾ U for all open U in X are generators as one checks.) It follows from [21],
Theorem 1.10.1, that S(X,OX) possesses enough injectives.

Second Proof . Given any OX-module, F , for each x ∈ X , choose an injective OX,x-module
Qx and a monomorphism Fx −→ Qx. Consider the sheaf, Q, whose sections over the open
set U are given by

∏
x∈U Qx. Clearly, we have a monomorphism 0 −→ F −→ Q, and it

remains only to show that Q is an injective sheaf. This is the content of
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Lemma B.5 If for each x ∈ X, the OX,x-module Qx is injective, then the sheaf

U  
∏

x∈U

Qx

is injective.

Proof . Let Qx be the sheaf on X whose sections over U are given by

Γ(U,Qx) =
{Qx if x ∈ U
(0) if x /∈ U .

Then, Q is the product of the sheaves Qx for all x ∈ X . However, to give a homomorphism
of a sheaf F into one of the sheaves Qx is the same as giving a homomorphism of the stalks:
Fx −→ Qx. It follows immediately from this that each sheaf Qx is injective. The product of
injectives being an injective, we conclude that Q is an injective sheaf.

Proposition B.6 Let ϕ : (X,OX) → (Y,OY ) be a morphism of ringed spaces and let Q be
an injective OX-module. If ϕ∗ is an exact functor (for example, if OX = OY = Z) then ϕ∗Q
is an injective OY -module.

Proof . If 0 −→ F ′ −→ F is an exact sequence of OY -modules, we must prove that the
sequence

HomOY
(F , ϕ∗Q) −→ HomOY

(F ′, ϕ∗Q) −→ 0

is exact. By Theorem A.17,

HomOX
(ϕ∗G,Q) ≃ HomOY

(G, ϕ∗Q).

Since ϕ∗ is exact, and since Q is an injective OX-module, the sequence

HomOX
(ϕ∗F ,Q) −→ HomOX

(ϕ∗F ′,Q) −→ 0

is exact. This completes the proof.

Remark: Necessary and sufficient conditions for the exactness of ϕ∗ will be investigated in
Chapter ??, when we discuss flatness and faithful flatness.

The analog of Proposition B.6 for inverse image is false in general. However, there is one
case in which it is true.

Proposition B.7 Let U be an open subset of X and let ϕ : (U,OX ↾ U) → (X,OX) be the
canonical inclusion map. If Q is an injective OX-module then ϕ∗Q is an injective OU -module.
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Proof . Let 0 −→ F ′ −→ F be an exact sequence of OU -modules. Because U is open in X ,
it follows from the discussion in Section A.5 that there is an isomorphism

HomOU
(G, ϕ∗Q) ≃ HomOX

(G,Q)
for any OU -module G. Since 0 −→ F ′ −→ F is exact, and since Q is OX -injective, the
sequence

HomOX
(F ,Q) −→ HomOX

(F ′,Q) −→ 0

is exact. Thus, the sequence

HomOU
(F , ϕ∗Q) −→ HomOU

(F ′, ϕ∗Q) −→ 0

is exact, as required.

Injective sheaves, while perfect for foundations, are too large to be handled in a com-
putable way. We shall see that in order to compute cohomology groups of a sheaf, one is
required in principle to find an injective resolution of this sheaf. This is practically impossi-
ble to do in an explicit manner. Consequently, we wish to find a more manageable class of
sheaves in which to take resolutions, being assured that at the same time the cohomology
groups which will arise from these new resolutions will agree with those coming from injec-
tive resolutions. A class of sheaves having just these properties has been introduced by R.
Godement [18]. This is the class of flasque1 sheaves.

Definition B.3 An OX -module, F , is flasque if and only if, for every open subset U of X ,
the map

F(X) −→ F(U)
is surjective.

The requirement in Definition B.3 is that every section of F over an open subset of X
be extendable to a global section of F . This requirement does appear to be of local nature.
Appearances are deceiving, however, as the following proposition shows.

Proposition B.8 Let F be an OX-module. If F is flasque, so is F ↾ U for every open
subset U of X. Conversely, if for every x ∈ X, there is a neighborhood, U , such that F ↾ U
is flasque, then F is flasque.

Proof . The first statement is trivial, let us prove the converse. Given any open set V of X ,
let s be a section of F over V . Let T be the set of all pairs (U, σ), where U is an open in
X containing V , and σ is an extension of s to U . Partially order T in the obvious way, and
observe that T is inductive. Zorn’s lemma provides us with a maximal extension of s to a
section σ over an open set U0. Were U0 not X , there would exist an open set W in X not
contained in U0 such that F ↾ W is flasque. Thus we could extend the section ρU0

U0∩W
(σ) to

a section σ′ of F . Since σ and σ′ agree on U0 ∩W by construction, their common extension
to U0 ∪W extends s, a contradiction.

1A very loose translation of the French word flasque is “flabby” or “limp.”
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Proposition B.9 Every OX-module may be embedded in a canonical functorial way into a
flasque OX-module. Consequently, every OX-module has a canonical flasque resolution (i.e.,
a resolution by flasque OX-modules.)

Proof . Let F be an OX-module, and define a presheaf C0(X,F) by

U  
∏

x∈U

Fx.

It is immediate that C0(X,F) is actually a sheaf and that we have an injection of OX-
modules F −→ C0(X,F). A section of C0(X,F) over any open set U is a collection (sx)
of elements indexed by U , each sx lying over the OX,x-module Fx. Clearly, such a sheaf is
flasque; hence, S(X,OX) possesses enough flasque sheaves.

If Z1 is the cokernel of the canonical injection F −→ C0(X,F), we define C1(X,F) to
be the flasque sheaf C0(X,Z1). In general, Zn is the cokernel of the injection
Zn−1 −→ C0(X,Zn−1), and C

n(X,F) is the flasque sheaf C0(X,Zn). Putting all this infor-
mation together, we obtained the desired flasque resolution of F

0 −→ F −→ C0(X,F) −→ C1(X,F) −→ C2(X,F) −→ · · · .

Remark: The resolution of F constructed in Proposition B.9 will be called the canonical
flasque resolution of F or the Godement resolution of F .

Here is the principal property of flasque sheaves.

Theorem B.10 Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of OX-modules,
and assume F ′ is flasque. Then this sequence is exact as a sequence of presheaves. If both
F ′ and F are flasque, so is F ′′. Finally, any direct factor of a flasque sheaf is flasque.

Proof . Given any open set, U , we must prove that

0 −→ F ′(U) −→ F(U) −→ F ′′(U) −→ 0

is exact. Of course, the sole problem is to prove that F(U) −→ F ′′(U) is surjective. By
restricting attention to U , we may assume U = X ; hence, we are going to prove that a global
section of F ′′ may be lifted to a global section of F . Let s′′ be a global section of F ′′, then,
locally, s′′ may be lifted to sections of F . Let T be the family of all pairs (U, σ) where U is
an open in X , and σ is a section of F over U whose image, σ′′, in F ′′(U) equal ρXF ′′(U)(s

′′).
Partially order T in the obvious way, and observe that T is inductive. Zorn’s lemma provides
us with a maximal lifting of s′′ to a section σ ∈ F(U0).

Were U0 not X , there would exist x ∈ X − U0, a neighborhood, V , of x, and a section
τ of F over V which is a local lifting of ρXV (s

′′). The sections ρU0
U0∩V

(σ), ρVU0∩V (τ) have the
same image in F ′′(U0 ∩ V ). Consequently, there is a section t of F ′(U0 ∩ V ) such that

ρU0
U0∩V

(σ) = ρVU0∩V (τ) + t.
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Since F ′ is flasque, the section t is the restriction of a section t′ ∈ F ′(V ). Upon replacing τ by
τ+ t′ (which does not affect the image in F ′′(V )), we may assume that ρU0

U0∩V
(σ) = ρVU0∩V

(τ);
that is, that σ and τ agree on the overlap U0 ∩ V . Clearly, we may extend σ (via τ) to
U0 ∪ V , contradicting the maximality of (U0, σ); hence, U0 = X .

Now suppose that F ′ and F are flasque. If s′′ ∈ F ′′(U), then by the above, there is a
section s ∈ F(U) mapping onto s′′. Since F is also flasque, we may lift s to a global section,
t, of F . The image, t′′, of t in F ′′(X) is the required extension of s′′ to a global section of
F ′′.

Finally, assume that F is flasque, and that F ′′ is a direct factor of F . Let F ′ be the
kernel of the map F −→ F ′′, then by hypothesis, F is the product of the sheaves F ′ and
F ′′. It follows from this that the sequence

0 −→ F ′(U) −→ F(U) −→ F ′′(U) −→ 0

is exact for every open set U of X . (The presheaf direct product is already a sheaf!) Precisely
the same argument as in the paragraph above, now shows that F ′′ is a flasque OX -module.

Proposition B.11 If ϕ : (X,OX) → (Y,OY ) is a morphism of ringed spaces and if F is a
flasque OX-module, then ϕ∗F is a flasque OY -module.

Proof . Let V be open in Y , we must show that ϕ∗F(Y ) −→ ϕ∗F(V ) is surjective. But

ϕ∗F(Y ) = F(|ϕ|−1(Y )) = F(X) and ϕ∗F(V ) = F(|ϕ|−1(V )).

Since F is flasque, we are done.

Proposition B.12 Let (X,OX) be a ringed space, and assume that X is irreducible. If F
is the OX-module associated to a constant presheaf of OX-modules, then F is flasque.

Proof . By Exercise 3 of Section A.4, F is a constant presheaf on X . Hence, F(X) = F(U)
for every open U in X , which ends the proof.

A topological space is called noetherian if and only if it has the descending chain condition
on closed sets. Equivalently, a space is noetherian if and only if each open subset is compact.
(An algebraic variety is a noetherian space as we have seen in Chapter 1, Section 1.2).

Theorem B.13 Let (X,OX) be a ringed space, and let (Fλ) be an inductive system of
sheaves of sets on X. Let F0 be the presheaf direct limit of the family (Fλ), and let

θ : F0 → F (+)
0 be the canonical mapping introduced in Section A.2.

(a) If X is compact, then θ(X) : F0(X) → F (+)
0 (X) is bijective and F0(X) → F#

0 (X) is
injective.
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(b) If X is noetherian, then θ is an isomorphism and, therefore, F0 is a sheaf.

(c) If X is noetherian, the direct limit of flasque OX-modules is a flasque OX-module.

Proof . (a) By definition, F (+)
0 is the direct limit

lim−→
{Ui→X}

H0({Ui → X},F0).

Since X is compact, the finite coverings {Ui → X} form a cofinal subset of the family of all
coverings of X . Consequently, in the above limit, we may always assume the given covering
{Ui → X} to be finite. This being said, consider the exact sequence

Fλ(X) −→
∏

i

Fλ(Ui) −→−→
∏

ij

Fλ(Ui ∩ Ui)

of sets. Since direct limits commute with finite products, we obtain the exact sequence

F0(X)
θ(X)−→

∏

i

F0(Ui)
−→−→

∏

ij

F0(Ui ∩ Ui).

From passing to the limit over the coverings {Ui → X}, we obtain the bijection

θ(X) : F0(X) → F (+)
0 (X). Now we know from the proof of Theorem A.3 that the natural

map F (+)
0 (X)→ F#

0 (X) is always injective; this yields the second statement of (a).

(b) To say that X is noetherian is to say that every open subset, U , of X , is compact.

By (a), the mappings θ(U) : F0(U) → F (+)
0 (U) are all bijective; hence, the presheaves F0

and F (+)
0 are isomorphic.

(c) By (b), the presheaf direct limit of the family of flasque OX -modules is an OX -module
(i.e., a sheaf!). The limiting OX -module is flasque because the functor lim−→ is exact.

Remarks:

(1) The proof of Theorem B.13 is another instance of the technical superiority of one
method of defining associated sheaves to another–in this case the double limit method
is superior to the stalk method. A proof via the stalk method may be found in
(Grothendieck [21], page 162), and the reader should compare this proof with ours.

(2) It is true that if X is compact and Hausdorff , then F0(X)→ F#
0 (X) is a bijection–but

the proof (??, page 162) requires a deeper investigation of the local equality of sections
on normal spaces (Grothendieck [21], page 158 ff).
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Problem B.1 Let (X,OX) be a ringed space and let Y be a closed subspace. Suppose
that Q is an injective OY (= OX ↾ Y )-module. Show that Q extended by zero outside Y
is an injective OX -module. Show by specific example that the restriction of an injective
OX -module to the closed set Y need not be an injective OY -module. If Y is open in X ,
need the extension of an injective OY -module by zero outside Y be an injective OX -module?
Proof or counterexample. Answer the same questions for flasque sheaves.

Problem B.2 Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of OX-modules.
Prove that the sequence

0 −→ Cn(X,F ′) −→ Cn(X,F) −→ Cn(X,F ′′) −→ 0

is exact for all n ≥ 0. In other words, prove that F  Cn(X,F) is an exact functor on
OX -modules.

B.2 Cohomology of Sheaves

As in Section B.1, (X,OX) will be a ringed space, and we will be interested in the category,
S(X,OX), of OX -modules. However, we will start (as in B.1) with a more general situation.

Let C and C′ be abelian categories (the reader is urged to think of the case
C = S(X,OX), C′ = AB–which is the important one for what follows). In C′, we have the
notion of a cochain complex , that is, a sequence

Q0
δ0−→ Q1

δ1−→ Q2
δ2−→ Q3

δ3−→ · · · (†)

of objects of C′ having the property δi+1 ◦ δi = 0 for every i ≥ 0. Of course, this condition
is equivalent to the existence of a monomorphism

Bi = Im δi−1 −→ Ker δi = Z i.

The object Bi (where i ≥ 1) is called the object of ith coboundaries (in case C′ = AB, we
speak of the group of ith coboundaries), and the object Z i is called the object of ith cocycles
(resp. group of ith cocycles). If necessary, we write Bi(Q) or Z i(Q), where (Q) denotes
sequence (†). Since there is a monomorphism Bi −→ Z i for i ≥ 1, the quotient object
H i = Zi/Bi exists. (We set H0 equal to Z0.) Now the general idea is that the objects H i for
i ≥ 1 measure the defect from exactness of the sequence (†)–in fact, H i = (0) for i ≥ 1 if and
only if (†) is exact in the ith place. In view of this, the objects H i are important invariants
of the complex (†); H i is called the ith cohomology object (resp. group when C′ = AB) of
the complex (†).

The reader may well ask: Where do complexes (†) arise naturally, and what significance
does the exactness or non-exactness of (†) have for the situation from which it arose? The
answer is that such complexes arise in all parts of mathematics–originally having been recog-
nized in algebraic topology–and most often the exactness (or lack of it) in (†) is of profound
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significance. To give concrete examples of many such phenomena would take too much space.
We hope that the use of these techniques in the book will convince the doubting reader of
their importance, and that further reading in the literature will show the ubiquity of such
situations in mathematics.

The most typical case in which (†) arises is the following: Let T be a left-exact functor
from C to C′ (think of C = S(X,OX), C′ = AB, and T is the functor F  F(X)). If F is
an object of C, and if C possesses enough injectives, then F has an injective resolution

0 −→ F −→ Q0 −→ Q1 −→ Q2 −→ · · · .

If we apply T to the injective resolution of F , we get

0 −→ T (F ) −→ T (Q0) −→ T (Q1) −→ T (Q2) −→ · · · .

Now, the sequence T (Q0) −→ T (Q1) −→ T (Q2) −→ · · · is a complex, so (in at least one
way) we have associated with each left-exact functor on C to C′, and each object F of C,
a complex in C′. (Of course, we assume C′ possesses enough injectives.) Why do we need
an injective resolution? Any acyclic resolution will do, and any complex over F will do!
The point is this: The cohomology objects of the complex T (Q0) −→ · · · depend a priori
on T and the resolution of F . If we resolve F with injectives, then the cohomology objects
will depend only upon T and F (NOT upon the particular resolution employed to obtain
them); hence, they may be considered invariants of T and F . This uniqueness property is
a consequence of the quasi-uniqueness of injective resolutions (Section B.1, Theorem B.2),
and is the main content of

Proposition B.14 Let C and C′ be abelian categories, and assume C possesses enough
injectives. If T is a left exact functor from C to C′ and if F is any object of C, then the
objects, (RnT )(F ), of C′, defined by

RnT (F ) = Hn(T (Q)),

where T (Q) is the complex

T (Q0) −→ T (Q1) −→ T (Q2) −→ · · ·

arising from any injective resolution of F , depend only upon T and F . Each RnT is a functor
from C to C′, and we have an isomorphism of functors T −̃→ R0T .

Proof . Choose two injective resolutions of F

0 −→ F −→ Q0 −→ Q1 −→ Q2 −→ · · · (α)

and

0 −→ F −→ Q′0 −→ Q′1 −→ Q′2 −→ · · · (β)
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and form the complexes

T (Q0) −→ T (Q1) −→ T (Q2) −→ · · · (T (α))

and

T (Q′0) −→ T (Q′1) −→ T (Q′2) −→ · · · . (T (β))

By Theorem B.2, resolutions (α) and (β) are of the same homotopy type, so that there
are maps (ξi), (ηi) from (α) to (β) (resp. (β) to (α)) over the identity whose compositions
are homotopic to the identity. Since T is a functor, those maps induce maps of complexes
(T (ξi)) = (ξ∗i ), etc. Moreover, in virtue of the commutativity requirement in the definition
of a map of resolutions, the maps ξ∗i , etc., induce maps (again denoted ξ∗i , etc.) on the
cohomology of the complexes T (α), T (β)

ξ∗i : H
i(T (Q)) −→ H i(T (Q′))

η∗i : H
i(T (Q′)) −→ H i(T (Q)).

Since ξ ◦ ηi ∼ id and ηi ◦ ξi ∼ id (here, ∼ denotes “homotopic to”), our first conclusion
will follow from the statement: Homotopic maps of complexes induce the same map on
cohomology .

To obtain the italicized statement, let (ui) and (vi) be homotopic maps of complexes; let
let u∗i and v

∗
i denote the induced maps on the ith cohomology object, for all i. If (si) is the

homotopy, we have

vi − ui = (δ′)i−1 ◦ si + si+1 ◦ δi, i > 0

v0 − u0 = s1 ◦ δ0.

Now, u∗i and v∗i are defined on Ker δi modulo Im δi−1, so it follows immediately from the
above equations that u∗i = v∗i for all i ≥ 0.

Suppose F
f−→ G is a map of objects in C. According to Theorem B.2, for any injective

resolution of F and G there is a map over f . This morphism induces a map on cohomology,
and hence we obtain a map (RnT )(F ) −→ (RnT )(G). The map on cohomology is indepen-
dent of the resolution and the particular lifting of f to a map of resolutions. (Theorem B.2
shows that any two liftings are homotopic, and the italicized statement above gives us the
uniqueness.) The axioms for a functor are trivially verified by the same methods.

Finally, as T is left-exact, the sequence

0 −→ T (F ) −→ T (Q0)
δ0−→ T (Q1) −→ · · ·

shows that T (F ) −→ Ker δ0 = (R0T )(F ) is an isomorphism, and it is obviously functorial.

The functors RnT are called the right derived functors of T . When T is fixed, the objects
(groups in case C′ = AB) (RnT )(F ) are important invariants of the object F .
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Proposition B.15 Let

Q′0 −→ Q′1 −→ Q′2 −→ · · · (Q′)

Q0 −→ Q1 −→ Q2 −→ · · · (Q)

Q′′0 −→ Q′′1 −→ Q′′2 −→ · · · (Q′′)

be three complexes, and assume that for each i ≥ 0 we have an exact sequence

0 −→ Q′i −→ Qi −→ Q′′i −→ 0.

Assume moreover that the diagram

0 // Q′i

δ′

��

// Qi

δ

��

// Q′′i

δ′′

��

// 0

0 // Q′i+1
// Qi+1

// Q′′i+1
// 0

commutes for each i ≥ 0. Then there is a map

δ∗i : H
i(Q′′)→ H i+1(Q′)

for each i ≥ 0, and the sequence

0 // H0(Q′) // H0(Q) // H0(Q′′) EDBC
GF δ∗0@A

// H1(Q′) // · · · // · · · EDBC
GF@A

// · · · // · · · // Hn−1(Q′′) EDBC
GF

δ∗n−1

@A
// Hn(Q′) // Hn(Q) // Hn(Q′′) // · · ·

is exact.

Remark: One compresses the hypotheses of Proposition B.15 by saying that
0 −→ (Q′) −→ (Q) −→ (Q′′) −→ 0 is an exact sequence of complexes . The maps δ∗n are con-
necting homomorphisms , and the exact sequence of the conclusion is called the cohomology
sequence or the long exact sequence of cohomology .

Proof . An application of the snake lemma to the commutative diagram in the hypothesis
yields a map

Ker (δ′′)i −→ Coker (δ′)i+1.

However, a moment’s thought shows that this map factors through H i(Q′′) and H i+1(Q′);
so it yields the connecting homomorphism δ∗i . The exactness of the cohomology sequence is
straight-forward and will be left as an exercise.
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Corollary B.16 Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence in the abelian
category C, and let T : C→ C′ be a left-exact functor. Then for every n ≥ 0, there is a map

(RnT )(F ′′)
δ∗n−→ (Rn+1T )(F ′),

and the sequence

0 // T (F ′) // T (F ) // T (F ′′) EDBC
GF@A

// (R1T )(F ′) // · · · // · · · EDBC
GF@A

// (RnT )(F ′) // (RnT )(F ) // (RnT )(F ′′) EDBC
GF@A

// (Rn+1T )(F ′) // · · · // · · · // · · ·

is exact. If 0 −→ G′ −→ G −→ G′′ −→ 0 is another exact sequence in C, and if there is a
commutative diagram

0 // F ′

��

// F

��

// F ′′

��

// 0

0 // G′ // G // G′′ // 0,

then the induced diagram

0 // T (F ′)

��

// T (F )

��

// T (F ′′)

��

// (R1T )(F ′)

��

// · · · // (RnT )(F ′)

��

// · · ·

0 // T (G′) // T (G) // T (G′′) // (R1T )(G′) // · · · // (RnT )(G′) // · · ·

is also commutative.

Proof . This is an immediate consequence of Theorem B.2 and Propositions B.3 and B.15.

Remark: A sequence {T n} of functors having the properties expressed by the conclusions
of the corollary is called an exact, connected sequence of functors or a cohomological functor
(or a δ-functor).

Corollary B.17 The functor T is exact if and only if RnT is zero for n > 0.

Proof . If T is exact then clearly RnT vanishes for positive n. Conversely suppose RnT
vanishes for n > 0, then in particular R1T is identically zero. Hence, for any exact sequence

0 −→ F ′ −→ F −→ F ′′ −→ 0
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we obtain
0 −→ T (F ′) −→ T (F ) −→ T (F ′′) −→ (R1T )(F ′)

is exact. This completes the proof.

Now if Q is any injective object of C then the sequence 0 −→ Q
id−→ Q −→ 0 is an injec-

tive resolution ofQ; hence, for any functor T (left-exact, of course) we obtain (RnT )(Q) = (0)
for n > 0. The three properties

(a) R0T = T

(b) RnT vanishes on injectives for n > 0

(c) {RnT} is a cohomological functor

serve to characterize the sequence {RnT}. This is a straightforward argument, however, it
also follows from a more general line of reasoning which will be useful later on. We now turn
to this more general reasoning.

Suppose we have a functor T : C→ C′. We say that T is effaçable in C if and only if for
each object, F , of C there is a monomorphism into an object, MF , of C

′

u : F → MF

such that T (u) = 0. (In particular, this will be the case if T (MF ) is the zero object ofC
′.) Let

{T n}) be a cohomological functor. The sequence {T n} is a universal cohomological functor if
and only if for any cohomological functor, {Sn}, and for any map, T 0 −→ S0 of functors there
exists a unique family of maps of functors T n −→ Sn (having appropriate commutativity
conditions) for n ≥ 0 which reduces, when n = 0, to the given map T 0 −→ S0. An obvious
consequence of this rather long condition is the fact that two universal cohomological functors
are isomorphic if and only if their zeroth terms are isomorphic.

Proposition B.18 Let C,C′ be abelian categories and let {T n}) be a cohomological functor
from C to C′. Suppose T n is effaçable for n > 0. Then, {T n} is a universal cohomological
functor. Consequently, properties (a), (b), (c) of the sequence {RnT} characterize it as a
cohomological functor.

Proof . The proof is by induction on n; we shall treat only the case n = 1 for the other cases
are very similar. Let u0 : T

0 → S0 be the given map of functors. If F is an object of C, the
effaçability of T 1 shows that there is an exact sequence

0 −→ F −→MF −→ F ′′ −→ 0

such that the map δ in the induced sequence

T 0(Mf ) −→ T 0(F ′′)
δ−→ T 1(F ) −→ T 1(MF )
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is surjective. Were a map u1 : T
1 → S1 to exist, the commutative diagram

T 0(MF ) //

u0(MF )
��

T 0(F ′′)
δ //

u0(F ′′)
��

T 1(F ) //

u1
��

T 1(MF )

S0(MF ) // S0(F ′′) // S1(F )

and the surjectivity of δ would show that u1 is completely determined by the maps u0(MF ),
u0(F

′′). This argument proves the uniqueness of the map u1.

Now we need to prove the existence of a map u1. Since the lower line of the above diagram
is exact (all that is necessary is that it be a complex), this diagram with u1 removed implies
that the map u0(F

′′) induces a map T 1(F ) −→ S1(F ) in such a way that our diagram
commutes. However, it is a priori possible that the induced map depends upon the choice
of exact sequence

0 −→ F −→ MF −→ F ′′ −→ 0.

We claim that this is not the case. Observe first that a simple argument establishes: If

0 −→ F −→M ′F −→ G −→ 0

is another exact sequence, and if this sequence dominates the former in the sense that there
is a commutative diagram

0 // F

��

//MF

��

// F ′′

��

// 0

0 // F //M ′F
// G // 0,

then the maps u1 : T
1(F ) → S1(F ) induced by these sequences are the same. From this it

follows that given two sequences

0 −→ F −→MF −→ F ′′ −→ 0 and 0 −→ F −→M ′F −→ G −→ 0,

we need only find a common dominant. If ξ is the composed map F −→MF −→ MF

∐
M ′F

and η is the composed map F −→ M ′F −→ MF

∐
M ′F , then ξ − η is an injection of F into

MF

∐
M ′F . Let M be the cokernel of ξ − η, then the exact sequence

0 −→ F −→M −→ F ′′
∐

G,

is the required dominant. The verification that u1 is a map of functors is now trivial and
the proof is complete.

The main point of Proposition B.18 is that it does away with the need for injectives
in establishing the uniqueness of a cohomological functor. Frequently, one will have two
cohomological functors which agree in dimension zero. To establish that they are isomorphic
on the category C, one need only be able to efface them in C.

We need just one more abstract proposition.
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Proposition B.19 Let T be a functor from the abelian category C to the abelian category
C′, and suppose that C has enough injectives. Let X be a class of objects in C which satisfies
the following conditions:

(i) C possesses enough X-objects,

(ii) If F is an object of C and F is a direct factor of some object in X, then F belongs to
X,

(iii) If 0 −→ F ′ −→ F −→ F ′′ −→ 0 is exact and if F ′ belongs to X, then
0 −→ T (F ′) −→ T (F ) −→ T (F ′′) −→ 0 is exact, and if F also belongs to X, then F ′′

belongs to X.

Under these conditions, every injective object belongs to X, for each M in X we have
(RnT )(M) = (0) for n > 0, and finally the functors RnT may be computed by taking X-
resolutions.

Proof . Let Q be an injective of C. By (i), Q admits a monomorphism into some object M
of the class X . As Q is injective, Q is a direct factor of M ; hence (ii) implies Q lies in X .
Let us now show that (RnT )(M) = (0) for n > 0 if M lies in X . Now, C possesses enough
injectives, so we have (with obvious notations) the exact sequences

0 −→M −→ Q0 −→ Z0 −→ 0

0 −→ Z0 −→ Q1 −→ Z1 −→ 0

0 −→ Z1 −→ Q2 −→ Z2 −→ 0

· · · · · · · · · · · · · · · · · · · · ·
0 −→ Zn −→ Qn+1 −→ Zn+1 −→ 0

· · · · · · · · · · · · · · · · · · · · ·

Here, each Qi is injective, so lies in X . As M belongs to X , (iii) show that Z0 lies in X . By
induction, Zi belongs to X for every i ≥ 0. Again, by (iii), the sequences

0 −→ T (M) −→ T (Q0) −→ T (Z0) −→ 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 −→ T (Zn) −→ T (Qn+1) −→ T (Zn+1) −→ 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

are exact. Consequently, the sequence

0 −→ T (M) −→ T (Q0) −→ T (Q1) −→ T (Q2) −→ · · ·

is exact, and this proves that (RnT )(M) = (0) for positive n. Finally, we must show that
the functors RnT may be computed from arbitrary X-resolutions (which exist by (i)). Given
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F , we construct an X-resolution via the usual exact sequences

0 −→ F −→M0 −→ Z0 −→ 0

0 −→ Z0 −→M1 −→ Z1 −→ 0
...

If we apply the sequence of cohomology to each of these sequences and make use of
(RnT )(M) = (0) for n > 0, we deduce

(RmT )(Zn) = (RpT )(Zm+n−p) = (Rm+n−1T )(F )

for m > 0. Consequently, we deduce exact sequences

0 −→ T (F ) −→ T (M0) −→ T (Z0) −→ (R1T )(F ) −→ 0

0 −→ T (Z0) −→ T (M1) −→ T (Z1) −→ (R2T )(F ) −→ 0

0 −→ T (Z1) −→ T (M2) −→ T (Z2) −→ (R3T )(F ) −→ 0,

etc. These sequences prove that the cohomology of

0 −→ T (F ) −→ T (M0) −→ T (M1) −→ T (M2) −→ · · ·

is exactly {(RnT ))(F )}∞n=0, as required.

At last we forsake arbitrary abelian categories and assume C = S(X,OX) and C′ = AB.

Definition B.4 Let F be an OX -module, and let U be an open set of X . By the nth–
cohomology group of U with coefficients in F we mean the abelian group (RnΓU)(F), where
ΓU is the functor: O(X,OX) −→ AB given by F  F(U). In particular, the cohomology
groups of X with coefficients in F are the values of the derived functors RnΓ on F , where Γ
is the “global section” functor, i.e., Γ(F) = Γ(X,F) = F(X).

The notation for the nth cohomology group of U with coefficients in F is Hn(U,F).
Upon putting together Propositions B.9, B.14, B.15, B.18, B.19, and Theorems B.2 and

B.10, we may state the following grand theorem.

Theorem B.20 Cohomology groups of a ringed space X in any OX-module exist. If
0 −→ F ′ −→ F −→ F ′′ −→ 0 and 0 −→ G ′ −→ G −→ G ′′ −→ 0 are exact sequences of
OX-modules, and the diagram

0 // F ′

��

// F

��

// F ′′

��

// 0

0 // G ′ // G // G ′′ // 0



518 APPENDIX B. COHOMOLOGY

is commutative then we have a commutative diagram of cohomology

0 // H0(X,F ′)

��

// H0(X,F)

��

//H0(X,F ′′)

��

// H1(X,F ′)

��

// · · ·

0 // H0(X,G ′) // H0(X,G) // H0(X,G ′′) // H1(X,G ′) // · · · .

The positive dimensional cohomology groups of X vanish for flasque (in particular, for injec-
tive) sheaves, and the cohomology groups are characterized by the above properties. One can
compute the cohomology groups of F using any flasque resolution of F ; in particular, they
may be computed from the Godement resolution of F . For any OX-module, F , the zeroth

cohomology group, H0(X,F), is exactly the group of global sections, F(X) = Γ(X,F), of F .

Another easy consequence of our results is the following theorem which is of use in
algebraic geometry.

Theorem B.21 Let (X,OX) be a ringed space, and assume X is noetherian. If (Fλ) is a
direct mapping family of OX-modules and F is its limit, then we have the canonical isomor-
phism

lim−→
λ

Hn(X,Fλ) −̃→ Hn(X,F)

for every n ≥ 0. In other words, cohomology commutes with direct limits of sheaves over
noetherian spaces.

Proof . For each Fλ construct its Godement resolution. According to Problem 2 of Section
B.1, the Godement resolution of a sheaf is a functor of that sheaf; consequently, we have a
direct family of flasque resolutions

{
0 −→ Fλ −→ C0(X,Fλ) −→ C1(X,Fλ) −→ · · ·

}
.

The direct limit of these resolutions is a flasque resolution of F by Theorem B.13. Since
direct limits of complexes commute with cohomology of complexes our theorem now follows
immediately from Theorem B.20.

We now wish to examine the cohomology of sheaves concentrated on closed subspaces of
X . For this we need

Lemma B.22 Let Y be a closed subspace of X and let F be an OX-module. Then the
canonical map

γ : Γ(X,FY )→ Γ(Y,F ↾ Y )
is an isomorphism.
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Proof . The map γ is the restriction of sections from X to Y . From the definition of FY each
element of the lefthand group has support contained in Y ; this proves that γ is injective.
Conversely as Y is closed in X , each section of F ↾ Y has support closed in X ; hence, the
map ǫ which extends a section by zero outside Y is an inverse to γ.

Obviously if G is anOY -module (OY = OX ↾ Y ) then Lemma B.22 yields the isomorphism

Γ(Y,G) −̃→ Γ(X,G).

Theorem B.23 Let Y be closed in X and let G be an OY -module. Then there exist canonical
isomorphisms

Hn(Y,G) −̃→ Hn(X,G)
for every n ≥ 0. In particular for an OX-module, F , there are isomorphisms

Hn(Y,F ↾ Y ) −̃→ Hn(X,FY ).

Moreover, we have the exact relative cohomology sequence

0 // H0(X,FX−Y ) // H0(X,F) // H0(Y,F ↾ Y ) EDBC
GF@A

// H1(X,FX−Y ) // · · · // · · · EDBC
GF@A

// Hn(X,FX−Y ) // Hn(X,F) // Hn(Y,F ↾ Y ) EDBC
GF@A

// Hn+1(X,FX−Y ) // · · · // · · · // · · ·

Proof . The functor G  G is exact, and when composed with the cohomological functor
{Hn(X,−)} it gives a cohomological functor

G  Hn(X,G)

on S(Y,OY ). Now there is a universal cohomological functor on S(Y,OY ), namely
G  {Hn(Y,G)}. Since we have a map H0(Y,G) −→ H0(X,G) we deduce the canonical
isomorphisms

Hn(Y,G) −→ Hn(X,G) for n ≥ 0. (α)

Each OY -module, G, is embeddable in an injective OY -module Q. By Problem 1 of Section
B.1 (see also Proposition B.6), Q is an injective OX -module. Hence, G admits a monomor-
phism into a sheaf Q for which Hn(X,Q) vanishes when n > 0. That is, the functors
G  Hn(X,G) are effaçable for n > 0. It follows from Proposition B.18 that
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G  {Hn(X,G)} is a universal cohomological functor; so the homomorphisms (α) are iso-
morphisms. From Theorem A.12, we deduce the exact sequence

0 −→ FX−Y −→ F −→ FY −→ 0. (β)

Upon writing G = F ↾ Y , using the cohomology sequence associated to (β), and employing
the isomorphisms (α), we deduce the exact relative cohomology sequence.

There is an interesting application of Theorem B.23 to the notion of cohomological di-
mension of an algebraic variety. We say that a cohomological space X has cohomological
dimension less than or equal to n if for every sheaf, F , of abelian groups on X , the group
Hr(X,F) vanishes when r > n. The following theorem (due to Grothendieck [21]) provides
a test for cohomological dimension on noetherian spaces.

Theorem B.24 Let X be a noetherian space. In order that X have a cohomological dimen-
sion less that or equal to n, it is necessary and sufficient that

Hr(X,ZU) = (0)

for all r > n and all open U in X.

Proof . Every sheaf is a homomorphic image of a direct sum of sheaves, ZUi
, for open sets

Ui (the ZU are generators of S(X,OX)). Such a direct sum is a direct limit of finite direct
sums, and, since X is noetherian, Theorem B.21 show that we may restrict attention to
homomorphic images of finite direct sums of ZU ’s.

If F is such a sheaf, it follows immediately that F possesses a composition series

(0) = F0 ⊆ F1 ⊆ · · · ⊆ Fm = F

whose factors Fj/Fj−1 are homomorphic images of the generating ZU . Were the theorem
true for sheaves of composition length at most m − 1, we could prove it for sheaves of
composition length m as follows: The sequence 0 −→ Fm−1 −→ F −→ F/Fm−1 −→ 0
yields the cohomology sequence

· · · −→ Hr(X,Fm−1) −→ Hr(X,F) −→ Hr(X,F/Fm−1) −→ · · · .

Since the extremes of the latter sequence vanish for r > n by the induction hypothesis, the
middle term also vanishes, as required. Thus, in proving the theorem, we may assume that
the sequence

0 −→ K −→ ZU −→ F −→ 0

is exact for some open set U of X . By Theorem A.16, the sheaf has a composition series

K0 ⊆ K1 ⊆ · · · ⊆ Kν = K
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whose quotients have the form ZY for locally closed subspaces Y of X . We need to prove
Hr(X,K) = (0) for r > n, and the same argument as above shows that we may assume
K = ZY for Y locally closed in X .

Now, Y has the form U − V for open sets V ⊆ U in X , and it follows from Theorem
A.12 that the sequence

0 −→ ZV −→ ZU −→ ZY −→ 0

is exact. But an application of the cohomology sequence and the hypothesis to the last exact
sequence yields

Hr(X,ZY ) = (0) for r > n.

Let X be a noetherian space. We say that X has combinatorial dimension less than or
equal to n if the least upper bound of the integers r for which there exists a strictly increasing
chain

X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ Xr = X

of closed, nonempty, irreducible subsets of X is less than or equal to n. When X is an affine
variety in the sense of Chapter 1, dimension theory shows that the combinatorial dimension
of X equals its dimension as a variety.

Theorem B.25 Let X be a noetherian space. Then the cohomological dimension of X is
bounded by its combinatorial dimension.

Proof . We prove this by induction on the combinatorial dimension of X . When X has
dimension zero it is a finite union of points and the theorem is trivial. Suppose X has
dimesnion n and the theorem has been proved for smaller combinatorial dimensions. Let
Xj, with j = 1, · · · , r be the irreducible components of X (= maximal irreducible closed
subspaces of X , which exist as X is noetherian), let F be a sheaf on X , and let Fj = FXj

.
As each Xj is closed in X , we have a homomorphism F −→ Fj for each j; consequently we
deduce the exact sequence

0 −→ F −→
∏

j

Fj −→ G −→ 0

on X . Now G is zero outside of the union
⋃
i 6=j(Xi ∩ Xj) = Y , and Y has combinatorial

dimension at most n − 1. It follows from the induction hypothesis and Theorem B.23 that
Hm(X,G) = (0) for m > n − 1. The cohomology sequence then shows that we need prove
only that

Hm(X,Fj) = (0), for all j and all m > n.

However, by Theorem B.23 again, Hm(Xj,Fj) = Hm(X,Fj); hence, we may assume that X
is irreducible.
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Let U be open (nonempty) in X , and consider the exact sequence of sheaves on X :

0 −→ ZU −→ Z −→ ZX−U −→ 0.

From the cohomology sequence and Theorem B.23, we obtain

Hm−1(X − U,Z) −→ Hm(X,ZU) −→ Hm(X,Z).

As X is irreducible, the combinatorial dimension of X − U is strictly smaller than n, and
the constant sheaf Z on X is flasque (see Proposition B.12). It follows from this that the
extremes of our sequence vanish form > n; hence, an application of Theorem B.24 completes
the proof.

Problem B.3 (Buchsbaum). Let T be a left-exact functor from the abelian category C to
AB. We say that T is locally effaçable if and only if for every F in C and every ξ ∈ T (F ),
there exists an object,MF,ξ, of C and a monomorphism u : F → MF,ξ such that T (u)(ξ) = 0.
Prove that a cohomological functor {T n} on C to AB is universal if T n is locally effaçable
for all n > 0.

Problem B.4 Suppose C is an abelian category with enough injectives and {T n} is a uni-
versal cohomological functor from C to another abelian category C′. If Q is an injective
object of C prove that T n(Q) = (0) for n > 0.

Problem B.5 Let X be an irreducible affine variety and let A be its coordinate ring. Let
(Y,OY ) be the ringed space associated to A (Example 3 of Section A.6), and letM be the
sheaf of meromorphic functions on Y . If D denotes the sheaf of germs of divisors on Y (i.e.,
the quotient sheafM∗/O∗Y ), then as we shall show later on, D is flasque. Assume this fact
and establish

(a) An isomorphism Γ(Y,D)/Γ(Y,M∗) −̃→ H1(Y,O∗Y ), i.e., a classification of the classes
of divisors on Y as elements of the first cohomology group of Y with coefficients in the
germs of invertible holomorphic functions, and

(b) Hn(Y,O∗Y ) = (0) for n ≥ 2.

Problem B.6 Give an example of a noetherian space X of zero cohomological dimension
but infinite (or arbitrarily large) combinatorial dimension.

Hint . Let X be a well-ordered set and let a set S ⊆ X be closed if and only if

S = Sx where Sx = {y ∈ X | y < x}.
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B.3 Čech Cohomology

The cohomology groups of Section B.2 are apparently still hard to compute. Even more
important is the question: What are they good for? We shall develop a cohomology theory
for presheaves which is, in a mild way computable. In some instances it agrees with the
cohomology of Section B.2. However, its biggest advantage is that the groups lend themselves
to geometric interpretation as classifying groups for certain structures and constructs on a
ringed space. An important example of this phenomenon is given in Section 4.4 (Theorem
5.11).

Let F be a presheaf of abelian groups on X , and let {Ui → X} be a covering. Given
indices i0, . . . , in, we have n+ 1 maps

Ui0 ∩ · · · ∩ Uin −→ Ui0 ∩ · · · ∩ Ûij ∩ · · · ∩ Uin

(where Ûij means “omit Uij”) corresponding to the omission of each one of the n + 1 sets

Uij , with j = 0, . . . , n. Let δnj denote the map from Ui0 ∩· · ·∩Uin to Ui0 ∩· · ·∩ Ûij ∩· · ·∩Uin ,
then our array of sets and maps may be schematically depicted as follows:

X ←− Ui0
←−←− Ui0 ∩ Ui1

←−←−←− Ui0 ∩ Ui1 ∩ Ui2
←−←−←−←−

· · · .

If we let Cn({Ui → X},F) be the product
∏F(Ui0 ∩ · · · ∩ Uin) taken over all tuples

(i0, . . . , in) of n+ 1 indices, then we obtain a diagram

C0({Ui → X},F) −→−→ C1({Ui → X},F)
−→−→−→ C2({Ui → X},F)

−→−→−→−→
· · · .

Each of the arrows in this diagram has the form F(δnj ) for some n and some j, with 0 ≤ j ≤ n.
Given n, upon defining δnF by the formula

δnF =

n+1∑

j=0

(−1)jF(δn+1
j ),

we get the diagram

C0({Ui → X},F) δ0
F−→ C1({Ui → X},F) δ1

F−→ C2({Ui → X},F) · · · . (∗)

As an exercise, the reader should prove that the diagram (∗) is a complex for every
presheaf F and every covering {Ui → X} (DX).

As an aid in understanding the complicated symbolism above (and in doing the exercise!),
let us render more explicit the nature of the groups Cn({Ui → X},F) and the maps δnF . An
element of Cn({Ui → X},F) is a collection of objects

f(i0, . . . , in)
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each lying in F(Ui0 ∩· · ·∩Uin). If I is the index set for the covering {Ui → X}, then such an
element is obviously a “function” on In+1 with “value” at (i0, . . . , in+1) in F(Ui0∩· · ·∩Uin+1).
By tracing through the definition of δnF , we find

(δnFf)(i0, . . . , in+1) =
n+1∑

j=0

(−1)jf(i0, . . . , îj , . . . , in+1), (∗∗)

where îj means “omit ij .” In particular

(δ0Ff)(i, j) = f(j)− f(i)
(δ1Ff)(i, j, k) = f(j, k)− f(i, k) + f(i, j), etc.

The group Cn({Ui → X},F) is called the group of Čech n-cochains for the covering
{Ui → X} with values in F , the mappings δnF are called coboundary operators , and the
cohomology groups of the complex (∗) are called the Čech cohomology groups of F for the
covering {Ui → X}. Observe that H0({Ui → X},F) is exactly the group introduced in
Section A.2; hence, when F is a sheaf we have the isomorphism

F(X) ≃ H0({Ui → X},F).

Also, when F is a sheaf, a Čech n-cochain of F for the covering {Ui → X} may be considered
as a family {s(i0, . . . , in)} of sections of F , each section s(i0, . . . , in) being defined over
Ui0 ∩ · · · ∩ Uin .

Now, the correspondence F  Cn({Ui → X},F) is obviously functorial, and moreover
a trivial check shows that F  Cn({Ui → X},F) is an exact functor from P(X) to AB. It
follows that

F  Hn({Ui → X},F) (†)

is a cohomological functor on P(X).

Theorem B.26 The functors F  Hn({Ui → X},F) are effaçable for n > 0; consequently,
the cohomological functor (†) is universal. The functors Hn({Ui → X},−) are the right
derived functors of the left-exact functor H0({Ui → X},−).

Proof . Let ZU (for open U) be the presheaf introduced in Example 4 of Section A.1. If F
is an injective presheaf, we must show that the complex

C0({Ui → X},F) δ0
F−→ C1({Ui → X},F) δ1

F−→ C2({Ui → X},F) −→ · · ·

is acyclic (i.e., exact). Now for any open set U , Hom (ZU ,F) = F(U); hence, our complex
amounts to ∏

i

Hom(ZUi
,F) −→

∏

i,j

Hom(ZUi∩Uj
,F) −→ · · · .
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But we know ∏

α

Hom(ZUα ,F) = Hom(
∐

α

ZUα ,F);

hence our complex becomes:

Hom (
∐

i

ZUi
,F) −→ Hom(

∐

i,j

ZUi∩Uj
,F) −→ · · · .

As F is injective, the latter will be acyclic if we can prove that

∐

i

ZUi
←−

∐

i,j

ZUi∩Uj
←−

∐

i,j,k

ZUi∩Uj∩Uk
←− · · ·

is exact.

Now, by definition of ZUi
, etc., we see that it is necessary to prove that the sequence

∐

i


 ∐

Hom (U,Ui)

Z


←−

∐

i,j


 ∐

Hom (U,Ui∩Uj)

Z


←− · · ·

is exact. However, the last sequence is induced by the maps of the diagram

∐

i

Hom(U, Ui)
←−←−

∐

i,j

Hom (U, Ui ∩ Uj)
←−←−←− · · · (††)

(as follows from the definition of ZUj
as a presheaf ). If we let J =

∐
iHom (U, Ui), then (††)

becomes the diagram

J ←−←− J × J
←−←−←− J × J × J

←−←−←−←−
J × J × J × J · · ·

and here the maps really are obvious: Consequently, we are reduced to proving that a
diagram of the form

∐

J

Z ←−←−
∐

J2

Z
←−←−←−

∐

J3

Z
←−←−←−←−

∐

J4

Z · · ·

is exact.

An element of
∐

Jn Z is a function f on Jn to Z with finite support . Its image πnf in∐
Jn−1 Z is given by

(πnf)(α1, . . . , αn−1) =

n∑

i=1

(−1)i
∑

β∈J

f(α1, . . . , αi−1, β, αi, . . . , αn−1).
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Consequently, f is a “cycle”, i.e., πnf = 0, when and only when

n∑

i=1

(−1)i
∑

β∈J

f(α1, . . . , αi−1, β, αi, . . . , αn−1) = 0.

We must show that every cycle is a “boundary,” i.e., πnf = 0 implies f = πn+1g for some g.
To this end, given f , define f ∗ by

f ∗(α1, . . . , αn+1) =

{
0 if αn+1 6= λ
f(α1, . . . , αn) if αn+1 = λ

where λ is a chosen element of J , fixed once and for all. (we may assume J 6= ∅.) Then,
πn+1f ∗ has the form

(πn+1f ∗)(α1, . . . , αn) =

n+1∑

i=1

(−1)i
∑

β∈J

f ∗(α1, . . . , αi−1, β, αi, . . . , αn)

=
n∑

i=1

(−1)i
∑

β∈J

f ∗(α1, . . . , αi−1, β, αi, . . . , αn) + (−1)n+1f(α1, . . . , αn).

When αn 6= λ, we deduce

(πn+1f ∗)(α1, . . . , αn) = (−1)n+1f(α1, . . . , αn).

So, assume αn = λ, then

(πn+1f ∗)(α1, . . . , αn) =
n∑

i=1

(−1)i
∑

β∈J

f(α1, . . . , αi−1, β, αi, . . . , αn−1) + (−1)n+1f(α1, . . . , αn)

= (πnf)(α1, . . . , αn−1) + (−1)n+1f(α1, . . . , αn)

= (−1)n+1f(α1, . . . , αn),

since we are assuming πnf = 0. This completes the proof.

Let {Ui → X} be a refinement of {U ′λ → X}, say by the map ǫ. As described in Section
A.2, the map ǫ induces a map

ǫ∗n : C
n({U ′λ → X},F)→ Cn({Ui → X},F)

for each n ≥ 0. One easily checks that the mapping ǫ∗n commute with the coboudary operators
δF ; hence, we obtain mappings

Hn({U ′λ → X},F) −→ Hn({Ui → X},F)
for every n ≥ 0.

Since the functor Hn({Ui → X},F) is universal, any map from H0({U ′λ → X},F) to
H0({Ui → X},F) may be extended uniquely to maps of the Hn. However, Lemma A.2 of
Section A.2 shows that the map ǫ∗0 induced by ǫ is independent of ǫ. We have proven
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Proposition B.27 Let {U ′λ → X} ǫ−→ {Ui → X} be a refinement of coverings. Then, for
each n ≥ 0, ǫ induces a mapping

ǫ∗n : H
n({U ′λ → X},F) −→ Hn({Ui → X},F).

Any two refining maps between the same coverings induce the same map on cohomology.

Just as in Section A.2, we may now pass to the direct limit over the family of all coverings
partially ordered by domination. When this is done we obtain

Definition B.5 The Čech cohomology groups of X with coefficients in the presheaf F , de-
noted Ȟn(X,F), are defined by

Ȟn(X,F) = lim−→
{Ui→X}

Hn({Ui → X},F)

(the direct limit over all coverings {Ui → X}.)

Observe that F  Ȟ0(X,F) is a left-exact functor from P(X) to AB, and that
F  Ȟn(X,F) is its nth right-derived functor (DX).

Čech cohomology groups lend themselves to geometric interpretation on ringed spaces.
A good example of this phenomenon is given in Section 4.4. If (X,OX) is a ringed space, it
is proved in Theorem 5.11 that the Picard group Pic(X) (the group of isomorphism classes
of invertible sheaves on (X,OX)) is isomorphic to Ȟ1(X,O∗X).

It turns out that the set, LFn(OX), of isomorphism classes of locally free OX-modules
of rank n on a ringed space (X,OX) is also classified by a Čech cohomology object, namely
Ȟ1(X,GL(n)) (see Corollary 5.12). However, Ȟ1 is a set , and not a group. Thus, we need
to develop nonabelian cohomology. Here is how we proceed for Čech cohomology, in the
special case of Ȟ1, which is the only convenient case.

Let G be a sheaf of nonabelian groups and let U = {Uα → X} be a cover of X . We define
the sets C0({Uα → X},G) and C1({Uα → X},G) by

C0({Uα → X},G) =
∏

α

G(Uα),

and
C1({Uα → X},G) =

∏

α,β

G(Uα ∩ Uβ)alt,

which means that gβα = [gαβ ]
−1 for every (gβα) ∈ C1({Uα → X},G). Then, we define the

1-cocycles by

Z1({Uα → X},G) = {(gβα) ∈ C1({Uα → X},G) | gγα = gγβ · gβα}
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on Uα∩Uβ∩Uγ . The equivalence relation ∼ on Z1({Uα → X},G) is defined as follows: Given
(gβα) and (g̃βα) in Z

1({Uα → X},G), we say that (gβα) and (g̃βα) are cohomologous , denoted by

(gβα) ∼ (g̃βα),

iff there exist some 0-cocycle (hα) in C
0({Uα → X},G) so that

g̃βα = hβ · gβα · h−1α

for all α, β. Then, set

H1({Uα → X},G) = Z1({Uα → X},G)/ ∼ .

Note that H1({Uα → X},G) contains a distinguished element, namely, the equivalence class
of 1, i.e.,

{(gβα) | gβα = hβ · h−1α }.
Under refinements of covers, all maps work correctly, and by taking the inductive limit, we
obtain the Čech cohomology set, Ȟ1(X,G), given by

Ȟ1(X,G) = lim−→
U

H1(U ,G),

where U ranges over all covers of X .

Problem B.7 A complex
C0 −→ C1 −→ C2 −→ · · ·

is homotopically trivial if and only if the identity map is homotopic to the zero map. (Any
homotopy which effects this is usually called a contracting homotopy .) Show that if the
above complex is homotopically trivial, it is acyclic. Show that the complex

∐

J

Z ←−←−
∐

J2

Z
←−←−←−

∐

J3

Z
←−←−←−←−

∐

J4

Z · · ·

is homotopically trivial. Does this imply that any two maps on the Čech cochain complexes
are homotopic? Is the converse true?

Problem B.8 Let A be a commutative ring with unity and let SpecA be the ringed space
introduced in Section A.6 (Example 3) for A. If Spec A = (X,OX), then we denote Pic(X)
by Pic(A).

(a) Compute Pic(A) when A is a Dedekind domain.

(b) Compute Pic(A) when A is a noetherian local ring.
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(c) Compute Pic(A) when A is a unique factorization domain.

Problem B.9 Let A = k[T ] be the polynomial ring in one variable. If (X,OX) = Spec A,
show that H1(X,OX) = (0).

Problem B.10 Show that for every covering {Ui → X}, the mapping

H1({Ui → X},F) −→ Ȟ1(X,F)

is an injection if F is a sheaf.

Problem B.11 Let F be a flasque sheaf on X . Show that for every open covering
{Ui → U} of the open U , we have

Hn({Ui → U},F) = (0)

for n > 0. Is the converse true?

B.4 Spectral Sequences

There is a non-trivial connection between the cohomology of Section B.2 and the Čech
cohomology of Section B.3. This connection is in the form of a “limiting procedure” starting
at one and ending at the other. The precise form of this “limiting (or approximating)
procedure” is technical, and the procedure itself is called a spectral sequence. A spectral
sequence is the device used most often to connect various cohomology theories.

Let C be an abelian category (think of C as AB) and let A be an object of C. A
decreasing filtration on A is a family, {An | n ∈ Z}, of subobjects of A with An+1 ⊆ An for
every n. Let A−∞ = A and A∞ = (0). The object, A, together with a given filtration on
it will be called a filterered object of C. If we have a filtered object, say A, we can form its
associated graded object gr(A) as follows:

gr(A) =
∐

n

gr(A)n; gr(A)n = An/An+1.

Typically, A is a complex in C considered an object of C. That is, A is a sequence

A0
d0−→ A1

d1−→ A2
d2−→ A3 −→ · · · ,

and to make A an object of C we form the direct sum
∐

nAn and call it A. (We assume
that C possesses direct sums.) Now the object A is naturally graded by the An; hence if we
have a filtration {Ap} on A there must be a connection between it and the grading or chaos
will reign. We shall say that the filtration {Ap} is compatible with the grading A =

∐
nAn if

and only if, for every p,

Ap =
∐

q

Ap ∩Ap+q.
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Moreover, we set Ap,q equal to the intersection Ap ∩ Ap+q. (We assume of our category C
that intersections exist with the usual properties.) Note that if only a grading on A is given
there is a natural filtration {Ap} on A which is compatible with the grading. Namely, set

Ap =
∐

m≥p

Am.

Of course, this filtration is not the only one compatible with the grading.

Now A also possesses a natural “differentiation” (i.e., endomorphism whose square is
zero), namely d =

∐
n dn. We assume of our filtration that it is compatible with d in the

sense that d(Ap) ⊆ Ap, for every p. In this case, Ap forms a complex; hence, one can talk of
the (co)homology H•(Ap) of Ap as well as that of A. Moreover, there is an important class of
filtrations—the ones most often arising in practice—which can be defined when d(Ap) ⊆ Ap.
These are the regular filtrations . We say that a filtration is regular if and only if, for each
n, there exists an integer, µ(n), such that

Hn(Ap) = (0) for p > µ(n).

Observe that a filtration is regular if we know that Ap ∩ An = (0) for p > µ(n) (this is the
criterion which one commonly meets).

The inclusion map Ap −→ A induces a map of (co)homology H•(Ap) −→ H•(A), whose
image will be denoted H•(A)p. Thus,

Im (H•(Ap) −→ H•(A)) = H•(A)p.

The subobjects H•(A)p filter H•(A); so we may form gr(H•(A)). In general, in the graded
and filtered case, we let

gr(A)p,q = Ap,q/Ap+1,q−1.

Observe that it is the sum p + q which is the invariant in many of these doubly indexed
objects. The reason for this will be apparent when we study double complexes. (The reader
who is experiencing difficulty in keeping track of all the indices is advised not to worry about
this matter but read just a little further when, we hope, matters will be clarified.) From the
above terminology and notation, we obtain several objects:

(1) gr(A)—bigraded via gr(A)p,q = Ap,q/Ap+1,q−1, where Ap,q = Ap ∩Ap+q.

(2) H•(A)–bigraded via Hp,q(A) = H•(A)p ∩Hp+q(A).

(3) gr(H•(A))—bigraded via gr(H•(A))p,q = Hp,q(A)/Hp+1,q−1(A).

(4) H•(gr(A))—bigraded via Hp,q(gr(A)) = Hp+q(gr(A)p) = Hp+q(Ap/Ap+1).
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The central problem is the following: We are given A and wish to compute H•(A). What
we know is gr(A) and H•(gr(A)). Hence we ask: Given H•(gr(A)), can we “compute”
H•(A)? The answer is that we cannot do precisely this, but in a large number of cases,
we can “compute” gr(H•(A)).2 The object gr(H•(A)) (bigraded as above) is the “limit”
of a sequence (the spectral sequence) of objects each constructed from the previous one by
passing to (co)homology and all starting from H•(gr(A)).

Definition B.6 A (cohomological) spectral sequence is a system
E = 〈Ep,q

r , dp,qr , αp,qr , E, βp,q〉 formed of

(a) Objects Ep,q
r of C for p, q ≥ 0 and r ≥ 2

(b) Morphisms dp,qr : Ep,q
r → Ep+r,q−r+1

r

such that dp+r,q−r+1
r ◦ dp,qr = 0 for all p, q, r

(c) Isomorphisms αp,qr : (Ker dp,qr /Im dp−r,q+r−1r )→ Ep,q
r+1

(d) E =
∐

nEn is a graded and filtered object in C with decreasing filtration {Ep}, so
that each Ep is graded by the Ep,q = Ep ∩ Ep+q;

(e) βp,q : Ep,q
∞ → gr(E)p,q is an isomorphism for all p, q, where

gr(E)p,q = (Ep ∩ Ep+q)/(Ep+1 ∩ Ep+q) = Ep,q/Ep+1,q−1,

and Ep,q
∞ is the common value of Ep,q

r for large r.

(Observe that from (a) and (c) we have Ep,q
r ≃ Ep,q

r+1 for every r > max{p, q + 1},
hence the common value of the Ep,q

r exists for large r. In particular, E0,0
2 = E0,0

∞ and
E1,0

2 = E1,0
∞ .)

The object E =
∐

nEn is called the ending of the spectral sequence and the whole definition
is written in the compact form

Ep,q
2 =⇒

p
E,

which means that there exists objects Ep,q
r , morphisms d’s, α’s, β’s, etc. so that E with its

filtration satisfies (e).

Remark: It is customary to define spectral sequence beginning from r = 2, even though the terms

Ep,q
i are often defined and meaningful for r = 1, and even for r = 0. However, in the case of double

complexes, the natural starting point is indeed r = 2, as pointed out in Cartan and Eilenberg [8]

(Chapter XV, page 332).

2Passing from gr(H•(A)) to H•(A) is the subject of “deformation theory,”, see ??.
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Theorem B.28 Let A be a complex in the abelian category C and assume that A has a
regular filtration compatible with both its grading and differentiation. Then there exists a
spectral sequence

Ep,q
2 =⇒ H•(A),

where H•(A) is filtered as described above and Ep,q
2 is the homology of H•(gr(A))—so that

Ep,q
1 = Hp,q(gr(A)) = Hp+q(Ap/Ap+1).

In the course of proving Theorem B.28, we shall make heavy use of the following simple
lemma whose proof will be left as an exercise (or see Cartan and Eilenberg [8], Chapter XV,
Lemma 1.1):

Lemma B.29 (Lemma L) Let
C

ϕ

��

ψ

  ❆
❆❆

❆❆
❆❆

❆

A′

>>⑥⑥⑥⑥⑥⑥⑥

ϕ′
// A η

// A′′

be a commutative diagram with exact bottom row. Then, η induces an isomorphism
Im ϕ/Im ϕ′ −̃→ Im ψ.

Proof of Theorem B.28. Consider the exact sequence

0 −→ Ap −→ Ap−r+1 −→ Ap−r+1/Ap −→ 0.

Upon applying cohomology, we obtain

· · · −→ Hp+q−1(Ap−r+1) −→ Hp+q−1(Ap−r+1/Ap)
δ∗−→ Hp+q(Ap) −→ · · ·

There is also the natural map Hp+q(Ap) −→ Hp+q(Ap/Ap+1) induced by the projection
Ap −→ Ap/Ap+1. Moreover, we have the projection Ap/Ap+r −→ Ap/Ap+1, which induces a
map on cohomology

Hp+q(Ap/Ap+r) −→ Hp+q(Ap/Ap+1).

Set

Zp,q
r = Im (Hp+q(Ap/Ap+r) −→ Hp+q(Ap/Ap+1))

Bp,q
r = Im (Hp+q−1(Ap−r+1/Ap) −→ Hp+q(Ap/Ap+1)),

the latter map being the composition of δ∗ and the projection (where r ≥ 1).

The inclusion Ap−r+1 ⊆ Ap−r yields a map Ap−r+1/Ap −→ Ap−r/Ap; hence we obtain
the inclusion relation Bp,q

r ⊆ Bp,q
r+1. In a similar way, the projection Ap/Ap+r+1 −→ Ap/Ap+r

yields the inclusion Zp,q
r+1 ⊆ Zp,q

r . When r = ∞, the coboundary map yields the inclusion
Bp,q
∞ ⊆ Zp,q

∞ (remember, A∞ = (0)). Consequently, we can write

· · · ⊆ Bp,q
r ⊆ Bp,q

r+1 ⊆ · · · ⊆ Bp,q
∞ ⊆ Zp,q

∞ ⊆ · · · ⊆ Zp,q
r+1 ⊆ Zp,q

r ⊆ · · · .
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Set
Ep,q
r = Zp,q

r /Bp,q
r , where 1 ≤ r ≤ ∞.

When r = 1, Bp,q
1 = (0) and

Zp,q
1 = Hp+q(Ap/Ap+1);

We obtain Ep,q
1 = Hp+q(Ap/Ap+1) = Hp,q(gr(A)). On the other hand, when r =∞ (remem-

ber, A−∞ = A), we get

Zp,q
∞ = Im (Hp+q(Ap) −→ Hp+q(Ap/Ap+1))

Bp,q
∞ = Im (Hp+q−1(A/Ap) −→ Hp+q(Ap/Ap+1)).

Now the exact sequence 0 −→ Ap/Ap+1 −→ A/Ap+1 −→ A/Ap −→ 0 yields the cohomology
sequence

· · · −→ Hp+q−1(A/Ap)
δ∗−→ Hp+q(Ap/Ap+1) −→ Hp+q(A/Ap+1) −→ · · ·

and the exact sequence 0 −→ Ap −→ A −→ A/Ap −→ 0 gives rise to the connecting
homomorphism

Hp+q−1(A/Ap)
δ∗

′

−→ Hp+q(Ap).

Consequently, we obtain the commutative diagram (with exact bottom row)

Hp+q(Ap)

�� ))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

Hp+q−1(A/Ap)

δ∗
′

55❧❧❧❧❧❧❧❧❧❧❧❧❧
δ∗ // Hp+q(Ap/Ap+1) // Hp+q(A/Ap+1)

and Lemma B.29 yields an isomorphism

ξp,q : Ep,q
∞ = Zp,q

∞ /Bp,q
∞ −→ Im (Hp+q(Ap) −→ Hp+q(A/Ap+1)).

But another application of Lemma B.29 to the diagram

Hp+q(Ap)

�� ((PP
PP

PP
PP

PP
PP

Hp+q(Ap+1)

77♦♦♦♦♦♦♦♦♦♦♦
// Hp+q(A) // Hp+q(A/Ap+1)

gives us the isomorphism

ηp,q : gr(H•(A))p,q −→ Im (Hp+q(Ap) −→ Hp+q(A/Ap+1)).

Thus, (ηp,q)−1 ◦ ξp,q is the isomorphism βp,q required by part (e) of Definition B.6.

Only two things remain to be proven to complete the proof of Theorem B.28. They are
the verification of (b) and (c) of Definition B.6, and the observation that E∞ in Definition
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B.6 is equal to E∞ as computed above. The verification of (b) and (c) depends upon Lemma
B.29. Specifically, we have the two commutative diagrams (with obvious origins)

Hp+q(Ap/Ap+r)

j2
��

θ

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚

Hp+q(Ap/Ap+r+1)

j1
55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

j
// Hp+q(Ap/Ap+1)

δ∗
// Hp+q+1(Ap+1/Ap+r+1)

Hp+q(Ap/Ap+r)

ϕ

��

θ

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯

Hp+q(Ap+1/Ap+r)
δ∗

′
//

i1
44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

Hp+q+1(Ap+r/Ap+r+1)
i2

// Hp+q+1(Ap+1/Ap+r+1)

Here, the map θ is the composition

Hp+q(Ap/Ap+r) −→ Hp+q+1(Ap+r) −→ Hp+q+1(Ap+1/Ap+r+1).

Now, Lemma B.29 yields the following facts:

Zp,q
r /Zp,q

r+1 −̃→ Im θ,

Bp+r,q−r+1
r+1 /Bp+r,q−r+1

r −̃→ Im θ,

that is,
δp,qr : Zp,q

r /Zp,q
r+1 −̃→ Bp+r,q−r+1

r+1 /Bp+r,q−r+1
r .

As Bp,q
r ⊆ Zp,q

s for every r and s, there is a surjection

πp,qr : Ep,q
r −→ Zp,q

r /Zp,q
r+1

with kernel Zp,q
r+1/B

p,q
r ; and there exists an injection

σp+r,q−r+1
r+1 : Bp+r,q−r+1

r+1 /Bp+r,q−r+1
r −→ Ep+r,q−r+1

r .

The composition σp+r,q−r+1
r+1 ◦ δp,qr ◦ πp,qr is the map dp,qr from Ep,q

r to Ep+r,q−r+1
r required by

(b). Observe that,

Im dp−r,q+r−1r = Bp,q
r+1/B

p,q
r ⊆ Zp,q

r+1/B
p,q
r = Ker dp,qr ;

hence
Hp,q(Ep,q

r ) = Ker dp,qr /Im dp−r,q+r−1r = Zp,q
r+1/B

p,q
r+1 = Ep,q

r+1,

as required by (c).

To prove that Ep,q
∞ as defined above is the common value of Ep,q

r for large enough r, we
must make use of the regularity of our filtration. Consider then the commutative diagram

Hp+q(Ap/Ap+r)

��

λ

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

Hp+q(Ap) //

66♠♠♠♠♠♠♠♠♠♠♠♠
Hp+q(Ap/Ap+1) // Hp+q+1(Ap+1)
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where λ is the composition

Hp+q(Ap/Ap+r)
δ∗−→ Hp+q+1(Ap+r) −→ Hp+q+1(Ap+1).

By Lemma B.29, we have Zp,q
r /Zp,q

∞ −̃→ Im λ. However, if p+ r > µ(p+ q + 1)− p, then δ∗
is the zero map. This shows Im λ = (0); hence, we have proven

Zp,q
r = Zp,q

∞ for r > µ(p+ q + 1)− p.
It is easy to see that

⋃
rB

p,q
r = Bp,q

∞ ; hence, we obtain maps

Ep,q
r = Zp,q

r /Bp,q
r −→ Zp,q

s /Bp,q
s = Ep,q

s

for s ≥ r > µ(p+ q + 1)− p, and these maps are surjective. (The maps are in fact induced
by the dp−r,q+r−1r ’s because of the equality

Ep,q
r /Im dp−r,q+r−1r = (Zp,q

r /Bp,q
r )/(Bp,q

r+1/B
p,q
r ) = Ep,q

r+1

for r > µ(p+ q + 1)− p.) Obviously, the direct limit of the mapping family

Ep,q
r −→ Ep,q

r+1 −→ · · · −→ Ep,q
s −→ · · ·

is the object Zp,q
∞ /(

⋃
Bp,q
r ) = Ep,q

∞ , and this completes the proof.

Remark: Observe from the definition of Ep,q
∞ that

Ep,q
∞ = Hp+q(A) ∩H•(A)p/Hp+q(A)/H•(A)p+1,

so that, for p+ q = n, the Ep,q
∞ = Ep,n−p

∞ are the composition factors in the filtration

Hn(A) ⊇ Hn(A)1 ⊇ Hn(A)2 ⊇ · · · ⊇ Hn(A)ν ⊇ · · · .
A pictorial representation of the above situation is very convenient. In this representation,
the groups Ep,q

r (for fixed r) are represented as points in the pq plane, viz :
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b

b

b

b

b

b

b
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b

b
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b

b

b

b

b

b

b

b

b

b

b

b

dp,qr

Ep,q
r

Ep+r,q−r+1
r

Figure B.1: The Ep,q
r terms of a spectral sequence
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and the differentiation dp,qr is represented as an arrow “going over r and down r − 1.” So,
the situation above may be represented

b

b

b

b

b

b

p+ q = n; points = composition factors in Hn

Figure B.2: The Ep,q
∞ terms of a spectral sequence

Moreover, the index p tells us that we are looking at the pth composition factor; consequently,
p is usually called the filtration index (or filtration degree). The index p + q is called the
total degree and q is the complementary degree. If p > n then q < 0; hence Ep,q

∞ = (0) for
p > n. This shows that Hn(A)n+1 = Hn(A)n+2 = · · · , and since this filtration is regular, we
deduce that Hn(A)n+1 = (0). Consequently,

En,0
∞ = Hn(A)n ⊆ Hn(A), En−1,1

∞ = Hn(A)n−1/Hn(A)n, . . . ,

and
H0,n
∞ = Hn(A)/Hn(A)1, a homomorphic image of Hn(A).

As an example, suppose we could show Ep,q
∞ = (0) for p + q > n and all p. It would follow

that Hr(A) = (0) for every r > n.

The notion of a morphism of spectral sequences is completely obvious; and if A and A′

are graded and filtered complexes, one has the (also obvious) notion of a morphism from
A to A′. It is trivial that a morphism of graded, filtered complexes, f : A → A′ induces a
morphism of their associated spectral sequences.

Theorem B.30 Let A and A′ be graded, filtered complexes whose filtrations are regular, and
let f : A→ A′ be a morphism from A to A′. If f ∗k denotes the induced morphism

f ∗k : Ek(A)→ Ek(A
′)

and if for some k ≥ 1, the map f ∗k is an isomorphism, then for all r with k ≤ r ≤ ∞, f ∗r is
an isomorphism. Moreover,

f ∗ : H•(A)→ H•(A′)

is also an isomorphism.
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Proof . Since f ∗r dr = d′rf
∗
r′, the dr cohomology of Er is isomorphic (by f ∗r+1) to Er+1 if f ∗r

is itself an isomorphism. Hence, induction proves the first statement of the theorem for
k ≤ r <∞. When r =∞, we have

Zp,q
∞ /Bp,q

k =
⋂

r≥k

(Zp,q
r /Bp,q

k )

Bp,q
∞ /Bp,q

k =
⋂

r≥k

(Bp,q
r /Bp,q

k )

This implies the result for r = ∞. The interpretation of Ep,q
∞ given in the remarks above

shows that the case r =∞ yields the isomorphism

Hn(A)p−1/Hn(A)p −̃→ Hn(A′)p−1/Hn(A′)p

for all p ≥ 0. By induction, we deduce the isomorphism

Hn(A)p−r/Hn(A)p −̃→ Hn(A′)p−r/Hn(A′)p

for all r ≥ 1; hence the isomorphism

Hn(A)/Hn(A)p −̃→ Hn(A′)/Hn(A′)p.

As our filtration is regular, the theorem follows by choosing p large enough.

The conclusion of Theorem B.30 is in the nature of a uniqueness theorem; it says that the
cohomology of A is “determined by” the spectral sequence associated to A. In certain special
cases we can say more. For example, we say that a spectral sequence {Ep,q

r } is degenerate
(or degenerates) if and only if there exists an integer r ≥ 2, such that for every n,

En−q,q
r = (0) if q 6= q(n)

where q(n) is an integer perhaps dependent upon n. The most common case is when r = 2
and q(n) = 0 for every n. Now, observe that for regular filtrations, Theorem B.28 shows
that Ep,q

r = (0) implies Ep,q
s = (0) for r ≤ s ≤ ∞. Hence, for a degenerate spectral

sequence, we may conclude that En−q,q
∞ = (0) for all q 6= q(n); in fact En−q,q

r = En−q,q
∞

under these circumstances. However, Hn(A) is filtered and its associated graded object is
the direct sum

∐
q E

n−q,q
∞ . As only one term is nonzero in this direct sum, we deduce that

Hn(A) = E
n−q(n),q(n)
∞ . This proves

Proposition B.31 If the filtration of A is regular and the spectral sequence

Ep,q
2 =⇒ H•(A)

degenerates at r, then we have isomorphisms

En−q(n),q(n)
r −̃→ Hn(A).
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If there exist integers n, p0, p1 with p1 > p0 and E
ν,n−ν
∞ = (0) for ν 6= p0 and ν 6= p1, then

our description of E∞ yields an exact sequence

0 −→ Ep1,n−p1
∞ −→ Hn −→ Ep0,n−p0

∞ −→ 0,

which should be viewed as a generalization of Proposition B.31.

We shall now give a series of technical propositions which will result in three exact
sequences (I), (II), (III) below. These three sequences will then yield several important
theorems about spectral sequences which are very useful for applications. The advantage of
this method is that the important theorems are proved simultaneously, the disadvantage is
that the treatment is technical and abstract. For this reason we advise the reader to skip
the proof of Propositions B.32, B.33, B.34 on the first reading.

Proposition B.32 Let {Ep,q
r } be a spectral sequence with regular filtration. Assume that

there exist integers r, p0, p1, n such that

Eu,v
r = (0) for





u+ v = n, u 6= p0, p1
u+ v = n + 1, u ≥ p1 + r
u+ v = n− 1, u ≤ p0 − r.

Then we have an exact sequence

Ep1,n−p1
r −→ Hn −→ Ep0,n−p0

r . (I)

Proof . The first hypothesis on Eu,v
r yields the exact sequence

0 −→ Ep1,n−p1
∞ −→ Hn −→ Ep0,n−p0

∞ −→ 0.

If r ≤ t <∞, then Bp0,n−p0
t+1 /Bp0,n−p0

t = Im dp0−t,n−p0+t−1t .
Since u = p0−t, v = n−p0+t−1 satisfies the third hypothesis on Eu,v

r , we deduce Bp0,n−p0
t+1 =

Bp0,n−p0
t ; hence, Bp0,n−p0

∞ = Bp0,n−p0
r . There results a monomorphism Ep0,n−p0

∞ −→ Ep0,n−p0
r .

Dually, the second hypothesis yields an epimorphism Ep1,n−p1
r −→ Ep1,n−p1

∞ , and completes
the proof.

Proposition B.33 Let {Ep,q
r } be a spectral sequence with regular filtration. Assume that

there exist integers r, s, p, n such that s ≥ r and

Eu,v
r = (0) for





u+ v = n− 1, u ≤ p− r
u+ v = n, u 6= p, u ≤ p+ s− r
u+ v = n+ 1, p+ r ≤ u 6= p+ s.

Then we have an exact sequence

Hn −→ Ep,n−p
r −→ Ep+s,(n+1)−(p+s)

r . (II)
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Proof . We first claim that if Ep−s,n−p+s−1
r = (0) then we have an exact sequence

0 −→ Ep,n−p
s+1

incl−→ Ep,n−p
s

dp,n−p
s−→ Ep+s,(n−p)−s+1

s .

For, the assertion Ep−s,n−p+s−1
r = (0) implies the assertion Ep−s,n−p+s−1

s = (0) for all s ≥ r.
Hence dp−s,n−p+s−1s vanishes, as does its image Bp,n−p

s+1 /Bp,n−p
s . Consequently,

Ep,n−p
s+1 = Zp,n−p

s+1 /Bp,n−p
s+1 →֒ Zp,n−p

s /Bp,n−p
s+1 = Zp,n−p

s /Bp,n−p
s = Ep,n−p

s .

The kernel of dp,n−ps is Zp,n−p
s+1 /Bp,n−p

s = Ep,n−p
s+1 , as required.

It follows from the first and third hypothesis on Eu,v
r that

(a) Ep,n−p
s+1 = Ep,n−p

∞ ,

(b) Ep,n−p
r = Ep,n−p

s , and

(c) 0 −→ E
p+s,(n+1)−(p+s)
s −→ E

p+s,(n+1)−(p+s)
r is exact.

Hence, all that is necessary to prove (II) is the existence of a surjection Hn −→ Ep,n−p
∞ .

This is trivial in virtue of the second hypothesis on Eu,v
r and our remarks concerning the

relationship of Ep,n−p
∞ with the composition quotients of Hn.

In exactly the same manner, one proves

Proposition B.34 Let {Ep,q
r } be a spectral sequence with regular filtration. Assume that

there exist integers r, s (≥ r), p, n such

Eu,v
r = (0) for





u+ v = n+ 1, u ≥ p + r
u+ v = n, p+ r − s ≤ u 6= p
u+ v = n− 1, p− s 6= u ≤ p− r.

Then we have an exact sequence

Ep−s,(n−1)−(p−s)
r −→ Ep,n−p

r −→ Hn. (III)

Here are the main applications of Propositions B.32, B.33, B.34.

Theorem B.35 If {Ep,q
r } is a spectral sequence with regular filtration and if there exist

integers p0, p1, r with r ≥ 1, p1 − p0 ≥ r such that Eu,v
r = (0) for all u 6= p0, u 6= p1 then we

have an exact sequence

· · · −→ Ep1,n−p1
r −→ Hn −→ Ep0,n−p0

r −→ Ep1,n+1−p1
r −→ Hn+1 −→ · · · .

Dually, if there exist integers q0, q1, r with r ≥ 2 and q1− q0 ≥ r− 1 such that Eu,v
r = (0) for

all v 6= q0, v 6= q1 then we have an exact sequence

· · · −→ En−q0,q0
r −→ Hn −→ En−q1,q1

r −→ En+1−q0,q0
r −→ Hn+1 −→ · · · .
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Proof . Let s = p1 − p0 ≥ r, then Propositions B.32 and B.33 yield the required exact
sequence. Let s = 1 + q1 − q0 ≥ r, then again the hypothesis of Propositions B.32 and B.33
are satisfied; hence (I) and (II) yield the desired sequence.

Theorem B.36 Let {Ep,q
r } be a spectral sequence with regular filtration. Assume

Ep,q
2 = (0) for all q with 0 < q < n (n > 0)—no hypothesis if n = 1. Then Er,0

2 ≃ Hr for
r = 0, 1, . . . , n− 1 and

0 −→ En,0
2 −→ Hn −→ E0,n

2 −→ En+1,0
2 −→ Hn+1

is exact. In particular, with no hypothesis on q, we have the “exact sequence of terms of low
degree”

0 −→ E1,0
2 −→ H1 −→ E0,1

2 −→ E2,0
2 −→ H2.

Proof . It follows easily from our hypotheses that Er,0
2 ≃ Er,0

∞ for 0 ≤ r ≤ n − 1, and we
know that Er,0

∞ ≃ Hr under the hypotheses of the theorem. Moreover, one checks trivially
that En,0

2 ≃ En,0
∞ , so that there is a monomorphism

0 −→ En,0
2 −→ Hn.

Exact sequence (I) applies to yield the exact sequence

0 −→ En,0
2 −→ Hn −→ E0,n

2 .

Now take s = n+ 1 ≥ 2 and p = n. Then (II) yields

Hn −→ E0,n
2 −→ En+1,0

2

is exact. Lastly, choose s = n + 1, p = n + 1 and apply (III). We obtain the exact sequence

E0,n
2 −→ En+1,0

2 −→ Hn+1,

and a combination of all these sequences completes the proof.

To use spectral sequences to connect cohomology theories depends on the notion of
a double complex. By definition, a double (cochain) complex is a doubly graded object
C =

∐
p,q Cp,q, with p, q ≥ 0, together with two differentials d′ and d′′, where

d′ : Cp,q −→ Cp+1,q

d′′ : Cp,q −→ Cp,q+1;

and we assume that d′ ◦ d′′ + d′′ ◦ d′ = 0. Under these conditions, if we write

Cn =
∐

p+q=n

Cp,q, d = d′ + d′′,
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then C =
∐

nCn is a complex with differentiation d. The complex C =
∐

n Cn is called the
associated single complex to C =

∐
p,q Cp,q, and d = d′ + d′′ is called its total differentiation.

Given p ≥ 0, let ′Cp =
∐

i≥p, j Cij, and given q ≥ 0 let ′′Cp =
∐

i, j≥q Cij . This gives us two
filtrations of C considered as a single complex, each compatible with the total differential d.
The former is called the first filtration; the latter is called the second filtration. By Theorem
B.28, we get two spectral sequences

′Ep,q
2

=⇒
p

H•(C)
′′Ep,q

2
=⇒
q

H•(C)

with ending the cohomology of C under d, called the (first, second) spectral sequence of the
double complex C.

Theorem B.37 Let C =
∐

p≥0,q≥0Cp,q be a double complex. Then the ′Ep,q
2 term of its

first spectral sequence is canonically isomorphic to ′Hp(′′Hq(C)), where ′′Hq(C) means the
qth cohomology object of C with respect to d′′, and ′Hp(′′Hq(C)) means the pth cohomology
object of ′′H•(C) considered as a complex with differentiation induced by d′ from C. Hence,
we obtain

′Hp(′′Hq(C)) =⇒ H•(C).

Proof . Consider only the first filtration on C. The object ′gr(C) is
∐

p
′Cp/′Cp+1; hence, is

exactly
∐

p

∐
q Cp,q = C. Moreover, d induces the differentiation d′′ on ′gr(C), as one sees

immediately. It follows from this that

′Ep,q
1 = Hp,q(′gr(C)) = ′′Hp+q(

∐

j

Cp,j).

Now, the differentiation dp,q1 on ′Ep,q
1 is the connecting homomorphism for the cohomology of

the exact sequence

0 −→ ′Cp+1/′Cp+2 −→ ′Cp/′Cp+2 −→ ′Cp/′Cp+1 −→ 0.

If ξ is an element of bidegree (p, q) in ′′H(′gr(C)), then ξ is represented by an element α of
Cp,q. As d

′′(α) = 0, we have d(α) = d′(α); so, we see that d induces the differentiation d′ on
′′H(′gr(C)). Upon recalling that the connecting homomorphism of cohomology is induced by
the differentiation via the snake lemma, we obtain that dp,q1 on ′Ep,q

1 corresponds exactly to
the map induced on ′′H(′gr(C)) by the differentiation d′ on C.

Therefore, the object ′E2 is canonically isomorphic to the cohomology, ′H(′′H(C)), of
′′H(C) with respect to the differentiation d′ induced on it by C. From the above description of
dp,q1 one finds that the elements of ′Ep,q

2 are exactly those of ′Hp(′′H(C)) which are represented
by elements of ′Cp/′Cp+1 of total degree p + q. These are the elements represented by the
object Cp,q; and we finally obtain the isomorphism

′Ep,q
2 ≃ ′Hp(′′Hq(C)).

The most frequently use corollary of Theorem B.37 is
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Corollary B.38 Let C =
∐

p≥0,q≥0Cp,q be a double (cochain) complex; suppose that for all
p

′Hp(′′Hq(C)) = (0) for all q ≥ 1.

Let D be the subcomplex of C which consists of
∐

pDp where Dp = {ξ ∈ Cp,0 | d2(ξ) = 0}.
(Of course d′ is the differentiation on D.) Then the cohomology of C with respect to d is
isomorphic to the cohomology of D with respect to d′.

Remark: This corollary is clearly a comparison theorem for cohomology.

Proof . By Theorem B.37 and Proposition B.31,

Hn(C) ≃ ′Hn(′′H0(C)) = En,0
2 (C).

The same is also true (for trivial reasons) for the complex D, where we obtain

Hn(D) = En,0
2 (D).

Since D −→ ′′H0(C) is an isomorphism, we are done.

Actually, this corollary is usually applied under a slightly different guise. The double
complex may be regarded as an array on the lattice points in the first quadrant of the plane
as illustrated in Figure B.3:
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Figure B.3: A double complex

Suppose that the columns are acyclic. Then ′′Hq(C) vanishes for every q ≥ 1; conse-
quently the corollary applies.
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Etude Cohomologique des Faisceaux Cohérents (Première Partie). Inst. Hautes Etudes
Sci. Publ. Math., 11:1–167, 1961.

[25] Alexander Grothendieck and Jean Dieudonné. Eléments de Géométrie Algébrique, III:
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