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Preface

A book on “Abstract” or “Modern” Algebra is a commonplace thing in today’s mathematical milieu. Even a
book for well-prepared, serious beginning graduate students who intend to become research mathematicians
is not so strange any longer. But, the genesis of this book, which is intended for serious, well-prepared
graduate students, is somewhat strange.

To begin with, it is a reworking of notes for a year long graduate course I gave several years ago—not
in itself a strange thing. But, I possess no such notes nor did I ever make any and I never lecture with a
written aide memoir of any sort. Rather, my method is to work out fully during lecture (at the board) each
proof and example. Students will thus see what are the “inner workings” of the subject. Of course, this is
pedagogically to their advantage and, furthermore, it slows me down.

Then where did the notes (to be reworked) come from? They were provided by my friend and colleague
Jean H. Gallier (of the Computer Science Department at Penn). Determined to augment his mathematical
knowledge, he began several years ago to audit some of my graduate courses. “Audit” for him means
faithfully attending lectures, doing all the problem assignments, participating in each bi-weekly problem
session (where he takes his turn presenting problems), writing excellent notes from my oral presentation and
rendering these notes in BTEX form.' That this book will appear is, in large measure, his doing. While I
have been responsible for its writing, he has on occasion introduced results and/or alternate proofs that have
rendered some material more perspicacious from a student’s point of view—these have improved the text. He
is in every sense a joint author, save that errors are solely my responsibility. There is no way I can thank
him adequately here in plain words and I won'’t try except to say, Je te remercie vivement, mon ami Jean,
pour tout ton travail.

Others should be thanked as well-in particular the members of the class that attended the course from
which the book is formed.? By their interest and attention to detail, they kept me on my toes. One
particular member of that class deserves special mention: Mathew Cross.?> Mathew started the index and
set the original 115 problems in IXTEX. He lightened our burden by a considerable amount.

The content of the book follows rather closely the oral lectures—with just a few exceptions. These are: In
Chapter 3, the section on Integral Dependence is now augmented by proofs of all results, the original lectures
had statements only of some of these (due to exigencies of time) and Gallier insisted on a full treatment.
In Chapter 4, the sections on Norms and Traces as well as Kummer Theory and Transcendental Extensions
are likewise augmented by full proofs. In Chapter 5, there is now more to the section on (co)homological
functors and there are full proofs in the last section on the Koszul Complex. Otherwise, the material is just
(a smoothed out version of) what was presented. One will have to move fast to present it to students in one
year, at least I did.

But the heart of the book is the Problem section. Here, I've attempted to simulate at the beginning
graduate level some of the features of real mathematical work. There is a jumbling of the problems vis a

10ne must realize he maintains a full research and teaching schedule, directs Ph.D. students, attends to administrative duties
and has a family life in addition to this “auditing”!

2The members of the class were: A. Bak, D. Boyarchenko, S. Brooks, M. Campbell, S. Corry, M. Cross, C. Daenzer, C.
Devena, J. Gallier, S. Guerra, C. Hoelscher, T. Jaeger, J. Long, S. Mason, T. Zhu.

3Mathew spells his name with but one “t”; there is no misprint.
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viii Preface

vis subject matter just as in real research one never knows what kind of mathematics will be needed in the
solution of a problem. There is no hint of the level of difficulty of a problem (save for the few problems
where suggestions are offered), and anyway the notion of difficulty is ill-defined. And, the problems refer to
each other, just as in real work one is constantly reminded of past efforts (successful or not). In effect, as
suggested in the preface for students, one should begin with the problems and use the text as a means to
fill in knowledge as required to do them (as well as to do other problems assigned by an instructor in this
course or another course).

This brings me to the text material itself. There is no attempt to be encyclopedic. After all, the material
is a faithful copy of what was actually covered in a year and any competent instructor can add material
that has been omitted. I regret not covering the Wederburn-Artin Theory of DCC rings, the Brauer Group,
and some basic material on group representations. What is covered, however, is to my mind central to
the education of any prospective mathematician who aspires to contribute to what is now the mainstream
of mathematical endeavor. Also, while there are over 150 problems filling some 55 pages of text (some of
the problems are rather long being multi-part), other problems of an instructor’s choosing can certainly be
assigned. As to the attribution of the origins of these problems, I have assigned names when they are known
to me. If no name is assigned, the problem comes from some source in my past (perhaps one of my own
teachers or their teachers) and in no way do I claim it as my own. Good problems from all sources are the
treasure hoard of practicing mathematicians in their role as passers on of our common heritage.

I refer to the special symbols (DX) and the “curves ahead” road sign (appearing at odd places in the
text) in the student preface; no repeat of the explanations I offer there is necessary. If you as instructor are
lucky enough to have a class as interested and tough to satisfy as I did, you are lucky indeed and need no
further assurance that mathematics will be in good hands in the future. I intend this book to be of service
to such individuals as they begin their long climb to mathematical independence and maturity.

Tolda Santa Cotogna
Summer, 2006



For the Student

It may be surprising but the most important part of the book you now hold before you is the very first
section—the one labeled “Problems.” To learn mathematics one must do mathematics. Indeed, the best
way to read this book is to turn immediately to the problem section and begin to do the problems. Of
course, you will soon reach some unknown terminology or not have enough knowledge to meet the technical
demands of a problem and this is where you turn to the text to fill in gaps, see ideas explained and techniques
demonstrated. Then you plunge once more back into the problems and repeat the whole process.

The book is designed for serious, well-prepared students who plan on becoming research mathematicians.
It presumes you have had previous acquaintance with algebra; in particular you have met the concepts of
group, ring, field, vector space, homomorphism, isomorphism, and the elementary theorems about these
things. No book on mathematics can be simply read, rather you must recreate the text yourself line by line
checking at each stage all details including those omitted. This is slow work and, as you know, mathematics
has very high density on the page.

In the text, you will find two special symbols: (DX) and a sign such as one sees on the road warning
of dangerous curves ahead. The symbol (DX) stands for “diagnostic exercise”, it means some elementary
details have been omitted and that supplying them should be easy. However, if supplying them is not easy,
then you should go back a page or two as something fundamental has skipped you by. In this way, the sign
(DX) is like a medical test: failing it is sure to tell you if something is wrong (no false positives), however,
if you pass it (supply the details), something still might be wrong. Just read on and anything wrong will
surface later. As for the dangerous curves sign, it precedes counter-examples to naively made conjectures, it
warns when things could go wrong if hypotheses are omitted, and generally forces you to slow down in the
reading and recreating.

If you use this book in a course or even for self study, I recommend that you tackle the problems in a
small group (two to four persons, total). This is because no person has a monopoly on ideas, a good idea
or half-idea can germ in any head, and the working out of a problem by a committed group is akin to the
actual way much research mathematics is accomplished. In your group, you want constant give and take,
and there must be time to think alone so that a real contribution to the group’s effort can be made.

The problems are all jumbled up by area and there is no signal given as to a problem’s difficulty (exceptions
are the few cases where hints or suggestions are given). In real mathematical life, no signs are given that a
question being attacked involves a certain small area of mathematical knowledge or is hard or easy; any such
sign is gleaned by virtue of experience and that is what you are obtaining by doing mathematics in these
problems. Moreover, hard and easy are in the eyes of the beholder; they are not universal characteristics
of a problem. About all one can say is that if a large number of people find a problem difficult, we may
classify it so. However, we shouldn’t be surprised when an individual solves it and claims that, “it was not
that hard”. In any case, guard against confusing mathematical talent either with overall intelligence or with
mathematical speed. Some quick people are in fact talented, many are just quick. Don’t be discouraged if
you find yourself slower than another, the things that really count in doing mathematics (assuming talent)
are persistence and courage.



For the Student

I can think of no better lines to close with than these which come from B. Pasternak’s poem entitled

“N'L.ght” 4

Tolda Santa Cotogna
Summer, 2006

“And maybe in an attic

And under ancient slates

A man sits wakeful working

He thinks and broods and waits.”
“He looks upon the planet,

As if the heavenly spheres

Were part of his entrusted
Nocturnal private cares.”

“Fight off your sleep: be wakeful,
Work on, keep up your pace,
Keep vigil like the pilot,

Like all the stars in space.”

“Work on, work on, creator—
To sleep would be a crime—
Eternity’s own hostage,

And prisoner of Time.”

4From the collection entitled “When It Clears Up”, 1956. Translated by Lydia Pasternak Slater (the poet’s sister).



Problems

“... den Samen in den Wind streuend; fasse, wer es fassen kann”.
—Hermann Weyl

Problem 1

1. Suppose G is a finite group and that Autq,(G) = {1}. (Here, Autg,(G) is the group of all bijections,
G — G, which are also group homomorphisms.) Find all such groups G.

2. Write Z/2Z for the cyclic group of order 2. If G = Z/2Z ] --- [[ 7Z/2Z, t-times, compute
#(Aute:(G)). When ¢ = 2, determine the group Autc,(G). When ¢ = 3, determine the struc-
ture of the odd prime Sylows. Can you decide whether Autg,(G) has any normal subgroups in the
case t = 37

Problem 2

1. (Poincaré). In an infinite group, prove that the intersection of two subgroups of finite index has finite
index itself.

2. Show that if a group, G, has a subgroup of finite index, then it possesses a normal subgroup of finite
index. Hence, an infinite simple group has no subgroups of finite index.

3. Sharpen (2) by proving: if (G : H) = r, then G possesses a normal subgroup, N, with (G : N) < rl.
Conclude immediately that a group of order 36 cannot be simple.

Problem 3 Let G = GL(n,C) and A, be the subgroup of matrices with entries only along the diagonal.
Describe precisely Ng(A,,) in terms of what the matrices look like.

Problem 4 Say G is a group and #(G) = p"go, where p is a prime and (p,gg) = 1. Assume
go—1
r> Y [/

j=1 k>0

([x] = largest integer < CL’) Prove that G is not simple. Show that this governs all groups of order < 60,
except for #(G) = 30,40,56. We know that #(G) = 30 = G not simple. Show by explicit argument that
groups of orders 40,56 are not simple. (Here, of course, by simple we mean non-abelian and simple.)
Problem 5 In a p-group, GG, we cannot have

(G: Z(G)) =p.
Show that for non-abelian groups of order p3, Z(G) = Z/pZ and G/Z(G) 2 Z/pZ [ Z/pZ.

1



9 PROBLEMS

Problem 6 Let G be the group of automorphisms of a regular polyhedron with v vertices, e edges, and f
faces. Show that G has order g = fs = vr = 2e, where s is the number of sides to a face and r is the number
of edges emanating from a vertex. From topology, one knows Euler’s formula

v—e+ f=2.
Find the only possible values for v, e, f,r, s, g. Make a table.

Problem 7 Let p be a prime number. Find all non-abelian groups of order p3. Get started with the
Burnside basis theorem, but be careful to check that the groups on your list are non-isomorphic. Also make
sure your list is exhaustive. Your list should be a description of the generators of your groups and the
relations they satisfy.

Problem 8 Let G be a finite group and write ¢(G) for the number of distinct conjugacy classes in G. This
number will increase (in general) as #(G) — o0; so, look at

(@)
#(G)

The number ¢(G) measures the “average number of conjugacy classes per element of G” and is 1 if G is
abelian. Assume G is non-abelian from now on. Then 0 < ¢(G) < 1.

¢(G) =

1. Prove that for all such G, we have ¢(G) < 5/8.
2. Suppose p is the smallest prime with p |#(G). Prove that
1 1 1
(G <-4+ = ——=.
(@) < p P P
Is the bound of (1) sharp; that is, does there exist a G with ¢(G) = 5/87 How about the bound of (2)?
Problem 9 If G is a finite group and H a normal subgroup of G, write P for a p-Sylow subgroup of H.

1. Show that the natural injection
Ng(P)/Nu(P) — G/H

(why does it exist, why injective?) is actually an isomorphism.

2. Prove that the Frattini subgroup, ®(G), of ANY finite group, G, has property N (cf. Section 1.3,
Chapter 1).

Problem 10 We’ve remarked that ®(G) is a kind of “radical” in the group-theoretic setting. In this problem
we study various types of radicals.

A normal subgroup, H, of G is called small iff for every X <1G, the equality H - X = G implies that X = G.
(Note: {1} is small, ®(G) is small; so they exist.) Check that if H and L are small, so is HL, and if H is
small and K <G, then K C H —> K is small.

1. The small radical of G, denoted J**(G), is
T*(G) = {z € G| Gp{Cl(z)} is small }.

(Here, Cl(x) is the conjugacy class of z in G, and Gp{S} is the group generated by S.) Prove that
J**(Q) is a subgroup of G.

2. The Jacobson radical of G, denoted J*(G), is the intersection of all maximal, normal subgroups of G;
while the Baer radical of G, denoted J(G), is the product (inside G) of all the small subgroups of G.
Prove

J(G) CT(G) € THNG).



PROBLEMS 3

3. Prove Baer’s Theorem: J**(G) = J(G) = J*(G). (Suggestion: if x & J**(G), find N < G (# G) so
that Gp{Cl(x)}N = G. Now construct an appropriate maximal normal subgroup not containing x.)

Problem 11 Recall that a characteristic subgroup is one taken into itself by all automorphisms of the
group.

1. Prove that a group possessing no proper_characteristic subgroups is isomorphic to a product of iso-

morphic simple groups. (Hints: Choose G of smallest possible order (> 1) normal in G. Consider all

subgroups, H, for which H = G; [[ --- [[ Gy, where each G; < G and each G; = G. Pick t so that
#(H) is maximal. Prove that H is characteristic. Show K <1 Gy (say) —= K < G.)

2. Prove: In every finite group, G, a minimal normal subgroup, H, is either an elementary abelian p-group
or is isomorphic to a product of mutually isomorphic, non-abelian, simple groups.

3. Show that in a solvable group, G, only the first case in (2) occurs.

Problem 12 Let G be a finite p-group and suppose ¢ € Aut(G) has order n (i.e., p(¢(- - (¢(z))--+)) =1d,
all x € G: we do ¢ n-times in succession and n is minimal). Suppose (n,p) = 1. Now ¢ induces an
automorphism of G/®(G), call it B, as ®(G) is characteristic. Remember that G/®(G) is a vector space
over F,; so, p € GL(G/®(Q)).

1. Prove » = identity <= ¢ = identity.

2. Show that if d is the Burnside dimension of G, then

d
#(CL(G/8(@G)) =p" 7 [[@* - 1),
k=1

and that if P is a p-Sylow subgroup of GL(G/®(G)), then P C SL(G/®(G)); ie.,0 € P =
det(o) = 1.

3. Let P = {¢ € Aut(G) | € P, no restriction on the order of ¢}. Show that P is a p-subgroup of
Aut(G).

4. Call an element o € GL(G/®(G)) liftable iff it is  for some ¢ € Aut(G). Examine all G of order
p,p%,p> to help answer the following: Is every o liftable? If not, how can you tell (given o) if o is
liftable?

Problem 13 Let p be a prime number and consider a set, S, of p objects: S = {a1,...,a,}. Assume G
is a transitive group of permutations of S (i.e., the elements of S form an orbit under G); further assume
(maz) € G (here (agaz) is the transposition). Prove: G = &,. (Suggestion: let M = {¢;|(ma;) € G},
show if 0 € &, and 0 = 1 outside M then o € G. Now prove #(M)|p.)

Problem 14 A Fermat prime, p, is a prime number of the form 2% + 1. E.g., 2,3,5,17,257,.. ..
1. Show if 2% + 1 is prime then o = 2°.

2. Say p is a Fermat prime (they are quite big) and gg is an odd number with gy < p. Prove that any
group of order gop is isomorphic to a product Go [[(Z/pZ), where #(Gy) = go. Hence, for example,
the groups of orders 51(= 3-17), 85(= 5-17), 119(= 7-17), 153(= 9-17), 187(= 11-17), 221(= 13-17),
255(= 3 -5 17) are all abelian. Most we knew already, but 153 = 32 - 17 and 255 = 3 - 5 - 17 are new.

3. Generalize to any prime, p, and go < p, with p Z 1 mod gg. For example, find all groups of order 130.

Problem 15 Recall that a group, G, is finitely generated (f.g.) iff (301,...,0, € G)(G = Gp{o1,...,0n}).



4 PROBLEMS

1. If G is an abelian f.g. group, prove each of its subgroups is f.g.

2. In an arbitrary group, G, an element o € G is called n-torsion (n € N) <= ¢" = 1; o is torsion iff
it is n-torsion for some n € N. The element o € G is torsion free <= it is not torsion. Show that in
an abelian group, the set

t(G) = {0 € G| o is torsion}

is a subgroup and that G/t(G) is torsion free (i.e., all its non-identity elements are torsion free).

3. In the solvable group 0 — Z — G — Z/2Z — 0 (split extension, non-trivial action) find two elements

x, y satisfying: z? = y? = 1 and zy is torsion free. Can you construct a group, G, possessing elements
x, y of order 2, so that xy has order n, where n is predetermined in N? Can you construct G solvable
with these properties?

4. Back to the abelian case. If G is abelian and finitely generated show that ¢(G) is a finite group.

5. Say G is abelian, f.g., and torsion-free. Write d for the minimal number of generators of G. Prove that
G is isomorphic to a product of d copies of Z.

6. If G is abelian and f.g., prove that

G =@ [[ (G/uG)).

Problem 16 Let (P) be a property of groups. We say a group, G, is locally (P) <= each f.g. subgroup
of G has (P). Usually, one says a locally cyclic group is a rank one group.

1. Prove that a rank one group is abelian.
2. Show that the additive group of rational numbers, QF, is a rank one group.

3. Show that every torsion-free, rank one group is isomorphic to a subgroup of Q.

Problem 17 Fix a group, G, and consider the set, M, (G), of n X n matrices with entries from G or
so that a;; = 0 (i.e., entries are 0 or from G). Assume for each row and each column there is one and
only one non-zero entry. These matrices form a group under ordinary “matrix multiplication” if we define
0 - group element = group element - 0 = 0. Establish an isomorphism of this group with the wreath product
G™ 1 &,,. As an application, for the subgroup of GL(n,C) consisting of diagonal matrices, call it A,,, show
that

Ng(A,) =2C" 16, here G = GL(n,C).

Problem 18

1. Say G is a simple group of order n and say p is a prime number dividing n. If oq,..., 0 is a listing of
the elements of G of exact order p, prove that G = Gp{o1,...,0¢}.

2. Suppose G is any finite group of order n and that d is a positive integer relatively prime to n. Show
that every element of G is a dth power.

Problem 19 We know that when G is a (finite) cyclic group, and A is any G-module, we have an isomor-
phism
A% /N (A) =5 H?(G, A).

This problem is designed to lead to a proof. There are other proofs which you might dig out of books (after
some effort), but do this proof.



PROBLEMS 5

1. Suppose G is any group and A, B, C are G-modules. Suppose further, we are given a G-pairing of
AJ]B — C i.e., amap
0:A][B—C
which is bi-additive and “G-linear”:
o0(a,b) = 0(ca,cb).
If f, g are r-, s-cochains of G with values in A, B (respectively), we can define an (r + s)-cochain of
G with values in C via the formula:
(f09)(01,...,0p,Ori1ye ey Orps) = Q(f(al, ey 0p)y 01 0pG(Orgt, ... ,O'T+S)).

Prove that §(f —¢ g) = 6f —o g+ (—1)"f —p dg. Show how you conclude from this that we have a
pairing of abelian groups

wo: H' (G, A) [[ H*(G,B) » H"**(G, C).
(Notation and nomenclature: a g 8, cup-product.)

2. Again G is any group, this time finite. Let Z and Q/Z be G-modules with trivial action. Consider

the abelian group Hom,, (G, Q/Z) = G, where addition in G is by pointwise operation on functions. If
X € G, then x(0) € Q/Z, all o € G. Show that the function

Ix(o.7) =dx(o,7) = ox(1) — x(o7) + x(0)
has values in Z and actually is a 2-cocycle with values in Z. (This is an example of the principle: If it
looks like a coboundary, it is certainly a cocycle.) The map

X € G cohomology class of fy (o, 7) )

gives a homomorphism G — H2(G,7Z).

Now any 2-cocycle g(o,7) with values in Z can be regarded as a 2-cocycle with values in Q (corre-
sponding to the injection Z — Q). Show that as a 2-cocycle in Q it is a coboundary (of some h(c),
values in Q). So, g(o,7) = dh(o, T), some h. Use this construction to prove:

For any finite group, G, the map (}) above gives an isomorphism of G with H? (G, 7).

3. Now let G be finite, A be any G-module, and Z have the trivial G-action. We have an obvious G-pairing
Z]] A — A, namely (n,a) — na, hence by (1) and (2) we obtain a pairing

G(= H*(G,2)) [[ A° — H*(G, A).
Show that if £ = Na, for a € A, then (x, &) goes to 0 in H2(G, A); hence, we obtain a pairing:
G[J(A%/NA) = H(G, A).

(Hint: If f(o,7) is a 2-cocycle of G in A, consider the 1-cochain us(7) = > . f(0,7). Using the
cocycle condition and suitable choices of the variables, show the values of uy are in A and that u fis
related to N'f, i.e., Nf(r,p) = >, of(r,p) can be expressed by uy.)

4. Finally, when G is cyclic, we pick a generator op. There exists a distinguished element, xo, of G
corresponding to og, namely xq is that homomorphism G — Q/Z whose value at o is %mod Z, where
n = #(G). Show that the map
A®/NA — H*(G, A)
via
a— (xo,a) — dxo v a € H*(G, A)
is the required isomorphism. For surjectivity, I suggest you consider the construction of us in part (3)
above.



6 PROBLEMS

Problem 20 Let G = SL(2,Z) be the group of all 2 x 2 integral matrices of determinant 1; pick a prime,
p, and write U for the set of 2 x 2 integral matrices having determinant p. G acts on U via u(€ U) — ou,
where 0 € G.

1. Show that the orbit space has p 4+ 1 elements: 0,1,...,p — 1,00, where j corresponds to the matrix

1
wj:<0 p)

and oo corresponds to the matrix wes, = <€ 2)

2. f re Gandr € S =1{0,1,...,p— 1,00} = G\U, show there exists a unique 7’ € S with w,7~! in
the orbit of w,. Write 7-r = r’ and prove this gives an action of G on S. Hence, we have a group
homomorphism P : G — Aut(S) = Sp41.

3. If N = ker P, prove that G/N is isomorphic to the group PSL(2,F,) consisting of all “fractional linear

transformations”

, axr+b
T =

o d a,b,c,d € Fp, ad — bec = 1.

Show further that
pp+)@-1) .
6 if p=2

and
ii. PSL(2,F,) acts transitively on S under the action of (2).

4. Now prove: PSL(2,F,) is simple if p > 5. (Note: PSL(2,F3) is A4, PSL(2,F5) is As, but PSL(2,F,) is
not A, if p > 7. So, you now have a second infinite collection of simple finite groups—these are finite
group analogs of the Lie groups PSL(2,C)).

Problem 21 We write PSL(2,Z) for the group SL(2,Z)/(£I).

(1) Let & be a chosen generator for Z /37 and 7 the generator of Z/27Z. Map Z/37Z and Z/27 to PSL(2,Z)
via
0 —1
e == (7 7! tmoa 1

and

v == (7 ) tmoa£1)

Then we obtain a map
el: Z/3Z107Z/27Z — PSL(2,Z)

(here, the coproduct is in the category Grp). What is the image of ¢ I1¢¥? What is the kernel?

11 1 0 .
a-(o 1) and b_<1 1) in PSL(2,7)

express z and y above (in SL(2,Z)) in terms of a and b and show that SL(2,Z) = Grp{a, b}. Can you express
a and b in terms of z and y?

(2) If
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(3) For any odd prime number, p, the element

is equal to a®~1/2, For any o € SL(2,Z), we define the weight of o with respect to a and b by
wt(o) = inf(length of all words in a,b,a=!, b=, which words equal o)
By deep theorems of Selberg, Margulis and others (in geometry and analysis) one knows that
wt(o(p)) = O(log p) as p — oo.

(Our expression for o(p) as a power of a shows that we have a word of size O(p) for o(p), yet no explicit word
of size O(log p) is known as of now (Fall, 2005) and the role of b in this is very mysterious.) Now the Cayley
graph of a group, G, generated by the elements g1, ..., g; is that graph whose vertices are the elements of G
and whose edges emanating from a vertex 7 € G are the ones connecting 7 and 7g,...,7g;. Show that the
diameter of the Cayley graph of the group SL(2,7Z/pZ) with respect to the generators @ and b is O(log p).

Problem 22 Let G be a finite group in this problem.

1. Classify all group extensions
0-Q—>G—G—0. (E)

Your answer should be in terms of the collection of all subgroups of G, say H, with (G : H) < 2, plus,
perhaps, other data.

2. Same question as (1) for group extensions
0—-Z—-G—-G—0, (E)
same kind of answer.

3. Write V for the “four-group” Z/2Z]][7Z/2Z. There are two actions of Z/2Z on V: Flip the factors,
take each element to its inverse. Are these the only actions? Find all group extensions

0>V —=>G—>Z/pZ — 0. (E)
The group G is a group of order 8; compare your results with what you know from Problems 1-6.

4. Say H is any other group, G need no longer be finite and A, B are abelian groups. Suppose ¢ : H — G
is a homomorphism and we are given a group extension

0-A—->G—->G—=0. (E)

Show that, in a canonical way, we can make a group extension
0+A—G— H—0. (¢*E)

(Note: your answer has to be in terms of G, H, G and any homomorphisms between them as these are
the only “variables” present. You’ll get the idea if you view an extension as a fibre space.)

Now say ¢ : A — B is a group homomorphism and we are given an extension

0>A—-G—>G—0. (E)

Construct, in a canonical way, an extension

0—+B—G—G—0. (Y E)
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5. Explain, carefully, the relevance of these two constructions to parts (1) and (2) of this problem.

Problem 23 Say A is any abelian group, and write G for the wreath product A™ ! &,,. Show:
1. [G,G] #G
2. (G:[G,G]) =0 <= Ais infinite
3. If n > 2, then [G,G] # {1}.

4. Give a restriction on n which prevents G from being solvable.

Problem 24 If {G,}aca is a family of abelian groups, write HGO‘ for

HGQ = {(fa) € HGO‘ | for all but finitely many «, we have &, = 0}.

Then [[, Ga is the coproduct of the G, in Ab. Write as well
(Q/Z), = {€ € Q/Z | "€ = 0, some 1 > O};
here, p is a prime. Further, call an abelian group, A, divisible iff
(Vn)(A =5 A — 0 is exact).

Prove: Theorem Every divisible (abelian) group is a coproduct of copies of Q and (Q/Z), for various primes
p. The group is torsion iff no copies of Q appear, it is torsion-free iff no copies of (Q/Z), appear (any p).
Every torsion-free, divisible, abelian group is naturally a vector space over Q.

Problem 25
1. If G is a group of order n, show that G ! Aut(G) is isomorphic to a subgroup of &,,.

2. Consider the cycle (1,2,...,n) € &,; let H be the subgroup (of &,,) generated by the cycle. Prove
that
Ns, (H) = (Z/nZ) ! Aut(Z/nZ).

Problem 26 Let TOP denote the category of topological spaces.
1. Show that TOP possesses finite fibred products and finite fibred coproducts.
2. Is (1) true without the word “finite”?

3. Write T2TOP for the full subcategory of TOP consisting of Hausdorff topological spaces. Are (1) and
(2) true in T2TOP? If you decide the answer is “no”, give reasonable conditions under which a positive
result holds. What relation is there between the product (coproduct) you constructed in (1) (or (2))
and the corresponding objects in this part of the problem?

Problem 27 Let R be a ring (not necessarily commutative) and write Mod(R) for the category of (left)
R-modules; i.e., the action of R on a module, M, is on the left. We know Mod(R) has finite products and
finite fibred products.

1. What is the situation for infinite products and infinite fibred products?

2. What is the situation for coproducts (finite or infinite) and for fibred coproducts (both finite and
infinite)?
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Problem 28 As usual, write Gr for the category of groups. Say G and G’ are groups and ¢ : G — G’ is
a homomorphism. Then (G, p) € Grgs, the comma category of “groups over G'”. The group {1} possess a
canonical morphism to G’, namely the inclusion, ¢. Thus, ({1}, z) € Grgr, as well. We form their product in
Grey, i.e., we form the fibred product G [] {1}. Prove that there exists a canonical monomorphism

G/

G H{I}HG.
C

Identify its image in G.
Now consider the “dual” situation: G’ maps to G, so G € Gr% (via ) the “groups co-over G'”. We also have
the canonical map G — {1}, killing all the elements of G’; so, as above, we can form the fibred coproduct

G/
of G and {1}: G II {1}. Prove that there exists a canonical epimorphism

G/
G— GI{1},
identify its kernel in G.

Problem 29 Write CR for the category of commutative rings with unity and RNG for the category of rings
with unity.

1. Consider the following two functors from CR to Sets:

(a) |Mpq| : A ~» underlying set of p x ¢ matrices with entries from A

(b) |GLy| : A ~ underlying set of all invertible n x n matrices with entries from A.
Prove the these two functors are representable.
2. A slight modification of (b) above yields a functor from CR to Gr: namely,
GL,, : A ~ group of all invertible n x n matrices with entries from A.
When n = 1, we can extend this to a functor from RNG to Gr. That is we get the functor
Gy, ¢ A ~ group of all invertible elements of A.

Prove that the functor G,, has a left adjoint, let’s temporarily call it (1); that is: There is a functor
(1) from Gr to RNG, so that

(VG € Gr)(V R € RNG)(Homgng((1)(G), R) = Homg, (G, G, (R))),
via a functorial isomorphism.

3. Show that without knowing what ring (1)(G) is, namely that it exists and that (1) is left adjoint to Gy,
we can prove: the category of (1)(G)-modules, Mod((1)(G)), is equivalent—in fact isomorphic—to the
category of G-modules.

4. There is a functor from Gr to Ab, namely send G to G*® = G/[G,G]. Show this functor has a right
adjoint, call it I. Namely, there exists a functor I : Ab — Gr, so that

(VG € Gr)(V H € Ab)(Homg, (G, I(H)) = Homay, (G, H)).

Does G ~ G have a left adjoint?
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Problem 30 (Kaplansky) If A and B are 2 X 2-matrices with entries in Z, we embed A and B into the 4 x 4

matrices as follows:
. 0 I
aug  __
av = (4 o)

0 I
aug  __
B = (B 0).

Is it true that if A*"8 and B*"8 are similar over Z, then A and B are similar over Z?7 Proof or counter-
example. What about the case where the entries lie in Q7

Problem 31 We fix a commutative ring with unity, A, and write M for M,,(A), the p X ¢ matrices with
entries in A. Choose a ¢ X p matrix, I', and make M a ring via:

Addition: as usual among p X g matrices
Multiplication: if R, S € M, set R+ .S = RI'S, where RI'S is the ordinary product of matrices.

Write M(T") for M with these operations, then M(I") is an A-algebra (a ring which is an A-module).

1. Suppose that A is a field. Prove that the isomorphism classes of M(I')’s are finite in number (here
p and ¢ are fixed while T varies); in fact, are in natural one-to-one correspondence with the integers
0,1,2,..., B where B is to be determined by you.

2. Given two ¢ X p matrices I' and [ we call them equivalent iff [ = WTZ, where W € GL(¢q, A) and
Z € GL(p, A). Prove: each I is equivalent to a matrix

I. 0

0 H
where I, = r X r identity matrix and the entries of H are non-units of A. Is r uniquely determined by
I'? How about the matrix H?

3. Call the commutative ring, A, a local ring provided it possesses exactly one maximal ideal, m4. For
example, any field is a local ring; the ring Z/p"Z is local if p is a prime; other examples of this large,
important class of rings will appear below. We have the descending chain of ideals

ADmuDm%y D---.

For some local rings one knows that ﬂ m’ = (0); let’s call such local rings “good local rings” for
>0

temporary nomenclature. If A is a good local ring, we can define a function on A to Z U {oo}, call it

ord, as follows:

ord(§) =0if £ € my
ord(¢) = n if € € my but £ ¢ m’yH
ord(0) = oo.

The following properties are simple to prove:

ord(¢ £ 1) > min{ord(§), ord(n)}
ord(£n) > ord(€) + ord().

Consider the ¢ x p matrices under equivalence and look at the following three conditions:

(i) T is equivalent to <IT 0

0 H>’ with H = (0)
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(ii) T is equivalent to <IOT 1(31
(i) (3Q e M)(TQT =T).

) with H having non-unit entries and r > 1

Of course, i. = ii. if ' # (0), A any ring. Prove: if A is any (commutative) ring then i. = iii., and
if A is good local i. and iii. are equivalent. Show further that if A is good local then M(T") possesses
a non-trivial idempotent, P, (an element such that Px P = P, P # 0,# 1) if and only if T" has ii.

4. Write Z = {U € M(T") | TUT = 0} and given P € M(T"), set
B(P)={VeMT)|3ZeM®D)(V=PxZxP)}.

If iii. above holds, show there exists P € M(I") so that P+ P = P and I'PT" =T'. For such a P, prove
that B(P) is a subring of M(T'), that M(T') = B(P) IIZ in the category of A-modules, and that 7
is a two-sided ideal of M(T") (by exhibiting Z as the kernel of a surjective ring homomorphism whose
image you should find). Further show if i. holds, then B(P) is isomorphic to the ring of r X r matrices
with entries from A. When A is a field show Z is a maximal 2-sided ideal of M(T"), here I' # (0). Is
the unique maximal (2-sided) ideal in this case?

5. Call an idempotent, P, of a ring mazimal (also called principal) iff when L is another idempotent,
then PL =0 = L = 0. Suppose I satisfies condition iii. above, prove that an idempotent, P, of
M(T) is maximal iff TPT" =T.

Problem 32 Let A be the field of real numbers R and conserve the notations of Problem 31. Write X for
a p X ¢ matrix of functions of one variable, ¢, and consider the I'-Riccati Equation
dX
— = XT'X.
- (()r)
1. If g = p and T is invertible, show that either the solution, X (¢), blows up at some finite ¢, or else X (¥)
is equivalent to a matrix

0 O(1) Of(t) o(tr—1)
R R
0 0 0 ... 0

where O(t*) means a polynomial of degree < s. Hence, in this case, X (t) must be nilpotent.

2. Suppose g # p and T has rank r. Let P be an idempotent of M(T") with TPT =T. If Z € M(T"), write
2" for Z — Px Z =« P; so Z° € T. Observe that Z has dimension pg — 72 as an R-vector space. Now
assume that for a solution, X (t), of (*x)r, we have X (0) € Z. Prove that X (t) exists for all t. Can you
give necessary and sufficient conditions for X (¢) to exist for all ¢?

3. Apply the methods of (2) to the case p = ¢ but r = rank T’ < p. Give a similar discussion.

Problem 33 A module, M, over a ring, R, is called indecomposable iff we cannot find two submodules M;
and M, of M so that M — M, IT My in the category of R-modules.

1. Every ring is a module over itself. Show that if R is a local ring, then R is indecomposable as an
R-module.

2. Every ring, R, with unity admits a homomorphism Z — R (i.e., Z is an initial object in the category
RNG). The kernel of Z — R is the principal ideal nZ for some n > 0; this n is the characteristic of R.
Show that the characteristic of a local ring must be 0 or a prime power. Show by example that every
possibility occurs as a characteristic of some local ring.
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3. Pick a point in R or C; without loss of generality, we may assume this point is 0. If f is a function we
say f is locally defined at 0 iff f has a domain containing some (small) open set, U, about 0 (in either
R or C). Here, f is R- or C-valued, independent of where its domain is. When f and g are locally
defined at 0, say f makes sense on U and g on V, we’ll call f and g equivalent at 0 <= there exists
open W, 0eW, W CUNVand f | W =g | W. A germ of a function at 0 is an equivalence class of
a function. If we consider germs of functions that are at least continuous near 0, then when they form
a ring they form a local ring.

Consider the case C and complex valued germs of holomorphic functions at 0. This is a local ring.
Show it is a good local ring.

In the case R, consider the germs of real valued C* functions at 0, for some k with 0 < k < co. Again,
this is a local ring; however, show it is NOT a good local ring.

Back to the case C and the good local ring of germs of complex valued holomorphic functions at 0.
Show that this local ring is also a principal ideal domain.

In the case of real valued C*° germs at 0 € R, exhibit an infinite set of germs, each in the maximal
ideal, no finite subset of which generates the maximal ideal (in the sense of ideals). These germs are
NOT to belong to m?.

Problem 34 Recall that for every integral domain, A, there is a field, Frac(A), containing A minimal among
all fields containing A. If B is an A-algebra, an element b € B is integral over A <= there exists a monic
polynomial, f(X) € A[X], so that f(b) = 0. The domain, A, is integrally closed in B iff every b € B which
is integral over A actually comes from A (via the map A — B). The domain, A, is integrally closed (also
called normal) iff it is integrally closed in Frac(A). Prove:

1. A is integrally closed <= A[X]/(f(X)) is an integral domain for every MONIC irreducible polyno-
mial, f(X).

2. Aisa UFD <= A possesses the ACC on principal ideals and A[X]/(f(X)) is an integral domain for
every irreducible polynomial f(X). (It follows that every UFD is a normal domain.)

3. If k is a field and the characteristic of k is not 2, show that A = k[X,Y, Z,W]/(XY — ZW) is a normal
domain. What happens if char(k) = 27

Problem 35 Suppose that R is an integral domain and F is its fraction field, Frac(R). Prove that, as
R-module, the field F' is “the” injective hull of R. A sufficient condition that F'/R be injective is that R be
a PID. Is this condition necessary? Proof or counter-example.

Problem 36 If A is a ring, write End*(A) for the collection of surjective ring endomorphisms of A. Suppose
A is commutative and noetherian, prove End*(A) = Aut(A).

Problem 37 Write M (n, A) for the ring of all n x n matrices with entries from A (A is a ring). Suppose
K and k are fields and K D k.

1. Show that if M,N € M(n,k) and if there is a P € GL(n, K) so that PMP~' = N, then there is a
Q € GL(n, k) so that QMQ~! = N.

2. Prove that (1) is false for rings B O A wia the following counterexample:
A=R[X,Y]/(X?2+Y?-1), B=C[X,Y]/(X?+Y?—1). Find two matrices similar in M (2, B) but
NOT similar in M(2, A).

n

3. Let S™ be the n-sphere and represent S™ C R™"! as {(z0,...,2,) € R™™" | 30 (27 = 1}. Show
that there is a natural injection of R[Xo, ..., Xn]/(377_o X7 — 1) into C(S™), the ring of (real valued)
continuous functions on S™. Prove further that the former ring is an integral domain but C'(S™) is not.
Find the group of units in the former ring.
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Problem 38 (Rudakov) Say A is a ring and M is a rank 3 free A-module. Write @ for the bilinear form
whose matrix (choose some basis for M) is

1 a b
01 ¢
0 0 1
Thus, if v = (z,y,2) and w = (£,7,(), we have
1 a b 13
Qv,w) = (z,y,z) [0 1 ¢ |n
00 1) \¢

Prove that Q(w,v) = Q(v, Bw) with B = I + nilpotent <= a? + b + ¢ = abc.

Problem 39 Let M be a A-module (A is not necessarily commutative) and say N and N’ are submodules
of M.

1. Suppose N + N’ and N N N’ are f.g. A-modules. Prove that both N and N’ are then f.g. A-modules.
2. Give a generalization to finitely many submodules, Ny, ..., N; of M.
3. Can you push part (2) to an infinite number of N;?

4. If M is noetherian as a A-module, is A necessarily noetherian as a ring (left noetherian as M is a left
module)? What about A = A/Ann(M)?

Problem 40 Suppose that V' is a not necessarily finite dimensional vector space over a field, k. We assume
given a map from subsets, S, of V to subspaces, [S], of V' which map satisfies:

(a) For every S, we have S C [S]
(b) [] is monotone; that is, S C T implies [S] C [T].
(c¢) For every S, we have [S] = [[9]]

(d) If W is a subspace of V and W # V, then [W] # V.

2) Give counter-examples to show that the result is false if we remove either (a) or (d). What about (b)

(1) Under conditions (a)—(d), prove that [S] = Span S.
or (c)?

(3) What happens if we replace k by a ring R, consider subsets and submodules and replace Span .S by
the R-module generated by S?

Problem 41 (Continuation of Problem 34)

1. Consider the ring A(n) = C[X1,...,X,]/(X? + -+ X2). There is a condition on n, call it C(n), so
that A(n) is a UFD iff C(n) holds. Find explicitly C'(n) and prove the theorem.

2. Consider the ring B(n) = C[X1,..., X,|/(X? + X3 + X5 + -+ + X3). There is a condition on n, call
it D(n), so that B(n) is a UFD iff D(n) holds. Find explicitly D(n) and prove the theorem.

3. Investigate exactly what you can say if C'(n) (respectively D(n)) does not hold.
4. Replace C by R and answer (1) and (2).
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Can you formulate a theorem about the ring A[X,Y]/(f(X,Y)) of the form A[X,Y]/(f(X,Y)) is a
UFD provided f(X,Y)---? Here, A is a given UFD and f is a polynomial in A[X,Y]. Your theorem
must be general enough to yield (1) and (2) as easy consequences. (You must prove it too.)

Problem 42 (Exercise on projective modules) In this problem, A € Ob(CR).

1.

5.
6.

Suppose P and P’ are projective A-modules, and M is an A-module. If

0K —-P—M-—=0 and
0K —-P —M—=0

are exact, prove that K’ II P~ KII P'.

If P is a f.g. projective A-module, write PP for the A-module Hom 4(P, A). We have a canonical map
P — PPP . Prove this is an isomorphism.

Again, P is f.g. projective; suppose we're given an A-linear map u : Endys(P) — A. Prove: there
exists a unique element f € End(P) so that (Vh € Enda(P))(u(h) = tr(hf)). Here, you must define
the trace, tr, for f.g. projectives, P, as a well-defined map, then prove the result.

Again, P is f.g. projective; u is as in (3). Show that u(gh) = u(hg) < p = atr for some a € A.
Situation as in (2), then each f € Enda(P) gives rise to f” € Ends(PP). Show that tr(f) = tr(fP).

Using categorical principles, reformulate (1) for injective modules and prove your reformulation.

Problem 43 Suppose K is a commutative ring and a,b € K. Write A = K[T]/(T? — a); there is an
automorphism of A (the identity on K) which sends t to —t, where ¢ is the image of T in A. If { € A, we
write £ for the image of £ under this automorphism. Let H(K; a,b) denote the set

H(K; a,b) = { (g bg) ‘ s,neA}

this is a subring of the 2 x 2 matrices over A. Observe that ¢ € H(K;a,b) is a unit there iff ¢ is a unit of
the 2 x 2 matrices over A.

1.

Consider the non-commutative polynomial ring K(X,Y). There is a 2-sided ideal, Z, in K(X,Y)
so that Z is symmetrically generated vis a vis a and b and K(X,Y)/Z is naturally isomorphic to
H(K;a,b). Find the generators of Z and establish the explicit isomorphism.

For pairs (a,b) and (a, §) decide exactly when H(K;a,b) is isomorphic to H(K; a, 8) as objects of the
comma category RNG.

Find all isomorphism classes of H(K;a,b) when K = R and when K = C. If K = F,,, p # 2 answer
the same question and then so do for Fs.

. When K is just some field, show H(K;a,b) is a “division ring” (all non-zero elements are units) <=

the equation X? — aY? = b has no solution in K (here we assume a is not a square in K). What is
the case if a is a square in K?

. What is the center of H(K;a,b)?

For the field K = Q, prove that H(Q; a, b) is a division ring <= the surface aX? + bY? = Z?2 has no
points whose coordinates are integers except 0.
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Problem 44

1. If A is a commutative ring and f(X) € A[X], suppose (3 g(X) # 0)(g(X) € A[X] and ¢g(X)f(X) = 0).
Show: (Ja € A)(a # 0 and af(X) =0). Caution: A may possess non-trivial nilpotent elements.

2. Say K is a field and A = K[X;;, 1 <i,j < n]. The matrix

7

X11 Xln

has entries in A and det(M) € A. Prove that det(M) is an irreducible polynomial of A.

Problem 45 Let A be a commutative noetherian ring and suppose B is a commutative A-algebra which is
f.g. as an A-algebra. If G C Aut_ai.(B) is a finite subgroup, write

B¢ ={be B|o) =0, all 0 € G}.
Prove that B® is also f.g. as an A-algebra; hence B is noetherian.

Problem 46 Again, A is a commutative ring. Write RCF(A) for the ring of co x co matrices all of whose
rows and all of whose columns possess but finitely many (not bounded) non-zero entries. This is a ring
under ordinary matrix multiplication (as you see easily).

1. Specialize to the case A = C; find a mazimal two-sided ideal, £, of RCF(C). Prove it is such and is
the only such. You are to find & explicitly. Write E(C) for the ring RCF(C)/€.

2. Show that there exists a natural injection of rings M,, (= n x n complex matrices) — RCF(C) so
that the composition M,, — E(C) is still injective. Show further that if p | ¢ we have a commutative
diagram

M, ¢C M,

N

E(C)
Problem 47 (Left and right noetherian) For parts (1) and (2), let A = Z(X,Y)/(Y X,Y?)—a

non-commutative ring.

1. Prove that
ZIX| - Z(X,)Y) > A

is an injection and that A = Z[X] I (Z[X]y) as a left Z[X]-module (y is the image of Y in A); hence
A is a left noetherian ring.

2. However, the right ideal generated by {X"y | n > 0} is NOT f.g. (prove!); so, A is not right noetherian.

c-{(?)

Then C is right noetherian but NOT left noetherian (prove!).

3. Another example. Let

a €7 b,c,e(@}.

Problem 48 If { B, ¢} is a right mapping system of Artinian rings and if B = @a B, and B is noetherian,
prove that B is Artinian.
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Problem 49 Suppose that A is a commutative noetherian ring and B is a given A-algebra which is flat and
finite as an A-module. Define a functor Idemp,4(—) which associates to each A-algebra, T' the set
Idemp/a(T) = Idem(B ®4 T') consisting of all idempotent elements of the ring B ®4 T

(1) Prove the functor Idemp,, is representable.

(2) Show the representing ring, C, is a noetherian A-algebra and that it is étale over A.

Problem 50 (Vector bundles) As usual, TOP is the category of topological spaces and k will be either the
real or complex numbers. All vector spaces are to be finite dimensional. A vector space family over X is an
object, V', of TOPx (call p the map V' — X) so that

i. (Vo e X)(p~t(x) (denoted V) is a k-vector space)
ii. The induced topology on V, is the usual topology it has as a vector space over k.

Example: The trivial family X II k™ (fixed n).
Vector space families over X form a category, VF(X), if we define the morphisms to be those morphisms,
o, from TOPx which satisfy:

(Vz e X)(py : Vp = W, is a linear map.)

1. Say Y %, X is a continuous map. Define a functor 8* : VF(X) ~» VF(Y), called pullback. When Y
is a subspace of X, the pullback, 8*(V), is called the restriction of V to Y, written V [ Y.
A vector space family is a vector bundle <= it is locally trivial, that is:
(Ve € X)(Fopen U)(x € U) (so that V' [ U is isomorphic (in VF(U)) to U II k™, some n). Let
Vect(X) denote the full subcategory of VF(X) formed by the objects that are vector bundles.

2. Say X is an r-dimensional vector space considered in TOP. Write P(X) for the collection of all
hyperplanes through 0 € X, then P(X) is a topological space and is covered by opens each isomorphic
to an (r — 1)-dimensional vector space. On P(X) we make an element of VF(P(X)): W is the set of
pairs (&,v) € P(X) II XP so that ¢ C kerv. Here, X? is the dual space of X. Show that W is a line
bundle on P(X).

3. If V € Vect(X) and X is connected, then dim(V,) is constant on X. This number is the rank of V.

4. A section of V over U isamap o : U — V | U so that poo =idy. Write I'(U, V') for the collection of
sections of V over U. Show: If V' € Vect(X), each section of V over U is just a compatible family of
locally defined vector valued functions on U. Show further that I'(U, V) is a vector space in a natural
way.

5. Say V and W are in Vect(X), with ranks p and ¢ respectively. Show: Hom(V, W) is isomorphic to the
collection of locally defined “compatible” families of continuous functions U — Hom(kP, k), via the
local description

v € Hom(V, W) ~» ¢ : U — Hom(kP?, k%),

where ¢(u,v) = (u, $(u)(v)). Here, V | U is trivial and v € kP,
Now Iso(kP, k?) = {¢ € Hom(kP, k) | ¢ is invertible} is an open of Hom(k?, k9).

6. Show: ¢ € Hom(V,W) is an isomorphism <= for a covering family of opens, U(C X), we have
o(U) CIso(kP,k9) <= (Vx € X)(py : V; — W, is an isomorphism).

7. Show {z | ¢, is an isomorphism (here, ¢ € Hom(U,V))} is open in X.

8. Show all of (1) to (6) go over when X € C*~MAN (0 < k < 0o) with appropriate modifications; C*
replacing continuity where it appears.
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Problem 51 (Linear algebra for vector bundles). First just look at finite dimensional vector spaces over k
(remember k is R or C) and say F is some functor from vector spaces to vector spaces (F' might even be a
several variable functor). Call F' continuous <= the map Hom(V, W) — Hom(F(V), F(W)) is continuous.
(Same definition for C*, 1 < k < 0o, w). If we have such an F, extend it to bundles via the following steps:

1. Suppose V is the trivial bundle: X II kP. As sets, F(X II kP), is to be just X II F(kP), so we
give F(X II kP) the product topology. Prove: If ¢ € Hom(V, W), then F(y) is continuous, therefore
F(p) € Hom(F(V), F(U)). Show, further, ¢ is an isomorphism = F(¢) is an isomorphism.

2. Set F(V) = Uex(z,Vz), then the topology on F(V'), when V' is trivial, appears to depend on the
specific trivialization. Show this is not true—it is actually independent of same.

3. If V is any bundle, then V | U is trivial for small open U, so by (1) and (2), F(V [ U) is a trivial
bundle. Topologize F(V') by calling a set, Z, open iff Z N (F(V i U)) is open in F(V [ U) for all U
where V' | U is trivial. Show that if Y C X, then the topology on F(V | Y) is just that on F(V) [ Y,
that ¢ : V — W continuous == F(¢) is continuous and extend all these things to C*. Finally prove:
If f:Y — X in TOP then f*(F(V)) = F(f*(V)) and similarly in C*—~MAN.

4. If we apply (3) , we get for vector bundles:

a) VII W, more generally finite coproducts

(a)

(b) VP, the dual bundle

(c) Vew

(d) Hom(V, W), the vector bundle of (locally defined) homomorphisms.

Prove: I‘(U7 Hom(V, W)) ~ Hom(V | U,W | U) for every open, U, of X. Is this true for the bundles
of (a), (b), (¢)?

Problem 52 Recall that if R € RNG, J(R)—the Jacobson radical of R— is just the intersection of all (left)
maximal ideals of R. The ideal, J(R), is actually 2-sided.

1. Say J(R) = (0) (e.g., R = Z). Show that no non-projective R-module has a projective cover.

2. Suppose M;, i = 1,...,t are R-modules with projective covers Pi,...,P;. Prove that [[, P; is a
projective cover of [], M;.

3. Say M and N are R-modules and assume M and M IT N have projective covers. Show that N has one.

4. In M is an R-module, write (as usual) M? = Hompg(M, R). Then MP is an R°P-module. Prove that
if M is finitely generated and projective as an R-module, then MP has the same properties as an
R°P-module.

Problem 53 Let {M,} be a given family of R°P-modules. Define, for R-modules, two functors:
U:N ~ ((HMa) ®RN)
VN~ H(Ma ®r N).

1. Show that V is right-exact and is exact iff each M, is flat over R.

2. Show there exists a morphism of functors 6 : U — V. Prove that 0y : U(N) — V(N) is surjective if
N is finitely generated, while 8 is an isomorphism if /V is finitely presented.
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Problem 54 (Continuation of Problems 50 and 51). Let V and W be vector bundles and ¢: V — W a
homomorphism. Call ¢ a monomorphism (respectively epimorphism) iff

(Vz € X)(pg: Vp — W, is a monomorphism (respectively epimorphism)). Note: ¢ is a monomorphism iff
©P: WP — VP is an epimorphism. A sub-bundle of V is a subset which is a vector bundle in the induced
structure.

1.

Prove: If ¢: V — W is a monomorphism, then ¢(V') is a sub-bundle of W. Moreover, locally on X,
there exists a vector bundle, G, say on the open U C X, so that (V [U)IIG = W [ U (i.e., every sub-
bundle is locally part of a coproduct decomposition of W). Prove also: {x | ¢, is a monomorphism} is
open in X. (Suggestion: Say x € X, pick a subspace of W, complementary to ¢(V;), call it Z. Form
G = X II Z. Then there exists a homomorphism V II G — W, look at this homomorphism near the
point z.)

Say V' is a sub-bundle of W, show that (J, .y (2, W,/V,) (with the quotient topology) is actually a
vector bundle (not just a vector space family) over X.

Now note we took a full subcategory of VF(X), so for ¢ € Hom(V,W) with V,W € Vect(X), the
dimension of ker ¢, need not be locally constant on X. When it is locally constant, call ¢ a bundle
homomorphism. Prove that if ¢ is a bundle homomorphism from V' to W, then

(i) U, (z, ker ¢,) is a sub-bundle of V'
(ii) U, (x,Imep,) is a sub-bundle of W, hence
(iii) U, (, coker ;) is a vector bundle (quotient topology).

We refer to these bundles as ker ¢, Im ¢ and coker ¢, respectively. Deduce from your argument for (i)
that

(iv) Given = € X, there exists an open U, with € U, so that (Vy € U)(rank ¢, > ranky,). Of
course, this ¢ is not necessarily a bundle homomorphism.

Problem 55 (Continuation of Problem 54) In this problem, X is compact Hasudorff. We use two results
from analysis:

A)

B)

(Tietze extension theorem). If X is a normal space and Y a closed subspace while V' is a real vector
space, then every continuous map Y — V admits an extension to a continuous map X — V. Same
result for X € C*~MAN and C* maps.

(Partitions of unity). Say X is compact Hausdorff and {U,} is a finite open cover of X. There exist
continuous maps, f,, taking X to R such that

(i) fo >0, (all @)
(i) supp(fa) € Uq (so fo € C(())(Ua))
(i) (Vo e X)X, falz) =1).

The same is true for C*~MAN (X compact!) and C* functions (1 < k < 00).

. Extend Tietze to vector bundles: If X is compact Hausdorff, Y C X closed and V' € Vect(X), then every

section o € T'(Y,V|Y) extends to a section in T'(X, V). (Therefore, there exist plenty of continuous
or C* global sections of V. FALSE for holomorphic sections). Apply this to the bundle Hom(V, W)
and prove: If Y is closed in X with X (as usual) compact Hausdorff or compact C*-manifold and if
p: V1Y — W Y is an isomorphism of vector bundles, then there exists an open, U, with Y C U, so
that ¢ extends to an isomorphism V [ U — W | U.
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2. Every vector space possesses a metric (take any of the p-norms, or take the 2-norm for simplicity). It’s
easy to see that metrics then exist on trivial bundles. In fact, use the 2-norm, so we can “bundleize”
the notion of Hermitian form (Problem 51) and get the bundle Herm(V'). Then an Hermitian metric
on V is a global section of Herm(V') which is positive definite, at each € X. Show every bundle
possesses an Hermitian metric.

3. If we are given vector bundles and bundle homomorphisms, we say the sequence
o Vi Vi = Vigg — -+
of such is exact iff for each z € X, the sequence of vector spaces
o Vie = Vitre = Vigaw — -

is exact. Prove: If 0 — V' — V — V” — 0 is an exact sequence of vector bundles and bundle
homomorphisms, then V' = V' I1 V”. (This is not true for holomorphic bundles.)

4. Counsider a vector bundle, V| and a subspace, X, of the vector space T'(X, V). We get the trivial bundle
X IT ¥ and a natural homomorphism X I1 ¥ — V', via

(z,0) = o(x).

Prove: If X is compact Hausdorff (or compact C*—MAN), there exists a finite dimensional subspace,
¥, of I'(X,V) so that the map X II ¥ — V is surjective. Thus there exists a finite dimensional
surjective family of C-(respectively C*-) sections of V. Use (3) to deduce: Under the usual assumption
on X, for each vector bundle, V, on X, there exists a vector bundle, W, on X, so that VII W is a
trivial bundle.

5. Write C(X) (respectively C*(X), 1 < k < o) for the ring of continuous (respectively C*) functions
(values in our field) on X, where X is compact Hausdorff (respectively a compact manifold). In a
natural way (pointwise multiplication), T'(X, V) is an A-module (A = C(X), C*(X)), and T gives a
functor from vector bundles, V', to Mod(A). Trivial bundles go to free modules of finite rank over A
(why?) Use the results above to prove:

T gives an equivalence of categories: Vect(X) (as full subcaregory of VF (X)) and the full
subcategory of A-modules whose objects are f.g. projective modules.

Problem 56

1. Say M is a f.g. Z-module, # (0). Prove there exists a prime p so that M ®z Z/pZ # (0). Deduce: No
divisible abelian group [cf. Problem 24] can be f.g.

2. Say M, M" are Z-modules and M is f.g. while M" is torsion free. Given ¢ € Hom(M, M") suppose
(Vprimes p)(the induced map M ®y Z/pZ — M" ®z Z/pZ is a monomorphism). Show that ¢ is a
monomorphism and M is free.

3. If M is a divisible abelian group, prove that M possesses no maximal subgroup. Why does Zorn’s
Lemma fail?

Problem 57 Given A, I' € RNG and a ring homomorphism A — T' (thus, I' is a A-algebra), if M is a
A-module, then M ® I" has the natural structure of a I'°P-module. Similarly, if Z is both a A°°-module and
a I'-module, then Z ®4 M is still a I'-module. Now let N be a I'-module,

1. Prove there is a natural isomorphism
Homr(Z @5 M, N) — Homa (M, Homr(Z, N)). (%)

Prove, in fact, the functors M ~~ M ®, Z and N ~» Homp(Z, N) are adjoint functors, i.e., (x) is
functorial.
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2. Establish an analog of (x):
Homp(M,Homy (Z, N)) = Homp (Z ®r M, N) (k)
under appropriate conditions on Z, M and N (what are they?)

3. Show: M projective as a A°P-module, Z projective as a '°P-module = M ®, Z is projective as a
I'°P-module. In particular, M projective as a A°’-module = M ®, I is projective as a ['°P-module
and of course, the same statement (without the op) for Z @5 M and I' ®, M. Show further that, if N
is A-injective, then Homy (T, V) is T'-injective.

4. For abelian groups, M, write M? = Homgz(M,Q/Z). Then, if M is free, M? is injective as a Z-module
(why?). From this deduce: Every abelian group is a subgroup of an injective abelian group.

5. (Eckmann) Use (3) and (4) to prove the Baer Embedding Theorem: For every ring, I', each I-module
is a submodule of an injective I'-module.

Problem 58 Here, A and B are commutative rings and ¢ : A — B a ring homomorphism so that B is an
A-algebra. Assume B is flat (i.e., as an A-module, it’s flat). Define a homomorphism

9 : Homu(M,N)®4 B — Homp(M ®4 B,N ®4 B)
(functorial in M and N)—how?
1. If M is f.g. as an A-module, € is injective.
2. If M is f.p. as an A-module, # is an isomorphism.

3. Assume M is f.p. as an A-module, write a for the annihilator of M (= (M — (0))). Prove that a®4 B
is the annihilator of M ® 4 B in B.

Problem 59 Let k be a field and f be a monic polynomial of even degree in k[X].
1. Prove there exist g, r € k[X] such that f = g*> + r and degr < %deg f. Moreover, g and r are unique.

Now specialize to the case k = Q, and suppose f has integer coefficients. Assume f(X) is not the
square of a polynomial with rational coefficients.

2. Prove there exist only finitely many integers, x, such that the value f(x) is a square, say y?, where
y € Z. In which ways can you get the square of an integer, y, by adding 1 to third and fourth powers
of an integer, x?

3. Show there exists a constant, K, depending ONLY on the degree, N, of f so that:

If all coefficients of f are bounded in absolute value by C' (> 1) then whenever (z,y) is a
solution of y? = f(x) (with z, y € Z) we have |z| < KyC¥.

4. What can you say about the number of points (x,y) with rational coordinates which lie on the (hyper-
elliptic) curve Y2 = f(X)?
Problem 60 Consider Mod(Z) and copies of Z indexed by N = {1,2,...}. Form the module [[ Z. It is a
N
product of Ny projective modules. Show M =[] Z is not projective as a Z-module. (Suggestions: Establish
N

that each submodule of a free module over a PID is again free, therefore we need to show M is not free.
Look at

K={¢=(&) e M| (Yn)3k=k(n)(2" | & if j > k(n))}.°
This is a submodule of M; show K /2K is a vector space over Z/2Z of the same dimension as K and finish
up. Of course, 2 could be replaced by any prime). So, products of projectives need not be projective.

5The condition means that limj, o0 §; is zero in the “2-adic numbers” Qs.
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Problem 61

1. Say A s Bisa homomorphism of commutative rings and suppose it makes B a faithfully flat
A-module. Show that 6 is injective.

2. Hypotheses as in (1), but also assume B is finitely presented as an A-algebra (e.g., B is finitely
generated and A is noetherian). Show that there exists an A-module, M, so that B =2 A1l M, as
A-modules.

3. Assume A and B are local rings, 6 : A — B is a ring map (N.B. so that we assume
f(ma) C mp) and B, as an A-module, is flat. Write N'(A), respectively N (B), for the nilradicals of
A, respectively B. [That is,

N(A) ={¢cA|(BneN)(E" =0)}, etc]
Prove:
(a) If N(B) = (0), then N'(A) = (0).
(b) If B is an integral domain, so is A.
Are the converses of (a), (b) true? Proof or counter-example.

Problem 62 Here, I is an index set and S(I) is the set of all finite subsets of I. Partially order S(I) by
inclusion, then it is directed® Also, let C be a category having finite products or finite coproducts as the
case may be below (e.g., groups, Q-groups, modules). Say for each o € T we are given an object M, € C.

For ease of notation below, write Mg = [[ M, and M = [[ M,, where S € S(I) is given. Prove:
acs acs
If C has right limits and finite coproducts, then C has arbitrary coproducts; indeed,

lim  Ms =[] Ma.
ses(I) acl
Prove a similar statement for left limits and products.
Problem 63 Recall that a ring, A, is semi-simple” iff every A-module, M, has the property:
(V submodules, M’, of M)(3 another submodule, M, of M)(M = M’ 11 M").

There is a condition on the positive integer, n, so that n has this condition <= Z/nZ is semi-simple. Find
the condition and prove the theorem.

Problem 64 In this problem, A € CR. If oy, ..., ay, are in A, write (al, e ,an) for the ideal generated by
ai,...,an, in A. Recall that Ky(A), the Grothendieck group of A, is the quotient of the free abelian group
on the (isomorphism classes of) finitely generated A-modules (as generators) by the subgroup generated by
the relations: if 0 = M’ — M — M"” — 0 is exact in Mod(A4), then [M] — [M'] — [M"] is a relation.

1. If o € A, show that in Ky(A) we have
() = 0)] = [4/(a)]
2. If Ais a PID and M is a finite length A-module, show that [M] =0 in Ky(A).

3. Prove: If A is a PID, then for all finitely generated A-modules, M, there exists a unique integer
r =r(M), so that [M] = r[A] in K(A); hence, Ko(A) is Z. Prove further that
r(M) = dim(M ® 4 Frac(A)).

60ne also says S(I) has the Moore-Smith property.
7Cf. also, Problem 145.
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Problem 65 Write LCAb for the category of locally compact abelian topological groups, the morphisms
being continuous homomorphisms. Examples include: Every abelian group with the discrete topology; R;
C; R/Z =T, etc. If G € LCAD, write

GP = Homs(G, T),

make GP a group via pointwise operations and topologize G wia the compact-open topology; that is, take
the sets
UCe)={feG” |Im(f|C)C —e<argz<e}

—where C runs over the compact subsets of G containing 0, € is positive and we identify T with the unit
circle in C—as a fundamental system of neighborhoods at 0 in GP.

1. Suppose G is actually compact. Prove GP is discrete in this topology. Likewise, prove if G is discrete,
then GP is compact in this topology. Finally prove GP is locally compact in this topology.

2. If {G4, ¢2} is a right (respectively left) mapping family of finite abelian groups, then
{Gg , (cpg)D} becomes a left (respectively right) mapping family, again of finite abelian groups (how,
why?). Prove that
D
(tig G) " im 67
[0 (03
and
. b D
(tim )" tim 5
[0 (03
as topological groups. We call a group profinite <= it is isomorphic, as a topological group, to a left
limit of finite groups.

3. Prove the following three conditions are equivalent for an abelian topological group, G:

(a) G is profinite
(b) G is a compact, Hausdorff, totally disconnected group
(c) GP is a discrete torsion group.
4. For this part, {Ga} is a family of compact groups, not necessarily abelian, and the index set has
Moore—Smith. Assume we are given, for each «a, a closed, normal subgroup of G, call it S, and that

B>a = Gz C G, and Sg C S,. Show that the family {Ha = Ga/Sa}a can be made into a left
mapping family, in a natural way, and that

<li_rn H, = ﬂ G./ ﬂ Sa  (as topological groups.)
(03 [0 [e3%

5. If G is a compact topological group, write {Ua|o< el } for the family of all open, normal subgroups of
G. Continue (3) by proving:

G is profinite <= G is compact and m Uy ={1}.

«

6. Here, G need not be abelian. We define Z,, as (h—m Z/p"Z and 7 as (hjm Z/nZ (Artin ordering for the

n
n’s). Quickly use (2) to compute Z2 and (Z)”. Now consider the following mathematical statements:

(a) Z= Hp Ly
(b) Q*x7/2Z 11 HpZ
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— 1 1 .
(C)ZE:HW, 1fRes>1
n=1 P
(d) A statement you know well and are to fill in here concerning arithmetic in Z.

Show (a)-(d) are mutually equivalent.

Problem 66 Fix an abelian group, A, for what follows. Write A,, = A, all n € N and give N the Artin
ordering. If n < m (i.e. n|m) define ¢ : A, — A, by ¢7(&) = (2)¢&, and define ¢7, : A, — A, by

Um(€) = () € too. Let
A=lim{A, @7} and T(A) = lim { A, 07, }.
(T(A) = full Tate group of A).
1. Prove that both A and T(A) are divisible groups.

2. Show that if A = A; -2+ A is the canonical map into the direct limit, then ker(p) = t(A), the torsion
subgroup of A. Hence, every torsion free abelian group is a subgroup of a divisible group. Given any
abelian group , A, write

0-K—F—A—=Q0,

for some free abelian group F. Show that A may be embedded in F' /K; hence deduce anew that every
abelian group embeds in a divisible abelian group.

3. If A is a free Z-module, what is T'(A)?
4. If A— B — 0 is exact, need T(A) — T(B) — 0 also be exact? Proof or counterexample.

5. Show that if T(A) # (0), then A is not finitely generated.

Problem 67 Again, as in Problem 61, let § : A — B be a homomorphism of commutative rings and assume
B is faithfully flat over A via 0. If M is an A-module, write Mp for M ® 4 B.

1. Prove: M is finitely generated as an A-module iff Mp is finitely generated as a B-module.
2. Same as (1) but for finite presentation instead of finite generation.
3. Show: M is locally free over A iff Mp is locally free over B.
4. When, if ever, is S™'A faithfully flat over A?
Note, of course, that these are results on faithfully flat descent.
Problem 68 Here, A € RNG and assume
0> M —-M-—M"—0
is an exact sequence of A-modules.
1. Assume further, M" is a flat A-module. Prove: For all A°°-modules, N, the sequence
0> NRIIANM - NoAM - Ny M =0
is again exact. (You might look at the special case when M is free first.)

2. Again assume M" is flat; prove M and M’ are flat <= either is flat. Give an example of A, M’, M,
M" in which both M and M’ are flat but M" is not flat.
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Problem 69 (Topologies, Sheaves and Presheaves). Let X be a topological space. We can make a category,
Tx, which is specified by and specifies the topology as follows: Ob Tx consists of the open sets in X. If
UV e ObTx, we let

0 ifU gV,

{incl} fUCV,

here {incl} is the one element set consisting of the inclusion map incl : U — V.
1. Show that U 1;{[ V—the fibred product of U and V (over X) in Tx—is just U N V. Therefore Tx has
finite fibred products.

Hom(U, V) = {

2. If C is a given category (think of C as Sets, Ab, or more generally A-Modules) a presheaf on X with
values in C is a cofunctor from Tx to C. So, F' is a presheaf iff (V open U C X)(F(U) € C) and when
U — V, we have a map p¥ : F(V) — F(U) (in C) usually called restriction from V to U. Of course,
we have plV = pl¥V o p¥. The basic example, from which all the terminology comes, is this:
C = R-modules (= vector spaces over R)

F(U) = {continuous real valued functions on the open set U}.

Now recall that a category is an abelian category iff for each morphism A —2+ B in C, there are two
pairs: (ker o, i) and (coker p, j) with ker ¢ and coker ¢ objects of C and i : kerp — A, j : B — coker ¢
so that:
(a) Home (A, B) is an abelian group, operation denoted +
(b) kerp — A — B is zero in Home (ker , B)
(c) If C -+ A — B is zero, there is a unique morphism C' — ker ¢ so that u is the composition
C —kerp — A

(d) Similar to (c) for coker, with appropriate changes.

Define Im ¢ as ker(B I coker ). Now exact sequences make sense in C (easy, as you see). Write
P(X,C) for the category of presheaves on X with values in C. If C is abelian show that P(X,C) is an
abelian category, too, in a natural way.

3. If A € ObC, we can make a presheaf 2 by: 2(U) = A, all open U and if V < U then p¥ = id4. This
is the constant presheaf with values in A. Generalize it as follows: Fix open U of X, define 2y by:

_ _JO itwgUu
ww =] A_{A itWwCu.
Hom(W,U) -

Show 2y is a presheaf and 2l is one of these 2{y7; which one? Generalize further: Say F is a presheaf
of sets on X, define Az by:

Ar(W) = H A = {functions : F(W) — A | these functions have finite support }.
F(W)

Make 2 into a presheaf on X it is a clear generalization of 2y and this, in turn, generalizes 2.

4. Just as with the defining example in (2), which is called the presheaf of germs of continuous functions on
X, so we can define the presheaf of germs of C*-functions, real-analytic functions, complex holomorphic
functions, meromorphic functions when X is a real (resp. complex) manifold. Namely:

C*U)={f:U—=R|fisCfonU} 0<k<oo
(U)={f:U—=R| f is real analytic on U}
Hol(U) ={f : U — C| f is holomorphic on U}
(U)={f:U — C| f is meromorphic on U}.
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Prove: The collection {3y | Uopen in X} is a set of generators for P(X, Ab); that is: For all presheaves
F, there is a subcollection of the U’s, say {U, | @ € A}, so that there is a surjection
I < I 3U> — F, for some set I. (Then it turns out that every presheaf embeds in an injective

I acA
presheaf.)

5. Now sheaves are special kinds of presheaves. Say U € Tx and we have a family of morphisms of
Tx: {Us = Ulaena (we'll suppress mention of A in what follows). We call this family a covering
family <— |J,Us = U, ie. the U, form an open covering of U. Of course, if £ € F(U), then
poe(€) € F(U,), each a; here, F is a presheaf. Hence we get a map

0:FU) =[] F(Us)

Now if &, € F(Ua), for each «, then ngng (fa) lies in F(Ua N Uﬁ) therefore we get a map

Pra: F(Ua) = [[ F(UanUp).
B
Take the product of these over o and get a map

pr:][F(Ua) =] F(UanUs).

a,p

If {5 € F(Ug) then pg:mUﬁ (¢s) € F(Ua N Upg) therefore we get a map
P2, : F(Up) %H F(UaNUpg).

Again the product over § gives:

D2 :HF(UB) —>HF<UaﬂU,B)7

B a,B

hence we get two maps:
EN
[T Fw) 2 ] F(ans).
v D2 o,B
Here is the definition of a sheaf: A sheaf, F, of sets is a presheaf, F, of sets so that (V open U)
(V covers {Ua — U}a), the sequence

F) ST F(U)=3 T] F(U.Up) (s)
0% D2 o,

is exact in the sense that 8 maps F(U) bijectively to the set (57) €] F(Uw) for which
v
(&) =r2((6))-

Show that the presheaves of germs of continuous, k-fold continuous, differentiable, analytic, holomorphic
and meromorphic functions are all sheaves. In so doing understand what exactness of sequence (S) means.
Prove, however, that 2 is NOT generally a sheaf. (Note: a sheaf with values in Ab or RNG or Q-groups is
just a presheaf with these values which forms a sheaf of sets.) For which presheaves, F, is 2 x a sheaf?
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Problem 70 Consider P(X) and S(X) the categories of presheaves and sheaves of sets on X (our results
will also work for other image categories based on sets, e.g., Ab, RNG, TOP, etc.) We have the definition
of a sheaf so that

F) -5 [[Fw.) = [[Fws noy) ()

P2 By
is exact for all open covers, {U, — U}, of any open U.

(1) There are two parts to the exactness of (S): € is injective and the image of 0 is the equalizer of p;
and po. Write that F satisfies (+) if 0 is injective. Suppose that F' is any presheaf, define

FO = i Ker([[F(U) = [[FWsnU,))
{Us—U} a By

(the limit taken over all open covers, {U, — U}, of the open U). Show that F(+) satisfies (+).
(2) If 0 — F' %5 F is exact in P(X, Ab), set (Cokp)(U) = Coker p(U) = Coker(F'(U) — F(U)).
Prove that Cok ¢ satisfies (+).

(3) Suppose that F satisfies (+) show that F() satisfies (S), i.e., F*) is a sheaf. Show further that, if
F satisfies (+), then Ker (F(U) — F(H(U)) = (0), i.e., F — F™) is an injective map of presheaves. Set
F# = (F)®) | for any presheaf F.

(4) We know # is exact and i: S(X) — P(X) is left-exact. Prove that # is the left adjoint of ¢, that is

Homgx) (F#7 G) = Hompx)(F,i(G)).

(5) For the derived functor H4(F) (= (R%)(F)) of i: S(X, Ab) ~» P(X, Ab), prove that
(HI(F)* = (0).

Problem 71 (Grothendieck) In Problem 69, you proved the collection {3y | U open in X} is a set of
generators for

P(X, Ab).
(1) Show that the collection {3y} has the following property:

(G): For each presheaf, F, and for each monomorphism 0 — F/ — F (in P(X, Ab)) with F’ # F, there
is an open U C X and a morphism 3y — F, so that ¢ does not factor through a morphism 3y — F’.

Prove moreover that property (G) is equivalent to the fact that {3y | U open in X} is a family of
generators for P(X, Ab).

(2) Write Z for the coproduct H 3u in P(X,Ab), then Z is a generator for P(X, Ab). Show that

allU
a presheaf, @), on X is injective if and only if for each monomorphism 0 — W — Z, every morphism

0: W — @ extends to a morphism Z — Q.

(3) Imitate the construction for rings R, ideals 2l C R and R-modules M, of an injective hull for M (with
the correspondence R «— Z; A +— W; M <— a presheaf F') to show:

There exists a functor Q: F ~ Q(F') and a morphism of functors ¢: id — @ so that
(a) (VF € P(X, Ab))(¥p: F — Q(F) is a monomorphism)
and

(b) Each Q(F) is an injective presheaf.
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This gives the proof that P(X,.Ab) has enough injective objects.

(4) The Zy in S(X, Ab) defined as 3§ form a set of generators for S(X,.Ab). The same argument as in
(3) goes through and we obtain another proof (but similar to the text’s proof) that S(X,.Ab) has enough
injectives.

Problem 72 (Grothendieck) Let P stand for the category of abelian presheaves, P(X, Ab), on the space
X.

(1) If U is an open in X and {U, — U}, is an open covering of U, we have induced a diagram of
families of maps

I

F
U A{Ua} = {UsNU sy = {UsNUcNUplsenm = ..

I

coming from the various projections (note that Ug N U, = Ug[[U,; UsNU.NU, = Us [[U[[Uy; etc.).
When F' is a presheaf, we get a simplicial diagram

I

—
FU)—[[FU.) == [[FW0snU,) — [] FWsnUNU,)
a By d,en

and, by taking the alternating sum of these maps, we make a sequence
0 1 2
FU) — [[FWa) = [[FWsnU,) = [[ FUsnUNU,) - (%)
@ Byy d,e,m

For notation, write C"({U, — U}, F) =[] F(Uqy N---NU,,), so that (x) becomes

F(U) — CO4Un — UV, F) 25 O ({U0 — UV, F) 25 C?({Usy — UL, F) 25 (+%)

Show that (#*) is an augmented complex (of abelian groups). We'll call (x%) the eaplicit Cech cochain
complex of the cover {U, — U} with coefficients in F'. Denote by H)‘Zpl({Ua — U}, F) its ¢*" cohomology

group (= Ker §7/Im 6771).
(2) We know that Homp (3y, F') = F(V) for all open V of X, show that

w= ]I z

Hom(U,V)
(3) Now let F' be an injective presheaf from P, show that

0 1 2
CO({Us — U}, F) 2 C'({Uy — U}, F) 2 C*({Uy — U}, F) 2 - (k)
is an ezact sequence. (Suggestions. Show that the exactness of (sx) is equivalent to the exactness of
1I3v. < [13vor0, < 1 3vsnveno, < - (1)
a By d,em

in the category P and check the latter exactness by evaluation on any open Y of X. For this, show that the
last sequence is induced by the simplicial diagram of indexing sets

1

<_
[[Hom(Y,U) &= [[Hom(Y,UsNU,) $= []Hom(Y,UsnUNU,)
« By 3,€,m



28 PROBLEMS

and we can identify [[5 , Hom(Y,Ug NU,) with M [[ M, where M = ][, Hom(Y, Uy ), etc. Thus, that (1) is
exact comes down to the exactness of the diagram

P —
Mee [Mee 1 2o -
M MM MTIMTIM S

But, construct a contracting homotopy for this last diagram and so complete proving () is exact.)

(4) Prove that the é-functor F' ~ Hy ,({Us — U}, F) is universal and show that we have an isomorphism
H*({Ua — U}, F) = Hy, ({Ua — UL F)

(functorial in F'). Thus, the complex (##) gives an explicit method for computing the cohomology groups,
H*({U, — U}, —), of the covering {U, — U},.

(5) Pass to the limit over all coverings of X and give an explicit complex to compute the Cech cohomology
groups H*(X, —).

Problem 73 If F is a sheaf of abelian groups on the space X, let’s agree to write F' again when we consider
I as a presheaf.

(1) Show that there is an exact sequence
0 — H*(X,F) — H*(X,F) — HY (X, HY(F))
and that if H3(X, F) = (0), then
0 — H*(X,F) — H*(X,F) — H' (X, H'(F)) — 0
is exact.
(2) Let {U, — X}, be an open cover of X and assume that
(Vor, B)(H' (Ua N U3, F) = (0)).

Deduce that the natural map §
H*(X,F) — H*(X,F)

is an isomorphism. If you assume only that
(Vo) (H' (U, F) = (0))
can you still deduce that H?(X, F) = H?(X, F)? Proof or counter-example.

(3) Can you continue the line of argument of (2) applied to groups such as H'(U, NUg N U, F),
etc. and deduce further isomorphisms between Cech and derived functor cohomology? For example, try
H3(X,F)= H3X,F).

(4) In a similar vein to (2) and (3) above, prove the following (known as Cartan’s Isomorphism Theorem):
For the space X, let U be a family of open sets covering X so that

(o) FUV €U, then UNV elU

(b) U contains arbitrarily small opens of X

(c) IfU €U and q > 0, then HY(U, F) = (0).

Then, the natural maps

HY(X,F) — HY(X,F)

are isomorphisms for all ¢ > 0.
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(Suggestions: Use induction on g, but replace X by any of the U of . Use a spectral sequence at the
induction step to get HY(X,F) & HY(X,F). Now how do you further deduce HY(U,F) = H(U,F) all
U € U to complete the induction?)

Remark: Two main uses of Cartan’s Theorem are when X is a manifold and U is the family of all finite
intersections of all sufficiently small open balls around each point of X and when X is an algebraic variety
(over a field) and U is the collection of its affine open subvarieties.

Problem 74 Let k be a field, X an indeterminate (or transcendental) over k. Write A = k[X] and consider
an ideal, a, of A. The ideal, a, determines a topology on k[X]|—called the a-adic topology—defined by taking
as a fundamental system of neighborhoods of 0 the powers {a™ | n > 0} of a. Then a fundamental system of
neighborhoods at £ € A is just the collection {£ + a™ | n > 0}.

1. Show A becomes a topological ring (i.e. addition and multiplication are continuous) in this topology.
When is A Hausdorff in this topology?

2. The rings A/a™ = A,, form a left mapping system. Write

A= lim A/a"
%

n
and call A the a-adic completion of A. There is a map A — //1\; when is it injective?

3. Counsider a = (X) = all polynomials with no constant term. The ring A in this case has special
notation: k[[X]]. Establish an isomorphism of k[[X]] with the ring of formal power series over k (in
X) i.e. with the ring consisting of sequences (cn)7 n > 0, ¢, € k with addition and multiplication
defined by:

(en) + (dn) = (cn + dn)

() - (d) = (e0). en= 3 e,

1+j=n

((cn) — Z ¢, X" explains the name).

n=0
4. Show k[X] < K[[X]], that k[[X]] is an integral domain and a local ring. What is its maximal ideal?
Now (X) = a is a prime ideal of k[X], so we can form k[X] x). Prove that
KIX] € KX ) € KX

We have the (prime) ideal (X)¢ of k[X]x). Form the completion of k[X] x) with respect to the
(X)e-adic topology. What ring do you get?

Problem 75 If k is any field, write A = k[[T1,...,T;]] for the ring of formal power series over k in the
indeterminates T7, ..., T;,. Denote by Auty(A) the group of all k-automorphisms of A.

(1) Give necessary and sufficient conditions on the n power series S1(T1,...,Th), .., Sn(T1,...,Ty) in
order that the map
[ Tj — Sj(Tl,...,Tn)
be an element of Aut;(A). In so doing, describe the group Auty(A).

(2) If now k is no longer necessarily a field but merely a commutative ring with unity, answer question
(1) for this case.

(3) Fix k, a commutative ring with unity, and consider the category, Alg(k), of k-algebras (say commu-
tative). Define a functor Aut(k[[T1,...,T,]]/k)(—) by sending B € Alg(k) to Autg(B][[T4,...,T,]]) € Grp.
Is this functor representable? How?
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Problem 76 Prove that in the category of commutative A-algebras, the tensor product is the coproduct:

B®AC%BI;‘IC.

Which A-algebra is the product B [] C (in commutative A-algebras)?
A

Problem 77 Suppose A is a (commutative) semi-local ring obtained by localizing a f.g. C-algebra with
respect to a suitable multiplicative subset. Let J be the Jacobson radical of A and write A for the J-adic
completion of A. Is it true that every finitely generated A-module, M, has the form M = My® 4 A for some
finitely generated A-module, My? Proof or counter-example.

Problem 78 Here A is a commutative ring and we write M, (A) for the ring of n X n matrices over A.
1. Prove: The following are equivalent

(a) A is noetherian
(b) For some n, M, (A) has the ACC on 2-sided ideals
(c) For all n, M, (A) has the ACC on 2-sided ideals.

2. Is this still valid if “noetherian” is replaced by “artinian” and “ACC” by “DCC”? Proof or counterex-
ample.

3. Can you make this quantitative? For example, suppose all ideals of A are generated by less than or
equal to N elements. What can you say about an upper bound for the number of generators of the
ideals of M,,(A)? How about the converse?

Problem 79 Refer to Problem 74. Write k((X)) for Frac(k[[X]]).

1. Show that
k(X)) = { > a;X7 |aj €kand (AN)(a; =0if j < N)}
j=—00

where on the right hand side we use the obvious addition and multiplication for such expressions. If
€ € k((X)), write ord(§) = N <= N = largest integer so that « = 0 when j < N; here, £ # 0. If
€ =0, set ord(£) = co. One sees immediately that k[[X]] = {£ € k(X)) | ord(£) > 0}.

2. Write U for G, (k[[X]]) and M for {£ | ord(§) > 0}. Prove that k(X)) = M~'UU U M (disjointly),
where

M ={¢|1/g e M}
Now fix a real number, ¢, with 0 < ¢ < 1. Define for &, 1 € k((X)),

d(&,n) = Cord(éfn),

then it should be clear that k((X)) becomes a metric space and that addition and multiplication
are continuous in the metric topology. Prove that k((X)) is complete in this topology (i.e., Cauchy
sequences converge), and that the topology is independent of which number ¢ is chosen (with 0 < ¢ < 1).

3. Suppose u € k[ X]], u= >, a;j X7, and ap = 1. Pick an integer n € Z and assume
(n,char(k)) = 1. Prove: There exists w € k[[X]] such that w™ = u. There is a condition on k so that
k((X)) is locally compact. What is it? Give the proof. As an example of limiting operations, prove

1—],‘_ N—o0

1 o o
=> X/ = lim 1+ X+ +XV).
j=0



PROBLEMS 31

4. Given Z a; X7 € k((X)), its derivative is defined formally as

j=—o00

> ja; X7 e k((X).

j=—00
Assume ch(k) = 0. Check mentally that o/ = 0 (a € k((X))) = a € k. Isthe map a — o a

o0
1 .
continuous linear transformation k((X)) — k((X))? Set n = Z X7, s0on € kE((X)). Prove that X
— )
Jj=0
and 7 are independent transcendentals over k.

5. Assume ch(k) = 0. A topological ring is one where addition and multiplication are continuous and
we have a Hausdorff topology. Topological k-algebras (k has the discrete topology) form a category
in which the morphisms are continuous k-algebra homomorphisms. An element A in such a ring
is topologically nilpotent iff lim, o \™ = 0. Let Mo, denote the functor which associates to each
topological k-algebra the set of its topological nilpotent elements. Prove that Np is representable.
As an application, let

> i X2+1 B s jx2j
s(X) = ;(—1) [CE c(X) —jgo(—l) e

Then s'(X) = ¢(X) and ¢/(X) = —s(X), so ¢2(X)+5%(X) lies in k (the constants). Without computing
(X)) + s*(X), show it is 1. (You'll need Niop, so be careful.)

6. Show that even though k(X) is dense in k((X)), the field k£((X)) possesses infinitely many algebraically
independent transcendental elements over k(X). (Suggestion: Look in a number theory book under
“Liouville Numbers”; mimic what you find there.)

7. Assume ch(k) = 0. Let Ci(k((X))) = {@ € k((X)) | a is algebraic over k}. Show that Cj, (k((X))) =
k.

If R C k, write (m> _mm—1)--(m—j+1)
= 9 j

jG—1)---3-2-1

for m € R. If R Z k, do this only for m € Q. Set

o0

Y =Y _ (T) X7 € k[[X]].

Jj=0

If m € Q and m = r/s, prove that y5, = (14 2)".
; Xit+1

Note that yn, = 1+ O(X) and that O(X) € Niop (k[[X]]). Let L(1 + X) = i(—l) G0’

Jj=0

and set

JX)™ =n(m- L(f(X))), where
n(X) = i %Xj and f(X) =1+ O(X), some O(X)
=07

and m € R (here, R C k). Show that
1+X)™ = ym.
Problem 80 Say K is a field, A is a subring of K. Write k = Frac A.

1. If K is a finitely generated A-module, prove that k = A.
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2. Suppose there exist finitely many elements aq, ..., a,, € K algebraic over k such that

K = Alag,...,amn].

Prove (3b € A) (b # 0)(so that k = A[1/b]). Prove, moreover, that b belongs to every maximal ideal of A.

Problem 81 Refer to Problem 69. Look at P(X,Ab). We know that the functor F' ~» F(U) taking
P(X, Ab) to Ab is representable.

1. Grothendieck realized that when computing algebraic invariants of a “space” (say homology, cohomol-
ogy, homotopy, K-groups, ...) the sheaf theory one needs to use could be done far more generally and
with far more richness if one abstracted the notion of “topology”. Here is the generalization:

(a) Replace Tx by any category T.

To do sheaves, we need a notion of “covering”:

(b) We isolate for each U € ObT some families of morphisms {U, — U}, and call each of these
a “covering” of U. So we get a whole collection of families of morphisms called CovT and we
require

(i) Any isomorphism {V — U} is in Cov T
(if) If {Uy = Ul is in Cov T and for all a, {V{*) = Uy }s is in Cov T, then {VB“‘) o U} is
e

s

in Cov T (i.e., a covering of a covering is a covering).
(i) If {Uy = U}y isin CovT and V — U is arbitrary then U, 1{;[ V exists in T and

{vanv v}
U oY

is in Cov T (i.e., the restriction of a covering to V' is a covering of V'; this allows the relative

topology—it is the axiom with teeth).

Intuition: A morphism V — U in T is an “open subset of U”. N.B. The same V and U can give
more than one “open subset” (vary the morphism) so the theory is very rich. In our original example:
T = Tx; the family {U, — U}, is in CovT when and only when |J, Uy = U. Check the axioms (i),
(ii) and (iii).

Now a presheaf is just a cofunctor 7 — Sets or Ab, etc. and a sheaf is a presheaf for which

FO) =T FU) =2 I] F(Ua I Uﬁ) (S)
vy P2 o8

is exact for every U € T and every {U, — U}, in Cov T. One calls the category 7 and its distinguished
families Cov T a site (topology used to be called “analysis situs”).

Given a category, say T, assume 7 has finite fibred products. A family of morphisms {U, — U}, in
T is called a family of universal, effective epimorphisms iff

(a) VZ € ObT
—
Hom(U, Z) —>1;[ Hom (U, Z) —} g Hom (U, 11 Us, Z)
is exact (in Sets) AND

(b) The same for {Ua 1[;[ V- V} vis a vis all Z as in (a). (Condition (b) expresses universality,

(0%
and (a) expresses effectivity of epimorphisms.)
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Decree that Cov T is to consist of families of universal, effective epimorphisms. Show that 7 with this
Cov T is a site—it is called the canonical site on T, denoted Tcan.

2. For Tean, every representable cofunctor on 7 is a sheaf (give the easy proof). Note that if T C T
where 7T is a bigger category, and if Cov T lies in the universal, effective epimorphisms for 'f, then any
cofunctor on T, representable in T, is a sheaf on Tca,. For example, prove that if 7 is all topological
spaces and Tx is our beginning category of Problem 69, then 7x C 7 and prove that open coverings in
Tx (as in Problem 69) are universal, effective epimorphisms in 7. Hence, for ANY topological space,
Y, U ~» Homyop.spaces (U, Y) is a sheaf on Tx.

3. Let 7 = Sets and let {Uy, — U}, be in Cov T when |J,(Images of U,) = U. Prove that the sheaves
on 7 with values in Sets are exactly the representable cofunctors on 7.

4. Generalize (3): If G is a given group, let 7g be the category of sets with a G-action. Make (7G)can
the canonical site on Tg. Prove: Coverings are families {U, — U}, so that |J,(Im U,) = U (all
are G-sets, morphisms are G-morphisms). Once again, prove: The sheaves on (7¢)can are exactly
the representable cofunctors on 7¢. Prove further: The sheaves on (7¢)can with values in Ab form a
category equivalent to the category of G-modules; namely the equivalence is given by taking a sheaf
to its representing object, a G-module.

Problem 82 Consider the two rings A = R[T] and B = C[T]. Show that Max(B) is in one-to-one cor-
respondence with the points of the complex plane while Max(A) is in one-to-one correspondence with the
closed upper half plane: {¢€ € C | Im(§) > 0}. Since A is a PID (so is B) we can characterize an ideal by
its generator. In these terms, which ideals of Max(A) correspond to points in Im(§) > 0, which to points on
the real line? What about Spec B and Spec A?

Problem 83 Suppose that f(X,Y) and g(X,Y") are two irreducible polynomials with complex coefficients.
Assume neither is a scalar multiple of the other. Show that the set

S ={(a,8) €C*| f(e, ) = gla, ) = 0}
is finite. (There are many ways of doing this; try to pick a way that is as elementary as possible.)

Problem 84 When X is compact Hausdorff and A = C(X), we identified X and Max(A) in the text via
x — m,. Now Max(A) has the induced topology from Spec A.

1. Show the induced topology on Max(A) is compact Hausdorff by proving z — m,, is a homeomorphism.

2. Prove all finitely generated ideals of A are principal but that no maximal ideal is finitely generated.
Note that some extra condition on X is needed. For example, X should not be finite.

Problem 85

1. Given A — B a homomorphism prove that B is faithfully flat over A iff B is flat over A and the map
Spec B — Spec A is surjective.

2. Say A — B is a homomorphism and B is faithfully flat over A. Assume A is noetherian. Show that
the topology on Spec A is the quotient topology from Spec B.

Problem 86 Here A is a commutative ring, but not necessarily with unity. Let A% denote A[]Z (category
of sets) with addition componentwise and multiplication given by

(a,m){b,q) = {(ab+ nb+ ga,nq).

1. Clearly, A* is a commutative ring with unity (0,1). A is a subring of A#, even an ideal. Suppose A
has the ACC on ideals, prove that A% does, too. Can you make this quantitative as in Problem 78
part (3)?
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2. If you know all the prime ideals of A, can you find all the prime ideals of A#?

Problem 87 Let B, C' be commutative A-algebras, where A is also commutative. Write D for the A-algebra
B®aC.

1. Give an example to show that Spec D is not Spec B x SpecC (category of sets over Spec A).
Spec A

2. We have A-algebra maps B — D and C' — D and so we get maps Spec D — Spec B and
Spec D — SpecC (even maps over Spec A), and these are maps of topological spaces (over Spec A).
Hence, we do get a map

0 : Spec D — Spec B 5 II N SpecC  (top. spaces).

pec
Show there are closed sets in Spec D not of the form §~1(Q), where Q is a closed set in the product
topology of Spec B II  SpecC.
Spec A
Problem 88 Let A = Z[T], we are interested in Spec A.
1. If p € Spec A, prove that ht(p) < 2.
2. If {p} is closed in Spec A, show that ht(p) = 2. Is the converse true?

3. We have the map Z < Z[T] = A, hence the continuous map Spec A — Spec Z. Pick a prime number,
say p, of Z. Describe 771(p), is it closed?

4. When exactly is a p € Spec A the generic point (point whose closure is everything) of 7=1(p) for some
prime number p?

5. Describe exactly those p € Spec A whose image, 7(p), is dense in Spec Z. What is ht(p) in these cases?
6. Is there a p € Spec A so that the closure of {p} is all of Spec A? What is ht(p)?

7. For a general commutative ring, B, if p and q are elements of Spec B and if q € {p} show that
ht(q) > ht(p) (assuming finite height). If p, q are as just given and ht(q) = ht(p) is ¢ necessarily p?
Prove that the following are equivalent:

(a

Spec B is irreducible (that is, it is not the union of two properly contained closed subsets)

)
(b) (3p € Spec B)(closure of {p} = Spec B)
(¢) (3 unique p € Spec B)(closure of {p} = Spec B)
(d) N(B) € Spec B. (Here, N (B) is the nilradical of B)

8. Draw a picture of SpecZ[T] as a kind of plane over the “line” SpecZ and exhibit in your picture all
the different kinds of p € Spec Z[T].

Problem 89 If A is a commutative ring, we can view f € A as a “function” on the topological space Spec A
as follows: for each p in Spec A, as usual write x(p) for Frac(A/p) [note that x(p) = A,/its max. ideal]

and set f(p) = image of f in A/p considered in k(p). Thus, f : Spec A — U k(p). Observe that if
pESpec A
f €N(A), then f(p) =0 all p, yet f need not be zero as an element of A.

1. Let A =k[Xy,...,X,]. There are fields, Q, containing k so that

(a) € has infinitely many transcendental elements independent of each other and of the X; over k
and
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(b) Q is algebraically closed, i.e., all polynomials with coefficients in  have a root in .

An example of this is when k& = Q or some finite extension of Q and we take {2 = C. In any case, fix
such an Q. Establish a set-theoretic map Q™ — Spec A so that f € A = k[X,..., X,] viewed in the
usual way as a function on Q™ agrees with f viewed as a function on Spec A. We can topologize Q2" as
follows: Call a subset of 2" k-closed iff there are finitely many polynomials fi,..., f, from A so that
the subset is exactly the set of common zeros of fi,..., f,. This gives Q™ the k-topology (an honest
topology, as one checks). Show that your map Q™ — Spec A is continuous between these topological
spaces. Prove, further, that Q™ maps onto Spec A.

. Show that Q™ is irreducible in the k-topology. (Definition in 7(a) of Problem 88)

Define an equivalence relation on Q™: £ ~n <= each point lies in the closure (k-topological) of the
other. Prove that Q"/ ~ is homeomorphic to Spec A under your map.

Problem 90 (Continuation of Problem 89) Let A be an integral domain and write K for Frac(A). For each
¢ e K, we set

6.

dom(§) = {p € Spec A | £ can be written £ = a/b, with a,b € A and b(p) # 0}.

. Show dom(¢) is open in Spec A.
CA=RIX,Y]/(X2+Y?2—1),set £ = (1 —y)/z (where x = X and y = Y). What is dom(£)?

Set A=C[X,Y]/(Y? — X? — X3) and let £ = y/z. What is dom(&)?

Note that as ideals of A (any commutative ring) are A-modules, we can ask if they are free or locally
free. Check that the non-zero ideal, a, of A is free <= it is principal and (a — (0)) = (0). The
second condition is automatic in a domain. Now look again at A = R[X,Y]/(X?+Y? —1), you should
see easily that this is a domain. Characterize as precisely as you can the elements m € Max(A) which
are free as A-modules. If there are other elements of Max(A), are these locally free? What is the
complement of Max(A) in Spec A? Prove that A ®@g C is a PID.

Consider the descent question for PIDs: Given rings S and T with S — T a homomorphism, suppose
A is an S-algebra and T is faithfully flat over S. If A ®¢ T is a PID, is A necessarily a PID?

Do part (5) where PID is replaced by UFD.

Problem 91 Let p be an odd prime number, set m = 2p — 1 and write A = Z[v/—m] = Z[T]/(T? + m).
Assume m is square free.

1.

2.

Let a be the ideal (p, 1+ +/—m) of A. Prove that a is not principal, yet that a, as a module, is locally
free (necessarily of rank one). Prove further that A is not a UFD.

For p = 3 and 7, find all the ideals, a, which are not free, yet are locally free.

N.B. By results of the text you have non-free projectives here.

Problem 92 In this problem A is an integral domain and K = Frac(A).

1.
2.

3.

Is it true that if p € Spec (A[X]) and if pnA = (0), then p is a principal ideal? Proof or counterexample.

Say Ais a UFD and n € K, with n # 0. Write n = a/b, where a and b are relatively prime. Prove that
Aln] =2 A[X]/(bX — a). When is A[n] a flat A-module?

If k is a field and £ € k(X) is a non-constant rational function, write £ = f(X)/g(X) where f and ¢
are relatively prime polynomials. Of course, k(&) is a subfield of k(X), so k(X) is a k() vector space
(and a k(&)-algebra). Prove that dimyg) (k(X)) < oo and compute this dimension in terms of f and g.
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Problem 93 If A is a commutative ring and B = A[[X1,..., X,]] denotes the ring of formal power series
in the variables X,..., X,, (the case n =1 was discussed in Problem 79) over A:
1. Prove:

A is noetherian <= B is noetherian
A is an integral domain <= B is an integral domain

A is a local ring <= B is a local ring.

2. Write K((X4,...,X,)) for Frac B, where K = Frac A and A is a domain. Say A=K =C, n=2. Is
C((X,Y)) equal to C((X))((Y))? If not, does one contain the other; which?

Problem 94 If A is a noetherian ring, write X = Spec A with the Zariski topology. Prove the following are
equivalent:

1. XisTy
2. X is Ty
3. X is discrete
4. X is finite and T3.
Problem 95 Call a commutative ring semi-local iff it possesses just finitely many maximal ideals.
1. Ifpy,...,ps €SpecA and S = A — U;Zl pj, then S~ A is semi-local.

2. Say A is semi-local and my, ..., m; are its maximal ideals. Show that the natural map of rings

AT (A) =[] A/m;
i=1

is an isomorphism. (Here, J(A) is the Jacobson radical of A)
3. If A is semi-local, show Pic(A) = (0).

Problem 96 Let A be a domain. An element a € A, not a unit, is called irreducible iff it is not the product
a = bc in which neither b nor ¢ is a unit. The element « is a prime iff the principal ideal, Aa, is a prime
ideal. Of course, prime = irreducible.

1. Assume A is noetherian, show each non-unit of A is a finite product of irreducible elements. (A need
not be a domain for this.)

2. Prove that the factorization of (1) is unique (when it exists) iff every irreducible element of A is prime.

3. Say A is a UFD and S a multiplicative subset of A. Show that S~1A is a UFD. If A is locally a UFD
is A a UFD?

4. Prove: If A is noetherian then A is a PID <= A is a UFD and dim A = 1.
5. Assume A is just a domain. A weight function, w, on A is a function A — {0} — Z>¢ so that

(a) a|b = w(a) <w(b), with equality <= b | a, too
(b) If a and b € A and say a{b and bt a, then Ip,q,r € A so that r = pa + ¢b and
w(r) < min{w(a), w(b)}.

Prove: A domain is a PID <= it possesses a weight function. Can you characterize the fields among
the PIDs by their weight functions?
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Problem 97 Prove: A noetherian domain is a UFD iff each height 1 prime is principal.

Problem 98 Examples and Counterexamples:

1.

Let A = k[X,Y] with k a field; write m = (X,Y). Show that q = (X, Y?) is m-primary, but q is not a
power of any prime ideal of A. Therefore, primary ideals need not be powers of prime ideals.

. Let A =k[X,Y,Z]/(XY — Z?) = k[z,y, 2]. Write p for the ideal (z,z) of A. Prove that p € Spec A,

but p? is not primary. Hence, powers of non-maximal prime ideals need not be primary. What is the
primary decomposition of p2?

Say A = k[X,Y] as in part (1) and write a = (X2, XY). Show that a is not primary yet \/a is
a prime ideal—which one? So, here a non-primary ideal has a prime radical. What is the primary
decomposition of a?

If Ais a UFD and p is a prime element of A, then q = Ap™ is always primary. Conversely, show if q is
primary and /q = Ap, then (In > 1)(q = Ap™). Compare with (3) above.

Problem 99 Assume A is a noetherian integral domain. The argument at the end of Theorem 3.56 shows
that height one primes of A are elements of Pic(A) if A is normal.

(1) Use this remark to prove that in a normal (noetherian) domain, each isolated prime of a principal
ideal has height one (special case of Krull’s principal ideal theorem).

(2) Say A is a noetherian normal domain. Show that A is a UFD iff Pic(A) = (0).

Problem 100 A Little Number Theory.

Let Q be the rational numbers, and consider fields k = Q[X]/(f(X)) where f(X) is an irreducible polynomial
over Q. (Each finite extension of Q has this form, by Chapter 4, Section 4.6.) Such a k will be called a
“number field” and we write Oy, for Inty(Z).

1.
2.
3.

Show Oy is a noetherian normal domain with dim Oy = 1.
If p € Spec Oy, then (Oy), is a PID and Oy, is a UFD iff Pic(Oy) = (0) iff Oy, is a PID.

Let & be the fields: Q(7), Q(v/2), Q(v/3), Q(+v/5), Q(v/=3), Q(v/=5), Q(¢), where ( is a primitive 7th
root of 1. In each case, find Oy and compute Pic(Oy). Make a table.

In Q(v/—3), look at Z[v/=3] = {a +bv/=3 | a,b € Z}. Is Z[\/=3] = O}? If not, what is Pic(Z[v/=3])?
Same question for Z[v/—5].

Let A be a noetherian, normal domain of dimension 1, write ¥ = Frac A (e.g., O = A by (1)). We
examine submodules (for A) of k. Call one of these, M, a fractional ideal iff
(3be A)(b#0)(bM C A). Prove that the following are equivalent for A-submodules of k:

(a) M is a fractional ideal

(b) M is a finitely generated A-module

(¢) M is a rank one projective A-module.
Under multiplication, M N, the fractional ideals form a group, denote it Z(A). (MN goes over to
M ®4 N in Pic(A4)). Let Ca be the (localizing) category of finite length modules over A and write
K(A) for the Grothendieck group, Ko(C4), of C4. By the theory of associated primes, each M in C4

has a composition series
M:M()DMlDMQD"'DMan:(O)

and
M;/M; 1 = A/p; for some p; € Max(A).
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These p; are unique up to order and we set
XA(M) = sz € I(A)
i=0

Prove that y4 is an isomorphism (first prove homomorphism) of the abelian groups K(A4) — Z(A).
What is the kernel of the map K(A) — Pic(A)?

7. Lastly, assume A is actually a PID. Say M = A" is a free A-module of rank n and choose v € End 4 M.
Assume det(u) # 0 and show
det(u) - A = xa(coker u).

Problem 101 More examples.

1. Let A=Kk[X,Y,Z, W]/(XY — ZW), where k is a field and char(k) # 2. By Problem 34; A is a normal
domain. Compute Pic(A4).

2. If A = C[t3,17,4%] C CJt], compute Pic(A). If A = {f € C[T] | f/(0) = £"(0) and f(1) = f(-1)}
compute Pic(A4).

3. If A=C[X,Y,Z]/(X?+Y?+ Z? — 1), show Pic(A) # (0).
Problem 102
1. Write A = K[X,Y, Z], with K a field. Set a = (X,Y)(X, Z). Find a primary decomposition of a.

2. Let A = K[X, XY, Y2 Y? C K[X,Y] = B, here K is a field. Write p = YBNA = (XY, Y2 Y3).
Prove that p2 = (X2Y2, XY? Y4 Y?) and is not primary. Find a primary decomposition of p? involving
(Y2, Y3). All ideals are ideals of A.

Problem 103
1. Say A is an integral domain. Prove

A= () 4= [ A«

pESpec A meMax(A)

2. Now let A be a commutative ring and let f(T) be a polynomial of degree d in A[T]. Prove that
A[T]/(f(T)) is an A-projective module of rank d iff the coefficient of 7¢ in f(T) is a unit of A.

Problem 104 Write A for the polynomial ring k[T1,...,Ty] in which k is a field and B = A/p for some
prime ideal, p, of A. Let the transcendence degree of B over k be d and assume d > 1. Now let Sy, S1,...,5m
be further indeterminates independent of the 77, ..., T, write K for the rational function field k(Sp, ..., Sm)
and L for k(S1,...,Sm)-

(1) For a polynomial f € L ®j A, write B for the ideal of K ®, A generated by p and the element f — Sy
and prove that tr.d.x (K ®; A)/P < d—1.

(2) Assume further m < N and consider the composed map
ETy,....,Tm] — A— B.

We assume the composed map is injective and further that the polynomial f € L ®; A has the form

=Y 8T+ g(Tmi,. ... Tw).
Jj=1
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Prove that tr.d.x (K @ A)/P=d— 1.

(3) Under the hypotheses of (2), assume for each prime ideal, B, of B, the local ring, Bsy, is regular.
Write C = (K ®; A)/%B, and let q be any element of Spec C. Show that Cj is regular.

(4) Revisit Problem 83 and give a quick proof.

Problem 105 Suppose k is a field (if necessary, assume ch(k) = 0) and A and C' are the following n x n
matrices with entries from k:

ap . s . Ap—1 01 0 0 0
ap—-1 Qo - . Ap—2 0 01 0 0
A= . ; C = . . .
0000 --- 1
ay as Ap—1 ap 1 0 0 0 --- 0

Of course, C™" = 1.
(1) In k find all the eigenvalues and eigenvectors of C.
(2) Find a polynomial, f(X) € k[X], so that A = f(C).
(3) Compute the eigenvalues of A in k and show that the corresponding eigenvectors are those of C.

(4) Give a criterion for A to be invertible. Can you give a criterion (in the same spirit) for A to be
diagonalizable?

Problem 106 A discrete valuation, v, on a (commutative) ring A, is a function v : A — Z U {oo} satisfying
(a) v(zy) = v(z) + v(y)
(b) v(z +y) > min{v(z),v(y)}, with equality if v(z) # v(y)
(¢) v(z) =00 <= 2 =0.

A pair (A,v) where A a commutative ring and v is a discrete valuation is called a discrete valuation ring
(DVR). Prove the following are equivalent:

(1) Aisa DVR
(2) A is alocal PID

(3) A is a local, noetherian, normal domain of Krull dimension 1
(4)

4) A is a local, noetherian, normal domain and (ms — A)( = {¢ € FracA | émy C A}) # A. Here, my
is the maximal ideal of A.

Problem 107 Let A be a commutative ring with unity and assume A is semi-local (it possesses just finitely
many maximal ideals). Write J for the Jacobson radical of A and give A its J-adic topology.

1. Prove that A is noetherian iff each maximal ideal of A is finitely generated and each ideal is closed in
the J-adic topology.

2. Assume A is noetherian, then the map A — Ayeq gives Aeq its J-adic topology. If A,.q is complete
prove that A is complete.

Problem 108
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1. Let A be a local ring, give A its m-adic topology (m = m4 is the maximal ieal of A) and assume A
is complete. Given an A-algebra, B, suppose B is finitely generated as an A-module. Prove that B
is a finite product of A-algebras each of which is a local ring. Give an example to show that some
hypothesis like completness is necessary for the conclusion to be valid.

2. (Hensel) Again A is complete and local, assume f(X) € A[X] is a monic polynomial. Write f(X)
for the image of f in (A/m)[X]. If f(X) factors as g(X)h(X) where g and h are relatively prime in

(A/m)[X], show that f factors as G(X)H(X) where G(X) = g(X); H(X) = h(X). What can you say
about deg G, deg H and uniqueness of this factorization? Compare parts (1) and (2).

Problem 109 In this problem, A is an integral domain and k = FracA. If v and w are two discrete
valuations of &k (cf. Problem 106), the functions v and w are defined on A and extended to k via v(a/b) =
v(a) —v(b), ete.), let’s call v, w inequivalent iff one is not a constant multiple of the other. Write S for a set
of inequivalent discrete valuations of k and say that A is adapted to S provided

A={zek|(Wwed(v(z)>0)}.
1. Prove the following are equivalent:

(a) A is a Dedekind domain

(b) (Videals, a, of A)(Vz,z # 0,2 € a)(Fy € a)(a = (z,y)).

(¢) There is a family of discrete valuations of k, say S, for which A is adapted to S and so that the
following holds:

VWweS)(v#Aw = (Fac A)(v(a) >1and w(a—1) >1)).
2. Vis a vis part (1), describe a one-to-one correspondence S <> Max(A).

3. Take k = Q, consider all prime numbers p with p =1 (mod 4), write ord,(n) for the highest exponent,
e, so that p® | n. Then ord, is a discrete valuation of @, and we set S = {ord, | p=1 (mod 4)}.
Ilustrate (c) in part (1) above with this S. What is A, in concrete terms? It is pretty clear now how
to make many Dedekind domains.

4. Say A is a Dedekind domain and a, b are two non-zero ideals of A. Show Jz € k(= Frac A), so that
a+azb=A.

5. Again, let A be a Dedekind domain and let L be a finite subset of Max(A). Write
Al =N{A, | p € L}, then A C AL and so G,,(A4) C G,,,(AL). Recall, G, (B) is the group of units
of the ring B. Prove that Pic(A) is a torsion group <= G,,(A")/G,,(A) is a free abelian group of
rank #(L) for every finite set, L, of Max(A).

Problem 110 (Suggested by A. Auel) Suppose that R is a P.I.D. and consider the functor
t: R-mod ~» R-mod

that assigns to each M its torsion submodule. Of course, t is left-exact; what are its right derived functors?
If instead, R is just a domain but we assume the RPt are given as in your answer for the case of a P.I.D.,
must R be a P.1.D.? Proof or counter-example.

Problem 111 Here, k is a field and A = k[X,]aer. The index set, I, may possibly be infinite. Write m
for the ideal generated by all the X,, o € I. Set A; = A/m'™! so Ay = k. These A; form a left mapping
system and we set

-~

piminin

and, as usual, call A the completion of A in the m-adic topology. Note that the kernel of A A; is the
closure of m?*1! in A.
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1. Show that A is canonically isomorphic to the ring of formal power series in the X, in which only
finitely many monomials of each degree occur.

2. Now let I = N (the counting numbers) and write @ for the closure of m in A. By adapting Cantor’s
diagonal argument, prove that m is not Am. Which is bigger?
3. (Bourbaki) Again, I as in (2). Let k be a finite field, prove the

Lemma. If k is a finite field and A > 0, (Iny)(Vn > ny), there is a homogeneous polynomial,
F, € k‘[n2 variables|, so that deg F,, = n and F,, cannot be written as the sum of terms of degree n of
any polynomial P1Q; + - -+ + Py@Qx, where P;, Q; are in k[n? variables] and have no constant term.

—

Use the lemma to prove ()% # (m2).
4. Use (2) and (3) to prove that A is not complete in the fM-adic topology.

5. All the pathology exhibited in (2), (3) and (4) arises as I is not finite; indeed, when I is finite, prove:

~

(a) mis Am;
(b) 2 = (m?);
(c) A is complete in the m-adic topology.

Problem 112 Consider the category TOP (topological spaces and continuous maps) and T2TOP the full
subcategory of Hausdorff topological spaces.

1. At first, use the ordinary Cartesian product in TOP, with the product topology. Denote this Y x Z.
Show that Y € T2TOP <= the diagonal map A:Y — Y x Y is closed.

2. For XY € T2TOP, recall that X ¥ is called a proper map <= f~!(compact) is compact. (Of
course, any map f : X — Y will be proper if X is compact.) Show that f : X — Y is proper iff

(VT € T2TOP)(fr: X x T — Y x T is a closed map.)
Y Y

3. With (1) and (2) as background, look at another subcategory, AFF, of TOP: here A is a commutative
ring, AFF consists of the topological spaces Spec B, where B is an A-algebra. Maps in AFF are those
coming from homomorphisms of A-algebras, viz: B — C gives Spec C' — Spec B. Define

(Spec B) II (Spec C) = Spec (B ®4 C)

and prove that AFF possesses products.
NB:

(a) The topology on Spec B II SpecC' is not the product topology—it is stronger (more opens and
closeds)

(b) Spec B II Spec C' # Spec B x SpecC' as sets.
(Ctf. Problem 87)

Prove: The diagonal map Ay : Y = Y . I N Y is closed (Y = Spec B). This recaptures (1) in the
pec
non-Hausdorff setting of AFF.

4. Given f : SpecC — Spec B (arising from an A-algebra map B — C) call f proper <~
(i) C is a finitely generated B-algebra and
(ii) (VT = Spec D)(fr : SpecC o I N Spec D — Spec B 5 I N Spec D is a closed map.)
pec

pec
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Prove: If C' is integral over B, then f is proper. However, prove also, Spec (B[T]) — Spec B is never
proper.

5. Say A = C. For which A-algebras, B, is the map Spec B — Spec A proper?
Problem 113 Assume A is noetherian local, my4 is its maximal ideal, and
A= <h_m A/m™ = completion of A in the m-adic topology.
n

Let B, mp be another noetherian local ring and its maximal ideal. Assume f: A — B is a ring homomor-
phism and we always assume f(mg) C mp.

~

1. Prove: f gives rise to a homomorphism A 1B (and m3 — mp).

2. Prove: f is an isomorphism <=

(a) B is flat over A
(b) f(ma)-B=mp
(¢) A/my — B/mp is an isomorphism.

3. Use (2) to give examples of B’s that are finite A-modules, non-isomorphic to A, yet A and B are
isomorphic.

Problem 114 Suppose that f € Z[X] is a non-constant polynomial.
(1) Show there exists an n € Z so that f(n) is not a prime number.

(2) Consider the sequence {f(n)}52; and write P for the set of primes dividing at least one term of this
sequence. Show P is infinite.

Problem 115 If k is a field and f € k[T], suppose f has degree n and has n distinct roots aq,...,a, in
some extension of k. Write Q = k(aq, ..., a,) for the splitting field of f and further take n 4+ 1 independent
indeterminates X, uq,...,u, over €. Let k= k(uy,...,uy), write Q for E(al, ..., ap) and let

w=aquy + -+ ayu, € Q. If o is an arbitrary permutation of ay, ..., o, set

ow = U(Oél)Ul + -+ U(Qn)una

and finally set

hMX) = H (X — ow).

gES,

1. Show that h(X) has coefficients in k[ui, ..., uy].

2. Split A(X) into irreducible factors in k[X]; show all the factors have the same degree, r. (Hint: Natural
Irrationalities). Moreover, prove if ow is a root of a given factor, the other roots of this factor are
exactly the Tow, with 7 € g(Q/k). Hence, prove that r = #(g(Q/k)).

3. Using (2), give a procedure for explicitly determining those permutations, o € &,,, which belong to
a(Q/k). Tlustrate your procedure with the examples: k = Q, f = T — 2 and
[=T*+T3+T*+T+1.

Problem 116 Here £ is a field and 2 is a finite normal extension of k. Prove that there exists a normal
tower of fields
k=koCkiChkoC---Ck,=%Q

so that
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(a) the first r of these extensions are separable and the set {g(k;/ki—1) | 1 < i < r} is exactly the set of
composition factors of g(2/k), and

(b) The last n — r are each purely inseparable over the previous and k; arises from k;_; by adjunction of
a root of X? — a;, with a; € k;_1. (Here, p = char(k).)

Problem 117 Let ¢1,..., g, be polynomials (one variable) with coefficients in k = ko, ..., k,_1 respectively,
and with k; the splitting field for g;. In this case, we say k, arises from the successive solution of a chain
of equations g1 = 0,g2 = 0,...,g9, = 0. If f is a polynomial, we say f = 0 can be solved by means of an
auziliary chain, g; = 0, of equations <= k, contains a splitting field for f. When the ¢;(X) have the
special form g¢;(X) = X™ — a;, we say f = 0 may be solved by radicals.

1. Suppose f = 0 may be solved by means of the auxiliary chain g; = 0,...,g, = 0. Let s§(G) denote the
set of simple constituents (composition factors) of a given finite group, G. Prove that

s(ge(f)) S Us(ak,_.(95))-

2. Prove “Galois’ Theorem”: If k is a field, f € k[X], and Q is a splitting field for f over k, assume
(Char(k)7 [Q: k‘]) = 1; then f = 0 is solvable by radicals <= gi(f) is a solvable group.

Problem 118 Here k is a field, « is a root of an irreducible polynomial, f € k[X].

1. Prove: « lies in a field extension, L, of k obtained by successive solution of a chain of quadratic
equations g1 = 0,...,g9, =0 <= the degree of a splitting field for f over k is a power of 2.

2. Given a line in the plane, we conceive of the line as the real line and the plane as C. But, no numbers
are represented on the line. However, two points are indicated on the line; we take these as 0 and
1 and label them so. We are given a straight edge (no markings on it) and a pair of dividers (no
scale on it either) which we can set to any length and which will hold that length. But, if we reset
the dividers, the original setting cannot be recaptured if not marked on our plane as a pair of points
“already constructed.” We can use our implements to make any finite number of the following moves:

(a) Set the dividers to a position corresponding to two points already constructed, make any arc or
circle with the dividers where one leg is at a point already constructed. (A point is constructed
iff it is the intersection of an arc and a line, an arc and an arc, a line and a line.)

(b) Given any pair of previously constructed points use the straight edge to draw a line or segment
of a line through these points.

You should be able to see that from 0 and 1 we can construct p/q € Q (all p, ¢q) therefore it is
legitimate to label Q on our real axis. Call a point (z,y) € C constructible iff its real and imaginary
parts are constructible; that is these numbers, constructed as lengths, can be obtained from Q by a
finite number of moves (a) and (b). Show that a € C is constructible iff Q(«) may be obtained from
@ by the successive solution of a chain of quadratic equations.

3. Prove

(a) The duplication of a cube by straight edge and dividers is impossible.
(b) The trisection of an angle by straight edge and dividers is impossible (try /3).

4. (Gauss) Prove that a regular n-gon is constructible by straight edge and dividers iff n = 2"p1ps - - - py,
where r is non-negative and the p; are distinct Fermat primes (cf. Problem 14).

Problem 119 What is wrong with the following argument?

Let k be a field, write f(X) € k[X], deg(f) = n, and suppose f has n distinct roots aq, ..., ay,, in a suitable
extension field L/k. Write 2 for the normal extension k(aq,...,a,). An element, w, of Q has the form
w = g(ag,...,ay,), where g is a polynomial in n variables with coefficients in k. Let o be an arbitrary



A4 PROBLEMS

permutation of the a;, then o maps g(ai,...,an) to g(a),...,a;) where o = o(ay). If h(au,...,ay) is
another polynomial with coefficients in k, then h(aq, ..., a,) — h(a),...,al) by o and we have

/

glag,...;an) + hlag,...;an) = glad,...,a0) + h(ad, ..., o)
glag,...;an)h(ar, ..., an) = glad,...,al)h(a, ..., al).
Thus, we have an automorphism of €2 and the elements of k£ remain fixed. So, the arbitrary permutation, o,

belongs to the group of k-automorphisms of €2; hence, the latter group has order greater than or equal to
n!. By Artin’s Theorem, [ : k] > n!l. (Theorem 4.32)

Problem 120 If k is a field, f € k[X] a separable polynomial and  is a splitting field for f over k, write
g = g(2/k) and consider g as a subgroup of the permutation group on the roots of f. Show that g is a
transitive permutation group <= f is an irreducible polynomial over k. Use this to give a necessary
condition that o € &,, actually belongs to gi(f), for f an arbitrary separable polynomial of degree n over
k. Ilustrate your condition by finding the Galois groups over Q of the polynomials: X°® — 1, X° 4+ X + 1.

Problem 121 Here, K is a finite field of ¢ elements and ¢ is odd.

1. Let sq : K* — K* be the homomorphism given by sq(z) = 2. Show that
#kersq = #cokersq =2 and #Imsq = (¢ —1)/2.

2. Prove:

¥ (a=1)/2 _ { 1 if z is a square in K
(vz € K )(ac —1 otherwise

3. If K =T, then K contains a square root of —1 iff p = 1 mod 4.

4. For any finite field, K, every element of K is a sum of squares. Is it true that each element of K is a
sum of (at most) two squares?

Problem 122 If k is a field of characteristic zero and f € k[X] is a monic polynomial, factor f into monic
irreducible polynomials in k[X] and set

f=aqg g

where g; is the product of the distinct irreducible factors of f which divide f with exact exponent j. Prove
that the g.c.d. of f and its, derivative, f’, is

r—1

9293 gr

Assume Euclid’s algorithm for finding the g.c.d. of two polynomials. Show that g1, ..., g, may be determined
constructively. If n is an integer, illustrate with

f(X)=X"-1€Q[X]

Problem 123 If k is a field and f, g are non-constant polynomials in k[X], with f irreducible, prove that
the degree of every irreducible factor of f(g(X)) in k[X] is divisible by deg f.

Problem 124 If k is a field, X is transcendental over k, and f(X) € k[X] is irreducible in k[X], write
a, ..., ap for a full set of roots of f in a suitable extension field of k. If char(k) = 0, prove that none of the
differences a; — aj (i # j) can lie in k. Give a counterexample for char(k) = p > 0 (any prime p).

Problem 125 Let k C K be two fields of characteristic zero. Assume the following two statements:
(a) Every f(X) € k[X] of odd degree has a root in k
(b) (Vo € k)(X? — a has a root in K)
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1. Prove: Each non-constant polynomial g € k[X] has a root in K.

2. Assume as well that K /k is normal of finite degree. Prove that K is algebraically closed. (Suggestion:
()
j
are the roots of g in some Q O K. Fix r, show there is a polynomial h(X) € k[X], so that the fyl-(;) are

roots of h; for all 7, j. Show some %(;)

Use induction on v where deg g = 2"ng (ng odd). If r € Z, set v;." = oy + o +roya;, where o, ..., ap

€ K; now vary r and find r; # 7 so that %(;1) e K, V(TZ) e K.

3. Take k = R and K = C. By elementary analysis, (a) and (b) hold. Deduce C is algebraically closed
(Gauss’ first proof).

Problem 126 Let Q be the rational numbers, R the real numbers , X a transcendental over R and suppose
f € Q[X] is a polynomial of degree 3 irreducible in Q[X] having three real roots a, 8,v. Show that if

ko=QCk  ChkyC---Chkp

is a finite chain of fields each obtained from the preceding one by adjunction of a real radical p; = %
(nj € Z,n; > 0,¢; € kj_1), the field k,, cannot contain ANY of the roots, o, 3, v of f. (Suggestion: If
wrong, show we may assume each n; is prime, let k; be the field with maximal j where f is still irreducible.
If & € kj1 show pjy1 € kj(c).) This is the famous “casus irreducibilis” of the cubic equation f = 0: if the
three roots are real, the equation cannot be solved by real radicals.

Problem 127 Here, f is an irreducible quartic polynomial with coefficients in k; assume f has four dis-
tinct roots a, g, as, ay in some extension field of k. Write 8 = ajas + agay, L = k(8), and let  be
k(a1, az, as, ag).

1. Assume g(Q/k) has full size, i.e., 24, find g(2/L).

2. Show that, in any case, 8 is the root of a cubic polynomial, h, with coefficients in k (Lagrange’s “cubic
resolvent” for f).

Problem 128 Let k be a field, char(k) # 2, write K/k for an extension of degree 2 and L/K for an extension
also of degree 2.

1. Show Ja, 8 with a € K, in fact K = k(a), and a®> = a € k and 8 € L, 8% = u + va; u,v € k and
L = K(B). (All this is very easy).

2. Let Q be a normal closure of k containing L. Show that [Q: k] is 4 or 8. In the case v = 0 (part (1)),
show Q = k(a, 8) = L and that 30,7 € g(Q/k) so that o(a) = —a, o(B8) = 8, 7(a) = «, T(8) = =B.
Determine precisely the group g(2/k).

3. When v # 0, let 1 be a conjugate, not equal to £, of 5. Prove Q = k(3, 81) and that 3o € g(Q2/k)
such that o(8) = 1 and o(B;) is one of 8 or —f3.

4. Show if [Q2 : k] = 8 we may assume in (3) that ¢ maps 51 to —3. Prove o is an element of order 4 and
that 37 € g(Q/k), of order 2, with 7=lor = o=, Deduce that g(Q2/k) = Gp{o,7}; which of the two
non-abelian groups of order 8 is it?

5. Illustrate (1)-(4) with a discussion of X* — a over Q.

6. With the above notation, show that the normal closure of K is cyclic of degree 4 iff a can be written as
the sum of two squares, b2 + ¢?, in k. (Hints: if Q is the field above, show g(2/k) is cyclic, order 4, iff
Q) contains exactly one subfield of degree 2 over k. Then u? — av? must equal aw? for some w € k. Now
show a is the sum of two squares. You may need to prove that if —1 is a square then every element of
k is a sum of two squares in k; cf. Problem 121.) Investigate, from the above, which primes, p € Z,
are the sum of two squares in Z.
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Problem 129 Suppose p is a prime number, let &, denote the symmetric group on p letters and write G
for a transitive subgroup of &, (i.e., the p letters form an orbit for G).

(1) If G contains a transposition, we know (Problem 13) that G = &,. Use this to show there exist
extensions, K, of Q whose Galois group is &,.

(2) Hilbert proved the following theorem:

Hilbert Irreducibility Theorem. If f € Q[Th,..., T, Z1,...,Zs], where the T’s and Z’s are all algebraically
independent, and if f is irreducible, then there exist integers aq,...,a, so that substituting a; for T; (j =

1,...,7), the resulting polynomial fe Q[Z1,...,Z4] is still irreducible. (Actually, there are infinitely many
choices for the ajs.)

Use Hilbert’s theorem to exhibit &,, as a Galois group over Q.

(3) Now A4,, is a subgroup of &,,; can you exhibit A4,, as a Galois group over Q7 (There is an old open
question: Is every finite group, G, the Galois group of some finite normal extension of Q7 If G is solvable,
this is known (due to Shafarevich) and hard to prove. Many simple groups are known to be Galois groups

over Q.)
(4) Write f(X) = X° + aX + 1 with a € Z and let Q be the splitting field of f over Q. Determine
g(©2/Q).

Problem 130 (Bourbaki)

1. Say k is a field, char(k) = p > 2; let K = k(X,Y) where X and Y are independent transcendentals
over k. Write L = K (0), where 6 is a root of

f(Z2)=2*+XZ° +Y € K|Z].

Show that L/K is inseparable yet does not contain any purely inseparable elements over K. (Sugges-
tion: First show f is irreducible and say 35 € L, € K, ¢ K. Then prove f becomes reducible in
K (B)[Z] and that then X'/? and Y/ would lie in L. Prove then that [L : K] > p?.)

2. Find the Galois group g(2/K) where Q is a normal closure of L/K.

3. Now just assume char(k) # 2, write K = k(X) in this case. Let o, 7 be the 2-torsion k-automorphisms
of K given by 0(X) = —=X; 7(X) =1—- X (i.e., o(f(X)) = f(—X), etc.). Show the fixed field of o is
k(X?); that of 7 is k(X2 — X). If char(k) = 0, show that Gp{c, 7} is an infinite group and prove that
k=k(X?)Nk(X?-X).

4. Now assume again char(k) = p > 2. Show in this case k(X?) N k(X? — X) is strictly bigger than
k—determine it explicitly and find the degree

[k(X) : (K(X?) NEk(X? - X))].

5. What is the situation in (3) and (4) if char(k) = 27

Problem 131 (Various Galois groups). Determine the Galois groups of the following polynomials over the
given fields:

1. (X2 —p1) - (X2 —p;) over Q, where py,...,p; are distinct prime numbers.
2. X* —t over R(¢).

3. XP —m over Q, where p is a prime number and m is a square free integer. (Hint: Here, g fits into a
split exact sequence of groups

0 ——Z/p ——=g _ __7——=0.)
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4. X® —2 over Q(v/2), over Q(i), over Q. (Cf. Problem 128)

Problem 132 Show that 27 — 7z 4 3 has a simple group of order 168 as its Galois group over Q. Can you
be more precise as to which group this is?

Problem 133
1. Here K/k is a finite extension of fields. Show the following are equivalent:

(a) K/k is separable

(b) K ®;, L is a product of fields (product in the category of rings) for any field L over k
(c) K ® k is a product of fields

(d) K ® K is a product of fields.

2. Now assume K/k is also a normal extension, and let
Kpi = {a € K | a is purely inseparable over k}.
For the map
0 Kpi Qr Kpi = Kpi via (@ n) =&,
show that the kernel of  is exactly the nilradical of Kp; ®p Kp;.
3. Prove: If K/k is a finite normal extension, then K ®; K is an Artin ring with exactly [K : ks prime
ideals. The residue fields of all its localizations at these prime ideals are each the same field, K. A

necessary and sufficient condition that K/k be purely inseparable is that K ®; K be a local ring.
(Hints: K = K, @ Kpi and the normal basis theorem.)

Problem 134 Throughout this problem, G is a finite group, k is a field, and R = k[G]. We further assume
that (#(G),char(k)) = 1.

(1) If S is a k-algebra (not necessarily commutative) write Fen(G, S) for the k-module of all functions
from G to S under pointwise addition and k-multiplication.

For f € Fen(G, S), we set
1
|t = = Y sio).

oelG

Further, write f.(0) = f(70) and show that

| trtorie = [ seoris = [ pioyio

/ ldo = 1.
G

(We can write this as d(70) = do and refer to the above as the “left invariance of the integral”. Of course,
the integral is also right invariant as well as “inverse invariant” (i.e., d(c~!) = do.) The integral is also
called a “mean” on G as it averages the values of the function f.

as well as

(2) If M is an R-module (i.e., a G-module which is also a k-vector space) and N is a sub-R-module of M,
write 7 for any k-projection of M onto N. (So then, M = Ker 7IIN as k-spaces.) Now 7 € Endi(M) (= 5),
so we can form
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Prove that T is a G-invariant projection from M onto N and that
M =Ker TII N, as R-modules.

Deduce

Maschke’s Theorem (1898) If G, R and k are as above with (#(G),char(k)) = 1, then R is semi-simple
as k-algebra.

(3) If M is a simple R-module, prove that M is finite-dimensional as a k-vector space. (R-modules
are called (linear) representation spaces for G and the map G — Aut(M), making M a G-module, is
called a representation of G with space M. The dimension of M (as k-space) is called the degree of the
representation.) It is a known theorem of Wederburn that a simple k-algebra with the D.C.C. (on left ideals)
is isomorphic (as k-algebra) to the r X r matrices over a division ring, D. If k is algebraically closed, prove
that D is k itself. Now prove that

(a) For each finite group, G, and algebraically closed field, k, with (#(G),char(k)) = 1, the number of
non-isomorphic simple k[G]-modules is finite,

and
(b) We have g = f? +--- + fZ, where f; is the degree of the j' simple R-module and g = #(G).

Problem 135 Say R is a not necessarily commutative ring but that R is noetherian (on the left).

(1) Given a f.g. R-module, M, show that projdimg(M) < d if and only if for all finitely generated
R-modules, N, we have
Ext&™ (M, N) = (0).

(2) Does the same criterion work for non f.g. R-modules M?

Problem 136 (Yoneda) Here, R is a ring and M’, M" are R-modules.
(1) Consider exact sequences of the form
0— M — X1 —Xo— M —0 (Es)

where the X; are R-modules. Call such “2-fold extensions of M"” by M'” and, on the model of ordinary
extensions, define an equivalence relation on the 2-fold extensions. Prove that the equivalence classes so
defined are in 1-1 correspondence with Ext% (M"”, M').

(2) Generalize part (1) to “n-fold extensions”:
0—M —X;— - —X,— M —0 (En)

including the 1-1 correspondence of the equivalence classes with Ext’s(M"”, M").

(3) We know Exti(A4, B) is a co-functor in A and a functor in the variable B. If M’ — M’ and if
€ Ext , 1s represented by
Ext’, (M", M) i db

0—M — X — - — X, — M —0,

describe explicitly an n-fold extension representing the image of ¢ in Ext's(M”, M ). Same question but for
a morphism M"” — M" and an element § € Extz(M", M’).

xtr(—,—) is an abelian group, as we know. Start with n = 1 and describe, in terms of representing
4) Ext'y i beli k Start with 1 and describe, in t f ti
extensions,

0— M — X — M —0,
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the abelian group structure on Ext'y (M, M"). (Of course, you must show your explicit construction of the
equivalence class of a sum of two extensions

0—M —X—M —0 (a)
0—M —Y—M —0 (b)

is independent of the choice of the representatives (a) and (b).) Continue with the general case of n-fold
extensions.

(5) Say
00— M — X — - —X,—7—0

and
0—Z72—Y — - —Y,— M —0

are an r-fold (resp. s-fold) extension of Z by M’ (resp. of M"” by Z). We can splice these to obtain an
7 + s-fold extension of M" by M’:

0—M —X — — X, —Y) —- —Y, —M —0
Prove that this process respects the equivalence relation on extensions and therefore yields a map
0: Exty(M”, Z) [ [ ExtR(Z, M') — ExtjzH*(M”, M').
Show that from an r-fold extension
0—M —X —-—X,—Z—0 (E,)
we obtain an “iterated connecting homomorphism”
8, Homp(M', A) — ExtR(Z, A)

for any R-module, A. If we take A = M’ and compute 6, (idps), we get an element x(E,) in Extz(Z, M’).
Prove that x(E,) depends only on the equivalence class of F, and gives the 1-1 correspondence of part (2).
Discuss the pairing € in terms of these “characteristic classes”, x(F;), of extensions.

(6) Show that 6 is actually bi-additive, hence it is Z-bilinear and therefore we get a map
EXt}SR(M”y Z) ®Z E‘/XtTR(Z7 M/) — EXt%+S(M/,7 M/)

Take M = Z = M", call the common value M. Then we can compute 0(«, 8) and (3, ) for
a € Exth(M, M) and g € Exti(M, M). Is  commutative? Is 6 graded commutative
O(a, B) = (—1)"*0(8, 0))? Neither?

Problem 137 We take G to be a group and write R for Z[G].
(1) Recall from Chapter 5, Section 5.3, that there is an isomorphism
HP(G, M) = Exth,(Z, M)

for every p > 0. Here, M is a G-module (so, an R-module). When p = 2, the left hand group classifies group
extensions
0—M—>6—G—1 (E)

up to equivalence, while the right hand side classifies 2-extensions (of R-modules)

0—M—X; — Xo—7Z—0, &)
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again up to equivalence.

In terms of exact sequences and natural operations with them describe the 1-1 correspondence between
sequences (E) and (£).

(2) Again, with the G-action on M fixed, extensions (E) can be classified by equivalence classes of 2-
cocycles of G with values in M. Given such a 2-cocycle, show how to construct, explicitly, a 2-extension (&).
Carry through the verification that cohomologous 2-cocycles yield equivalent 2-extensions.

(3) Transfer the Yoneda addition of 2-extensions from Problem 136 to the addition of group extensions—
the so called Baer addition.

Problem 138

1. Let A = k[Xy,...,X,]/(f(X1,...,X,)), where k is a field. Assume, for each maximal ideal, p, of
A, we have (grad f)(p) # 0 (i.e., (Vp)(3 component of grad f not in p)). Show that Dery(A, A) is a
projective A-module.

2. Suppose now A = k[X,Y]/(Y? — X3), char(k) # 2,# 3. Consider the linear map AIl A — A given by
the matrix (X2,Y); find generators for the kernel of this map.

3. In the situation of (2), show that Dery (A, A) is not projective over A.
Problem 139 Suppose in a ring R (assumed commutative for simplicity) we have elements fi,..., f.. We
let 7 = (f1,..., fr); prove that
Ko(F)= Ku(F) @n - on Ko,
where on the right hand side we mean the total complex.
Problem 140 For G a group and M a right G-module, let M be considered as a “trivial” (left) Z[G]-module

and consider the bar complex as in Section 5.3, Chapter 5 of the text with boundary map

n—1
(MBI @+ R0p) =mo1 R0 @ Rop+ Y (-1)'MR 01 ® @ 010141 @+ @ o
i=1

+(-D)"me o @ ® oo

Define _
H,(G,M)=Ker 9,/Im 0,11

and prove that M ~ {H,(G, M)} is a universal d-functor as stated in the text. Thus, complete, by elemen-
tary methods, the identification of group homology for (right) G-modules, M, and Hochschild homology for
the ring Z[G] and the modules €, M (definition on page 339, top).

Problem 141 Suppose that G is a profinite group and that H is a closed subgroup of G.
(1) Show that c.d(H) < c.d(G).
(2) If H is open in G (and hence automatically closed in G), can you strengthen the inequality of (1)?

(3) Suppose G is a finite group. Prove that

and c¢.d(G) = 0 when and only when G = {1}.
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Problem 142 For simplicity, assume in this problem that A is a commutative ring. If ? = (f1,---, fr)

H
and ¢ = (91,---,9r) are two ordered sequences of elements of A, write fg for the sequence (f1¢91,.-., frgr)-
Now, we have a map

o Ko(F9) — Ko(T)

induced by
@?(é-la s 767“) = (91617 s 7g’r£7‘>-

(1) Show that this map is a chain map.

(2) Write ]TT% = (fP,..., fP), then, for 0 < s < t, we get a map

prts KalF1) — Ku(F)

and hence

Py (M): K (F ) — K2 (7 01)

We set

(with respect to these maps) and further set

H((F), M) = HC*((f), M),
Prove that
H (7). M) =t H* (7, 20).

3) Now, fix and for the given ¢, define
( given g

Ey: Ko(F) — Ku(F)

by the equation

(Eg)e(2) = Zgjej A z; the e; are a base for A”.
j=1

Prove that

doEy,+ E,od= (Zgiﬁ> id on K,(F),allt>0.

i=1
Deduce the
Proposition Suppose f1,..., fr generate the unit ideal of A, then for all A-modules, M, the complexes

Ko7 (00 (7, 0 (), )
have trivial (co)homology in all dimensions.

(4) The homology and cohomology modules HO(?, M), Hr(?, M), HO(?, M), HT(?, M) depend only
on the ideal, 2, generated by fi,..., f.. Is it true that H'((?), M) depends only on 2 as (3) suggests?
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Problem 143 Give the proof of “Lemma C” (= Lemma 5.51 of the text) following the methods used for
“Lemmas A & B”.

Problem 144 If A is a P.I.D., prove that gldim(A) < 1. Under what conditions does the strict inequality
hold? You may wish to investigate first the relations between gldim(A) and gldim(A4,) for a commutative
(noetherian?) ring, A, and all its prime ideals, p. Is the inequality gldim(A) < 1 still valid if A is just a
principal ideal ring (not a domain)? If A is a Dedekind ring, what is gldim(A)?

Problem 145
1. Prove the six conditions of Proposition 5.70 are indeed equivalent.
2. Prove that the ten conditions listed in Proposition 5.71 are equivalent.
Problem 146 Here, A is a commutative ring, 2 is an ideal of A and M is an A-module.

1. Prove that the number of elements in a maximal M-regular sequence from 2l is independent of the
choice of these elements (from 2). Thus, depthy M is well-defined.

2. Reformulate Koszul’s Proposition (our 5.66) in terms of 2A-depth.

3. If Aand M are graded and (f1,..., f;) = 7 is an M -regular sequence of homogeneous elements then
any permutation of (fi,..., fi) is still an M-regular sequence.

Problem 147 (R. Brauer) Here, G is a group and T is a finite subgroup of order m. For o,7 € G, we define
o~Te= FteT) (o7t €T, allicZ).
1. Show that ~ is an equivalence relation and that each equivalence class has m elements.
2. Say o ~ T, prove there is an x € T so that 7™ = 2~ 'o™x.
3. Let S be a subset of Z(G); pick a suitable T as above and show: Given n € Z, either
#{z€e G| 2" e S}) =0
or this cardinality is divisible by g.c.d(n,m).
4. When #(G) = g < 0o, show that the cardinality of the set in (3) is divisible by g.c.d(g, n).

Problem 148 If F'(r) is the free group of rank r, and if I',,(F(r)) is the n'" term in the lower central series
for F'(r), prove that the group G = F(r)/T,,(F(r)) is torsion-free.

Problem 149 Suppose A is a commutative ring, write GL(A) for the group |J,-, GL(n, A) in which
GL(n, A) is a subgroup of GL(n + 1, A) by the map

&0
& ( 01
1. When A = Z, consider elements of GL(n + 1,Z) of the form

*

I n
*
0-~-0‘>)<
——
n

and their transposes. Show these matrices generate GL(n + 1,Z) (as a group).



PROBLEMS 53

2.

Prove that for any o € GL(n, A), there exist elements x, 8 € GL(A) with § of the form

= (o)

~—
n r

and a = 2z~ L.

Problem 150 Let & be a field, ch(k) # 2 and write F' for any overfield of k. Denote by V,,(F) the set of all
symmetric, nilpotent n X n matrices, A, with entries in F' and rank(A) =n — 1.

1.

In the ring of all n x n matrices over F', show that if a matrix commutes with A it must be a polynomial
(coefficients in F') in A.

When n = 2 and F = F,, prove that V5(F') is non-empty when and only when p =1 (mod 4).
If n =3 and p =1 (mod 4) then V53(F,) # 0. Show, moreover, that V3(Fs) # 0.

Let Z,, denote the ring of p-adic integers with p # 2. Prove there is an n X n symmetric matrix, B,
with entries in Z, so that B" = pC' iff V,,(F,,) # 0. (Here, C'is an invertible n X n matrix with entries
inZ,.)

As usual, write F' for the algebraic closure of F' and O, (F) for the group of orthogonal matrices for
the standard diagonal form (entries in F'). If D € GL(n, F'), write Cay(D) = DT D (this is the Cayley
transform of D) and show the map

D — Cay(D)

is an isomorphism of the coset space O,(F)\GL(n, F) with the set, S, (F), consisting of symmetric,
invertible n X n matrices from F'. Is this true when F' replaces F'?

Write N for the nilpotent matrix (n X n)

00 0 00
100 00
N=|0 10 00
000 -+ 10

If S is a symmetric n x n matrix prove that SN = N TS iff S has the form

Sn Sp—1 *°° S2 S1
Sp-1 Sp—2 -+ 51 0
S = :
S9 S1 0 0
S1 0 0 O

and show further that S is invertible iff s; is a unit.

Say p # 2, prove that V,,(FF,,) # (0. Using only (5) and (6) above, determine how big an extension, K,
of F,, you need to guarantee V,,(K) # (.

Problem 151 (Continuation of Problem 150) Here, ch(F') # 2.

1.

Prove O, (F) acts transitively on V,,(F).
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2. Show V,,(F) is a principal homogeneous space (= a torsor) for the group PO,,(F), which, by definition,

is O, (F) /().
3. If n is odd, show V,,(F) is a torsor for SO,,(F); while if n is even, prove V,,(F) has two components.

Problem 152 (Sierpinski) Write 7(z) for the nunmber of prime integers less than or equal to the positive

real number x. The Prime Number Theorem asserts that limg, o 7(z) / ( > = 1. Call a rational number

xT
log x
special if it has the form g where p and g are prime integers. Prove that the special rational numbers are
dense in the positive reals.

Problem 153 Suppose (Ba, ) is a right mapping system of Artinian rings. Write B for li%mBa, and
assume B is noetherian. Prove that B is Artinian. That is, B is Artinian iff it is noetherian.

Problem 154 Fix a commutative ring, R, and an R-module, E. Suppose A and B are submodules of E so
that B is free (of rank r) and is a direct summand of E. Prove that for an integer g > 0, the following are
equivalent:

(a) The map A\ A — AY(E/B) is zero.
(b) The map AY((A+ B)/B) — A*(E/B) is zero.
(¢) The map A" (A+ B) — A" E is zero.

Problem 155 Throughout this problem A, B, C' are three subgroups of a group, G, and we assume
AB =BA, AC=CA and C C B.

1. Prove that (B: C) = (AB: AC)/(AnB: AnC).
2. Suppose ¢ maps B onto a group B* and write C* for the image of C' under ¢. Prove that
(B: C)=(B*: C*)(Kerp: Ker (¢ | C)).

3. Here, let ¢ and ¢ be in End(G); assume 1) and ¢ are each the trivial homomorphism. Let H be
any subgroup of G stable under both ¢ and 1. Show that

(G H)(Ker (¢ | H): Tm(t) | H)) = (o(G): 9(H))($(G): w(H))(Ker p: Tm ).
4. Under the hypotheses of (3), if (G: H) < oo, deduce Herbrand’s Lemma:
(Ker g Tm o) (Ker (v | H): @(H)) = (Ker : Tmp)(Ker (2 | H): ¢(H)).

Problem 156 Suppose A is a (commutative) local or semi-local ring. Recall that the (strict) Henselization
of A, denoted A", is the right limit, ligC’, in which C runs over the family of finitely presented étale
A-algebras.

1. If B is a semi-local A-algebra (A also being semi-local) and if B is integral over A, prove that B®4 A"
is both semi-local and isomorphic to B”.

2. Suppose A4 is local and Henselian (i.e. A = A"), show that for every p € Spec A the integral closure of
A/p in Frac(A/p) is again a local ring.

Problem 157 (Eilenberg) Let R be the non-commutative polynomial ring in n variables, 11, ...,T,, over
the field k; so, R = k(Ty,...,T,). If M is a two-sided R-module, then a crossed homomorphism from R to
M is an R-module map R — M so that

f(&n) = &f(n) + F(&)n-

(Also called a derivation).
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1. Given elements my,...,m, from M, show that the assigment T — m; gives rise to a unique crossed
homomorphism R — M. Here, there is no restriction on the m;.

2. As in Section 5.3 of the text, consider the augmentation ideal, J, for the map dy: R — R. Prove that
J is a free R®-module on the base T; @ 1 =117, j =1,2,...,n

3. Deduce from (2) that dimpge(R) =1 (n > 0) in contradistinction to the commutative case.
Problem 158 (Serre) Here, G is a group and it acts on a set, S.
1. Suppose G is finite and S is finite. Write x for the function on G to C given by
x(o) = # of fixed points of o on S.

Prove Burnside’s Lemma: The number of orbits of G acting on S equals [ x(o)do (cf. Problem 134
for notation). (Suggestions. Show it suffices to give the proof when S is an orbit. In this case write

/ daf/(21d072/ 1do,

€S seS
where G, = {0 € G | oz = z}.)

2. Apply part (1) to the set S]S with its G-action to see that x?(c) counts the fixed points of o on
STIS. Prove: [x?(o)do > 2.

3. Write Gy = {0 € G | x(¢) = 0} = the ¢’s of G having no fixed points. Set n = #(S) and prove

[ o) = 1)ixto) = mdo <.
G—Go

Next assume n > 2 and G acts transitively on S. Prove that

/ (x(o) = 1)(x(0) —n)do > 1
G

and evaluate fGo (x(0) = 1)(x(o) — n)do. Put all together to prove the
Cameron-Cohen Inequality: If n > 2 and S is a G-orbit then

#(Go)
#(G)

>

Sie

Deduce Jordan’s Theorem: If G acts on S transitively and #(S) > 2, then there is a o € G having no
fixed point on S.

Problem 159 (Kaplansky) R is a ring and we are interested in “big” R-modules, i.e., those generated by
more than Ny generators. For this reason, modules finitely or countably generated will be called “atoms”
and we use the locution “finite atom” for a f.g. module.

1. Suppose M is an R-module that is a coproduct of (an arbitrary number of) atoms, say M = [] M;.
Suppose further P is a direct summand of M; that is,

M=PIQ (some Q)

Prove there exists a well-ordered increasing family {Su}a an ordinal Of submodules of M having the
following properties:
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Each S, is a coproduct of some of the M;

(a)
(b) Each S, splits as (So N P)[[(Sa N Q)
(c)

)

(d) Se41/S4 is an atom.

If o is a limit ordinal, then S, =z, Ss

(Hints: We use transfinite induction. By (c) we know how to proceed at a limit ordinal, check properties
(a) and (b). The only point is to construct S,41 from S,. One of the M; is not contained in S, call
it M*. Write the generators of the atom M™* as

Z11 12 T13 L14 *

Begin with x1; and split it into its P and () components giving us two new elements of M. Show only
finitely many M;’s appear in the coproduct decomposition of these new elements; so, if we take
1T{M; | M; appears} we get an atom. Write its generators as a second row of the infinite matrix being
constructed. Repeat for z15 and get the third row z3; x32 -+ . Now just as in the counting of Q take
the elements in “diagonal order”: 11, x12, %21, 13, T22,T31, -+ and keep repeating. Show that

Sa+1 = module generated by S, and all z;;

has (a) and (b) ((d) is obvious).)

. Write P, = PN S,, show P, is a direct summand of P,1, that P, = U5<a Ps (when « is a limit

ordinal) and that P,1/P, is an atom. Finally, deduce P is a coproduct of atoms and so prove

Kaplansky’s Theorem. Every direct summand of a module which is a coproduct of atoms is itself a
coproduct of atoms. Every projective R-module is a coproduct of atoms.



Chapter 1

Group Theory

1.1 Introduction

Groups are probably the most useful of the structures of algebra; they appear throughout mathematics,
physics! and chemistry. They almost always occur as “groups of transformations” and that is the way we
will use them at first. This allows of tremendous freedom, constrained only by the imagination in finding
objects on which to let groups act, or, what is the same, in finding homomorphisms from the group to the
“automorphisms” of some object or structure. Then we will look into groups qua groups, and here there
is a sharp distinction between the finite case and the infinite case. In the finite case, there is a subtle
interplay (not yet fully understood) between the order of a group and its structure, whereas in the infinite
case“geometric” arguments and applications are more the norm.

1.2 Group Actions and First Applications; The Three Sylow The-
orems

We begin by reviewing the notion of group action.

Definition 1.1 Let G be a group and S be a set. We say that G acts on S (on the left) (or that there is a
(left) G-action on S) iff there is a map

GI[s — s
(0,8) — o-s
called the action, satisfying the two rules:
(1) (VseS)(1-s=ys)

(2) Vo,r€ G)(¥se€ S)(o-(T-5) = (oT)"5).

Remarks:

(1) For every o € G, the map s + o - s is a bijection of S to itself. Its inverse is the map s +— o1 - 5. We
let Aut(S) denote the set of all set theoretic bijections of S.

IThe word group even occurs in Einstein’s first paper [12] on special relativity; it is the only place to my knowledge where
that word appears in Einstein’s corpus of scientific work.

o7
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Write 6(o) for the element of Aut(S) given by remark (1), i.e.,
O(o)(s) =0 -s.

Then, the map 6: G — Aut(S) is a homomorphism of groups (where Aut(S) is a group under compo-
sition).

Conversely, a n.a.s.c. that G act on S is that there is a homomorphism 6: G — Aut(S). (The action
gives 0 by remarks (1) and (2), and given 6, define the corresponding action by o - s = 0(o)(s). Check
that this is an action (DX).)

Say G acts on S, and for any given s consider
St(s)={oceG|o-s=s},
the stabilizer of s. It is always a subgroup of GG. The set
{teS|(Foe@)(o-s=t)}
is the orbit of s under the action, and it is denoted Og(s).

There is a one-to-one correspondence between the elements of the orbit of s and the left cosets of St(s)
in G. Namely, if H = St(s), there are maps

cH — o0-s

c-s +— oH,

for any left coset, c H. The first map is well-defined because if cH = 7H, then 7 = ¢oh for some h € H,
and

7-s=(ch)-s=o0-(h-s)=0"-s

as h € St(s). The reader should check that the second map is well-defined (DX).

If G is finite or (G : St(s)) is finite (here, (G : H) denotes the index of the subgroup H in G, i.e., the
number of (left) cosets of H in G), then Og(s) is a finite set and when G is finite, #(O¢(s)) divides
#(G).

Say t € Og(s) and H = St(s). Write t = o - s. What is St(¢)?

We have 7 € St(t) iff -t =tiff 7-(0-s) =0 -siff (07 70) - s=siff o"lro e Hif r € cHo™!. In
conclusion, we see that St(o - s) = oSt(s)o ™!, a conjugate subgroup of St(s).

The reader can check that the relation ~ on the set S defined by
s~t iff t=0-s forsomeoceG

is an equivalence relation on S, and that the equivalence classes of this relation are exactly the distinct
orbits Og(s). Thus, given two orbits, Og(s) and Og(t), either Og(s) N Og(t) = 0 or Og(s) = Og(t).
As a conclusion,

S= | 0cls).

distinct orbits

The orbit space, G\ S, is the quotient set S/ ~, i.e., the collection of orbits, each considered as a
distinct entity.
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Obviously, we can define the notion of right action using a map S[[G — G. It is obvious how to modify
conditions (1) and (2) in Definition 1.1.

We now give some examples of group actions.
Example 1.1
(1) Trivial action. Let G be any group and S be any set. The action is
o-5=25,
that is, it leaves every element of S fixed.

(2) Let G be a group and H be a subgroup of G. Consider G as a set, H as a group, and the action
H][]G — G given by
(r,8) —»71-s=71s€Qq.

This action is called translation. Observe that
St(s)={re€ H|1s=s}={1},
and

Op(s) = {teG|(FoeH)(o-s=1t)}
{te G| (3o e H)(os=1)}
= Hs = a right coset of s.

(3) Let G be a group and H be a subgroup of G. Consider G as a set, H as a group, and the action
HI]G — G given by
(r,8) > T-s=7s7 L €G.

This action is called conjugation. Note that
St(s) = {reH|7st7 ! =5}
= {r€H|7s=sT1},

the collection of 7’s in H which commute with s. When H = G, we see that St(s) is the centralizer of
s in G, denoted Zg(s). For an arbitrary subgroup H of G, we get St(s) = Zg(s) N H. We also have

Op(s)={te G| (3o e H)(oso' =1)},
the H-conjugacy class of s, denoted Cly(s). When H = G, we get the conjugacy class of s, denoted
Cl(s).
(4) Suppose the set S has some structure. Two very important special cases are:

(a) The set S is a vector space over a field. Then, we require : G — Aut(S) to land in the linear
automorphisms of S, i.e., in the invertible linear maps. In this case, our action is called a (linear)
representation of G.

(b) The set S is an abelian group under addition, +. Then, we require §: G — Aut(S) to land in
the group of group automorphisms of S. Our action makes S into a G-module. Observe that in
addition to the axioms (1) and (2) of Definition 1.1, a G-module action also satisfies the axiom

o-(a+b)=(c-a)+(c-b), foralloc € Gandalla,bes.
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Now, assume that G is finite. Observe that the converse of Lagrange’s theorem is false; namely, if G has
order n and h divides n, then there isn’t necessarily a subgroup of order h. Indeed, the group, Ay, of even
permutations on four elements, has order 12 and 6 | 12, yet A4 has no subgroup of order 6. In 1872, Sylow
(pronounce “Zoloff”) discovered the Sylow existence theorem and the classification theorem, known now as
Sylow theorems I & II.

Theorem 1.1 (Sylow, I) If G is a finite group of order g and p is a given prime number, then whenever
p® | g (with o > 0), there exists a subgroup, H, of G of exact order p*.

To prove Theorem 1.1, we need an easy counting lemma. If m is an integer, write ord,(m) for the
maximal exponent to which p divides m (i.e., ord,(m) = 3 for the largest 3 such that p? | m). The following
simple properties hold (DX):

(1) ord,(mn) = ordy,(m) + ord,(n).

(2) ord,(m £ n) > min{ord,(m),ord,(n)},
with equality if ord,(m) = ord,(n).

(3) By convention, ord,(0) = oco.

Lemma 1.2 (Counting lemma) Let p be a prime, o, m positive integers. Then,

(67
ord, <pp:n) = ord,(m).

Proof. We know that

<p“m> _pm(ptm—1)--- (pm — (p* — 1))
P> p*(p*—1)---2-1
Observe that for 0 < ¢ < p®, we have (DX)

ord,(p“m — 1) = ord, (p* — 7).

Thus,
(p;?> =mK, where K is prime to p.
Therefore,
ord, <p;‘;n) = ord,(m),
as contended. []
Proof of Sylow I. (Wielandt, 1959) If S is any subset of G, let
o-S={ct|tesS}
and note that o - S is a subset of the same cardinality of that of S. Let
S={SCG|#(5)=p"}
Note that in the above definition, S is any subset of G, and not necessarily a subgroup of GG. Of course,
pm
#s) = ("),

The group G acts on S by translation, i.e., via, S+~ o - S.
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Claim. There is some S € S so that

ord, (#(0¢(S))) < ord,(m).

If not, then for all S € S, we have ord,(#(0g(5))) > ord,(m). But we know that S can be written as a
disjoint union of G-orbits,

S=|J 0609

distinct orbits

So,
#(S) = >, #(0a(9)).

distinct orbits

Consequently,
ord, (#(8)) > min{ord, (#(0¢(S)))} > ord,(m).

But

ord, (#(8)) = ord, (p;f” ) 7

contradicting Lemma 1.2. This proves the claim.
Now, pick some S € S so that ord,(#(0¢(S5))) < ord,(m). Let H be the stabilizer of S. We know that
(a) #(0c(9)) = (G :5t(5)) = (G : H).
(b) p*m = #(G) = #(H)#(0c(9)).
From (b), applying the ord function, we get
00+ ordy (m) = ord, (#(H)) + ordy (#(0 (S)) < ordy (#(H)) + ord, (m).

So, a < ord,(#(H)) and then, p* divides #(H), and thus, #(H) > p®. Now, H takes S elementwise to
itself by translation, and for every s € S,

St(s)={oc € H|os=s}={1}.
Therefore, #(H) = #(O0p(s)) for every s € S, and yet every orbit is contained in S. Thus,
#(Omu(s)) < #(8) =p",
from which we deduce that #(H) < p®. We conclude that #(H) = p*, and H is the required subgroup. []

Corollary 1.3 (Original Sylow I) If p” is the mazimal power of p to divide #(G) and p is a prime number,
then G possesses a subgroup of order p°.

The subgroups of maximal p-power order arising in Corollary 1.3 are called the p-Sylow subgroups of G
(there can be more than one).

Corollary 1.4 (Cauchy, 1840) Say G is a finite group and p | #(G), where p is a prime number. Then,
there is some o of order p in G.

Nomenclature: A p-group is a finite group whose order is a power of the prime number p.
Corollary 1.5 Say G is a p-group, with #(G) = p". Then G possesses a descending chain
G=Gy>G1- >G4 >GYT:{1}7

so that (G; : Gi11) = p for all i with 0 < i <r — 1. Hence, #(G;) = p"".
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Proof. By Sylow I, a subgroup G, of order p"—!

exists. An induction finishes the proof. []
Remark: It is not clear that G;;11 is normal in G;. In fact, this is true, but it takes more work (see
Proposition 1.10).

To prove Sylow II, we need the local embedding lemma. In order to state this lemma, we need to recall
the concept of a normalizer. If S denotes the collection of all subsets of G, then G acts on S by conjugation:
S+ 0So 1. This action preserves cardinality. For every S € S, we have

St(S)={c € G|oSa™! = S}.

The group St(S) is called the normalizer of S in G, and it is denoted Ng(S). If S is a subgroup of G, then
S is normal in N¢(5) (denoted S < Ng(S)), and Ng(S) is the biggest subgroup in which S is normal (DX).

The “philosophy” behind the local embedding lemma is that if P is any subgroup of a group G, then
N¢(P) is a “local neighborhood” of P in which P perhaps behaves nicely. We recall the following proposition
which is used for proving Lemma 1.7.

Proposition 1.6 Given a group G, for any two subgroups S and P, if S C Ng(P), then PS = SP is the subgroup
of Ng(P) generated by S U P, the subgroup P is normal in SP and (SP)/P =2 S/(SN P).

Proof. Since S C Ng(P), we have cPo~* = P for all 0 € S, and thus, it clear that SP = PS. We have or0™* € P
for all o0 € S and all 7 € P, and thus, for all a,c € S and all b,d € P, we have

(ab)(ed) = (ac)(c”'be)d

b lam' = o Mab'a™h).

The above identities prove that SP is a group. Since S and P contain the identity, this group contains S and P, and
clearly any subgroup containing S and P contains SP. Therefore, SP is indeed the subgroup of N¢(P) generated
by SU P and it is clear that P is normal in SP. Now, look at the composition ¢ of the injection S — SP with the
quotient map SP — (SP)/P. It is surjective, and ¢(o) = o P for every o € S. Thus, o € Ker ¢ iff c € SN P, and
so Ker ¢ = SN P, and the first isomorphism theorem yields

(SP)/P=S/(SNP). [

After this short digression, we return to the main stream of the lecture.

Lemma 1.7 (Local embedding lemma) Suppose that P is a p-Sylow subgroup of G. Then for every o €
N¢(P), if o has p-power order then o € P. In particular, if H is a p-subgroup of Ng(P), then H C P and
P is unique in Ng(P).

Proof. Let S be any p-subgroup of Ng(P). Look at the group, H, generated by S and P in Ng(P),
denoted Gp{S,P}. Since P is normal in Ng(P), from Proposition 1.6, we have H = SP = PS, and
H/P = (SP)/P=S5/(SNP). Thus,

(H:P)=(5:5nP),

and (S : SN P) is a p-power, since S is a p-group. On the other hand, (S : SN P) is prime to p, as (G : P) =
(G: H)(H :P)and (G : P) is prime to p by definition of P. So, we must have (H : P) = (S: SN P) =1,
which implies that H = P. Thus, S = SN P, and S C P. We finish the proof by letting S be the cyclic
p-group generated by o. []

Theorem 1.8 (Sylow II) If G is a finite group, write Syl,(G) for the collection of all p-Sylow subgroups of
G, and P for the collection of all the p-subgroups of G, where p is a prime number. Then, the following
hold:

(1) syl (G) = #(Sy1,(G)) = 1 (modp).
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(2) For all S € P(G) and all P € Syl (G), there is some o € G so that S € oPo~'. In particular, any
two p-Sylow subgroups of G are conjugate in G.

(3) syl,(G) divides #(G); in fact, syl (G) divides the prime to p part of #(G).
Proof. (1) The group G acts by conjugation on Syl(G) (drop the subscript p in the course of this proof). So
SG = 0aP).
distinct orbits
Any S € P(G) also acts by conjugation on Syl(G), and so
sy@ =) os(p).

distinct orbits

What is St(P)? We have
St(P)={oc € S|oPs~' = P} = SN Ng(P).

But S has p-power order, so S N Ng(P) is a p-subgroup of Ng(P). The embedding lemma implies that
SN Ng(P) C P, from which we deduce that SN Ng(P)=S5nN P. So,

#(05(P)) = (S: SN P).

Now, take for S one of the p-Sylow subgroups, say P. Then, #(0Op(Q)) = (P : PNQ). If Q # P, then
PNQ < P,and so, (P: PNQ) is a nontrivial p-power (i.e, not equal to 1). If P = @, then (P: PNQ) = 1.
Therefore, in the orbit decomposition

SG@ =) 0rQ),
distinct orbits

QeSYI(G)

one orbit has cardinality 1, the rest having nontrivial p-power cardinalities. We conclude that
#(SYG)) = 1+ 3 ppowers,

and syl,(G) = #(Syl,(G)) = 1 (mod p), as claimed.

(2) Let S € P(G) and look at Og(P) where P € Syl(G). The subgroup S acts by conjugation on O¢(P).
So, we have

Oc(P)= | 0s(Q). (%)
distinct orbits
Q€eOc(P)

If @ € Og(P), then consider the stabilizer of @ in S,
St(Q)={c €S |oQo =Q} = SN Ng(Q).

As before, by the embedding lemma, S N Ng(Q) = SN Q. Then, #(05(Q)) = (S: SNQ). Take S = P
itself. If @ = P, then (P: PN P) =1 and #(Op(P)) = 1. On the other hand, if P # @, then (P: PN Q)
is a nontrivial p-power. Thus, as before, using (x), we deduce that

#(0g(P)) =1 (mod p).

Assume that (2) is false. Then, there exist some S and some P such that S Z oPo~! for any o € G. Let
this S act on Og(P), for this P. But we have

#(0c(P))= > #(0s(Q)), (%)
dithiGnéthZl}l)))its
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and #(0s(Q)) = (S: SN Q) where @Q is a conjugate of P, so that S € @, and therefore (S : SN Q) is a
nontrivial p-power. Then, (xx) implies

#(0c(P)) = 0 (mod p),
a contradiction. Thus, neither S nor P exist and (2) holds.

(3) By (2), Syl(G) = Og(P), for some fixed P. But the size of an orbit divides the order of the group.
The rest is clear. []

Theorem 1.9 (Sylow III) If G is a finite group and P is a p-Sylow subgroup of G, then Ng(Ng(P)) =
Ng(P).
Proof. Let T = Ng(Ng(P)) and S = Ng(P), so that T = Ng(S) and S < T.

Claim. For every o € T, if o has p-power order then o € P.

The order of T/S is (T : S). But

(G:P)=(G:T)(T:S5)(S:P)

and (G : P) is prime to p by definition of P. So, (T : S) is prime to p. Consider 7, the image of ¢ in
T/S. The element @ has p-power order, yet #(7'/S) is prime to p. Thus, @ = 1, and so, 0 € S. The local
embedding lemma yields o € P. Therefore, if H is a p-subgroup of T', we have H C P. Thus, any p-Sylow
subgroup, H, of T is contained in P; but since H has maximal p-size, H = P. This implies that T has a
single p-Sylow subgroup, namely P. By Sylow II, the group P is normal in T and so T C Ng(P) = S. Yet,
S CT, trivially, and S =T. [

Remark: A p-Sylow subgroup is unique iff it is normal in G.

Definition 1.2 A group, G, is simple if and only if it possesses no nontrivial normal subgroups ({1} and G
itself are the two trivial normal subgroups).
Example 1.2
(1) Assume that G is a group of order pq, with p and ¢ prime and p < ¢. Look at the ¢g-Sylow subgroups.
Write syl(g) for the number of ¢-Sylow subgroups of G. We know that
syl(q) =1 (modq) and syl(q) | p.

This implies that syl(q) = 1,p. But p < ¢, so that p = p (mod ¢), and the only possibility is syl(q) = 1.
Therefore, the unique g-Sylow subgroup is normal, and G is not simple.

(2) Assume that G is a group of order pgr, with p, ¢, r prime and p < ¢ < r. Look at the r-Sylow
subgroups. We must have
syl(r) =1 (modr) and syl(r) | pq.

This implies that syl(r) = 1,p, g, pg. Since p < r and g < r, as above, p and q are ruled out, and syl(r) = 1, pq.

Suppose that syl(r) = pg. We see immediately that » < pg. Now, each r-Sylow subgroup is isomorphic to
Z/rZ (cyclic of prime order), and any two distinct such subgroups intersect in the identity (since, otherwise,
they would coincide). Hence, there are pg(r — 1) elements of order r. We shall now show that if syl(r) = pg,
then syl(¢) = 1. Assume that syl(r) = pq and look at the ¢-Sylow subgroups of G. We have

syl(¢) =1 (mod ¢) and syl(q) | pr.

This implies that syl(¢) = 1,p,r, pr and, as before, p is ruled out since p < ¢. So, syl(¢) = 1,7, pr. Suppose
that syl(q) = r or syl(q) = pr, and call it z. Reasoning as before but now on the ¢g-Sylow subgroups, we see
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that there are x(q — 1) elements of order ¢q. Now, ¢ — 1 > p and x > r. Thus, there are at least rp elements
of order ¢q. But r > ¢, so there are more than pq elements of order g. Now, since there are pg(r — 1) elements
of order » and more than pq elements of order ¢, there are more than

pq(r — 1) + pq = pqr — pq + pq = pqr

elements in G, a contradiction. So, either the r-Sylow subgroup is normal in G (which is the case when
r > pq) or the ¢g-Sylow subgroup is normal in G. In either case, G is not simple.

Cases (1) and (2) have the following generalizations:

(a) Frobenius (1890’s) showed that if #(G) = p1pa - - - pt, a product of distinct primes, then G is not simple.
The proof uses group representations and characters.

(b) Burnside (1901) proved the “p®q’-theorem”: If #(G) = p®q®, where p, q are distinct primes and a, b € N,
then G is not simple. There are three known proofs, all hard, and all but one use group representations.

Obvious generalizations of (a) and (b) are false. The easiest case is #(G) = 22 -3 -5 = 60. Indeed, the
alternating group, As, is simple. After proving (b), Burnside conjectured (circa 1902) that every nonabelian
group of odd order is not simple. This conjecture was proved in 1961 by W. Feit and J. Thompson. The
proof is very hard, and very long (over 200 pages).

A piece of the proof of (a) and (b) is the following proposition:

Proposition 1.10 If G is a finite group and p is the smallest prime number which divides the order of G,
then any subgroup, H, of index p is automatically normal in G.

Proof. Take H so that (G : H) = p. Consider the set S = {Hy = H, Ho, ..., H,} of cosets of H in G. The
group G acts on S by translation,

o-Hj=0H; =H;, forsomel, with1<1[<p.

This action is nontrivial, that is, we get a nontrivial homomorphism 6: G — &, (where &, = Aut(S) is the
group of permutations on p elements), and Im 6 # {1}. We shall prove that H = Ker 6, which yields H < G.

Observe that #(G) = #(Ker 0) - #(Im 6). We must have
(1) #(Im 0) | p!

(2) #(Im 0) | #(G).

But #(G) = p*K, where K contains primes greater than p. Therefore, #(Im 0) = p®J, where J = 1 or
J contains primes greater than p. If J # 1, then J contains some prime ¢ > p, and since p®J divides
p! = p(p—1)---2-1, the prime ¢ must divide p!. Since ¢ is prime, ¢ must divide one of the terms in p!,
which is impossible, since ¢ > p. We conclude that J = 1. Now, a > 1 since Im 6 is nontrivial. If a > 2,
since p®~! | (p —1)---2- 1, the prime p should divide p — j, for some j with 1 < j < p — 1. However, this
is impossible, and so, a = 1. Therefore, #(Im 0) = p and (G : Ker §) = p. Note that o € Ker 0 iff o acts
trivially on S iff oTH = 7H iff T 'Hr = H iff T lor € H forall 7 iff 0 € TH7~! for all 7 ¢ H iff

s ﬂ TH L.
T€G

We deduce that
Ker 0 = (| 7Hr ™' C H.
T€G
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As (G:Ker ) =p=(G: H) and Ker § C H, we get H = Ker 6, and H is indeed normal in G. []

Note that we can now improve Corollary 1.5 as follows: If G is a p-group with #(G) = p”, then there is
a descending chain of subgroups
G=Gy>Gy>->G,={1},

where each G441 is normal in G; and each quotient G;11/G; is simple; so, Gj11/G; = Z/pZ, a cyclic group
of order p.
Definition 1.3 A composition series for a group G is a chain of subgroups

G=Gy>G > - >G ={1}

in which each subgroup G;41 is maximal, normal in G;. The factor groups G/G1, G1/Gs,..., Gi—1/Gy =
G_1 are called the composition factors of the given composition series and each one is a simple group.

Remark: Every finite group possesses a composition series (DX).

@ Not every group possesses maximal subgroups, even maximal normal subgroups (such groups must be
infinite).

However, finitely generated groups do possess maximal subgroups, but because such groups can be infinite,
the proof requires a form of transfinite induction known as Zorn’s lemma. Since this lemma is an important
tool, we briefly digress to state the lemma and illustrate how it is used.

Recall that a partially ordered set or poset is a pair, (S, <), where S is a set and < is a partial order on
S, which means that < is a binary relation on S satisfying the properties: For all a,b,c € S, we have:

(1) a<a (reflexivity)
(2) fa<band b<c, thena <c¢ (transitivity)
(3) If a <band b < a, then a =b. (antisymmetry)

Observe that given a,b € S, it may happen that neither a < b nor b < a. A chain, C, in S is a linearly
ordered subset of S (which means that for all a,b € C| either a < b or b < a). The empty set is considered
a chain. An element, b € S, is an upper bound of C (resp. a lower bound of C) if a < b for all a € C (resp.
b < a for all a € C'). Note that an upper bound of C (resp. a lower bound of C) need not belong to C. We
say that C' C S is bounded above if it possesses some upper bound (in S) (resp. bounded below if it possesses
some lower bound (in 5)). The notion of least upper bound (resp. greatest lower bound) of a chain is clear
as is the notion of least or greatest element of a chain. These need not exist. A set, S, which is a chain, is
well ordered iff every nonempty subset of S has a least element.

Remark: Obviously, the notions of upper bound (resp. lower bound), maximal (resp. minimal) element, greatest
(resp. smallest) element, all make sense for arbitrary subsets of a poset, and not just for chains. Some books define
a well ordered set to be a poset so that every nonempty subset of S has a least element. Thus, it is not required that
S be a chain, but it is required that every nonempty subset have a least element, not just chains. It follows that a
well ordered set (under this new definition) is necessarily a chain. Indeed, for any two elements a,b € S, the subset
{a, b} must have a smallest element, so, either a < b or b < a.

Hausdorff maximal principle: Every nonempty poset possesses a maximal chain.

From set theory, it is known that Hausdorff’s maximal principle is equivalent to the axiom of choice,
which is also equivalent to Zermelo’s well ordering principle (every nonempty subset can be well ordered).

We say that a poset is inductive iff every nonempty chain possesses a least upper bound.
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Zorn’s lemma: Each inductive poset possesses a maximal element.
Proof. By Hausdorff. []
Remark: Some books define a poset to be inductive iff every nonempty chain is bounded above. Zorn’s lemma still

holds under this slightly weaker assumption. In practice, this makes little difference, because when proving that a
chain is bounded above, one usually shows that this chain has a least upper bound.

Here are two illustrations of the use of Zorn’s lemma.
Theorem 1.11 Fwvery finitely generated group, G, possesses a mazximal subgroup.

Proof. Consider the set, S, of all proper subgroups, H, of G. Partially order S by inclusion (1e., H < K
iff H C K). Let {H,} be a chain in S. If H = |J_, H,, we see that H is a group and that it is the
least upper bound of {H,}. We must show that H # G. If H = G, then as G is finitely generated,
H =G =Gp{oy,...,0¢}, with o; € H for i = 1,...,t. This means that, for each i, there is some «; so that
o; € H,,. Since {H } is a chain, there is some s so that H, CH, forj=1,...,t. Thus, o1,...,0¢ € H,_,
and so, H = @, contradicting the fact that H,, # G. Therefore S is 1nduct1ve and consequently, by
Zorn’s lemma, it possesses a maximal element. Such an element is a maximal subgroup of G. []

As a second illustration of Zorn’s lemma, we prove that every vector space has a Hamel basis. Given a
vector space, V, over a field, k, a Hamel basis of V is a family, {es}aeca, so that:

(1) For every v € V, there exists a finite subset of A, say I, and some elements of k for these o’s in I, say

Ca, SO that
v = E Cala-
ael

(2) The e,’s are linearly independent, i.c., given any finite subset I of A, if >~ _;caeq = 0, then co =0,
for all € 1.

Theorem 1.12 Fvery vector space, V, possesses a Hamel basis.

Proof. Let 8* be the collection of all subspaces, W, of V' which possess a Hamel basis, together with a choice
of a basis. Write (W, {e4}) for any element of $*. The collection, §*, is nonempty, since finitely dimensional

vector spaces have bases. Partially order S* by (W, {es}) < (W, {fg}) iff
(a) W C W and
(b) {ea} C {fs5}, which means that the basis {fs} extends the basis {e,}.
We claim that S* is inductive.

Given a chain, {IW®), {e&)‘)}), in §*, take

W = UW()‘) and {e,}= U{e(a)‘)} CW.
A A

The reader should check that {e,} is a basis for W (DX); therefore, (W, {e4}) is the least upper bound of
our chain. By Zorn’s lemma, there exists a maximal element of S*, call it (Wp, {e,}). We need to show that
Wy = V. If not, there is some v € V with v ¢ Wy. Consider the subspace

Z=Wollkv={w+&v |weWy, ek}

The subspace, Z, strictly contains Wy and {e,} U{v} is a Hamel basis for Z (DX). However, this contradicts
the maximality of Wy. Therefore, Wy = V. [
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Corollary 1.13 If W is a subspace of V and {e,} is a Hamel basis for W, then there exists a Hamel basis
of V extending {es}.

Application: The field, R, is a vector space over Q, and 1 € Q is a Hamel basis for Q. We can extend
this basis of Q to a Hamel basis for R (over Q), call it {e,}aea, and say, eg = 1; then, R/Q is a vector space
(over Q) spanned by the e, other than ey. So, we have

R/Q= ] @

acN,a#0
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1.3 Elementary Theory of p-Groups
Recall that for a group G, the center of G, denoted Z(G), is given by

Z(G)={ce G| (Vr e G)(or =710)}.

1 —1

We write [0, 7] for the element o707~ called the commutator of ¢ and 7. Observe that [r,0] = [0, 7]

Also,
Z(G)={oce G| (¥t € G)[o,7] =1)}

and Z(G) is the centralizer of G under conjugation.

Let G act on itself by conjugation. When do we have Og (o) = {¢}? This happens when
(Vr e G)(ror™ ' =0) ie. (VreG)(rorlo ' =[r0]=1).
Thus, 0 € Z(G) iff O¢g(o) = {0}

Remark: Obviously,

Z(G) = [ Za(o).

oeG
Moreover, it is obvious that ¢ € Zg(o) for every o € G. Thus, for every o ¢ Z(G), we have Z(G) < Zg(o) (obviously,
Zg(o) = G if 0 € Z(G).) Therefore, if G is nonabelian, then Z(G) < Zg(o) for all o € G.

Proposition 1.14 The center, Z(G), of a p-group, G, is nontrivial.

Proof. If we let G act on itself by conjugation, we know that G is the disjoint union of distinct orbits, and
since O¢ (o) is the conjugacy class of o and o € Z(G) iff Og(c) = {c}, we get

G=z@)u ) O

distinct orbits
TEZ(G)
Consequently, using the fact that #(O¢g(7)) = (G : St(7)), we get

#(G) =#Z@)+ Y, (G:8H(r). (%)

distinct orbits
T¢Z

But #(G) = p”, so that each term (G : St(7)) for 7 ¢ Z(G) is a nontrivial p-power. So, in (x), all terms
must be divisible by p. Therefore, p | #(Z(G)). I

Note that Z(G) is normal in G. Thus, G/Z(G) is a p-group of strictly smaller order, providing a basis
for induction proofs.

We make the following provisional definition (due to E. Galois, 1832). A finite group, G, is solvable iff it
possesses a composition series all of whose factors are abelian, or equivalently iff it possesses a composition
series all of whose factors are cyclic of prime order.

We have shown that a p-group is solvable.

Remark: The above definition is provisional because it only works for finite group (c.f. Definition 1.7), but
the concept of a solvable group can be defined for an arbitrary group.

Corollary 1.15 Every p-group of order less than or equal to p® is abelian.
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Proof . Since #(G) = 1, p, p* and G is obviously abelian in the first two cases, we may assume that #(G) = p.

We know that Z(G) is non-trivial and we must prove that Z(G) = G. If Z(G) < G, then there is some
o € G so that 0 ¢ Z(G). Clearly, Z(G) C Zg(o) (where Zg(o) denotes the centralizer of ¢ in G). But
0 € Zg(o) implies that (Zg(o) : Z(G)) > p and since Z(G) is nontrivial, we must have Zg (o) = G. So,
o € Z(G), a contradiction. []

We now consider a nice property possessed by p-groups called property (N). If G is any group, G has
property (N) iff for every proper subgroup, H, of G, the group H is a proper subgroup of Ng(H).

Remark: An abelian group has (N). Indeed, every subgroup of an abelian group is normal, and so, Ng(H) =
G.

Proposition 1.16 Every p-group has (N).

Proof. We proceed by induction on #(G) = p”. Corollary 1.15 takes care of the base case of the induction.
Next, let #(G) = p"+! and assume that the induction hypothesis holds up to . We know that Z(G) is
nontrivial, and so #(G/Z(G)) < p". Thus, G/Z(G) has (N). Pick H, any proper subgroup of G. Of course,
Z(G) € Ng(H), and we may assume that Z(G) C H (since, otherwise, it is clear that H < Ng(H)). By
the second homomorphism theorem, the question: H < Ng(H)? is reduced to the question: H < Ng(H)?,
where the bar means pass to G/Z(G). But in this case, as Z(G) C H, we see that (DX)

Ng(H) = Ng(H),

and we just remarked that G = G/Z(G) has (N). Therefore, Ng(H) > H, and so, Ng(H) > H, as desired.
O

Groups that have property (N) tend to have good properties. Here are a few of them.

Proposition 1.17 Say G is a finite group having (N), then each of its p-Sylow subgroups is unique and
normal in G. Every mazimal subgroup of G is also normal and has prime indez.

Proof. Look at P, a p-Sylow subgroup of G. Now, if Ng(P) # G, then by (N), we have Ng(Ng(P)) >
N¢g(P), a contradiction to Sylow III. Thus, Ng(P) = G and so, P < G. Next, let H be a maximal subgroup.
By (N), we have Ng(H) > H, yet H is maximal, so N¢(H) = G, and H < G. Tt follows that G/H is a group
with no nontrivial subgroup. But then, G/H is cyclic of prime order. []

Proposition 1.18 Say G is a finite group and suppose that
(a) g =#(G) =pi*---pi* (where the p;’s are distinct primes)
(b) G has (N).

Write P; for the pj-Sylow subgroup of G. Then, the map

B iEEsXe

via (01,...,0¢) = 0104 is an isomorphism of groups. Hence, G is isomorphic to a product of p-groups.

The proof depends on the following lemma:

Lemma 1.19 Let G be a group and let H and K be normal subgroups of G. If HN K = {1}, then every
element of H commutes with every element of K. Suppose that o and T are commuting elements in G, with
orders r and s respectively. If r and s are relatively prime then the order of o1 is rs.
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Proof. Look at [0, 7], where 0 € H and 7 € K. We have

1 1

[o,7) =070 "1~ —lrh,

=(oro VY1t =o(ro 1

Now, oro~ ! € K, since K << G. Thus, (o707 1)7~! € K. Similarly, o(ro~'771) € H. But HN K = {1},
and since we just proved that [0, 7] € HN K, we have [0, 7] = 1. The second part of the lemma is left to the
reader (DX).

Proof of Proposition 1.18. By Proposition 1.17, each p;-Sylow subgroup P; is normal in G. First, we claim

that the map P [[--- ][] P “5 Gis a group homomorphism. Now, because the orders of P; and P; are
relatively prime if ¢ # j, we have P; N P; = {1}. Since

(o1, 00)(T1,. .., Tt)) = 0171 -+ 04T,

using Lemma 1.19, we can push each 7; past 0,41 ---0¢, and we get

(o1, y0) (11, 1)) =01 o1 T = (01,5 00)O(T1y oo TE),

proving that ¢ is a homomorphism. The kernel of ¢ consists of those 0 = (01,...,0¢) sothat o1 ---0¢ = 1, or
equivalently, o, ' — 6y ---04_1. Using Lemma 1.19 and an obvious induction, the order on the righthand side
is pll1 - ~pit:11 and the order on the left hand side in pit, which implies that I; = --- = [l;, and thus, all 0; = 1.
Therefore, Ker ¢ = {1} and ¢ is injective. One more application of Lemma 1.19 yields #(P [[---[[ ) = g

Since ¢ is injective, it is an isomorphism. []
Remark: The proof of Proposition 1.18 only uses the fact that every p-Sylow subgroup is normal in G.

Definition 1.4 Let G be any group, then the Frattini subgroup of G, denoted ®(G), is the intersection of
all the maximal proper subgroups of G. In case G has no maximal proper subgroup, we set ®(G) = G.

Remark: The additive abelian group (Q, +) has no maximal proper subgroup.

Definition 1.5 In a group, G, an element o is a non-generator iff for every subset, A, if G = Gp{A4, o},
then G = Gp{A} (where Gp{A} denotes the subgroup of G generated by A).

As an example, assume that G is a cyclic group of order p”. Then, ®(G) is the cyclic subgroup of order
prfl‘

Proposition 1.20 The Frattini subgroup of G is a characteristic subgroup of G, i.e., for every automor-
phism, ¢ € Aut(G), we have o(P(G)) = ®(G). In particular, ®(G) is normal in G. Furthermore, if G is
finite, then

®(G) ={o € G| o is a non-generator}.

Proof. Every automorphism permutes the collection of maximal subgroups of G. Therefore, ®(G) is char-
acteristic. Now assume G is finite, or, at least, that every proper subgroup is contained in a maximal
subgroup.

Claim: If Gp{A, ®(G)} = G, then Gp{A} = G.

If not, Gp{A} # G, and so, there exists a maximal subgroup, M, containing Gp{A}. Now, ®(G) C M,
therefore, Gp{4,®(G)} € M # G, a contradiction. This proves that ®(G) is contained in the set of
non-generators.

Conversely, assume that o is a non-generator. Were o ¢ ®(G), we would have a maximal subgroup,
M, with 0 ¢ M. Take M = A in the definition of a non-generator. Look at Gp{M,c}. Of course,
M C Gp{M,o} and 0 € Gp{M,c}, so M < Gp{M,c}. But M is maximal, and so, Gp{M,c} = G. By
definition (since o is a non-generator), G = Gp{M}, and thus, G = M, a contradiction. []
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Definition 1.6 A group G is an elementary abelian p-group iff
(1) It is abelian, and

(2) For every o € G, we have o? = 1.

Remark: Any elementary abelian p-group is, in a natural way, a vector space over F,. Conversely, for
any vector space over the finite field [, its additive group is an elementary abelian p-group. Under this
correspondence, an endomorphism of G goes over to a linear map and an automorphism of G goes to an
invertible linear map. The group G is finite iff the corresponding vector space is finite dimensional.

(Given G, write the group operation additively. Thus, we have

po=g+---+07=0.
—_———

p

The finite field F,, acts on G as follows: If A € F, = Z/pZ, i.e., A\=0,1,...,p— 1 (mod p), we set

Ao=oc+--+40 .
~—_——
A (mod p) times

The reader should check that scalar multiplication is indeed well defined and that the facts asserted in the
previous remark are true (DX).)

Proposition 1.21 For any p-group, G, the quotient group, G/®(G), is an elementary abelian p-group.

Proof. Say H is a maximal subgroup of G. Since G has (N), the group, H, is normal in G and (G : H) = p.
Therefore, G/H is cyclic of order p. Write 7 for the image of o in G/H. We know that (7)? = 1. So, o = 1,
i.e., P € H. But H is arbitrary, and so,

e (] H=20Q).

H maximal

Now, G/H is abelian since G/H = Z/pZ. This implies that [G,G] C H (here [G, G] is the subgroup of G
generated by the commutators, called the commutator group of G; it is the smallest normal subgroup, K, of
G such that G/K is abelian). Since H is arbitrary, we get

G.Glc () H=2Q).
H maximal

This shows that G/®(G) is abelian. As o? € ®(G), we get (7)? = 1 in G/P(G), where 7 is the image of &
in G/®(G). I

We now come to a famous theorem of Burnside.

Theorem 1.22 (Burnside Basis Theorem) Say G is a p-group and let d be the minimal number of elements
found among all minimal generating sets for G. The following properties hold:

(1) Given any set of d elements in G, say o1, ...,04, they generate G iff o1,...,74 are a basis of G/®(G).

(2) More generally, any set of t elements o1,...,0¢ in G generates G iff {c1,...,5¢} spans G/®(G). Hence,
any set of generators of G possesses a subset of exactly d elements which generates G. The number d

is the dimension of G/®(G) over Fp,.
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Proof . Everything follows from the statement: o1, ...,0; generate G iff 77,...,0; generate G = G/®(G)
(DX).

The implication (=) is trivial and always true. Conversely, if 77, ...,7; generate G, then

G = Gp{oy,...,04,D(G)}.
But then, as ®(G) is the set of nongenerators, we have
G = Gp{oy,...,0,P(G)} = Gp{o1,...,01},

as desired. []

Let G be a group (possibly infinite). We set A9(G) = G, and AN (G) = [G, G] and, more generally

A(J’Jrl)(G) - [A(j)(G),A(j)(G)} - A(l)(A(j)(G)).

Observe that AM(G) = [G,G] is the commutator group of G, and recall that for any normal subgroup, H,
of G, we have AV(G) C H iff G/H is abelian. Moreover, for a simple nonabelian group, [G, G] = G.

Proposition 1.23 Suppose G is a group, then each AY)(G) is a characteristic subgroup of G and each
group AV(G)/AUD(G) is abelian (j > 0). If G has property (N), then AN (G) C ®(G) < G (provided
maximal subgroups exist). If G is a p-group, then the chain

GOAV@) D2APD@)D---2AD@G)D---
is strictly descending and reaches {1} after finitely many steps.
Proof. The group A1 (G) consists of products of the form
o1, 7)o, 7], 1>1
If ¢ € Aut(G), then

p(lor, ]+ [or,m]) = e(lo1, 1l) - - @([o1, 7)),

and o([o, 7]) = [¢(0), (1], so AM(G) is characteristic. We prove that AU)(G) is characteristic by induction
on j. The base case j = 1 has just been established. Look at AU*1D(G). By the induction hypothesis, we
have p(AU)(G)) = AU)(G). Therefore, o is an automorphism of AU)(G). Yet, AUt (G) = AM(AU)(@)),
and we proved that A (H) is characteristic for any group H (case j = 1). Now, G/A™M(G) is abelian for
any group G, so AU)(G)/AUTD(G) = AU(G)/AD(AU)(G)) is abelian.

Say G has (N) and possesses maximal subgroups. If H is a maximal subgroup of G we know that H <G
and H has prime index. So, G/H is abelian, and thus, A(Y(G) C H. Since H is arbitrary, we deduce that

AV@G C [ H=%0G).

H maximal
Now, assume that G is a p-group. Then, G has (N), and thus, A(D(G) € ®(G) < G. But AD(G) in
turn is a p-group, so we can apply the argument to A (G) and we get A®)(G) < AM(G), ete. []
Nomenclature.
(1) The group AM(G) is called the first derived group of G (or commutator group of G).

(2) The group AY(G) is the j-th derived group of G.



74 CHAPTER 1. GROUP THEORY

(3) The sequence
G=AG) 2AMG) 2APG) 2 2AD(G) D -

is the derived series of G.

(4) The smallest ¢ > 0 for which A®)(G) = {1} is the derived length of G and if A®(G) is never {1} (e.g.,
in a nonabelian simple group) then the derived length is infinite. Write §(G) for the derived length of
G.

Look at the derived series of G:
G = A(O)(G) ) A(l)(G) ) A(z)(G) D...D A(t)(G) ...

Each quotient AU (G)/AU+(G) is abelian. Suppose G is finite, then AW (G)/AU+) (@) is finite abelian.
Interpolate between AU)(G) and AUTD(G) a sequence of subgroups, necessarily normal, each maximal in
the previous one. If §(G) < oo, we get a composition series all of whose factors are cyclic of prime order.
This proves half of the

Proposition 1.24 A necessary and sufficient condition that a finite group be solvable (in the sense of Galois)
is that §(G) < oo.

Proof. We need only prove: If G is (Galois) solvable, then §(G) < co. Say
G=Gy>G >G> - >G ={1}
is a composition series with abelian factors. We have G; < G and G/G is abelian. Therefore, by a previous
remark, A (G) C G;. Each quotient G;/G 1 is abelian, so A(G;) C G4 for all j. Now, AM(G) C Gy
implies that A (AM(G)) € AW(G,), and so,
AP(G) € AD(GY) € Ga.

An easy induction yields AT (G) C G, (DX). Therefore, A®(G) C {1}, i.e., §(G) < t. [

Observe that we actually proved more: The derived length, 6(G), of a solvable finite group is less than
or equal to the length of any composition series for G.
Definition 1.7 An arbitrary group, G, is solvable iff §(G) < oc.
Proposition 1.25 Say G is a p-group of order at least p*>. Then, (G : AD(Q)) > p.

Proof. We may assume that G is nonabelian, else AM(G) = {1} and so, (G : AN(G)) = #(G) > p>. As
G is a p-group, if (G : AD(G)) < p?, then (G : AM(G)) = p. We know that A(D(G) C &(G). Therefore,
(G : (G)) = p and the Burnside dimension of G (i.e. dimp, G/®(G)) is equal to 1. By the Burnside basis
theorem, G is cyclic, so abelian, a contradiction. []
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1.4 Group Extensions

Let G be a finite group and let
G=Gy>G>Gy>-->G ={1}

be a composition series. We have the groups G;/G,41 = G;, the composition factors of the composition
series.

Problem: Given the (ordered) sequence Go, G1, G, ...,G;_1, try to reconstruct G.

Say H and K are two groups, G is a “big” group and H <1 G with G/H = K. Note, this is exactly the
case at the small end of a composition series. We have
Gi1 = Gy = Gy_1/Gy. We also have Gy_1 <1 Gy_o, and the quotient is G;y_», so we are in the above
situation with H = Gt—l = ét—la K= ét_g, g = Gt_g, and Q/H3 K.

The above situation is a special case of an exact sequence. A diagram of groups and homomorphisms
0—H-5¢- %K -0,

where the map 0 — H is the inclusion of {1} into H and the map K — 0 is the surjection sending
every element of K to 1 in the trivial group {1}, is called a short exact sequence iff the kernel of every
homomorphism is equal to the image of the previous homomorphism on its left. This means that

(1) Ker ¢ = {1}, so ¢ is injective, and we identify H with a subgroup of G.
(2) H=1Im ¢ = Ker v, so H is normal in G.

(3) Im ¢ = K, so v is surjective. By the first homomorphism theorem, G/H = K.
(4)

4) Properties (1), (2), (3) are equivalent to 0 — H — G — K — 0 is exact.

Going back to composition series, we have G;j11 < G, and G; = G;/Gj41. So, a composition series is
equivalent with a collection of short exact sequences

0— thl — thz — 6,572 —0
0— Gig — G435 — G4_3 — 0

0— G — G — Gy —0.

So our problem reduces to the problem of group extensions: Given H and K, groups, find (classify) all
groups, G, which can possibly fit into an exact sequence

0—H —§G—K—0.

The problem is very hard when H is nonabelian.
Definition 1.8 If A, G are groups, a group, G, is an extension of G by A iff G fits into an exact sequence
(E) 0—A—G—G—0.

Two such extensions (F), (E') are equivalent iff there exists a commutative diagram

(E) 0 A G G 0

|+

(E') 0 A G’ G 0.
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Remarks:

(1) The homomorphism, 1, in the above diagram is an isomorphism of groups. So, the notion of equivalence
is indeed an equivalence relation (DX).

(2) Equivalence of group extensions is stronger than isomorphism of G with G’.

(3) The group G in (E) should be considered a “fibre space” whose base is G and whose “fibre” is A.

As we remarked before, the theory is good only when A is abelian. From now on, we assume A is an
abelian group.

Proposition 1.26 Say
(E) 0—A—G—G—0

is a group extension and A is abelian. Then, there exists a natural action of G on A; so, A is a G-module.
Equivalent extensions give rise to the same action.

Proof. Denote the surjective homomorphism G — G in (E) by bar (-). Pick £ € G and any a € A. There
exists © € G with T = £. Consider zax~!. Since A <G, we have zax™' € A. If y € G and if y = T = £, then
x = ya for some o € A. Then,

1 1

zax~ ! = yaaa‘ly_ =yay -,

as A is abelian. Therefore, if we set

-1
¢-a=wxaxr™ ",

this is a well-defined map. The reader should check that it is an action (DX). Assume we have an equivalence
of extensions between (F) and (E'):

(E) 0 A g G 0
|
(E') 0 A G’ G 0.

Pick £ € G and any a € A. Denote the E-action by - and the E’-action by --. Observe that

§-a=1y( a) =v(zazr™") = Y(2)Y(a)y(z) ™ = Y(@)ay(z) ",

since the left vertical arrow is the identity in the diagram, yet ¢ (z) lifts £ in G’, as the right vertical arrow
is the identity in the diagram. However, by definition,

€ a=()ap(z)™,
so,&--a=€-aforallae A.

The type of (E) is the structure of A as G-module, i.e., the action of G on A. We get a first invariant of
a group extension, its action (of G on A).

Fix the action of (F). Can we classify the extensions up to equivalence? Say we are given an extension
(E) 0—A—G-G—0.

There is always a set-theoretic section s: G — G, i.e., a set map, s, so that w(s(c)) = o for all o € G. Write
uy for the s-lift of o, i.e., s(0) = uy. So, T(uy) = Uy = 0. As s is not necessarily a group homomorphism,
what is the obstruction? Consider

oty (Ugr) "t = flo,T). (%)
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Note that f(o,7) = 1iff s: 0 — u, is a group homomorphism. If we apply the homomorphism bar to (x),
we get f(o,7) =1, and so, f(o,7) € A. Observe that f is a function

f:GIIG — A. Given z € G, look at T. We know that T = o € G. If we apply bar to ru;t, we get 1,

1 _ _ _ . .
because uy ' = o~! and T = 0. So, we have zu;! € A, which yields * = au,, for some a € A.

Observe that:
(1) Each z determines uniquely a representation x = au,, with a € A and o € G.

(2) The map A[[G — G (where A[] G is the product of A and G as sets) via
(a,0) — au,
is a bijection of sets (an isomorphism in the category of sets).

(3) G (as a set) is just AJ]G (product in the category of sets).?

Can we recover the group multiplication of G7 We have

Jur

b
bu; Hugu,

(aug)(bur) = a(us
a(uy

= a(o-b)usu,
a(o - b)f(o, T)ugr

= Clgr,

where ¢ = a(o - b) f(o,7), and ¢ € A. Therefore, knowledge of the action and f(o,7) gives us knowledge of
the group multiplication.

Thus, it is natural to try to go backwards and make G from the groups A and G, the action of G on A,
and f. It is customary to use an additive notation for the group operation in A, since A is abelian. The
underlying set of the group G is

AT[G ={(a,0) |ac A o eG}.

Multiplication is given by
(a,0)(b,T) ={a+0 b+ f(o,7),07T). )

However, the multiplication defined by (t) is supposed to make G into a group, and this imposes certain
conditions on f. First, we deal with associativity. For this, we go back to the original G where we have the
associative law:

(aug)((bur)(cu,)) = ((auy ) (bur))(cu,).

Expanding the left hand side, we get

(auo)((buﬂ')(cup)) aug ) (b(7 - ¢) f(T, p)u'rp)

(
= ((IG' ’ (b(T ’ C) (7-7 P))f(0'7 Tp)ua('rp)
= a(a ! b)(JT : C)(U : f(Ta p))f(oa Tp)ua(Tp)‘

Expanding the righthand side, we get

((aug)(bur))(cu,) = alo-b)f(o,T)ugr)(cup)
= a(o-0)f(o,7)(07 - ) f (o7, p)uor)p-

2In (2) and (3) we give a foretaste of the language of categories to be introduced in Section 1.7.
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Thus, the associative law becomes (writing RHS = LHS)
f(Uv T)(JT : C)f(JT7 p) = (UT ' C)(U : f(Tv p))f(ov Tp)

Now, all the above terms are in A, and since A is abelian, we can permute terms and perform cancellations,
and we get

flo,7)f(o7,p) = (o f(7,0))f (0, Tp). (1)
This identity is equivalent to the associativity law in G.

Nomenclature: A function from G [] G to A is called a 2-cochain on G with values in A. Any 2-cochain
satisfying (11) is called a 2-cocycle with coefficients in A.
Therefore, (1) is an associative multiplication in A[] G iff f is a 2-cocycle with values in A.

Does A[] G with multiplication (f) have an identity?

The original group, G, has identity 1 and we have 1 = uflul, where u; € A, and so, ufl € A. For all

be Aand all 7 € G, we have
(ul_lul)(buT) = bu,,
which yields
u M1 b) (L, Tu, = ul (1, T)ur = bu,.
Since A is abelian, we get
f(17 T) = ui,

which shows that f(1,7) is independent of 7. In particular, u; = f(1,1).

Question: Is (1) sufficient to imply that f(1,7) = f(1,1) for all 7 € G?

In (f1), take o = 1. We get

fA7)f(r,p) = f(7,p)f(1,7p).

Again, since A is abelian, we deduce that f(1,7) = f(1,7p). If we take 7 = 1, we get f(1,1) = f(1,p), for
all p.

Therefore, (f1) is sufficient and A[]G has an identity 1 = (f(1,1)71, 1), or in additive notation (since
A is abelian),

1= <7f(17 1)3 1> (*)

Finally, what about inverses? Once again, go back to our original G.

We have (auy,)™! =u;ta™!. Now,

ugt = ()t =0t =u, 7.

Therefore, there is some o € A so that u; ! = au,-1. By multiplying on the right by u,, we get
1= QUs-1Ug = af(O'_l, U)uaa_l = af(a_lvo)ul = af(a_lvo)f(lﬂ ]-)7
since u; = f(1,1). So, a = f(1,1)"*f(c7,0)~ L. Consequently, we get

(aue)™' = wurla

= QUy-1a
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Therefore, in A[] G (switching to additive notation since A is abelian), inverses are given by

<a7J>_1 = <_U_1 ‘a_f(0_170)_f(1;1)7 U_1>' (**)

We find that AJ] G can be made into a group wia (T), provided f(o,7) satisfies (17). The formulae (x)
and (xx) give the unit element and inverses, respectively. For temporary notation, let us write (A[] G; f)
for this group. Also, since A is abelian, let us rewrite () in additive notation, since this will be more
convenient later on:

o-f(r,p) + flo,7p) = f(oT,p) + f(o,7). (1)

Go back to the original group, G, and its set-theoretic section s: G — G (with s(¢) = u,). We might have
chosen another set-theoretic section, t: G — G, namely, t(c) = v,. We get a 2-cocycle g(a, 7) = v,v; (Vor) "1,
ie., vov; = g(0, T)Vor.

What is the relation between f and g7
We know that T, = 0 = %, which implies that there is some k(o) € A with v, = k(0)u,. Then, we have
VeV = (0, T)Ver = g(0, T)k(0T)tor,

and also
VoV = k(0)usk(T)ur = k(o)(o - k(1))usur = k(o)(o - k(1)) f(o, T)tor.

By equating these expressions, we get
g(o,7)k(oT) = k(o)(o - k(7)) f (o, 7).
But A is abelian, so we can write the above
g(o,7) = f(o,7) =0 - k(1) — k(o7) + k(o). (%)

Observe that k: G — A is a function of one variable on G. We call k a 1-cochain on G with values in A.
For a 1-cochain, define a corresponding 2-cochain, called its coboundary, 0k, by

(0k)(o,7) =0 - k(1) — k(oT) + k(o).

Remarks:
(1) Every coboundary of a 1-cochain is automatically a 2-cocycle (DX).

(2) Cocycles form a group under addition of functions denoted by Z2(G, A). The special 2-cocycles which
are coboundaries (of 1-cochains) form a group (DX) denoted by B?(G, A). Item (1) says that B%(G, A)
is a subgroup of Z%(G, A).

(3) The quotient group, Z2(G, A)/B%*(G, A), denoted H?(G, A), is the second cohomology group of G with
coefficients in A.

(4) Equation (x) above says: If we change the choice of section from s to ¢, the corresponding cocycles, f
and g, are cohomologous, i.e., g — f = 0k, i.e., the image of f in H?(G, A) is the same as the image of
g in H?(G, A). Thus, it is the cohomology class of f which is determined by (E).
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Now, make (A]] G; f). Then, we can map A into (A[]G; f) via
a— (a— f(1,1),1).

Claim. The set {{(a — f(1,1),1) | a € A} is a subgroup of (A]]G; f). In fact, it is a normal subgroup and
the quotient is G.

Proof. We have
<a7f(1a1),1><b7f(131)’1> - <a7f(171)+b7f(131)+f(171)31> = <a+b7f(171)31>7

and thus, the map A: a — (a — f(1,1),1) is a group homomorphism. We leave the rest as a (DX). ]

Say f — g = 0k, i.e., f and g are cohomologous, and make (A[][G; f) and (A]] G; g). Counsider the map
0: (AIIG; f) — (AIIG;g) given by
0: (a,0) — (a+ k(o),0).

We claim that 6 is a homomorphism. Since
<av U><b7 T> = <a’ +o-b+ f(O’, T)?O-T>a

we have
0({a,o){b,7)) ={a+0-b+ f(o,7) + k(oT),07).

We also have

0((a,0))0((b,7)) = (a+k(0),0)(b+k(r),T))
= (a+k(o)+o-bt+o-k(r)+g(o7),07))

In order for # to be a homomorphism, we need
k(g) +o- k(T) + g(o’, T) - f(av T) + k(UT)a

that is, f — g = dk. Consequently, 6 is a homomorphism, in fact, an isomorphism. Moreover, (A[] G; f) and
(AT] G; 9) fit into two extensions and we have the following diagram:

(E)y 0——A—(A[IG;f) —= G ——0
)
(E')g 0—A—— (A]]G;9) —= G ——=0.

The rightmost rectangle commutes, but we need to check that the leftmost rectangle commutes. Going over
horizontally and down from (A[[G; f), for any a € A, we have

a = <a - f(171)a1> = <a’_ f(lal) +k(1)51>7
and going horizontally from the lower A, we have
a— (a—g(1,1),1).

For the rectangle to commute, we need: ¢(1,1) = f(1,1) — k(1). However,
flo,7) =g(o,7) + 6k(o,7) and dk(o,7) = 0 - k(1) — k(o7) + k(o). If we set 0 =7 =1, we get

Sk(1,1) = k(1) — k(1) + k(1) = (1),

and it follows that ¢g(1,1) = f(1,1) — k(1), as desired.
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Hence, cohomologous 2-cocycles give rise to equivalent group extensions (the action is fixed). Conversely,
we now show that equivalent group extensions give rise to cohomologous 2-cocycles. Say

(E) 0 A g G 0
|
(E") 0 A g G 0.

is an equivalence of extensions (i.e., the diagram commutes). We know, up to the notion of being cohomol-
ogous, that we may adjust both cocycles f and g associated with (E) and (E’) by choice of sections. In
both cases, take u; = 0 (since we are using additive notation). Therefore, f(1,1) = g(1,1) = 0. From the
commutativity of the diagram, 1) must be of the form

w<a7 U> = <50(a’ 0)’ U>

for some function ¢: A[[G — A. By the above choice, the maps A — G and A — G’ are given by
a — {a,1) in both cases. Therefore,

Y(a,1) = (¢(a,1),1) = (a,1), and so,
o(a,1) =a, forallae A.
Since 1 is a homomorphism, we have
¥((a, )b, 7)) = ¥((a,0))((b, 7)),
and this yields an identity relating f, g and ¢. The left hand side of the above equation is equal to
v({a+o-b+ f(o,7),07)) ={pla+0c-b+ f(o,7),07)),07T),
and the righthand side is equal to
(p(a,0),0)(p(b,7),7) = {p(a,0) + 0 - @(b,7) + g(0,7),07),
and by equating them, we get
pla+o-b+ flo,7),07)) = pla,0) +0-@b,T)+glo,T). (t1)
By taking 7 = 1 (using the fact that ¢(b,1) = b), we get
ola+o-b+ f(o,1),0)) =¢(a,0) +0-b+ g(o,1). (st )
Now, (f1) can be written as
o f(r.p) = floT,p) + f(o,7p) = f(o,7) = 0.

If we take p =1, we get
J'f(T71) _f(07—>1)+f(o-77—) _f(U7T) =0.
which yields
ag- f(Tvl) = f(UTa 1)
If we take 7 =1, we get o - f(1,1) = f(o,1), but f(1,1) =0, and so,

f(o,1)=0.

Consequently, (s«x) yields
pla+o-bo)=¢(a,0)+0-b.
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Writing b = 07! - ¢, we get
ola+c,0)=y(a,0)+¢c, foralla,ceA.
In particular, when a = 0, we get ¢(c, o) = ¢(0,0)+c. Let p(0,0) = k(o). Now, if we use p(a, ) = p(0,0)+a
in (f1), we get
a+o-b+ flo,7)+ k(o) =a+ k(o) +o-(b+ k(1)) + g(o,7),
which yields
flo,7)+ k(oT) = g(o,7) + k(o) + 0 - k(7),

that is, f — g = dk. Hence, we have proved almost all of the following fundamental theorem:
Theorem 1.27 If G and A are groups and A is abelian, then each group extension
(E) 0—A—G-"5G—0

makes A into a G-module; the G-module structure is the type of (E) and equivalent extensions have the same
type. For a given type, the equivalence classes of extensions of G by A are in one-to-one correspondence
with H*(G, A), the second cohomology group of G with coefficients in A. Hence, the distinct extensions of
G by A (up to equivalence) are classified by the pairs (type(E), x(E)), where x(E) is the cohomology class
in H*(G, A) corresponding to (E). In this correspondence, central extensions correspond to G-modules, A,
with trivial action ((E) is central iff A C Z(G)). An extension of any type splits iff x(E) = 0 in H*(G, A).
((E) is split iff there is a group homomorphism s: G — G so that wo s =id).

Proof. We just have to prove the last two facts. Note that the type of extension is trivial iff

(Vo e G)(Va € A)(o-a=a)

iff

(Vo € G)(Va € A)(z ™ ax = a)
iff

(Ve € G)(Va € A)([x,a] =1)
iff AC Z(G).

Finally, the cohomology is trivial iff every cocycle is a coboundary iff every cocycle is cohomologous to
0 iff in (E) there is a map o — u, with f(o,7) = 0. Such a map is a homomorphism. Thus, x(E) = 0 in
H?(G, A) iff (E) has a splitting. []

Examples. (I) Find all extensions
0—Z—G—17Z/2Z — 0.

There are several cases to consider depending on the type and the cohomology class of the extension.
(a) Trivial type (the action of Z/2Z on Z is trivial).
(al) Split extension. We get G = Z[[(Z/2Z).

(a2) Nonsplit extensions. In this case, we have to compute H?(Z/27Z,Z) (trivial action). We know from
previous work that (up to cohomology) we can restrict ourselves to normalized cochains, f(o,T), i.e., cochains
such that

fle,1) = f(1,0) = 0.

Elements in Z/27 are £1. We need to know what f(—1,—1) is. The reader should check that the co-
cycle condition, §f = 0, gives no condition on the integer f(—1,—1), and thus, we have an isomorphism
ZX(Z)27,7) = 7.
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What about coboundaries: f = §k? Such k’s are also normalized, and so, k(1) = 0. We have k(—1) = b,
for any b € Z. Since
0k(o,7) =0 k(1) — k(oT) + k(0),

using the fact that the action is trivial and that k(1) = 0, we get
Ok(—1,-1)=(-1) - k(1) — k(1) + k(—1) = k(1) + k(—1) = 2b.

So, we can adjust f, up to parity by coboundaries, and H?(Z/27,7) = 7./27. Consequently, we have exactly
one nonsplit, trivial-type extension

G={(n,+1)|neZ}.

The group operation is given by

(n,£1)(m,1) = (n+m,=£1)
(n,1)(m,x£1) = (n+m,=£1)
(nv_l)(ma_]-) = (n+m+171)a

where in this last equation, we assumed without loss of generality that f(—1,—1) = 1.

(b) Nontrivial type. We need a nontrivial map Z/2Z — Aut(Z). Since Z is generated by 1 and —1,
there is only one nontrivial action:
(=1) n=—n.

(Recall that 1-n = n, always).

(b1) The split, nontrivial type extension. In this case
G={(n,0)|neZ, oecZ/2Z},

with multiplication given by
(n,o)(m,7) = (n+0-m,oT).

(n,o) — (g ?) .

Now, consider the map

Observe that matrix multiplication yields

G966

Therefore, G is isomorphic to the group of matrices

G 1)

under matrix product. This is a nonabelian group, it is infinite and we claim that G is solvable with §(G) = 2.

Indeed, we have G/Z = Z /27, an abelian group, and so A (G) C Z. So,
AR (G) € AM(Z) = {0}, and we conclude that §(G) = 2.

(b2) Nonsplit, nontrivial type extension. We need to figure out what the cocycles are in order to compute
H?(Z/2Z,7). By the same reasoning as before, we need to know what is f(—1, —1). We know that 6 f(o,7) =
0. So, we have

o-f(r,p) = floT,p) + f(o,7p) = f(o,7) = 0.
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Let 7 = p = —1 in the above equation. We get
o-f(=1,=-1) = f(=o,=1) + f(o,1) = fo, 1) = o - f(=1,-1) = f(=0,=1) = f(0,~1) =0,
since f(0,1) = 0. If we let 0 = —1, since f(1,—1) = 0, we get
—f(=1,-1) = f(-1,-1) =0,

and so, 2f(—1,—1) = 0. Since f(—1,—1) € Z, we get f(—1,—1) = 0. Therefore, f = 0 and the cohomology
is trivial: H*(Z/27Z,7) = (0) (for nontrivial action).

As a conclusion, there exist three extension classes and three distinct groups, two of them abelian, the
third solvable and faithfully representable by matrices.

(IT) Let V be a finite dimensional vector space and consider V' as additive group. Let G = GL(V') and
let the action of G on V' be the natural one (i.e, for any ¢ € GL(V) and any v € V, ¢ - v = ¢(v)). We have
the split extension

0=V —=>G=2GL(V)—=0.

The group, G, in the above exact sequence is the affine group of V.

(III) Again, we restrict ourselves to split extensions. Let A be any abelian group and let n € N. The

group
AHAH...HA

is acted on by the symmetric group, &,,, simply by permuting the factors. We have a split extension

0%AHAH~~~HA%Q:’GH~>O.

The group, G, is called the wreath product of A by &,, and is denoted A &,,. We denote the split extension
of a given type of G by A by AYX G (note that this notation does not refer to the action).

Here are some useful facts on cohomology:
(1) If G is arbitrary and A is n-torsion, which means that nA = 0, then H?(G, A) is n-torsion.

(2) If G is a finite group, say #(G) = g and A is arbitrary, then H?(G, A) is g-torsion (this is not trivial
to prove!).

(3) Suppose that A is n-torsion and G is finite, with #(G) = g, and suppose that (g,n) = 1. Then,
H?(G, A) = (0). (This is a clear consequence of (1) and (2).)

(4) Suppose that G is finite. We can define a homomorphism (of G-modules) A — A, called the G-norm
and denoted Ng (we will usually drop the subscript G), defined by

Ne(a) = Z o-a.

ceG
Moreover, assume that G is a finite cyclic group. Then, for any A, there is an isomorphism
A% /N A= H?*(G, A),

where
A ={acA|lo-a=a, foraloecG}.
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Here is an example of how to use the above facts.
(IV) Find all the groups of order pq (with p, ¢ prime and 0 < p < q).

We know that the g-Sylow subgroup is normal, namely, it is Z/qZ = A < G, and
G = G/A = Z/pZ. Therefore, whatever @ is, it fits in the group extension

0—2Z/qZ — G — Z/pZ — 0.

By (3), since (p,q) = 1, we have H2(G, A) = (0). So, we only have split extensions. What is Aut(Z/qZ)?
Clearly, it is Z/(q — 1)Z. So, we have to consider the homomorphisms

Z/pZ — Aut(Z/qZ) =Z/(q — 1)Z. (%)

If () is non-trivial, then p | (¢ — 1), i.e., ¢ = 1 (mod p). So, if ¢ Z 1 (mod p), then we have trivial action and
we find that

G = (z/qz) [ [(Z/qZ) = Z/pqZ.

If ¢ = 1 (mod p), we also can have trivial action, and we get Z/pqZ, again. So, we now consider nontrivial

actions. The unique cyclic group of order p in Z/(q¢ — 1)Z is generated by )\q;17 where A = 1,2,...,p— 1.

If we send 1 € Z/pZ to )\%7 the corresponding action is

-1
an)\q

(mod g).

Thus, there are p — 1 nontrivial (split) group extensions, (E)), with central groups
G ={(n,¢™)[0<m<p-1}

(here the elements of Z/pZ are 1,(,¢?,...,¢P~1) and multiplication given by

(1.¢M0.¢%) = (-4 AL e )

Consider the map Gy, — G; given by
(n,¢™) = (m, ™).

This is a group isomorphism. So, here we have all inequivalent extensions, (Ey), with p—1 different actions,
yet the groups G, are mutually isomorphic. Thus, G; and Z/pgZ are the two groups of order pg when
g =1 (mod p).

The second cohomology group, H?(G, A), has appeared naturally in the solution to the group extension
problem. Consequently, it is natural at this stage to define cohomology groups in general.

The set up is: We have a group, G, and a G-action, G[[A — A, where A is an abelian group. For
every n € N, we define

c(G,A) ={f: G]]---]] ¢ — A}

n

where G H e H G is the product of G with itself n times (in the category of sets). By convention, when

n = 0, this set product is the one point set, {*x}. The set C"(G, A) is an abelian group under addition
of functions (e.g, f + g is the function defined by (f + g)(z) = f(z) + g(z) for all x € G). The group
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C"™(G, A) is called the group of n-cochains of G with coefficients in A. We define the coboundary map,
dp: C™(G, A) — C™L(G, A), for every n > 0, by the formula:

n

(6nf)(017"'a0n+1) = 01 'f(027"'agn+1)+Z(_1>jf(017"'70-j7170-j0—j+170-j+27"'70n+1)

+ (=) f(o1,...,00),
for all f € C*(G,A) and all 01,...,0,41 € G.

(1) Check (DX): For all n > 0,
On(dn—1f) =0.

(By convention, 6_1 = 0).

(2) Set Z"(G,A) = Ker §,, a subgroup of C"(G, A), the group of n-cocycles of G with coefficients in
A. We also let B"(G, A) = Im §,_1, a subgroup of C"(G, A), the group of n-coboundaries of G with
coefficients in A. Observe that since §_; = 0, we have B%(G, A) = (0). Furthermore, (1) implies that
B™"(G,A) C Z"(G, A), for all n > 0.

(3) Set H"(G,A) = Z™(G, A)/B™(G, A); this is the nth cohomology group of G with coefficients in A.

Examples. (i) Case n = 0: Then, B° = (0). The functions, f, in C°(G, A) are in one-to-one correspondence
with the elements f(*) of A, and so, C°(G, A) = A. Note that for any o € G, if f € C°(G, A) corresponds
to the element a in A, we have

Gof)(0) =0 f(¥) = f(x) =0-a—a

Thus,
Z°%(G,A) ={acA|da)=0t={acA|o-a=a, forallc € G} = A®.

So, we also have H’(G, A) = A“.

(ii) Case n = 1: Then, C*(G, A) is the set of all functions f: G — A. For any
f € CHG, A), we have
(01f)(o,7) =0 f(7) = flo7) + f(0).

It follows that
ZU (G, A) ={f e CY (G, A) |0f =0} ={f € CU(G, A) | f(or) =0 - f(7) + f(0)}.
This is the set of crossed (or twisted) homomorphisms from G to A.

Remark: If A has trivial G-action, then Z1(G, A) = Homg, (G, A).
We have BY(G,A) = Im §p = all functions, g, so that g(c) = (6o(a))(c) = o - a — a, for some a € A.

Such objects are twisted homomorphisms, called principal (or inner) twisted homomorphisms.

Remark: If A has trivial G-action, then B'(G,A) = (0). So, H'(G, A) is the quotient of the twisted
homomorphisms modulo the principal twisted homomorphisms if the action is nontrivial, and H*(G, A) =
Homg, (G, A) if the action is trivial.

(iii) Case n = 2: We have already encountered this case in dealing with group extensions. We content
ourselves with computing 3. Since C?(G, A) = {f: G[[ G — A}, we have

(02f)(o,7,p) = o - f(7,p) = foT,p) + f(o,7p) = f(0, 7).
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We note that Z2(G, A) gives us back the group of “old” 2-cocycles, B%(G, A) gives us back the group of
“old” 2-coboundaries, and H?(G, A) is in one-to-one correspondence with the equivalence classes of group
extensions of a fixed type.

Remark: Given a group, G, Eilenberg and Mac Lane (1940’s) constructed a topological space, K(G,1),
unique up to homotopy type, with the following properties:

(K (G, 1)) = {(Cj)) i Z ; 1

Fact: If we compute the integral cohomology of K (G, 1), denoted H"(K(G,1),Z), we get
H"(K(G,1),Z) = H"(G,Z).

Here, the G-action on 7Z is trivial.
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1.5 Solvable and Nilpotent Groups
Given a group, G, its derived series,
G=A9G)2a0(G) 2AP(G) 2 240G 2+

may decrease very quickly, and even though the solvable groups (those for which the derived series reaches
{1} after finitely many steps, i.e., those for which §(G) is finite) are not as “wild” as groups for which
§(G) = oo, it desirable to delineate families of groups with an even “nicer” behavior. One way of doing
so is to define descending (or ascending) chains that do not decrease (or increase) too quickly and then to
investigate groups whose chains are finite. The collection of nilpotent groups is such a family of groups, and,
moreover, nilpotent groups tend to show up as fundamental groups of spaces arising naturally in geometry.
Every nilpotent group is solvable and solvability is inherited by subgroups and quotient groups, as shown in
the following proposition:

Proposition 1.28 If G is a group and G is solvable, then for every subgroup, H, of G, the group, H, is
solvable. Moreover, if H is normal in G, then G/H is solvable. In fact, for both groups, é(either) < 6(QG).
Conversely, say G possesses a normal subgroup, H, so that both H and G/H are solvable. Then, G is
solvable. In fact, 6(G) < §(H)+ 6(G/H).

Proof. Let G be solvable. Then, H C G implies AN (H) € AM(G); therefore (by induction),
AV(H) C AU(@),

and we deduce that 6(H) < §(G). Consider G = G/H when H <t G. Then, [z,y] = [7,7] and this implies
AM(G) = AW(G). Hence (by induction),

AU)(G) = AY(@).

Therefore, 6(G) < §(G).

Conversely, assume that H and G/H are solvable (with H <1 G). We have AG)(G) = AU)(G) and if
j > 0(G), then AU (G) = {1}, which implies that AU)(G) C H. So, A¥®*+)(G) C AW (H), and the latter
is {1} if k = §(H). Therefore,

ACGHE) () = {1},
and so, 6(G) < d(H)+d(G/H).
Proposition 1.29 Let (P) be some property of finite groups. Assume that (P) satisfies:
(a) The trivial group has (P), every cyclic group of prime order has (P).
(b) Suppose G has (P), then H G implies H and G/H have (P).
(¢) If G has (P) (with G # {1}), then G is not simple unless G is cyclic of prime order.
Then, when G has (P), the group G is solvable.

Proof. We proceed by induction on #(G). The case G = {1} is trivial, by (a) (nothing to check). Assume
that the proposition holds for all G with #(G) < n, and assume #(G) =n + 1. If n + 1 is prime, then G is
cyclic of prime order, which implies that it is solvable. Thus, we may assume that n 4+ 1 is not prime and
that G has (P). By (c), the group G has some nontrivial normal subgroup, H. By (b), both H and G/H
have (P), and the induction hypothesis implies that both H and G/H are solvable. Proposition 1.28 implies
that G is solvable. []

Corollary 1.30 (Burnside, Feit & Thompson) Every group G, of order p®q® or odd order is solvable.
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Remark: Corollary 1.30 is not really proved. It depends on establishing (c) for the two properties: pq®,
odd order. As remarked just before Proposition 1.10, this is not easy.

Definition 1.9 Let G be any group. The lower central series (LCS) of G is the descending chain of
subgroups
G=Ty2I1 2242

)

where I'j 11 = [G,T;]. The upper central series (UCS) of G is the ascending chain of subgroups
W =2yCZ1CZ,C---CZyC---

)

where Z; = the inverse image in G of Z(G/Z;_1).

Remarks:
(1) T1(G) = [G,T] = [G,G] = AD(G), and
Ia(G) = [G.1h] =[G, AV(G)] 2 [A1(G), AN (G)] = AP(G),
and so, T'2(G) D A®)(G). The reader should check (DX) that T'4(G) 2 AD(G), for all d > 0.
(2) Z1(G) = inverse image in G of Z(G/Z,) = inverse image of Z(G), so Z1(G) = Z(G).

(3) If for some j, the equality I';(G) = I'j4+1(G) holds, then I';(G) = I'q(G), for all d > j. The lower
central series strictly descends until the first repetition.

(4) Similarly, if for some j, the equality Z;(G) = Z;41(G) holds, then Z;(G) = Z4(G), for all d > j. The
upper central series strictly ascends until the first repetition.

Proposition 1.31 Suppose the lower central series of G reaches {1} after r steps. Then, for every j <,
we have I'._; C Z;. Consequently, the upper central series reaches G after r steps. Conversely, suppose that
the upper central series reaches G after r steps. Then, for every j < r, we have I'; C Z,_;. Consequently,
the lower central series reaches {1} after r steps.

Proof. By induction on j. For j = 0, we have I',. = T',._g, and by hypothesis, T, = {1} and Zy = {1}, so the
basis of the induction holds. Before we do the induction step, let us also consider the case j = 1. We need
to show that ',y C Z; = Z(G). But ', = {1}, yet ', = [G,T',_1]. This means that for all o € G and all
7 €T,_1, we have [o,7] € ', = {1}. Thus, 7 commutes with all o € G, and so, 7 € Z(G) = Z;. Let us now
assume our statement, I',_; C Z;, for some j, and look at the case j + 1. Now, I',_; = [G,T',_;_1]. By the
induction hypothesis,
G, T_j_1] C Zj.
Consider the map G — G/Z; = G. Then,

[G,Frfjfﬂ = {1} in é

Therefore, I',_;_1 is contained in the inverse image of Z(G) = Z(G/Z;) = Zj11, concluding the induction
step.

For the converse, again, use induction on j. When j = 0, we have I'y = G and Z, = Z,_o = G, by
hypothesis, and the basis of the induction holds. Assume that I'; C Z,_; for some j, and consider the case
7+ 1. We have

Ui =[G Ty G, 21,
by the induction hypothesis. Look at the map G — G/Z,_;_1 = G. We have

f]'-"-1 - [év 7T—j}'

But, by definition, Z,_; = Z(G). Thus, [G,Z,_;] = {1} in G. Therefore,
Fj+1 C Ker (G — G) = Zr,jfl. |
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Definition 1.10 A group, G, is nilpotent if and only if the lower central series reaches {1} after finitely
many steps. The smallest number of steps, say c, is the nilpotence class of G. We write G € Nilp(c). (We
let ¢ = oo if the LCS does not reach {1} in finitely many steps.)

Remarks:

(1) Nilp(0) = the class consisting only of the trivial group.
Nilp(1) = the collection of abelian, nontrivial groups. If we let Ailp(c) denote the union of the
collections Nilp(k) for k = 0,...,c, then it turns out that we have a strictly ascending chain

Ab = Nilp(1) < NVilp(2) < Nilp(3) < - - -
of “worse and worse behaved” groups.
(2) We have G € Nilp(c) iff the UCS reaches G after ¢ steps and ¢ is minimal with this property.

(3) Each nilpotent group is automatically solvable, but the converse is false, even for finite groups, even for
small finite groups. Indeed, we observed earlier that A (G) C T'.(G). Therefore, §(G) < nilpotence
class of G. For a counter-example, take G = &3. This group has order 6, its center is trivial, and so
71 = Zo and G is not nilpotent. Yet, we have an exact sequence

0 —Z/32 — &3 — Z/2Z — 0,
and the extremes are solvable (even nilpotent, even abelian), so the middle is solvable.

(4) Every p-group is nilpotent. This is because the center of a p-group is nontrivial, so the UCS is strictly
ascending and our group is finite; so, this implies that our group is nilpotent.

Remark: The fundamental groups of many spaces arising in geometry tend to be nilpotent groups.

Proposition 1.32 (Modified Sylow III) Say G is a finite group, P is a p-Sylow subgroup of G and H is
some subgroup of G. If H O Ng(P), then No(H) = H.

Proof . (Frattini Argument). Pick ¢ € Ng(H). Then, cHo~! = H and oPo~! C oHo~ ! (since H 2
Ng(P)). So, P and o Po~! are two p-Sylow subgroups of H, and by Sylow II, there is some 7 € H so that

TP~ =0Po~!. Thus, 77'oP(r o)~ = P, and so, 7 lo € Ng(P) C H, by hypothesis. So,0c € TH = H
(since T € H). [

Theorem 1.33 Let G be a finite group. Then, the following statements are equivalent:
(1) G is nilpotent.
(2) G has property (N).
(8) Every mazimal subgroup of G is normal.
() AD(G) C (G).
(5) Every p-Sylow subgroup of G is normal in G.

(6) G is isomorphic to the product of its p-Sylow subgroups. (We write G = Hp Gp).
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Proof. (1) = (2). Let H be a proper subgroup of G, we must prove that Ng(H) > H. Now, there is some
¢ with T'. = {1}. Obviously, I'. C H, so pick a smallest d for which 'y C H, so that I'y_1 Z H.

Claim: ].—‘d,1 Q Ng(H)
If the claim holds, then H < Ng(H), i.e., G has property (N). Pick £ € T'4_1; so,

[H,§] C[H,Tq-1] C[G,Tq-1] =T4.

Pick h € H and look at [h™1,€&]. The element [h=1,&] is in [y, and so, in H (since I'y C H). Consequently,
h=1¢hé=t € H, from which we deduce £hé~! € H, and since this is true for all h € H, we have £ € Ng(H),
as desired.

(2) = (3). This has already been proved (c.f. Proposition 1.17).
(3) = (4). This has already been proved (c.f. Proposition 1.23).

(4) = (5). Let P be a p-Sylow subgroup of G. Look at Ng(P). If Ng(P) # G, then Ng(P) is contained
is some maximal subgroup, M. By modified Sylow III, we get Ng(M) = M. Now, AM(G) C ®(G) C M, by
hypothesis, and the second homomorphism theorem implies that M corresponds to a subgroup of G/ A (G)
and normal subgroups correspond to normal subgroups. Yet, G/ A(l)(G) is abelian, so all its subgroups are
normal, which implies that M is normal, a contradiction.

(5) = (6). This has already been proved (c.f. Proposition 1.18).

(6) = (1). Since every p-group is nilpotent, the implication (6) = (1) follows from the following

Proposition 1.34 Say G; € Nilp(c;), for j =1,...,t. Then,

t
H G € Nﬂp(fg?%{t{cj})'

j=1

Proof. An obvious induction reduces us to the case t = 2. In this case, we use an induction on max{c, ca}.
The cases ¢; < 1 and ¢ < 1 are trivial. Now, we have (DX)

Z(G1 [[G2) = 2(G) [] 2(Ga).

But then, (G1[[G2)/Z(G1 ][] G2) = (G1/Z(G1)) [[(G2/Z(G2)); on the left hand side, the purported nilpo-
tence class is down by 1 and on the righthand side, both are down by 1. We conclude by applying the
induction hypothesis. []

This concludes the proof of Theorem 1.33. []
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1.6 -Groups and the Jordan-Holder-Schreier Theorem

Let © be some set. If M is a group, we denote the monoid of group endomorphisms of M (under composition)
by Endg, (M) and the group of (group) automorphisms of M by Autg,(M).

Definition 1.11 A group, M, is an Q-group iff there exists a set map Q@ — Endg,(M). If Q is itself a
group, we demand that our map be a homomorphism (so, the image lies in Autg,(M)). If Q is a ring, we
demand that M be an abelian group and that our map be a ring homomorphism taking 1 € €2 to the identity
endomorphism of M.

Examples.

(1) When Q is a group, we get an Q-action on M (at first, as a set) and further, we obtain:

1-m = m,
E-(n-m) = (&n)-m,
§-(mn) = (£-m)(n-n)

In particular, (£ -m)~! =¢&-m~L

2) When 2 is a group and M is abelian, we just get an Q-module.

3) If Q is a ring, then the nomenclature is 2-module instead of Q-group.

4) When Q is a field, then an 2-module is a vector space over (2.

(2)
3)
(4)
(5) Being an Z-module is equivalent to being an abelian group.

An Q-subgroup of M (resp. Q-normal subgroup of M) is just a subgroup (resp. a normal subgroup), N,
of M stable under €, i.e., for all £ € Q, for all n € N, we have £ -n € N.

Blanket Assertion (DX). The three isomorphism theorems of ordinary group theory are true for Q-
groups provided everywhere “subgroup” appears we substitute “Q-subgroup”, mutatis—mutandis for “normal
subgroups.”

Definition 1.12 A normal flag (normal series, normal chain) is a descending chain of 2-subgroups of M:
M =MD M DMy 2---2M, ={1}, (%)

each M; being normal in the preceding M;_;. A normal flag is nonrepetitious if for no j do we have
M; = M;_;. Given a second normal flag:

M = Mj2M{D M2 -2 M, = {1}, (+%)

the flag (+*) refines (x) iff for every i the Q-group M; occurs as some M;. Two normal flags (x) and (**)
are isomorphic iff the collection of their successive quotients, M;_1/M; and M;_,/M; may be rearranged so
that, after rearrangement, they become pairwise isomorphic (in their new order). When this happens, the
lengths r and s are equal.

Theorem 1.35 (Schreier refinement theorem, 1928) For an Q-group, any two normal flags possess isomor-
phic refinements. If both normal flags are nonrepetitious, so are their isomorphic refinements.

The main corollary of the Schreier refinement theorem is:

Corollary 1.36 (Jordan—Hélder theorem) Any two composition series for an Q-group are isomorphic.
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Proof. A composition series has no refinements except itself—apply Schreier’s theorem. []

Zassenhaus proved a lemma specifically designed to give the smoothest proof of Schreier’s theorem—this
is
Lemma 1.37 (Zassenhaus’ butterfly lemma) Say G is an Q-group and A and C are subgroups. Suppose
B <A and D < C are further Q-subgroups. Then,

(ANC)B/(AND)B = (CNA)D/(CNB)D.

G

ANC

BNnC AnND

Figure 1.1: The butterfly lemma

Proof. Let T=ANC=CNA, M =BNC and N = AN D. The conclusion of the lemma is
TB/NB=TD/MD.

First of all, there is right-left symmetry in the statement of the lemma and its conclusion (A <> C, B < D;
under these substitutions, T' <> T and M <+ N). We must prove that NB <TB. Pick t € G and look at
tNBt~! =tNt Bt~ '. If t € A, then tBt~' = B, since B <1 A. Thus, ift € A then tNBt~! =tNt~'B. If
teT CC,thenas N=DNCNA=DNT and D < C, we get

tNt™ ' =tDt ' ntTt ' =tDt™*NT=DNT = N.
Thus, if t € T then tNBt~' = NB.
Say € =tb € TB. Since B< A and N C A, we have BN = NB. Then, we find
ENBEY = thNBb 1t7!

= thNBt™!
= thBNt™!
= tBNt!
= tNBt!
= NB.

Therefore, NB < TB. By symmetry, we get M D <<TD. Look at TB/NB =TNB/BN (since N CT). By
the third isomorphism theorem, we have

TB/NB=T/TNNB.
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By symmetry,
TD/ND=T/TNMD.

If we prove that TN NB = TN NM (and so, TN MD = T N NM, by symmetry), we will be done.
Pick ¢ € TN NB. We can write £ = nb € NB, so b = n='¢ € NT = T (since N C T). Thus,
be BNT=BNCNAC M, and so, b € M. Consequently, £ = nb € NM and since we also have £ € T,
then £ € TN NM. This proves that TN NB C TN NM. The reverse inclusion is trivial, since M C B.
Therefore, TN NB =T N NM, as claimed. []

Proof of Theorem 1.35. Let
M=MyDM DMy;2---M;_y DM; D---2 M, ={1}, (%)
and
M =My2 M DM;2---M_y 2M;2D---2 M= {1}, (%)
be two normal nonrepetitious chains. Consider the groups
MY, = (M N M)M;.

As j varies, these groups start at M;_; (= M}E)l) and end at M; (= Mi(f)l) and we get a refinement of (k) if
we do this between any pair in (x). Also consider the groups
M) = (M)_, N M;)M],

and let ¢ vary. These groups interpolate between Mj’;1 and MJ’», just as above. Look at the successive
quotients

Mi(ffl)/Mi(f)ls Mjgl_l)/Mjg)l' (1)

If welet A= M; 1, B=M,;(<A),C=M_, and D= M;(<C), we can write the first quotient group of
() as
MUY MY, = (M 0 M) _)M; /(M- N M})M; = (AN C)B/(AN D)B,

the left hand side of Zassenhaus’ lemma. By symmetry, the second quotient group of () is the righthand
side of Zassenhaus’ lemma and we are done. []
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1.7 Categories, Functors and Free Groups

Definition 1.13 A category, C, is a pair: (Ob(C), F1(C)), in which Ob(C) and F1(C) are classes, called the
objects of C and the morphisms (or arrows) of C, respectively. We require the following conditions:

(1) For all A, B € Ob(C), there is a unique set, Hom¢(A, B), called the collection of morphisms from A
to B, and any two such are either disjoint or equal. Further

F1(C) = | Home(4, B).
A,B

For the morphisms, we also require:

(2) For every u € Home (A, B) and v € Home (B, C), there exists a unique morphism
w=vou € Hom¢(A,C), called the composition of v and wu.

(3) For every A € Ob(C), there is some arrow, 14 € Hom¢ (A, A), so that for every B € Ob(C) and
u € Home (A, B), we have

AMA B = A% B
AMBleap — A% B

Note: This shows that 14 is unique for each A (DX).

(4) We have the associativity law
uo(vow)=(uov)ow,

whenever the compositions all make sense.

Examples of Categories:

(1) Sets, the category of sets; Ob(Sets) = all sets, F1(Sets) = all maps of sets.

(2) gr, the category of groups; Ob(Gr) = all groups, F1(Gr) = all homomorphisms of groups. A special
case is Ab, the category of abelian groups.

(3) Q-Gr, the category of Q-groups. Special cases are: The category of G-modules, Mod(G); the category
of R-modules, Mod(R) (where R is a ring); and the category of vector spaces, Vect(k) (where k is a
field). Also, Ab = Mod(Z).

(4) TOP, the category of topological spaces; Ob(TOP) = all topological spaces,
F1(TOP) = all continuous maps.

(5) Ck-MAN, the category of C*-manifolds; Ob(C*-MAN) = all (real) C*-manifolds (0 < k < oo or w),
FI(C*-MAN) = all C¥*-maps of C*-manifolds.

(6) HOL, the category of complex analytic manifolds; Ob(HOL) = all complex analytic manifolds,
F1(HOL) = all complex analytic maps of holomorphic manifolds.

(7) RNG, the category of all rings; Ob(RNG) = all rings (with unity), FI(RNG) = all homomorphisms of
rings. A special case is CR, the category of commutative rings.
A subcategory, D, of C is a category, (Ob(D), F1(D)), so that
(a) Ob(D) C Ob(C).
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(b) FI(D) C FI(C), in such a way that for all A, B € Ob(D), we have
HomD (A, B) - HOmc (A, B)

We say that D is a full subcategory of C iff for all A, B € Ob(D), we have
Homp (A, B) = Home (A4, B).

Examples of Subcategories:
(1) The category, Ab, is a full subcategory of Gr; the category, CR, is a full subcategory of RNG.

(2) Recall that u € Home (A, B) is an isomorphism (in C) iff there is some v € Home (B, A) so that

A B A = A2
B-sA“B = B15 B

Take D so that Ob(D) = Ob(C), and morphisms, set

Homp (A, B) = {u € Home(A, B) | u is an isomorphism} and F1(D) = {J, p Homp(A4, B). (Note that
Homp(A, B) may be empty.) The category, D, is generally a nonfull subcategory of C, for example
when C = Sets.

Say C is a category, we can make a new category, C”, the dual or opposite category, as follows: Ob(CP) =
Ob(C) and reverse the arrows, i.e., for all A, B € Ob(C),

Homen (A, B) = Home (B, A).
Definition 1.14 Let C and C’ be categories. A functor (respectively, a cofunctor), F, from C to C’ is a rule

which associates to each object A € Ob(C) an object F(A) € Ob(C’) and to each arrow u € Hom¢ (A, B) an
arrow F'(u) € Home: (F(A), F(B)) (resp. F(u) € Home: (F(B), F(A))) so that,

F(la) = 1pa
F(uov) = F(u)oF(v)
(resp. F(uowv) = F(v)oF(u), for cofunctors.)

Remark: Obviously, Definition 1.14 can be made more formal by defining a functor, F, from C to C’ as a
pair, (F°P, F1) where F°P: Ob(C) — Ob(C’) and F1: F1(C) — F1(C’), so that, for every u € Hom¢(A4, B),
we have Ff(u) € Home (F°P(A), F°P(B)), and the conditions of Definition 1.14 hold (and similarly for
cofunctors).

We use the notation A ~ F(A) (or u ~» F(u)) to indicate that F': C — C’ is a functor from C to C’, and
not just an ordinary function.

Examples of Functors

(1) For the categories in Examples (2)—(7), consider the rule:
A € Ob(C) ~~ |A| = the underlying set of A, and
u € FI(C) ~ |u|] = the morphism, u, as a map of sets.
The functor, | |, is a functor from C to Sets, called the forgetful functor or stripping functor.

(2) A cofunctor, F: C — C’, is just a functor, F: C? — €’ (equivalently, F': C — C'P).

(3) We have the functor, G,: RNG — Ab, given by taking G,(R) = R as an additive group, for every
ring, R. The functor, G, is called the additive group functor.
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(4) For every integer, n > 0, we have the functor, GL, : CR — Gr, where GL,,(A) is the group of invertible
n x n matrices with entries in A. When n = 1, the group GL; is denoted G,,,. This is the multiplicative
group functor, it takes CR to Ab. The functor G,, can be promoted to a functor, RNG — Gr, taking
the ring, A, to its group, A*, of units.

(5) Let (TOP, %) be the category of topological spaces together with a base point. We have the subcategory
(C-TOP, %) consisting of connected and locally connected topological spaces with a base point. The
morphisms of (C-TOP, %) preserve base points. We have the functors (fundamental group)

m1: (C-TOP, %) — Gr,
and for n > 1 (nth homotopy group),
7n: (C-TOP, ) — Ab.

(6) For every integer, n > 0, we have a functor (integral homology), TOP — Ab, given by X ~~ H, (X, Z)
and a cofunctor (integral cohomology), TOP — Ab, given by X ~» H"(X,Z).

(7) math.upenn.edu/ Given a group, G, for any integer, n > 0, we have a functor, Mod(G) — Ab, given
by A~ H"(G,A).
Definition 1.15 Say F' and F’ are two functors C — C'. A morphism, 0, from F to F’ is a collection
{04 | A€ Ob(C)}, where:
(1) O4: F(A) — F'(A) in C’, so that (consistency)

(2) For every v: A — B in C, the diagram

commutes, for all A, B € Ob(C).

A morphism of functors is also called a natural transformation of functors.

Examples of Morphisms of Functors:

(1) In the category (C-TOP, ), we have the functors m and H;(—,Z). The Hurewicz map
(X)) 25 Hy(X,Z)
defines a morphism of functors.

(2) If G is a group and K is a subgroup of G, we have the obvious restriction functor
res: Mod(G) — Mod(K), and it induces a morphism of functors res: H"(G, —) — H"(K, —).

(3) The determinant, det: GL,, — G, is a morphism of functors (from CR to .4b).

(4) Check (DX) that with the above notion of morphisms, the functors from C to C’' form a category
themselves. This category is denoted Fun(C,C").

Proposition 1.38 Given a category, C, each object, A, of C gives rise to both a functor, ha, and a cofunctor,
h, from C to Sets.
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Proof. For any given A € Ob(C), let

ha(B) = Home(A,B)
hE(B) Home (B, A).

Moreover, for every v € Home (B, C'), define hy(v): Home(A, B) — Home (A, C) by composition, so that for
every u € Home (A, B),
ha(o)(w) = vou,

and, for every v € Home(B, C), define h% (v): Home(C, A) — Home (B, A), again by composition, so that
for every u € Home(C, A),
hE (v)(u) = uow.

The reader should check that hs and k% are indeed functors (DX). []
The following proposition is half of the Yoneda embedding lemma:

Proposition 1.39 Let A and A be two objects of C and suppose that the corresponding functors ha and
hz are isomorphic, say by 0: ha — hz. Then, A and A are isomorphic via a canonically determined
isomorphism (dependent on 0).

Proof. For every B € Ob(C), we have an isomorphism

05: Home (A, B) — Home (A, B),
and this is functorial. Let B = A, then 04 : Hom¢ (A, A)——Hom¢ (g, A), and we set ¢ = 64(14), a morphism
in Home (A, A). Now, if we let B = A, we get 0 7: Home (A, A) — Home (A, A), and we set ¢ = 9%1(15), a

morphism in Home (A, A). Pick any z in Home(A, B). We would like to understand what 6p(z) is. We have
the commutative diagram

z € Home (A, B) b5, Home (4, B)

14 € Home (A, A) —— Home (4, A).
A

Following the above commutative diagram clockwise, we get 65(z), and following it counterclockwise, we get
zo1. We conclude that

05(2) = 200
Similarly, for any z € Homc(ﬁ, B), by considering the commutative diagram involving 0%1 and 9;1, we get
05'() =Z o,

But then, we have

13=05(p) =poy and 1a=6,'(Y)=vop,
which shows that ¢ and ¢ are inverse isomorphisms. Furthermore, ¢ (resp. ) determine 6, just as 6
determines ¢ and ¥. []

Example. Recall that Vect(k) is the category of vector spaces over a field, k. There exists a cofunctor,
D: Vect(k) — Vect(k), given by: V ~ VP = Homyeet () (V; k) = the dual space of V; and for any linear
map, 6: V — W, the map 0°: WP — VP is the adjoint of §. By applying D again, we get a functor,
DD: Vect(k) — Vect(k). However, it is well-known that there exists a morphism of functors,

n:id — DD, where id(V) = V 2% DD(V) = VPP and this is functorial.

Two categories, C and C’, are equivalent (resp. isomorphic) iff there exist functors F': C — C’ and
F':C"—Csothat F'oF 2 1¢c and Fo F' = 1¢/ (resp. F' o F = 1¢ and F o F' = 1¢/). Here 1¢ denotes the
identity functor from C to itself.



1.7. CATEGORIES, FUNCTORS AND FREE GROUPS 99

Proposition 1.40 (Yoneda’s Embedding Lemma) The functor A ~ hY establishes an equivalence of the
category, C, with a full subcategory of Fun® (C,Sets) (where Fun® (C,C') denotes the category of cofunctors
from C to C’).

Proof. We already know from Proposition 1.39 that if we have an isomorphism 6: hf — hg, then 6 de-

termines uniquely two mutually inverse isomorphisms ¢: A — A and p: A > A So, two objects A and

A in Ob(C) give isomorphic cofunctors iff they themselves are isomorphic. Given any v € Homz(h%, hg)7

where F = Fun®(C, Sets), we know (again) that there exists a morphism v: A — ﬁ, so that v is given by
composing with 1, i.e., given a consistent family of morphisms, vg: h(B) — hg(B), that is,

vp: Home (B, A) — Home(B, A), we have vp(z) = ¢ o z, and our ¢ is given by ¢ = v4(14) (all this from
the proof of Proposition 1.39). Hence, from v, we get a morphism 9: A — A, thus

Home (A, ﬁ) >~ Homz(hY, hg).

So, we indeed have an equivalence with a full subcategory of F, namely the image consists of those cofunctors
of the form hf (easy details are left to the reader (DX)). ]

Remark: What does Yoneda’s lemma say? It says that any object A € Ob(C) is determined by its corre-
sponding cofunctor hg. The cofunctor, hg , is a “collection of interconnected sets”, Home (B, A) being the
set associated with B.

Definition 1.16 Given a functor, F, from C to Sets (resp. a cofunctor, G, from CP? to Sets), it is repre-
sentable iff there exists a pair, (A4,&), where A € Ob(C) and & € F'(A), so that F' is isomorphic to ha via the

morphism of functors, £: hy — F, given by the consistent family of morphisms {g: Home(A, B) — F(B)
defined via

E(u) = F(u)(§),

(resp. G is isomorphic to h§ via the morphism of functors, E; hY — G, given by EB: Home (B, A) — G(B).
Here, £p is defined via £g(u) = G(u)(§)).

The notion of representable functor is a key concept of modern mathematics. The underlying idea is to
“lift” as much as possible of the knowledge we have about the category of sets to other categories. More
specifically, we are interested in those functors from a category C to Sets that are of the form h 4 for some
object A € Ob(C).

Remark: If (4,¢) and (A4',¢’) represent the same functor, then there exists one and only one isomorphism
A= A’ so that £ € F(A) maps to £’ € F(A’). This is because we have the isomorphisms £: hy— F and

et —_—— . . ~_1 -~ —_—— —_—— .

§: hy— F; and so, we have an isomorphism &  o&: ha— ha. By Yoneda’s lemma, A— A’ via the
isomorphism determined by ¢ and & and this maps £ to £’. Uniqueness follows as everything is determined
by £ and &'.

Examples of Representable Functors:

(1) Let C = Sets; consider the functor F': Sets? — Sets given by: F(S) = the collection of all subsets of
S, and if §: S — T is a map of sets, the morphism F(0): F(T) — F(S) is the map that sends every
subset, V, of T to its inverse image, §~1(V), a subset of S. Is this a representable functor?

We need a set, @, and an element, £ € F(Q), i.e., some subset of @, so that

hg(B) = Homses(B,Q) = F(B),  via &p(u) = F(u)(&).
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Now, we know that F(u): F(Q) — F(B) is the map that sends a subset, S, of @ to its inverse image,
u~1(S), a subset of B. So, F(u)(€) is the inverse image of our chosen &.

Take Q = {0,1} and ¢ = {1} C Q. Then, subsets of B are exactly of the form, u~!(1), for the various
u € Homges(B, @), which are thus characteristic functions.

(2) Let C = RNG, and let F': RNG — Sets be the stripping functor. Is it representable?
We need a ring, P, and an element, £ € P, so that for all rings, B,
Homgng (P, B) — |B|,
via
u € Homgng (P, B) — u(€) € |B|.

Take P = Z[T], the polynomial ring in one variable with integral coefficients, and £ = T. Then, any
ring homomorphism v € Homgneg (Z[T], B) is uniquely determined by u(T) = b € |B|, and any b can
be used.

Definition 1.17 Let F: C — €’ and G: C’ — C be two functors. The functor F is the left (resp. right)
adjoint of G iff for every A € Ob(C) and B € Ob(C’), we have functorial isomorphisms (in both A and B)

Home/ (F(A),B) — Home(A,G(B)).
(resp. Home/ (B, F(A)) — Home(G(B), A)).

Observe that F' is left-adjoint to G iff G is right-adjoint to F'. Many so-called “universal constructions”
arise from the existence of adjoint functors; this is a key concept in modern mathematics.

Remark: The concept of adjointness is related to the notion of representability of a functor, as shown by the
following proposition whose simple proof is left to the reader:

Proposition 1.41 A functor, G: C' — C, has a left-adjoint if and only if, for every A € C, the functor B ~
Homc¢ (A, G(B)) from C' to Sets is representable. If (F(A), &) represents this functor (so that £g: Home: (F(A), B) 2
Home (A, G(B)) is an isomorphism for every B € C'), then F is the object part of a left-adjoint of G for which the
isomorphism EB s functorial in B and yields the adjointness.

A functor may have a right adjoint, but no left adjoint, and conversely (or no adjoint at all). For example,
the functor, G ~ G/[G,G] = G, from Gr to Ab, is the left adjoint of the inclusion functor from Ab to Gr.
The inclusion views an abelian group just as a group. So, G ~» G has a right adjoint. However, we now
prove that it has no left adjoint.

Suppose such a left adjoint, F', exists.

Claim 1: For any abelian group, H, the group F(H) can never be simple unless F'(H) = {1}, in which
case, H = {1}.

The adjointness property states that for every group, G, we have a functorial isomorphism
Homg, (F(H),G) = Hom 4,(H,G"). (%)
If we take G = F(H) in (x), we have
Homg, (F(H), F(H)) = Hom 4,(H, F(H)™).

If F(H) # {1} and F(H) is non-abelian simple, then, on the left hand side there are at least two maps
(id and the constant map that sends all elements to 1), even though on the righthand side there is a single
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map, since F(H) is non-abelian simple, a contradiction. If F(H) is Z/pZ for some prime p, take G in (x)
to be As,. Again, there are at least two maps in Homg,(F(H), As,), namely: the constant map and an
embedding. But As, is simple; so, the righthand side has only one element, again a contradiction. Now, if
F(H) = {1}, take G = H in (x). In this case, the left hand side has a single map but the righthand side has
at least two maps if H # {1}.

Claim 2: F(H) has no maximal normal subgroups. If M < F(H) and M is maximal, then F(H)/M
is simple. Let G = F(H)/M in (). If F(H)/M is non-abelian, there are at least two maps on the left
hand side, but only one on the righthand side, a contradiction. If F(H)/M is abelian, say Z/pZ, again
take G = As, in (x). There are two maps (at least) on the left hand side (stemming from the two maps
F(H) — F(H)/M) and only one on the righthand side. So, if F((H) exists, it is not finitely generated.

Take H = G = Z/27Z. Then, we have
Homg, (F(Z/2Z), Z,/2Z) = Hom 4,(Z/2Z, Z,/2T).

Clearly, the righthand side has exactly two maps, and thus, so does the left hand side. But one of these
maps is the constant map sending all elements to 1, so the other map must be surjective. If so, its kernel,
K, is a subgroup of index 2, hence normal, and so, it must be maximal normal, a contradiction.

Therefore, the functor G ~ G/[G,G] = G®, from Gr to Ab, has no left adjoint.

One often encounters situations (for example in topology, differential geometry and algebraic geometry)
where the objects of interest are arrows “over” a given object (or the dual notion of arrows “co-over” a given
object), for example, vector bundles, fibre bundles, algebras over a ring, etc. Such situations are captured
by the abstract notion of “comma categories.”

Definition 1.18 Let C be a category and fix some object, A, in Ob(C). We let C4, the category over A
(or comma category), be the category whose objects are pairs (B,np), where B is some object in Ob(C)
and 7p is a morphism in Home (B, A), and whose morphisms from (B, ng) to (C,7¢) are the morphisms
u € Home (B, C) making the following diagram commute:

Dually, we let C4, the category co- over A (also called comma category), be the category whose objects are
pairs (B,ip), where B is some object in Ob(C) and ig is a morphism in Home (4, B), and whose morphisms
from (B,ip) to (C,ic) are the morphisms u € Home (B, C') making the following diagram commute:

B—*——=C

DN

The notion of representable functor allows us to define products and coproducts in arbitrary categories.
Let C be any category. Say {Aq}aca is a set of objects in Ob(C).

(1) We get a cofunctor, F, from CP to Sets via

B ~ [[Home (B, Aa) = F(B),

where the above product is just the cartesian product of sets, and
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(2) We get a functor, G, from C to Sets via

B~ HHomc(Aa, B) = G(B).

Are these (or either) representable?

First, consider (1). We need an object, P € Ob(C) and some § € F(P), i.e. £ € [[, Home (P, Ay), which
means that & = {pr, }o, where the pr, are morphisms pro: P — A,.

Definition 1.19 When (P, {pr,}) exists, i.e. for every B € Ob(C), there is a functorial isomorphism

Home(B, P) = H Home(B, Ay),

[e3

via u > (prq 0 u)q, the pair (P, {pry}) is the product of the A,’s in C. This product is denoted [, Ao (one
usually drops the pr,’s). We have the (functorial) isomorphism

Home (B, [ [ Aa) = J[Home(B, Aa). (%)

Remark: Definition 1.19 implies that for every family of morphisms,
{fa: B — Ao} €[], Home(B, Ay), there is a unique morphism, u: B — [] Aa, so that

fa =praou, forall a.

This is called the universal mapping property of products. In general, universal mapping properties are another name
for representing a functor. The latter is a more general and supple notion and we will mainly stick to it.

Now, consider (2). We need an object, @ € Ob(C), and some £ € G(Q), i.e. £ € [[, Home(Aq, Q), which
means that & = {is}a, where the i, are morphisms i,: A, — Q.

Definition 1.20 When (Q, {io}) exists, i.e. for every B € Ob(C), there is a functorial isomorphism

HOIllc(Q,B) — HHOch(Aa,B),

via u — (U0 iq)q, the pair (Q,{ia}) is the coproduct of the A,’s in C. This coproduct is denoted [[, An
(one usually drops the i,’s). We have the (functorial) isomorphism

Home (] [ A, B) = [ ] Home(Aa, B). ()

Of course, as above, there is a universal mapping property here, also.

Definition 1.21 The product in C4 is called the fibred product over A in C. The coproduct in C4 is called
the fibred coproduct over A in C.

Remark: Given any family, {(Aa, Ta)}a, of objects in Ca (with mq: Aq — A), the fibred product of the A,’s over
A in C is a pair, (][] Aa,&), where [][ As is some object in C (together with a morphism, n: [[ Aa — A), and &
A A A

consists of a family of morphisms, pro: [[ Aa = Aa, with
A

Ta 0pra =7mgoprg (=m), forall a,p;
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moreover, for any object, B € C, and any family of morphisms, {fo: B — Aq}a, with
Ta O fa =mg o fg, forall a,p,

there is a unigue morphism, u: B — [] Aq, so that fo = pra o u, for all a.
A

We leave it to the reader to unwind the definition of fibred coproducts over A in C.

Examples of Products, Coproducts, Fibred Products and Fibred Coproducts:
(1) C = Sets. Given a family of sets, {Aq}aca, does [, Aq or [[, A exist? If so, what are they?

For [], A, we seck a set, P, and an element, &, in F(P), where F is the cofunctor

T~ F(T) = | [ Homsets (T, Aa).-

This means that £ € F(P) is just a tuple of maps, pro: P — A,. Take P to be the ordinary cartesian
product of the A,’s and pr,: P — A4, the ath projection. Check that this works (DX).

For [], A, we seek a set, @, and an element, &, in G(Q), where G is our functor

T ~ G(T) = 1‘[Homsets (A, T).

So, we need a family of maps i,: A, — Q. Now, if Q is to work, then for every T', we need an isomorphism

9T : HomSets(Q; T) : H HomSets(Aaa T)

given by 07(¢) = (poia)a. Take Q@ =|J , Ao (the disjoint union of the A,’s). The rest of the construction
is easy (DX).

(2) C = Ab, more generally, C = Mod(R) (R a ring) or C = Mod(G) (G a group).
We begin with products. Given a family, { A, }aca, with each 4, in Mod(R), we seek P € Mod(R) and
maps pro: P — A, in Mod(R), so that for every T' € Mod(R), there is an isomorphism

Or: Homg(T, P) — HHomR(T,Aa),

where 07 (¢) = {pro o ¢}a (the notation Hompg(A, B) is usually used, instead of the more accurate but more
cumbersome notation Hom yoq(r) (A4, B)). We see that P must be [], A, the product in the category of
sets, if this can be made an R-module. Now, [], A, is an R-module via coordinatewise addition, with the
R-action given by r(&,) = (ré€a). So, [[,, Aa is the product of the A,’s in Mod(R).

Next, we consider coproducts. We seek Q € Mod(R) and maps i,: A, — Q in Mod(R), so that for
every T' € Mod(R), there is an isomorphism

Or: Homp(Q,T) — |]Hompg(Aa,T),

where 07(p) = {¢ 0 iq}a. The disjoint union () , Ay may be a first approximation to @, but it is not good
enough. Instead, we let

Q= {5 € HAO‘ | pro(§) =0 for all but finitely many a}.
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This is an R-submodule of [ A,. The isomorphism

Or: Homp(Q,T) — |][Hompg(Aa,T)

can now be established. First, let i (u) = (J5)s, where 65 = u and 6 = 0 for all 8 # . Given a family,

(Pa)a, of maps @o: Aq — T, for any € = (§a)a € Q, set ©(§) = >, ¢aléa) € T. If ¢ € Homg(Q,T) is
given, define ¢, = ¢ 0i,. This shows that if we set [[, Ao to be our R-module @ and the i, to be our
maps, in: Ao — @, as above, we have proved the proposition:

Proposition 1.42 The categories: Sets, Ab, Mod(R), Mod(G) all possess arbitrary products and coprod-
ucts.

How about fibred products and coproducts?

(3) Let us go back to C = Sets, and first consider fibred products over A. A first approximation to the
product, P, in Setsy, is [], Ao. However, this is not good enough because there is no “structure map”,
w: P — A, so that

commutes for all a. We let

Pa={¢e ] Aa|malta) = 7a(&s), for all o, 5.

This is a set (possibly empty), and it lies over A; indeed, we can define 7: P4 — A by (&) = m4(&), for any
chosen «, since this is well-defined by definition of P4. We write [] A, for P4 and, for every a, we define

A
the map, pro: [[ Ag = Aa, as the restriction of pro: [[Ag — Aq to [[ Aa. The reader should check that
A A
this yields products in Sets 4.

Coproducts are a bit harder. It is natural to try | , Ao as a first approximation, but this is not good
enough: this does not tell us what i: A — @ is. The difficulty is that (- , Ao is too big, and we need to
identify some of its elements. To do so, we define an equivalence relation on () , Aq, in two steps. First, we
define immediate equivalence. Given & € A, and n € Ag, we say that £ and 7 are immediately equivalent,
denoted & ~ 7, iff there is some a € A, so that £ = i,(a) and n = ig(a). The relation = is clearly reflexive
and symmetric but it is not necessarily transitive. So, we define ~ to be the equivalence relation generated
by ~. This means that { ~ n iff there exist zo, ...,z € |, Aa, so that

§ =120, Lo R T1, T1 R T2, ..., Ty—1 =Ty, Ty = 1.

(For example, if { ~ = and = ~ 7, then { = iy(a), x = ig(a), v = ig(b) and n = i,(b). Note that
ig(a) = ig(b).) Welet [TAa = (U, A4a)/ ~, and i: A — [] A, is given by i(a) = class of i, (a), for any
fixed « (this is Well—deﬁied, by definition of ~). The veriﬁi‘:ation that J] A, works is left as an exercise
(DX). Therefore, the category of sets has arbitrary fibred coproducts as we?l.

(4) C = Ab, Mod(R), Mod(G).

For fibred products, we use ];[ Ag, as constructed for Sets, but made into an R-module (resp. G-module),

in the usual way.
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For fibred coproducts, begin with [, A, (in C), and define N to be the submodule generated by the
elements iy (a) —ig(a) with a € A and «, 8 arbitrary. Take

e (1)

Again, the reader should check that ][] A, works (DX). Therefore, Ab, Mod(R), Mod(G), all have arbitrary
A
fibred products and coproducts.

We now consider products and coproducts in the category of groups, Gr. There is no difficulty for
products: Use [], Aq, the usual cartesian product of the A,’s, as sets, and make [], A, into a group under
coordinatewise multiplication. The same idea works for fibred products. However, coproducts require a new
idea.

Given the family of groups, {Aa }aeca, write A2 = A, — {1}. Let
S =4,

and consider, S™, the n-fold cartesian product of S. We can view S™ as the set of words of length n over
the alphabet S; each word is an n-tuple, (04, ...,04,), With 03 € Ag. We call such a word admissible iff
Ao, # Aa,,, for j=1,2,...,n—1. Let S”* denote the set of admissible words of length n, and let

Q= (U S"*) U {0}.

(The special word, ), is the “empty word”.) Multiplication in @ is defined as follows:
Given (0) = (0ay, .- -,0q,) and (1) = (18,,...,75,) in Q, set

(ONT) = (Taryr---1TansTBys -+ TB. )5

the result of concatenating the r-tuple, (o), with the s-tuple, (7). In case one of (o) or (7) is 0, the
concatenation is just the non-empty word and @@ is (). The word (¢)(7) is admissible of length r + s, except
if o, = 1, in which case we need to perform a reduction process to obtain an admissible word:

(1) Form 04,75, in Aa, = Ap,. There are two cases:
(a) 0,78, # la, (= 1p,); then
(Cons - sTan_1s0rTBy s TBys -« s THS)
is an admissible word of length r + s — 1, and the reduction process ends with this word as output.
(b) 04,78, = 1o, (= 1p,); then, omit o, and 73,, form
(Cars- - s0am 15TBay -+ TBs)s
a word of length r + s — 2, and if necessary, go back to (1) above.

Since both step (a) and (b) decrease the length of the current word, the reduction process must end with
some admissible word of length [ < r + s, or the empty word.

The set @ with the above multiplication is indeed a group with identity element, ¢} (DX). (The map
ia: Ao — @ sends o € A, to the length-one word (o) if o # 1 or to () if c = 1.) In summary, we get
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Theorem 1.43 The category of groups, Gr, possesses arbitrary coproducts (old fashioned name: “free prod-
uct of the A,.”)

Definition 1.22 Given any set, S, define the the free group on S to be the group Fr(S) = [[Z.
g

We have just shown that coproducts exist in the category Gr. What about coproducts in the category
Gr#, where A is any group?
vy g

Given a family {(Ga,ia)}aea in Grd, form G =[], Ga, in the category Gr. In G, consider the collection
of elements

{ia(a)ig'(a) |a € A, ia: A= Ga, aand § € A};

let N be the normal subgroup of G' generated by the above elements. Then, G/N € Ob(Gr?), because
the map i: A — G/N given by i(a) = image of i,(a) in G/N (for any fixed «) is well-defined (since image
of iq(a) = image of ig(a) in G/N). Check that, (DX), (G/N,1) is the fibred coproduct of the G,’s. (Old
terminology: amalgamated product of the G, over A.)

Examples of fibred coproducts: (1) Let U and V be two sets. Form the intersection U N V; we have
inclusion maps iy: UNV — U and iy : UNV — V. We know that U IV = U WV, the disjoint union of U
and V', and then, the set-theoretic union of U and V is given by

Uuv =U ]_[ V.
unv

(2) Consider the category (TOP, *) of (“nice”, i.e., connected, locally connected) topological spaces with
a base point. Given two spaces (U, %) and (V, x) in (TOP, %), consider (U NV, x). Then, again,

UUV,x)=Ux) J[ (Vi#), in(TOP,x).
(UNV,%)

Van Kampen’s theorem says that

T (U UV, %) =7 (U, ) H w1 (V, %),
w1 (UNV,x)

which may also be written as
™ ((U, » I m *)) =mUx [ mW».
(UNV,%) 71 (UNV,x)
In other words, van Kampen’s theorem says that m; commutes with fibred coproducts.

Go back to the free group, Fr(S). We have

Homg, (Fr(5),G) = Homg.(][][Z G)

S
= HHomgr(Z,G)
S
=~ J]IG| = Homses (S, |G)).
S

Corollary 1.44 The functor, S ~ Fr(S), from Sets to Gr is the left adjoint to the stripping functor,
G ~ |G, from Gr to Sets.
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Corollary 1.45 If S — T is surjective, then Fr(S) — Fr(T) is a surjection of groups. Also,
Fr(S) 2 Fr(T) iff #(S) = #(T) (i.e., S and T have the same cardinality).

Proof. If u: S — T is a surjection in Sets, then there is a map v: T" — S so that wov = 1p. Since Fr is a
functor, we get homomorphisms Fr(u): Fr(S) — Fr(T) and Fr(v): Fr(T) — Fr(S); also, Fr(u)oFr(v) = 1gy(1),
which shows that Fr(u) is surjective.

If #(5) = #(T), it is obvious that Fr(S) = Fr(T). Conversely, assume that Fr(S) = Fr(T). We know
that
Homg, (Fr(S), G) = Homg, (Fr(T), G)

for all G. Take G = Z/2Z. Then, the left hand side is isomorphic to Homgets(S, |Z/2Z|) = P(S) (where
P(S) = power set of S) and the righthand side is isomorphic to P(T). Therefore, #(P(S)) = #(P(T)); and

so, #(9) = #(T). O
Given a group, G, consider its underlying set, |G|, and then the group Fr(|G|). Since

Homg, (Fr(|G]), ) = Homsers (|G|, [G]),

the image of the identity map, idg € Homses(|G|, |G]), yields a canonical surjection, Fr(|G|) — G. If S is
a subset of |G|, then, the inclusion map, S < |G|, yields a morphism of groups, Fr(S) — G.

Definition 1.23 A set, S C |G|, generates a group, G, iff the canonical map Fr(S) — G is surjective.

This definition agrees with our old use of generation of a group in previous sections. Say S generates G.
Then, we have the exact sequence

0— K —Fr(S) — G —0,

where K is the kernel of the surjective morphism, Fr(S) — G (so, K is normal in Fr(S)). There is also a
set, T', so that
Fr(T) — K — 0 is exact.

By splicing the two exact sequences, we get an exact sequence
Fr(T) — Fr(S) — G — 0,

called a presentation of G. Sometimes, a presentation is defined as a sequence
Fr(T) — Fr(S) — G — 0,

where the smallest normal subgroup containing Im (Fr(7')) is equal to the kernel of Fr(S) — G. (Note that
such a sequence is not necessarily exact at the group Fr(S5).)

The following fundamental theorem about free groups was proved independently by J. Nielson and O.
Schreier:

Theorem 1.46 (Nielson-Schreier (1929)) Every subgroup of a free group is a free group.

The original proof is quite messy. The theory of group actions on trees yields a more direct and more
transparent proof.

We conclude this section on categories with one more interesting example of adjoint functors from ho-

motopy theory.

Example: Consider the category, h-TOP, whose objects are the same as those of TOP, but whose mor-
phisms, Homy-top(X,Y), are the homotopy classes of maps X — Y. Given any space, X, in h-TOP, we
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can form XX, the suspension of X: This is the space obtained by taking two new points, say 0 and 1, and
forming the double cone obtained by joining 0 and 1 to every point of X, as illustrated in Figure 1.2.

We also have, QY, the loop space on Y, where QY consists of all continuous maps, S — Y, from the
unit circle to Y (say, mapping (1,0) to the base point of Y'). Then, we have the isomorphism

Homh_Top (EX, Y) = Homh_Top (X, QY)

i.e., suspension is left-adjoint to loops. For instance, given any 6 € Homy-top(XX,Y), for any p € X, send
p to the image by 6 of the loop I(p) (= (*,0,p,1,%) in XX), in Y.

Figure 1.2: A suspension of X

1.8 Further Readings

El que anda mucho y lee mucho,
Vee mucho y sabe mucho.
—DMiguel Cervantes

Some group theory is covered in every algebra text. Among them, we mention Michael Artin [2], Lang [34],
Hungerford, [27], Jacobson [29], Mac Lane and Birkhoff [37], Dummit and Foote [11], Van Der Waerden [47]
and Bourbaki [4]. More specialized books include Rotman [43], Hall [22], Zassenhaus [52], Rose [42] and
Gorenstein [19]. For group cohomology, see also Cartan and Eilenberg [9], Rotman [44], Mac Lane [36] and
Serre [45]. Mac Lane [35] is a good reference for category theory.



Chapter 2

Rings and Modules

2.1 Introduction

Linear algebra—meaning vector space theory over a field—is the part of algebra used most often in analysis,
in geometry and in various applied fields. The natural generalization to the case when the base object is
a ring rather than a field is the notion of “module.” The theory of modules both delineates in sharp relief
the elementary and deeper structure of vector spaces (and their linear transformations) and provides the
essential “linear springboard” to areas such as number theory, algebraic geometry and functional analysis.
It turns out to be surprisingly deep because the collection of “all” modules over a fixed ring has a profound
influence on the structure of that ring. For a commutative ring, it even specifies the ring! Just as in analysis,
where the first thing to consider in analyzing the local behavior of a given smooth function is its linear
approximation, so in geometric applications the first idea is to pass to an appropriate linear approximation
and this is generally a module.

2.2 Polynomial Rings, Commutative and Noncommutative

Consider the categories RNG and CR, and pick some ring, A, from each. We also have the category, RNGA,
called the category of rings over A (or category of A-algebras), and similarly, CR#, and we have the stripping
functors RNG# ~ Sets and CR? ~~ Sets.

Is there an adjoint functor to each? We seek a functor, P: Sets ~» C, where C = RNG or CRA7 so that
Home (P(S), B) = Homges (S, | Bl)

for every B € C.
Case 1: CR™.

Theorem 2.1 There ezists a left-adjoint functor to the stripping functor, CRA ~~ Sets.
Proof. Given a set, S, let N denote the set of non-negative integers and write NS for
Ng={¢: 5> N|&s)=0, except for finitely many s € S}.

Note that Ng consists of the functions S —s N with compact support (where S and N are given the discrete
topology).

Remark: We may think of the elements, £, of Ns as finite multisets of elements of S, i.e., finite sets with multiple
occurrences of elements: For any s € S, the number £(s) is the number of occurrences of s in €. If we think of each

109
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member, s, of S as an “indeterminate,” for any £ € Ng, if &(si) =m; >0 for i =1,...,¢, then £ corresponds to the
monomial st ---spt.

We define a multiplication operation on N s as follows: For £,n € N S5

(€n)(s) = &(s) +nls)-

(This multiplication operation on Iglg is associative and has the identity element, &), with &y(s) = 0 for

all s € S. Thus, Ng is a monoid. Under the interpretation of elements of Ng as multisets, multiplication
corresponds to union and under the interpretation as monomials, it corresponds to the intuitive idea of
multiplication of monomials. See below for precise ways of making these intuitions correct.)

Define A[S] by
AlS| =Af: NS — A| f(§) =0, except for finitely many £ € ﬁs}

Remark: We should think of each f € A[S] as a polynomial in the indeterminates, s (s € S), with coefficients from
A; each f(&) is the coefficient of the monomial €. See below where X is defined.

In order to make A[S] into a ring, we define addition and multiplication as follows:

(f+9)(&) = [f(&)+g()
(f9)©) = > fgl).
7727)’7]:’5

Multiplication in A[S] is also called the convolution product. The function with constant value, 0 € A, is the
zero element for addition and the function denoted 1, given by

ORI
1(5)‘{1 e g,

is the identity element for multiplication. The reader should check that under our operations, A[S] is a
commutative ring with identity (DX). For example, we check that 1 is an identity for multiplication. We

have
(f-1)©) =D fmim) = > fn).
3

nn'=¢ néo=

However, for all s € S, we have néy(s) = n(s) + &o(s) = n(s), and so, n = £. Consequently, (f-1)(§) = f(§),
for all .

We have an injection A — A[S] via « € A+ « - 1. Here, o - 1 is given by

@19 =ae) = {0 {718

Therefore, A[S] € CRA. It remains to check the “universal mapping property.”

Say 0 € Homgga (A[S], B). Now, we can define two injections S — Ng and S < A[S] (a map of sets) as
follows: Given any s € S, define Ag; € Ng by

_JO ift#s
As(t)_{l ift =s,

and define X, € A[S] by

x©-{7 2R
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Then, if we set 0°(s) = 6(X,), we get a set map 0° € Homges(S, | B]).
Conversely, let ¢ € Homges(S, |B|). Define ¢: Ng — B via
3(&) =[] #(s)** € B.
ses

Now, set f(f), for f € A[S], to be
ORI IGES]
19

(Of course, since B € CR?, we view f (&) as an element of B via the corresponding morphism A — B.)

The reader should check (DX) that:
(a) " is a homomorphism and

(b) The operations f and b are mutual inverses. []

The definition of A[S] has the advantage of being perfectly rigorous, but it is quite abstract. We can give
a more intuitive description of A[S]. For this, for any ¢ € Ng, set

X©O=T[Xx59, in A[S],
seS

and call it a monomial. The reader should check (DX) that
X)) = d¢n, forall &,me Ng.

Hence, the map & — X € is a bijection of NS to the monomials (c.f. the remark on monomials made earlier).
Moreover, we claim that every f € A[S] can be written as

f=> 1©x®.
3
This is because

(Z f(E)X(5)> () = F(E)den = F(n).
€

3

The usual notation for £(s) is &, and then, X&) = [Lcs X¢&, and our f’s in A[S] are just polynomials in
the usual sense, as hinted at already. However, since S may be infinite, our formalism allows us to deal with
polynomials in infinitely many indeterminates. Note that any polynomial involves just a finite number of
the variables.

What happened to |A| in all this? After all, in CR*, we have rings, B, and maps i4: A — B. So, the

commutative diagram

A

NS

A

B C

would give

Bl Cl
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sl4l. Given any set, S, make an |A|-set:

Consider the category of |A|-sets, Set
|[A|TIS = |A|US.

This is an |A|-set, since we have the canonical injection, |A| — |A|II S. Let T be any |A|-set and look at
Homgggial (JA| IIS,T), i.e., maps |A| II S — T such that the diagram

A|LS —— =T
Al

commutes. We know that
Homgqyia (|A| IS, T) € Homsers (4], T) | | Homaers (S, T)

and the image is Homgggiai (JA|, T) [ Homsets (S, T). But Homgga1 (|A],T) consists of a single element,
and so,
Homgggia (JA| 1S, T) = Homgets (S, T).

Thus, we have the functorial isomorphism
Homepa (A[S], B) = Homgegiai (JA[ LS, [B]).
Corollary 2.2 A necessary and sufficient condition that Z[S] = Z[T] (in CR) is that #(S) = #(T).

Proof. If #(S) = #(T), then there exist mutually inverse bijections, ¢: S — T and ¢: T — S. Hence, by
functoriality, Z[S] is isomorphic to Z[T] (via Z[S](v) and Z[T](v)). Now, take B = Z /27, and assume that
Z[S] = Z|T). Then, we know that

HOIDCR(Z[S}7 B) = HOIHCR(Z[T], B),
and since Homcg (Z[S], B) = Homgets(S,{0,1}) and Homcgr(Z[T], B) = Homgets(T,{0,1}), we have
Homgets (S, {0,1}) = Homgets (T, {0, 1}).

This implies that 2#(5) = 2#(T) and thus, #(S) = #(T). (I

Case 2: RNG®, where R is a given ring (not necessarily commutative). For every set, S, and every
R-algebra, B € RNGE, let

Hom{), (S, [B) = {2 € Homseis(S, |B]) | (¥s € S)(¥¢ € Tm (|R)(2(5)¢ = €p(s))}-
Theorem 2.3 There exists a functor, R(S), from Sets to RNGE, so that

Hompygr(R(S), B) = Homggts(s, |B|), functorially.

Sketch of proof. (A better proof via tensor algebras will be given later.) Given S, pick a “symbol”, X, for
each s € S, and map N to the “positive powers of X;,” via n — X7 and define X™ - X7 = X™+"  Tet
Ny, ={X? |n>1} 2N (as monoid), and let

S=]][N..

seS
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Consider S, the cartesian product of p copies of S, with p > 1. An element of S is a tuple of the form
(X, ..., Xp?), and is called a monomial. Call a monomial admissible iff r; # riyq, for i =1,...,p— 1.
Multiplication of admissible monomials is concatenation, with possible one-step reduction, if necessary. Call
S* the union of all the admissible monomials from the various S®), with p > 1, together with the “empty

monomial”, @). Set
R(S)={f:8"—= R| f(§) =0, except for finitely many £ € S*}.

There is a map R — R(S) (a — af). We make R(S) into a ring by defining addition and multiplication
as in the commutative case:

(f+9)&) = [f(&)—+9(&)
(f9)© = > fma)
7727)’77:’5

where £, and n’ are admissible monomials. Then, R(S) is an R-algebra, and it satisfies Theorem 2.3 (DX).
0

Theorem 2.4 Say T is a subset of S. Then, there exists a canonical injection i: A[T] — A[S], and A[S]
becomes an A[T]-algebra. In the category of A[T]-algebras, we have the isomorphism

AlS) = A[TI[S — T
(Here S — T denotes the complement of T in S, and A is in CR.)
Proof. We have an inclusion, T < S, and for every B € CR?, restriction to T gives a surjection
res: Homgets(S, | B|) — Homgets(T, | B))-

Because we are in the category of sets, there is a map, 6, so that res o § = id. Now, the maps 6 and res
induce maps © and Res so that Res 0 © = id, as shown below:

Homgpa (A[S], B) —— Homgets(S, |B|)

| l@ l le

Homgpa (A[T], B) —— Homges(T, |B|).

If we let B = A[S], we get a map i = Res(idag)): A[T] — A[S]. If we let B = A[T], then, since Res is
onto, there is a map 7: A[S] — A[T] so that Res(m) = id afp;. It follows that 4 is an injection, and thus, A[S]
is an A[T-algebra.
We have
Homeparm (A[T][S — T], B) = Homges (S — T, | BJ).

The given map, |A[T]| — |B|, yields a fixed map, T'— |B|. For any given map, S — T — |B|, therefore,
we get a canonical map, T I (S —T) — |B|, i.e., S — |B|, depending only on the map S —T — |B].
Therefore, there is an injection

Homepgam (A[T][S — T], B) — Homcga (A[S], B),
and the image is just Homegarr (A[S], B). By Yoneda’s lemma, A[S] = A[T][S — T, as an A[T]-algebra. []

From now on, we will write Hom 4 (B, C) instead of Homgga (B, C) and similarly for RNGT. If X(© is
a monomial, then we set

deg(X ) =Y "&(s) € Zo.
ses
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If f € A[S], say f =3¢ aeX'®), then

deg(f) = sup{deg(X'*)) | a(e) # 0}
In particular, note that deg(0) = —oc.

Proposition 2.5 The canonical map, A — A[S], establishes an isomorphism of A with the polynomials of
degree < 0 in A[S]. Any o # 0 in A goes to a polynomial of degree 0, only 0 € A goes to a polynomial of
degree < 0. If f,g € A[S], then

(a) deg(f + g) < max{deg(f),deg(g)}.

(b) deg(fg) < deg(f) + deg(g).
If A is without zero divisors then we have equality in (b) and

(¢) The units of A[S] are exactly the units of A.
(d) The ring A[S] has no zero divisors.

Proof. Since we deal with degrees and each of the two polynomials f, g involves finitely many monomials,
we may assume that S is a finite set. The map A — A[S] is given by a — « -1 and 1 has degree 0, so it is
trivial that we have an isomorphism of A with the polynomials of degree < 0.

Say S ={1,...,n} and label the X as X;,..., X,;. The monomials are lexicographically ordered:
X0 X0 < Xbr X0
iff a1 =0b1,...,a; =bj and aj41 < bjy1 (j=0,...,n—1).
(a) It f =1 ae X and g = 3 ) by X&), then f+g = > (a) + b)) X©.
If deg(f + g) > max{deg(f),deg(g)}, then there is some 71 so that
deg(X™) > deg(X®), for all £ occurring in f and g, and agyy + by # 0,

a contradiction.

(b) With f and g as in (a), we have

9= Z( > a(n)b(n’)>X(E)' (%)
€ \nn',
nn'=¢
Now,
deg(X™) + deg(X ) =3 (') (s) = D _&(s) = deg(X)).
However, a(,, # 0 implies that deg(X ) < deg(f) and beyy # 0 implies that deg(X("')) < deg(g), and this
shows that deg(X(€)) < deg(f) + deg(g), for any X&) with nonzero coefficient in (x).

When A is a domain, pick 7 to be the first monomial in the lexicographic ordering with X ™ of degree
equal to deg(f), and similarly, pick 7’ to be the first monomial in the lexicographic ordering with X ") of
degree equal to deg(g). Then (DX), X X (") is the monomial occurring first in the lexicographic ordering
and of degree equal to deg(f) + deg(g) in fg. Its coefficient is a(,) b,y # 0, as A has no nonzero divisors;
so, we have equality in (b).

(c) Say u € A[S] is a unit. Then, there is some v € A[S], so that uv = vu = 1. Consequently, deg(uv) = 0,
but deg(uv) = deg(u) + deg(v). Thus, deg(u) = deg(v) = 0 (as deg(u),deg(v) > 0), i.e., u, v are units of A.

(d) If f,g # 0, then deg(fg) = deg(f) +deg(g) >0, s0 fg # 0. O
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Definition 2.1 Suppose A is a commutative ring and B is a commutative A-algebra. Pick a subset, S C |B|.
The set, S, is called algebraically independent over A (or the elements of S are independent transcendentals
over A) iff the canonical map, A[S] — B, is a monomorphism. The set, S, is algebraically dependent over A
iff the map, A[S] — B, is not a monomorphism. When S = {X}, then X is transcendental, resp. algebraic
over A iff S is algebraically independent (resp. algebraically dependent) over A. The algebra, B, is a finitely
generated A-algebra iff there is a finite subset, S C |B|, so that the canonical map A[S] — B is surjective.

2.3 Operations on Modules; Finiteness Conditions for Rings and
Modules

Let R € RNG, then by an R-module, we always mean a left R-module. Observe that a right R-module is
exactly a left R°P-module. (Here, R°P is the opposite ring, whose multiplication -, is given by z-opy = y-x.)
Every ring, R, is a module over itself and over R°P. By ideal, we always mean a left ideal. This is just an
R-submodule of R. If an ideal, J, is both a left and a right ideal, then we call J a two-sided ideal.

Let M be an R-module and {M, }aea be a collection of R-submodules of M.

(0) N, M, is an R-submodule of M.

(1) Note that we have a family of inclusion maps, M, < M; so, we get an element of [ [, Hompg (M, M).
But then, we have a map

T Me — M. (*)
aclN

We define )  M,, a new submodule of M called the sum of the M, via any of the following three
equivalent (DX) ways:

(a) Image of (J],cp Mo — M).

(b) N{N|(1) N C M, as R-submodule; (2) M, C N, for all « € A.}

(©) {2 finite Ma | Ma € Mo}
Clearly, > M, is the smallest submodule of M containing all the M,.

(2) Let S be a subset of M. For any s € S, the map p — ps, from R to Rs, is a surjection, where
Rs = {ps | p € R}. Thus, we get the submodule ) _s Rs (equal to the image of [[¢ R — M) and
called the submodule generated by S; this module is denoted mod(S) or RS. We say that S generates
M iff RS = M and that M is a finitely generated R-module (for short, a f.g. R-module) iff there is a
finite set, S, and a surjection [[¢ R — M.

(3) The free module on a set, S, is just [ R. Observe that (DX) the functor from Sets to Mod(R)
given by S ~ [[¢ R is the left adjoint of the stripping functor from Mod(R) to Sets; i.e., for every
R-module, M, we have the functorial isomorphism

Homp([ [ R, M) = Homsers(S, | M]).
S

Remark: An R-module, M, is free over R (i.e., M = [[4 R for some set S) iff M possesses a Hamel
basis over R (DX). The basis is indexed by S. To give a homomorphism of a free module to a module,
M, is the same as giving the images of a Hamel basis in M, and these images may be chosen arbitrarily.
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(4) The transporter of S to N. Let M be an R-module, S be a subset of M and N an R-submodule of
M. The transporter of S to N, denoted (S — N), is given by
(8= N)={peR|pSC N}

(Old notation: (N :S). Old terminology: residual quotient of N by S.)
When N = (0), then (S — (0)) has a special name: the annihilator of S, denoted Ann(S). Observe:

(a) (S — N) is always an ideal of R.

(b) So, Ann(S) is an ideal of R. But if S is a submodule of M, then Ann(S) is a two-sided ideal of
R. For if p € Ann(S) and £ € R, we have (p€)(s) = p(§s) C pS = (0). Thus, p € Ann(S5).

(¢) Similarly, if S is a submodule of M, then (S — N) is a two-sided ideal of R.

An R-module, M, is finitely presented (for short, f.p.) iff there are some finite sets, S and T, and an
exact sequence
H R— H R— M —0.
T s

This means that M is finitely generated and that the kernel, K, of the surjection, [[¢ R — M, is also
finitely generated. Note that f.p. implies f.g.

Definition 2.2 An R-module, M, has the ascending chain condition (ACC) (resp. the descending chain
condition (DCC)) iff every ascending chain of submodules

My CMyCM3C---C M, C---
eventually stabilizes (resp. every descending chain of submodules
MiDM;2OM32---2My,2---,

eventually stabilizes.) If M has the ACC it is called noetherian and if it has the DCC it is called artinian. The
module, M, has the mazimal condition (resp. minimal condition) iff every nonempty family of submodules
of M has a maximal (resp. minimal) element.

Proposition 2.6 Given a module, M, over R consider all the statements
(1) M is noetherian (has the ACC).
(2) M has the mazimal property.
(8) Every submodule of M is finitely generated.
(4) M is artinian (has the DCC).
(5) M has the minimal property.
Then, (1)-(3) are equivalent and (4) and (5) are equivalent.

Proof. (1) = (2). Let F be a given nonempty family of submodules of M. If there is no maximal element
of F, given My € F, there is some M in F so that M; < Ms. Repeating the argument, we find there is some
Ms € F so that My < Mjs, and by induction, for every n > 1, we find some M, 41 € F so that M,, < M, 1.
So, we find an infinite strictly ascending chain

M1<M2<M3<...<Mt<...’

contradicting (1).
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(2) = (3). Observe that the maximal property for M is inherited by every submodule.

Claim: The maximal property for a module implies that it is finitely generated. If so, we are done. Pick
M with the maximal property and let

F={N C M| Nisasubmodule of N and N is f.g.}

The family, F, is nonempty since for every m € M, the module Rm C M is a submodule of M generated
by {m}, and so, Rm € F. Now, F has a maximal element, say T. If T # M, then there is some m € M
with m ¢ T. But now, T+ Rm > T and T + Rm is finitely generated by the generators of T' plus the new
generator m, a contradiction. Therefore, M =T € F; and so, M is f.g.

(3) = (1). Take an ascending chain,
MlgM2gngg7

and look at N = (J;=; M;. Note that N is a submodule of M. So, by (3), the module N is finitely
generated. Consequently, there is some ¢ so that M; contains all the generators of N, and then we have
N C M; € M, C N, for all » > t. Therefore, My = M, = N for all r > t.

(4) = (5). The proof is obtained from the proof of (1) = (2) mutatis mutandis.

(5) = (4). Say
My2My 2 Mg 2 - 2 My 2 -+

is a descending chain in M. Let F = {M; | ¢ > 1}. By (5), the family F has a minimal element, say M,..
Then, it is clear that the chain stabilizes at r. []

Proposition 2.7 Let M be a module and write («), (8) and () for the finiteness properties
(a) finite generation
(B) ACC
() pee
Then,
(A) If M has any of («), (B), (7), so does every factor module of M.
(B) If M has (B) or (), so does every submodule of M.

(C) Say N C M is a submodule and N and M /N have any one of (&), (8), (7). Then, M also has the
same property.

Proof. (A) If M is f.g., then there is a surjection

[IR— M, with #(S5) finite.
s
Let M be a factor module of M; there is a surjection M — M. By composition, we get a surjection
H R— M — M,
s

and so, M is f.g. Any ascending (resp. descending) chain in M lifts to a similar chain of M. The rest is
clear.

(B) Any ascending (resp. descending) chain in N C M is a similar chain of M; the rest is clear.
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(C) Say N and M/N have («). Then, there are two finite (disjoint) sets, S and T, and surjections

[[R—N-—0 and J[R— M/N—0.
S T

Consider the diagram:

As [ R is free, there exists an arrow, #: [[, R — M, shown above, and the diagram commutes. Now,

consider the diagram:
0—=J[r—]] R 117 0
s T

R N
| |

We obtain the middle vertical arrow by the map 6 and the set map S — M (via S — N — M). By
construction, our diagram commutes. We claim that the middle arrow is surjective. For this, we chase the
diagram: Choose m in M and map m to ™ € M/N. There is some ¢ € [[ R so that £ — ™. However,
& comes from 1 € [[g, R. Let 7] be the image in M of 7. Since the diagram is commutative, n=m,
and so, 7 —m maps to 0 in M/N. Consequently, there is some n € N so that 7 — m = n. Yet, n comes
from some p in [[¢ R <= [[g,r R (i.e., p = n). Consider n — p € [[g ; R. The image of n — p in M is
71— p =m+n—n=m, proving surjectivity. As S UT is finite, the module, M, has ().

Next, assume N and M /N have (3). Let
My CM; CM3gC---C M. C---

be an ascending chain in M. Write M for the image of M; in M/N. By the ACC in M/N, there is some
t > 1 so that M; = M, for all j > t. If we let N; = M; N N, we get an ascending chain in N. By the ACC
in N, this chains stabilizes, i.e., there is some s > 1 so that N; = N for all j > s. Let r = max{s,t}. We
claim that M; = M, for all j > r. We have the diagram

0 N, M, M, 0
0 N; M; M; 0,

where the rows are exact and the vertical arrows on the left and on the right are surjections. A diagram
chase yields the fact that the middle vertical arrow is also surjective.

Finally, assume N and M /N have (). The same argument works with the arrows and inclusions reversed.

|
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Corollary 2.8 Say {Mx}xen is a family of R-modules. Then, [, My has one of (o), (B), (v) iff each My
has the corresponding property and A is finite.

Proof. We have a surjection

HM)‘ — M, — 0, for any fixed p.

A
Consequently, («), (8), (v) for [T, M) implies (), (5), () for My, by the previous proposition. It remains
to prove that A is finite.

First, assume that [, My has («), and further assume that A is infinite. There is some finite set, S, and

a surjection [[¢ R — ], Mx. We may assume that S = {1,...,n}, for some positive integer, n. Then,
we have the canonical basis vectors, ey,. .., ey, of [[¢ R, and their images e, ...,€, generate ][, M. Each
image €; is a finite tuple in [[, M. Yet, the union of the finite index sets so chosen is again finite and for
any p not in this finite set, the image of M, in [, M, is not covered. This contradicts the fact that the €;’s
generate [ [, My, and so, A must be finite.

We treat () and () together. Again, assume that A is infinite. Then, there is a countably infinite
subset of A, denote it {A1, A2, ...}, and the chains
M)\l < M>\1 H.Z\f)\2 < M>\1 HM>\2 HM)\S < v

and
o0
HM)\J. > HMAJ' > H M)\j >
j=1 j#1 J#1,2

are infinite ascending (resp. descending) chains of [[, My, a contradiction.

Finally, assume that each My has () or (5) or (y) and that A is finite. We use induction on #(A).
Consider the exact sequence

O—>HM]‘—>HMJ‘—>M1—>0.
j#1 jeA
Then, (a) (resp. (B), (7)) holds for the right end by hypothesis, and it also holds for the left end, by
induction; so, (a) (resp. (), (7)) holds in the middle. []

Corollary 2.9 Say R is noetherian (has the ACC on ideals) or artinian (has the DCC on ideals). Then,
(1) Ewvery f.g. free module, g R, is noetherian, resp. artinian, as R-module (remember, #(S) < 00).
(2) Every f.g. R-module is noetherian, resp. artinian.

(8) When R is noetherian, every f.g. R-module is f.p. Finitely presented modules are always f.g.

Proof. (1) and (2) are trivial from Corollary 2.8.

As for (3), that f.p. implies f.g. is clear by the definition. Say M is f.g. Then, we have an exact sequence

O—>K—>HR—>M—)O,
S

with #(S) < co. By (1), the module J]¢ R is noetherian; by Proposition 2.6, the module K is f.g. Thus,
there is some finite set, T, so that

HR — K — 0 is exact.
T
By splicing the two sequences, we get the exact sequence

HR—>HR—>M—>O,
T s

which shows that M is f.p. [



120

®

(1)

CHAPTER 2. RINGS AND MODULES
Counter-examples.

A subring of a noetherian ring need not be a noetherian ring. Take A = C[X1, Xs,...,X,,...] the
polynomial ring in countably many variables, and let K = Frac(A). Every field is noetherian as a ring
(a field only has two ideals, (0) and itself). We have A C K, yet A is not noetherian, for we claim that
we have the ascending chain of ideals

(X1) < (X1, X2) < (X1, X2, X3) < -

Would this chain stabilize, then we would have (X1,...,X,) = (X1,..., X, Xnyt1), for some n > 1.
Now, there would be some polynomials fi,..., f, in A so that

Xnt1=HX1 4+ fuXn.

Map A to C via the unique homomorphism sending X; to 0 for j = 1,...,n, and sending X; to 1 for
7 >n. We get 1 =0, a contradiction. Therefore, the chain is strictly ascending.

A module which is finitely generated need not be finitely presented. Let A = C[X1,...,X,,...], the
polynomial algebra over C in countably many variables. Then, C is an A-module because of the exact
sequence

0 —J=(X1,....Xpn,...)  A—C—0,
in which the map A — C is given by f — f(0); the ring A acts on C via f -z = f(0)z, where f € A
and z € C. Assume that C is finitely presented. Then, there are some finite sets, S and 7', and an
exact sequence

HA—>HA—>(C—>O.
T S

We get the diagram
H A——s||A—=C——=0

T S
oo
0 J A C 0
To construct the vertical arrows, let ey, ..., es be the usual generators of [[¢ A. If 21,...,2, € C are

their images, there exist A1,...,A; € A so that

Z)\jej — Z)\](O)ZJ =1.
j=1 j=1

We have the (C-linear) map, C — A, so our z; lie in A. Then, we have 22:1 Aj(0)z; =1, in A.
If we send ej — z; € A, we get an A-linear map, ©: J[¢ A — A, and there is some £ € [[4 A with
O(¢) =1 € A. Namely, take

£= Ai(0)e;.
j=1

But then, © is onto, because its image is an ideal which contains 1. A diagram chase implies that there
exists some ¢: [[; A — J rendering the diagram commutative. Another diagram chase gives the fact
that ¢ is surjective. But then, J is finitely generated, a contradiction. Therefore, C is not f.p. (over

A).

Remark: The difficulty is that A is much “bigger” than C, and thus, the surjection A — C has to
“kill” an infinite number of independent elements.
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Consider the category, Mod(R). We can also look at subcategories of Mod(R) having some additional
properties. For example, a subcategory, C, of Mod(R) is a localizing subcategory iff

(a) Whenever M and N € Ob(C) and §: M — N is a morphism of C, then Ker 6 and Coker § = (N/Im 0)
lie in Ob(C) and the morphisms Ker § —> M and N — Coker 0 are arrows of C.

(b) Whenever
0— M — M— M"—0 isexact (in Mod(R))

and M', M" € Ob(C), then M € Ob(C) and the sequence is exact in C.

Example: Let C = Modfg(R) be the full subcategory of finitely generated R-modules, where R is noetherian.
The reader should check that C is a localizing subcategory.

Recall that an R-module is a simple iff it has no nontrivial submodules; a composition series is a finite
descending chain
M:M()>M1>M2>"'>Mt:(0)

in which all the factors M;/M;;, are simple. We know from the Jordan-Hélder theorem that the number
of composition factors, ¢, is an invariant and the composition factors are unique (up to isomorphism and
rearrangement). We set Ag(M) = ¢, and call it the length of M; if M does not have a composition series,
set Ag(M) = oc.

Say C is a localizing subcategory of Mod(R) and ¢ is a function on Ob(C) to some fixed abelian group,
A.

Definition 2.3 The function, ¢, is an FEuler function iff whenever
0— M — M —M"—0 isexactinC,
we have (M) = p(M') + p(M").

Proposition 2.10 A necessary and sufficient condition that a module, M, have finite length is that M has
both ACC and DCC on submodules. The function g on the full subcategory of finite-length modules (which
is a localizing subcategory), is an Euler function. If ¢ is an Euler function on some localizing subcategory of
Mod(R) and if

(E) 00— M — My, —---— My —0

is an exact sequence in this subcategory, then

Xo((B)) = (=1 p(M;) = 0.

j=1

Proof . First, assume that M has finite length. We prove the ACC and the DCC by induction on Ar(M).
If A\g(M) = 1, then M is simple, so the ACC and the DCC hold trivially. Assume that this is true for
Ar(M) =t, and take Ap(M) =t + 1. We have a composition series

M = My > M, >M2>"'>Mt+1:(0),
and so, Ag(M1) =t and A\g(M/M;) = 1. But the sequence
0— M, — M — M/M; — 0 is exact,

and the ACC and DCC hold on the ends, by induction. Therefore, they hold in the middle.
Now, assume that the DCC and the ACC hold for M. Let

F={NCM]|N# M, N is a submodule of M.}
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The family F is nonempty (the trivial module (0) is in F) and by the ACC, it has a maximal element, M;
so, M /M, is simple. Apply the same argument to My: We get My < My with My /M simple. By induction,
we get a strictly descending chain

M:M0>M1>M2>"'>Mt>"'

However, by the DCC, this chain must stabilize. Now, if it stabilizes at M;, we must have M; = (0), since
otherwise we could repeat the first step in the argument for M;. This proves that Ag(M) =t < 0.

Say 0 — M’ — M —s M"” — 0 is exact in Mod™(R). Pick a composition series for M”. We get a
strictly descending chain
M" =My > M > M) >---> M/ =(0).

By the second homomorphism theorem, we get a lifted sequence
M=My>M; >My>--->M =M,

and if we pick a composition series for M’, we get the following composition series with
s+t =Ar(M')+ Ar(M") factors, as required:

M=DMy>M >My>--->M =M >M >M;>---> M. =(0).

Say
(B) 00— My — My —> -+ — My_g — My — M, — 0

is an exact sequence. Then, we have the two exact sequences

(E") 0— M — My — -+ — My 5 —Ker§ — 0 and
(E") 0 — Ker 0 — M,y — M, — 0.

The cases t = 1,2, 3 are trivial (DX). By using induction on ¢, we see that the proposition is true for (E’)
and (E"). Thus, we get

(=1 o(M;) + (=1)!'p(Ker ) = 0 and

p(Ker 0) = @o(M;—1) — p(My).

If we add the first equation to (—1)¢ times the second equation we get

> (1P 0(M;) = (-1 (My1) ~ (1) (M),
and so,
Xol(B)) = (1M + (~1) " (My) + (1) (M) =0,
j=1

as claimed. [

Theorem 2.11 (Hilbert Basis Theorem (1890)) If A is a commutative noetherian ring, then so is the
polynomial ring A[X].
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Proof. Let A,, be the submodule of A[X] consisting of the polynomials of degree at most n. The module,
A, is a free module over A (for example, 1, X, X2 ..., X" is a basis of 4,). If 2 is an ideal of A[X], then
AN A, is a submodule of A4,,. As A, (being finitely generated over A) is a noetherian module, 2N A,, is
also finitely generated, say by a1, a, ..., amy (€ A[X]). If f € A and deg(f) < n, then f € A,; so,

f=aia1 4+ + Qpn)Qpn), With a; € A.

Now, let 2* be the subset of A consisting of all a € A so that either a = 0 or there is some polynomial f in
2l having a as its leading coefficient, i.e., f = a X" + O(X"~1). We claim that 2A* is an ideal of A.

Say a and b are in 2*. Then, there are some polynomials f,g € 2 so that f = aX” + O(X""1) and
g=0bX?®+ O(X*71). Take t = max{r,s}. Then, X' "f € % and X'~%g € 2, since 2 is an ideal. But,
XTf=aX"+O0(X"!) and X9 =b0X'+O(X"),

and this implies that a4b € 2*, as a+b is the leading coefficient of X'~ " f+ X?=¢g € . If A € A and a € A*,
then it is clear that Aa € 2A*. Therefore, 2A* is indeed an ideal in A. Now, A is a noetherian ring, therefore
2A* is finitely generated as an ideal. So, there exist f1,...,0; € 2A* C A, such that for any 5 € 2A*, we have
B = 2221 \ifi, for some \; € A. Now, by definition of 2*, for every ; € 2A*, there is some f;(X) € 2
so that f;(X) = ;X" + O(X™~1). Let n = max{ni,...,n;} and consider the generators ar, ..., Qye(n) Of
A, = A, N2

Claim: The set {a1,...,Qxm), f1,-- ., ft} generates 2.

Pick some g € 2. Then, g(X) = 8X" + O(X"~1), for some 7. If r < n, then g(X) € 2, and thus,
g = A1+ + M) Qp(n), With \; € A. Say 7 > n. Now, # € &, so there are elements Ay,..., A\ € 4
such that 8 = A1 81 + - -+ + A\¢B. Consider the polynomial

¢
P(X) =) NX"TMfi(X),
i=1
and examine g(X) — P(X). We have

g(X) = P(X) = BX" = > ANX"" f(X) + O(X"7) = O(X"71),
i=1

and thus there is a P(X) € (f1,..., ft) so that deg(g(X) — P(X)) < r — 1. By repeating this process, after
finitely many steps, we get

9(X) - Zhi(X)fi(X) =O0(X=").
i=1

Since this polynomial belongs to 2, we deduce that it belongs to %,,. However, 2, is generated by
a1, ..., Qyn), and so, g(X) is an A[X]-linear combination of the f;(X)’s and the a;(X)’s, as desired. []

Remark: The reader should reprove Hilbert’s theorem using the same argument but involving ascending
chains. This is Noether’s argument (DX).

Corollary 2.12 Say R € RNG. If R is noetherian, so is R(X).
Proof. We have R(X) = R[X], and the same proof works. []
Corollary 2.13 If A (in CR) is noetherian, then so is A[X1,..., Xpn].

Corollary 2.14 (Hilbert’s original theorem) The polynomial ring Z[X1, . . ., X,] is noetherian. If k is a field
(Hilbert chose C) then k[X1,...,Xy,] is noetherian.
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Corollary 2.15 (of the proof-(DX)) If k is a field, then k[X] is a PID.

Corollary 2.16 Say A is a noetherian ring (A € CR) and B is a finitely generated A-algebra. Then, B is
a noetherian ring.

Proof. The hypothesis means that B is a homomorphic image of a polynomial ring C' = A[X7,...,X,] in

such a way that the diagram
4 B
A

commutes, where A — C' is the natural injection of A into C' = A[X},...,X,]. The ring A[X,..., X,] is
noetherian, by Corollary 2.13. The map 6 makes B into a C-module and B is finitely generated as C'-module.
Now, C-submodules are exactly the ideals of B (DX). Since B is finitely generated as C-module and C' is
noetherian, this implies that B is a noetherian C-module. Therefore, the ACC on C-submodules holds, and
since these are ideals of B, the ring B is noetherian. []

C

@ To be finitely generated as A-algebra is very different from being finitely generated as A-module.

Given an exact sequence of modules,
0— M — M— M'"—0,

there are situations where it is useful to know that M’ is f.g, given that M and M" satisfy certain finiteness
conditions. We will give below a proposition to this effect. The proof makes use of Schanuel’s lemma. First,
introduce the following terminology: Given a module M, call an exact sequence

0—K—F—M—0,

a presentation of M if F is free. Note that M is f.p. iff there is a presentation of M in which both F and
K are f.g.

Proposition 2.17 If M is a A-module, then M is f.p. iff every presentation
0 —K—F—M—0, (%)
in which F is f.g. has K f.g. and at least one such exists.

Proof. The direction (<) is clear.

(=). Say M is f.p.; we have an exact sequence
0—K —F — M-—0,
where both K’ and F’ are f.g. and F” is free. Pick any presentation, (x), with F' f.g. If we apply Schanuel’s

lemma, we get
FI[k=F][][K"

But, the righthand side is f.g. and K is a quotient of the left hand side, so it must be f.g. [J

Remark: The forward implication of Proposition 2.17 also holds even if F' is not free. A simple proof using the
snake lemma will be given at the end of Section 2.5.
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2.4 Projective and Injective Modules

Let F': Mod(R) — Mod(S) be a functor (where R, S € RNG). Say

0 M M M 0 (+)
is exact in Mod(R). What about

0 —> F(M') — F(M) —> F(M") — 07 (++)

(1) The sequence (*x) is a complex if F' is an additive functor. (Observe that Homp(M, N) is an abelian

group, so is Homg(F (M), F(N)). We say F is additive iff Homg(M, N) Gl Homg(F(M),F(N)) is a
homomorphism, i.e., preserves addition.)

(2) The functor, F, is exact iff when (x) is exact then (xx) is exact (the definition for cofunctors is identical).

(3) The functor, F, is a left-exact if whenever the sequence

0 M’ M M
is exact, then the sequence
0——=FM')——=F(M)——=F(M")

is exact, right exact if whenever the sequence

M’ M M 0
is exact, then the sequence
FM)——=FM)——FM")——=0
is exact.
(4) The functor, F, is half-ezact (same definition for cofunctors) iff when (x) is exact
F(M') — F(M) — F(M")
is still exact.

(5) The cofunctor, G, is left exact if whenever the sequence

M’ M M 0

is exact, then the sequence

0 ——G(M") G(M) G(M’)
is exact, right exact if if whenever the sequence

0 M M M

is exact, then the sequence
GM") —GM)—G(M')——0

is exact.
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Remark: The chirality of a functor is determined by the image category.

Examples of exact (left-exact, right-exact, etc.) functors:

(1) Let F': Mod(R) — Mod(Z) be given by: F(M) = underlying abelian group of M. The functor F' is

exact.

(2) Take a set, A, and look at
MOd(R)A = {{Ma}aen | each M, € Mod(R)},

together with obvious morphisms. We have two functors from Mod(R)* to Mod(R). They are:
(Mo}~ [[ Mo and {Mo} ~ [ M.

Both are exact functors (this is special to modules). The next proposition is a most important example of
left-exact functors:

Proposition 2.18 Fiz an R-module, N. The functor from Mod(R) to Ab (resp. cofunctor from Mod(R)
to Ab) given by M ~» Hompg (N, M) (resp. M ~» Homg(M, N)) is left-exact (N.B.: both are left-exact).

Proof. Consider the case of a cofunctor (the case of a functor is left to the reader (DX)). Assume that
0— M 2 M2 M —0
is exact. Look at the sequence obtained by applying Homg(—, N) to the above exact sequence:

0 — Homg(M",N) -5 Homp (M, N) -2 Homp(M', N) — 0,

where ® = — oy and ¥ = — o). Pick @ € Hompr(M"”,N) and assume that U(«) = 0. We have the
commutative diagram
MY M7
W& la
N

and since M —25 M" is surjective, we deduce that @ = 0. Now, pick S € Hompg(M, N) and assume that
®(8) = 0. We have the commutative diagram (see argument below)

M/L> ]\44’”> M

iy
®(8) l/

N

Since ®() = 0, we have Im ¢ C Ker 3; so, by the first homomorphism theorem, there is a homomorphism
B: M/M' = M"” — N, as shown, making the above diagram commute. Thus, ¥(8) = S0 = 8, and so,
g elm V.

There may be some modules, IV, so that our Hom functors become exact as functors of M. This is the
case for the class of R-modules introduced in the next definition:

Definition 2.4 A module, P, is projective (over R) iff the functor M ~» Hompg(P, M) is exact. A module,
Q, is injective (over R) iff the cofunctor M ~~» Homp(M, Q) is exact.
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Remarks:

(1) Any free R-module is projective over R.

Proof. Say F' = [[¢ R. Consider the functor M ~» Hompg(][g R, M). The righthand side is equal to
[[s Hompg(R, M) =[[g M, but we know that the functor M ~ [[4 M is exact. [J

(2) A functor is left-exact iff it preserves the left-exactness of a short left-exact sequence (resp. a cofunctor
is left-exact iff it transforms a short right-exact sequence into a left-exact sequence), and mutatis
mutandis for right exact functors or cofunctors.

(3) Compositions of left (resp. right) exact functors are left (resp. right) exact. Similarly, compositions of
exact functors are exact.

We say that an exact sequence
i

0— M M-y M'"—0

splits iff there is a map o: M — M so that po o = idy~». Such a map, o, is called a splitting of the
sequence. The following properties are equivalent (DX):

Proposition 2.19 (1) The sequence
0— M -5 M- M —0
splits.
(2) Given our sequence as in (1),
0— M S M-E M —o0
there is a map w: M — M’ so that w o4 = id .
(3) There is an isomorphism M' 1T M" = M.
Proposition 2.20 Let P be an R-module, then the following are equivalent:
(1) P is projective over R.

(2) Given a diagram
P

|
M——M'"——-0,
there exists a map, 0: P — M, lifting £, rendering the diagram commutative (lifting property ).

(3) Any ezxact sequence 0 — M’ — M — P — 0 splits.
(4) There exists a free module, F, and another module, 13, so that PP~ F.
Proof. (1) = (2). Given the projective module, P and the diagram
P

|

M— M"——0,
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the exact sequence gives the map

Hompg(P, M) — Hompg (P, M") @)
and the diagram gives an element, &, of Homg(P, M"”). But P is projective, and so, (}) is surjective.
Consequently, ¢ comes from some n € Hompg(P, M), proving the lifting property.

(2) = (3). Given an exact sequence
0— M —M-—P—0,
we get the diagram
p
M—P——0.

The lifting property gives the backwards map P — M, as required.
(3) = (4). Given P, there is a free module, F. and a surjection, F' — P. We get the exact sequence
0—P—F—P—» 0,
where P = Ker (FF — P). By hypothesis, this sequence splits. Therefore, by property (3) of Proposition
2.19, we have F = PIT P.

(4) = (1). We have F = P11 ]3, for some free R-module, F. Now, F' = [[¢ R, for some set, S, and so,
for any N,

Homp(F,N) = [ [Homp(R,N) =] N.
S S

The functor N ~~ Hompg(F, N) is exact; yet, this functor is N ~ Hompg(P, N) [] HomR(ﬁ, N). Assume that
the sequence
0— M — M — M"—0 is exact,

we need to show that Hompg (P, M) — Hompg(P, M") is surjective. This follows by chasing the diagram
(DX):

Hom (F, M) ——— Hom (P, M) [[ Hom (P, M)

| |

Hom (F, M"") — Hom (P, M") [ Hom (P, M")

|

0
[l

Given an R-module, M, a projective resolution (resp. a free resolution) of M is an exact (possibly infinite)
sequence (= acyclic resolution) of modules

o — Py — - — P — P — Py — M,
with all the P/s projective (resp. free)

Corollary 2.21 FEvery R-module possesses a projective resolution (even a free resolution).
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Proof . Since free modules are projective, it is enough to show that free resolutions exist. Find a free module,
Fy, so that there is a surjection, Fp — M. Let My = Ker (Fy — M), and repeat the process. We get a
free module, Fy, and a surjection, F; — M;. By splicing the two exact sequences

0— My — Fp — M — 0 and I} — M; — 0, we get the exact sequence F} — Fy — M — 0.
We obtain a free resolution by repeating the above process. []

Proposition 2.22 Given a family, {P,}aca, of modules, the coproduct [[, Pu is projective iff each P, is
projective.

Proof. Assume that each P, is projective. This means that for every «, the functor M ~» Hompg(P,, M) is

exact. As the product functor is exact and composition of exact functors is exact, the functor
M ~» T[], Hompg(P,, M) is exact. But

HHomR(Pa,M) = HomR(H P, M).

Therefore, [ [, Pa is projective.

Conversely, assume that [ [, P, is projective. By Proposition 2.20, there is a free module, F', and another

(ITr) 117 r

(projective) module, P, with

Pick any 3, then

P (HPO,>H15 ~F

a#p
Again, by Proposition 2.20, the module Pj3 is projective. []

@ The product of projectives need not be projective. (See, HW Problem V.B.VIL.)

Remark: Projective modules can be viewed as a natural generalization of free modules. The following characteri-
zation of projective modules in terms of linear forms is an another illustration of this fact. Moreover, this proposition
can used to prove that invertible ideals of an integral domain are precisely the projective ideals, a fact that plays an
important role in the theory of Dedekind rings (see Chapter 3, Section 3.6).

Proposition 2.23 An R-module, M, is projective iff there exists a family, {e:}ic1, of elements of M and a family,
{vi: M = R}ic1, of R-linear maps such that

(i) For all m € M, we have ;(m) =0, for all but finitely i € I.
(it) For allm € M, we have m =Y, pi(m)e;.
In particular, M is generated by the family {e;}icr-
Proof. First, assume that M is projective and let ¢»: F' — M be a surjection from a free R-module, F'. The map,

1, splits, we let p: M — F be its splitting. If {fi}ics is a basis of F', we set e; = ¥(f;). Now, for each m € M, the
element p(m) can be written uniquely as

p(m) = rifr,
k

where 7, € R and 7, = 0 for all but finitely many k. Define p;: M — R by ¢;(m) = r;; it is clear that ¢; is R-linear
and that (i) holds. For every m € M, we have

m= (Y op)(m)= w(Z kalc) = er(mer,
k k
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which is (ii). Of course, this also shows the ej generate M.

Conversely, assume (i) and (ii). Consider the free module F' = [],.; R and let {f;}icr be a basis of I'. Define
the map ¢: F' — M wvia f; — e;. To prove that M is projective, by Proposition 2.20 (4), it is enough to find a map
p: M — F with 1) o o = 1. Define ¢ via

e(m) = or(m)fr.
k
The sum on the righthand side is well-defined because of (i), and by (ii),
(Wop)(m) = pr(m)er =m.
k
Therefore, M is a cofactor of a free module, so it is projective. []

We would like to test submodules, L, of M as to whether L = M by testing via surjections M — N.
That is, suppose we know that for every N and every surjection M — N we have L — M — N is also
surjective. How restrictive can we be with the N’s, yet get a viable test?

There may be some superfluous N, e.g., those N for which M — N — 0 automatically implies that
L — M — N is surjective. There may even be some such N’s that work for all L. Thus, it is preferable
to fix attention on IV and seek small enough M so that N matters in the testing of all L. This yields a piece
of the following definition:

Definition 2.5 A surjection, M — N, is a minimal (essential, or covering) surjection iff for all L C M,
whenever L — M — N is surjective, we can conclude L = M. A submodule, K, is small (superfluous) iff
for every submodule, L. C M, when L + K = M, then L = M. A submodule, K, is large (essential) iff for
all submodules, L C M, when L N K = (0), then L = (0). The injection K — M is essential (minimal) iff
K is large.

Proposition 2.24 The following are equivalent for surjections 6: M — N :
(1) M %5 N is a minimal surjection.
(2) Ker 0 is small.
(3) Coker (L — M — N) = (0) implies Coker (L — M) = (0), for any submodule, L C M.

Proof. (1) = (2). Pick L, and assume L+ Ker 6 = M. So, §(L) = (M) = N. Thus, L = M, by (1), which
shows that Ker 6 is small.

(2) = (3). Say L C M and assume that Coker (L — M — N) = (0). Therefore, N = Im (L — N),
and we deduce that

L+ Ker 6 = M,
by the second homomorphism theorem. By (2), we get L = M; so, Coker (L — M) = (0).
(3) = (1). This is just the definition. []
Definition 2.6 A surjection P — N is a projective cover iff
(1) The module P is projective

(2) It is a minimal surjection.



2.4. PROJECTIVE AND INJECTIVE MODULES 131

@ Projective covers may not exist. For example, Z — Z/27Z is a surjection and Z is projective. If
P — 7Z/27 is a projective cover, then the lemma below implies that P is torsion-free. Hence, we
can replace P — Z/2Z by Z — 7Z/27Z. However, the following argument now shows that Z/2Z has no
projective cover. We have the surjection 0: Z — 7Z/27. This is not a minimal surjection because 2Z is not
small. (Clearly, Ker 6 = 2Z; so, say L = dZ and dZ + 2Z = Z. Then, (d,2) =1, so d is odd. Yet, dZ =Z

only when d = 1. Thus, the module 27 is not small.) Now, suppose dZ BN Z/27 is surjective, then d must
be odd. If kZ C dZ maps onto Z/27Z, then, as Ker 8 = 2dZ, we get (k,2d) = d. Let b = k/d; the integer b
must be odd. Then, the diagram

0 27, Z 7/2Z — 0
[l
0 2d7. dz. 7.)27 — 0,

(in which the vertical arrows are isomorphisms: multiply by d) shows that the inclusion kZ C dZ corresponds
to the inclusion bZ C Z. Our previous argument implies b = 1; so, k = d, and dZ — Z/27Z is not minimal.

Lemma 2.25 If R has no zero divisors and P is a projective R-module then P is torsion-free.

Proof. Since the torsion-free property is inherited by submodules, we may assume that P is a free module.
Moreover, coproducts of torsion-free modules are torsion-free, so we may assume that P = R. But, R has
no zero-divisors; so, it is torsion-free. []

Proposition 2.26 Say R is a ring and J(R) is its Jacobson radical (i.e., J(R) is equal to the intersection
of all mazimal ideals of R). Then, the surjection R — R/J(R) is a projective cover. In particular, when
R is commutative local, then R — R/mp is a projective cover.

Proof. Pick L C R, a submodule of R, i.e., an ideal of R, such that L + J(R) = R. If L # R, then L C I,
where 91 is some maximal ideal. But, J(R) C 9, and so L + J(R) C <M. The latter inclusion shows that
L+ J(R) # R, a contradiction; so, J(R) is small. []

For injective modules, the situation is nearly dual to the projective case. It is exactly dual as far as
categorical properties are concerned. However, the notion of free module is not categorical, and so, results
about projective modules involving free modules have no counterpart for injective modules. On the other
hand, the situation for injectives is a bit better than for projectives.

Proposition 2.27 The following are equivalent for a module, Q:
(1) The module, Q, is injective.

(2) Given a diagram

0O—=M —M

};

there exists an extension, 0: M — Q, of &, making the diagram commute (extension property).
(8) Ewvery exact sequence 0 — Q — M — M" — 0 splits.
Proof. (DX)

Proposition 2.28 Given a family, {Qa}aca, of modules, the product [], Qo is injective iff each Qq is
injective.
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Proof. (DX)

Theorem 2.29 (Baer Representation Theorem) An R-module, Q, is injective iff it has the extension prop-

erty w.r.t. the sequence
0—A—>R, (%)

where A is an ideal of R.

Proof. If Q is injective, it is clear that @ has the extension property w.r.t. (x).

Conversely, assume that the extension property holds for (x). What does this mean? We have the
diagram

0——=A—R
¢l/
P
Q

in which 9 extends ¢; so, for all £ € 2, we have (&) = (¢ [ A)(§). In particular, (1) € @ exists, say
g =1(1). Since £ -1 = ¢ for all £ € A, we have

Given the diagram

define S by
s={w,v (1) N is a submodule of M, (2) M’ C N,
- ’ (3)¢: N — Q extends ¢ to N.

Partially order § by inclusion and agreement of extensions. Then, S is inductive (DX). By Zorn’s lemma,
there is a maximal element, (No, %), in S. We claim that Nog = M. If Ny # M, there is some m € M — Nj.
Let 2 be the transporter of m into Ny, i.e.,

(m — No)={p € R | pm € No}.

Define the R-module map, 6: 2 — @, by 0(p) = 1o(pm). Look at the module Ny + Rm, which strictly
contains Ny. If z € Ny + Rm, then z = 2y + pm, for some zg € Ny and some p € R. Set

Y(2) = Yo(20) + py,

where ¢ = O(1) and © is an extension of 6 (guaranteed to exist, by the hypothesis). We must prove that
is a well-defined map, i.e., if z = zg + pm = Zy + pm, then

Yo(z0) + pq = o(20) + Pq.

Now, if ¥: Ng+ Rm — @ is indeed well-defined, then it is an extension of ¥ to the new module Ny + Rm >
Ny, contradicting the maximality of Ny. Therefore, No = M, and we are done.

If z = 2o + pm = Zy + pm, then 2y — 25 = (p — p)m; so p — p € A. Consequently,

0(p —p) =vo((p — p)m).
Yet

)

0(p—p)=0@{F—p)=F-p)OQ1) =(-p
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and so, we get
Yo(z0 — 20) = Yo((p — p)m) = 0(p— p) = (P — p)g-
Therefore, we deduce that
Yo(20) + pg = Yo(20) + pa,
establishing that v is well-defined. []

Recall that an R-module, M, is divisible iff for every A € R with A # 0, the map M M (multiplication
by A), is surjective.

Corollary 2.30 If R € CR has no zero-divisors, then an injective R-module is automatically divisible.
Moreover, if R is a P.I.D., a necessary and sufficient condition that @ be injective is that Q) be divisible.
Therefore, over P.I1.D.’s, every factor module of an injective is injective.

Proof. Let A € R, with A\ # 0. Since R has no zero divisors, the map R 2 Risa monomorphism. Thus,
the image of this map is an ideal, 2(, and the exact sequence

0—A—R

is just the exact sequence
0— R R

Apply the cofunctor Homp(—, Q). If @ is injective, this cofunctor is exact, and we get the exact sequence
Homp (R, Q) 2 Homp(R,Q) — 0.

So, the sequence @ 2 @ — 0 is exact, which proves that @ is divisible.

If R is a P.I.LD., then every ideal is principal, so, every exact sequence 0 — 24 — R, where 2 is an

ideal, is of the form 0 — R 2, R, for some A € R. If @ is divisible, the sequence @) 2, @ — 0 is exact,
and we get that

Hompg (R, Q) 2, Hompg(R,Q) — 0 is exact;
this means that Homp(—, Q) is exact on sequences

0—2A—R— R/A—0,

where 2l is an ideal, i.e., the extension property holds for ideals, 2, of R. By applying Baer’s theorem we
conclude that @ is injective.

The reader will easily verify that factor modules of divisible modules are divisible (DX). Consequently,
the last statement of the corollary holds. []

Theorem 2.31 (Baer Embedding Theorem) Every R-module is a submodule of an injective module.
Proof. The proof assigned for homework (Problem 57) is based on Eckmann’s proof. Here is Godement’s proof [18]
(probably the shortest proof). The first step is to show that any Z-module, M, can be embedded into MPP | where

MP = Homgz(M,Q/Z). Given a Z-module, M, we define a natural Z-linear map, m — m, from M to MPP in the
usual way: For every m € M and every f € Homz(M,Q/Z),

It is clear that such a map is Z-linear.

Proposition 2.32 For every Z-module, M, the natural map M —s MPP is injective.
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Proof. It is enough to show that m # 0 implies that @ # 0, i.e., there is some f € MP = Homz(M,Q/Z) so that
f(m) #0.

Consider the cyclic subgroup Zm of M generated by m. If m has finite order n > 1, then Zm = Z/nZ. The
Z-linear map f: Z/nZ — Q/Z given by f(1) = 1/n (mod Z) is obviously an injection. Since 0 — Z/nZ — M is
exact and Q/Z is injective, the map f: Z/nZ — Q/Z extends to a Z-linear map f: M — Q/Z with f(m) # 0, as
claimed.

If Zm is infinite (m has infinite order), then we have the Z-linear surjection g: Zm — Z/27 given by g(m) =

1 (mod 2). We also have the injective Z-linear map f2: Z/2Z — Q/Z given by f2(1) =1/2 (mod Z), and since Q/Z

is injective, the Z-linear map fo: Z/27Z — Q/Z extends to a Z-linear map f2 M — Q/Z with f2( ) # 0. Then the
composition f = f2 0 g is a Z-linear map f: M — Q/Z such that f(m) = fa(g(m)) = f2(1) # 0. [J

Recall that given a ring R, the ring R°P is the ring with the same underlying set R, the same adddition operation
+, and the multiplication operation *°P given by A *°®? = p* X for all \,u € R. If M is an R-module and N is
any Z-module, then we can define a map from R x Homz(M, N) to Homz(M, N) as follows: for all a € R and all
f € Homgz (M, N),

(af)(m) = f(am), forallme M. (*r)

Since a *°? 8 = 8 * o, we have
(a(Bf))(m) = (Bf)(am) = f(B(am)) = f((B* a)m) = (B * a)f)(m) = ((a " B) f)(m).

The equation
(@(Bf))(m) = f(Blam)) = ((a*°" B) f)(m)
shows that (xr) defines a left action of R°® on Homz(M, N) which makes Homz(M, N) into a R°°-module.

Similarly, if M is an R°®-module and N is any Z-module, then (xgr) defines a left action of R on Homgz(M, N)
which makes Homz (M, N) into an R-module, since

(@(Bf)(m) = (Bf)(am) = f(B(am)) = f((B " a)m) = f((ax B)m) = ((a* B)f)(m).

Then MP = Homgz(M,Q/Z) is an R°P-module if M is an R-module (resp. an R-module if M is an R°P-module).
Furthermore, the Z-injection, M — MPP is an R-injection. The crux of Godement’s proof is the following
proposition.

Proposition 2.33 If M is a projective R°P-module, then MP is an injective R-module.

Proof. Consider the diagram

00— X ——= X'
@
P
MD
where the row is exact. To prove that MP is injective, we need to prove that ¢ extends to a map ¢': X’ — MP.

The map ¢ yields the map MPP — X7 and since we have an injection M — MPP | we get a map 0: M — XP.
Now, since Q/Z is injective, Homz(—, Q/Z) maps the exact sequence

0—X —X

to the exact sequence
Homgz(X',Q/Z) — Homz(X,Q/Z) — 0,

ie., XP 5 xP o So, we have the diagram
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where the/ row is exact, and since M is projective, the map 6 liftsl toamap 0': M — X D, Consequently, we get
amap X PP — MP, and since we have an injection X’ — X PP we get a map X' — MP extending ¢, as
desired. Therefore, M P is injective. []

We can now prove Theorem 2.31. Consider the R°°-module MP. We know that there is a free R°P-module, F,
so that
F— MP” —0 is exact.

But, F' being free is projective. We get the exact sequence
0— MPP — FP.

By Proposition 2.33, the module F is injective. Composing the natural injection M — MPP with the injection
MPP s FP we obtain our injection, M — FP, of M into an injective. []

Corollary 2.34 FEvery R-module, M, has an injective resolution
0— M —Qyp— Qi — Qo —> -+,

where the Q;’s are injective and the sequence is exact.

How about minimal injections? Recall that N — M is a minimal (essential) injection iff N is large in
M, which means that for any L C M, if NN L = (0), then L = (0).

We have the following characterization of essential injections, analogous to the characterization of minimal
surjections:

Proposition 2.35 The following are equivalent for injections 0: N — M :

(1) N %4 M is essential.

(2) Given any module, Z, and any map, M 5 Z,if N — M 25 Z is injective, then ¢ is injective.

(3) Ker (N — M — Z) = (0) implies Ker (M — Z) = (0), for any module, Z.
Proof. (DX)

In contradistinction to the case of covering surjections, essential injections always exist.

Proposition 2.36 Given an injection, N — M, there exists a submodule, K, of M so that

(1) The sequence 0 — N — M /K is ezact, and

(2) It is an essential injection.

Proof. Let
S={KCM|KnN=(0)}

Since (0) € S, the set S is nonempty. Partially order S by inclusion. If {Z,}, is a chain in S, let Z =, Za,
a submodule of M. We have

ZNN = (UZQ> NN =|]J(ZanN)=(0),

since Z, NN) = (0), for all a. Therefore, S is inductive, and by Zorn’s lemma, it has a maximal element, say
K. Since KN N = (0), property (1) is satisfied. For (2), take L C M/K so that LNIm (V) = (0). We must
show that L = (0). By the second homomorphism theorem, L corresponds to Lin M, with K C LC M,
and we are reduced to proving that L=K.
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Claim: For every n € L, if n ¢ K, then n ¢ N.

IfneLandn ¢ K and n € N, then 7 € LN 1Im (N), and so, 77 = 0, since L N Im (N) = (0). (As usual,
1 +— 7], denotes the canonical map M — M/K.) Yet n ¢ K, a contradiction; the claim holds.

Assume that £ € L and ¢ ¢ K. Consider K + R¢, a submodule of L strictly containing K. Since K is a
maximal module with K N N = (0), there is some n € (K + R{) N N, with n # 0. Consequently, we have
n e L and n € N. Now, if n € K, then n € NN K = (0), contradicting the fact that n # 0; so, we must have
n ¢ K. However, this contradicts the claim. Therefore, £ cannot exist, and L=K. O

Terminology: The module @ is an injective hull of M iff
(1) M — @ is an essential injection, and

(2) The module @ is injective.
Theorem 2.37 (Baer—Eckmann—Schopf) Every R-module has an injective hull.

Proof. By Baer’s embedding theorem (Theorem 2.31), there is an injective module, @, so that
0 — M — Q is exact. Set

S={L|MCLCQ and 0 — M — L is essential}.

Since M € S, the set S is nonempty. The set S is partially ordered by inclusion, and it is inductive (DX).
By Zorn’s lemma, S has a maximal element, say L. I claim that L is injective. Look at the exact sequence
0 — L — @. By the argument in the previous proposition on essential extensions, there is a maximal
K CQ,sothat KNL=(0)and 0 — L — Q/K is essential. Look at the diagram

0——=L—>Q/K

©
Q

Since @ is injective, there is a map, ¥: Q/K — @Q, extending ¢; let T = Im . The map ¢ is injective,
because 9 | L is injective and the row is essential. Thus, ©¥: Q/K — T is an isomorphism; moreover, L C T
We contend that T" = L. To see this, we will prove that 0 — M — T is essential. Now, being essential is
a transitive property (DX); since T is essential over L (because Q/K =2 T and Q/K is essential over L) and
L is essential over M, we see that T is essential over M. But, L is maximal essential over M (in @) and
L C T; so, we conclude that T'= L. Therefore, L = Q/K and we have the maps

Q— Q/K2L and L— Q.

It follows that the sequence
0—K—>Q—L—0

splits. Consequently, L is also injective; so, L is the required injective hull. []

Prop0s1t10n 2.38 (Uniqueness of pmyectwe covers and injective hulls.) Say P — M s a projective cover
and P — M is another surjection with P projective. Then, there exist P' P’ C P both projective so that

(a) P=P 1P

(b) PP
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(¢) In the diagram

there are maps ﬂ:f — Pandi: P — P in which © is surjective and i is injective, P’ = Ker ,
P =Imiandp | P': P — M is a projective cover.

If M and M are isomorphic modules, then every isomorphism, 0: M — M extends to an isomorphism of
projective covers, P — P. The same statements hold for injective hulls and injections, M — @, where Q
is injective, mutatis mutandis.

Proof. As Pis projective, there is a map 7: P P, making the diagram commute. We claim that the
map 7 is surjective. To see this, observe that p(Im 7) = Im p = M. Hence, Im 7 = P, as P is a covering
surjection. As P is projective and 7 is a surjection, 7 splits, i.e., there is a map i: P — P and 7o i =idp;
it easily follows that i is injective. Define P” = Ker m and P’ = Im i. We know that i: P — P’ is an
isomorphism, and N B B

0—Kerm(=P')— P — P (=P)—0 issplit exact;

so, we deduce that P = P’ II P". The rest is clear.

For injectives, turn the arrows around, replace coproducts by products, etc. (DX). [

2.5 The Five Lemma and the Snake Lemma

Proposition 2.39 (The five lemma.) Given a commutative diagram with exact rows

M, My M3 My Ms
ltm \L@Q i%@ \LWL ltps
Ny N, N3 Ny N5,

then

(a) If po and 4 are injective and 1 is surjective, then w3 is injective.

(b) If w2 and @4 are surjective and s is injective, then s is surjective.

(c) If o1, v2, @4 , 5 are isomorphisms, then so is @3.
Proof. Obviously, (a) and (b) imply (c). Both (a) and (b) are proved by chasing the diagram (DX). ]
Proposition 2.40 (The snake lemma.) Given a commutative diagram with exact rows

M, My Ms; 0

N

0 Nl N2 NB )
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then there exists a sixz term exact sequence

Ker §; — Ker §o — Ker 03 LN Coker 6; — Coker o — Coker 03,

(where 6 is called the connecting homomorphism) and if My — Ms is injective, so is Ker §; — Ker s,
while if No — N3 is surjective, so is Coker do — Coker d3.

Proof. Simple diagram chasing shows Ker §; — Ker do — Ker d3 is exact and
Coker 67 — Coker do — Coker d3 is also exact (DX). Moreover, it also shows the very last assertions of
the proposition.

We have to construct the connecting homomorphism, §. Consider the commutative diagram:

Ker 1 ———— Ker j5 ——— Ker 03

My My M 0
o1 d2 03
0 Ny : Nay N3

Coker 61 —— Coker 6o ——= Coker 03

Pick € € Ker 43, and consider £ as an element of M3. There is some 7 € Ms so that p(n) = £. So, we have
d2(n) € Na, and Im J2(n) in N3 is d5(£) = 0. As the lower row is exact and ¢ is injective, n gives a unique
x € Ny, with i(z) = d2(n). We define our §(§) as the projection of  on Coker ¢;. However, we need to check
that this map is well-defined.

If we chose a different element, say 77, from 7, where p(n) = p(7) = &, then the construction is canonical
from there on. Take d2(n) and d5(77). Since n — 7j goes to zero under p, there is some y € M, so that
n—1 = Im(y) in My. Consequently n = 7j+1Im (y); so, d2(n) = d2(77) +d2(Im (y)). But, d2(Im (y)) = i(01(y)),
and so,

d2(n) = 02(17) + (01 (y))- (%)

As before, we have some unique elements  and T in Ny, so that i(z) = d2(n) and i(Z) = d2(7); so, by (*),
we get i(z) = i(T) +i(01(y)). As i is injective, we conclude that

=7+ 6(y);
so, x and Z have equal projections in Coker d1, and our definition of §(¢) is independent of the lift, 7, of £

to Ms. The rest is tedious diagram chasing (DX). []

Remark: As we said in Section 2.3, Proposition 2.17 also holds under slightly more general assumptions and its
proof is a very nice illustration of the snake lemma. Here it is:

Proposition 2.41 Let
0— M LM M —0

be an ezact sequence of A-modules. If M is f.g. and M" is f.p., then, M' is f.g.
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Proof. Let
FL—F,—M' —0

be a finite presentation of M" (so, Fy, Fi are free and f.g.) Consider the diagram

P Fy M” 0

0 M’ M M 0.

Now, Fp is free, so there exists a map Fy — M lifting the surjection Fy — M”. Call this map 6. From the
commutative diagram which results when 6 is added, we deduce a map ~: Fi — M’. Hence, we find the bigger
commutative diagram

0

Fy ) M 0
P

0 M’ M M" 0

Coker v — Coker § —— 0

But, by the snake lemma, Coker v = Coker . However, Coker 0 is f.g. as M is f.g. The image of v is f.g. as F} is
f.g. And now, M’ is caught between the f.g. modules Im v and Coker ; so, M’ is f.g. [J
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2.6 Tensor Products and Flat Modules

Let R be a ring (not necessarily commutative). In this section, to simplify the notation, the product of

R-modules, M and N, viewed as sets, will be denoted M x N, instead of M [[ N. For any R°P-module,
Sets
M, any R-module, N, and any abelian group, Z, we set

(1) (Ym,m’ € M)(Vn € N)(p(m +m',n) = p(m,n) + ¢(m', n))
Big(M,N;Z) =S ¢o: M x N — Z | (2) (Vm € M)(Vn,n’ € N)(e(m,n+n') = p(m,n) + o(m,n’))
(3) (Vm € M)(Vn € N)(¥r € R)(¢(mr,n) = ¢(m,rn))

Observe that

(1) The set Big(M, N; Z) is an abelian group under addition; i.e., if ¢,1 € Bir(M, N; Z), then
o+ € Big(M,N; Z).

(2) The map Z ~» Bir(M, N; Z) is a functor from Ab to Sets. Is this functor representable? To be more
explicit, does there exist an abelian group, T(M, N), and an element, ® € Bigr(M,N;T(M,N)), so
that the pair (T (M, N), ®) represents Big(M, N; —), i.e., the map

Homy (T (M, N),Z) — Bir(M,N; Z)
via @ — @ o P, is a functorial isomorphism?
Theorem 2.42 The functor Z ~~ Big(M, N; Z) from Ab to Sets is representable.

Proof. Write F for the free abelian group on the set M x N. Recall that F consists of formal sums

Zga(momna)v

where £, € Z, with £, = 0 for all but finitely many «o’s, and with m, € M and n, € N. Consider the
subgroup, NV, of F generated by the elements
(m1 4+ ma,n) — (my,n) — (m2,n)
(m17n1 + n2) - (m7n1) - (m7n2)
(mr,n) — (m,rn).
Form F/N and write m ®g n for the image of (m,n) in F/N. We have
() (m1+m2) @gn=m1 Qrn+ma rn.
(B) m®pg (n1 4+ n2) =m g ni +m g na.
(v) (mr) ®@grn=m®&g (rn).

Let T(M,N) = F/N and let ® be given by ®(m,n) = m®@gn. Then, (a), (8), (7) imply that ® belongs
to Bigr(M, N;T(M,N)), and the assignment, ¢ — ¢ o ®, gives the functorial map

Homz(T(M, N), Z) — Bir(M, N; Z).

We need to prove that this map is an isomorphism. Pick 6 € Big(M, N;Z); we claim that 6 yields a
homomorphism, T(M,N) — Z. Such a homomorphism is merely a homomorphism, F — Z, that
vanishes on A/. But, F is free; so we just need to know the images of the basis elements, (m,n), in Z. For
this, map (m,n) to (m,n). The induced homomorphism vanishes on the generators of N, as 6 is bilinear;
thus, 6 yields a map

E0): FIN — Z,
and we get our inverse map Bigr(M, N; Z) — Homy (T (M, N), Z). Routine checking shows that the maps
@+ po® and § — =Z(0) are functorial and mutual inverses. []
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Definition 2.7 The group, T(M, N) = F /N, constructed in Theorem 2.42, is called the tensor product of
M and N over R and is denoted M ®r N.

Remark: Note that Theorem 2.42 says two things:

(1) For every Z-linear map, f: M ®r N — Z, the map, ¢, given by p(m,n) = f(m®n), forallm € M andn € N,
is bilinear (i.e., ¢ € Bir(M, N; Z)), and

(2) For every bilinear map, ¢ € Bir(M, N; Z), there is a unique Z-linear map, f: M ®r N — Z, with ¢(m,n) =
fim®mn), for all m € M and n € N. In most situations, this is the property to use in order to define a map
from a tensor product to another module.

@ One should avoid “looking inside” a tensor product, especially when defining maps. Indeed, given some
element w € M ®g N, there may be different pairs, (m,n) € M x N and (m/,n’) € M x N, with
w=m®®rn =m" @rn'. Worse, one can have m @gn = > mq @r nq. Thus, defining a function as
fm®pgn) for all m € M and n € N usually does not make sense; there is no guarantee that f(m ®gn) and
f(m’ ®g n’) should agree when m ®grn =m’ @z n'. The “right way” to define a function on M ®g N is to
first define a function, ¢, on M x N, and then to check that ¢ is bilinear (i.e., ¢ € Big(M, N;Z)). Then,
there is a unique homomorphism, f: M ®g N — Z, so that f(m ®g n) = ¢(m,n). Having shown that f
exists, we now may safely use its description in terms of elements, m ® n, since they generate M ®@r N. We
will have many occasions to use this procedure in what follows.

Basic properties of the tensor product:

Proposition 2.43 The tensor product, M @ N, is a functor of each variable (from R°P-modules to Ab or
from R-modules to Ab). Moreover, as a functor, it is right-exact.

Proof . Just argue for M, the argument for N being similar. Say f: M — M is an R°P-morphism. Consider
M x N and the map: f(m,n) = f(m) ® n. This is clearly a bilinear map M x N — M ®r N. By the

defining property of M ® g N, we obtain our map (in Ab) M @ N — M@R N. Consequently, now that
we know the map is defined, we see that it is given by

men+— f(m)Qn.
For right-exactness, again vary M (the proof for N being similar). Consider the exact sequence
M 5 M — M — 0. (1)
We must prove that
M N —-Mer N —M'®r N — 0 is exact. (M
Pick a test abelian group, Z, and write C' for Coker (M’ @ g N — M ®pr N). We have the exact sequence
M @zr N — Mr N — C —0. (%)
Now, Hom 41,(—, Z) is left-exact, so we get the exact sequence
0 — Homp(C, Z) — Homup(M ®g N, Z) ~— Hom_gp (M’ ®5 N, Z). (%)

The two terms on the righthand side are isomorphic to Bir(M, N; Z) and Big(M’, N; Z), and the map, i*,
is

0 € Bir(M,N;Z) — i*p € Bir(M',N; Z), where i*o(m’,n) = p(i(m’),n).
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When is i*¢ = 0?7 Observe that i*¢ = 0 iff p(i(m’),n) = 0 for all m" € M’ and all n € N. So,
Hom 41, (C, Z) is the subgroup of Big(M, N; Z) given by

{ € Bir(M,N; 2) | (Ym" € M')(Vn € N)(p(i(m’),n) = 0)},

and denoted Big (M, N; Z).

Claim: There is a canonical (functorial in Z) isomorphism
Bi%y (M, N; Z) 2 Big(M", N; Z).
Say ¢ € Big(M,N;Z). Pick m € M"” and n € N, choose any m € M lifting T and set

$(m,n) = p(m,n).

If m is another lift, then, as (}) is exact, m —m = i(m’) for some m’ € M'. So, ¢(m —m,n) = 0, as
¢ € BiRr(M,N;Z). But, p(m — m,n) = ¢(m,n) — ¢(m,n), and so, p(m,n) = ¢(m,n), which proves
that ¢ is well-defined. Consequently, we have the map ¢ — ¥ from Bij(M, N;Z) to Bir(M",N; Z). 1f
Y € Bip(M",N; Z), pick any m € M and n € N and set ¢(m,n) = ¥(m,n) (where T is the image of m in
M'). These are inverse maps. Therefore, we obtain the isomorphism

Bi%,(M, N; Z) = Biz(M",N; Z),

functorial in Z, as claimed. However, the righthand side is isomorphic to Hom 4,(M” ®r N, Z), and so, by
Yoneda’s lemma, we see that C = M"” @g N, and (T1) is exact. []

Proposition 2.44 Consider R as R°P-module. Then, R @r M — M. Similarly, if R is considered as
R-module, then M @ g R— M. Say M = ]_[::1 M;, then

t
M®p N H(Mi ®gr N).
i=1

(Similarly for N.)

Proof. We treat the first case R®Qr M — M, the second one being analogous. Pick a test group, Z, and look
at Homgp(R ®gr M, Z) 2 Big(R, M;Z). Any ¢ € Bigr(R, M; Z) satisfies p(r,m) = ¢(1,rm), by bilinearity.
Now, set ¢g(m) = ¢(1,m). Then, as ¢ is bilinear, we deduce that ¢o: M — Z is a group homomorphism.
The map ¢ — g is clearly an isomorphism from Big(R, M; Z) to Homg(M, Z), functorial in Z, and so, we
obtain an isomorphism

Hom 4, (R ®p M, Z) — Hom (M, Z)

functorial in Z. By Yoneda’s lemma, we get the isomorphism R ®r M — M.

For coproducts, we use an induction on t. The base case, t = 1, is trivial. For the induction step, look at
the exact sequence

t
0— My — M — [[ M; — 0.
j=2

This sequence is not only exact, but split exact. Now, from this, tensoring with N on the right and using
the induction hypothesis, we get another split exact sequence (DX)

t
0— My @r N — M ®r N — [[(M; @ N) — 0;
Jj=2



2.6. TENSOR PRODUCTS AND FLAT MODULES 143

S0,
t
M ®p N = [[(M; @r N). O
i=1
In the next section we will prove that tensor product commutes with arbitrary coproducts.

Computation of some tensor products:

(1) Say F =[]g R, as R°’-module (with S finite). Then,

ForN=([[R) @rN=][(RerN)=]]N.
S S S

Similarly, M @r F = [[4 M, if F' =[] R, as R-module (with S finite).

(1a) Assume G is also free, say G = [ [ R (with T finite), as an R-module. Then,

FerG=]le=]]1IR=]] &

SxT

(2) Say 2 is an R°P-ideal of R. Then (R/2) ®p M = M /AM. Similarly, if 2 is an R-ideal of R, then for
any R°P-module, M, we have M ®p (R/2) = M /M. (These are basic results.)
Proof. We have the exact sequence
0—2A—R— R/UA—0,
where 2 is an R°P-ideal. By tensoring on the right with M, we get the right-exact sequence
ARKRM — RQr M — (R/A) g M — 0.

Consider the diagram:

AR M — RIr M —— (R/A)Qr M ——0

|

0 AM M M/AM —— 0.

The middle vertical arrow is an isomorphism; we claim that there is a map A @z M — AM. Such a map
corresponds to a bilinear map in Big(2(, M;AM). But, (o, m) — am is just such a bilinear map. So, we
get our map A Rz M — AM. Now, of course, it is given by a ® m — am. But then, there is induced a
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righthand vertical arrow and we get the commutative diagram:

0 0 0

Ker p —— Ker w —— = Ker y

ARXrM — R M —— (R/A) g M ——=0

P w Yy

0 AM M M/AM ——0

Coker p — Coker w —— Coker y

0 0 0

The snake lemma yields an exact sequence

Ker w — Ker y %, Coker p — Coker w — Coker y — 0.

Since p is onto (DX), we have Coker p = 0, and since w is an isomorphism, we have Ker w = Coker w = 0.
Thus, Ker y = 0. As Coker w — Coker y — 0 is exact and Coker w = 0, we deduce that Coker y = 0.
Therefore, y is an isomorphism, as claimed. [J (One can also use the five lemma in the proof.)

(3) Compute Z/rZ &z 7/ SZ.

We claim that the answer is Z/tZ, where t = g.c.d.(r, s).

We know (DX) that ®p is an additive functor. From the exact sequence

0—7Z -2 —7Z/rZ —0,
we get the exact sequence
Z®z (Z/s7) —~ 7. ®z (Z/sZ) — (Z)rZ) @7 (Z/sZ) — 0.
Write X for (Z/rZ) @z (Z/sZ). Hence,
Z/sT > 7)sZ — X — 0 is exact.
Pick z € Z/sZ, and say 7z = 0, i.e., rz = 0 (mod s). We have r = pt and s = ot, with g.c.d.(p,0) = 1.
Now, rz =0 (mod s) means that rz = sk, for some k; so, we have ptz = otk, for some k, and so, pz = ok,
for some k. We see that o | pz, and since g.c.d.(p,o) = 1, we conclude that o | z. As a consequence, ot | tz;
so, s (= ot) | tz and we conclude that tZ = 0 in Z/sZ. Conversely, if tZ = 0, we get ptz = 0, i.e,, rZ =0 in
7/ sZ. Therefore, we have shown that
Ker (mult. by r) = Ker (mult. by t) in Z/sZ;

consequently (as this holds for no further divisor of t)

Im (mult. by 7) = Im (mult. by ¢) in Z/sZ.
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Thus,
X 2 (Z/sZ)/(tZ/sZ) = Z/tZ.

(4) Say M is an S-module and an R°P-module. If
(sm)r = s(mr), forallse S andallreR,

then M is called an (S, R°P)-bimodule, or simply a bimodule when reference to S and R are clear. We will
always assume that if M is an S-module and an R°P-module, then it is a bimodule.

If M is a (S, R°P)-bimodule and N is an R-module, we claim that M ®pg N has a natural structure of
S-module.

g% Illegal procedure: s(m @ n) = (sm) Qg n.

The correct way to proceed is to pick any s € S and to consider the map, ys, from M x N to M ®p N
defined by

ws(m,n) = (sm) ® n.

It is obvious that this map is bilinear (in m and n).

Remark: (The reader should realize that the bimodule structure of M is used here to check property (3) of
bilinearity. We have
ps(mr,n) = (s(mr)) @n = ((sm)r @ n = (sm) @ rn = ps(m,rn).)

So, we get amap M @r N — M ®g N, corresponding to s. Check that this gives the (left) action of S on M Qg N.
Of course, it is

s(m®grn) = (sm) @r n.
Similarly, if M is an R°’-module and N is a (R, S°P)-bimodule, then M ®r N is an S°°-module; the (right) action
of S is

(m®rn)s =m®g (ns).

Remark: If M is an R-module, N is an (R, S°P?)-bimodule, and Z is an S°°’-module, then any S°P-linear map
f: M ®r N — Z satisfies the property:

f(m®r (ns)) = f(m®grn)s, forallses,

since f(m ®r (ns)) = f((m ®gr n)s) = f(m ®r n)s. Thus, the corresponding bilinear map ¢: M x N — Z defined
by
p(m,m) = £(m ®r )
satisfies the property:
p(m,ns) = p(m,n)s, forall seS.

This suggests defining a set, S°°-Bir(M, N; Z), by

(1) (Ym,m' € M)(Vn € N)
(p(m +m',m) = o(m, m) + (', )
(2) (Ym € M)(Vn,n' € N)
(p(m,n +n') = p(m,n) + ¢(m,n))
(3) (Ym € M)(¥n € N)(Vr € R)(p(mr,n) = ¢(m,rn))
(4) (Ym € M)(¥Yn € N)(Vs € S)(p(m,ns) = p(m,n)s)

S Bir(M,N;Z) =< ¢o: M xN — Z

Then, we have

Theorem 2.45 Let M be an R-module and N be an (R, S°P)-bimodule. The functor Z ~ S°P-Bir(M,N;Z) from
Mod(S°P) to Sets is representable by (M ®r N, ®), where @ is given by ®(m,n) = m Qg n.
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Note that the above statement includes the fact that M ®r N is an S°P-module.

Similarly, if M is an (S, R°?)-bimodule, N is an R-module and Z is an S-module, then we can define the set,
S-Bir(M, N; Z), in an analogous way (replace (4) by ¢(sm,n) = s¢(m,n)), and we find

Theorem 2.46 Let M be an (S, R°P)-bimodule and N be an R-module. The functor Z ~» S-Bir(M,N;Z) from
Mod(S) to Sets is representable by (M ®r N, ®), where @ is given by ®(m,n) = m Qg n.

Associativity of tensor: Let M be an R°P-module, N an (R, S°P)-bimodule, and Z an S-module. Then,
(MRrN)®sZ=MQgr (N ®s Z).
For any test group, T, the left hand side represents the functor
T ~ Big(M ®r N, Z;T)
and the righthand side represents the functor
T ~ Big(M,N ®s Z;T).

We easily check that both these are just the trilinear maps, “Trig s(M, N, Z;T);” so, by the uniqueness of
objects representing functors, we get our isomorphism. In particular,

(A) (M RpS)®s Z2MQp(S®sZ) 2 M®gZ.

(B) Say S — R is a given surjective ring map and say M is an R°P-module and N is an R-module. Then,
M is an S°P-module, N is an S-module and

M®s N=M®grN.
To see this, look at F/N and see that the same elements are identified.

(C) Say S — R is a ring map. Then, M ®g N is a homomorphic image of M ®g N.

Remark: Adjointness Properties of tensor: We observed that when M is an (S, R°P)-bimodule and N is an R-
module, then M ®g N is an S-module (resp. when M is an R°-module and N is an (R, S°?)-bimodule, then
M ®gr N is an S°P-module.) The abelian group Hom (M, N) also acquires various module structures depending on
the bimodule structures of M and N. There are four possible module structures:

(a) The module M is an (R, S°?)-bimodule and N is an R-module. Define an S-action on
Hompg (M, N) as follows: For every f € Homgr(M, N) and every s € S,

(sf)(m) = f(ms), forallme M.

(b) The module M is an (R, S°P)-bimodule and N is an S°P-module. Define an R°P-action on
Homgeor (M, N) as follows: For every f € Homgor (M, N) and every 7 € R,

(fry(m) = f(rm), forallme M.

(¢) The module M is an R°-module and N is an (S, R°?)-bimodule. Define an S-action on
Hompgor (M, N) as follows: For every f € Hompgor (M, N) and every s € S,

(sf)(m) = s(f(m)), forallme M.

(d) The module M is an S-module and N is an (S, R°?)-bimodule. Define an R°P-action on
Homg (M, N) as follows: For every f € Homgs(M, N) and every r € R,

(fr)(m) = (f(m))r, for allm e M.
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The reader should check that the actions defined in (a), (b), (c), (d) actually give corresponding module structures.
Note how the contravariance in the left argument, M, of Hom (M, N) flips a left action into a right action, and
conversely. As an example, let us check (a). For all r,t € S,

((st)f)(m) = f(m(st)) = f((ms)t) = (tf)(ms) = (s(tf))(m).

We also need to check that sf is R-linear. This is where we use the bimodule structure of M. We have
(sf)(rm) = f((rm)s) = f(r(ms)) = rf(ms) = r((sf)(m)).
We are now ready to state an important adjointness relationship between Hom and ®.

Proposition 2.47 If M is an R°®-module, N is an (R, S°P)-bimodule, and Z is an S°°-module, then there is a
natural functorial isomorphism

Homsop(M ®r N, Z) = HOH]ROP(M, HOIIISOP(N, Z))

When M is an R-module, N is an (S, R°P)-bimodule, and Z is an S-module, then there is a natural functorial
isomorphism
Homgs(N ®r M, Z) =2 Homg(M,Homgs (N, Z)).

Proof. Using Theorem 2.45, it is enough to prove that
S°P-Bir(M, N; Z) = Hompor (M, Homger (N, Z))
and using Theorem 2.46, to prove that
S-Bir(N, M; Z) =2 Hompg(M,Homgs(N, Z)).
We leave this as a (DX). []

Proposition 2.47 states that the functor — ®g N is left adjoint to the functor Homgor (N, —) when N is an
(R, S°P)-bimodule (resp. N ®r — is left adjoint to Homg(N, —) when N is an (S, R°?)-bimodule).

Commutativity of tensor: If R is commutative, then M ® g N =2 N ®gr M. The easy proof is just to
consider (m,n) — n ® m. It is bilinear; so, we get a map M ® g N — N ®pr M. Interchange M and N,
then check the maps are mutually inverse.

(5) Let G be a torsion abelian group and @ a divisible abelian group. Then,
Q ®z G = (0).

Look at Homz(Q ®7 G,T) = Biz(Q, G;T), for any test group, T. Take ¢ € Biz(Q, G;T) and look at (g, o).
Since G is torsion, there is some n so that no = 0. But, @ is divisible, so ¢ = ng, for some ¢ € Q). Thus,

gp(q, U) = (p(nav J) = 90((7”7 U) = 90(6[7 TLU) =0.
As this holds for all ¢ and o, we have ¢ =0, and so, Q ®z G = (0).

(6) Free modules (again). Let F' = [[4 R, an R°?-module and G = [[; R, an R-module (with both S
and T finite). We know that

ForG= H R.
SxT
We want to look at this tensor product more closely. Pick a basis, €1, ..., e, in F and a basis, fi1,..., f, in

G, so that
s t
F:HejR and G:HRfl.

j=1 =1
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Then, we get

s,t

FerG= H (e;R) ®r (Rf1).

j=1,1=1

Thus, we get copies of R indexed by elements e; ® f;. Suppose that F' is also an R-module. This means
that pe; € F' makes sense. We assume pe; € e; R, that is the left action of R commutes with the coproduct
decomposition. Then F' ®r G is an R-module and it is free of rank st if the left action, pe;, has obvious
properties (and similarly if G is also an R°P-module).

g% It is not true in general that pe; = e;p. Call a free module a good free module iff it possesses a basis
e1,...,es so that pe; =e;p, for all p € R. (This is not standard terminology.)
@ It is not generally true even here, that
pm=mp (meF).
Say m = >7_, e;A;. Then, we have

S S

pm = Zp(ej/\j) = p(Nes) =D (pA)es,

j=1 j=1
and
mp = (ejAj)p = Z ej(Ajp) = (Ajpe;
j=1 Jj=1 j=1

In general, pA; # Ajp, and so, pm # mp.

Consider the special example in which R = k = a field. Then, all modules are free and good. Let V be
a k-vector space of dimension d, and let ey, ...,eq be some basis for V. We know that the dual space, V7,
has the dual basis, f1,..., f4, characterized by

fiej) = di;.

Every v € V can be uniquely written as v = >~ \;e;, and every f € VP can be uniquely written as f = " u; fi.
Consider the space
Veor - VarVP @@, VP.

a b

Elements of this space, called (a,b)-tensors, have the unique form

7ZCL

Z C“’ ’“6“ Q- Ok €3, Ok [y Ok +++ Ok [y

So, V- @,V r VP @ --- @ VP may be identified with tuples (ci, - ’]b), of elements of k, doubly-
multiply indexed. They transform as ... (change of basis). A tensor in V ®k VR VP @@ VP
is cogredient of rank (or degree) a and contragredient of rank (or degree) b. A tensor field on a space, X,
is a function (of some class, C°, C*, holomorphic, etc.) from X to a tensor vector space, as above. More
generally, it is a section of a tensor bundle over X. Also, we can apply f;,, to e;, and reduce the cogredient
and contragredient ranks by one each. This gives a map V¢ @p ypE _, yel-n ®R VD®(b_1), called
contraction.
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Remark: Let M be an R-module, N be an S-module, and Z be an (R, S°P)-bimodule. Then, we know that
Homg (M, Z) is an S°P-module and that Z ®s N is an R-module. We can define a canonical homomorphism of

Z-modules,
0: HOmR(M, Z) ®s N — HOIHR(]W7 Z Qs N)

For this, for every n € N and u € Homg (M, Z), consider the map from M to Z ®s N given by

0 (u,n): m > u(m) @ n.
The reader will check (DX) that ¢’ (u,n) is R-linear and that 8’ € Big(Homg (M, Z), N;Homg(M, Z&sN)). Therefore,
we get the desired homomorphism, 0, such that §(u®n) is the R-linear map 6’ (u,n). The following proposition holds:

Proposition 2.48

(i) If N is a projective S-module (resp. a f.g. projective S-module), then the Z-homomorphism,
0: Homgr(M, Z) s N — Hompg (M, Z ®s N), is injective (resp. bijective).

(i5) If M is a f.g. projective R-module, then the Z-homomorphism, 0, is bijective.
Proof. In both cases, the proof reduces to the case where M (resp. N) is a free module, and it proceeds by induction
on the number of basis vectors in the case where the free module is f.g. (DX). ]

The following special case is of special interest: R = S and Z = R. In this case, Homgr(M, R) = MP | the dual
of M, and the Z-homomorphism, 8, becomes

0: M” @ g N — Hompg (M, N),
where 0(u ® n) is the R-linear map, m — u(m)n.

Corollary 2.49 Assume that M and N are R-modules.

(i) If N is a projective R-module (resp. a f.g. projective R-module), then the Z-homomorphism,
6: MP ®r N — Hompg(M, N), is injective (resp. bijective).

(i) If M is a f.g. projective R-module, then the Z-homomorphism, 0, is bijective.

If the R-module, N, is also an S°P-module, then 6 is S°P-linear. Similarly, if the R-module, M, is also an S°P-
module, then 6 is S-linear. Furthermore, if M is an R°’-module (and N is an R-module), then we obtain a canonical

Z-homomorphism,
0: MPP @ g N — Homg(MP”, N).

Using the canonical homomorphism, M —s MPP | we get a canonical homomorphism

0: M ®@r N — Homg(MP”, N).

Again, if M is a f.g. projective R°’-module, then the map 6’ is bijective (DX).

Some (very) important algebras:

Suppose that M is both an R and an R°P-module, and that R € RNG. We also assume, as usual, that
M is a bimodule, i.e., (pm)o = p(mo). Then, M ® g M is again a bimodule, so we can form M @r M @ M,
etc. Define 7;(M) (also denoted M®7) by To(M) = R, T1(M) = M, and
7}(M)ZM®R"'®RM, if j > 2.
—_—
J
Then, form

T(r) = [[7500) = [T M.

=0 =0

We can make 7 (M) into a ring, by concatenation. Define the map M" x M*® — T, (M), by

((my,...,mp),(N1,...,ns)) P M1 Q- QM QN1 R -+ - ® Ng.
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This map is bilinear in the pair ((r—tuple), (s—tuple)) and so, it is multilinear in all the variables. Thus, we
get amap T,.(M) ®g Ts(M) — Tr+s(M). Therefore, T (M) is an R, R°P-algebra called the tensor algebra
of M.

If Z is an R-algebra, denote by (Z) the object Z considered just as an R-module (i.e., Z ~» (Z) is the
partial stripping functor from R-alg to Mod(R).)

Proposition 2.50 There is a natural, functorial isomorphism
Hompg-a1g (7T (M), Z) = Hompaoa(r) (M, (Z)),
for every R-algebra, Z. That is, the functor M ~ T (M) is the left-adjoint of Z ~ (Z).

Proof. Given ¢ € Homp_ais(T (M), Z), look at ¢ [ T1(M) = ¢ | M. Observe that

© [ M € Hompoq(ry(M,(Z)), and clearly, as M generates T (M), the map ¢ is determined by ¢ [ M. We
get a functorial and injective map Hompg-a1s(7 (M), Z) — Homaoa(r) (M, (Z)). Say ¢: M — (Z), pick
(m1,...,mq) € M¢ and form

V(ma, ..., mq) = ¥(my) - (my).

This map is R-multilinear in the m;’s and has values in Z; it gives a map

Ea): M®p---@rM — Z,
————
d

[1]

and so, we get a map
functorial maps. []

(¥): T(M) — Z. It is easy to check that ¢ — ¢ | M and @ — E(1) are inverse

In T(M), look at the two-sided ideal generated by elements
(m®grn)—(n®rm),

call it J. Now, T is a graded ring, i.e., it is a coproduct, ]_[j>07}(M), of R-modules and multiplication
obeys: a
Ti(M) @g Ti(M) C Tj1(M).

The ideal, J, is a homogeneous ideal, which means that

3=[[anT01).
j=0

To see this, we will in fact prove more:

Proposition 2.51 Suppose R =[]~ Ry is a graded ring and J is a two-sided ideal generated by homoge-
neous elements {ro taea (i-€., To € Ra,,, for some d, ). Then, J is a homogeneous ideal. Moreover, the ring,
R/3J, is again graded and R — R/J preserves degrees.

Proof. Pick £ € J, then £ = )" para and each p, is of the form
Po = Z Pa,ns where Pa,n S Rn,
n=0
all the sums involved being, of course, finite. So, we have

&= Z Z Po,nTas

a n=0
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IMOTEOVET, Po nTa € Ryta, and po nra € J. As Jis a 2-sided ideal, the same argument works for £ = > rapa.
It follows that
3=J]3nR.,

n>0
and J is homogeneous.

Write R for R/J, and let R,, be the image of R,, under the homomorphism p + 5. Then,
R = (HRn)/(HjﬁRn) =[] Ra/(3 N Ry).

But, R, = R,,/(JN R,), so we are done. []
In 7(M), which is graded by the T, (M), we have the two 2-sided ideals: J, the 2-sided ideal generated

by the homogeneous elements (of degree 2)
m@n—ngem,
and IC, the 2-sided ideal generated by the homogeneous elements

m®m and MmMn-+nQm.

Both J and K are homogeneous ideals, and by the proposition, 7 (M)/J and T(M)/K are graded rings.

Remark: For K, look at
(m+n)@(m+n)=mm+n@n+men+nem.

We deduce that if m ® m € K for all m, then m ® n +n ® m € K for all m and n. The converse is true if 2
is invertible.

We define Sym(M), the symmetric algebra of M to be T/J and set m - n = image of m ® n in Sym(M).
The module Sym; (M) is called the j-th symmetric power of M. Similarly, A(M) = T /K is the exterior
algebra of M, and we set m A n = image of m @ n in A(M). The module A’ (M) is called the j-th exterior
power of M.

Observe that m-n =n-m in Sym(M) and m An = —n Am in A(M), for all m,n € M. Of course,
mAm =0, for all m € M. Further, Sym(M) is a commutative ring. However, we can have w Aw # 0 in
A\ M; for this, see the remark before Definition 2.8.

@ The algebras Sym (M) and A(M) are Z-algebras only, even if M is an R-bimodule, unless R is commu-
tative, and then they are R-algebras.

Why?
We know that r(m®n) = (rm®n) in T(M). But in Sym(M), we would have (writing = for equivalence
mod J)
rtm®n) = (rm)®n
= n®(rm)
= (nr)®@m
= m® (nr)

= (m®n)r.
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Then, for any r, s € R, we would have

But, (sr)(m ®n) = (m ®n)(sr), and so, we would get
(rs)(im@n) = (sr)(m®mn), forallrse R.

So, if we insist that Sym(M) and A(M) be R-algebras, then R must act as if it were commutative, i.e., the
2-sided ideal, 91, generated by the elements rs — sr (= [r, s]) annihilates both our algebras. Yet R/t might
be the O-ring. However, in the commutative case, no problem arises.

Proposition 2.52 Suppose M is an R-bimodule and as R-module it is finitely generated by ey, ..., e.. Then,
N M =(0) if s > r.

Proof. Note that for any p € M and any e;, we have e;p € M, and so,
ejp = Z)‘iei’ for some \;’s,
i

. . . . . 2
in other words, e;p is some linear combination of the e;’s. Elements of A® M are sums

;mg Amy = Z(Z )\Eﬁ)ei) A (Z u§7)ej>
= ZZ)\ el/\u e;)

By 4,

- ZZ)‘ “uJ /\ej)

By 4,

= Zplm(el /\em)7

l,m

for some py,. An obvious induction shows that A° M is generated by elements of the form e;; A--- Ae;..
There are only r distinct e;’s and there are s of the e;’s in our wedge generators; thus, some e; occurs twice,
that is, we have

e, Ao Neg, =ey Ao Neg A Neg A Ne,.

However, we can repeatedly permute the second occurrence of e; with the term on its left (switching sign
each time), until we get two consecutive occurrences of e;:

e, N Nej, =Fey N Neg ANeg A--- Neg,.

Ase; ANe; =0, we get e;, A+ Ae;, =0, and this for every generator. Therefore, A* M = (0). [J
Let us now assume that M is a free R-module with basis ej,...,e,. What are 7 (M), Sym(M) and

N(M)?

The elements of 7,.(M) are sums of terms of the form m; ® - - - ® m,.. Now, each m; is expressed uniquely
as m; = Zj Aje;. Therefore, in 7,(M), elements are unique sums of terms of the form

(mei,) @ (p2ei,) @+ @ (pres, ),
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where e;, might be equal to e;, with 4; # i;. Let X, be the image of e; in T(M). Then, we see that the
elements of T (M) are sums of “funny monomials”

1 Xy po Xy - pa Xy,
and in these monomials, we do not have Xy = pX (in general). In conclusion, the general polynomial
ring over R in n variables is equal to T(]_[?Zl R). If our free module is good (i.e., there exists a basis
e1,...,e, and Ae; = ¢; A for all A € R and all e;), then we get our simplified noncommutative polynomial
ring R(X4,...,X,), as in Section 2.2.
For Sym (H;:1 R)7 where H;:1 R is good, we just get our polynomial ring R[Xq,..., X ].

All this presumed that the rank of a free finitely-generated R-module made sense. There are rings where
this is false. However, if a ring possesses a homomorphism into a field, then ranks do make sense (DX).
Under this assumption and assuming that the free module M = H§:1 R has a good basis, we can determine

the ranks of Tg(M), Symy(M) and A*(M). Since elements of the form
€, ®---®e;,, where {i1,...,iq} is any subset of {1,...,r}

form a basis of Ty(M), we get tk(7(M)) = r¢. Linear independence is reduced to the case where R is a field
in virtue of our assumption. Here, it is not very difficult linear algebra to prove linear independence. For
example, M ®; N is isomorphic to Homy(MP, N), say by Corollary 2.49.

Elements of the form
€il®"'®€id, Whereilgigg...gid

form a basis of Sym (M), so we get rk(Sym,(M)) = (H'fil_l) (DX-The linear algebra is the same as before,

only the counting is different). Let us check this formula in some simple cases. For r = d = 2, the formula
predicts dimension 3; indeed, we have the basis of 3 monomials: X%, X2, X; X. For 7 = d = 3, the formula
predicts dimension 10; we have the basis of 10 monomials:

X3 X3, X3, X2Xo, X2X3, X2X1, X2X3, X2X1, X2 Xy, X1X2X3.

Finally, elements of the form
e, N+ Nei,, wherei; <ig<...<iq

form a basis of A*(M), so we get dim(A\%(M)) = (7). Again, linear independence follows from the field case.
Here, it will be instructive to make a filtration of /\dM in terms of lower wedges of M and M , where M
has rank r — 1. Then, induction can be used. All this will be left to the reader.

And now, an application to a bit of geometry. Let M be a (smooth) manifold of dimension r. For every
x € M, we have the tangent space to M at x, denoted T'(M),, a rank r vector space. A basis of this vector
space is

0 0
0x,’ " ox,’
where X1,..., X, are local coordinates at x € M. A tangent vector is just

T 0
J=1

the directional derivative w.r.t. the vector v = (ai,...,a,). The dual space, T(M)P is called the cotangent
space at x or the space of 1-forms at x, and has the dual basis: dX7,...,dX,, where

(dX;) (aaX]) = 5.



154 CHAPTER 2. RINGS AND MODULES

x

families |,y T(M), and U, ¢, T(M)E. These vector space families are in fact vector bundles (DX), called
the tangent bundle, T(M), and the cotangent bundle, T(M )P respectively.

Every element of T'(M)P is a 1-form at z, i.e., an expression Z;zl b;dX;. We have the two vector space

Say ¢: M — N is a map of manifolds, then we get a vector space map,
Dgpw: T(M)w — T(N)Lp(z)

This map can be defined as follows: For any tangent vector, £ € T'(M),,, at x, pick a curve through z (defined
near ), say z: I — M, and having our chosen ¢ as tangent vector at t = 0 (with = 2(0)). Here, I is a
small open interval about 0. Then,

I M- N

is a curve in N through ¢(x), and we take the derivative of ¢(z(t)) at ¢ = 0 to be our tangent vector
(Dp2)(8)-

By duality, there is a corresponding map (D, )*: T(N)g(m) — T(M)P called pull-back of differential

forms. Given any open subset, V', of N, for any section, w € I'(V, /\d T(N)P), by pullback we get the section
*w € D(e~L(V), A*T(M)P). The reader should explicate this map in terms of the local coordinates on V
and p~1(V).

Now, consider some section, w € T'(U, /\d T(M)P), where U is an open in M. In local coordinates, w

looks like
Z a(z)dz;, N---Ndx;,;; x€U.
1< <iq
Here, U is a piece of a chart, i.e., there is a diffeomorphism ¢: V (CR") == U. If z: I (CR?) — Visa
map of a D-disk to V, the composition ¢ o z is called an elementary d-chain in U C M, and a d-chain is a
formal Z-combination of elementary d-chains. Then, we have (¢ o z)*w, a d-form on I. Hence, by elementary
real calculus in several variables,
/ (poz)w
I

makes sense. ((DX), compute (¢oz)*w in local coordinates.) We define the integral of w over the elementary

d-chain ¢(z(I)) by
[ o fiser
w(2(1)) I

/ w=3" / .
d—chain elem. pieces

An elaboration of these simple ideas gives the theory of integration of forms on manifolds.

and for d-chains, let

We also have the theory of determinants. Suppose R is a commutative ring and M is a free module of

rank d over R with basis eq,...,eq. So,
d

M =[] Re;.

j=1

Let N be another free module of the same rank with basis f1,..., fq. Then, a linear map ¢ € Hompg (M, N)
gives a matrix in the usual way (¢(e;) as linear combination of the f;’s is the j-th column). By functoriality,

we get a linear map A%¢: A°M — A% N. Now, each of A> M and A N is free of rank 1, and their bases
are ey A--- Aegand f1 A--- A fg, respectively. Therefore,

d

(@)l A nea) = A(fi A A fa),
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for some unique A\ € R. This unique A is the determinant of ¢, by definition. Now,
(/\d go) (er A+ Neg) =p(er) A+ Ap(eq), and so det(p) is an alternating multilinear map on the columns

of the matrix of ¢. If @ is yet a third free module of rank d and if ¢»: N — @ is an R-linear map and
g1, ---,94 & chosen basis for the module @, then we find that /\dl/) takes f1 A - A fqg to p(gr A+ A ga),
where y = det(¢). Since A% is R-linear, it takes A(f1 A -+ A fa) to Au(gi A -+ A ga), and it follows that

det(v o ) = pA = det(yp) det(yp).

It might appear that det(y) depends upon our choice of basis, but this is not entirely so. If one has two

choices of bases in each of M and N, say {e;} and {€;}; {f;} and {fj}, and if the matrices of the identity
transformations M — M and N — N in the basis pairs are the same, then det(y) is the same whether
computed with e’s and f’s or with €’s and ]778. This situation holds when we identify M and N as same
rank free modules, then we have just one pair of bases: The {e;} and the {€;}. The determinant of the
endomomorphism ¢: M — M is then independent of the choice of basis.

If M and N have different ranks, say M has rank r with chosen basis e1, ..., e, while N has rank s with
chosen basis fi,..., fs, then for any R-linear ¢: M — N, we have the induced map

d d d
Ne: A\M— A\N.
Consider e;, A---Aej,, an element of the induced basis for /\d M. We apply the map /\d o and find
d . .
(/\gﬁ)(ejl/\.../\ejd): Z )\fllfjqu/\fzd
1<i1 < <g<s

The element )\zllzj;’ € R is exactly the d x d minor from the rows i1,...,7q and columns ji,...,jq of the

matrix of ¢ in the given bases. So, the d X d minors form the entries for /\d . Projectives being cofactors of
free modules allow the definition of determinants of their endomorphisms as well. For this, one must study
A (P11 P). (DX)

For the next two remarks, assume that R € CR.
Remarks:

(1) Let Z be a commutative R-algebra. Then, the functor, Z ~» (Z) (= Z as R-module), has as left-adjoint
in CR the functor M ~» Symp(M):

Hom pg-a1(Symp (M), Z) — Hompg (M, (Z))
is a functorial isomorphism (in M and Z).

(2) An alternating R-algebra is a Z/2Z-graded R-algebra (which means that Z = Zeyen U Zoaa = Zo I Z4,
with Z;Z; € Z; 1 j (mod 2)), together with the commutativity rule

gn = (—1)desddeanpe,

The left-adjoint property for A M is this: The functor Z ~ (Z1) (= Z; as R-module, where Z is an
alternating R-algebra) has M ~» A M as left adjoint, i.e.,

Homyys, R—alg(/\ M7 Z) — HomR(M7 (Zl))

is a functorial isomorphism (in M and Z).
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Remark: If w € (A M)eyen, then w A w need not be zero. In fact, if ¢ € A” M and n € A\? M, then (DX)
EAn=(=1)PnAng.
Example: M = R*, w = dx; A dxy + dzs A dzy (w is the standard symplectic form on R*). We have
wAw = (dzy Adze + dxs A dxy) A (dxy Adee + deg A dey) = 2dxy A dxe A dxs A dxy # 0.
Flat Modules. As with the functor Hom, we single out those modules rendering ® an exact functor.

Actually, before we study right limits, little of consequence can be done. So, here is an introduction and
some first properties; we’ll return to flatness in Section 2.8.

Definition 2.8 An R°P-module, M, is flat (over R) iff the functor N ~» M ®gr N is exact. If M is an
R-module then M is flat (over R) iff the functor (on R°P-modules) N ~» N ®@g M is exact. The module,
M, is faithfully flat iff M is flat and M @ N = (0) (resp. N @ g M = (0)) implies N = (0).

Proposition 2.53 Say M is an R-module (resp. R°P-module) and there is another R-module (resp. R°P-

module), M, so that M 11 M is flat. Then M is flat. Finitely generated free modules are faithfully flat.
Finitely generated projective modules are flat. Finite coproducts of flat modules are flat. (The finiteness
hypotheses will be removed in Section 2.8, but the proofs require the notion of right limit.)

Proof. Let 0 — N’ — N — N" — 0 be an exact sequence; we treat the case where M is an R°P-module.
Let F=MII M. As F is flat, the sequence

0—F®rN — F®r N is exact.

We have the diagram

M ®r N’ M ®r N

l l

FOrN —>M@rNNTIM&r N —> M@z NIIM @z N <—— F @z N.

The bottom horizontal arrow is injective and the vertical arrows are injective too, as we see by tensoring the
split exact sequence s
0— M —F —M-—70

on the right with N and N’. A trivial diagram chase shows that 6 is injective, as contended.

Assume F is free and f.g., that is, F = [[4 R, where S # () and S is finite. Since F @r N = [[¢ N, we
have F @g N = (0) iff N = (0). If we knew that finite coproducts of flats were flat, all we would need to
show is that R itself is flat. But, R®r N = N, and so, R ® g — is exact.

Let M and M be flat and consider their coproduct, F'= M I M. Then, for any exact sequence

0—N —N-—N'"—0

the maps f: M ® g N' — M ®g N and g: M@R N’ — M@RN are injective, as M and M are flat. Since
the coproduct functor is exact, f Il g is injective and so

(M@r NYI(M@r N)2FRr N — FRr N = (M ®z N)II (M &g N)
is injective as well, which proves that F' is flat.

If P is projective and f.g., then P II P F, for some module P and some f.g. free module, F'. The first
part of the proof shows that P is flat. [
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Proposition 2.54 If R € CR is an integral domain (or R € RNG has no zero divisors) then every flat
module is torsion-free. The converse is true if R is a P.I.D. (the proof will be given in Section 2.8).

Proof. If £ € R, then 0 — R ~L Risan injective R°P-homomorphism ((§ém)p = £(mp)). The diagram

0— >RopM—>RopM

L

M M

commutes, the vertical arrows are isomorphisms, and the upper row is exact, since M is flat. This shows
that m — &m is injective; so, if &m = 0, then m = 0. [

Remark: The module Q is a flat Z-module. However, Q is not free, not projective (DX) and not faithfully
flat (Q ®z Z/2Z = (0)).

2.7 Limit Processes in Algebra

Let A be a partially ordered set (with partial order <) and assume A has the Moore-Smith property (A is a
directed set), which means that for all , 8 € A, there is some v € A so that o <~y and 8 < ~.

Examples of Directed Sets: (1) Let X be a topological space, and pick = € X; take
A={U|(1)Uopenin X;(2)xz €U}, withU <V if V CU.

(2) A=N, and n < m iff n | m (Artin ordering).

To introduce right and left limits, we consider the following set-up: We have a category, C, a collection
of objects of C indexed by A, say C,. Consider the two conditions (R) and (L) stated below:

or all @ < 3, there is a morphism, 10y — , and there is compatibility: For all a < 8 < «, the
R) F 11 B, there i hi cpg C Cs d th i ibili F 1l B <, th

diagram
Cy
Ca Cs

Pa

commutes and ¢& = idc, .

(L) For all a < 3, there is a morphism, 1/)%: Cp — Cy, and there is compatibility: For all @ < 8 < v, the

diagram
N

Ca~———Cs

commutes and ¥ = idc,,.

Definition 2.9 A right (direct, inductive) mapping family, (Ce,©2), of C is a family of objects, C,, and
morphisms, o, satisfying axiom (R). Mutatis mutandis for a left (inverse, projective) mapping family,
(Ca,¥g) and axiom (L).



158 CHAPTER 2. RINGS AND MODULES

Examples of Right and Left Mapping Families:

(1L) Let A = N with the usual ordering, C = Ab and C,, = Z. Pick a prime, p; for m < n, define
Yot 7 — Z as multiplication by p™~™.

m

(1R) Same A, same C, same Cy,, and ¢?,: Z — Z is multiplication by p"~
(2L) Same A, Artin ordering, same C, same C,,. If n < m, then n | m, so mZ C nZ, define
Yo Z/mZ — Z/nZ as the projection map.
(2R) Same A, Artin ordering, same C, C,, = Z/nZ. If n < m, then r = m/n € Z, define ©!": Z/nZ —
Z/mZ as multiplication by r.

Look at the functor (from C to Sets)

fa fﬁ
T~ (fa: Coa — T)a / \ commutes whenever a < 8 3,

Co ———C
a o B

denoted IL> (Ca, ©3)(T), and the cofunctor (from C to Sets)

[e3

ca cs
T~ q(ga:T — Ca)a / \ commutes whenever « < 8 3 |

denoted I&n(C’B,wg)(T).
B
Question: Are either (or both) of these representable?

Definition 2.10 The right (direct, inductive) limit of a right mapping family, (Cy, ©?), is the pair, (C, {ca}),
representing the functor Iﬂ)l (Ca, ¢2) and is denoted h4m> (Ca, ¥2). The left (inverse, projective) limit of

a left mapping family, (Cs,%§), is the pair, (C,{cg}), representing the functor I(ﬁn (Cp,1g), denoted
B

lim (G, ¥§)-

B

Let us explicate this definition. First, consider right mapping families. The tuple {cq }« is to lie in
Li_1>n (Cq, ©2)(C), the set of tuples of morphisms, c,: C, — C, so that the diagram

(03

Co ————C
a o B

commutes whenever a < 5. We seek an object, C' € C, and a family of morphisms, ¢, : C, — C, so that

HomC(C, T) = Lﬂ; (Caa (pﬁ)(T),
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for every T € C, via the isomorphism u — {u 0 ¢4 }4. Thus, the above functorial isomorphism says that for
every family of morphisms, {fy: Cqy = T}q € Ign (Cq, ©2)(T), there is a unique morphism, u: C — T, so
(0%

that
fa=uoc,, forallaecA.

This is the universal mapping property of ll_m> Ca.

[e3%

Next, consider left mapping families. This time, the tuple {c3}s is to lie in L<L (Cp,¥5)(C), the set of
B

tuples of morphisms, cg: C'— Cpg, so that the diagram

commutes whenever a < 5. We seek an object, C' € C, and a family of morphisms, cg: C' = Cjg, so that

Hom¢ (Tﬂ C) = I<£n (057 ¢g)(T)7
B

for every T € C, via the isomorphism u — {cg o u}g. The universal mapping property of (h_m C, is that for

[e3
every family of morphisms, {ga: T — Ca}a € Ign (Cp,¥5)(T), there is a uniqgue morphism, u: T — C, so

B
that

Jo = Cqou, forall e A.

Remark: A right (resp. left) mapping family in C is the same as a left (resp. right) mapping family in the
dual category CP. Thus, lim (C,) exists in C iff lim (C,) exists in CP.
Y o
Let us examine Example (1L). If we assume that its inverse limit exists, then we can find out what this
is. By definition, whenever n < m, the map ¢}, : Z — Z is multiplication by p”™~". Pick £ € C, hold n fixed
and look at ¢, (£) € Z. For all m > n, the commutativity of the diagram

C
7<———7
TIJZL

shows that p™ "¢, (€) = ¢, (&), and so, p™ " divides ¢, (&) for all m > n. This can only be true if ¢, = 0.

Therefore, all the maps, ¢,, are the zero map. As there is a unique homomorphism from any abelian group,
T, to (0) and as the tuple of maps, {¢cs}a, is the tuple of zero maps, the group (0) with the zero maps is
liHm Cy. In fact, this argument with 7" replacing C proves the existence of the left limit for the family (1L)

and exhibits it as (0).

Theorem 2.55 (Ezistence Theorem) If C is any one of the categories: Sets, Q-groups (includes R-modules,
vector spaces, Ab, Gr), topological spaces, topological groups, CR, RNG, then both Iﬂ} and I<ﬂ1 are

« [e3%
representable (we say that C possesses arbitrary right and left limits).
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Proof. We give a complete proof for Sets and indicate the necessary modifications for the other categories.
Let A be a directed index set.

(1) Right limits: For every a € A, we have a set, S,, and we have set maps, ¢?: S, — Sp, whenever
a < . Let § = |J Sa, the coproduct of the S,’s in Sets (their disjoint union). Define an equivalence
relation on S as follows: For all z,y € S,

if v €Sy andy € Sgthen z~y iff (IyeA)(a<ry, B<7)(Ph(x) = ¢i(y)

We need to check that ~ is an equivalence relation. It is obvious that ~ is reflexive and symmetric.

Say x ~y and y ~ z. This means that x € S,, y € Sz, z € S, and there exist J;,02 € A so that o < dy;
B <615 B < d2; v < b2, and
©0 () = 0% (1); 2 (y) = ©7 (2).
As A is directed, there is some § € A, with §; < § and d5 < d; so, we may replace §; and do by §. Therefore,
o (2) = wi(z), and transitivity holds. Let S = &/ ~. We have the maps

Sai Su — (JSH =88/~ =6,
A

and the pair (5, {s}) represents ILn S, as is easily checked.

[0}

(2) Left Limits: We have sets, S, for every o € A, and maps, ¢ : Sz — S,. Let
P ={(&) € [ Sa | (va < B)(5(0) = &) }

be the collection of consistent tuples from the product. The set P might be empty.

We have the maps
Po: P — HSO‘ Pl Se.

The pair (P, {pa}) represents the cofunctor I<£n Se (DX).

(e

Modifications: Look first at the category of groups (this also works for Q-groups and rings).
(1) Right limits. Write G, for each group (« € A). We claim that G = @} G, (in Sets) is already a

«
group (etc., in a natural way) and as a group, it represents our functor. All we need to do is to define the
group operation on h_m> Gy fxye G = h_m) Gq, then x = ¢, (§) and y = cg(n), for some £ € G, and

some 7 € Gg. Since A is directed, there is some v € A with a, 5 < 7; consider £ = ¢2(§) and i’ = cpg (n).
(Obviously, ¢y (¢') = z and ¢, (') =y.) So, we have &', 7' € G, and we set

zy = cy (&)
Check (DX) that such a product is well-defined and that G is a group. Also, the maps ¢, are group
homomorphisms.
The existence of right limits now holds for all the algebraic categories.

Now, consider the category, TOP, of topological spaces. Observe that when each S, is a topological
space, then the disjoint union, & = | S,, is also a topological space (using the disjoint union topology); in
fact, it is the coproduct in TOP. Give S = S/ ~ the quotient topology, and then check that the maps s,
are continuous and that (S, {sa}) represents Iﬂ} S in TOP.

[e3%
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For the category of topological groups, TOPGR, check that G = h_lrn> G, is also a topological space as

above and (DX) that the group operations are continuous. Thus, (G, {s4}«) represents Li_r)nGa in TOPGR.

(2') Left Limits. Again, first assume each G, is a group and the ¥§ are homomorphisms. Check that
P (= consistent tuples) is a group (in particular, note that (1,1,...,1,...) is consistent so that P # )) and
that the p,’s are homomorphisms (DX); hence, (P, {p,}) represents I(in G. Now, similar reasoning shows

[e3
left limits exist for all the algebraic categories.

For TOP, we make [, S, into a topological space with the product topology. Check (DX) that the
continuity of the ¢§’s implies that P is closed in [], So. Then, the p,’s are also continuous and (P, {pa})
represents I<ﬂ1 S, in TOP.

«

For TOPGR, similar remarks, as above for TOP and as in the discussion for groups, imply that (P, {p4})
represents I(ijGa in TOPGR. [J

[e3

Remark: Say A is a directed index set. We can make A a category as follows: Ob(A) = A, and

Hom (e, ) = {?} gg é g’

(Here, {-} denotes a one-point set.) Given a right mapping family, (Ca, ¢2), where ¢ € Home(Cy, Cj), we
define the functor, RF, by

RF(a) = C,
RF(-::a—p) = gog.

Similarly, there is a one-to-one correspondence between left-mapping families, (Cag, wg), and cofunctors, LF,
defined by

LF(a) = C,
LF(:a—fB) = 3.

If we now think of RF and LF as “functions” on A and view the Moore—Smith property as saying that the a’s
“grow without bound”, then we can interpret h_m> C, and <h_m C, as: “limits, as a — oo, of our ‘functions’

« «

RF and LF”,
lim C, = lim RF(«) and lim C, = lim LF(«).
_> H

a—00 a—00
(e [e3%

Indeed, there is a closer analogy. Namely, we are taking the limit of RF(a) and LF(«) as nets in the sense
of general topology.

Say I' C A is a subset of our index set, A. We say that T" is final in A (old terminology, cofinal) iff for
every a € A, there is some 8 € I with o < 8. Check (DX),

lim ¢, = lim ¢,; limC, = lim C,.
a€el aEA a€el a€EN

Examples of Right and Left Limits:



162 CHAPTER 2. RINGS AND MODULES

(IR) Recall that A = N with the ordinary ordering, C,, = Z and for m > n, ¢! is multiplication by
p™ ™. Consider the isomorphism, 6,,: Z — (1/p™)Z C Q, defined by 6,,(1) = 1/p™. The diagram

Cn=2—=

1
Al —=0Q
P

commutes, and so, the direct limit on the left is equal to the direct limit in the middle. There, the direct
limit is

. { k

lim Cp, = ¢ —

- pt

m

1
This subgroup, h_m> Cp, of Q is usually denoted —Z.
p

m

keZ,pM}QQ-

Generalization: A = N, Artin ordering (n < m iff n | m), C, = Z, and for n < m, define, I’ =
multiplication by m/n. We get

lim C, = Q. (*)

n

(2R) What is lim Z/nZ? If we observe that Z/nZ = L7/7, by (x), we get

n|lm

lim Z/nZ = Q/Z.

n|lm
Say X and Y are topological spaces and pick = € X. Let
Ay, ={U|Uopenin X and x € U},

Partially order A, so that U < V iff V' C U (usual ordering on A,). Clearly, A, has Moore—Smith. Let

C(U){f’gl)f:U—ﬂf }

2) f is continuous on U (or perhaps has better properties)

Look at h‘m> C(U), denoted temporarily C,. We have £ € C,, iff there is some open subset, U, of X, with
Az
x € U, some continuous function, f: U — Y, and £ is the class of f.

Two functions, f: U — Y and g: V — Y, where U,V C X are open and contain x, give the same ¢ iff
there is some open, W C U NV, with x € W, so that f [ W = g [ W. Therefore, C,, is the set of germs of
continuous functions on X at . (The usual notation for Cy is Ox ,.)

(2L) Consider the left limit, (h‘m Z/nZ, where I : Z/mZ — Z/nZ is projection. The elements of
n|lm
(li_m Z/nZ are tuples, (&,), with &, € Z, such that

n|lm

(1) (gn) = (nn) iff (Vn>(€n =T (mOd n)) and

(2) (conmsistency): If n | m, then &, = &, (mod n).
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We obtain a new object, denoted Z. We have an injective map, Z —» Z given by n — (n,n,...,n,...).
You should check that the following two statements are equivalent:

(1) Chinese Remainder Theorem.
(2) Z is dense in Z.

Proposition 2.56 Say C = h_m> Cy and let x € C,, and y € Cg, with co(z) = cp(y). Then, there is some

(0%
v > a, B, so that @) (x) = gog(y . In particular, if all the o2 are injections, so are the canonical maps, cq.

Proof. Clear. []

Corollary 2.57 Say C = Q-modules and each Cy, is Q-torsion-free. Then, h_m> Cy, 1is torsion-free.

[e3

Proof. Pick x € C = h_rn) Co; X € Q, with A # 0. Then, Az = Aco(24), for some a and some z, € C,. So,
0=z =coa(Azq) impli%s that there is some v > «, with ¢ (Az,) = 0. Consequently, Ap2(z,) = Az, = 0.

But C, is torsion-free, so z, = 0. Therefore, z = c(xq) = ¢y(x,) = 0. This proves that C is torsion-free. []

Corollary 2.58 Say C = Q-modules and each Cy is Q-torsion. Then, @} C, is torsion.

[e3

Proof. If x € C, then there is some « and some z,, € Cy, with ¢, (zs) = 2. But, there is some A € Q, with
A # 0, so that Az, = 0, since C,, is torsion. So, Az = Acq(24) = ca(Azo) = 0. [0

Proposition 2.59 Let A be an index set and C = Sets. Then, every set is the right-limit of its finite subsets
(under inclusion). The same conclusion holds if C = Gr, Q-groups, RNG, then each object of C is equal to
the right limit of its finitely generated subobjects.

Proof. Let A = {T C S | T finite}. Order A, via T < W iff T C W. Clearly, A has Moore-Smith. Let
Y= lim T.

—

TeA

For a given T' € A, we have an injective map, i7: T — S. Hence, by the universal mapping property,
these maps factor through the canonical maps, yr: T — X, via a fixed map, ¢: ¥ — S

y_ % .5
T

Pick some £ € S. Then, {{} € A; so we get a map, yey: {§} — X. Let ¥(§) = v(¢3(§) € X. This gives a
map, ¢: S — X. Check (DX), ¢ and ¢ are inverse maps.

Modifications: A = {T' C S| T'is a finitely generated subobject of S} and proceed analogously. []
Corollary 2.60 An abelian group is torsion iff it is a right-limit of finite abelian groups.

Corollary 2.61 Say C is a category with finite coproducts (or finite products). If C has right limits (resp.
left limits) then C has arbitrary coproducts (resp. arbitrary products).

Proof. Cf. Problem 62. [
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Proposition 2.62 Say {G,}. is a left-mapping family of finite groups (not necessarily abelian). Then, the
left limit, <h_m G, = G, is a compact topological group. (Such a G is called a profinite group.) Similarly,

if the Gy are compact topological groups and form a left-mapping family with continuous homomorphisms,
then (h_m G, = G is a compact topological group.

[e3

Proof. Observe that the second statement implies the first. Now, G is the group of consistent tuples in
1., Go. By Tychonov’s theorem, [[, G is compact. As the ¥ are continuous, the subgroup of consistent
tuples is closed; therefore, this subgroup is compact. []

It follows from Proposition 2.62 that 7 is compact.

2.8 Flat Modules (Again)

Proposition 2.63 Say {Q}a is a right-mapping family of rings, {Mas}a, {Na}a are “right-mapping fam-
ilies” of Q2P (resp. Q4 )-modules, then {M, ®q, Naoto forms a right-mapping family (in Ab) and

liy (Mo 8, No) = (ling Mo ) © o, ( lim ).
« « — «

[0}

Proof. The hypothesis (within quotes) means that for all a < 8, we have
VP (Aana) = 05 (N)VE(ny), for all A, € Q, and all n, € N,,

where wg: N, — Ng and ng Qo — Qg, and similarly with the M, ’s.

Let M = lim My; N = lim Ny; Q = lim Q, and G = (M, ®q,, No). Write co: My, — M,
— — —

lim

=
« « . (6% (03

do: No — N and t,: Q4 — , for the canonical maps. We have the maps

Coa @do: My ®q, No — M ®@q N,

hence, by the universal mapping property of right limits, there is a unique map, ®: G - M ®q N, so that
the following diagram commutes for every a:

(i3]

G M ®@q N

Ma ®Qa N(x

We also need a map, M ®q N — G. Pick m € M and n € N, since the index set is directed we may assume
that there is some « so that m = ¢, (mg) and n = dy(ne). Thus, we have m, ®q_ 1o € My ®q,, N, and so,
cang (Mg ®q, Na) € G. Define ¥ by

U(m,n) = cang (my, ®q,, Na)-
Check (DX) that
(1) W is well-defined,
(2) W is bilinear; thus, by the universal mapping property of tensor, there is a map, ¥: M ®q N — G,

(3) @ and ¥ are inverse homomorphisms. []
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Proposition 2.64 Suppose C = Mod(?) and N.,, No, N/, are all right-mapping families of Q-modules. If
for every «, the sequence
0— N, — Ny — N — 0 s ezact,

then the sequence
0— h_m)N& — lim No — h_m>Ng — 0 is again ezxact.

[e3% [ [e3

Proof. (DX) O
Corollary 2.65 The right-limit of flat modules is flat.

Proof. The operation lim commutes with tensor and preserves exactness, as shown above. []

(03

Corollary 2.66 Tensor product commutes with arbitrary coproducts. An arbitrary coproduct of flat modules
is flat.

Proof. Look at [] M. We know from the Problems that [, g Mo = h_m> My, where T C S, with T

T

acsS
finite and My = [z Mp. So, given N, we have
Nea ([[Md) = Neoo lim My
s T
= h_m> (N ®q Mr)
T
= lim JT(V ®q Mg)

T BeET

= H(N ®q Mpg).
pes

The second statement follows from Corollary 2.65 and the fact that finite coproducts of flat modules are flat

(Proposition 2.53). []

Remark: Corollary 2.66 extends the last part of Proposition 2.44 that only asserts that tensor commutes with
finite coproducts. It also proves that Proposition 2.53 holds for arbitrary modules, not just f.g. modules. Thus, free
modules are flat and so, projective modules are flat, too.

Proposition 2.67 Say Q is a ring and M is an Q°P-module (resp. Q-module). Then, M is flat iff for every
exact sequence
0— N —N-—N'"—0

of Q (resp. Q°P)-modules in which all three modules are f.g., the induced sequence

0—- M N — MeqN — Mg N —0
(resp. 0— N ®aM-— N®qgM— N"®q M —0)

remains exact.

Proof. Given
0—N —N-—N'—0,

an arbitrary exact sequence of 2-modules, write N = 11_m> N,, where the N,’s are f.g. submodules of N.
«
Let N be the image of N, in N”. So, N is f.g., too. We get the exact sequence

0— N'NN, — N, — N — 0. (%)
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Now, N' NN, = lim Nﬂ(a), where Néa) ranges over the f.g. submodules of N’ N N,. We get the exact
sequence g

0—>Néa) — No — N} 5 — 0, (1)

where N&/,ﬁ = Na/./\f[ga), and all the modules in (f) are f.g. The right limit of (f) is (x). By hypothesis,
M ®q (1) is still exact, and the right limit of an exact sequence is exact; so

0— M®q(N'NN,) — M®q N, — M ®q N/ — 0 is exact.

Now, if we pass to the right limit, this time over «, we get
0— Mo N —- Mq N — Mg N’ — 0 is exact. M
Theorem 2.68 (FGI-Test)! An Q-module, M, is flat iff for all sequences
0 —2A—QP —Q%/A—0

in which A is a finitely generated Q°P-ideal, the sequence

0 —ARq M — QP R M — (QP/A)@q M — 0 is still exact.
Proof. (=) is trivial.

(«<=). We proceed in two steps.

Step 1. I claim: For every exact sequence of 2°P-modules of the form

0—>K—>HQOP—>N—>O7 (%)
s

in which #(S) is finite, we have an exact sequence

0—>K®QM—>(HQ<’P)®QM—>N®QM—>0.
S

We prove this by induction on the minimal number, r, of generators of N. (Note that #(S) > r.) The case
r = 1 has all the ingredients of the general proof as we will see. When r = 1, look first at the base case:
#(S) =1, too. Sequence (x) is then:

0 —K—Q% — N —0. ()1

This means that K is an ideal of Q°P and we know K = h_m> K, where the K, ’s are f.g. Q2°P-ideals. Then,

[0

(%) is the right limit of
0— Ko — Q% — Ny — 0, (%)
where N, = Q°P/K,. Our hypothesis shows that
0— K, ®q M — QP M — N, ®q M — 0 is exact.
Pass the latter sequence to the limit over v and obtain

00— KoM — QPR M — N®q M — 0 is exact.

1FGI stands for finitely generated ideal.
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Thus, the base case #(S) = r =1 is proved.
We now use induction on #(S) to establish the case #(S) > r = 1. (So, our claim involves an induction

inside an induction.) The induction hypothesis is: For all exact sequences

OHKHHQOPHN—)O,
5

in which #(S) = s and r (= minimal number of generators of N) = 1, tensoring with M leaves the sequence
exact. Say it is true for all sequences with #(S) < s. Given

0—>K—>HQ°P—>N—>O, #(9) = s,
s

pick some o € S and let ¥ = S — {o}. We have the map Q°° = QP — [[,Q°® — N, and we let N, be
the image of this map in N. This gives the commutative diagram

0 0 0

0 K [0 N 0
0 K" [0 N 0
0 0 0

(where N = N/N,) with exact rows and columns and the middle column split-exact. Note that N’ and
N, have r < 1 and when r = 0 the above argument is trivial. Tensor the diagram on the right with M. So,
the top and bottom rows remain exact (by the induction hypothesis and the base case), the middle column
remains exact (in fact, split) and all other rows and columns are exact:

0

00— K, o M ——Q@q M ——— N, ®q M ——0

14

K®QM*Q><]_[SQ) ®o M —= N @ M — 0

We must show that « is an injection. Take z € K ®q M. If a(x) = 0, then §(a(z)) = 0, which implies that
m(x) goes to zero under the injection (K"’ ®q M — (]_[E Q) ®q M), and so, w(z) = 0. Then, there is some
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y € K, ®q M with v(y) = 2. But the map K, ®q M — Q®q M — (]_[S Q) ®q M is injective and y goes

to zero under it. So, we must have y = 0, and thus, x = 0. This proves that « is injective, and completes
the interior induction (case: r = 1). By the way, « is injective by the five lemma with the two left vertical
sequences considered horizontal and read backwards!

There remains the induction on r. The case r = 1 is proved. If the statement is true for modules N with
< r minimal generators, we take an N with exactly r as its number of minimal generators. Then, for any
finite S, and any sequence

0—>K—>HQOP—>N—>O,
5

we choose, as above, 0 € S and set ¥ = S — {0} and let N,, N” be as before. Now redo the argument
involving the 9 term diagram; it shows « is, once again, injective and the claim is proved.

Step 2. 1 claim that for every sequence
0—N —N-—N'"—0
of 2°P-modules, all of which are f.g., the sequence
0 —N®@ oM —-NqM — N'"®qM —0
remains exact. By the previous proposition, this will finish the proof.

Since N’, N and N” are all f.g., we have the commutative diagram

in which the middle column is split-exact. By tensoring this diagram with M (on the right), we get the
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following commutative diagram with all exact rows (by Step 1) and columns:

0 Ker «

00— K’ 8o M ——> (I[ Q) @ M ——= N’ 8 M —>0

[0

OHK@QM%(HSUTQ> KoM —NRQoM—0

OHKH(X)QM#(HTQ) QoM —N"@qgM ——0

0 0 0
We must show that « is injective. Apply the snake lemma to the first two rows: We get

0 —s Ker a -5 K" ®aq M BN (H Q) ®q M is exact.
T

But, Ker 8 = (0) implies that Im ¢ = (0), and so, Ker « = (0). [J
The second (unproven) assertion of Proposition 2.54 now follows from Theorem 2.68.

Corollary 2.69 If Q is a P.I.D., more generally, a nonzero-divisor ring all of whose f.g. Q°P-ideals are
principal, then M is flat over Q iff M is Q-torsion-free.

Proof. The implication (=) is always true when 2 has no zero divisors.

(«). By the previous theorem, we only need to test against exact sequences of the form
0—2A— QP — Q%/A — 0,

where 2 is a f.g. (hence, principal) Q°P-ideal. So, there is some A € Q with 2 = AQ. We have the
commutative diagram

0 (@ Y o Q/A0 0
]
0 2AC Q0 Q/2A 0

(with 2 considered as right ideal and where 6(u) = Ap) and all the vertical maps are isomorphisms. Conse-
quently, we may assume that our exact sequence is

0—0-250-—Q/A2—0.
By tensoring with M, we get the exact sequence
Qo M 25 Qg M — (/) ®q M — 0,
which, in view of the isomorphisms Q ®q M = M and (2/AQ) ®q M = M/AM, is equivalent to

M 25 M — M/AM — 0.

Since M has no torsion, multiplication by A is injective and the sequence is exact. []
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@ The corollary is false if € is not a P.I.D. Here is an example:
Consider the ring, A = C[X,Y] (4 € CR). The ring A is a domain; so, it is torsion-free. (It’s even a
UFD.) Let 9 be the ideal of A generated by X and Y. We can write
Mm = {feCX,)Y]|f(X,)Y)=9(X, V)X 4+ h(X,Y)Y, withg(X,Y),h(X,Y) € C[X,Y]}
= {feC[X,Y]] f(0,0) =0, ie., f has no constant term}.
Since M C A, we see that 91 is torsion-free.
Claim: 9 is not flat.
Now, A/MM = C, so C is an A-module; how?
The A-module structure on C is as follows: For any f(X,Y) € A and any \ € C,
F(X,Y)- A= f(0,0)A.

Note that X - A =Y - A = 0. When we consider 9t as an A-module, write its generators as e; and e;. Under
the map 9T — A, we have e; — X and e; — Y. There is a unique nontrivial relation:

Y- -eg—X-eg=0.
We claim that e; ® e2 # €2 @ e in M ® 4 M. To see this, define a map, B: M x M — C.
(a) First, define B on the generators ey, es, by setting
Blej,e1) = B(ea,e2) =0, B(er,ea) =1, Bleg,e1) =—1.

(b) We need to check that B is well-defined. Let’s check it for the left hand side argument:

o (G))ore (e Q) oo (= (0))

In the case of e, we get X - 1 = 0, and in the case of ez, we get Y - 1 = 0. The reader should check
similarly that there is no problem for the righthand side argument.
Consequently, we get a linear map, 6: 9t ® 9 — C. For this linear map,
0(61@61) :0(€2®€2) :O, 9(61@62) :].7 0(62@61) = —1.

So, €1 ® ea # €3 ® eq, as contended. Now we will see that 91 is not flat as A-module. Look at the exact
sequence
0—M—A—C—0

and tensor it with 9. We get
MRVIAM — AQIM —CR4M — 0 is exact.

However, M @4 M — A ®4 M is not injective. To see this, use the isomorphism p: A ® 4 M = M, via
a®m +— a-m and examine the composed homomorphism

©: MDA M — AR, M -5 M.
Since p is an isomorphism, all we must prove is that ¢ is not injective. But,
pler®ez) = pu(X @ez) = X -eg
plea®@er) =pY ®e) =Y -e;.
Yet, X -ea =Y -e; and €1 ® e # €3 ® €1, S0 @ is not injective and 9N is not flat.

Say Q is a A-algebra and M is a A°P-module, then M ®, Q is an Q2°P-module. The module M ®p € is
called the base extension of M to €.
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Proposition 2.70 Say M is a flat A-module, then its base extension, Q@ M, is again a flat Q-module. If
N is a flat Q-module and Q is a flat A-algebra, then N considered as A-module (via A — Q), is again flat
over A.

Proof. Assume M is flat as A-module. Then, we know that for any exact sequence of A°’-modules,
0— N —N-—N'—0,

the sequence
0— N @y M — N ®x M is exact.

Now, take any exact sequence of 2-modules, say
0— N — N —N"—0, (1)
it is still exact as a sequence of A-modules. Hence,
0— N @y M — N ®x M is exact.
Tensoring (1) with Q ® M over 2, we get
N ®@q (Q@y M) — N®@q Q@ M) — ---. (1)

We want to show that (f1) is exact on the left. But Z ®q (2 ®@x M) = Z @4 M, for any Q2°P-module, Z.
Hence, (11) becomes
N/®AM—>N®AM—>'-',

and we already observed that this sequence is exact on the left.
For the second part, take an exact sequence of A°°?-modules,

0— M —M-— M"—0. (%)

We need to show that
0— M @A N — M®x N is exact.

Tensor (*) over A with . The resulting sequence
00— M RQ)yQ—MQ2— - ()
is still exact as  is flat. Tensor (xx) with N over Q; again, as N is flat over ), we get
0— (M @A Q) @q N — (M ®50Q)®q N — -+ is exact.
But the latter exact sequence is just
0— M @NN— M@y N — -,

as required. []

Harder question: Let P(A) be a property of A-modules. Say Q) is a A-algebra and M is a A-module.
Then, we get the Q-module, Q ®, M, the base extension of M to Q. Suppose, 2 @4 M has P(Q). Does M
have P(A)?

If so, one says that P descends in the extension Q over A. This matter is a question of descent.

A more realistic question is: Given P, or a collection of interesting P’s, for which A-algebras, 2, does
(do) P(Q) descend?

Ezxamples:
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1. Pi(A): M is a torsion-free A-module.
2. Py(A): M is a flat A-module.

3. P5(A): M is a free A-module.

4. Py(A): M is an injective A-module.
5. Ps(A): M is a torsion A-module.

Take A = Z (a very good ring: commutative, P.I.D), = Q (a field, a great ring), Q is flat over Z (and
Z — Q). Let M =Z11(Z/2Z). (The module M is f.p.) The module M, has, none of P;(Z) for j =1,2,3,4.
On the other hand, Q ®z M = Q, and Q has all of P;(Q) for j = 1,2,3,4. However, P5 descends in the
extension Q over Z. This follows from

Proposition 2.71 The module, M, is a torsion Z-module iff Q ®z M = (0).

Proof. (=). This has already been proved.

(«<). First, let M be f.g. We know that there is an exact sequence
0—tM) —M— M/t(M) —0 (1)

where ¢t(M) is the torsion submodule of M and M/t(M) is torsion-free; hence (since M is f.g.), M/t(M) is
free. If we tensor () with Q, we get

Q®zM — Q®z (M/t(M)) — 0.

Since Q ®z M = (0), by hypothesis, we get Q ®z (M/t(M)) = (0). Yet, M/t(M) = lIgZ where S is finite;
consequently, S = @) and so, M/t(M) = (0), i.e., M = t(M). Therefore, M is torsion.

For an arbitrary M, we can write M = h_m> M, where M, ranges over the f.g. submodules of M. We

«
have an exact sequence

0— M, — M, forall a,

and Q is flat; so,
0—Q®zM, — Q®z M is still exact.

But, Q ®z M = (0) implies Q ®z M,, = (0). As the M,’s are f.g., the previous argument shows that M, is
torsion. Then, M = h4m) M, is torsion as the right limit of torsion modules is torsion. []

We now go back to the question. Given the Z-module M, we assume that Q ®z M is torsion. Since Q is
a field, Q ®z M = (0). Proposition 2.71 implies that M is torsion and Ps descends in the extension Q over
Z.

2.9 Further Readings

Rings and modules are covered in most algebra texts, so we shall nor repeat the references given in Section
1.8. Other references include Atiyah MacDonald [3], Lafon [32, 33], Eisenbud [13], Matsumura [39], Malliavin
[38] and Bourbaki [8].



Chapter 3

Commutative Rings

3.1 Introduction

The ordinary arithmetic of the integers and simple generalizations (such as the Gaussian Integers) as well
as of analogues like the polynomial ring in one variable over a field gave rise to the study of number theory
and then to the study of commutative rings. The assumption of commutativity in multiplication makes
possible a much deeper theory with more satisfying applications. Nowadays, a thorough knowledge of this
Chapter is essential in order to do Algebraic Geometry and Algebraic Number Theory (and their mixture:
Arithmetic Algebraic Geometry); one also needs to know the material here for Algebraic Topology. Many
of the results are direct consequences of prodding from geometry, physics and number theory. A modern
problem is to use our physical knowledge (quantum theory), our knowledge of modules and representation
theory, and the hints from the forefront of number theory to augment these results to a new and better
theory of not necessarily commutative rings. This endeavor will probably be a big part of the twenty-first
century in mathematics.

3.2 Classical Localization

All rings in this chapter are commutative with unity.

Definition 3.1 Let A € CR and S C A be a subset of A. We say that S is a multiplicative subset in A iff
(1) 18
(2) If x,y € S, then xy € S
(3) 0¢ 5.

Ezamples:

1 G (A) = the units of A; the idea is to abstract this case.

(
(2) S={a € A|aisnot a zero divisor in A}.
(

) S

)
3) S={zeR|z>0} CG,LR).
(3a) S has property (1) and (2) and is contained in G,,(A).
)

(4) Given f € A, let S={f"|n € Z, n >0} and assume that f & N (A) (i.e., f* # 0 for all n > 0).

173
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Fix a base ring, C, and look at C-algebras in CR (we get CR when C' = Z). Let A and B be C-algebras,
where B varies, and let S be a multiplicative subset in A. Look at

Homc_alg(A,B; S) = {QO S HOmc_alg(A,B) ‘ (p(S) - Gm(B)}

Check that B ~» Home_a15(A, B; S) is a functor from C-algebras to Sets. Is it representable? This means,
is there a C-algebra, S~ A, and a map (of C-algebras), h: A — S~1A, so that

0p: Homc,alg(S_lfL B) = Hom¢—a14(4A, B; S)

functorially, where 05 (1)) = ¢ o h € Hom¢g_ai5(A4, B; S), as illustrated below:

s-1tAa—Y. B
]
poh

A

Proposition 3.1 The functor B ~ Homc_a1.(A, B; S) is representable. The representing object, S~ A, is
called the fraction ring of A w.r.t. S (or the localization of A w.r.t. S). The C-algebra map, h: A — S™1A,
is the canonical map.

Proof. Look at A x S (in Sets) and form the equivalence relation, ~, given by:
(a,8) ~ (bt) iff (Jue S)(u(at —sb) =0 in A).
Write g for the equivalence class of (a, s). So,

2 g i (Fu e S)(ulat — sb) = 0).

Define addition and multiplication by:

g+9:at+sb and gé_&b
st st s t st
Check that these operations are well defined and that S~! A is a C-algebra (c 4 f(c)a) 1 the C-algebra
s s
map, h: A — S71A, is given by h(a) = %

Functorial part. Given 1) € Home_a1¢(S™1 A, B), form ¢ o h taking A to B. Now, elements of S become
units in S~ A, because

1 1
2.2 22, the unit element of S—1A.
1 s 1
But, ¢ maps units of S~ A to units of B, so ¥ oh € Homc_ alg(A, B; S). Next, given ¢ € Home_a15(4, B; 5),
define
( ) =¢ls)pla) € B.
Check

(a) The homomorphism [p]: ST1A — B is well defined.

(b) 65 and ¢ — [¢] are inverse maps. []

Here, f: C — A is the ring homomorphism making A into a C-algebra.
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We can do the same thing with modules. Let M be an A-module and S a multiplicative set in A. Make
(M x S)/ ~, where ~ is given by

(m,s) ~(n,t) iff (Jue S)(u(tm —sn)=0 in M).
Write ™ for the equivalence class of (m, s). Define addition and the action of A by
s

m m §m+sm’ m  am
-+ —=———— and a-— = —.

! ss! s s

s s
This gives the A-module, S~1M. We have the canonical map, h: M — S~'M, given by h(m) = m/1.

To discuss what this means, look at the general case of a ring homomorphism, ¢: A — B. We have
two functors: 9°*: Mod(B) ~» Mod(A) (the backward image functor) and 1e: Mod(A) ~» Mod(B) (the
forward image functor). Here, 1*(M) = M as an A-module via v; that means a-m = 1 (a) - m. The functor
1*® is an exact functor. Also, the functor 1, is given by: e (M) = B ®4 M. The forward image functor is
only right-exact, in general. These functors form a pair of adjoint functors:

Homp (e (M), N) = Homy (M, *(N)).
Proposition 3.2 The module S~ M s, in a natural way, an S~'A-module. The map M ~ S™'M is a
functor from Mod(A) to Mod(S~'A) and is left-adjoint to h®. That is,
Homg-14(S™' M, N) = Homa (M, h*(N)).
Consequently,
STIM=S1AQ A M=M@sS A= hoM).
m_ @, this is well-defined and makes S~'M into an S~'A-module. If p: M — M in

s ts
Mod(A), the assignment LR elm) yields S~1¢: S~'M — S~'M. Check this makes M ~ S~'M a
s s

functor.
Say 0 € Homg-1,4(S~'M, N), set

Proof. Let % .

O(m) =0 () € h* (V).

am am a m m\ .,
Oem) =6 () =0 (37) =7:0(F) = (a-0(F) me)) =a-em)
So, we have a map from Homg-14(S™'M, N) to Hom4 (M, h*(N)) given by 6 — ©. Now, say
¢ € Homa(M,h*(N)); then, S7'¢ € Homg-1,(S™'M,S7'h*(N)). But, if N € Mod(S'A), then
S7Ih*(N) = N, and we get the map in the opposite direction, ¢ +— S~1p. These maps are mutually
inverse. Each of S™1—; ST1A®4 —; — ®4 ST A, are left adjoint to h®; so, they are all isomorphic. []

Now,

Proposition 3.3 The functor M ~ S~ M is exact, hence, S~ A is a flat A-algebra.

-1 -1
Proof. Given any exact sequence My LN M> i> M, we will show that S—1M; S—f S—1M, S—Tf S~ M,

is again exact. Clearly, as My —+ My N M is exact, we have oy = 0; and so, (S™1)o(S71p) = 0. This
shows that Im (S~ 1¢) C Ker (S71). Say £ € S~'My and S~19(€) = 0. As € = m/s, for some m € My and
some s € S, and as ST (&) = (m)/s = 0 in S~1 M3, there is some u € S with u(m) = 0, i.e., ¥(um) = 0.
By exactness, there is some m’ € M; so that um = ¢(m’). Consider the element m’/(su); we have

S (M) _elm') _um _m
S <p<su) su 7su757£'

Therefore, £ € Im (S~1y), as required. []

Ezxamples:
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(1) S = G,,(A) or more generally, S C G,,(A). Then, S~1A4 = A.

(2) S = all nonzero divisors of A. Here, ST A is a bigger ring if we are not in case (1). The ring S™tA
is called the total fraction ring of A and it is denoted Frac(A). If A is a domain, then Frac(A) is
a field, the fraction field of A. For example, Frac(Z) = Q. The field, Frac(k[X;,...,X,]), denoted
k(X1,...,Xn), is the rational function field in n variables (where k is a field). If A is the ring of entire
(holomorphic) functions, then Frac(A) is the field of meromorphic functions on C. If A = Hol(U), the
ring of holomorphic functions on an open, U C C, then Frac(A) = Mer(U) = the field of meromorphic
functions on U.

(3) S={f"|feA(f fixed); f ¢ N(A)}. The ring S~ A has the special notation Ay. Observe that

v

aeA,nZO},

while, in general,

Ker(h:A—>S’1A):{a€A ’%:0}:{a€A| (3u € S)(ua = 0)}.

In cases (1) and (2), the map, h, is injective. In case (3), Ker h = {a € A | (3In > 0)(f"a = 0)}. Consider
the map A[X] — Ay, via X — 1/f (a — h(a), for a € A). Since aX™ — a/f", our map is surjective.
What is its kernel?

Consider the diagram

Af[X X»—)l/f

|
AX) 22 4,
The kernel of the top arrow is: (X — 1/f). The answer to our question is now easily seen to be
{P(X) € A[X] | (Fr = 0)(f"P(X) € (X[ - 1)} = (Xf - 1)
Here, (X f — 1)¢¢ is, for the moment, just a notation for the left hand side. So,
AX)/(Xf—1) = Ay,

Generalities on extension (e) and contraction (c).

Let ¢: A — B be a map of rings. Say 2[ is an ideal in A. Let ¢ = (the extended ideal) be the ideal of
B generated by (). If B is an ideal in B, then let B¢ = (the contracted ideal) be the ideal of A given by

B = H(B) = {zr € A| Y(z) € B}
Take B = S~'A. If A C A, what is °¢?
Claim: A° = {a/s |ae se S}. Indeed, we have

s

i=1

;
1

»|&

ai€ﬂ7bi€A,Si€S}.

1
Such a sum is of the form — Z?:l c;a;, where 0 = s1---8,; ¢; € A and a; € . Since 2 is an ideal, this sum
o

is of the form « /o, where a € 2(. We have proved part of
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Proposition 3.4 For any commutative ring, A, and any multiplicative subset, S, of A we have:
(1) G,,(S71A) ={a/s| (b€ A)(ba € S)}.
(2) If A C A then A° = {a/s| a €, s € S}.
(3) Ae = (1) =SLAiff AN S # 0.

1
Pa _

Proof. (1) We have a/s € G,, (S~ A) iff there is some 3/t with . =1 iff (Ju € S)((uf)a = ust).

But, ust € S; so, if we set b = uf, we get ba € S. The converse is clear.

(2) Already done.

(3) We have ¢ = (1) iff some element of ¢ is a unit iff a/s is a unit for some « € 2 iff there is some
b e A with ba € S. But, a € 2, so ba € 2, yet ba € S; so, AN S # . Conversely, if AN S # O, then
{s/1]s € 8}NA° # (). Consequently, A° has a unit in it, and so, A° = (1). O

Say 20 C A, when is 2 contracted? First an easier question: What is (€7
Note: for all v € A, we have A C (v — ) (this only uses the fact that 2 is a two-sided ideal).

Claim: (v — ) = 2 iff v is not a zero divisor mod 2, i.e., T € A/ is not a zero divisor. (Terminology:
v is regular w.r.t, 2A).

We have (v — ) = A iff (v — A) C A iff for every £ € A, when &v € 2, then £ € A. Reading this
mod 2, we find the above statement is equivalent to
(Ve A/ (ET=0 = £=0),
which holds iff 7 is not a zero divisor in A/2l.

Going back to the question: What is 2°°?, we have & € A°¢ iff h(§) € A° iff h(€) = /s, for some o € A
and some s € S, iff /1 = «/s iff there is some u € S so that u(£s —a) =0, i.e. ués =ua € A. Asus € S,
this implies that there is some v € S with v€ € 2. Conversely, if v€ € 2 for some v € S, then

U€ e ]'UE e § e e
1162[ :>U1169l :>1€Ql = h(§) e A°,

and so, £ € 2A°¢. Therefore,
AC = {¢](FveI(v§ e A)}
= {{l@Eves)Ee(v—2A)}
= U (v — 2A).

veS
Now, 2 = (1 — ) C [J,cg(s — A) = A
When is ? contracted, i.e., when is it of the form A = B¢, for some B C S~1A?

Of course, if A = A°¢, then B = A°¢ will do. In fact, we shall prove that A = B¢ for some B C S~1A iff
2 = 2A°°. First, we claim that B = B for every B C S~!A; that is, every ideal, B, of S~ A is an extended
ideal. For, any & in B is of the form & = a/s, for some a € A and some s € S. But, s§ € 9B, too, and so,
a/1 € B, which implies that a € B°. Consequently, £ = a/s € B°¢. Conversely, if £ € B, then £ = §/t,
with 8 € 9¢; it follows that £ = (1/t)(8/1) € B, and so, B = B,

But now, 21 = B¢ implies that ¢ = B = B; so, A€ = B¢ = 2. These remarks prove most of the

Proposition 3.5 If A € CR and S is a multiplicative system in A, then
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(1) An ideal, A, of A is contracted iff A = A iff every element of S is regular for 2.
(2) Every ideal, B C ST A, is extended.

(3) The map, A — A, is a one-to-one inclusion-preserving correspondence between all the contracted ideals
of A and all ideals of S™1A.

4) If A is noetherian, then S~1A is noetherian.
(

Proof. (1) We proved earlier that A = J,.g(v — 2A) and we know that (v — 2) = 2 iff v is regular for
2A. So, (1) is now clear.

(2) This has already been proved.

(3) Assume that 2 and 2 have the same extension and both are contracted. Then, by (1) A = ¢ and
2 = ¢, and since, by hypothesis 20¢ = 20¢, we get A = 2. It is also clear that if A C A, then A C €.

(4) (DX) from (1), (2), (3). O
The same argument shows the corresponding proposition for modules.
Proposition 3.6 If A € CR and S is a multiplicative system in A, for any module, M € Mod(A),

(1) A submodule, N, of M is contracted iff it is equal to its S-saturation. The S-saturation of N is the
submodule given by

{ceM|(FvelS)wEeN)}=Jw—N),
veS

where (v — N) ={{ € M |v§ € N}.
(2) Every submodule of S~1M is extended, i.e., has the form S™'N, for some submodule, N, of M.

(3) The map, N + STIN, is a one-to-one inclusion-preserving correspondence between all the S-saturated
submodules of M and all submodules of S~'M.

If M is a noetherian module, then S™1M is a noetherian module.
(4) :

Proposition 3.7 Say A € CR and S is a multiplicative system in A. For any ideal, A C A, we have
(a) The image, S, of S in A/, is a multiplicative subset provided that S NA = (.

(b) STLA/AC = S (A/).
Proof. (a) This is trivial.
(b) We have A — A/ —+ 5 ' (A/2). The elements of S become units in S (4/2). By the universal
mapping property, we have the map S™1A4 — §_1(A/Ql). This map is a/s — @/3; so, it is surjective. We

have @/s =0 in ?71(14/91) iff there is some u € S so that u@ = 0 iff a/1 € A¢ iff a/s € A°. Therefore, the
kernel of our map is ¢, and so, S~TA/A¢ 5 § ' (A/A). [J
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3.3 Prime and Maximal Ideals

Recall that an ideal, p, of A € CR is a prime ideal iff p # (1) and for all a,b € A, if ab € p, then one of a € p
or b € p holds.

Proposition 3.8 Given a commutative ring, A, for any ideal, A C A, the following are equivalent:
(1) The ideal, A, is a prime ideal.
(2) The ring A/ is an integral domain.
(3) The set S = A — 2 = the complement of 2 is a multiplicative subset of A.

(4) If B and B are two ideals of A and if BB C A, then one of B C A or B C A holds.
(5) There is a ring, B, a homomorphism, ¢: A — B and a mazimal ideal, m, of B, so that p~1(m) = 2.
(6) There is a multiplicative set, S C A, so that

(i) ANS =0 and

(ii) A is mazimal among the ideals having ().

Proof. Equivalence of (1)—(4) is known and clear. Now, the inverse image of a prime ideal is always a prime
ideal (DX). Every maximal ideal is prime, so it follows that (5) = (1). Moreover, (1) implies (6) because
take S = A — p. This is a multiplicative set by (3) and (6) follows tautologically.

1) = (5). Given a prime, 2, let S = A — 2, a multiplicative set by (3) and let B = S7'A4 and ¢ = h.
y ¥

We claim that 21¢ is a maximal ideal of S~'A. This is because S™1A/A¢ — g_l(A/Ql), but A/ is an
integral domain and S = nonzero elements of A/2(. Consequently, gil(A/Ql) = Frac(A/2) is a field; so, A°
is a maximal ideal. Now, h™1(A°) = A = |J,cq(v — A). Now, & € (v — ) iff v& € A, where v ¢ A
But, 2 is prime, so ¢ € 2. Therefore, (v — A) = A, for all v € S; and so, A€ = h~1(A¢) = A and (5)
follows.

(6) = (1). Given any a,b ¢ 2, we must show that ab ¢ 2. The hypotheses imply that 2+ (a) > 2 and
A+ (b) > A, and by (6) (i) and (ii), we have (A+ (a)) NS # @ and (A + (b)) NS # O. So, there are some
s,t € S, where s = a+ pa, t = 8+ ob, with o, 8 € A, p,o € A. Since st € S, it follows that

aB + paf + cba + po(ad) € S.
If ab € A, then st € AN S, a contradiction. Therefore, ab ¢ 2A. []
Corollary 3.9 Given any multiplicative set, S, in A, there exists a prime ideal, p, so that pN S = 0.

Proof. Look at S = {2 | A an ideal and AN S = ()}. We have (0) € S, partially order S by inclusion and
check that S is inductive. By Zorn’s lemma, S has some maximal element, p. By (6), the ideal p is prime.
O

Notation: If S = A — p, where p is a prime ideal, write A, instead of S™'A4; the ring A, is called the
localization of A at p. Recall that a local ring is a ring that has a unique maximal ideal.

Corollary 3.10 For any prime ideal, p, in A, the ring A, is always a local ring and its mazimal ideal is
Just pe.

Proof. Say 2 is an ideal of A. Ideals of A, = S™'A are extended ideals, i.e., they are of the form 2A¢. We
have ¢ = (1) iff AN S # O iff A € p. Thus, A° is a proper ideal iff A C p; the latter implies that 2A¢ C pe.
So, p¢ is the maximal ideal of A,, as contended. (]

Remark: We have p© = p. We saw this above in the proof that (1) = (5).
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Proposition 3.11 Let A € CR be a commutative ring, S be a multiplicative set in A and let P be a prime
ideal of A. Then,

(1) The ideal B¢ is a prime ideal of STYA iff B¢ # (1) iff NS = 0.
(2) Every prime ideal of S~ A has the form B¢, for some prime ideal, B, of A.

(3) There is a one-to-one, inclusion-preserving, correspondence between the prime ideals of S™1A and the
prime ideals, B, of A for which BN S = .

When S = A —p for some prime, p, of A, we have
(1') The ideal *B° is a prime of A, iff B is a prime in A and P C p.
(2') Every prime ideal of A, is B¢, for some prime, B, of A with P C p.

(3') There is a one-to-one, inclusion-preserving, correspondence between all primes of A, and the
primes of A contained in p.

Proof. (1) We know that 3¢ # (1) iff B NS = (). By definition, a prime ideal is never equal to (1), so, all
we must show is: If 9B is prime in A, then 3¢ is prime in S™'A (of course, B¢ # (1)). Say (a/s)(B/t) € Be.
Then, (af)/1 € B¢, and so, aff € P°°. But, P = J,cq(v — B) and £ € (v — P) iff v€ € P; moreover,
v & P since PN S =0, so, £ € P. Therefore, P¢° = P, and so, aff € P. Since P is prime, either a € P or
B € PB; it follows that either o/s € P or [/t € PB°.

(2) If q is a prime in S™!'A, then q = q°® and ¢ is a prime, as q° = h~!(q). Take P = q° to satisfy (2).
Conversely, 3¢ is prime iff NS = 0.

(3) follows from (1) and (2) and previous work.
Finally, (1’), (2') and (3’) are special cases of (1), (2) and (3), respectively. []
Definition 3.2 If p is a prime ideal of A € CR, look at chains of prime ideals
pP=Ppo>p1>->pPn,
where each p; is prime ideal of A. Call n the length of this chain and define the height of p by

ht(p) = sup{length of all chains p =po > p1 > -+ > p,}.

Observe that ht(p) might be infinite. Since there is a one-to-one inclusion-preserving correspondence
between the set of all primes, 3, contained in p and the set of all prime ideals of A,, we get

ht(p) = ht(maximal ideal of A,).

Definition 3.3 The Krull dimension of a commutative ring, A, denoted dim(A), is the supremum of the
set {ht(m) | m is a maximal ideal of A}.

Hence, we see that ht(p) = dim(A4,), and
dim(A4) = sup{dim(Ay) | m is a maximal ideal of A}.

Examples.

(1) Say dim(A) = 0. This holds iff every prime ideal is maximal iff every maximal ideal is a minimal
prime ideal. An example is a field, or Z/nZ.
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(2) dim(A4) = 1. Here, A = a P.ILD. will do. For example, Z, Z[i], Q[T], more generally, k[T], for any
field, k. Also, Z[v/—5], a non-P.I.D., has dimension 1.

(3) C[T1,...,T,] has dimension n (this is not obvious, try it!) Given a commutative ring, A, for appli-

cations to algebraic geometry and number theory, it is useful to introduce two important sets, Spec A and
Max A, and to make these sets into topological spaces. Let

SpecA = {p|p is a prime ideal of A}
MaxA = {m|m is a maximal ideal of A}.

The set, X = Spec A, is given a topology (the Zariski topology or spectral topology) for which a basis of
open sets consists of the sets

Xy={peSpecA|f¢p} (fed),
and Max A C Spec A is given the relative topology.

Remarks:
(1) Xyn = Xy, for all n > 1. This is because f™ ¢ p iff f ¢ p, as p is prime.
(2) Xyg =Xy N X, Thisis because p € Xy, iff fg & piff (f ¢ p) and (g ¢ p).
(3) Xy =SpecA=Xiff f ¢p, for every prime p iff f € G,,(A4) iff X; = X;.
(4) Xy =0 iff f € p, for all primes, p.

The open sets in X = Spec A are just the sets of the form UfeT Xy, for any subset, T, of A. So, a set,
C, is closed in X iff it is of the form C =, X§, where

Xi={pecSpecA|pg X;}={pcSpecA|fecp}={pecSpecAl(f)Cp}

Thus, p € C iff the ideal generated by the set 7" is contained in p. This suggests the following definition: For
any ideal, 2, in A, let
V(%) = {p € Spec A | p 2 A}

be the variety defined by 2. Then, we have

V) = ﬂ X;= ﬂ{X; | f is part of a generating set for 2}.
fex

The dual properties to (1)—(4) are:

(1) V(ANB) = V(AB) = V(A) UV (B)

2) V(%) =N, V@a) (3, A = the ideal generated by the 2, ’s).
(3) V() =0 iff A = (1).

(4') V() = X = Spec A iff (¥p € Spec A)(A C p).

From now on, when we refer to Spec A and Max A, we mean these as topological spaces.

To give a more informative criterion for (4) and (4'), we need to study N(A) = the nilradical of A,
defined by
N(A)={z e A|z" =0, for some integer n > 0}.
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This is an ideal of A. Indeed, if z € N(A) and y € A, since A is commutative, we have (yz)™ = y™z™ = 0.
Also, if z,y € N(A), then there is some integer n > 0 so that 2 = y™ = 0, and by the binomial formula,

2n

e =3 (M)ar g <o
J

§=0
since y?"~J =0 if j <n and 27 = 0 if j > n. Therefore, z =y € N(A) and N'(A) is an ideal.
More generally, if 2 is an ideal, the radical of 2, denoted v/, is

VAl={zeA|(@n>0)2" )}

It is easy to check that v/2f is an ideal and that 2 C v/2l. Note: 1/(0) = N'(A).

bar

That V2l is an ideal can also be seen as follows: Consider the projection map, A —— A/, and look at
N(A/2). Then, v is the inverse image of N'(A/2A) under bar, and so, v is an ideal. Furthermore, by
the first homomorphism theorem,

A/VA (AJA) /N (A/).

Observe that A/N(A) is a ring without nonzero nilpotent elements. Such a ring is called a reduced ring and
AJN(A) is reduced. We write A,oq for A/N(A). Note: (A/A)req = A/v/2U. For example,
(Z/p"Z)rea = Z/pZ, for any prime p.

The following facts are easy to prove (DX):
(a) VvV = VAL
(b) VNS =v2ANVDB.
(c) If A* C B, for some k > 1, then vA C /B.

There is another radical, the Jacobson radical, J(A), given by

J(A) = ﬂ m.

meMax(A)
Proposition 3.12 For any ring, A € CR, we have
(1) x ¢ G, (A) iff there is some mazimal ideal, m, so that x € m.
(2) If v € J(A), then 1 + x € G,,,(A).
(3) N(A) = Npespec a P: hence N(A) C T (A).
Proof. (1) is clear (use Zorn’s lemma).

(2) Assume (1 + z) ¢ G,,(A). By (1), there is some m € Max A4, so that 1 +z € m. So, x ¢ m (else,
1 € m, a contradiction). As J(A) is contained in every maximal ideal, we get = ¢ J(A).

(3) Suppose x € N(A); then, ™ = 0, for some n > 0. Consequently, 2™ € p, for every prime p; so,
T € p, as p is prime. Conversely, assume = € ﬂpespeC(A) p. Look at the set S = {z" | n > 0}. Were S a
multiplicative set, then there would be some prime ideal, p, with pNS = 0. As x € p, this is impossible.
Therefore, S is not a multiplicative set, which happens iff x is nilpotent. []

Now, we can give the criteria for (4) and (4').

(4) X;=0iff f € N(A).
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(4") V() = X = Spec A iff A C N (A).
Corollary 3.13 Given any ideal, 2,

V= ("{p € Spec A |p DAL =({p € Spec A | p € V()}.

Proof. There is a one-to-one correspondence between the set of prime ideals, p, containing 2 and the set of
prime ideals, p, in A/2A. So, ({p | p D A} is the inverse image of N'(A/A), but this inverse image is V2. []

The minimal elements among primes, p, such that p D 2 are called the isolated primes of 2. Therefore,
Val = ﬂ{p € Spec A | p is an isolated prime of A}.

Proposition 3.14 The space X = Spec A is always quasi-compact (i.e., compact but not necessarily Haus-

dorff).
Proof. Say |J,Ua = X is an open cover of X. Each open U, has the form U, = UB Xfm). Therefore, we
)

= X. If we prove that this cover has a finite subcover, we are done (DX). The

, = 0. However the left hand side is V((féa))) and so (féa)) = (1), by

get an open cover |J,, 5 Xféa)

hypothesis implies that (), 5 X;(a
5
previous work. We find

1= Cal,ﬁlf[(fl) R casﬁsfé(:s), for some cq; 5, € A.

Thus, already, (f[g?"))jzl = (1), and so, ;_, X;(aj) = 0. Thus, U;_; X ; = X, a finite cover. []

J
B Ts;

Remark: The space, Spec A, is almost never Hausdorff. For example,
Spec(Z) = {(0),(2),(3),(5),(7), (11),...}, and {(0)} is dense in Spec(Z), i.e., every open set contains (0).

Another geometric example of Spec A and Max A is this:

Proposition 3.15 Let X be a compact, Hausdorff space and write A = C(X) (the ring of real-valued (or
complez-valued) continuous functions on X ). For each x € X, write m, = {f € A| f(x) =0}. Then

(1) Fach m, is a mazimal ideal of A and

(2) The map x — m, is a bijection of X with Max A. (In fact, x — m, is a homeomorphism).

Proof. Note that the map f — f(x) is a homomorphism of C(X) onto R (resp. C). Its kernel is m,, and so,
m, is maximal. By Urysohn’s lemma, if « # y, there is some continuous function, f € A, so that f(z) =0
and f(y) = 1. Thus, f € m, and f ¢ my; it follows that m, # my; so, our map is an injection (of sets).
Take any m in Max A. Say, m # m, for all x € X. Given « € X, since m # m,, there is some f, € m and
fo ¢ my, Therefore, f,.(x) # 0. Since f is continuous, there is some open subset, U,, with z € U,, and
f 1 Uz # 0. Then, the family {U,} is an open cover of X, and by compactness, it contains a finite subcover,
say {Us, }2:1. We have a function, f,, € m, for each j =1,...,t. Let

t

¢
F= Z fi (F = Z |fz,1?, in the complex case).
j=1

j=1

Clearly, F > 0. Pick any £ € X. Then, there is some j, with 1 < j <, so that £ € U, and so, fz,;(§) # 0.
It follows that F(§) > 0. Thus, F is never zero on X; consequently, 1/F € A. But now, F is a unit
and yet, F' € m, a contradiction. Therefore, the map = — m, is surjective. We leave the fact that it is a
homeomorphism as a (DX). ]

Here are some useful lemmas on primes.
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Lemma 3.16 If p is a prime of A and U4, ...,2; are some given ideals, then p 2D ﬂ;zl A iff p DAy, for
some j.
Proof. («<). This is a tautology.

(=). Observe that p D ﬂ;zl 2; D H;:1 2(;, and since p is prime, we must have p 2O ;, for some j. []
Lemma 3.17 (Prime avoidance lemma) Let 2 be an ideal and let py,...,p: be some prime ideals. If
A C U§:1 p;, then A C p;, for some j. (The lemma says that if A avoids all the p;, in the sense that A Z p;,
then it avoids U§:1 n;).

Proof. We proceed by induction on ¢. The case t = 1 is obvious. Assume the induction hypothesis for
t < n. Given n prime ideals, p1,...,p,, by the induction hypothesis, we may assume that 2 Z Uj;ﬁi p;, for

i=1,...,n. Since, by hypothesis, 2 C U?:1 p;, for every ¢ =1,...,n, there is some x; € 2 with
z; €p; and z; ¢p;, forall j#i. )
Let k be given and form
Yk =1 Tk 1TETh41 " Ty
where, as usual, the hat over x; means that xj is omitted. Then, y; € p;, for all ¢ # k. We claim that

yr ¢ pr- Indeed, were it not the case, then we would have y = x1 - Ty - - T,, € Pg; since pg is prime, there
would be some z; € p;, for some j # k, a contradiction of ().

Of course, y;, € 2, for all k. Now, take a =y + -+ + yn.

Claim. a ¢ \U;_, p;-

Suppose that a € py, for some k. We can write

a=uye+ Y Y€ Pk, (%)
J#k

and since we proved that y; € p;, for all 7 # £, the fact that a € p;, implies that ¥, € pi, a contradiction. []
Lemma 3.18 Say p1,...,p, are prime ideals in A, then S = A — U?:1 p; is a multiplicative subset of A.
Proof. We have 0 ¢ S and 1 € S. Suppose that s,¢t € S and st ¢ S. Then, st € U?zl p;, and so, st € p; for
some j; as p; is prime, either s € p; or ¢ € p;, a contradiction. ]

Now, I.S. Cohen (1950) showed that noetherian-ness of a ring is controlled by its prime ideals.
Lemma 3.19 (Cohen, 1950) If A is an ideal in a commutative ring, A, and if b is an element of A for
which A + (b) is f.g. and (b — ) is also f.g., then A is f.g.

Proof. Say 2 + (b) is generated by fi,...,05;. Each §; is of the form a; + p;b, for some a; € 2 and some
p; € A. So, the elements a1, ..., a; and b generate A+ (b). Let ¢y, ..., cs generate (b — 2A). Then, ¢;b € ,
forj=1,...,s.

We claim that the elements aq,...,as, ¢1b, ..., csb generate 2.
Pick o € 2, then o € A + (b), and so, v = 3

=1 005 + pb, with a; as above, for j =1,...,¢. But,

t

pb:a—Zvjaj €2,

j=1

and so, p € (b — 2A). Consequently, we can write p = Zj‘:1 ujc;, as the ¢;’s generate (b — 2A). It follows
that

as contended. []
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Proposition 3.20 Let A be a commutative ring, then the following are equivalent:

(1) A is noetherian (A has the ACC).

(2) Ewvery ideal of A is f.g.

(3) A has the mazimal condition on ideals.

(4) A has the ACC on f.g. ideals.

(5) (LS. Cohen, 1950) Every prime ideal of A is f.g.
Proof. We already proved the equivalence (1)—-(3) (c.f. Proposition 2.9). Obviously, (1) implies (4) and (2)
implies (5).

(4) = (1). Suppose
A <Ay < A3 < -1

is a strictly ascending chain of ideals of A. By the axiom of choice, we can find a tuple, (a;)32,, of elements

j=1s
in A so that a; € 2; and a; ¢ 2,_1. Look at the ascending chain
(a1) C (a1,a2) C (a1,a2,a3) € -+ C (a1,...,a,) C -+~

This is a strictly ascending sequence, by the choice of the a;’s, a contradiction.

(5) = (2). Take F = {2 an ideal of A | 2 is not f.g.} and partially order F by inclusion. If F is not
empty, it is inductive (DX). By Zorn’s lemma, F has a some maximal element, 2. Since 2 € F, it is not f.g.
and by (5), the ideal 2( is not prime. So, there exist a,b € A with a,b ¢ 2 and yet, ab € 2. Since b ¢ A, we
have 20+ (b) > A. Now, a € (b — 2) (since ab € A), yet, a ¢ A, and so, (b — A) > 2A. As 2 is maximal in
F, it follows that both 2+ (b) and (b — 2) are f.g. By Cohen’s lemma, the ideal  is f.g., a contradiction.
Therefore, F =, and (2) holds. [J

We now move back to modules. Given an A-module, M, we make the definition
Definition 3.4 The support of an A-module, M, denoted Supp(M) is that subset of Spec A given by
Supp(M) = {p € Spec A | M, # (0)}.
Proposition 3.21 If M is an A-module, then
Supp(M) CV((M — (0))) = V(Ann(M)).

If M is f.g., then
Supp(M) =V ((M — (0))).

So, the support of a f.g. module is closed in Spec A.

Proof. Pick p in Supp(M), i.e., M, # (0). We need to show that p € V(M — (0))), i.e., p O (M — (0)).
We will show that if p 2 (M — (0)) then M, = (0). But, p 2 (M — (0)) implies that there is some s ¢ p
with s € (M — (0)). In M,,

=0, asskilsM

sm  sm
1t t
But, s/1 is a unit in A,, and so, m/t = 0 already, and M, = (0).

Now, say M is f.g. with mq,...,m; as generators. Pick p € V((M — (0))), we need to show that
p € Supp(M). This means, if p O Ann(M), then M, # (0). We will prove that if M, = (0), then
p 2 Ann(M).

If M, = (0), then m/1 = 0. So, there is some s = s(m) € S with sm = 0 in M. If we repeat this process
for each of the mq, ..., m; that generate M, we get s1,...,5; € S such that s;m; =0, for j =1,...,¢. Write
og=s51--5 €8 Weget om; =0forall j =1,...,t so, o € Ann(M). But, ¢ € S implies that o ¢ p;
consequently, p 2 Ann(M). [
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Proposition 3.22 Say M is an A-module (where A € CR). Then, the following are equivalent:
(1) M = (0).
(2) Supp(M) = 0.
(2a) M, = (0), for all p € Spec A.
(3) Supp(M)NMax A = 0.
(8a) My = (0), for allm € Max A.
Proof. The implications (2) < (2a) and (3) < (3a) are obvious. Similarly, (1) = (2) and (2) = (3)
are trivial. So, we need to show (3) = (1). Let us first assume that M is f.g., Then, we know that

Supp(M) = V((M — (0))). The hypothesis (3) implies that m O (M — (0)) for no maximal ideal, m.
This implies that (M — (0)) = (1), the unit ideal. Consequently, 1 € (M — (0)), and so, M = (0).

Let us now consider the case where M is not f.g. We can write M = h_m> M., where the M, ’s range over

(63

the f.g. submodules of M. Now, M, C M and localization being exact, (Mg )m C Mu; s0, (My)m = (0) for
all m € Max A. By the f.g. case, we get M, = (0) for all a, and thus, M = (0). (J

Remark: The implication (3) = (1) can also be proved without using right limits. Here is the proof. Assume
M # (0). Then, there is some m € M with m # 0, and let Ann(m) = {a € A | am = 0}; we have Ann(m) # (1);
so, Ann(m) C m, for some maximal ideal, m. Consider m/1 € M. Since My = (0), we have Am = 0, for some
A € A —m; thus, A € Ann(m), and yet A ¢ m D Ann(m), a contradiction. Therefore, M = (0). []

Corollary 3.23 If M’ 25 M M s a given sequence of modules and maps, then it is exact iff for all
p € Spec A, the sequence M, — My, — M, is exact iff for all m € Max A, the sequence
M, — My, — M is ezact.

Proof. (=). This direction is trivial as localization is an exact functor.

Observe that we need only assume that the sequence M}, — M, — M is exact for all m € Max A.
Then, () 0 ©)m = ¥m © pm = 0; so if N is the image of the map ¥ o p, we find Ny, = (0), for all m € Max A.
By Proposition 3.22, we get N = (0), and thus ¢ o ¢ = 0.

Let H = Ker ¥/Im ¢. The same argument (using exactness of localization) shows that
Hy = (Ker ¥)m/(Im ¢)m = (0). Again, Proposition 3.22 implies that H = (0) and Ker ¢ = Im ¢, as
contended. []

The statement is not that a whole family of local morphisms comes from a global morphism, rather we
must have the global morphisms and then exactness is a local property.

Local Terminology: If P is property of A-modules (or morphisms), then a module (or morphism) is
locally P iff for every p € Spec A, the module M, has P as A,-module.?
Examples: Locally f.g., locally f.p., locally flat, locally exact, locally free, locally zero. etc.

Sometimes, you get a global result from an everywhere local result.

Proposition 3.24 (Local flatness criterion) Say M is an A-module (where A € CR). Then, the following
are equivalent:

(1) M is flat over A.

2In reality, this ought to be called “pointwise P”.
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(2) M s locally flat.
(2a) For every p € Spec A, the module M, is flat over A.
(8) For every m € Max A, the module My, is flat over Ay,.

(3a) For every m € Max A, the module My, is flat over A.

Proof. The implications (1) = (2) and (2) = (3) hold, the first by base extension and the second because
it is a tautology. We shall prove that (3) = (1) (and along the way, (3) <= (3a) and hence, (2) < (2a)).
Assume 0 — N’ — N is exact. Tensoring with M, we get N’ ®4 M — N ®4 M. Consider the exact
sequence

0—K-—N®sM— N®sM,

where K = Ker (N' @4 M — N ®4 M). By localizing at m, we get the exact sequence
0—K®4An — (N @4 M) @4 Ay — (N @4 M) @4 An. (*)
It follows that the sequence
0 —Kn— N @4 My — N4 M, isexact. (k)
Now, for any module, L,
(LA M)R4An =2 (L4 An) Qa, (M@ Ap) = Ly ®a,, Mu,
and so, the sequence
0— Ky — N}, ®a,, Moy —> Ny ®4,, My, is also exact. (1)
Since, the sequence 0 — N}, — Ny, is exact and
(a) My is An-flat; we find Ky = (0).
(b) My, is A-flat; we find K, = (0), again.

But, the above holds for all m € Max A, and thus, K = (0), as required. []

This method amounts to studying modules over the A,’s and the latter are local rings, where matters
are usually easier. The basic fact is Nakayama’s lemma.

Lemma 3.25 (Nakayama’s lemma) Say A is a commutative ring and J(A) is its Jacobson radical. Suppose
that M is a f.g. A-module and that J(A)M = M. Then, M = (0). That is, if M ®4 (A/T(A)) = (0), then
M = (0) (recall that M @4 (A/T(A)) X M/(T(A)M)).

Proof. Pick a generating set for M of least cardinality. If M # (0), this set is nonempty. Write mq, ..., m;
for these generators. As M = J(A)M, we can express my € M as m; = 23:1 a;m;, where a; € J(A).
Consequently,

t—1
(1—ay)my = Zajmj.
j=1

Now, 1—ay € G, (A), since ay € J(A). Therefore, m; = 22;11 aj(1—az)"'my;, contradicting the minimality
of t. O

Corollary 3.26 (Classical Nakayama) Say A is a local ring and m 4 is its mazimal ideal. Suppose that M
is a f.g. A-module and that maM = M. Then, M = (0).
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Corollary 3.27 On the category of f.g. modules, A/ T (A) is a faithful module. This means if
M®4 (A/T(A)) = (0), then M = (0). (In the local ring case, if M @4 k(A) = (0), then M = (0), with
k(A)=A/my4.)

Corollary 3.28 Let M be an f.g. A-module and say ma,...,m; € M have residues my, ..., My in
M=M®s (A/T(A)) 2 M/(T(A)M) which generate M. Then, my,...,m; generate M.

Proof. Let N be the submodule of M generated by my,...,m;. Look at M/N = M/N. Since M is f.g.,
M/N is f.g. and M/N = M /N = (0). By Corollary 3.27, we get M/N = (0), i.e., M = N. ]

Corollary 3.29 Let M be an f.g. A-module and let N be a submodule for which N + J(A)M = M. Then,
N=M.

Proof. The hypothesis means M = N; so, M/N = (0). We conclude using Corollary 3.27, again. []

Corollary 3.30 Let A be a local ring and M be a f.g. A-module. Write t for the minimal cardinality of a
set of generators for M. Then

(1) A set of elements mq,...,m, generate M iff my,..., M, span the vector space M ® 4 Kk(A).
(2) Every set of generators of M contains a subset generating M with exactly t elements.

The integer t is equal to dim,ay(M @24 K(A)).

Proof. (1) The implication (=) is clear and the implication (<) follows from Corollary 3.28.

(2) For vector spaces, each spanning set contains a basis; this implies that each generating set of M
contains elements which pass to a basis. So, t > d = dim,,4)(M ®4 £(A)). As any basis of a vector space
spans the vector space, Corollary 3.28 shows that M has a generating set of d elements, and so, ¢t < d.
Therefore, t = d. [

Proposition 3.31 Let A be a local ring and M be an A-module. Assume one of
(a) A is noetherian and M is f.g.
(b) M is f.p.
Then, the following are equivalent:
(1) M is free over A.
(2) M is projective over A.
(3) M is faithfully flat over A.
(4) M is flat over A.

Proof. The implications (1) = (2), (2) = (4) and (1) = (3), are already known (c.f. Remark (1) after
Definition 2.4 for (1) = (2) and c.f. Proposition 2.53 and Proposition 2.66 for (2) = (4) and (1) = (3)). We
need only prove (4) = (1). Hypothesis (b) follows from hypothesis (a), so, we assume that M is f.p. and
flat. Pick a minimal set of generators for M, having say, having ¢ generators. We have the exact sequence

0——>K-—A"— M —0.

As M is f.p. and A is f.g., by Proposition 2.41 (or Proposition 2.17), we know that K is also f.g. Since M
is flat, when we tensor with x(A), the sequence

0— K — k(A -5 —0
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remains exact (a Homework problem, but c.f. below). Since the vector spaces M and x(A)! have the same
dimension, O is an isomorphism. So, K = (0). Since K is f.g., by Nakayama’s lemma, K = (0). Therefore,
M =2 At and M is free over A. []

Remark: For the sake of completeness, here is a proof of the fact referred to during the proof of the previous
proposition.

Proposition 3.32 Let A be a ring and consider the exact sequence of A-modules
0— M — M— M —0. (%)
If M" is flat, then for any A°®-module, N, the sequence
0—NRNM — NRA M — N M" —0 is still evact.
Proof. We can write N as a factor of some free A°°’-module, F":
0—K—F—N—0. ()

Then, by tensoring (*) with K, F and N and by tensoring (**) with M’, M and M" we obtain the following

commutative diagram:
0

KOaM ——= K@x M — K@y M" —0
51 52 d3

0——=FOAM ——=FRAM —F\ M' ——0

NoaM —' s Noa M —>N@s M —=0

0 0 0

The second row is exact because F is free, and thus flat; the third column is exact because M" is flat, and the other
rows and columns are exact because tensor is right-exact. We need to prove that §: N ®x M’ — N ®a M is injective.
However, this follows from the snake lemma applied to the first two rows. []

Theorem 3.33 Let A be a commutative ring and M be an A-module. Assume one of
(a) A is noetherian and M 1is f.g.
(b) M is f.p.
Then, the following are equivalent:
(1) M is projective over A.
(2) M is flat over A.
(8) M is locally free over A.

Proof. The implication (1) = (2) is known (c.f. Proposition 2.53 and Proposition 2.66) and (2) (3)
follows from Proposition 3.31. We need to prove (3) = (1). Consider the functor T': N ~~ Hom 4 (M, N); we
must show it is exact. Say

0— N — N — N"— 0 is exact
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and apply T. We get
0 — Homa (M, N’) — Homy (M, N) — Homa (M, N") — C — 0, (1)
where C' is the cokernel of the map Homu (M, N) — Hom 4 (M, N”). We have the lemma (proved in the
Problems):
Lemma 3.34 If B is a flat A-algebra and M is a f.p. A-module, then the canonical map
Homa(M,N)®4 B — Homp(M ®4 B,N ®4 B)

is an isomorphism.

Let B = Ay, for any p € Spec A. If we localize (f) at p, we get
0 — Homu (M, N'), — Homyu (M, N), — Homus(M,N"), — C, — 0,
and Lemma 3.34 implies, this is
0 — Homa, (M, N,) — Homa, (M, Ny) — Homa, (M, N,') — C, — 0.
Yet, by (3), M is locally free, i.e., M, is free over A,. So, Cp, = (0) (since Hom (F, —) is exact for F' free).
As p is arbitrary, C = (0). ]
Proof of Lemma 8.8/. Define the map 0: Homa(M, N) x B — Homp(M ®4 B, N ®4 B) by
0(f,b) =b(f ®idp), for all f € Homa(M,N) and all b € B.
The map @ is clearly bilinear, so, it induces a canonical linear map
©: Homa(M,N) ®4 B — Homp(M ®4 B, N ®4 B).

Since M is an f.p. A-module, there is an exact sequence

HA — HA — M — 0,

q P
for some integers p,q > 0. Since Homa(—, N) is a left-exact cofunctor, we get

0 — Homs(M,N) — l_IHomA(A7 N) — HHomA(A,N) is exact.
P q
Tensoring with B, since B is a flat A-algebra, we get
0 — Homa(M,N)®4 B — HHomA(A,N) Qa4 B — HHomA(A,N) ®a B is exact.

P q

Similarly, the sequence
(HA) R4 B — (HA) R4 B— M ®4 B— 0 is exact,
q P

i.e., the sequence
HB—)HB—>M®AB—>0 is exact,

q p
and since Homp(—, N ® 4 B) is a left-exact cofunctor, we get

0 — Homp(M ®4 B,N @4 B) — [ [ Homp(B, N ®4 B) — | [ Homp(B,N ®4 B) is exact.
p q

Thus, we have the commutative diagram

0 ——— Homa(M,N)®a B [I, Homa(A,N) ®a B —— [], Homa(A,N) ®a B

0 —— Homp(M ®4 B,N ®4 B) —— HpHomB(B,N®A B) —— HqumB(B,N®A B).

But, clearly ©, and ©4 are isomorphisms; so, the five lemma shows that © is an isomorphism. [
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@ These results are wrong if M has no finiteness properties.

Take A = Z) = {C ’ (s,p) = 1} (= Z(\m N Q); this is a local ring, in fact, a local P.I.D. Take M = Q
s

as Zp-module. What is x(p) = Z,)/m,, where m, = (p)® = {f ’ r =0 (mod p), (s,p) = 1}? We have
s

Ly /my, is equal to the localization of Z/pZ, i.e., k(p) = Z/pZ. How about Q®z,, £(p)? We have a surjection
Q ®z k(p) — Q®z,, k(p). But, Q®z k(p) = (0), so Q ®z,, x(p) = (0). Therefore, x(p) is not faithful
on Q. Now, were Q free, then Q ®z,, #(p) would be a vector space of rank equal to rk(Q) over x(p). So,
Q is not free over Z,). But Q is flat over Z,) as Q is (Z,))(0) (the localization of Z, at (0)). Note:

, 1
Q= lim Z, [n :

Remarks on M,, for any A module, M

Let S = A — p, for a given p € Spec A. We can partially order S:
f<g ifft f|g" forsomen >0,

i.e. iff there is some £ € A with f¢€ = ¢g". (Note, £ € S, automatically). Check: This partial order has the
Moore—Smith property. So, we can form 11_m> My.

fép
Claim: ll_m> My = M,.
févp
We have maps My — M, for all f, and the commutative diagram

N\

M—

for all f < g (Since f < g iff f¢€ = g™ for some £ € S and some n > 0, the map @fc is given by
o} (%) = 5 mE” ) Check that ¢} is well-defined (DX). Hence, there exists a map hm My — M,. To go

%p
backwards, pick £ € M. The element ¢ is the class of some m/s, with s ¢ p. Now, m/s € Mj; hence,
cang(m/s) € 11_m> M. Check that

fép
(1) & — cang(m/s) is well defined. It maps M, — h_m> Mjy.
fép

(2) The map (1) and h4m> My — M, from above are mutually inverse.
fép

Geometric Interpretation: We claim that f < g iff X, C Xy.
Indeed, X, C Xy iff V((f)) € V((9)) iff p D (f) implies p D (g) iff ﬂp;(f)p 2 (g) iff \/(f) 2 (g) iff

V() 2 /(9). Now, /(f) 2 /(9) iff g € \/(f) iff g" € (f) for some n > 0 iff | g™ iff f < g. This shows

that th> M¢ = M, and so, M, represents germs of some kind. We will come back and elucidate this point

Xiop
later. However, we want to note that for ideals, 2 and B, the reasoning above shows that

V() CV(B) iff VADVSB.



192 CHAPTER 3. COMMUTATIVE RINGS

Remark: The following proposition involving comaximal ideals will be needed in the next Chapter and is often
handy.

Two ideals a and b of a ring A are comazimal iff a+b = A. The following simple fact holds (DX): If a, b1, ..., b,
are ideals so that a and b; are comaximal for i = 1,...,n, then a and by - - - b,, are comaximal.

Proposition 3.35 (Chinese Remainder Theorem) Let ai,...,a, be ideals of a ring A. If for all i # j, the ideals a;
and a; are comazimal, then

(1) The canonical map ¢: A — []7_, A/a; is surjective.

(2) Kerp =y ai =[], a.
Consequently, we have a canonical isomorphism

¥ A/(ﬁ ai) - ﬁ(A/ai).

Moreover, the converse of (1) holds: If the canonical map ¢: A — ]| A/a; is surjective, then for all i # j, the
ideals a; and a; are comazimal.

Proof. We prove (1) and (2) together by induction on n. If n = 2, there exist e; € a1 and ez € az with e; +e2 = 1.
For any element (a1,a2) € A/ai1 [[ A/az2, let a = ez2a1 + e1az. Then,

71'»;(0,) =7Ti(62a1)+7l'~;(61a2):6i, 1=1,2
(where 7;: A — A/a; is the canonical projection onto A/a;). Thus, ¢ is surjective.

Since ajaz C a3 Nag, it is enough to prove that a; Naz C ajaz. Now, as 1 = e; + ez, for every a € a1 N az, we
have a = aei + aez; however, ae1 € aiaz and aez € aidaz, so a € ajaz. As Ker ¢ = a1 Nas, we find Ker ¢ = ajas.

For the induction step, observe that (by the fact stated just before Proposition 3.35), b = a1 ---a,—1 and a, are
comaximal. Then, by the case n = 2, we have b N a, = ba,; moreover, by the induction hypothesis, b = ﬂ?;ll a; =

[T ai, so we have (1, a; =[], .

By the case n = 2, we have an isomorphism

Afban = (A/6) [](4/an)

and by the induction hypothesis, we have an isomorphism

n—1

Afo = ] (A/a).

i=1

Therefore, we get an isomorphism
n n
A/(H ui) = HA/ui.
i=1 i=1

Finally, assume that the canonical map ¢: A — [[_, A/a; is surjective. Pick 4,5 with ¢ # j. By surjectivity,
there is some a € A so that m;(a) = 0 and 7j(a) = 1, i.e., m;(1 —a) = 0. Therefore, a € a; and b=1—a € a; with
a + b =1, which proves a; +a; = A. [

The classical version of the Chinese Remainder Theorem is the case where A = 7Z and a; = m;Z, where the
mi,...,my are pairwise relatively prime natural numbers. The theorem says that given any natural numbers
ki,...,kn, there is some natural number, g, so that

qg=ki; (modm;), i=1,...,n,
and the solution, g, is unique modulo mimza - - - M.

Proposition 3.35 can be promoted to modules.
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Proposition 3.36 Let M;,..., M, be submodules of the A-module, M. Suppose the M; are pairwise comazximal
(M; + M; = M), then the natural map

M/(fj] Mi) — ﬁ(M/Mi)

s an isomorphism. (Observe that, M; = a; M with the a; comazimal ideals, is a special case.)
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3.4 First Applications of Fraction Rings

A) Rings with the DCC

In this subsection, every ring is a commutative ring with unity.

Lemma 3.37 If the ring A has the DCC, then Max(A) = Spec(A) and #(Max(A)) is finite. Thus,
dim(A4) = 0.

Proof. Note, Max(A) = Spec(A) iff dim(A) = 0, in any commutative ring A. Pick p € Spec(A) and look at
A/p; the ring A/p is a domain and it has the DCC. But, every integral domain with the DCC is a field and
conversely. This is proved as follows: Say D is a domain with the DCC, and pick « # 0 in D. Look at the
decreasing chain

(@) 2 @) 2@%) 2 2@") 2.

By the DCC, there is some n so that (z") = (z"*1). Thus, 2" € (z"*1), and so, there is some u € D with

2™ = uz" L. Tt follows that 2™ (1 —ux) = 0; as x # 0 and D is a domain, we get 1 —uxz = 0, so, 27! = u

and D is a field. Therefore, p is maximal since A/p is a field.

Let S be the set of finite intersections of distinct maximal ideals of A. Of course, S # ), so, by the DCC,
S has a minimal element, say m; Nmy N --- Nm,. We claim that my, mo,..., m, are all the maximal ideals
of A.

Take another maximal ideal, m, and look at m Nm; Nmy N --- N'm,,. This ideal is in S and
mNmNmeN---Nm, CmyNmeN---NmMy,.
By minimality, we have
mom NmgN---NmM, O mMy---M,.
As m is prime, m D my, for some j; but both m and m; are maximal, so m = m;. []

Lemma 3.38 If A is a noetherian ring, then every ideal, 2, contains a product of prime ideals. In particular,
(0) is a product of prime ideals.

Proof. (Noetherian induction) Say the conclusion of the lemma is false and let S denote the collection of all
ideals not containing a finite product of prime ideals. By assumption, S # (). Since A is noetherian, S has a
maximal element, 2. The ideal 2 can’t be prime; so, there exist a,b ¢ 2 and yet, ab € A. As A+ (a) > 2,
we have 2+ (a) D py -- - p,, for some primes p;. Similarly, 2+ (b) D qy - - - q5, for some primes q;. Now, we
have 2l = 2 + (ab), since ab € 2; consequently, we get

A=A+ (ab) 2 (A+ (a))(A+ (b)) 2 p1---Prdr - ds,
a contradiction. Therefore, S = () and the lemma holds. []

Proposition 3.39 (Akizuki, 1935) Say A is a local ring with the DCC. Then, the mazimal ideal, m, of A
is nilpotent (i.e., m™ = (0) for some n > 1) and A is noetherian. The converse is also true.

Proof. (Nagata) Consider the chain

m2m2:_)m32~-~2m"2-~-

)

it must stop, by the DCC. Thus, there is some n > 0 so that m" = m"*l. Were m" # (0), the set
S = {2 | Am™ # (0)} would not be empty as m € S. By the DCC, the set S has a minimal element, call it
A. Let p = Ann(Am™). We claim that p is a prime ideal. Pick a,b ¢ p. Then, by definition of p, we have
a2Am™ #£ (0) and b2Am™ #£ (0). Yet, a2 C A and b2A C 2 and A is minimal in S. Therefore,

al = bA = A.
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Now,
ab2Am™ = a(bA)m" = (a2)m” = Am" # (0),

and so, ab ¢ p. Consequently, p is indeed prime. By Lemma 3.37, the prime ideal, p, is maximal; as A is a
local ring, we get m = p. As m = p = Ann(Am"), we have m2Am" = (0), so, Am"+! = (0), i.e., Am" = (0)
(remember, m"™ = m"*1) a contradiction. Therefore, the maximal ideal, m, of A is nilpotent.

To prove A has the ACC, argue by induction on the least n so that m™ = (0). When n = 1, we have
m = (0) and A = k(A) is a field. Since every field has the ACC, we are done. Assume that the induction
hypothesis holds for all » < n. Consider the exact sequence

0—m" /m" (=m" ) — A/m" (= A) — A/m""! — 0.

The left hand term has the DCC and is a module over A/m = k(A); so, it is vector space over x(A) and
it is finite dimensional. Consequently, it has the ACC, The righthand term has the ACC, by the induction
hypothesis. It follows that the middle term, A, has the ACC.

Now, for the converse, assume that A is noetherian, local and that m™ = (0) for some n > 1. We prove
that A has the DCC by induction on the index of nilpotence of m. When n = 1, the ring A = A/m is a field
and so, it has the DCC. Assume that the induction hypothesis holds for all » < n. Say m™ = (0). Then, we
have the exact sequence

0—m" H/m" (=m" ) — A/m" (= A) — A/m""! — 0,

where the righthand side has the DCC by the induction hypothesis. But, the left hand side is a module over
A/m = k(A); so, it is vector space over k(A) and it has the ACC because A does. Thus, m"~! is a finite
dimensional vector space, and so, it has the DCC. Therefore, A is caught between two DCC modules, and
A is artinian. []

Theorem 3.40 (Akizuki’s structure theorem, 1935) If A is a commutative ring with unity, then A has the
DCC iff A has the ACC and Max(A) = Spec(A) (i.e., dim(A) =0). When A has the DCC, the map

0: A~ J[ 4 (%)

pESpec(A)
is an isomorphism and each Ay is an Artin local ring. Moreover, each map hy,: A — A, is a surjection.

Proof. (=) By Lemma 3.37, we have Max(A) = Spec(A) and Max(A) only has finitely many elements.
Therefore, the product in (x) is a finite product. Each A, is local with the DCC, so, it has the ACC (and
its maximal ideal is nilpotent), by Proposition 3.39. If § is an isomorphism, we are done with this part.

(1) The map @ is injective (this is true in general). Pick a € A and look at the principal ideal (a) = Aa.
If 8(a) = 0, then (Aa), = (0) for every prime, p € Spec(A). Therefore, Aa = (0), so, a = 0.

(2) The map 6 is surjective. The ideal p® in A, is nilpotent. So, (p©)” = (0) in A,, yet (p®)™ = (p™)°,
and thus,
Ap = Ap/(p°)" = Ap/(p")" = (A/P")s,

where p is the image of p in A/p™. Now, p is the unique prime ideal of A which contains p™ (since Spec(A) =
Max(A)). Therefore, A/p™ is a local ring and p is its maximal ideal. It follows that (A/p™)5; = A/p™, and so
A, = A/p™. Each h, is thereby a surjection. Since p™» and q”¢ are pairwise comaximal, which means that
(1) = p™ 4 g™ (because Spec(A) = Max(A)), the Chinese Remainder Theorem implies that 8 is surjective.

(«) This time, A has the ACC and Max(A) = Spec(A). By Lemma 3.38, the ideal (0) is a product of
maximal ideals, say (0) = H;Zl m;. Let m be any maximal ideal. Now 0 € m implies that m O m;, for some
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j. Since both m and m; are maximal, m = m;. Thus, my,..., m; are all the maximal ideals of A. Consider
the descending chain
ADmyommy 2 - 2my---my = (0).

In this chain, we have m;---ms_; D my---ms. The module my---mz_1/my---m; is an A/mg-module,
hence, a vector space, since A/my is a field. By hypothesis, this vector space has the ACC. Thus, it is
finite-dimensional and it has the DCC. But then, my ---m4_;/m; - --m, has a composition series. If we do
this for each s, we obtain a composition series for A. Consequently, A has finite length as A-module, so, it
has the DCC.

Remark: This is false for noncommutative rings. Take the ring R of n x n lower triangular matrices over
C. The “primes of R” are n in number and the localization at the j-th one, Mj, is the full ring of j x j
matrices over C. But, : R — H?:l M;(C) is only injective, not surjective.

B) Locally Free f.g. A-Modules.
We begin by restating and reproving that Supp(M) is closed when M is f.g.

Lemma 3.41 If M is a f.g. A-module and if M, = (0) for some p € Spec A, then there exists some o ¢ p
so that oM = (0) and M, = (0).

Proof. Write my,....m; for generators of M. Then, m;/1 =0 in M, = (0). So, there is some s; ¢ p with
sjm; =0 for j =1,...,¢t. Let 0 = s1---s;, then om; = 0 for j = 1,...,¢t. Consequently, cM = (0) and
m;/1=0in M, for j =1,...,t, so, M, = (0). [J

Geometric Interpretation. If o: A — B is a ring map we get a map, ¢*: Spec B — Spec A, namely,
q— © 1(q). This is a continuous map (because (¢*)~1(V (1)) = V(B - ¢(A)), for every ideal A C A). Since
there is a map A — Ay, we get a map Spec(As) — Spec(A). For this map we have

Proposition 3.42 The map Spec(As) —> Spec(A) takes Spec(As) homeomorphically onto the open set,
X, of Spec A.

Proof. We make a map X, — Spec(A;). For this, observe that p € X, iff s ¢ p iff p¢ € Spec(As). Thus,
the desired map is p — p°. Now, q = p¢ iff p = q° = inverse image of q; therefore, our maps are inverse to
one-another and the image of the contraction is X (an open set in Spec A). We must now show that the
map X; — Spec(A;) via p — p° is continuous. The open X has as basis of opens the X, N X; = X,
where t € A. The topology in Spec(Ay) has as basis the opens Y, where 7 € A; and q € Y, iff 7 ¢ q. We
have 7 = t/s™, for some t and some n. Moreover, ¢ = p¢; so 7 ¢ q iff ¢t ¢ p and it follows that X, N X,
corresponds to Y.. []

To continue with the ‘geometric interpretation, let M be an A-module. We make a presheaf over Spec A
from M, denote it by M. For every open subset, U, in X = Spec A,

N (1) f(p) € M,
MU)=<f:U— |J M| 2)(¥peU)(Bme M,3s € A)(s ¢p, e, p € X,)
peU (3) (Vg € X,NU) (f(q) = image () in My) .

The intuition is that M(U) consists of kinds of functions (“sections”) such that for every “point” p € U,
each function is locally defined in a consistent manner on a neighborhood (XsNU) of p (in terms of some
element m € M).

The reader should prove that the presheaf, M , is in fact a sheaf on Spec A (where Spec A has the Zariski
topology) (DX).

Here are two important properties of the sheaf M (DX):
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(1) M is an exact functor of M. This means, if
0— M —M-—M"—0
is an exact sequence of A-modules, then
0— M —s M — M" — 0

is an exact sequence of sheaves. (Recall that if 7 — G is a morphism of sheaves, it is surjective iff
for every open, U, and every £ € G(U), there is a covering {U, — U}, so that &, = pg"‘ (&) € G(Uy)
comes from some 7, € F(U,) for all a.)

(2) The functor M ~ M commutes with arbitrary coproducts, i.e., if M =[], M,, then M = 1L, M,

The easiest way to see (1) and (2) is via the following ideas: Say F is a presheaf on some space X. If
r € X is a point, let F, = h_m) F(U). We call F, the stalk of the presheaf, F, at x.
Usx

Remark: The module, M,, is the stalk of M at p. This is immediate from the definition (DX).

Proposition 3.43 Say 0: F — G is a map of sheaves (with values in a category based on sets, e.g., sets,
groups, rings, ...) and suppose for all x € X, the map 0,.: F, — G, is injective (resp. surjective, bijective).
Then 0 is injective (resp. surjective, bijective). If F,, = (0) for all x € X, then F = (0). (Here, F has values
in groups or modules.)

Proof. One checks that F ~» F, is an exact functor of F (for each z € X). Then the last statement implies
all the others. For example,

0—>Ker9—>]~'i>g—>Coker0—>O is exact;

so, take stalks at . We get

0 — (Ker ), — F, L Gy — (Coker ), — 0 is exact.

If 0, is injective, then (Ker #), = (0). By the last statement of the proposition, Ker § = 0, etc. So, we need
to prove that F, = (0) for all # € X implies that F = (0).

Pick an open, U, of X and pick any z € U. We have F, = h_m> F(V) (with V CU). If ¢ € F(U), then

Vax
&, = image of £ in F, = 0. This means that there is some open subset, V = V,, with p};(£) = 0 in F(V).

Then, as x ranges over U, we have a cover, {V,, — U}, of U and pg”” (&) =0, for all V,, in the cover. By the
uniqueness sheaf axiom, we must have £ = 0. Since £ is arbitrary in F(U), we get F(U) = (0). (O

It is clear that the remark and this proposition imply (1) and (2) above.

_ As a special case of the tilde construction, if we view A has a module over itself, we can make the sheaf
A on X, usually denoted Ox. More explicitly, for every open subset, U, in X = Spec A,

(1) f(p) € A
Ox(U)={f:U— 4, @pel)Faged)(ggp, ie, peXy
peU | (3) (Vg e X, NU) (f(q) — image (5) in Aq) .

Observe that Ox is a sheaf of local rings, which means that Ox (U) is a ring for all U and Ox , (= 4;)
is a local ring, for every p. The sheaf M is a sheaf of modules over Ox.
Given a module M and an element s € A, we have the sheaves M [ X and ]\Z Note that ]\Z is a sheaf

on Spec(4s) and M | X is a sheaf on X, but the map Spec(4s) — Spec A gives a homeomorphism of
Spec(As) — Xs.
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Proposition 3.44 Under the homeomorphism, ¢: Spec(As)— X, the sheaves M, and M I X correspond.

Proof. Say ¢: X — Y is a continuous map of spaces and F is a sheaf on X. We can make ,F, a new sheaf
on Y, called the direct image of F. For any open, V, in Y, set

e F(V) =F(e™ (V).

The sense of our proposition is that <p*(]\Z) and M | X, are isomorphic as sheaves on X,. Now, w*(AZ)(U)
is just M, (o~ 1(U)), where U is an open in X, C Spec A. The map ¢: Y = Spec A, — X, is just
q € Spec(As) — q° € Spec A. We have

(1) f(p) € (M),
My(e ' (U)) =< f:r o N (U) — U (M)p | (2) (Vp € ™1 (U)) (3 € My, 3r € Ag)(p € YT)
pee=1(U) (3) (Vg € Y, Ny~ (U)) (f(q) = image (&) in (Mj)q) -

Now, q € o~ }(U) iff g = p¢ and p € U C X,. We also have u = m/s™, for some m € M; 7 = t/s", for some
t € A, and so, u/7 = m/t. It follows that there exists a natural map, M | X,(U) — ¢.(M;)(U), via
J [given by m/t] = [ [given by (m/s™)/(t/s™)] = /7.

This gives a map of sheaves M [ Xs — go*( s). We check that on stalks the map is an isomorphism:
(M | Xs)p = M, and 0. (M, s)qg = (Mg)q = (Mg)pe = M,. Therefore, our global map, being a stalkwise
isomorphism, is an isomorphism. ]

Recall that the stalk (]\Aj)p is just M,. So,

M, = lim My = lim My = lim M(X;).
fép peXy peXy

Consequently, M, consists indeed of “germs”; these are the germs of “sections” of the sheaf M. Thus, A, =
germs of functions in Ox (U), for any p € U.

Say X is an open ball in R™ or C". Equip X with the sheaf of germs of C*-functions on it, where
0<k<xork=uw:

(1) f(u) € Ox ., (germs of C*-functions at u)
Ox(U)=4f:U— U Ox.u| (2) (Vu € U)(Ismall open X, C U)(3 C*-function, g, on X,)
u€U (3) (Vu € X¢) (f(u) =image(g) in Ox ) -

For C™ and k = w, we can take g to be a power series converging on X.. Observe that Ox is a sheaf of local
rings (i.e., Ox (= germs at ) is a local ring).

The concept of a sheaf help us give a reasonable answer to the question, “what is geometry?”
A local ringed space (LRS) is a pair, (X, Ox), so that
(1) X is a topological space.

(2) Ox is a sheaf of local rings on X.

Ezamples.

(1) Open balls in R™ or C", with the sheaf of germs of C* functions, for a given k, are local ringed spaces.

(2) (Spec A, A) is an LRS.

The LRS’s form a category, LRS. A map (X,0x) — (Y, Oy) is a pair of maps, (¢, ®), such that:
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(a) ¢: X =Y is a continuous map.
(b) ®: Oy — ¢.Ox is a homomorphism of sheaves of rings.
Now, geometry is the study of local ringed spaces that are locally standard, i.e., each point x € X has a
neighborhood, U, and the LRS (U, Ox | U) is isomorphic to a standard model.

Some standard models:

(a) C*, real geometry (C*-manifolds): The standards are open balls, U, in R” and Ox (U) is the sheaf of
germs of real C*-functions on U. (Here, 1 < k < oo, and k = w is also allowed).

(b) Holomorphic geometry: k = w. The standards are open balls, U, in C" and Ox(U) is the sheaf of
germs of complex C*-functions on U (complex holomorphic manifolds).

(c) Algebraic geometry: The standard model is (Spec A, A).

Notice that we can “glue together” standard models to make the geometric objects that are locally
standard. Namely, given a family {(U,, Oy, )}, of standard models of fixed kind, suppose for all «, 3, there
exist some opens US C U, and U C Ug and isomorphisms ¢ : (US, Oy, | US) — (Ug,Ou, I Ug), and
suppose we also have the gluing conditions: ¢ = (@%)‘1 and @) = 4;% o on U, NUg, then we can glue all
the (U, Oy, ) together. That is, there is an LRS, (X, Ox), and it is locally isomorphic to each (Ug, Ov,).

What about a geometric interpretation of some of our previous results?

Consider Lemma 3.41: Given a f.p. module, M, if M, = (0) for some p € Spec A, then there is some
s ¢ p so that My = (0) and sM = (0).

Observe that M, = (0) iff (M)p = (0) iff the stalk of M at p is (0). Moreover, M, = (0) iff M, = (0) iff
M | X, vanishes. So, Lemma 3.41 says that if the stalk of M vanishes punctually at p € Spec A, then M
vanishes on some open subset, containing p, of Spec A.

Proposition 3.45 If A is a commutative ring and M is a f.g. A-module, assume one of
(i) M is projective, or
(i1) A is noetherian and M, is free over A, for some p € Spec A.
Then
(a) There exist o1,...,0; € A s0 that M, is free over A,, and X = Spec A = U§:1 Xq;, or
(b) There is some o € A with p € X, so that M, is free over A,.

Proof. We can write
0—K-—F—M—0,

for any f.g. module, M, with F' f.g. and free. If M is projective, then the sequence splits. Therefore, K
(being an image of F') is f.g., and so, M is {.p.

In (ii), the ring A is noetherian and M is f.g, which implies that M is f.p., here, too. Thus, we will
assume that M is f.p. If we prove the (b) statement, then as a f.p. projective is locally free everywhere, the
(b) conclusion holds everywhere on Spec A. As X = Spec A is quasi-compact, we only need finitely many
opens to cover X. Therefore, we only need prove (b).

There exists a free module and a map, 0: F' — M, so that at p, we have F}, = M,. The sequence

0— Ker§ — F — M — Coker § — 0 is exact.
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Now, Coker 6 is f.g. and (Coker 6), = (0). So, there is some s € A with (Coker 6); = (0). If we restrict to
X = Spec Ay, we get

0—Ker) — F — M — Coker § — 0 is exact on X,.

By Proposition 2.41, as M is f.p. and F is f.g., we see that Ker 6 is f.g. But, (Ker #), = (0), and by the
lemma, again, (Ker 6); = (0), for some t € A. If we let o = st, then X, = X N X;, and on X,, we have an
isomorphism F, — M,. []

Given an A-module, M, we can make the Ox-module, M. This is a sheaf of O x-modules. There exist
index sets, I and J, so that
AY) 5 AD 5 M50, s exact.

(Here, AY) is an abbreviation for the coproduct II; A.) So, we get
OE(J) —)ng —)]\7—>0,

an exact sequence of sheaves. Now, M is free iff M =~ Og), for some I. We say that an Ox-module, F, is

locally-free iff for every p € Spec A, the module F, is a free Ox y-module. Our proposition says: If F = M
and F is f.p. then F is projective? iff F is locally-free. One can characterize the Ox-modules, F, that are
of the form M for some module, M; these are called quasi-coherent Ox-modules.

We proved that if 7, is a free module of finite rank and if A is noetherian and F is quasi-coherent, then
there is some open set, X,, with p € X,, so that F [ X, = O% [ X,. Actually, we only used f.p., so the
statement also holds if F is projective (A not necessarily noetherian) and then it holds everywhere on small
opens, U, so that

Fru=0%"u.

Let’s assume that M is projective and f.g. over A. Define rk(/Z\Z) = 1rk(F), a function from Spec A to Z,
by
(rk F)(p) = rk(Fp).

We showed that this function is locally constant on Spec A4, i.e., rk F is a continuous function from Spec A
to Z, where Z has the discrete topology. Hence, if Spec A is connected, then the rank is a constant.

Proposition 3.46 Suppose M is a f.g. projective A-module (so, M is f.p.), and let F = MonX = Spec A.
Then, the function tk(F) takes on only finitely many values, ny, ..., n; (inZ) and there exist ideals Ay, ..., 2A;
of A, each a commutative ring with unity, so that

(a) A= H§:1 Aj; s01=e1+- - +e, with the e;’s being orthogonal idempotents (which means that e = e;
and e;e; =0 for i # j) and A; = Ae;.
(b) If X, is the usual open corresponding to the element e;, then X = U;Zl Xe; .

(c) If M; =A; M, then M = H;:1 M; and each Mj is A and U;-projective.

(d) Supp M; = X, and tk(M;) on X, is the constant n;.

The following lemma is needed:

Lemma 3.47 If X = Spec A and X = X1 |J X2 is a disconnection, then there exist e;,es € A so that
X; =X, and 1 =e1 + eo; e% =eq; e% = eq; 169 = 0.

3In the full subcategory of the O x-modules consisting of those of the form M.
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Proof. (DX)

Proof of Proposition 3.46. Let X,, = tk(F)~!({n}) for every n > 0. Each X,, is an open and closed subset
of X, by continuity. The X,, cover X and by quasi-compactness only finitely many are necessary. Yet, they
are mutually disjoint. It follows that rk(F) = ni,...,n; and rk(F) [ X; = n;. (Here, X; = X,,,.) By
Lemma 3.47, there exist e1, ..., e;, orthogonal idempotents with sum 1 and X; = X, for j =1,...,t. Let
2,; = Ae;, this is an ideal, a ring and e; € 2; is its unit element. Thus, parts (a) and (b) are proved.

Write M; = 2(;M; then, M = H§:1 M;, each M; is a cofactor of M and, as M is A-projective, each M;
is A-projective. The ring A acts on M wvia 2;; therefore, M; is ;-projective.

Pick any q € Spec®; and write p = g ]_[#j 2;. This ideal, p, is a prime ideal of A. Note, e; with i # j
lies in p, but e; ¢ p, so p € X;. Since e;e; = 0, we also have e;e; = 01in A,. Yet, e; ¢ p, so e; is a unit in
Ap; it follows that e; = 0 in A, for all ¢ # j. Then, we have

M, = H(Mi)p = H(QliM)p = H(AeiM)p = (M;)p.

The reader should check that (M;), = (M;)q. Since p € X;, we deduce that (rk M;)(q) = (tk M)(p) = n;,
so, (rk M;)(q) =n;. As e; =0iff i # j in Ay, we get Supp(M;) = X, = X;. (I

The simplest case, therefore, is: the A-module M is f.g., projective and tk M = 1 on X = Spec A. We
say that M is an invertible module or a line bundle if we wish to view it geometrically.

Note: If M and M’ are invertible, then M ® 4 M’ is again a rank 1 projective A-module because
(M ®a M)y, = M, ®4, Mé. Thus, these modules form a semigroup under ® 4 and A (the free module) is
the unit element. Do they form a group?

Proposition 3.48 If A is a commutative ring and M is a f.g. A-module, then M is rank 1 projective
iff there is another module, M', so that M @4 M' = A. When the latter condition holds, we can take
M' = MP = Homu(M, A).

Proof. (=) The module M is rank 1 projective and as it is projective, it is f.p. Look at M ®4 MP. There
exists a module map,
M @4 MP —s A,

namely, the linear map induced by the bilinear map (m, f) — f(m). Localize at each p. We get
M, ®a, MY — A,

and M'f) = Homy (M, A), — Homy,(M,, A,), as M is f.p. and A, is flat over A. But, M, = A,, by
hypothesis and the reader should check that M, ®4, MPD — Ay is an isomorphism. As this holds for every
p € Spec A, the map M ®4 MP — A is an isomorphism.

(«<=) Now, we have some A-module, M’, and M ®4 M’ = A. We can write
0—K—F—M—0,

for some f.g. free module, F. Look at the last three terms in this sequence, and write F' =[] ... A:

HA—)M*)().

finite

If we tensor with M’, we get
]_[ M — MoiaM ~2A—0.

finite
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But A is free, so the sequence splits and there is a map A — []; ... M’. Now, tensor with M. We get

HA—)M*)(),

finite

and there is a splitting map M — []g ;.o A. Thus, M is a cofactor of a free and f.g. module, so, M is f.g.
and projective, and hence, f.p. Now look at

M@saM =A

and localize at p. We get
Mp ®AF Mé = Ap,

and if we reduce mod p¢, we get
My /pe My ®y(a,) M, /p° M, = K(Ay). (1)
All the modules in (}) are vector spaces and, by counting dimensions, we get
dimy(a,) My /p“M, = 1.
Since M, is a free Ap-module, by Nakayama, we get rk(M,) = 1. Lastly,
M =A@ M = (MP @y M)@a M = MP @4 (MosM)=MP o4 A~ MP.
Therefore, M’ = MP. []

The group of (isomorphism classes) of the rank 1 projectives, M, is called the Picard group of A, denoted
Pic(A).

Corollary 3.49 Ifk is a field or a PID, then Pic(A) = (0).

The group Pic(A) is a subtle invariant of a ring (generally hard to compute).
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3.5 Integral Dependence

The notion of integral dependence first arose in number theory; later, thanks to Zariski, it found application
in algebraic geometry. Throughout this section as throughout this chapter, all rings are commutative with
unity.

Definition 3.5 Suppose ¢: A — B is a ring homomorphism and b € B. The element, b, is integral over A
iff there is a non-trivial monic polynomial, f(X) € A[X], so that f(b) = 0. (Here, f(b) is b" + ¢(a1)b" "t +
vt plan—1)b+play) if f(X)is X"+ a1 X" 1+ -+ an_1X + ay.) The A-algebra B is integral over A iff
all its elements are integral over A and, in this case, ¢ is an integral morphism.

Clearly, each ring surjection is an integral morphism, but this is not what is really intended. Each
homomorphism, ¢, as above factors into a surjection whose image, A, is a subring of B followed by the
inclusion A < B. It is for inclusions that integrality is a real question and is decisive for certain situations.
As usual, there are a number of equivalent ways to say integrality and their equivalence is quite useful
technically.

Proposition 3.50 Suppose p: A — B is a ring homomorphism and b € B. Then the following are equiva-
lent conditions:

(1) b is integral over A
(2) The A-algebra A[b] (a sub-A-algebra of B) is finitely generated as A-module.

(8) There exists a sub-A-algebra, E, of B which is a finitely generated A-module and b € B.
(4) There exists a finitely generated sub-A-module, B, of B so that a) bB C B and B) /I[b] ﬂAnn(é) = (0).
Proof. (1) = (2). We have the equation of integral dependence
B+ a " P+ tan1bt+a, =0

(here, we drop ¢(a;) and just denote it by a;). Hence, b" € A-module generated by 1,0, .. ., b1 But
then, b1 is also in this A-module, etc. Thus, A[b] is the finitely generated A-module given by generators
1,b,...,0n "L

(2) = (3). We take B = A[b].
(3) = (4). We use our subalgebra, B, of (3) for the module of (4). Of course, a) holds as B is a ring
by (3) and ) is clear as a € B.

(4) = (1). Let &,...,& be generators for B as A-module. Since bB C B, we see that for each i, the
element b¢; is an A-linear combination of the &’s:

t
b = Zzijfj-
J=1
That is,

t
ST (0ib — 2))€ =0, fori=1,2,... L. (%)
j=1

Write A for det(d;;b— z;;), then by linear algebra we get A¢; = 0 for all j, i.e., A € Ann(B). Upon expanding
A by minors, we find that A € A[b]; so, 8) implies A = 0. But the expansion by minors shows A has the
form bt+ lower powers of b and this gives (1). (]



204 CHAPTER 3. COMMUTATIVE RINGS

There are many corollaries, but first notice that if A is noetherian, we may replace (3) by the weaker
condition

(3") There is a finitely generated sub-A-module, B, of B and Afb] C B.

Let’s write
Int4(B) = {b € B | bis integral over A}

and refer to Int4(B) as the integral closure of A in B (we assume ¢ is given a priori).

Corollary 3.51 Say A and B are given as above and by, . .., by are elements of B. Then, by,...b; € Int4(B)
iff the A-algebra Alby, ..., b is a finitely generated A-module. In particular, Int o(B) is a A-algebra.
Proof. (<=). Here, A[b;] C Alb1,...,b] and we apply (3) of Proposition 3.50 to get b; € Int4(B).

(=). We have the chain of A-algebras

Alby,....b] D --- DA DA

each a finite module over its predecessor by (2) of Proposition 3.50. Then, it is clear that A[by,...,b] is a
finite A-module. Lastly, if 2,y € Int4(B), we see that  + y and zy lie in A[z,y]. By the above, the latter
is a finite A-module and (3) of Proposition 3.50 completes the proof. []

Corollary 3.52 (Transitivity of Integral Dependence) Suppose that B is an A-algebra and C is a B-algebra.
Then,
IntlntA(B) (C) =1Inty (C)

In particular, if C is integral over B and B is integral over A, then C is integral over A.
Proof. If £ € C and ¢ is integral over A, then & is a fortiori integral over the “bigger’ ring Int4(B), and so
Il’ltA(C) Q IntlntA(B) (C)

Now, if ¢ is integral over Int4(B), then & is integral over A[by,...,b;] where the b; are coeflicients in the
polynomial of integral dependence for £. Each b; is in Int4(B), so Corollary 3.51 shows A[by,...,b] is a
finite A-module. Yet A[by,...,b][¢] is a finite A[by, ..., b:]-module by integrality of £. Therefore £ is in the
finitely generated A-module Afby, ..., b, €] which is an A-algebra and we apply (3) of Proposition 3.50. The
element ¢ is then in Int4(C), as required.

When C'is integral over B and B is integral over A, we get C' = Intg(C') and B = Int4(B); so C = Int 4 (C)
by the above. []

When Int4(B) is A (image of A in B) itself, we say A is integrally closed in B. (Usually, for this
terminology, one assume ¢ is an inclusion A < B.) If S is the set of non-zero divisors of A, then S is a
multiplicative set and S™!A is the total fraction ring of A. We denote it by Frac(A). When A in integrally
closed in Frac(A), we call A a normal ring or an integrally closed ring. For example

Proposition 3.53 Every unique factorization domain is a normal ring.

Proof. We suppose A is a UFD, write K = Frac(A) (in this case K is a field as A is a domain). Let £ = /3
be integral over A, and put «/8 in lowest terms. Then,

' +ar " P+ +a,1€+a, =0, thea; €A
Insert the value of £ (= a/8) and clear denominators. We get
o +arad" B+t ag_1af" +a, 8" =0.

If p is a prime element of A and p divides (3, our equation shows p | a”; i.e., p | a. This is a contradiction
on lowest terms and so no p divides 5. This means S is a unit; so, £ € A. []
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Proposition 3.54 If A is a normal domain and S is any multiplicative subset of A, then S™'A is also a
normal domain.

Proof. We know Frac(A) = Frac(S~1A). So, choose ¢ € Frac(A) integral over S~1A. Then,

a Ap— (279}
g Dentp .y dnsle Oy
1

Sp—1 Sn

We can write this with common denominator s =[] s;, then

a Ay — a
§”+71§”*1+...+ ”ngri":().
S S S

Upon multiplication by s", we find (s¢) is integral over A. By hypothesis, s¢ € A4; so, £ € ST1A. [
Two easy facts are useful to know. Their proof are easy and will be left to the reader (DX):
Fact A. If B is integral over A and J is any ideal of B, then B/J is integral over A/~ (7).

Fact B. If B is integral over A and S is a multiplicative set in A with S N Ker ¢ = (), then S™'B is
integral over ST1A.

@ However, observe that if A is a normal ring and 2 is one of its ideals, then A/ need not be normal.
A standard example is a “singular curve”.

Here, we take C[X, Y] which is a normal ring as it is a UFD. Let 2 = (Y2 — X?), then C[X,Y]/2 is not
normal (though it is a domain (DX)). For, the element Y /X (in FracA/) is integral over A/ as its square
is X, yet it is not itself in A/2l (DX). The interpretation is this: Y2 — X3 = 0 describes a curve in the plane
over C and Y/X defines by restriction a function holomorphic on the curve except at (0,0). But, Y /X is
bounded near (0,0) on the curve, so it ought to be extendable to a holomorphic (and algebraic) function.
Yet, the set of such (near (0,0)) is just (AA),, where p = {f € A/ | f(0,0) = 0}. Of course, Y /X ¢ (AA),.
The trouble is that Y2 = X3 has a “singular point” at (0,0), it is not a complex manifold there (but it is
everywhere else). This shows up in the fact that (A2), is not normal.

When A is a noetherian ring, we can be more precise, but we need some of the material (on primary
decomposition from Sections 3.6 and 3.7. The two main things necessary are the statement

If V is a submodule of the A-module, M, then V = (0) iff V, = (0) for all p € Ass(M) (see Section 3.6,
Corollary 3.102 of Theorem 3.99); and Krull’s Principal Ideal Theorem (Section 3.7, Theorem 3.120).

You should skip the proof of Lemma 3.55, Theorem 3.56 and Corollary 3.57 until you read this later
material; pick up the thread in Theorem 3.58, below.

Write, for a ring A,
Pass(A) = {p | p € Ass(A/(a)), for some non-zero divisor, a, of A}.

Lemma 3.55 If A is a reduced Noetherian ring, then an element £ € Frac(A) is actually in A if and only
if for every, p € Pass(A), the image of { € Frac(A), is in A,.

Proof. If £ € A, then of course its image in Frac(A4), lies in A, for all p. So, assume

¢ € ({4, | p € Pass(4))

(here, of course, we mean the images of £ in Frac(A) are in A,). We write { = /3, where 3 is a non-zero
divisor and suppose that £ ¢ A. Then, « is not in (8), so V = Aa C A/(f) is non-zero. By the statement
italicized above, there is a p € Ass(A/(5)) with (A@), # (0). This means /1 ¢ (8),; that is, { = /5 ¢ A,.
Yet, p € Pass(A), a contradiction. []

Here is a characterization of normality for Noetherian domains:
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Theorem 3.56 Suppose that A is a noetherian domain, then the following conditions are equivalent:
(1) A is normal
(2) For every p € Pass(A), the ideal p° is a principal ideal of A,
(3) (a) Everyp € Pass(A) has height 1 and
(b) For all height one primes, p, of A, the ring A, is a PID.

Proof. We first prove (2) <= (3). Suppose p is any prime ideal of A. If p is a principal ideal of A,. it is an
isolated prime of itself and Krull’s Principal Ideal Theorem shows that ht(p) = 1. So by (2),

Pass(A) C {p | ht(p) = 1}.

But, ht(p) = 1 implies p is an isolated prime ideal of any of its non-zero elements and, since A is a domain,
this shows p € Pass(A). We’ve proved that (2) implies that

Pass(A) = {p | ht(p) = 1}. (+)

This shows that (2) implies (3a) and for all height one primes, p, the maximal ideal, p, of A, is principal.
We'll now show that A, is a PID. Pick an ideal, 2, of A, and write m = p°. As m is the maximal ideal of Ay,
we have 20 C m, and as m is principal we may assume (0) < 20 < m. Now m” is principal for all n > 0 with
generator ", where 7 generates m; we’ll show 2 = m™ for some n. Now, were 2% C m" for all n, the Krull
Intersection Theorem (Theorem 3.113) would show 2 = (0), contrary to assumption. So, pick » minimal so
that 20 C m™. Then, every { € 2 has the form an™, and for at least one &, the element a is a unit (else a € m
implies @ = br and all £ have shape br"*1). But then,

A2 () = (") =m" 2 A

and 2 is indeed principal. Therefore, (2) implies (3a) and (3b). It is clear that (3a) and (3b) imply (3).

We come then to the main point of our theorem, that (1) is equivalent to both parts of (3). Observe that
the argument in the very early part of the proof shows that we always have

{p | ht(p) = 1} C Pass(A).

(8) = (1). By (3a), Pass(4) = {p | ht(p) = 1}; so

(A | ht(p) = 1} = ({4 | p € Pass(4)} ()

By Lemma 3.55, the right hand side of (xx) is A and by (3b) each A, is a normal domain (Proposition 3.53).
Hence, A, as an intersection of noremal domains in Frac(A), is itself normal.

(1) = (3). Here, we will actually show (1) <= (2), then we will be done. Pick p € Pass(A), say
p € Ass(A/(a)). Then, there exists an element £ € A so that p is the annihilator of ¢ (mod (a)). We need to
prove p€ is principal, so we may replace A by A, and p by p°. Thus, our situation is that A is local and p is
its maximal ideal. Write

A= {n€Frac(A) |np C A} = (p — A) (in Frac(A)).

Of course, 2p is an ideal of A and A C 2 shows that p = Ap C Ap. Hence, there are only two possibilities:
Ap = p or Ap = A. I claim that the first cannot hold. If it did, condition (4) of Proposition 3.50 applied
to each n of A (with B = p and B = Frac(A)) would show that all these 7 are integral over A. By (1), the
7 lies in A; so A = A. Now p annihilates the element £ (mod (a)) and & ¢ (a); that is, &p = p& C (a); so
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(&/a)p C A. But then £/a € U, i.e., {/a € A. The last assertion is that £ € (a), contrary to the choice of &.
We deduce, therefore, that 2Ap = A. Now, the map

ARap — Ap

is an isomorphism because if ) . ¢; ® p; goes to zero in A, then using a common denominator, say d, for the
i, we find (1/d) >, a; ® p; is 0, too. Clearly, A @4 p — Ap is surjective. Proposition 3.48 now shows p is
a free rank one A-module (remember A is local), i.e., a principal ideal. []

Corollary 3.57 If A is a Noetherian normal domain, then

A= ({4 | ht(p) = 1}.
Proof. Theorem 3.56, condition (3a) shows

Pass(A) = {p | ht(p) = 1}
and we then apply Lemma 3.55. []

There are relations between the prime ideals of A and B when B is integral over A. These are expressed
in the three Cohen-Seidenberg Theorems. Here is the first of them:

Theorem 3.58 (Lying over Theorem; Cohen-Seidenberg, I) If B is integral over A and p is any prime
ideal of A, then there is a prime ideal, Q, of B lying over p (that is, o~ (Q) = p, where ¢: A — B).

Proof. Of course, we may and do assume A C B. Let S be the collection of all ideals, B, of B with
BN A C p; partially order S by inclusion. As § # () ((0) € S) and clealry inductive, Zorn’s Lemma furnishes
a maximal element, say £, in S. We must show both QN A = p and Q is a prime ideal.

Were QN A < p, we could find { € p with £ ¢ QN A. Write ) for the ideal Q + B¢; as £ ¢ Q, we get
Q> 9. So, Q%Sand thus 9 N A ¢ p. Therefore, there is some n € QN A (thus n € A) yet n ¢ p. Now n
is in Q, so looks like g + b€, for some b € B. Note that n — b = ¢ € Q.

The element b is integral over A:
b 4+ ab" '+ 4 ap_1b+a, =0, all a; € A.
If we multiply by ", we find
(6E)" + ar&(be)" " + - 4 a1 (BE) + ant™ = 0. (%)
View (%) in B/Q; there i = b€, and so,

(@)" + @@+ + an—18" 7+ an€" =0 in A/Q. (%)

But now, all elements on the left hand side of (x*) when read in B actually lie in A; so the left hand side of
(%) isin QN A. We get
77 + alfnn 1 C+ a)n—lgniln + a)’rbfn €p.

Remembering that £ € p, we find n € p, a contradiction. This shows QN A = p.

To show 9 is a prime ideal, write S for the multiplicatice set A — p; S is a multiplicative subset of B.
Of course, QNS = (). Suppose Q were not maximal among ideals of B whose intersection with S is empty.
We'd find Q > Q and QNS = (. But then QN A = p and so 9 lies in S where £ is maximal contradicting
Q > 0. Therefore, 9 is maximal among ideals of B with QNS = 0. Now, Proposition 3.8 (the implication
(6) = (1)) shows £ is prime. []
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Theorem 3.59 (Going-up Theorem; Cohen-Seidenberg, II) Suppose B is integral over A and p C q are
two prime ideals of A. If*P is a prime ideal of B lying over p, there exists a prime ideal, Q, of B lying over
q with P C Q.

Proof. This is just a corollary of the lying over theorem. For once again, we may assume A C B and we
consider A/p and B/B. As PN A =p and B is integral over A, we find B/P is integral over A/p and apply
Cohen-Seidenberg I to A/p and B/, using q as our ideal of A/p. There is Q, a prime of B/, over § and
the pull-back of Q in B is what we want. []

Corollary 3.60 If A and B are integral domains and B is integral over A, then A is a field iff B is a field.
Proof. Suppose A is a field and £ # 0 is in B. The element ¢ is integral over A; so
'+t an—1€+ay =0
for some ay,...,a, € A. Of course, we may assume that a,, # 0. Then
EE" T a7 4t an—1) = —ap;

and, as A is field, the element
1
—— (" a7+t ane)

Qn

lies in B and is the inverse of &.

If B is a field and A is not, there are prime ideals (0) < q of A. The going-up theorem gives us prime
ideals (0) and 9 of B lying over (0) and 2(—but, B is a field; contradiction.

(We may also argue directly as in the first implication of the proof: Given ¢ € A, the element ¢ is in B
and B is a field. So, 1/¢ €B; thus 1/¢ is integral over A. We have

1\" 1\"! 1
(£> + a (£> + -t ap—1 (5)—#%:0.
Multiply through by £™; we find
1=—¢(a1+ - +an 16" 2 +a "),
so & has an inverse in A.) []

Corollary 3.61 If B is integral over A and 8 € Spec B lies over p € Spec A, then p is mazximal iff B is
mazimal.

This is merely a restatement of Corollary 3.60. A more important remark is the incomparability of two
primes lying over a fixed prime:

Proposition 3.62 Say B is integral over A and B, Q are two primes of B lying over the same prime, p,
of A. Then P and Q are incomparable; that is we cannot have either P C Q or Q C P without P = Q.

Proof. Assume B < 9 and reduce A mod p and B mod B. Then we may assume A and B are domains and
we have to prove no non-zero prime contracts to the zero ideal of A. In fact, we prove: If A, B are domains
with B integral over A and if B is a non-zero ideal of B, then B contracts to a non-zero ideal of A .

Choose b € B with b # 0. Then we find

b+ ab" 4 4 ap_1b+a, =0.
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and we may assume a,, # 0 (else we could divide out b and lower the degree, n; etc.) But then a,, € B N A;
so BN A # (0), as required. []

Now we come to the circle of ideas around the third (and deepest) of the Cohen-Seidenberg Theorems, the
so-called “Going—Down Theorem”. This is a study of prime ideals in integral extensions where the bottom
ring is a normal ring. For the proof of the theorem, we need some simple ideas from Galois theory) most
of which are already familiar) which are covered in full in Chapter 4, sections one through four. Readers
are urged to skip the proofs of Propositions 3.63 and 3.64 and Theorem 3.65, and come back to these after
having read Sections 4.2—4.5 of Chapter 4. Once again, one can pick up the thread of our discussion in
Proposition 3.66. Nonetherless the statements of all results below are clear.

Recall that if k£ is a field and B is a k-algebra, and element &, of B is algebraic over B iff it satisfies a
(non-zero) polynomial f(X) € k[X]. Of course, the set of all polynomials, g(X), with g(¢) = 0 is a principal
ideal of k[X] and the monic polynomial generating this ideal is the minimal polynomial of & over k. If B
has zero divisors, the minimal polynomial of £ over k will not, in general, be irreducible in k[X]. Even if no
non-zero element of k becomes a zero divisor in B, still the minimal polynomial might be reducible. But
when B is at least a domain the minimal polyomial will be irreducible. We also want to consider in k£ an
integral domain, A, with k = Frac(A4).

So, let £ € B be integral over A, assume B is a domain. Then we can factor the minimal polynomial
f(X), for € over k = Frac(A) in some big field over B (Section 4.4 of Chapter 4) and it will have exactly
n roots where n = deg(f). Write these as £ = £1,&,...,&,. By Section 4.3, Chapter 4, each n; is repated
p¢ times where p = char(k) and e > 0; p© is the degree of inseparability of £ over k. Moreover, there is
an automorphism fixing the elements of k taking each & to £; so each &; satisfies the equation of integral
dependence which & satisfies (Section 4.4, Chapter 4 again). Now when we write f(X) as a product of the
linear factors (X — &;) we get

n n

FX) =T[(X =€) =D o5&, &) (=1 X",

i=1 j=0
here the o; are the elementary symmetric functions of the §;, given as

0—0(517"',571) 1
01(§1,--,6n) = &t + &

02(81,---,6n) = Z&fj

1<j

Ur(glv'”,gn) = Z £i1£i2"‘£ir

11 <t < <ip

O-n(glw-'agn) = §1§2£n

Thus, when ¢ is integral over A, so are all the & and all the elements o;(&1,...,&,), for j =1,2,...,n.
But each ¢;(&1,...,&,) is in k, therefore each o is in Autg(A). The symmetric functions o1 and o, have
special designation—they are the trace and norm of £ over k, respectively. This argument gives the first
two statements of

Proposition 3.63 If A is a domain and k = Frac(A), write B for an overing of A and K for Frac(B).
Then,

4A standard example is the “ring of dual numbers over k”, namely, k[X]/(X?2). The minimal polynomial of X is X2.
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(1) When K is a field and £ € K is integral over A, all the coefficients of the minimal polynomial for & over
k are integral over A (so the norm and trace of & are integral over A).

(2) If A is a normal domain and K is a field, the minimal k-polynomial for an element & € K which is
integral over A already lies in A[X] and is an equation of integral dependence for §.

(3) If A is a normal domain and f(X),g(X) are two monic polynomials in k[X] so that f(X)g(X) is in
A[X], then each of f(X) and g(X) is already in A[X].

(4) If A is a normal domain and B is an overring of Frac(A), and if & € B is integral over A, then the
minimal k-polynomial of € is already in A[X] and is an integral dependence relation for £. That is, (2) holds
even K is not a field (B is an integral domain), provided K C k.

(5) If A is a normal domain and B is an overring of A, with & € B integral over A, and if non non-zero
element of A becomes a zero divisor in B, then again the minimal k-polynomial for £ is already in
A[X] and is an integral dependence.

Proof. (1) and (2) are already proved; consider (3). Write f(X) = [[,(X —¢) and g(X) = [[,(X —n;) in
some big overfield. Now f(X)g(X) is a monic polynomial in A[X] all zi; and 7; satisfy it. But such a monic
polynomial is an integral dependence relation; so, all &; are integral over A and all the 7; are integral over
A. By the argument for (1) each of the o;(&1,...,&) and oj(n1,...,7n,) are integral over A; hence they are
in A by the normality of A. But, these are (up to sign) the coefficients of f(X) and ¢g(X) and (3) is proved.

(4) B is a k-algebra, so ¢ has a minimal polynomial, f(X) € k[X]. Now ¢ is also integral over A,
therefore there is a monic polynomial, h(X) € A[X], with h(§) = 0. As f generates the principal k[X] ideal
of polynomials vanishing at &, there is a g(X) € k[X] with f(X)g(X) = h(X) and clearly g(X) is monic.
Then, (3) shows f(X) € A[X] and is an equation of integral dependence.

(5) Here, if S is the multiplicative set of nonzero elements of A, then each s € S is a non-zero divisor of
B and so k = Frac(A4) C S™'B C Frac(B). We can then apply (4) to S™!B and conclude (5). []

Remark: Notice that the statement of (3) contains the essential ideal of Gauss’ classical proof that if A is
a UFD so is A[X].

The hypothesis of (5) follows from a perhaps more easily checked condition:

Proposition 3.64 If B is an A-algebra and B is flat over A, then no non-zero divisor of A becomes a
non-trivial zero divisor in B.

Proof. To say £ is a non-zero divisor is to say

0— A5 A— AJAE —0

is exact. Now, tensor this exact sequence with B over A and use flatness to get

0—B-+B—B/Bt—0
is exact. [

Theorem 3.65 (Going-down Theorem; Cohen-Seidenberg, III) Suppose A is a normal domain and B is
an overring of A. Assume either

(1) B is integral over A and
(2) No non-zero element of A becomes a zero divisor of B

or
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(1') B is integral over A and
(2') B is flat over A.

Then, given prime ideals p C q of A and a prime ideal Q of B over q, there is a prime ideal, B, of B, over
p so that P C 0.

Proof. If A is the image of A in B and (2') holds, then B is flat over A and so, by Proposition 3.64, (2)
holds. Therefore, we will assume (1) and (2).

The key to the proof is to find an apt multiplicative set, S, of B and to consider S~'B. Take S to be
the collection of products, ac, where a € A —p and a € B — . Of course, S is closed under multiplication
and 1 € S; further 0 ¢ S else a, an element of A, would be a zero divisor of B contrary to (2). Observe, by
takinga=1lora=1,wefind A—pC Sand B—QCS.

I claim the extended ideal, p°, of p in S~ B is not the unit ideal. Suppose, for the momemt, the claim is
proved; we finish the proof as follows: The ideal p° is contained in some maximal ideal, 9, of S~!B, and so
9N is a prime ideal of B. (As each ideal of S™1 B is extended, 2 is A€ and so M = A = A¢ = M # S~ B;
therefore, MM¢ # B.) Since M # S~ !B, the ideal MM cannot intersect S and B —Q C S shows that M° C Q.
Now consider 9t¢N A, it is a prime ideal of A and cannot intersect S. Again, A —p C S implies M“NA C p.
Yet

pCPBNACPNACIMNA,

therefore 91° N A = p and we can set P = M.

We are therefore down to proving our claim, that is that pBN.S = ). Pick £ € pB, write £ = > b;p; with
piepand b; € B. Let B = A[by,...,b]; it is a f.g. A-module (as well as A- algebra) by the integrality of B
over A. We have ¢B C pB and if 51, ..., & form a set of A-module generators for B, we find from & € pB
the linear equations:

§ = Zpijgiv pij €P.

Just as in the argument (4) < (1) of Proposition 3.50, this leads to A¢; = 0 for ¢ = 1,...,r, where
A = det(;;€ — p;j). Thus, AB = 0, yet 1 € B;so A = 0. By the minor expansion of A, we deduce the
integral dependence

h€) =€ +mé 1+, =0

and here all the m; € p.

Say £ is in .S, then it has the form acx, with a € A —p and o € B — Q. By part (5) of Proposition 3.63,
the minimal polynomial, f(X) € k[X], for ¢ is already in A[X] and is an integral dependence for £. But,
also f(X) divides h(X) in k[X] as h(£) = 0; so

J(X)g(X) = h(X) i k[X]

and ¢g(X) is monic. Apply part (3) of Proposition 3.63 and get that g(X) € A[X], too. This means we can
reduce the coefficients of f, g, h mod p. The polynomial h(X) becomes h(X) = X". But A/p is a domain
and h = fg; so f(X) = XP, that is

FX) =X 46X oo 5,1 X + 0,

and all the §; lie in p.

Now ¢ = aa and by (5) of Proposition 3.63 once again, we see that the k-minimal polynomial for « is
actually in A[X] and is an integral dependence for a. Write this polynomial, m(X), as

m(X) =X" +u XU by 1 X+
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with each u; € A. Now multiply m(X) by a, we get
a’m(X) = (aX)” 4 auy (aX)" ' + -+ a" Tuy_1(aX) + a’u,.

So, for the polynomial
fX)=X"+au X"+ 4 a" tuy_ 1 X + a'u,

f(X) = 2(X)f(X). By (3) of
o(f) =

f) = s. However, by the same

we find f(¢) = a’m(a) = 0 and therefore f(X) divides f(X) in L k[X]:
Proposition 3.63, we see z(X) is monic and in A[X], and v = deg(f) > de
token if we divide f(X) by a®, we get

X\ 5 /x\*! St (X S
=) +—=(= ot == =) =
a a a a a ar

01

giving us the k-polynomial
FX)=X°+

Xs 1 R
a
We have F(a) = (1/a®)f(§) =0;s0m | F'in k[X] Therefore,
s = deg(F) > deg(m) = v;
coupled with the above this shows s = v and Z(X) = 1. Therefore, f(X) = f(X) so that
5j:ajuj, j:1,2,...75.

Now 6; € p and, by choice of S, a ¢ p. Therefore, all the u; belong to p.

Finally, m(«) = 0; so,
o’ +uat T4t usqa+us =0.

This shows a® € pB C qB C 9; whence o € Q—a contradiction. []

The Cohen-Seidenberg Theorems have geometric content. It turns out that for a commutative ring A
(over the complex numbers), Spec A can be made into a (generalized) complex space (perhaps of infinite
dimension); that is into a complex manifold with some singularities (perhaps). For us, the important point
is that Spec A is a topological space (see Section 3.3) and we’ll only draw topological content from the
Cohen-Seidenberg Theorems.

So, first say B is integral over A. The ring map ¢: A — B gives a continuous map Spec B — Spec A,
namely: B+ ¢~ 1(B). The lying over theorem can now be expressed as:

If B is integral over A, the continuous map Spec B — Spec A is surjective.
Remark: We've used a Cohen-Seidenberg Theorem; so, we’ve assumed A — B is an injection in the
above.

The question of A — B being an injection and the “real” content of integrality can be teased apart as
follows:

Proposition 3.66 Say A — B is an injection. Then the continuous map Spec B — Spec A has dense
image. If A — B is surjective, then the continuous map Spec B — Spec A is a homeomorphism onto a
closed subset of Spec A.
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Proof. Write ¢ for the homomorphism A — B and |¢| for the continuous map Spec B — Spec A. Pick
any p € Spec A and any f ¢ p (so that p € Xy in Spec A). We must find q € Spec B so that |¢|(q) € X;.
Now f is not nilpotent; so, as ¢ is injective, neither is ¢(f). But then there is a prime ideal, q, of B, and
o(f) ¢ q (cf. either Proposition 3.8 #(6) or remark #(4) after Proposition 3.11); that is f ¢ |¢|(q), which
is what we needed.

Recall, from the discussion on the Zariski topology following Proposition 3.11, that the closed sets in
Spec A are all of the form V' (2() for some ideal 2, of A. Now there is the usual one-to-one correspondence
of ideals, B, of A which contain 2 and all ideals of A/2. If we take for 2 the kernel of ¢, then the first
consequence is that p — |p|(p) is a continuous bijection of Spec B (= Spec A/2l) and the closed set, V(2),
of Spec A. But, this is also a closed map, because for B, an ideal of B, the map |p| takes V(B) onto
V(e™'(B)) C Spec A. O

Proposition 3.67 If B is integral over A, where p: A — B need not be injective, then the map |¢| from
Spec B to Spec A is a closed map. In fact, it is universally closed; that is, the map
|pc|: Spec(B ®4 C) — SpecC is a closed map for every A-algebra, C.

Proof. Note that if B is integral over A, then B ®4 C is integral over C. To see this, observe that a general
element of B® 4 C' is a sum of terms b ® ¢ with b € B and ¢ € C. If b ® c is integral over C so is any sum
of such terms. But, b®c = (b®1)(1®c) and 1 ® cis in C (= A®4 C) so all we need check is that b ® 1
is integral over C. Write the integral dependence for b over A, then tensor with 1 (as in b® 1) and get the
integral dependence of b ® 1 over C.

This remark reduces us to proving the first statement. Now the map A — B factors as
A—s A=A/)A— B,
so for the spaces Spec A, etc., we get
Spec B —» Specg — Spec A.

By Proposition 3.66, the second of thesex maps is closed, therefore we are reduced to the case where A — B
is injective. A closed set of Spec B is V(98) and we know by Fact A following Proposition 3.54 that B/% is
integral over A/(8 N A). The interpretation of Cohen—Seidenberg II shows that

Spec(B/B) — Spec(A/(B N A)) is surjective. Coupled with the homeomorphisms

Spec(B/B) 2 V(B); Spec(A/(BNA)=V(BNA),
this finishes the proof. [J

Let’s continue with these topological considerations a bit further. Take p € Spec A, one wants to consider
{p} as Spec(?) for some A-algebra “?”. At first A, seems reasonable, but Spec A, consist of all the primes
contained in p. We can get rid of all these extraneous primes by factoring out by p¢ and forming

k(p) = Ap/p°.

The A-algebra, x(p), is a field; so, Spec k(p) is one-point—it corresponds to p. Indeed, in the map
k(p) — Spec A coming from the ring map

A— A, — A, /p° = Kk(p),

the one point of Speck(p) goes to p in Spec A. If B is an A-algebra, then B ®4 x(p) is a k(p)-algebra
isomorphic to By /pBy. The commutative diagram

B —— B ®4 k(p)

]

A————r(p)
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shows that the elements of Spec(B® 4 k(p)) all go to p under the map Spec(B® 4 x(p) —> Spec A. Therefore,
Spec(B ®4 k(p) is the fibre of the map Spec B — Spec A over {p}.

Proposition 3.68 Suppose B is a finitely generated A-algebra and is also integral over A. Then, each fibre
of the map Spec B — Spec A is finite.

Proof. The algebra B has the form A[by, ..., b;] and each b; is integral over A. Thus, B is a finitely-generated
A-module. So, each B ®4 k(p) is a finitely generated x(p)-vector space and therefore has the D.C.C. By
Lemma 3.37, Spec(B ®4 k(p)) is a finite set. ]

We have more than stated: B is not only a finitely generated A-algebra it is a f.g. A-module. This
is stronger than the condition that all the fibres of |p|: Spec B — Spec A be finite. Indeed, consider the
inclusion Z < Q. The points of SpecZ are {0}, {2}, {3},..., {p}, ..., and the fibres of Spec Q over SpecZ are
respectively {0}, 0, 0, ..., 0,.... Of course, Q is not integral over Z nor is it finitely-generated as Z-algebra.

A more germane example is C[X] as included in C[X,Y]/(XY —1). The primes of C[X] are {0} and the
principal ideals (X — ), where A ranges over C. The fibre over {0} is {0}, that over (X — ) for A # 0, is the
principal ideal which is the kernel of X — X; Y +— 1/). But, over (X), the fibre is (). So, all fibres are finite,
B =C[X,Y]/(XY —1) is a finitely generated C[X]-algebra yet B is not a finitely generated C[X]-module;
hence B is not integral over A = C[X] under the standard inclusion. Observe also that Spec B — Spec A is
not a closed map in this case—this turns out to be the key. For, we have the following fact due to Chevalley:

Fact. If B is a finitely-generated A-algebra under a map @ and if |¢| is both universally closed and has
finite fibres, then B is a finite A-module (in particular, B is integral over A).

The proof of this is very far from obvious and is not part of our purview. However, the discussion does
suggest the following question: Say A is a domain and write k for Frac A. if K/k is a finite degree field
extension, is Int 4 (K) a finitely generated A-algebra (hence, a f.g. A-module)? The answer is “no”, which
perhaps is to be expected. But, even if A is noetherian, the answer is still “no”. This is somewhat surprising
and suggests that the finite generation of Int 4 (K) is a delicate and deep matter. If we are willing to assume
a bit more about K/k we get a very satisfying answer. We’ll need some material from Chapter 4, Section
4.2 and 4.3 for this.

Theorem 3.69 Suppose A is a normal domain with fraction field k and say K/k is a finite separable
extension. Then, Int 4 (K) is contained in a f.g. A-module in K. In fact, a basis for K/k can be found which
generates the latter A-module. If A is, in addition, noetherian, then Int4(K) is itself a finite A-module;
hence is noetherian.

Proof. We use the trace from K to k (see Chapter 4, Section 4.7), this is a k-linear map, tr: K — k. We
set for x,y € K

(z,y) = tr i (2y)-
The fact we need is that the separability of K/k entails the non-degeneracy of the pairing (x,y). (Actually,
this is not proved in Section 4.7 of Chapter 4 but is an easy consequence of Newton’s Identities connecting

sums of powers of elements x1,...,x; with elementary symmetric functions in z1,...,z;.) This being said,
we see that K is self-dual as vector space over k, via our pairing (x, y).

Let B = Int(K), then in fact Frac(B) = K. To see this, choose x € K, then x has a minimal
k-polynomial m(T) € k[T, say

m(x) =z + " 4+ a4, =0, a; € k. )

As k = Frac(A), for each i, there is s; € A with s;a; € A. We take s = [[s;, then sa; € A for all 4; so
multiply (1) by s, we get

(sz)" + sar(sz) ™+ 4+ 5" Tap_1(sz) + 5"y = 0.
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This shows that zs € Inta(K) = B, so # € Frac(B). (It shows more. Namely, K = (4 — {0})7!B.) It
follows that we may choose a k-basis for K from Bj; say this is by,...,b;. By the non-degeneracy of (z,y),

the dual basis consists of elements of K, say they are cy,...,c;. Thus,
(bi, c;) = ij.
Now, choose € B and write z in terms of the basis ¢1,...,¢;. We have z = > v;¢;, with the v; € k.

As x and the b; lie in B, we see that xb; € B and statement (1) of Proposition 3.63 shows that (x,b;) € A
because A was assumed normal. But

(@,bi) = O vies ba) = Y 75050 =i
J j

so all 7; € A. Therefore B C Acy + - -+ + Acy, as required in the first two conclusions of our theorem. Of
course, if A is noetherian, then B, as a sub-module of a f.g. A-module, is itself finitely generated. ]

Remark: We cannot expect B to be generated by just ¢ elements as its containing module Acy + - - - + Acy
is so generated. On the other hand, it can never be generated by fewer than t elements. For if it were, say
B = Ady + -+ Ad,, with r < t, then

(A—{0})"'B=k®4 B = k-span ofdy,...,d,.

Yet the left hand side is just K and so
t=dimK <r,

a contradiction. When B is generated by ¢ elements, this shows they must be a basis for K/k. If A is a
P.I.D., one knows from B < Acy []---]] Ac; that B is generated by ¢ or fewer elements, and so we’ve proved

Corollary 3.70 If A is a P.I.D. and K is a finite separable extension of k = Frac A, then there exist
elements B1,...,0: of B=1Ints(K) so that

(1) B is the free A-module on B1,...,B: and
(2) B1,...,B: are a k-basis for K.

A set of elements 1, ..., ; having properties (1) and (2) above is called an integral basis for K/k. An
integral basis might exist for a given normal, noetherian A and an extension K/k, but it is guaranteed if A
is a P.I.D.

Theorem 3.69 shows that the difficulty of the finite generation of Int 4 (K) resides in the possible insepa-
rability of the layer K/k. It can happen that we must continue to add more and more elements without end

in a tower
ACB CByC--CB,C- - CB=Inty(K)

and examples (due to Nagata) exist of just this phenomenon. Fortunately, for a big class of integral domains
of interest in both number theory and algebraic geometry, this does not happen—they are well-behaved.
These are the integral domains, A, that are finitely generated k-algebras, where k is a field. We'll refer to
them as finitely generated domains over k. We will also need some material from Chapter 4 Section 4.11,
namely the notion of transcendence basis. This is just a subset of our domain, algebraically independent
over k (i.e. satisfying no non-trivial polynomial in finitely many variables over k) and maximal with respect
to this property. Every set of generators contains a transcendence basis and all transcendence bases have
the same cardinality—called the transcendence degree of A over k. You should skip the proofs of Theorem
3.71 and 3.72 and come back to read them after Chapter 4.

A main step in proving that the finitely generated domains over k are well-behaved is the following
important theorem due to E. Noether:
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Theorem 3.71 (Noether Normalization Lemma.) If A is a finitely generated domain over the field k, say
A =k[t1,...,t,], and if d is the transcendence degree of A over k, then there exists a change of coordinates

yj = fi(t,...,tn),
in A so that
(1) y1,...,yq are a transcendence basis for A over k and
(2) the injection klyi,...,yd] — A= k[y1,...,yn] makes A integral over kly1,...,yd).

If k is infinite, then f; may be taken to be linear. If Frac A is separably generated over k, then the y; may
be chosen to be a separating transcendence basis for Frac A over k.

Proof. (Nagata). We prove the theorem by induction on n; the cases n = 0 or n = 1 are trivial. So, assume
the theorem holds up to n — 1. If d = n, the remarks about transcendence bases just before our proof show
that A is already the polynomial ring in n variables; so, again, nothing need be proved. Therefore, we may
assume d < n. We'll show there exists ya, ...,y so that k[ys,...,yn] — E[t1,...,t,] = A is an integral
morphism (separable in the separating transcendence basis case). If so, then the induction hypothesis applies
to k[ya, . .., yn] and this, together with transitivity of integral dependence and separability, will complete the
proof.

Now d < n, sorelabel the tq,...,t, to make t; algebraically dependent on ts,...,t,. We have a non-trivial
polynomial relation
> et ™ =0,

(@)
where (a) = (a1, ..., a,) is a multi-index and (®) = ¢ ... ¢% . Set
yj:tj—t?l‘77 j:27...,n,

where the m; are as yet undetermined integers (> 0). Then ¢; = y; +t;" and so

Dt (Y2 +172)°2 - (g + 7)™ = 0.
(a)

Expand the latter equation by the binomial theorem to obtain the relation

Z C(a)tga)(m) + G(tla Y2, -, yn) = 07 (T)
()
where (m) = (1,ma,...,my) and («) - (m) stands for the dot product a; + agma + -+ + a,m,. The
polynomial G has degree in ¢; less than the maximum of the exponents («) - (m). If we can choose the
integers ma, ..., my so that the products () - (m) are all distinct, then (}) is an integral dependence of t;
over k[ya,...,yn] as k is a field. But each t; is expressed as y; + 1" for j = 2,...,n; so each t; is integral

over k[ya,...,yn] and therefore k[ty,...,t,] is integral over klya,...,yn]. When k[t1,...,t,] is separably
generated over k, Mac Lane’s Theorem (Theorem 4.90) shows we may choose ¢; separable algebraic over
klta,...,t,]. Then the relation Z(a) c(a)t(a) = 0 may be chosen to be a separable polynomial in ¢; and the

way we will choose the m’s (below) will show #; is separable over k[ys,...,yn]. Ast; =y; +t]”, we get the
separability of k[t1,...,t,] over k[ys, ..., yn].

Now we must choose the integers mo, ..., m,. For this, consider the differences

(8)aar = (015, 0n)aar = (@) — ()
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for all possible choices of our distinct multi-indices («), except that we do not include (o) — () if we have
included (&) — (o). Say there are N such differences, label them 41, ...,0y. Form the polynomial

N
H(Ty,...,T,) = H(51j + 6910 + -+ + 0 Th)
j=1

here, §; = (01j,...,0pn;) and Ts,..., T, are indeterminates. None of the J; are zero, so H is a non-zero
polynomial and it has integer coefficients. It is well-known that there are non-negative integers mo, ..., m,
so that H(ma,...,m,) # 0. Indeed, if b is a non-negative integer larger than any component of any of
our (a)’s, then b,b% ...,b™ ! is such a choice. It is also a choice which gives separability. The fact that
H(mg,...,my) # 0 means that the (a) - (m) are distinct.

Finally, assume k is infinite. Just as before, arrange matters so that ¢; depends algebraically (and sepa-
rably in the separably generated case) on ta,...,t,. Write the minimal polynomial for t; over k(tq,...,t,)
as

P(U,ta,...,t,) =0.

We may asume the coefficients of P(U,ta,...,t,) are in k[ta, ..., t,] so that the polynomial P(U,ta,...,t,)
is the result of substituting U, to, ..., ¢, for T1,...,T, in some non-zero polynomial, P(T1,...,T,), having
coefficients in k. Now perform the linear change of variables

yj:tj—ajtl, j:2,...,n,

where as, ..., ay, are elements of k to be determined later. As before, each ¢; is y; 4+ a;t1; so it suffices to
prove that t; is integral (and separable in the separably generated case) over k[ya, ..., yn].
We have

P(thyQ +a2t17"'uyn+ant1) =0

which gives us

ttllf(laa%"'aan)+Q(t17y27"'7yn):Oﬂ (*)

where f(T1,...,T,) is the highest degree form of P(Ty,...,T,) and ¢ is its degree The polynomial, @,
contains just terms of degree lower than ¢ in ¢;. If we produce elements a; in k (j = 2,3,...,n) so that
f(1,aq9,...,a,) # 0, then (x) is the required integral dependence of ¢; on the y’s. In the separable case, we
also need t; to be a simple root of its minimal polynomial, i.e.,

dP

—(t e Yn 0
dtl( 1,Y2, Y )7£

(c.f. Theorem 4.5 of Chapter 4). By the chain rule, the latter condition is

dP or opP opP

t, = — 4+ a9g—+---+a,— 0. *k
dtl( 1Y) oty 2ot " Oty 7 (x%)

Now the middle term of (%) is a linear form in as,...,a, and it is not identically zero since on ay =
as = -+ = a, = 0 it takes the value OP/0t; and the latter is not zero because t; is separable over

k(ta,...,tn) (Theorem 4.5, again). Thus, the vanishing of the middle term of (xx) defines a translate of
a (linear) hyperplane in n — 1 space over k, and on the complement of this hyperplane translate we have
dP/dti(t1,y) # 0. The latter complement is an infinite set because k is an infinite field. But from an
infinite set we can always choose as,...,a, so that f(1,as,...,a,) # 0; therefore both our conditions
dP/dti(t1,y) # 0 and f(1,a9,...,a,) # 0 will hold, and the proof is finished. []
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The example discussed previously of C[X] embedded (in the standard way) in C[X,Y]/(XY — 1) is an
extremely simple instance of the normalization lemma. Namely, rotate the coordinates

X—X+Y; YoX-Y

and let T =1/2(X +Y); W =1/2(X —Y). Then our situation becomes CT' embedded in
C[T,W]/(T? — W2 — 1), an integral extension. See Figures 3.1 and 3.2 below:

=

Figure 3.1: Before Normalization: A non-integral morphism

becomes after 7/4 rotation

.
e

Figure 3.2: After Normalization: An integral morphism

Theorem 3.71 is not the sharpest form of the normalization lemma. Here’s an improvement due to
Eisenbud based on a previous improvement of Nagata’s. We offer no proof as we won’t use this sharper
version.
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Theorem 3.72 If A = k[t1,...,t,] is a finitely generated integral domain over a field k with tr.dy A = d
and if we are given a maximal length descending chain of prime ideals of A

po>p1 > > pa—1 > (0),

then there exists a change of coordinates

Y; = fj(tla"',tn)
so that
(1) y1,...,y4 are a transcendence basis for A over k,

(2) the injection klyi,...,ya] < A makes A integral over klyi,...,yq], and
(3) pj N k[yla o 7yd] = (yla v 7yd7j)'

Here is the promised application of Theorem 3.71 to the well behavedness of finitely generated integral
domains over fields.

Theorem 3.73 When A is a finitely generated integral domain over k and K is a finite extension field over
Frac(A), then Int4(K) is both a finitely generated integral domain over k and a finite A-module.

Proof. We first make two reductions and then treat the main case:

(1) We may assume K = Frac A. For if it is known that the integral closure of A in its own fraction
field satisfies the conclusions of the theorem, then choose a basis yi,...,ys forK over Frac A which basis
consists of elements from Int 4 (K). This can be done by the argument in the middle of the proof of Theorem
3.69, which argument made no use of any separability hypothesis. Of course, A[y1,...,ys|is both a finite
A-module and a finitely generated integral domain over k£ and its fraction field is K. So by our assumption
Int 4y, ...y, (K) satisfies the conclusions of the theorem. But, clearly, Inta(K) = Int4p, .. 4. (K), which
achieves our first reduction.

(2) We may assume both that k is infinite and that Frac A is separably generated over k. (Here, we are
already using reduction (1) having replaced K by Frac A.) To see this, write  for the algebraic closure of
Frac A (see Theorem 4.77) and note that § contains k, the algebraic closure of k. Now k is both infinite and
perfect, so by Corollary 4.91, the field k(t1, ... ,t,) is separably generated over k; here, A = k[ty,...,t,]. By

our assumption, Intg, tn](E(tl, ...,tn)) is a finite k[ty,. .., t,]-module and a finitely generated k-algebra,

say k[wy, ..., wy].
Now by the normalization lemma (in the infinite, separable case) there are z1, ..., z4, algebraically inde-
pendent, which are linear combinations
n
Zj = Z Oéijti
i=1

of the t1,...,t, so that k[t, ..., t,] is integral and separable over k[z1, ..., zq]. Each w; satisfies a separable,
integral dependence
gj(wjvzla"'azd):07 j:172v"'7Q7

over the polynomial ring k21, ..., z4]. Also,
Intg[m ..... zd](E(th' ,tn)) ZE[’LU17...,wq].

Adjoin to k all the coefficients of these ¢ polynomials and all the «;; to get a field, 75, of finite degree over

k. The entire situation involving k[2’s] and k[w’s] comes from the same situation involving k[z’s] and k[w’s];
S0, by the algebraic independence of the z’s, we find

Int; (k(t1, ... tn)) = k[wi,. .., w,]

klz1,...,24]
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and we know

Int%[zl,‘..,zd] (k‘(th .. ,tn)> = Intk[tl,...,tn](k(th . ,ﬁn)).
Of course, %[wl, ..., Wq] is a finite %[tl, ..., tp]-module and E[tl, ..., ty] is a finite k[tq,...,t,] = A-module
as k has finite degree over k. Thus, k[ws,...,w,] is a finite A-module as are all of its submodules, A being

noetherian. But Int 4 (Frac A)) is the submodule Frac(A) N k[ws, ... ,wq] and as A is a finitely generated
k-algebra so is any A-algebra which is a finite A-module. This achieves reduction (2).

Finally we have the case K = Frac A, k is infinite and Frac A is separably generated over k. By the
normalization lemma, there are linear combinations

n

ZJZZBZ';‘E‘, j=1,...,d

i=1

so that 21, ..., z4 are algebraically independent and A is integral and separable over k[z1, . .., z4]. By Theorem
3.69, Inty., . ., (Frac A) is a finite k[z1, ..., z4]-module; hence, a finite A-module. Yet, by transitivity of
integral dependence,

Inty, .. 2, (Frac A) = Int 4 (Frac A).

So, Int 4 (Frac A) is a finite A-module; thereby a finitely generated k-algebra, as required. []

The somewhat involved nature of the two finiteness Theorems (Theorems 3.69 and 3.73) indicates the
delicate nature of the finiteness of Int 4 (K') as A-module. If the Krull dimension of A is 3 or larger, it can even
happen that Int 4 (K) is not noetherian (even if A is so). The Japanese school around Nagata studied these
questions and Grothendieck in his algebraic geometry treatise (EGA, IV, part 1, [21]) called attention to the
class of domains having the finiteness property together with all their finitely generated algebra extensions.
He used the terminology universally Japanese rings, but it seems that Nagata rings is the one used most
often now. The formal definition is this

Definition 3.6 An integral domain, A, is a Nagata ring if and only if for every finitely generated A-algebra,
B, which is a domain and any finite extension, K, of Frac B, the ring Int5(K) is a finite B-module.

As a corollary of Theorem 3.69, we see immediately the following

Proposition 3.74 If A is the ring of integers in a number field (i.e., A = Inz(K), where K is a finite
extension of Q), then A is a Nagata ring as is Alty, ..., ts].

A main theorem, proved by Nagata, concerning these matters is the following:

Theorem 3.75 (Nagata) Say A is a complete, noetherian local domain, and K is a finite degree extension
field of Frac(A), then Int4(K) is a finitely generated A-algebra and a finite A-module.

This theorem is not part of our purview, nor will we use it; so, its proof is omitted.

There is another finiteness result involving integrality which has many uses.

Proposition 3.76 (E. Noether) If B is a finitely generated A-algebra, A being noetherian, and if C is a
sub A-algebra of B so that B is integral over C, then C' is a finitely generated A-algebra.

Proof. Write B = Alt1,...,t,]; each t; satisfies an integral dependence over C

gj(tj):(), ]:1,,7L
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If a1, ..., a4 are the coefficients (€ C') of all these equations, form Afay,..., a4 C C. The t; are integral
over Alai,...,aq] and they generate B; so, B is a finite A[ay, ..., aq]-module. But C is a sub Afaq, ..., a4)-
module of B and Alai,...,aq] is noetherian. Therefore, C is a finitely generated Afa, ..., aq]-module, say
C = Alay,...,q4)lz1, ..., zs); we are done. []

What happens if A C Frac(A) is not a normal domain? Of course we’ll form Int 4 (Frac(A)) = A, then
we want to study the relations between A and A. For example look at

A=7Zni, n€eZ and n>0

and

A = Int4(Q(0)) = Zi].

The main invariant controlling the relations between A and A is the transporter (g — A) in A. That is,
we examine

f=(A—A)={ccA|cAC A}

The set f is, of course, an ideal of A; it is called the conductor of A in Aor just the conductor of the integral
closure of A. The symbol f comes from the German word for conductor: Fiihrer. But, clearly, f is also an
ideal of A. In the example above,

f={& € Zn] [ n|R(E)}.

Remark: The domain, A, is normal if and only if f is the unit ideal. An ideal, 2, of A which is also an
ideal of A must necessarily be contained in the conductor, f. That is, f is the unique largest ideal of A
which is simultaneously an ideal of A.

The first of these statetements is obvious; for the second, we have AA C 2 as A is an A-ideal and A C A
as 2 is an A-ideal. Thus, N
AACAC A

and this says A C (A —s A) = f.
The connection between A and A vis a vis localization and prime ideals is this:
Proposition 3.77 For a domain, A, its integral closure A and the conductor, f, of A in A we have
(1) If S is a multiplicative set in A, then S~'A = Intg—1 4 (Frac(A))
(2) If fNS #0, then ST*A = SLA, that is S~ A is normal.
(3) If A is a finite A-module then the conductor of S™'A in S~A is f-S~1A = fe.
(4) If A is a finite A-module, them S—'A is normal if and only if f NS # 0.
(5) Ifg is a finite A-module, then
{p € Spec A | A, is not normal}

is closed in Spec A; indeed it is V(f). Hence, in this case, A, is a normal ring on an open dense set
of Spec A.

Proof. (1) This is clear from Proposition 3.54 and Fact B following it.

(2) Write s € f NS and choose « € A. We know sa = a € A;s0, a =a/s € STTA. We find AcC ST1A,
hence S™'A C S~ A. The other inclusion is clear.



222 CHAPTER 3. COMMUTATIVE RINGS

(3) Write oy, ..., a for a finite set of A-module generators for A in this part and in part (4). To check
that an element z € S™'A lies in (S™*A —s S—1A), it suffices to see that it is in (A —s S~A). For the
latter, all we need is za; € S~1A for j = 1,...,t. Conversely, if z € (S™'A — S~1A), then certainly
zra; € STYA, all j.

Now za; € S™1A implies there is some s; € S with sjza; € A. If s = s1--- s, then sza; € A therefore
sx € f,i.e., x € f¢. The converse is clear.

(4) The “if” part of our conclusion is (2), so say S~1A is normal. Then the conductor (§~1A — S~1A)
is the unit ideal; so, (3) shows f¢ = unit ideal. This implies f NS # 0.

(5) Write S(p) for A — p, then A, is not normal iff f N S(p) = 0 which holds iff f C p; that is iff
p € V(f). To finish the proof we need only show that any non-empty open set of Spec A is dense when A is a
domain. But, this will hold if we show XN X, # (0 (provided neither X; nor X, is empty) (DX). However,
X;N X, =Xy, and, as neither f nor g is zero, their product is non-zero (and not nilpotent). Now apply
Proposition 3.12 part (3). ]

Corollary 3.78 For a domain A and its integral closure, ﬁ, assume A is a finite A-module. Then, for a
prime p of Spec A not in V(f), there exists one and only one prime ideal, p, of A lying over A. This prime
ideal is pA, N A.

Proof . Existence is clear either by the Lying Over Theorem or by the fact that pA, is prime and A4, 2 A.
(The latter holds as A, is normal since p ¢ V(f).) To see uniqueness, observe as p 2 f there is § € f with
d ¢ p. Then for any ideal, 2, of A ~

MMACIACA

and 62 C A, too. Therefore §2A C AN A; so if 2 is an ideal contracting to p we get 620 C p. Now, § ¢ p,
therefore 2 C pA,, so A C pA, N A = p. Suppose, in fact, A is prime yet 2 < p, then we’d have a
contradiction to non-comparability (Proposition 3.62). []

Note: Generally, pg is not a prime ideal of Z; but, of course, pg is always contained in p.
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3.6 Primary Decomposition

In Z, we have unique factorization and we know this is not valid in an arbitrary (even Noetherian) commuta-
tive ring. Can one generalize so as to obtain a “decomposition” of ideals (or submodules) into special ideals
(resp. modules) which resemble prime powers? Surprisingly, the answer is connected with a generalization
of Fitting’s lemma from linear algebra.

Lemma 3.79 (Fitting’s lemma) If V is a finite dimensional vector space over a field, k, and 0: V — V is
an endomorphism, then there exist subspaces W and Z of V' so that

(1) V=w]]Z.
(2) 6 | W is an isomorphism.
(8) 6| Z is nilpotent.

Proof. See any introductory algebra text. []

Look at Z. Pick n, then we have the ideal 2 = nZ. Factor n as n = p{'ps?---p;*, where p1,...,ps
are distinct prime numbers. We get 2 = P7* -- - P;*, where P; is the prime ideal p;Z. Now, we also have
A= ﬂ§:1 %;-j, since the 3, are pairwise comaximal.

This last equality is still wrong, say in C[X, Y], and the fault is the ;. They are not general enough.
Let A be a commutative ring, M an A-module and N C M a submodule. Set

Rady/(N)=+/(M — N)=\/{z € A|aM C N} ={z € A| 3k > 0)(z*M C N)}.
This is the relative radical of N in M. The following properties are easily checked:
1) Rady/n((0)) = Radas (N).

(1)
(2) Radar((0)) = /Ann(M).
(3) Rada(q) = V4.
(3a) Rada,q((0)) = v/1.
(4) Radas (N N P) = Rada (N) N Rada (P).
)

(5) Radp (AN) D VAN Rady (N).
Here, 2 is an ideal of A; M is an A-module; NV is a submodule of M.

Definition 3.7 A module, M, is coprimary iff for every a € A, the map o,: M — M wvia o,(m) = am is
either injective or nilpotent. (The map o, is called a homothety.) An ideal, q, of A is a primary ideal iff the
module, A/q, is coprimary.

Notice the clear connection of this idea with Fitting’s lemma.
Proposition 3.80 For any commutative ring, A, and any ideal, q, the following are equivalent:
(o) For all z,y € A if vy € q but y ¢ q, then x* € q, for some k > 1.
(B) For ally ¢ q, we have (y — q) C /4.
(v) Uygq(y — a) = va.

(0) Every zero divisor of the ring A/q is nilpotent.
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(e) The ideal q is primary.

Proof. The equivalence («) <= () is clear and the implication (y) = (5) is a tautology. If (53), then pick
£e€/q. If £ €q,then £ € (y — q) for all y. Thus, we may assume that £ ¢ q and so, there is a minimum
k > 2 so that &¥ € q. Let y = ¢¥71 ¢ q. We have &y = ¢F € q, so, £ € (€¥7! — q) and (7) holds.

(o) = (). Pick T € A/q, a zero divisor, which means that there is some 7 # 0 with T7 = 0. It follows
that y ¢ q and 2y € q; by (), we get z* € g, for some k, and so, TF = 0.

(6) = (¢). Pick a € A. We need to show that o, is injective or nilpotent in A/q. Say o, is not injective.
Then, there is some ¥ # 0 in A/q and ay = 0 in A/q, i.e. ay = 0. But, g # 0, so, by (d), @ is nilpotent.
Consequently, @* = 0, and so, (04)* = 0in A/q.

() = (). Pick z,y with zy € q and y ¢ q. Look at o, on A/q. We have
0,(y) =Ty=7y =0, asay€q.
);

As 7 # 0, the map o, is not injective on A/q. By (), the map o, is nilpotent. Thls means that
(02)F = 06 = 0in A/q. In particular, o« (1) = T¥1 = 0, i.e., 2% = 0. Therefore, z¥ € q. []

Corollary 3.81 If \/q is mazimal, then q is primary. In particular, if m is a mazimal ideal, then m" is
primary for all n > 0.

Proof. The image of \/q in A/q is the nilradical of A/q. Since ,/q is maximal in A, the ring A/q has a
unique maximal ideal. It follows that every element of A/q is either a unit or nilpotent, so Proposition 3.80
(3) applies. The second part of the statement follows from the first since \/p™ = p for every prime ideal, p.

O

@ There exist prime ideals, p, such that p™ is not primary. There exist primary ideals, q, not of the form
p", where p € Spec A.

Corollary 3.82 Say q is a primary ideal of A, then \/q is a prime ideal.

Proof. Pick x,y € A with zy € /g and y ¢ ,/q. Then, z*y* = (zy)* € q, for some k > 0. So, o, (7*) =
in A/q and 7* # 0 in A/q. Therefore, our homothety, o, is nilpotent, so, o, is nilpotent, i.e., (¢,)! =0 on
A/q. Then, (0,)'(1) =2'-1=2'=01in A/q, and so, 2! € q, i.e., z € \/q. O]

@ There exist non-primary ideals, A, yet v/2 is prime.
Definition 3.8 A submodule, N, of a module, M, is primary in M ifft M/N is co-primary. Then, Rads(N)

is prime (same argument), say p. In this case, we say N is p-primary when M/N is p-coprimary, i.e., M /N
is coprimary and Rady/(N) = p.

Say M is an A-module, N is a submodule of M and S is a multiplicative set in A. Look at
={meM]|(3se€ S)(sme N)}=S(N),

and call it the S-component of N or S-saturation of N.

Further Properties:
(6) S((0)) = Ker (M — S=tM).
(7) S(ﬂzﬂ Ni) = ﬂi:l S(N;).
(8) S(V — N)=(V— S(N)).
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Proposition 3.83 If A is a commutative ring, M is a f.g. A-module and N a submodule of M, then the
following are equivalent:

(1) N is primary in M.

(2) For all multiplicative sets, S C A, we have

N
S(N) :{ or

M.
(3) For all multiplicative sets, S C A, the map M/N — S~Y(M/N) is either injective or zero.

Proof . Note that Sy;/n(0) = S(N) = Ker (M/N — S~*(M/N)). Therefore, (2) and (3) are equivalent.

(1) = (2). Take any S and examine /(M — N) = Rad;/n((0)). There are two cases:

Case 2. There is some s € S with s € Rad/n((0)). So, s* € (M — N) and then s* € S implies that
M C S(N); thus, M = S(N).

Case 1. Pick s € S and look at 0. If o, is nilpotent on M/N, then (0s)* = o, = 0 on M/N, which
implies that s¥M C N. So, s € \/(M — N)NS, a contradiction. Therefore, oy must be injective on M/N,
by (1). This means given any m € M, we have o4,(m) = sm = 0 in M/N iff m € N, already, i.e., sm € N
iff m € N. As this holds for all s € S, we have S(N) = N.

(2) = (1). Pick s € A and look at S = {s* | k > 0}. If s € N(A), then (0,)¥ = o, = 0 on any
module. So, we may assume s ¢ N (A) and then, S is a multiplicative set. Thus, (2) holds for S. We have
to show that M/N is coprimary, i.e., o5 is either nilpotent or injective. Say, o, is not injective on M/N,
ie, S(N) # N. By (2), we have S(N) = M. Pick generators, my,...,m; for M. As S(N) = M, each
mj € S(N); so, there is some k; with s*m; € N, for j =1,...,t. Let k = max{ky,...,k:}, then s*m; € N,
for j =1,...,t. It follows that s*M C N and so, s* kills M/N, i.e. o, is nilpotent on M/N. []

Proposition 3.84 (E. Noether, 1921) If M is a noetherian module, then any non-primary submodule, N,
of M is reducible, i.e., N is the intersection, N = Q1 N Q2, of proper submodules of M properly containing
N.

Proof. (Adapted from Fitting’s lemma.) Since N is non-primary, M /N is not coprimary. So, there is some
a € A so that o, is not injective and not nilpotent on M/N. Write M; = Ker (0,)? = Ker (0,;) on M/N.
We have an ascending chain

My CM;CM;C-- .

By the ACC, the chain stops, say at r. We have M, = M,y; = --- = Ms,. Let ¢ = 0, € Ends(M/N).
We have Ker ¢ # M/N, else (0,)" = 0, contradicting the non-nilpotence of o,. So, Im ¢ # (0). Also,
Ker ¢ D Ker g, # (0), as o, is not injective. I claim that Ker ¢ NIm ¢ = (0).

Pick £ € Ker p NIm ¢. So, £ = ¢(n) = a™n. As p(§) =0, we have p(a"n) = 0; thus a"¢(n) = 0, and so,
a*n =0, ie., n € My, = M,. Consequently, a"n = 0, i.e., £ = 0, as desired. But, now, Ker ¢ N'Im ¢ = (0)
implies that

N =7 (Ker o) N7~ (Im ),
where m: M — M/N is the natural projection. []

We need a restatement of a Proposition 3.83 for the reduction process:

Proposition 3.85 Say N is a submodule of M, and p is a given prime ideal.
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(a) N is p-primary in M iff for all multiplicative sets, S, of A, we have

[N iffpnN=10
S(N)_{M pNN #0Q.

(b) If N1,..., Ny are all p-primary, then N1 N --- N Ny is again p-primary.
(c) If V is any submodule of M, then when N is p-primary, we have

A iff VN
SV —N)= {p-primmy ideal iff V. N.
Proof. (a) The module N is primary iff M/N is coprimary iff S((0)) = (0) or S((0)) = M/N, for any
multiplicative subset, S (where (0) C M/N) iff S(N) = N or S(N) = M, for any such S. (Recall,
S((0)) = S(N).) But, the dichotomy: S(N) = N or M, depends on S N Rady(N) = S N Rady/n((0) =
SN /(M — N). Namely, S(N) = N iff SN Rady(N) = 0 and S(N) = M iff SN Rady(N) # 0. But
here, p = Radp/(V), so (a) is proved.

(b) Now, S(Ni_, Vi) = N'_, S(NV;), so (a) implies (b).

(¢) If V C N, then (V — N) = A, so, S(V — N) = A. So, we may assume V & N. Recall that
S(V— N)=(V— S(N)). We will test S(V — N) by part (a) (here, M = A). But,

M O iffFSNp#D
S(N)_{N iff SNp=0.

In the case SNp # (), we have S(V — N) = (V — M) = A. It SNp =0, then S(V — N) = (V — N),
and the test of (a) shows (¢). [J

Reduction Process for Primary Decomposition

Say N=0Q1NQ2N---NQ; is a decomposition of N as a finite intersection of p;-primary modules, @Q;.
@ No assertion p; # p; is made.

(1) Remove all Q; from the intersection ﬂle (i, whose removal does not affect the intersection.

(2) Lump together as an intersection all the @;’s for which the p;’s agree. By (b), the “new” intersection
satisfies:

(o) No @j, still primary, can be removed without changing the intersection.
(B) All the p; (: (M — @ﬁ) are distinct.
Such a primary decomposition is called reduced.

Theorem 3.86 (Lasker-Noether Decomposition Theorem, 1921) Every submodule, N, of a noetherian mod-
ule, M, can be represented as a reduced primary decomposition:

N=@Q:iNQ2N---NQ;.
Proof. (Noetherian induction—invented for this theorem.) Let
S ={N C M | Nis not a finite intersection of primary submodules}.

If S # 0, by the ACC, the set S has maximal element. Call it N. Of course, N is not primary. By Noether’s
proposition (Proposition 3.84), there exist @1, Q2 > N, so that N = @1 N Q2. But N is maximal in S, so
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Qj ¢ S for j = 1,2. Thus, we can write Q; = ﬂz.l:l Q§1) and Qs = N2, 5.2), where the Q;i) are primary
(i = 1,2, finitely many j’s). Consequently, we get

N=Q"n--nQyne?n---nQi,

contradicting N € S. Therefore, S = (). Now apply the reduction process to a primary decomposition of N
and we get the conclusion. []

Corollary 3.87 (Lasker’s Decomposition Theorem, original form, 1905) If A = C[Xy,...,X,], then every
ideal, A, admits a reduced primary decomposition: A =q; N---Nqq.

Corollary 3.88 (Noether’s statement) If A is any noetherian ring and A is any ideal of A, then 2 admits
a reduced primary decomposition: A =q1 N---Nq;.

Now, what about uniqueness?

Proposition 3.89 Say that N is an A-submodule of M, and N = Q1 N ---N Q¢ is a reduced primary
decomposition for N. Let I = {1,...,t} and given any multiplicative subset, S, of A, write

S(Iy={iel|Snp; =0}

Here, p; = Radp(Q;) is the prime associated to Q;. Then,

(a) SNy = () @

JES(I)
(b) s = {5 M A
v p$-primary submodule of ST*M if i € S(I).
(c) STIN= () s57'Q
JES(I)

and this is a reduced primary decomposition for SN as submodule of S~ M.

Proof. (a) We know that S(N) = ('_, S(Q;) and S(Q;) = M when j ¢ S(I) and S(Q;) = Q; for j € S(I)
(previous proposition). Thus, it is clear that (a) holds.

(b) Now, Q; is p;-primary, so S(Q;) = M if p; N S # 0 else S(Q;) = Q; or equivalently, S((0)) = M/Q;
it i ¢ S(I) else S((0)) = (0) (where (0) is the zero ideal in M/Q;). Say, i ¢ S(I), then S(Q;) = M, and
so, for every m € M, there is some s = s(m) € S with sm € Q;. Hence, m/1 € S71Q; and it follows that
STIM C S71Q;; yet, of course, ST1Q; € S™1M, so S71Q; = S™'M, as required. Now, say i € S(I), so
p; NS = 0. Observe, every multiplicative set, say T, of S~'A, has the form S~!Ty, for some multiplicative
set, Ty, of A. But, M/Q; is coprimary which means that M/Q; — To_l(M/Qi) is either injective (case:
To((0)) = (0)) or zero (case: Tp((0)) = M/Q;)). Therefore, as S~1A is flat over A, we get

STHM/Q;) — STy H(M/Q;) s injective or zero, (%)
the first if To Np; = 0, ie., T(= S™1Tp) Np¢ = 0, the second if Ty Np; # 0, i.e., T(= S~1T,) Np§ # 0. But,
STy M/Q;) = T~1(S7IM/S71Q;) and S~IM/ST1Q; = S~H(M/Q;), so

STIM/STIQ; — T 1(S™'M/S™'Q;) is injective or zero
depending on T N p¢ being empty or not. Therefore, S™1Q; satisfies our test for p¢-primariness.

(c) We know from (b) that S™'Q, is p§-primary and p§ # p§ if i # j, as i,j € S(I) and there is a
one-to-one correspondence between the p’s so that pN.S = () and the p¢ of S™1A. The rest should be obvious
(DX). O
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Theorem 3.90 (First Uniqueness Theorem) If N, an A-submodule of M, has a reduced primary decompo-

sition N = Q1 N ---NQy, then the prime ideals p1,...,p: (pi = /(M — Q;)) are uniquely determined by
N and M, up to the order of their listing.

Proof. Assume that N = Q1 N---NQs = Q) N---NQ; are two reduced decompositions for N in M. We
use induction on s +¢. When s+t = 2, we have s =t =1 and @; = Q) and uniqueness is obvious. Assume
that uniqueness holds for all submodules, N, for which s +¢ < r — 1. Consider N and two decompositions

with s+t = r and let
s—1
S=A-Jn- | ¥
i=1 Pi#ps

Now, SNp; =0 fori=1,...,5s—1and SNp; =0 for all j with p; # ps. So,

s s—1
SV = ()5Q) = N @
i=1 i=1
as S(Q;) = Q; whenever SNp; = 0. Also,

SN = (1 s@)= ) @

P #ps Pi#Ps

For S(N), the sum of the number of components is at most s — 1+t < 7; so, the induction hypothesis implies
S(N) has the uniqueness property. However, can it be that p} # ps for j = 1,...,¢7 Were that true, the

second intersection would give S(N) = ﬂ;zl @} = N. Thus, we would have

s s—1
Qi=N=5sW)=()a;
i=1 j=1

contradicting the fact that the first decomposition is reduced. Therefore, there is some j with p} = p,, and
now the induction hypothesis implies

{plv s ?ps—l} = {p; | p; # Ps}7
and the proof is complete. []

Definition 3.9 If N is a submodule of M and N has a primary decomposition, then the primes p1,...,ps
corresponding to the @);’s which appear in the decomposition are called the essential primes of N in M.
The set of such is denoted Essp;(N). When N = (0), the primes appearing are called associated primes of
M and this set is denoted Ass(M). Of course, Ass(M/N) = Essp;(IN). The minimal elements of Essp;(N)
or Ass(M) are called isolated essential primes of N in M (resp. isolated associated primes of M). The Q;
corresponding to isolated primes of either type are called isolated primary components of N in M or isolated
primary components of M.

Theorem 3.91 (Second Uniqueness Theorem) The isolated primary components of N in M are uniquely
determined by M and N.

Proof. Let @Q be such an isolated component of N in M and let p be the corresponding minimal prime. Look
at S =A—p. I P € Esspr(N), then P > p implies that NS # ) and as p is minimal, all other 5 touch
S. Tt follows from Proposition 3.89 that S(NV) = Q. [J

The Lasker-Noether theorem has an immediate application to number theory. This concerns factorization
and it shows clearly how Lasker-Noether provides a generalization to Noetherian rings of unique factorization
in UFD’s.
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Definition 3.10 A Dedekind domain is a noetherian, normal domain of Krull dimension 1.

Examples of Dedekind domains.
(1) Every P.I.D. is a Dedekind domain.

(2) If K is a finite extension of Q (that is, K is a number field) and Og = Intz(K) (the integral closure
of Z in K), then Ok is a Dedekind domain. The ring Ok is called the ring of integers in K.

(3) Let X be a compact Riemann surface and = € X, any point in X. Let
A ={f € Mer(X) | poles of f are only at z}.

Then, A is a Dedekind domain.

(3a) Let X be an open Riemann surface of finite character, which means that X = X U finite set of points
is a compact Riemann surface. Then, Hol(X)(= the ring of all holomorphic functions on X) is a Dedekind
domain.

Say A is a Dedekind domain. If p € Spec A but p # (0), then dimension 1 implies that p € Max(A). From
Theorem 3.56, A, is a PID. Take any non-zero ideal, 2, then by Lasker-Noether, we can write 2 = q1N---Nqy,
a reduced primary decomposition. Now,

pj = va; 22> (0),

so each of the p;’s is a maximal ideal. It follows that each p; is isolated and, by the second uniqueness
theorem, the q;’s are unique. Moreover, whenever i # j,

Vi 95 =/pi +p; = A,

so that 1 € q; + q;. We deduce that the q; are pairwise comaximal and the Chinese Remainder Theorem

says
t t
2=(a=[o
i=1 i=1

The ring A/q; is noetherian and any p € Spec(A/q;) corresponds to a prime of A containing p;; that is,
p must be p;. Consequently, A/q; is a local ring with the DCC and by Nagata’s Theorem p; (= image p; in
A/q;) is nilpotent. Let e; be its index of nilpotence so that

i i—1
pt Caqi <pi.

But, A,, is a PID, and Proposition 3.5 shows that q; = p;’. In summary, we get the following theorem of
Dedekind:

Theorem 3.92 (Dedekind, 1878) In a Dedekind domain, every nonzero ideal, 2, is a unique product of
powers of prime ideals: A = p7rps? -+ -pi*.

Corollary 3.93 (Kummer, 1833) In the ring of integers of a number field, every nonzero ideal is a unique
product of powers of prime ideals.

After this little excursion into number theory and the connection of primary decomposition to questions
of factorization, we resume our study of primary decomposition for modules—especially its applications to
the structure of modules.

Lemma 3.94 Say M is a p-coprimary module and N (# (0)) is a submodule of M. Then, N is also
p-coprimary.
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Proof. Pick a € A with o, not injective on N. Then, o, is not injective on M, so, o, is nilpotent on M
(as M is coprimary). Therefore, o, | N is also nilpotent; so, N is coprimary. Let p be the prime associated
with N while p is the prime for M. We know that p = \/Ann(M), while p = \/Ann(N). If z € p, then
rF € Ann(M); so, 2¥ € Ann(N), i.e, z € p. Thus, p C p.

Now, pick  with o, not injective on N. This implies that (0,)* = 0 on N, that is, ¥ € Ann(N), i.e.,
x € p. Thus, x € p implies o, is not injective on N, hence o, is not injective on M, and so (0,)* =0 on M
as M is coprimary which implies that = € p. Therefore, we also have p C p, and p = p. [J

Proposition 3.95 A necessary and sufficient condition that M be p-coprimary is that Ass(M) = {p}. Let
N C M, for arbitrary M and N, then Ass(N) C Ass(M).

Proof. Assume M is p-coprimary. Then (0) is p-primary in M. By the first uniqueness theorem, Ass(M) =
{p}. Conversely, if Ass(M) = {p}, then (0) has just one primary component, whose prime is p. So, (0) is
p-primary and it follows that M is p-coprimary.

Assume N C M. Write (0) = @1 N --- N Q¢, a reduced primary decomposition of (0) in M. Then,
Ass(M) = {p1,...,pt}. By intersecting (0) = Q1 N---NQ; with N, we get
0)=(@NN)N---N(Q:NN).
Observe that we have the composite map

N<—M-— M/Q;

and its kernel is N N Q;. Hence, N/(N N Q;) <= M/Q;. But, M/Q; is p;-coprimary; so, from the argument
above, N/(N N @Q;) is also p;-coprimary, provided that N/(N N Q;) # (0). Now, we have N/(N N Q;) = (0)
iff @; O N. Consequently, we have

(0)=(Qiy NN)N---N(Qi, NN) inN,

where Q;, 2 N, for each 4;, and @;, N N is p,,-primary in N. By the first uniqueness theorem, we deduce
that
Ass(N) ={p € Ass(M) | Q@ 2 N, where Q corresponds to p}.

O
Corollary 3.96 (of the proof) If N C M, then
Ass(N) ={p e Ass(M) | Q@ 2 N, where Q corresponds to p}.

Proposition 3.97 Say (0) = ﬂle Q; is a reduced primary decomposition of (0) in M and let N be a
submodule of M. Then, N is p;-coprimary if and only if NN Q; = (0). In particular, there exist p;-
coprimary submodules of M, namely, ﬂj# Qj. In fact, p € Ass(M) iff M contains a submodule which is
p-coprimary. Lastly, if NN (Q; + Q;) = (0), then N = (0). Therefore, M is an essential extension of
Qi +Qj.

Proof. Say NN Q; = (0), then
N = N/(NNQ) < M/Qs

Therefore, N is a submodule of the p;-coprimary module M/Q;. But then, N is p;-coprimary (as a submodule
of a p;-coprimary is p;-coprimary). Conversely, since (0) =), Q;, we get

(0) =@ NN, (+)

i
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and we know that @Q; N N is p;-primary if @; N N # N, and that (%) is a reduced decomposition. Since
N is p;-coprimary, by the first uniqueness theorem, there can be only one term in (%), i.e., @; 2 N for all
j # i; then (0) = @; N N. The second statement is now obvious. If N N (Q; + @Q;) = (0), then, of course,
NNQ;, =NnNQ; =(0). Then, p;, and p; would be primes of N, yet, N is coprimary by the first statement.
Consequently, p; = p;, a contradiction. So, N = (0). [J

To finish this chain of ideas, we need the “power lemma”:

Lemma 3.98 (Power lemma) Say A is a commutative ring with unity and M, F are A-module with F C M.
Write A = /(M — F) and assume 2 is f.g. as ideal. Then, there is some p >> 0 so that A°M C F.

Proof. Let ay,...,a; be generators for 2. For [ = 1,...,t, there is some k; > 0 so that af’M C F. Let
p ="k 4+ -+ k. Every element of 2 has the form ria; + -+ + r;az, where r; € A. Every element of
P is a sum of terms s(ajaz---a,); s € A; ay,...,a, € A. Then, a;---a, is a sum of monomials of the
form cal! ---ayt, where ¢ € A and i3 + - -+ + iy = p. Now, at least one 4; > k; in the last sum, and then,
alf ~-~a§‘M C F. Therefore, A°M C F. [

Theorem 3.99 If A is a noetherian ring and M is a f.g. A-module, then for all submodules, N, of M, all
the prime ideals of Ann(N) are in Ass(M). A prime ideal, p, is in Ass(M) iff there is some x € M so that
p = Ann(z) iff A/p is isomorphic to a submodule of M.

Proof. In M, we have (0) = (), Q;, a reduced primary decomposition, and we let p; correspond to Q;. The
first uniqueness theorem implies Ass(M) = {p,,...,p:}. Also,

Ann(N) = (N — (0)) = m(N — Q).
But, we know that

A if N C Q;
p;-primary ideal otherwise.

v —a)-{
We get a reduced primary decomposition of Ann(N):
Am(N)= (] (N —Q)).
JlQ; 2N

By the first uniqueness theorem, the primes of Ann(NV) are the p;’s for which Q; 2 N, so, they are contained
in Ass(M).

We have p = Ann(A/p) and A/p = AE, for some £ (where ¢ is the image of 1 modulo p). Given z with
Ann(x) = p, the map £ — x gives A/p = Az C M and conversely. Say p kills some x exactly, then, as A/p
is p-coprimary, Ass(Az) = {p}. Yet Az C M, so, p € Ass(M).

Conversely, say p € Ass(M). We must find x € M with Ann(z) = p.

By Proposition 3.97, if p € Ass(M), then there is a submodule, P, so that P is p-coprimary. Thus,
p = y/Ann(P), ie, p = /(P — (0)). In the power lemma, set p = A, P = M, (0) = F. As A is
noetherian, p is f.g. and by the power lemma, there is some p >> 0 with p? P = (0). If we choose p minimal
with the above property, we have p?P = (0) and p?~'P # (0). Pick any z # 0 in p?~!P. Then,

pz Cpp? ' P =p’P = (0),

so, p € Ann(z). But € P implies Ax C P and P is p-coprimary; consequently, Az is also p-coprimary. It

follows that
VAnn(Az) = \/Ann(z) = p.

So, we get p C Ann(z) C y/Ann(z) = p. [
In all of the following corollaries, A is a noetherian ring and M is a f.g. A-module. By taking N = M in
Theorem 3.99, we get:
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Corollary 3.100 The primes of Ann(M) are in Ass(M).
Corollary 3.101 Say0 — N — M — M/N — 0 is exact. Then,
Ass(M) C Ass(N) U Ass(M/N).

Proof. Pick p € Ass(M) and say p ¢ Ass(N). By Theorem 3.99, there is some € M so that p = Ann(z).
Look at (Az) N N. We claim that (Az) N N = (0). If not, (Az) N N C Az and Ax is p-coprimary. Thus,
(Az) NN is also p-coprimary and Ass((Az) N N) = {p}, But, (Az) N N C N; so, Ass((Az) N N) C Ass(N).
It follows that p € Ass(INV), a contradiction.

Therefore, (Az) N N = (0). Thus, we have
Ar — Az/((Az) N N) — M/N,
which means that Az is a submodule of M/N. By Theorem 3.99, we have p € Ass(M/N). [J
Corollary 3.102 We have Ass(M) C Supp(M).

Proof. If p € Ass(M), then p = Ass(Ax), for some xz € M, i.e., we have the inclusion A/p — M. By
localizing, we get (A/p)y C M,, yet
(A/p)p = Frac(A/p) # (0).

Thus, M, # (0), i.e., p € Supp(M). O
Corollary 3.103 Fach of our M’s possesses a chain (of submodules)
(0):M0<M1<M2<"'<Mn=M ('i')

for which M;/M;_1 = A/p;, for some p; € Spec A. Every p € Ass(M) appears as at least one of these p; in
each such chain.

Proof. If p € Ass(M), there is some x € M so that A/p = Az C M. If we let M; = Az, it follows that
My /My = A/p. Look at M /M. If p € Ass(M /M), repeat the argument to get My C M/M; with My = Ay,
for some y € M/Mj, and A/p = Ay. By the second homomorphism theorem, My = My/M;. Then, we have
(0) < My < My; May/My = A/p; My/My =2 A/p. If we continue this process, we obtain an ascending chain
of the desired type

0)=My< My <My<- -+ <M, <.

As M is noetherian, this chain stops. This proves the first statement.
We prove the last statement by induction on the length of a given chain.
Hypothesis: If M has a chain, (1), of length n, each p € Ass(M) appears among the primes from (7).
If n =1, then M = A/p. As A/p is p-coprimary, we have Ass(M) = {p}; yet p € Ass(M), so, p = p.

Assume the induction hypothesis holds up to n — 1. Given a chain, (1), of length n and p € Ass(M), we
know there exists some z € M with p = Ann(z), i.e., we have an inclusion A/p — M. There is some j such
that z € M; and x ¢ M,_1, where the M;’s are in (). If j < n, then apply the induction hypothesis to
M,,_1 to conclude that p is among p1,...,Pn—1-

So, we may assume x € M,, and « ¢ M,,_1. Look at (Ax) N M,,_1. There are two cases.
(a) (Az) N M,—1 # (0). Then, (Az) N M,_1 C Az, where the latter is p-coprimary; it follows that
(Az) N M,,_4 is p-coprimary and Ass((Az) N M,_1) = {p}. Yet, (Ax) N M,_1 C M,,_1, so,

Ass((Az) N M,—1) € Ass(Mp—1).
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Therefore, p is among p1, ..., P,—1, by the induction hypothesis.

(b) (Axz) N M,,—1 = (0). In this case, Az = Azx/((Az) N\ M, —1) — M/M,_1 = A/p,, so,
Ass(Az) = {p} C Ass(A/p,) = {pn}. Therefore, p =p,. ]

The chain, (), shows that M is a multiple extension of the “easy” modules A/a;. That is, we have exact
sequences

0 — My = A/py — My — My/My = AJps — 0
0— My — Ms — A/ps — 0

0— My_1 — M — Alp, — 0

We define Ext(M/N, N) as the set
{M|0—N—M— M/N — 0}/ ~,

where the equivalence relation ~ is defined as in the case of group extensions. It turns out that not only is
Ext(M/N,N) an abelian group, it is an A-module. If the A-modules Ext(A/p;, M;_1) can be successively
computed, we can classify all f.g. A-modules, M.

To attempt such a task, one should note the following;:

Remarks:

(1) Say 0 — N — M — M/N — 0 is exact, then
Supp(M) = Supp(N) U Supp(M/N).
Proof. Localize at any prime p. We get
0— Ny, — M, — (M/N), — 0 is exact.
From this, (1) is clear. []
(2) If M and N are two f.g. modules, then
Supp(M ®4 N) = Supp(M) N Supp(N).

Proof. We always have

So, if p € Supp(M ®4 N), the left hand side is nonzero which implies that M, # (0) and N, # (0).
Consequently,
Supp(M ®4 N) C Supp(M) N Supp(N).

Now, assume p € Supp(M) N Supp(N), then M, # (0) and N, # (0). As M, and N, are f.g. A,-modules
(since M and N are f.g. A-modules), Nakayama’s lemma implies

M,/mM, # (0) and N,/mN, # (0).
As these are vector spaces over k(A,), we deduce that
My /mM, ®a, Ny/mN, # (0).

But, this is just (M, ®a, Np)/m(M, ®4, Np); so, M ®4, Ny # (0). [
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(3) If M is a f.g. A-module, then p € Supp(M) iff there exists a chain
(0)=M0<M1<M2"'<MHZM ('i‘)

with M;/M;_1 = A/p; and p is one of these p;.

Proof. If we have a chain () and p = p; for some j, then A/p; = A/p and (A/p), = Frac(A/p). Therefore,
(Mj/M;_1), # (0). By exactness, (M;), # (0). As M; — M and localization is exact, M, # (0) and
p € Supp(M).

Conversely, if p € Supp(M), then there is some q € Ass(M) and p D q. So, A/q is in a chain and
A/p=(A/q)/(p/q) implies (DX) p is in a chain. []

Corollary 3.104 The following are equivalent conditions:

(1) p € Ass(M/N), for some submodule, N, of M.
(2) b € Supp(M).

(3) $ 2 Ann(M) (s € V(Ann(M)) ).

(4) p contains some associated prime of M.

Proof. (1) = (2). We have p € Ass(M/N) C Supp(M/N) and remark (1) shows that p € Supp(M).
(2) = (3). This has already been proved in Section 3.3, Proposition 3.21.

(3) = (4). If p 2 Ann(M), then p O \/Ann(M). However, /Ann(M) = ﬂ§=1 p;, where the p;’s are the
primes associated with Ann(M). So,
t ¢
p2 ﬂ pj 2 Hpjv
j=1 j=1

and it follows that p D p;, for some j. By Corollary 3.100, we have p; € Ass(M) and p D p;, proving (4).

(4) = (1). Say p D q and q € Ass(M). By our theorem, we know that there is some z € M so that
q = Ann(z), i.e., A/q— M. But, p/q— A/q — M. Let N =p/q, then,

Afp=(A/a)/(p/a) = M/N,
so {p} = Ass(A/p) C Ass(M/N). I

Corollary 3.105 The minimal elements of Supp(M) and the minimal elements of Ass(M) are the same
set.

Proof. Let p € Supp(M) be minimal. By Corollary 3.104 (4), we have p D q, for some q € Ass(M). But
Ass(M) C Supp(M), so, q € Supp(M). Since p is minimal, we get p = q € Ass(M). Now, p is minimal in
Supp(M), so it is also minimal in Ass(M).

Now, let p € Ass(M) be minimal. As Ass(M) C Supp(M), we have p € Supp(M). If p O q for some
q € Supp(M), then, by Corollary 3.104 (4), we have q D q, for some q € Ass(M). So, p D q; since p is
minimal, we get p =1q. O

Remark: We saw in Section 3.3 that Supp(M) is closed in Spec A. In fact, Supp(M) is a finite (irredundant)
union of irreducible subsets (recall, a set is irreducible iff it is not the union of two proper closed subsets).
In this decomposition, the irreducible components are V' (p), for p an isolated prime in Ass(M) (= a minimal
element of Supp(M)). Thus, the minimal elements of Ass(M) are exactly the generic points of Supp(M).
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Corollary 3.106 If A is a noetherian ring, then
{x € A|x is a zero divisor in A} = U p.
pEAss(A)
Proof. Say £ € UPGASS(A) p, so & € p for some p € Ass(A). By Theorem 3.99, we have p = Ann(y), for some
y € A. Clearly y # 0 and y& € yp = (0), so £ is a zero divisor.

Conversely, pick = ¢ UpGASS(A) pandlet S = A — UpeASS(A) p. We know from previous work that S is

a multiplicative set. Now, we have a primary decomposition (0) = (1q, where \/q = p € Ass(A4). We get
5((0)) =N, S(q) and we know that S(q) = q iff SNp = 0. By definition of S, we conclude that S((0)) = (0).
If xzy =0, as x € S, we get y € S((0)) = (0). Therefore, y = 0 and z is not a zero divisor. []

Corollary 3.107 Say M =], M, for some submodules, M, of M. Then,
Ass(M) = | J Ass(M,,).

Proof. Since M, C M, we get Ass(M,) C Ass(M), so, U, Ass(My) C Ass(M). If p € Ass(M), then there
is some m € M so that p = Ann(m). But, m € M, for some «; Theorem 3.99 implies that p € Ass(M,). [

Corollary 3.108 Given an A-module, M, and any nonempty subset, & C Ass(M), then there is some
submodule, N, of M so that Ass(N) = ®.

Proof. Let ® = {p1,...,p:}. By proposition 3.97, there are some submodules, P;, of M so that Ass(P;) =
{p;}. I claim, the map ]_[;:1 P; — M is injective and Ass(]_[;:1 P;) = ®. First, consider the case t = 2.
Look at the map Py [[ P, — Py + P> € M. This is an isomorphism iff P, N P, = (0). But, P, N P, C P;
for j = 1,2, so, Ass(Py N Py) C {p1} and Ass(P, N Py) C {p2}; as p1 # p2, we conclude that P, N Py = (0).
Then, the sequence

0—P — P [[Pr— P,—0

is exact and split. Consequently, Ass(P; [] P2) = {p1,p2}. For t > 2, we proceed by induction (DX). []
Proposition 3.109 If N C M and N possesses a primary decomposition in M, then

Rady(N)= (] »

pEEssn (M)
p isolated

In fact, the isolated primes of Rady (N) are just the isolated essential primes of N in M (The hypothesis
holds if A is noetherian and M is f.qg.).

Proof. As Rady/(N) = Rady/n((0)) = /Ann(M/N) and Essy (N) = Ass(M/N), we may assume that

N = (0). We must show that
VAnn(M) = ﬂ p.

peAss(M)
p isolated

Now, we have a reduced primary decomposition (0) = ﬂ;zl Qj, so

t
Ann(M) = (M — (0) = [ (M — @Q;).
j=1
But, (M — @;) is p;-primary, by previous work, so,

t

VAIQD = VI — 0 = (/Jor — )= () »= ) »

j=1 pEAss(M) pEAss(M)
p isolated

The rest should be clear. []
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3.7 Theorems of Krull and Artin—Rees

We begin with a generalization of the power lemma.

Lemma 3.110 (Herstein’s Lemma) If A is a noetherian ring, 2 is some ideal, M is a f.g. A-module and
N is a submodule of M, then there is some n >> 0 (depending on A, A, M, N ) so that

A"M NN CAN.

Proof. By reducing modulo 2N, we may assume AN = (0) and we must prove A"M NN = (0). Let
S={FCM|FnN = (0)}. Clearly, S is nonempty and since M is f.g. and A is noetherian, S has a
maximal element, call it F', again. Let mq,..., m; be generators of M and pick a € 2. Given m;, for any
n > 0, consider

E9(a) = (a"m; — F)={z € A| za™m; € F}.

The F,(Lj)(a)’s are ideals of A and we have
F(@) € B (@) € PP @) € v
By the ACC in A, there is some N;(a) so that
FJ(\,jj)(a)(a) = F](\fj)(a)ﬂ(a), forj=1,...,t

Let N(a) = max;<j<;{N;(a)}. I claim that V(@M C F.

Of course, if we show that aN(a)mj € F for j=1,...,t, we will have proved the claim.

If the claim is false, there is some j so that aN(a)mj ¢ F. Then, F + AaN(a)mj > F', and by maximality
of F, we must have (F + Aa™(®m;) N N # (0). So, there is some f € F and some a € A so that

0# f+ad¥@m; e N. (1)
If we multiply (1) by a, we get
af +aa¥Dm; € aN = (0),

since AN = (0) and a € A. Thus, aaN(“)Hmj = —af € F, and so,

o€ (aN(aHlmj — F) = FJ(\rj()a)+1(a) = F](Vj()a) (a).

It follows that ozaN(“)mj € F; so, f+ aaN(“)mj € F, which means that F N N # (0), a contradiction.
Therefore, a € /(M — F); as 2 is f.g., by the power lemma, we get A?M C F. Thus, finally,
AMNNCFEFNN=(0).1

Theorem 3.111 (Krull Intersection Theorem) Say A is a noetherian ring, M is a f.g. A-module and A is
an ideal of A. Write S =1—-A(={1l—a|a € A}). Then,

() 2" M = $(0) = Ker (M — S™'M).

n>0

Proof. Write N = (21" M. By Herstein’s lemma there exists p > 0 so that A* MNN C AN. But, N C A* M,
so APM NN = N and it follows that N C AN. Of course, we get AN = N. Now, N is f.g., say ny,...,ny
are some generators. As AN = N, there exist some a;; € A so that

t
nj:Zaijm, fOI‘jZl,...,t.

i=1
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Therefore, 0 = Et (cvij — 8ij)ny, for j =1,...,¢; so, the matrix (d;; — ;) kills the vector (nq,...,n). By

=1

linear algebra, if A = det(d;; — a;;) € A, then
An; =0, forj=1,...,t

(This can be seen as follows: If T is the linear map given by the matrix (d;; — c;), then by the Cayley—
Hamilton theorem, x(T) = Tt + 1T + -+ + B 1T + BI = 0. But, 8; = £A and if we apply x(T) to
(n1,...,mn¢), then x(T") and all the nonnegative powers of T kill it. Consequently, 3¢I(ni,...,n;) =0.) Now,
A =1—d, for some d € A. Thus, A € S. For all j, we have n; € S(0), so N C 5(0). On the other hand, if
¢ € S(0), then there is some s € S with s€ = 0. Yet, s = 1 — a, for some o € 2. Thus, (1 —a)¢ =0, i.e.,
¢ = a&. An immediate induction yields £ = a™¢, for all n > 0. However, a"¢ € A" M, for every n > 0, so
& € NA™M; this proves that S(0) C N. ]

Corollary 3.112 Under the hypotheses of Theorem 3.111, if A C J(A), then (A M = (0).
Proof. Since S =1-2AC1— J(A) C units of A, we get S(0) = (0).

Corollary 3.113 (Original Krull theorem) If A is local noetherian and m is its mazimal ideal, then

Am™ = (0).
Proof. As A is local, m = J(A); the result follows from Corollary 3.112 applied to M = A. []

Corollary 3.114 Say X s a real or complex manifold and x € X. Write Ox , for the local ring of germs
of C*°-functions at x. Then, Ox , is never noetherian.

Proof. As the question is local on X, we may assume X is an open ball in R” and # = 0 in this ball (with
n even in case of a complex manifold). Let

—1/(z,x) n
f(x):{e .forxGR,x%O
0 ifx =0.

(Here, (z,y) is the usual euclidean inner product on R”™.) We have f(z) € C°°(ball). Moreover £ (0) =0,
for all n > 0. But, in Ox ,, observe that m™ consists of the classes of functions defined near zero so that the
n-th derivative and all previous derivatives are 0 at the origin. So, germ(f) € [ m™; by the Krull intersection
theorem, our ring Ox , is not noetherian. []

2-adic Topologies.

Let A be a ring, 2 be an ideal in A and M be an A-module. At the origin in M, take as basis of
opens (= fundamental system of neighborhoods at 0) the subsets A" M, for n = 0,1,2,.... Topologise M
by translating these so that {m + 2" M}, >¢ is a neighborhood basis around m. When M = A, the ring A
receives a topology and A is a topological ring in this topology which is called the 2-adic topology. Similarly,
the module M is a topological module in this topology also called the A-adic topology. The 2A-adic topology
is pseudo-metric, i.e., set

n ifmeA"M, yet m ¢ AT M
orda(m) = { oo ifme),s A" M,

and define

d(my,mg) = e orda(mi—ma)
Then, we have
(1) d(ml,mg) Z 0.

(2) d(mlva) = d(m2,m1).



238 CHAPTER 3. COMMUTATIVE RINGS

(3) d(mq,m3) < max(d(my, ma),d(ma, ms)) (ultrametric property).

Yet, it can happen that d(mq, ms) = 0 and my # ms. The 2A-adic topology is Hausdorff iff d is a metric
(ie., d(m1,m2) = 0 iff m1 = my)) iff (50 A" M = (0).

If the A-adic topology is Hausdorff, then we have Cauchy sequences, completeness and completions. The

reader should check: The completion of M in the 2A-adic topology (Hausdorff case) is equal to

liHm M/A™ M 4 M. The first person to make use of these ideas was Kurt Hensel (1898) in the case A = Z,

M = Q, p = (p), where p is a prime. But here, Hensel used ord, (%) = ord,(r) — ord,(s).

Corollary 3.115 The -adic topology on a f.g. module M over a noetherian ring is Hausdorff if A C J(A).
In particular, this holds if A is local and A = m4.

Corollary 3.116 Say A is a noetherian domain and 2 is any proper ideal (i.e., A # A). Then, the A-adic
topology on A is Hausdorff.

Proof. We have S =1 —2 C nonzero elements of A. Thus, S consists of nonzero divisors. If £ € S(0), then
s€ =0, for some s € S, so, £ = 0. Therefore, S(0) = (0) and the topology is Hausdorff. []

Theorem 3.117 (Artin—Rees) Let A be a noetherian ring, 2 be some ideal, M be a f.g. A-module and N
a submodule of M. Then, there is some k (depending on A, A, M and N ) so that for alln > k,

A"M NN = A" F AR M N N).
Proof. Define the graded ring Powg (A) C A[X], where X is an indeterminate by
Powy(4) = JJ2a"x"
n>0

= {z+xnX+ - +2X"|r>0,z Ei’lj}.

Now, M gives rise to a graded module, M’ over Powg(A), namely
Moo= J]armMx
n>0
= {z+xa1X+ - +2X"|r>0,z AWM}

Observe that Powg (A) is a noetherian ring. For, if o, ..., a, generate A in A, then the elements of 2™ are
sums of degree n monomials in the «;’s, i.e., if Y7,...,Y; are independent indeterminates the map

AlYy,...,Y,] — Powgy(A)
via Y; — «; X is surjective, and as A[Y1,...,Y,] is noetherian, so is Powg(A).

Let mq,...,m; generate M over A. Then, my,..., m; generate M’ over Powg(A). Therefore, M’ is a
noetherian module. Set
N =]]@"MnN)X" C M,
n>0
a submodule of M’. Moreover, N’ is a homogeneous submodule of M and it is f.g. as M’ is noetherian.

Consequently, N’ possesses a finite number of homogeneous generators: u; X™',...,u, X", where u; €
A" MNON. Let k = max{ni,...,ns}. Given any n > k and any z € A" M N N, look at zX™ € N!. We have

S
zX" = E a X" My XM,
=1
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where ;X" € (Powg(A)) ny- Thus,

n—
a, € Qe — anfkmkfnl

and
ajuy € AVRQAFMyy) C ATRQFTM (AU M N N)) C AMRAPM N N).

It follows that z = Y7, aju; € A" F(A*M N N), so
A"M NN C A AXM N N).

Now, it is clear that the righthand side is contained in A"M NN, as A" *N C N. [

Remark: If we choose n = k+1 in the Artin-Rees theorem, we get A" M NN = A(A*M N N) C AN, hence
a new proof of Herstein’s lemma.

Corollary 3.118 If A is a noetherian ring, 2 is an ideal, M is a f.g. module and N is a submodule, then
the topology on N induced by the A-adic topology on M is just the A-adic topology on N.

Proof. The induced topology has as neighborhood basis at 0 the sets A" M NN. By the Artin—Rees theorem,
A"M NN =A""*A*M N N) C A" FN,
for all n > k, for some fixed k. It follows that the induced topology is finer. But, A°N C A°M N N, for all

p; so, the 2A-adic topology on N is in its turn finer than the induced topology. []

We turn now to two very famous theorems of Wolfgang Krull. Recall that a power of a prime ideal need
not be primary. In the proof of the first of the Krull theorems, the principal ideal theorem, we need to
remedy this situation. We are led to the notion of the symbolic powers, p™, of a prime ideal, p.

Let A be a ring and let p € Spec A. Look at A, = S~' A, where S = A —p. Take the powers of p, extend
and contract them to and from A,, to get
def
p = (p")ec = S(p").
Lemma 3.119 The ideal p\™ is always a p-primary ideal.

Proof. The ideal p° is maximal in A,. Hence, (p©)" is p°-primary, by previous work. But, (p©)" = (p™)°.
Therefore, (p™)¢ is pe-primary. Now, SNp =0, so (p™)°¢ is p-primary. []

Further, we have the descending chain

Theorem 3.120 (Krull Principal Ideal Theorem (1928)) If A is a noetherian domain and p € Spec A, then
ht(p) < 1 iff p is an isolated prime of a principal ideal.

Proof. (=) (easy part). By hypothesis, ht(p) < 1 and p D (0); hence, if ht(p) = 0, then p = (0), an isolated
prime of (0). If ht(p) = 1, pick a # 0 in p. As p D (a), the ideal p must contain one of the isolated primes
of (a), say P. So, p 2B > (0), and as ht(p) = 1, we must have p = P.

(<) (hard part). Here, we may assume p is an isolated prime of (a), where a # 0 (else, if a = 0, then
p = (0) and ht(p) = 0). We must show ht(p) = 1. Hence, we must prove that

if P € Spec A and p > B, then P = (0). )
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Step 1. If we localize at p, there is a one-to-one correspondence between primes contained in p and all
primes in A,. Therefore, we may assume A = A,, i.e., A is local, p is maximal and p is an isolated prime
of (a), with a # 0. We must prove (). Now, given 8 € Spec A with p > P, could a € P? If so, we would
have p > B D (a). As p is isolated, p = ‘B, a contradiction; so, a ¢ B. It follows that the ring A/(a) has
precisely one prime ideal and it is maximal. Since A is noetherian, by Akizuki’s theorem, A/(a) is artinian
(i.e., it has the DCC).

Step 2. Pick B € Spec A with P < p. Of course, a ¢ P. Examine the symbolic powers P, We have
‘132‘13(2) 2;}3@) ...
I claim this chain stops. To see this, consider the descending chain
P+ () 2B + () 2B + () 2+

This chain is in one-to-one correspondence with a chain in A/(a). By step 1, the ring A/(a) has the DCC,
so, there is some ng so that for all n > ng,

P C Pt 4 gA.

Given z € P, there is some y € P+ and some z € A so that © = y + za. As x —y € P, we have
za € PM); since a ¢ P = /PO, we get z € P™). Hence,

B CprtD L)y C prt) 4 gy,
Read this in the local ring A = A/‘I}(”‘H) whose maximal ideal is p. We get

P = P p. ()
As P is a f.g. A-module, by Nakayama’s lemma, ) = (0). Therefore,
B = PrHD - for all n > ny. (*)

St@p 3. By (*)7 we get ﬂnzl m(n) = m(nO) But? ((’p(nO))e = (ﬂnzl m(n)>e g mnzl(m(n))e Consequentlyv

(Prohe < (B = () ()"

n>1 n>1

However, ¢ is the maximal ideal of A, so by the Krull intersection theorem, the righthand side is (0).
Therefore,

(B)™ = (P™)° = (0).
But, A is an integral domain, therefore, 3¢ = (0); so, P = (0), as contended. []
Now, consider the case where A is just a ring (not necessarily an integral domain).

Corollary 3.121 If A is a noetherian ring and p is an isolated prime of some (a) C A, then ht(p) < 1.

Proof. Now, p is an isolated prime of some (a) C A. If a = 0, then p is a minimal prime, i.e., ht(p) = 0.
Therefore, we may assume a # 0. Suppose ht(p) > 2, then we must have a chain

p>aq>4.
Look in A = A/q’, a noetherian domain. Here, we have
p>q>(0)=1q, ()

yet, p is an isolated prime of (@), so the theorem in the domain case implies that ht(p) = 1, contradicting
(). O

To prove the next and last Krull theorem, we need the chain detour lemma:
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Lemma 3.122 (Chain detour lemma) Say A is a noetherian ring and

P0>Pl>"’Pm—1>Pm

is a given chain in Spec A. Given a finite set of primes S = {q1,...,q¢}, suppose po € q;, fori=1,... t.
Then, there exists an alternate chain (the detour)

Po > ]S’vl > "'Em—l > Pm
so that no p; is contained in any q;.

Proof. Say the lemma is known when m = 2, i.e., given a chain pg > p1 > po, we can change p;. Given our
chain
Po>P1> " Pm-1>Pm

and the set S, we can replace p; by p; with p; Z q; for i = 1,...,t. But, then, we have the chain

PL>P2 > Pt > P
and we can use induction to obtain the desired chain.

Thus, we are reduced to the main case: po > p1 > pa. Now, pg > po and po € q; for j =1,...,¢. By the
prime avoidance lemma,

t
po £ p2U U q;-
j=1

Hence, there is some = € po so that @ ¢ ps and x ¢ q; for j = 1,...,t. Look in A = A/ps, a noetherian
domain. In A, we have
Po > 1 > P2 = (0)

and so, ht(py) > 2. Now, T € py and it follows that some isolated prime of Z, say 9B, is contained in pg.
As x ¢ pa, we have T # 0 and B is an isolated prime of Z; by the principal ideal theorem, ht(8) = 1. As
ht(pg) > 2, we have pg > B > (0) and T € B. Let p; be the inverse image of B in A. We get:

(1) po >p1 > pa.
(2) zepadq,forj=1,...,t
(3) pr Zaqj, forj=1,....t.

Theorem 3.123 (Krull Height Theorem (1928)) If A is an ideal of the noetherian ring, A, suppose 2 is
generated by r elements and p is an isolated prime of A. Then ht(p) < r.

Proof. We proceed by induction on r. Hypothesis: The theorem holds for all isolated primes, p, of % and
all 2 generated by at most r elements.

The principal ideal theorem yields the cases r = 0,1. Next, let 2 = (x1,...,2,) and B = (z1,...,2.—1).
If 2 = 9B, there is nothing to prove. Thus, we may assume that =, ¢ B. If p (some isolated prime of )
is an isolated prime of 9B, the induction hypothesis implies ht(p) < r — 1. So, we may assume that p is an
isolated prime of 2, not an isolated prime of B and xz, ¢ B (obviously, 2 # B). Let S = {q1,...,q:} be the
finite set of isolated primes of 9B, let p = pg and look at some chain

P=pPo>p1>Pm-1>Pm
of Spec A, so that ht(pg) > m. If pg C q;, then
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contradicting the fact that po is not an isolated prime of B. Therefore, po Z q;, for j =1,...,t, and by the
detour lemma, there is a chain of the same length

Po > P1 > Pme1 > Pm

so that noﬁ is contained in any q;. Our goal is to show that m < r. let A= A/% Then 2 becomes
principal (AZ,) in A and as pg is an isolated prime of 2, the principal ideal theorem in A implies ht(pg) = 1.
(ht(po) > 0 because po is not an isolated prime of B).

NOW; Po :_) Em—l and Po :_) SB& S0,
Po 2 Pm—1+B.

Then, observe that g 2 P,n_1 + B and as B C q;, for all i and p,,_1 Z q;, for all i, we have p,,_1 +B Z q;,
for all ; thus, Pm_1+ B &, for all i (here, the q; are the isolated primes of (0) in A, i.e., those of height
0in A).

Claim. The ideal Py is an isolated prime of p,,—1 + B.

As 90 2 Prm—1 + B, we find py O m, where m is some isolated prime of p,,_1 + B. If py # m, then as
ht(m) > 1 (because p,,—1 +B & T, for all i) we'd see that ht(pg) > 2. But, ht(pg) = 1, a contradiction.
Therefore, pg = m, as claimed.

Now, let j = A/gm—l- As po 2 gm—l + B, we get
p:() 2 ﬁm_l +B = %

Moreover, as pg is an isolated prime of Pm_1 + B, we see that po is an isolated prime of p,,_1 +%B = 5.
But, the number of generators of B is at most  — 1. If we apply the induction hypothesis to A, we get

ht(pg) < r — 1. Finally, by applying double bar to our detored chain, we get
p:0>p71> >§m—2 > (0)7
a chain of length m — 1. Therefore, m — 1 < r — 1, that is, m < r. [

Corollary 3.124 In a noetherian ring, the prime ideals satisfy the descending chain condition. In particular,
every prime ideal contains a minimal prime.

Proof. Given a prime, p, it is finitely generated, say by r elements. Therefore, ht(p) < r and any descending
chain starting at p must stop. []

Corollary 3.125 If A is a noetherian ring, then for every p € Spec A, the Krull dimension, dim(A4,), is
finite.

Corollary 3.126 Say A is noetherian, a # 0 is any given element in A and p is an isolated prime of Aa.
Then, every prime ideal, q, strictly contained in p is an isolated prime of (0), i.e., consists of zero-divisors.

Proof. By the principal ideal theorem, ht(p) < 1, and ht(p) = 1, as q < p. It follows that ht(q) = 0, which
means that q is an isolated prime of (0).

Proposition 3.127 (Converse of the height theorem) Let A be a noetherian ring. For every p € Spec A, if
ht(p) < r, then there is some ideal, 2, of A generated by at most r elements and p is an isolated prime of 2.

Proof. (DX).

3.8 Further Readings

There is a vast literature on commutative rings and commutative algebra. Besides some of the references
already given in Section 2.9, such as Atiyah MacDonald [3], Lafon [32, 33], Eisenbud [13], Matsumura [39],
Malliavin [38], let us mention Bourbaki [6, 8, 7] Zariski and Samuel [50, 51], Jacobson [28] and Serre [46].



Chapter 4

Fields and Galois Theory

4.1 Introduction

The rational, real, complex and, much later, the finite fields were the basic inspiration for the study of fields
in general. Their ideal theory and the module theory (vector spaces) over them are very simple; so, it was
natural to look more deeply inside them. In particular, one can consider solutions of polynomial equations
in a field, the automorphisms of a field, the relation of one field to another. We owe to E. Galois the capital
idea of applying symmetry in the form of group theory to the study of polynomial equations (coefficients
in a field) and their solutions in a (perhaps bigger) field. He was preceded in partial results by such figures
as Lagrange, Abel and Gauss and the impetus he provided has sustained the subject until the current day.
What concerns one now is not so much the “classical theory” (all of which in smooth modern form is treated
below), but questions of basically geometric origin that use an admixture of group theory, ring theory and
fields to try to settle vexing questions of apparently “simple” nature. For example, if we adjoin to the
rationals all the roots of unity and call the resulting field K, is it true that every homogeneous form of
degree d > 0 in more than d variables has a non-zero solution in K7 This is a conjecture of E. Artin—still
open at present.

4.2 Algebraic Extensions

Recall that if A is a commutative ring and B is an over-ring of A (i.e., an A-algebra), an element 8 € B is
algebraic over A iff the map A[X] — A[f] C B is not injective; the element 8 is transcendental over A iff the
map A[X] — A[S] is injective. Moreover, f1,..., 3, are independent transcendentals over A (algebraically
independent over A) iff A[Xq,...,X,] — A[f1,...,Bx] is injective. The case of interest here is: A =k, a
field, and B a subring of a field.

Algebraic elements admit of many characterizations:

Proposition 4.1 Say B is an integral domain containing a field k and o« € B. Then, the following are
equivalent:

(1) o is algebraic over k.
(2) kla] (C B) is a field.
(3) k() = k[a).
(4) 1/ € kla].

(5) k[a] (C B) is a finite dimensional k-vector space.

243
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(6) kla) C L, where L (C B) is a subring of B and L is a finite dimensional k-vector space.

Proof. (1) = (2). By definition there is some polynomial f € k[X] so that f(a) = 0. By unique factorization
in k[X], we know that f = fi--- f,, where each f; is irreducible. So, 0 = f(a) = H§:1 fij(a) and as B is
a domain, f;(a) = 0, for some j; so, we may assume that f is irreducible. Look at k[X]/(f(X)). Now, as
k[X] is a P.LD and f is irreducible, it follows that (f(X)) is a maximal ideal. Thus, k[X]/(f(X)) is a field;
moreover, kla] 2 k[X]/(f(X)) and (2) holds.

(2)

2 3) and (3) = (4) are clear.
(4)

= (3)
= (5). By (4),

N
1 S aj00
—_ = CLjO[
« -

Jj=0

(with ay # 0) and this yields Z;.V:O ajadtl =1; we deduce

1 o
aN+1 - = _ E 7]04]-&-1’
an : an
7=0

N+1 N

ie., a depends linearly on 1, ¢, ..., o . By an obvious induction, o™ ** depends linearly on 1, a, ..., «
for all i > 1 and so, 1,0, ...,a" span k[a].

(5) = (6) is a tautology.

(6) = (1). Since k[a] is a subspace of a finite dimensional vector space, k[«] is finite dimensional over k
(i.e., (5)). Look at 1,a,...,a™,a¥*1 ... There must be a linear dependence, so

aNaN+-~-—|—a1a—|—ao =0
and « is a root of f(X) =an XN + -+ a1 X +ap. O
Proposition 4.2 Write Bag = {a € B | « is algebraic over k}. Then, Bayg is a ring (a domain).

Proof. Say a, 8 € Bag. Then, k[a] is finite dimensional over k and ke, 8] = k[o][f] is finite dimensional
over k[a], which implies that k[, 3] is finite dimensional over k. As o + 8 and «f belong to k[a, 8], by (6),
they are algebraic over k. []

Proposition 4.3 Say o, 8 € Bayg (with § #0), then o/ € Bag. Therefore, Bayg is actually o field.

Proof. As before, k[a, §] is finite dimensional over k[a]. But, k(«) = k[a] and k[a, 8] = k[a][8], so k[, 8] =
k(a)[B]. Yet, 8 is algebraic over k(«); thus, k(a)[f] = k(a)(B8) = k(«, 8). Consequently, k[a, f] = k(a, B)
and it is finite dimensional over k. As «/f € k(a, 8), it is algebraic over k. []

Proposition 4.4 Being algebraic is transitive.

Given an extension, K/k, the degree, deg(K/k) = [K: k|, of K/k is the dimension of K as a vector
space over k. Observe that if [K: k] is finite, then K is algebraic over k (for every a € K, there is a linear
dependence among 1,q,...,a", ..., so, a is the root of some polynomial in k[X]). However, an algebraic
extension K/k need not be finite.

Definition 4.1 Let K/k be a field extension (i.e., ¥ C K where both are fields and K is a k-algebra). Say
a € K is aroot of f(X) € k[X]. Then, a is a root of multiplicity, m, iff f(X) = (X —a)™g(X) in K[X] and
g(a) #0.
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Let A be a commutative ring, B be an A-algebra and C be a B-algebra.
Definition 4.2 An additive map ¢: B — C is an A-derivation of B with values in C iff

(1) o(¢n) =&0(n) +6(&)n  (Leibnitz)
(2) 0(a) = 0 whenever a € A.

Notice that (1) and (2) imply the A-linearity of an A-derivation. The A-derivations of B with values in
C form a B-module denoted Der4(B, C).

Examples of Derivations.

(1) Let A be a commutative ring, let B = A[X] and let C' = B.

N N
6f =0(3a;x7) =3 ja X071 = f(X)
i=0 =0

is an A-derivation.

(2) Let A be a commutative ring, B = A[{X,}aci], C = B and

Remark: For Example 1, if i is an independent transcendental from X, we have (DX)
FX +h) = f(X) + [ (X)h + O(h?).

Theorem 4.5 (Jacobian criterion for multiplicity) Given f(X) € k[X] and K/k a field extension, for any
root « of f(X), we have:

(1) If the multiplicity of a as a root is > m, then
fla)=f'(a)=---= [ D(a) =0.

(2) If char(k) = 0 and if f(a) = f'(a) = --- = fm=D(a) = 0 but f(™)(a) # 0, then a is a root of f of
exact multiplicity m.

Proof. We proceed by induction on m. Consider a root, «, of multiplicity 1. This means f(X) = (X —a)g(X)
in K[X] and g(a) # 0. Thus,

(X)) = (X = a)g'(X) + g(X),
s0, f/(a) = g(a) and f'(«) # 0. Therefore, (2) holds independently of the characteristic of k in this one case
and (1) is trivial.

Now, assume « is a root of multiplicity at least m. As f(X) = (X — a)™g(X) in K[X], we get
F(X) = (X = )" (X = a)g'(X) + mg(X)),
which shows that the multiplicity of « in f’ is at least m — 1. By the induction hypothesis applied to f/(X),
we have f'(a) = f"(a) =--- = f™=Y(a) = 0. Also, f(a) =0, so (1) holds.

(2) Again, we proceed by induction. Assume that f(a) = f'(a)=---= f™D(a) =0 but £ (a) #0,
with char(k) = 0. Let ¢ be the exact multiplicity of a. Then, f(X) = (X —a)?h(X) in K[X], with h(a) # 0.
Now, f'(a) = (f')(a) = -+ = (f)™ 2 (a) = 0 and the induction hypothesis applied to f’(X) shows that
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« is a root of exact multiplicity m — 1 of f’. So, f/(X) = ( —a)™ tg(X), with g(a) # 0. We know that «
is a root of multiplicity ¢ of f, so by (1), f(a) = f'(a) = --- = fl4=D(a) = 0. If ¢ > m, then ¢ — 1 > m, so
™) (a) = 0, a contradiction. Thus, ¢ < m. As

F(X) = (X = )T ((X — )W (X) + gh(X)),
we have
(X =)™ 1g(X) = (X — ) H((X — a)h'(X) + gh(X)),
and since ¢ < m, we get
(X —a)™" (X)) = (X — )W/ (X) + gh(X).

If we let X = a, we have gh(a) # 0, as h(a) # 0 and char(k) = 0; but then, the left hand side must not be
zero, and this implies m = ¢q. []

Proposition 4.6 Say f € k[ | (k = a field), then there is an extension K/k of finite degree and an element
0 € K so that f(6) = 0. If k is another field and p: k — k is an isomorphism of fields, write f € k:[ | for

the image of f under u (i.e., M(Z 9j j) = >"u(gj)X7), then f is irreducible over k[X] iff f is irreducible
over k[X]. Let 0 be a root of an irreducible polynomial, f(X), in some extension K/k and let 0 be a root of

f in some extension Q/k Then, there exists a unique extension of u to a field isomorphism k(0) — %(5),
so that ju(6) = 0.

Proof. Factor f into irreducible factors in k[X], then a root of an irreducible factor is a root of f, so we
may assume that f is irreducible. Now, the ideal (f(X)) is maximal in k[X]. Therefore, K = k[X]/(f(X))
is a field and X = the image of X in K is 0, a root, and [K: k] = deg(f) < oc.

Next, we have y1: k — k and f € k[X]. Of course,
k[X] =k ©g Z[X] = k @7 Z[X] = k[X],

so f is irreducible iff f is irreducible. Now, 6 € K is a root of an irreducible polynomlal f, and Geisa
root of an irreducible polynomial f. But, k(6) = k[X]/(f(X)) - k[X]/(f(X)) = k(§). As 0 generates k(6)
over k, the element u() determines the extension of u to k(). []

Proposition 4.7 Say k is a field, f € k[X] and K/k is a field extension. Then, f possesses at most deg(f)
roots in K counted with multiplicity and there exists an algebraic extension L/k (in fact, [L: k] < co) where
f has exactly deg(f) roots counted with multiplicity.

Proof. We use induction on deg(f). If & € K/k is a root of f, then in K[X], we have
F(X) = (X — a)g(X), where g(X) € K[X]. (+)

But, deg(g) = deg(f) — 1, so there exist at most deg(f) — 1 roots of g in the field, K, containing k. If 8
is a root of f, either § = a or g(8) = 0 as K is a domain. Then, the first statement is proved. The last
statement is again proved by induction. In the above, we can take K = k(«), of finite degree over k. Then,
induction and (%) imply our counting statement. []

Corollary 4.8 (of the proof) The degree [K : k] of a minimum field containing all deg(f) roots of f always
satisfies [K : k] < deg(f)!.

Remarks:
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(1) Proposition 4.7 is false if K is a ring but not a domain. For example, take

K=k][r]] - 1I*-

Then, if ; = (0,...,0,1,0,...,0) with 1 in the j-th place, each e; solves X? = X.

(2) Let K = k[T]/(T?). The elements a = AT € K all satisfy X? = 0. If k is infinite, there are infinitely
many solutions.

(3) Let k =R and K = H (the quaternions). We know that H is a division ring, i.e., every nonzero element
has a multiplicative inverse. Consider the equation X2 4+ 1 = 0. Then, every a = ai + bj + ck with
a® + b% 4 ¢? = 1 satisfies our equation!

(4) Given a field, k, there exists a field extension K/k having two properties:

(a) K/k is algebraic (but in general, [K: k] = 00).
(b) For every f € K[X], there exists § € K so that f(0) = 0.

We'll prove these facts at the end of the Chapter in Section 4.11

Such a field, K, is called an algebraic closure of k and if only (2) holds, K is called algebraically closed.
The field K is unique up to noncanonical isomorphism. The usual notation for an algebraic closure of k is k.
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4.3 Separable Extensions, Kahler Differentials,
Mac Lane’s Criterion

Definition 4.3 An algebraic element « over a field k (i.e., a € K is algebraic over k for some field extension
K /k) is separable over k iff « is a simple root of its minimal k-polynomial.! A polynomial, f, is separable iff
all its irreducible factors are distinct and separable, and an irreducible polynomial is separable if it has one
(hence all) separable roots. The field extension K/k is separable iff all & € K are separable over k. We use
the adjective inseparable to mean not separable.

Proposition 4.9 Suppose « is inseparable over k. Then, char(k) =p > 0. If f is the minimal polynomial
for a, then there is some n > 1 and some irreducible polynomial g(X) € k[X] so that f(X) = g(XP"). If we
choose n maximal then

(1) g(X) is a separable polynomial and

(2) aP" is separable over k. Any root B of f has the property that P" is separable over k.

Proof. The element « is inseparable iff f'(«) = 0 by the n = 1 case of the Jacobian criterion. Thus, f
divides f’, yet deg(f’) < deg(f). Therefore, f' = 0. If f(X) = Ej 0@; X7, then f(X) = ZJ OjaJXJ !
and it follows that ja; = 0, for all j. If char(k) = 0, then a; = 0 for all j # 0 and f =0, as « is a root.
Thus, we must have char(k) = p > 0 and if p does not divide j, then a; = 0. We deduce that

Zap,XW h(XP),

where hy(X) =7 _, a,-X". Note that hy must be irreducible and repeat the above procedure if necessary.
As deg(h1) < deg(f), this process must stop after finitely many steps. Thus, there is a maximum n with
f(X) = g(XP") and g(X) is irreducible in k[X]. Were g(X) inseparable, the first part of the argument would
imply that g(X) = (X?) and so, F(X) = h(X?"""), contradicting the maximality of n. Therefore, g(X) is

separable. Yet, g(a” ) = f(a) =0, so a”" is a root of an irreducible separable polynomial and (2) holds.
Given 3, we have 8P" again a root of g. []

Definition 4.4 A field k of characteristic p > 0 is perfect iff k = kP, i.e., for every A € k, the element A has
a p-th root in k.

Examples of Perfect and Imperfect Fields.
(1) F, = Z/pZ, where p is prime, is perfect.
(2) Any finite field is perfect.
(3) The field k(T'), where char(k) = p > 0 is always imperfect.
Proposition 4.10 If k is a field with characteristic char(k) = p > 0 and if ¢ ¢ kP (with ¢ € k), then for

every n > 0, the polynomial f(X) = XP" — c is irreducible in k[X]. Conversely, if for some n > 0 the
polynomial XP" — ¢ is irreducible, then ¢ ¢ kP.

Proof. Look at f(X) = XP" — ¢ and pick a field, K, with a root, @ € K, of f. Then, o®" — ¢ = 0, so
f(X)=XP" —aP" = (X —a)?P", since char(k) = p > 0. Say p(X) € k[X] is an irreducible factor of f(X),
then ¢(X) | f(X) in k[X], and similarly in K[X]. By unique factorization in K[X], we have o(X) = (X —a)",
for some r > 0, where o —¢=0and o € K.

IRecall that the minimal k-polynomial of « is the monic polynomial of minimal degree generating the principal ideal
consisting of the polynomials in k[X] that vanish on a.
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Claim: XP" — c is a power of ¢(X).

If not, there is some irreducible polynomial, (X), relatively prime to p(X) and ¥(X) | X" — ¢ in
k[X] (DX). Then, there exist s(X),#(X) with s(X)p(X) + t(X)¥(X) =1 in k[X]. However, ¥(X) divides
XP" — ¢ s0(a) =0. If we let X = a, we get 1 = s(a)p(a) + t(a)p(a) = 0, a contradiction.

Therefore, p(X)! = XP" — ¢. Tt follows that 7l = p", so r = p® and | = p® with a + b = n. Then,

a

P(X) = (X — ) = (X —a)" =X"" — ",
which implies o?” € k. But then, ¢ = (apa)pb € kpb, a contradiction if b > 1. Thus, b = 0 and consequently,
a=mnand f(X) = p(X) is irreducible.

Conversely, if for some n > 0 the polynomial X?" — ¢ is irreducible and if ¢ € kP, then ¢ = b, for some
b € k. Tt follows that

n—1

XP' —e=XP" P = (XP —b)P

contradicting the irreducibility of X?" — ¢. [

Definition 4.5 An element o € K/k is purely inseparable over k (char(k) = p > 0) iff there is some n > 0
so that a?”" € k. Equivalently, « is purely inseparable over k iff the minimal k-polynomial for « is of the
form X" — ¢, for some ¢ € k.

Remark: We have a € k iff « is separable and purely inseparable over k.
Proposition 4.11 If k is a field, then k is perfect iff every algebraic extension of k is separable.

Proof. (=). Say k is perfect and pick o« € K/k, with « algebraic. We know that « has a minimal k-
polynomial f(X) and that f(X) = g(X?"), for some irreducible polynomial, g(X), and some n > 0. We

have ¢g(X) = E;-V:O b; X7, so f(X) = Z;.VZO b;(XP"). As k is perfect, k = kP = k' = ... = k", So,

n
bj = ¢ , for some ¢; € k and we have
N n

F(X) = iv:c;’”(xp")j = (Y exi)"

Jj=0 Jj=0

This contradicts the irreducibility of f(X) unless n = 0, and we know that a?” = « is separable over k.

(«=). In this case, all algebraic extensions of k are separable and say k is not perfect. Then, there is some
¢ € k, with ¢ ¢ kP. Hence, by Proposition 4.10, the polynomial X? — ¢ is irreducible over k. Let K = k(a)
where « is some root of X? — ¢. Then, aP = ¢ € k and it follows that « is purely inseparable over k. But, «
is separable over k, a contradiction, as a ¢ k. [J

Corollary 4.12 For a field, k, the following are equivalent:
(1) k is imperfect.
(2) k possesses nontrivial inseparable extensions.
(3) k possesses purely inseparable extensions.

Say K/k is algebraic and inseparable. It can happen that there does not exist @ € K with « purely
inseparable over k.
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To go further, we need derivations and Kahler differentials. Consider the situation where A, B are
commutative rings and B is an A-algebra. On B-modules, we have an endofunctor:

M ~ Der4(B, M).

Is the above functor representable? This means, does there exist a B-module, (25,4, and an element,
d € Dera(B,8p,4), so that functorially in M

QM: HOmB(QB/A,M) — DerA(B,M)?

(Note: For every ¢ € Homp(2p/4, M), we have 05/(p) = ¢ o d, see below).

B—> Qp/a

O () iw
M

Theorem 4.13 The functor M ~ Dera(B, M) is representable by a pair (g4, d), as above.

Proof. Consider B ® 4 B and the algebra map B ® 4 B - B, where p is multiplication, i.e., u(b @Z) = bb.
Let I = Ker p and write I/1? = Q4. We let B act on B®4 B via the left action b(§ ® ) = b6 @ 7). Then,
g/ is a B-module. Given b € B, set

db=d(b)=(1®b—b®1)mod I*.
Now, for b,ge B, we have o
(leb-be)(1®b-b®1) e I?,

and we get o L
1@bb+bb@1—(bb+b2b) € I

So, modulo I?, the above is zero and
1@bb—b@b=b®b—bb®1 inQpa.
Obviously, d is additive and zero on A, so we only need to check the Leibnitz rule. We have
bd(b) = b(1®b—b®1) modI?

= beb—bb®1 inQp/a

= 1®b0-b®b inQpn,

= 1Qbb-bb@1+bb®1-b®b inQp,

= d(bb) ~b(1®b—b®1) inQpa.
So, bd(b) = d(bb) — bdb in Qp/a, namely d(bb) = bdb + bd(b). The rest of the proof is routine. []
Definition 4.6 The B-module Qp,4 (together with the derivation d) is called the module of relative Kdihler
differentials of B over A.

Examples of Relative Kéahler Differentials.

(1) Let B = A[Th,...,Ty]. Say D is a derivation of B — M trivial on A. So, we know D(Ty), ..., D(Ty);
these are some elements in M. Say we are given 7" € B. Then,

T — 8 '
D(Ti-- - T) =T} 7' D(T) = 5 (1)) D(TY).

r
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Now,
0 0
D(TyT?) = Ty D(T7) + T D(Ty) = Ty 5 (17°) D(Ty) + 17 5 (T5) D(T).-
oT; 0Ty,
In general
" — 0
D L) = 3T - 7 T (1) DT, (1)
and
DD a@T®) =3 a@DT)D(T), (1)
(a)
as D | A =0. Conversely, (f) on the linear base of monomials in the Ty,...,T,, of B gives a derivation.
Therefore,

Der (B, M) — [[ M,

=1

via D — (D(T1),...,D(T},)) is a functorial isomorphism. Consequently,
Qp/a = ]_[ BdTy,
j=1

where the dTj are A-linearly independent elements of Qp,4 (case M = Qp/4).

(2) Let B be a f.g. algebra over A, i.e., B= A[Ty,...,T,]/(f1,..., fp). We have
Derg(B,M) ={p € Derg(A[Ty,...,Tn], M) | o(f;) =0,i=1,...,p}.

But,

n al n 87,‘7
G =2 Gre(T) = 3 GR(r),
j=1 j=1

where @: Qg4 — M (and ¢ =P od). Welet M = Qpg/ to determine it, and we see that
» must kill df;.

It follows that
Qp/a = <H Bde> /(submodule dfy =---=df, =0).

j=1
(3) Let B=C[X,Y]/(Y? — X3) and A = C. From (2) we get
Qp/a = (BdX 11 BAY)/(2YdY — 3X%dX).

The module Q4 is not a free B-module (due to the singularity at the origin of the curve Y2 = X?).

(4) Let A =R or C and B = the ring of functions on a small neighborhood of a smooth r-dimensional
manifold (over A). Derivations on B over A have values in B. Let &1, ...,&, be coordinates on this neigh-
borhood. Then, 9/0¢; is a derivation defined so that

O _ o fl &R ) = [ )
O6;  h—0 n -
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Look near a point, we may assume £ = --- = &, = 0, there. By Taylor,
& +ha, bt he) = f(&,. &) +Z 0 (IIRII)-

Hence, Qp/4 is generated by d¢i,...,d¢§, and they are linearly independent over B because the implicit
function theorem would otherwise imply that some &; is a function of the other &;’s near our point, a
contradiction.

Definition 4.7 Given an A-algebra, B, the algebra B is étale over A iff
(1) The algebra B is flat over A.
(2) The algebra B is f.p. as an A-algebra.
(3) Qpya = (0).
The algebra B is smooth over A iff (1), (2) and (3'): Qp/4 is a locally-free B-module, hold.

Remark: Putting aside (2), we see that checking that an algebra is étale or smooth is local on A, i.e., it is
enough to check it for B, over A, for every p € Spec A. This is because (DX)

(QB/A)p = QBP/AP~
It turns out that smooth means: Locally on A, the algebra B looks like
A— Ally,...,T,] — B

where B/A[Ty,...,T,] is étale.

We can apply the concepts of relative Kéhler differentials and étale homomorphisms to field theory. For
this, given a field, write p = char(k) and if p > 0, let k'/? be the field

EYP = {z ek |aP k).

Theorem 4.14 (Main theorem on separability (alg. case).) Let K/k be an algebraic extension. Then, in
the following statements: (1) implies any of the others; (2), (2a) and (3) are equivalent; (1) and (4) are
equivalent; all are equivalent if K/k is finite.

(1) The extension K/k is separable.
(2) For all K-modules, M, we have Dery (K, M) = (0).
(2a) Qi = (0), i.e., when K/k is finite, it is étale.

(3) Every derivation of k to M (where M is a K-vector space) which admits an extension to K (i.e.,
becomes a derivation K — M) admits a unique extension.

When char(k) =p > 0,
(4) Mac Lane 1: The natural map kY? @, K — K'/? is injective.
(5) Mac Lane II: kK? = K.

In order to prove Theorem 4.14, we first need the following subsidiary statement:
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Proposition 4.15 If K/k is separable and if M is a K-vector space, then every derivation D: k — M
admits an extension to a derivation of K with values in M.

Proof. We use Zorn’s lemma. Let S be the set of all pairs, (L, D), where

(1) L is a subextension of K/k (ie., k C L C K).

(2) Dy is an extension of D to L with values in M.
As (k,D) € S, the set S is nonempty. Define a partial order on § by: (L,Dr) < (L',Dp/) it L C L’
and Dy/ [ L = Dp. The set S is inductive. (If {L,}q is a chain, then L = J, Lo is a field, and define
Dp(&) = Dp_ (&), where £ € L,; this is well-defined (DX).) By Zorn’s lemma, there exists a maximal
extension, say (L, Dy,).

If K # L, then there is some € K with 8 ¢ L. Let g(X) € L[X] be the minimum L-polynomial for
B. We try to extend D, to L(). For this, we must define Dy g)(3) and the only requirement it needs to
satisfy is
0= Dy (9(8) = g(B)Dr)(B) + Dr(9)(B).
Here, if g(X) = Y_'_, a; X7, then D (g)(a) is >.5_, a?Dy(a;) € M. Since 3 is separable, ¢'(3) # 0, so we

Jj=1 J
can find the value of Dy 4)(53), contradicting the maximality of our extension. Therefore, L = K. []

Proof of Theorem 4.14. (1) = (2). Pick D € Derg(K, M) and a € K; by (1), the element « is separable
over k, i.e., o has a minimal k-polynomial, g(X), so that g(a) =0 and ¢’(«) # 0. As D is a derivation, the
argument of Proposition 4.15 implies that

0= D(g(a)) = ¢'(a)D() + D(g)().

But, D(g) = 0, because the coefficients of ¢ are in k and D | k = 0. Since ¢'(«) # 0, we get D(a) =0, i.e.,
(2) holds.

(2) = (2a). We have the functor M ~~ Dery (K, M) and Dery (K, M) = (0). By Yoneda’s lemma, the
representing object, {2 /3, must vanish.

(2a) = (2). We have Homy,(Q /5, M) = Dery, (K, M) and Qg = (0), so (2) holds.

(2) = (3). Say D and D are two extensions of the same derivation on k. Then, D — D is a derivation
and (D — D) | k=0. By (2), (D — D) € Dery,(K, M) = (0), so D — D = 0.

(3) = (2). Choose D € Dery(K,M), so D [ k= 0. But then, D extends 0 and 0 extends 0; by (3),
D=0.

(1) = (5). If o € K, then « is separable over k, so « is separable over kK? (as kKP D k). Yet, a? € KP?,
so aP € kKP; thus, « is purely inseparable over kKP. As « is both separable and purely inseparable over
kKP?, by a previous remark, o € kKP. This shows K C kKP. On the other hand, kKK? C K, always.
Therefore, K = kK?, i.e., (5) holds.

Before discussing the equivalence of (4) with (1), we need to elucidate the meaning of the Mac Lane
conditions.

For (5), say {{x}x spans K as a k-vector space. Then, {€}}, spans K? as a kP-space. As kP C k, {8}
spans kK? as a k-space. Hence, Mac Lane IT means: If {&x}x spans K as a k-space, so does {&}x.

For (4), say {£x}x is a linearly independent family (for short, an l.4. family) over k in K. Then, we
know that the elements 1 ® £y are linearly independent in k'/? @ K as k'/P-vectors (k'/P acts on the left
on kP ®, K). The map kY/? @, K — K/? is just

dax@&i =Y arba
By X
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If the map is injective and if there is a linear dependence of the & (in K'/?) over kP we get Yoy axéxn =0,
for some ay € k'/P. But then, Yoy ax @&y would go to zero and by injectivity

Z&,\®§A=Z(ax®1)(1®§/\)=0
A A

in kY7 @, K. But, {1 ® &,}» is linearly independent in k'/? @, K, so ay = 0, for all . Consequently, the
family {€\}, is still linearly independent over k'/P. Conversely (DX), if any Li. family {£,}x (with &, € K)
over k remains 1i. over k'/?, then our map k'/? ®, K — K'/? is injective. By using the isomorphism
x — xP, we get: Mac Lane I says that any Li. family {{x}x over k, has the property that {&5}x is still Li.
over k.

Now, say K/k is finite, with [K: k] = n. Then, &,...,&, is Li. over k iff &,...,&, span K. Condition
(4) implies &7, ... &P are Li. and since there are n of them, they span K, i.e. (5) holds. Conversely, if (5)
holds then &7, ..., &2 span K and there are n of them, so they are Li., i.e., (4) holds. Therefore, (4) and (5)
are equivalent if K/k is finite. We can show that (1) and (4) are equivalent (when char(k) = p > 0).

(4) = (1). Pick a € K. We know that o?” is separable over k for some n > 0. Further, the minimal
polynomial for 8 = a?" is h(X), where f(X) = h(X?") and f is the minimal k-polynomial for . Say,
deg(f) = d. So, d = p"dy, with dy = deg(h). Now, 1,a,...,a% ! are Li. over k. By (4), repeatedly,
Lo ()P ... (a4 1P are i, ie., 1,4,...,8% 1 are Li. Yet, 1,3,...,5% is the maximum Li. family
for the powers of 3, so d < dg. This can only happen if n = 0 and « is separable over k. []

(1) = (4). Say {&x} is Li. in K/k. As linear independence is checked by examining finite subfamilies, we
may assume that our family is &1, ..., &. We must prove, &, ... & are still Li. over k. Let L = k(&1, ..., &),
then L/k is a finite extension. For such an extension, (4) and (5) are equivalent. But, we just proved that
(1) implies (5), so (1) implies (4).

Finally, in the case K/k is finite there remains the proof of (2) = (1). For this, it is simplest to prove a
statement we’ll record as Corollary 4.16 below. This is:

Corollary 4.16 If ay,...,a; are each separable over k, then the field k(aq,. .., a4) is separable over k. In
particular, if K/k is algebraic and Ko, denotes the set of all elements of K that are separable over k, then
Kep is a field.

To prove these statements, we will apply Mac Lane II; this will suffice as L = k(ay, .. ., «y) is finite over
k. Now kL? = k(o,...,al) and each «; is therefore purely inseparable over kLP. However, each «; is
separable over £ and therefore over kLP. It follows that each o; € kLP so that L = kLP and Mac Lane II
applies. For the proof, proper, that (2) = (1), assume (2) and that (1) is false. Then K., # K, so we can
find a1,...,as € K, each purely inseparable over Kp,, and so that

K = Ksep(ala .- -aas) > Ksep(ala .- '7a8—1) > > Ksep(al) > Ksep-

Consider the zero derivation on Keep(ai,...,as—1). Now, = agr € Keep(ai,...,as_1) for some minimal
r > 0, thus to extend the zero derivation to K we need only assign a value to D(a;) so that
D(aP") = pra§7'71D(aS) = 0. Any nonzero element of M will do, contradicting (2). [J

Corollary 4.17 FEvery algebraic extension of a perfect field is perfect. In particular, every finite field is
perfect and every absolutely algebraic field (i.e., algebraic over a prime field) is perfect.

Proof. If K/k is algebraic and k is perfect, then K /k is separable. By Mac Lane II, we have K = kK?. But,
k = kP (k perfect), so K = kPKP = (kK)P = KP. A finite field is algebraic over F,, and by little Fermat,
P =T, i.e., perfect. (Second proof by counting: The map £ + &7 is injective, taking F, to itself. But, the
image has cardinality ¢; by finiteness, the image is all of F,.) By the first part of the proof, an absolutely
algebraic field is perfect.



4.3. SEPARABLE EXTENSIONS, KAHLER DIFFERENTIALS, MAC LANE’S CRITERION 255

Corollary 4.18 Say «1,...,q; are each separable over k. Then, the field k(aq,...,a) is a separable ex-
tension of k. In particular, if K/k is algebraic and we set

Keep = {a € K | a is separable over k}
then Keep s a subfield of K/k called the separable closure of k in K.

Corollary 4.19 Say K/k is an algebraic extension and ai,...,a; € K. If each «; is separable over
k(aa,...,a5-1), then k(aa,. .., o) is separable over k. In particular, separability is transitive.

Proof. We use induction on t. When ¢t = 1, this is Corollary 4.18. Assume that the induction hypothesis
holds for t — 1. So, L = k(a1,...,a4—1) is separable over k and it is a finite extension, therefore Mac Lane
II yields kLP = L. Let M = k(aq,...,a;), then M = L(«a;). So, M is separable over L, by the case t = 1.
Therefore, M = LMP, by Mac Lane II. Now,

M =LMP =kLPMP = k(LM)P = kMP.
By Mac Lane II, again, M is separable over k. []
Corollary 4.20 If K/k is an algebraic extension, then K is purely inseparable over Kgep.

Corollary 4.21 Pure inseparability is transitive.

The implication (2) = (1) does not hold if K/k is not finite. Here is an example: Set k = F,(T’), where
T is an indeterminate. Define, inductively, the chain of fields

k=ky <k <--<kp,<--

via the rule

Qo = T; Q= Ozjl-épl; k)j = k‘j_l(aj).

Let K = koo = U;io k;. Then a derivation on K, trivial on k is determined by its values on the o;. Yet, we
have o, | = «;, therefore D(a;) = 0 for every j; hence, Dery (K, —) = 0. But, K/k is not separable; indeed
it is purely inseparable.

Notation: For a field, k, of characteristic p > 0, set [K: k] def [Ksep: K|, the separable degree of K/k

and [K: k); def [K: Kep), the purely inseparable degree of K/k (if K/k is finite, [K : k]; is a power of p).

Clearly,
early [K: k| = [K: EL[K: k.
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4.4 The Extension Lemma and Splitting Fields

We begin with a seemingly “funny” notion: Two fields K, L are related, denoted K 7 L, iff there is some
larger field, W, so that K C W and L C W (as sets, not isomorphic copies). This notion is reflexive and
symmetric, but not transitive.

Theorem 4.22 (Eztension Lemma) Let K/k be a ﬁmte extension and say k is another field isomorphic to

k via 0: k — k Suppose I' is another field related to k but otherwise arbitrary. Then, there exists a finite
extension, K/k with K 75 T' and an extension of 6 to an isomorphism 0: K — K.

Proof. We proceed by induction on the number, n, of adjunctions needed to obtain K from k.

Case n = 1: K = k(a). Let g(X) € k[X] be the minimum k-polynomial for o. Write §(X) € k[X] for
the image, 6(g)(X), of g(X). Of course, §(X) is k-irreducible. Now, there exists a field, W, with W D k
and W D I'. Thus, g(X) € W[X]; moreover, there exists an extension W//W of W and some a € W/, so
that g(a) = 0. It follows that k(&) C W’ and T C W C W/, so k(@) — I'. But we know by Proposition 4.6
that 6 extends to an isomorphism 6: k(a) — k(&). This proves case 1.

Induction step. Assume that the induction hypothesis holds for all t < n—1. We have K = k(aq, ..., ay)
and let L = k(aq,...,an—1). By the induction hypothesis, there is a finite extension, L, and an isomorphism,
0': L — L, extending 6;

rel
b

We complete the proof using the argument in case 1 (a single generator), as illustrated in the above diagram.

|

Corollary 4.23 If K/k is a finite extension and k - T, then there is a k-isomorphism K/k — K/k and
K ~T.
rel

Proof. This is the case k = 7@:; 0=id. O

Definition 4.8 A field extension L/k is a splitting field for the polynomial f(X) € k[X]iff L = k(aq, ..., an)
and aq, ..., q, are all the roots of f(X) in some larger field (n = deg(f)).

Remarks:
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(1) When we view f(X) € L[X], then f(X) splits into linear factors
f(X) = e(X —ar)--- (X —ap)

in L[X], hence the name. Conversely, if M/k is a field extension and in M[X], the polynomial f(X)
splits into linear factors, then M contains some splitting field for f. (Here, f(X) € k[X].)

(2) Suppose L/k and L'/k are two splitting fields for the same polynomial f(X) € k[X]. Then L = L’ iff
L —; L' (L and L' are identical, not just isomorphic).

Proof. The implication (=) is obvious. Conversely, assume L —; L'. Say 2 is a common extension

of L and L’ in which f(X) splits. In 2, the polynomial f has just n roots, say fi,...,08,. Yet,
L=k(B1,...,0n) and L' = k(B4,...,Bn), too. Therefore, L = L'.

(3) Suppose L/k is a splitting field for f(X) € k[X] and k 2 k via some isomorphism, 6. If f(X) is the
image of f(X) by 6, and if 6 extends to an isomorphism L = L for some extension L/k, then L is a
splitting field for f(X).

Proposition 4.24 Say f(X) € k[X] and 0: k — k is an isomorphism. Write f(X) for the image of f(X)
by 0. Then, 0 extends to an isomorphism from any splitting field of f to any splitting field of f. In particular,
any two splitting fields of f(X) are k-isomorphic (case k =k; f = f).

Proof. Apply the extension lemma to the case where K is any chosen splitting field for f and I' is any
chosen splitting field for f The extension lemma yields an extension K / k and an extension 0: K — K with
K~ 5 T By Remark (3), the field Kisa splitting field for f By Remark (2), as K and T are both splitting

fields and K —~ — I, they are equal. []

Definition 4.9 An algebraic field extension, M/k, is normal iff for all irreducible k-polynomials, g(X),
whenever some root of g is in M, all the roots of g are in M.

Proposition 4.25 Say M/k is a finite extension and write M = k(51,...,08:). Then, the following are
equivalent:

(1) M/k is normal.
(2) M is the splitting field of a family, {ga}a, of k-polynomials (the family might be infinite).
(8) M is the splitting field of a single k-polynomial (not necessarily irreducible).

(4) M s identical to all its k-conjugates; here two fields are k-conjugate iff they are both related and
k-isomorphic.

Proof. (1) = (2). For each f;, there is an irreducible k-polynomial, say g; with g;(8;) = 0. By (1), all the
other roots of g; are in M. Therefore, M contains the splitting fields of each g;. But, clearly, M is contained
in the field generated by all these splitting fields. It follows that M is equal to the splitting field of the
(finite) family of k-polynomials ¢1,. .., g:.

(2) = (3). Say {ga} is the family of k-polynomials for which M is the splitting field. (Note that we may
assume that deg(gs) > 1 for all g,.) Pick a countable (at most) subset {gi1, go,...,} of our family. Then,
M contains the splitting field of g;, call it M;. We have M D My D k and [M: M;] < [M: k]. If M # M,
then M contains the splitting field, My, of g; and g2, where we may assume that the splitting field of g5 is
distinct from M;. Thus, we have M O My O My O k. Since M is finite over k, the above process stops and
we deduce that M is the splitting field of a finite subfamily {g1,...,g:}. Then, take g = szl gi, and (3)
holds.

(3)=(4). If M is a k-conjugate of M, then
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(a) M is a splitting field (k-isomorphic to M)
(b) M — M.
But, we know that (a) and (b) imply that M=M.
(4) = (1). Pick an irreducible k-polynomial, g, and a € M with g(c) = 0. Consider the extension lemma
in the situation where k = k and I' = M. Pick in an algebraic closure, M, of M, any root 5 of g. We get

the diagram

rel

rel

rel

By the extension lemma applied to the upper portion of the above diagram, there exists M with M o M
and an extension 0: M — M. But, ] lk=01]k=1id, so fis a k-isomorphism and M —; M. By (4), we get
M = M. Since 8 € M, we have § € M. []

Corollary 4.26 Say M 2 K D k and M is normal over k. Then, M is normal over K.

Proof. Use (3), i.e., M is the splitting field of some g € k[X]. Yet, g € K[X], and use (3) again. []
@ M normal over K and K normal over k£ does not imply M normal over k.

Here is a counter-example to the transitivity of normality. Let k = Q; K = Q(+/2); the extension K/k
is normal. Let a = /2 and L = K(y/a); again, L/K is normal of degree 2. Observe that L is the splitting
field over K of X? —a € K[X]. But, L/Q is not normal. This is because the polynomial X% — 2 has a root,
Va, in L, yet iy/a is not in L because L C R.

@ M normal over k and M DO K D k does not imply K normal over k.

Corollary 4.27 (SMA, I?) Say M is normal over k and g is any irreducible k-polynomial with a root o € M.
Then, a n.a.s.c. that an element 8 € M be a root of g is that there exists o, a k-automorphism of M (i.e.,
o k=id) so that o(a) = 5.

Proof. («<). If ais a root and ¢ € k[X], then

0=0(0) =a(g(a)) = g(o(a)) = g(B)-

So, 3 is a root.

2SMA = sufficiently many automorphisms.



4.4. THE EXTENSION LEMMA AND SPLITTING FIELDS 259

(=). Say 8 € M is a root, then there is a k-isomorphism k(o) — k(3). Now, k(83) =y M; so, in the
extension lemma, take I' = M:

rel

rel

rel

We get 0: M — J/\\J/7 a k-isomorphism and M 3 M. By (4), M = M. So, f = o is our required automorphism
(it takes o to B). O

Corollary 4.28 (SMA, II) Let M be normal over k and say K, K' are subextensions of the layer M /k (i.e,
MDODK2JDkand M D K' D k). If0: K — K’ is a k-isomorphism, then there is a k-automorphism, o, of
M so thato | K = 6.

Proof. Apply the extension lemma with I' = M to the situation
M
K

There exist 6 and M with 6 a k-isomorphism and M —3 M. By (4), M = M. Therefore, o = 6 is our

rel
automorphism.

0

_v . ~ M

rel

"'~ M.

rel

0

Corollary 4.29 Say K/k is a finite extension of degree [K: k] = n, then there exists M O K with
(1) M is normal over k and
(2) Whenever W is normal over k, W 2 K and W — M, then automatically W 2 M.
(8) [M: k] <nl.
The field, M, is called a normal closure of K/k.

Proof. (DX).
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4.5 The Theorems of Dedekind and Artin; Galois Groups & the
Fundamental Theorem

Recollect that a K-representation of a group, G, is just a K[G]-module. So, a K-representation of a group,
G, is just a K-vector space plus a (linear) G-action on it (by K-automorphisms); that is, a homomorphism
G — Aut(V). If dimg V < oo, we have a finite dimensional representation. In this case, Aut(V) =
GL(V) = GL,(K), where n = dimg (V) is the degree of the representation. Say p: G — GL,(K) is
our representation. Then, x,(c) = tr(p(o)), the trace of p(o), is a function G — K independent of
the basis chosen, called the character of our representation. The case n = 1 is very important. In this
case, the characters are the representations, x, = p. Therefore, we have functions x: G — K*, with
x(o7) = x(0)x(7). From now on, we use only one-dimensional characters.

Definition 4.10 Suppose {Xa}ao is a given family of characters, xo: G — K*, of the group G. Call the
family independent iff the relation

Zajxj(o) =0, foralloceG

implies a; = 0, for j =1,...,n (all applicable n).

Theorem 4.30 (R. Dedekind, about 1890) If G is a group and {Xa}a is a family of mutually distinct
characters of G (with values in K* ), then they are independent.

Proof. We may assume our family is finite and we use induction on the number of elements, n, in this family.
The case n = 1 holds trivially. Assume that the result holds for all ¢ < n — 1 characters. Say xi, ..., xn are
distinct characters of G and suppose

Zanj(U) =0, foralloed. (%)

The induction hypothesis implies that if the conclusion of the theorem is false, then a; # 0, forall j =1,...,n
Since the x; are distinct, there is some o # 1 with x1(c) # xn (). Divide (x) by a, # 0, to obtain

Z bix;(0) + xn(o) =0, forallceG. (xx)

Consider the group element ao, then (xx) is true for it and we have
Z bJXJ + Xn(a )Xn(U) =0, forallocegd.

If we multiply by x,(a)~!, we get

n—1

> (bixn(a) " x;(@)x;(0) + xn(0) =0, forallo € G. (1)

j=1
If we subtract () from (xx), we get

n—1

> " bi(1 = xul(a) "y () (0) =0, forall o € G.

Jj=1
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By the induction hypothesis, b;(1 — xn(a) 'y () =0, for j = 1,...,n — 1. If we take j = 1 and we
remember that by = a;/a, # 0, we get

1= xn(@) 'xi(a) =0,
ie., xn(a) = x1(a), a contradiction. []

Corollary 4.31 Say {xa}a is a family of mutually distinct isomorphisms of a field L with another, L.
Then, the xo are independent.

Proof. Take G = L* and K = L in Dedekind’s theorem. []

Definition 4.11 If {x4}4 is a family of isomorphisms K — I~(, then set
Fix({xa}) ={ € K| (Vo, B)(xa (&) = x5(£))}

Observe that Fix({xa}) is always a subfield of K, so we call it the fized field of {xa}a-
Note that Fix({x.}) contains the prime field of K.

Theorem 4.32 (E. Artin, 1940) If {xa}a is a family of pairwise distinct isomorphisms K — K and if
k =Fix({xa}), then

(1) [K: k] > min(Ro, #({xa}))-

(2) Say {xa} forms a group under composition (so, K = K and all xo’s are automorphisms of K ), then
if #({xa}) =n < 00, we have [K: k] =n and if n = oo then [K: k] = oo.

Proof. (1) First, we consider the case where we have a finite set, {x1,...,Xxn}, of isomorphisms K — K.
Let k = Fix({x;}}=,) and assume that [K : k] < n. Then, there exists a basis, wy,...,w,, of K/k and r < n.
Consider the r equations in n unknowns (y;’s)

As r < n, this system has a nontrivial solution, call it (a1, ...,a,) (with o; € IN() So, we have
n
Zajxj(wi) =0, 1<i<nr.
j=1
Pick any ¢ € K, as the w;’s form a basis, we can write £ = Z;zl a;w;, for some (unique) a; € k. We have

Zn:anj(f) = Zn:anj (XT: ai%‘) = iiajxj‘(ai)x]’(wi).

j=1i=1

But, x;(ai) = xi(a;), for all 4,1, as a; € k and k = Fix({x;}). Write b; = x;(a;) (independent of j). So, we

have
Z a;x;(§) = Z b; (Z ajx; (%))
j=1 =1 j=1

But, 377 ajx;(wi) = 0, by the choice of a1, ..., an, so

Zanj(g) =0, forall¢.
j=1
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This contradicts Dedekind’s theorem and thus, [K: k] > n.

Now, consider the case where #({x4}) is infinite. If [K: k| were finite, then pick any n > [K: k] and
repeat the above argument with the subset {x1,...,xn}. We deduce that [K: k] must be infinite.

(2) Now, suppose {x1,. .., Xn} forms a group under composition (i.e., they are a group of automorphisms
of K). Then, one of the x;’s is the identity, say x1 = id. It follows that for every a € k, we have

x;(a) = x1(a) = a, so
E=Fix{x;}) ={ee K|xjla)=a, j=1,...,n}

By part (1), we know [K: k] > n; so, assume [K: k] > n. In this case, there exist » > n elements,
w1, .. .,wr € K, linearly independent over k. Consider the n equations in r unknowns (x;’s)

-
Zmin(wi) =0, j=1,...,n.
i=1
Again, there is a nontrivial solution, say a1, ...,a,, with a; € K. So, we have
I
Zain(wi):O, ji=1,...,n. (1)
i=1

Note that for any nontrivial solution, the a;’s can’t all be in k. If they were, then () with j = 1 gives
22:1 a;w; = 0, contradicting the linear independence of the w;’s.

Pick a solution containing a minimal number of nonzero a;’s, say ai,...,as # 0 and asy; = -+ = a, = 0.
If we divide (f) by as, we get

s—1

Zbixj(wi)—i—xj(ws) =0, 7=1,...,n. ('H')

i=1

By the remark above, there is some i, with 1 < i < s — 1, so that b; ¢ k. By relabelling, we may assume
that by ¢ k. As by ¢ k, there is some p (1 < p < n) with x,(b1) # b1. Apply x, to (i); we get

3 0000 ) (w4) + (0 X)) =0, 5= L,

As x; ranges over {x1,...,Xn}, so does x, o x;; consequently, we have
s—1
pr(bi)XE(wi>+Xf(wS) =0, 52 1L...,n. (*)
i=1

If we subtract (%) from (ff), we obtain

s—1

D (b= xp(bi)xe(wi) =0, €=1,...,n.

i=1

But, we know that by # x,(b1). For this p, not all the coefficients are zero, so we get a solution with strictly
fewer nonzero components, a contradiction to the minimality of (a1, ...,as). [J

Definition 4.12 If Q is a finite, normal extension of k, the Galois group of Q/k, denoted G(Q/k), is the
group of all k-automorphisms of € (i.e., the automorphisms, o, of Q so that ¢ [ k = id). Say f € k[X] and
let 2 be a splitting field for f(X) over k. The Galois group of the polynomial, f(X), over k, denoted G (f),
is just G(Q/k).
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Lemma 4.33 Suppose Q is finite, normal over k and G = G(QU/k) is its Galois group. Then, a n.a.s.c. that
& € Q lie in Fix(G) s that & be purely inseparable over k.

Proof. If £ is purely inseparable over k, then there is some s > 0 so that &° € k. Then, for every o € G,
we have a(f”s) = ¢P°. But, a(fps) = (0(€))P", so (a(£))?" = €P"; since char(k) = p, it follows that
(0(€) — €)P" = 0. Therefore, o(£) — & = 0, i.e., £ is fixed by ¢ and ¢ € Fix(G). Conversely, assume that
¢ € Fix(G). First, pick an element a € ), with a separable over k and « ¢ k, if such an element exists.
Then, « is a simple root of some irreducible k-polynomial g. But, €2 is normal, so all the roots of g lie in
Q and as a ¢ k, we have deg(g) > 1. Consequently, there is another root, 8 € Q, of g with 8 # « and by
SMA, I, there exists o € G so that o(a) = 5. Now, consider our £ € Fix(G). As £ € Q, there is some power,
£P" of ¢ that is separable over k. Since ¢ is fixed by all o € G, so is & If €&?" were not in k, then &7 could
play the role of o above, so it could be moved to some 3 # «, a contradiction. This implies that &7 € k,
i.e., & is purely inseparable over k. []

Nomenclature & Notation.

Say Q/k is a normal (not necessarily finite) extension. Pick an extension, K, in the layer Q/k, i.e,
k C K C Q. Define

K(*):{ggmgl’refg forsomerZO}.

(Obviously, p = char(k).) Note that K® =Qn KP™™ in some algebraic closure (where K7~ is defined as
{6 K| (3r>0)(¢ € K)}). Also define

Ky ={{€ K| isseparable over k}.

Note: K*) and K.y are subfields of /k and we have K,y C K C K® C Q.

We say that K is Galois equivalent to K' (where k C K C Q and k C K' C Q) iff K®) = K/(*); write
K gal K’. This equivalence relation fibers the subextensions of Q/k into Galois equivalence classes.

Corollary 4.34 If Q/k is finite, normal, then Fix(G(Q/k)) = k™). In particular, if k C L C Q, then
Fix(G(Q/L)) = L™,

Corollary 4.35 If Q/k is finite, normal, then #(G(2/k)) divides [Q: k]; in particular,
#(GOQ/R) < [2: K] < oo.

Proof. By Artin’s theorem (Theorem 4.32) #(G(2/k)) = [Q: Fix(G(2/k))]. By Lemma 4.33, we have
Fix(G(Q/k)) = k™). Therefore, #(G(Q/k)) = [Q: k)] which divides [Q: k]. []

Corollary 4.36 If Q/k is finite, normal and k is perfect, e.g. char(k) =0, then #(G(2/k)) = [Q: k].

Corollary 4.37 Say f is a separable, irreducible k-polynomial with degree deg(f) = n. Then, there is an
injection Gr(f) — &,, (where &, denotes the symmetric group on n elements) and this injection is unique
up to inner automorphisms in S,. In particular, #(Gr(f)) | n!.

Proof. Write aq,...,ay, for all the roots of f (they are all distinct) in some order. Given o € Gi(f), the
element o(a;) is some other root of f, call it ay,_ ;). Then, p, is a permutation of the n roots, i.e., ps € &,.
Clearly, the map o — p, is a homomorphism G (f) — &,. If p, = id, then o(a;) = «a; for all ¢, so
o | Q =1id, as Q, the splitting field of f, is generated over k by the «;’s. So, o =id in Gi(f) = G(2/k), and
the our map Gi(f) — &, is an injection. We can reorder (relabel) the aq, ..., ay; to do so introduces an
inner automorphism of &,,. []
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Remarks: (On Galois equivalence)

(1)
(2)

If K CK', then K& C K'®)_ Indeed, if € € K&, then £ € K C K’ (for some r > 0), so £ € K ),

For all K in the layer Q/k (of course, Q/k is a finite normal extension), we have K gal K*). Hence,
the Galois equivalence class of any field possesses a unique least upper bound, namely K for any K
in the class. For, K C K so K*) C (K®))®) . Also, if &€ € (K®))®), then ¢#" € K™, for some
r; but then, (¢2")?° € K, for some s, i.e., ngs € K, which means that £ € K*). Consequently,
(KN € K& and so (K®)(*) = K ie. K gal K®. If K gal L then K& = L®): K € K®) and
L C LM, so K® = L® is indeed the least upper bound of the equivalence class of K and L.

If K belongs to the layer Q/k (where Q/k is normal), then K,y gal K and K.y is the unique greatest
lower bound for the Galois equivalence class of K.

Proof. If we prove that (K(,))*) = K™ and (K).,) = K{(.), we are done. The first equation will
prove that K,y gal K. As K,) C K, we get (K(*))(*) C K™, Pick € € K™, then & € K, for
some r and (&P")P° = e e Ky, for some s, so § € (K(*))(*); hence, (K(*))(*) = K™ . Now, pick
§ € K(), then £ € K™ (as K, CKC K)) and since ¢ is separable over k, we have & € (K(*))(*).
Conversely, if £ € (K(*))(*), then ¢ € K, which means that ¢ is inpurely separable over K. Yet, £ is

separable over k, so £ is separable over K. As ¢ is purely inseparable over K and separable over K,
we get § € K; moreover, as § is separable over k, we get § € K.

We have K gal L iff Ky = L), hence in each Galois equivalence class, there is a unique greatest
lower bound, it is the common K. If K gal L, then K& = L&) go

Ky = (K" = (L)) = L,
by (3). Conversely, if K(,) = L), then

K& — (K(*))(*) - (L(*))(*) =L®,
again, by (3), i.e., K gal L.
Suppose K gal L and K,L C Q/k, Then, G(U/K) = G(QY/L), hence the maps

G(Q/L™)) = G(Q/L) < G(Q/ L))
are equalities. All we need show is G(Q/L) = G(Q/L™)). We already know G(Q/L™*)) C G(Q/L), as
L C LY. Say 0 € G(Q/L) and pick any & € L*). Then, & € L, for some r > 0. Consequently,
a(pr) = ¢ as o | L =1id. As ¢ is an automorphism, we get (o(£))P" = €', ie., (o(&) — )P =0,

and so, o(§) = £. As ¢ is arbitrary in L™, we have ¢ | L**) = id; since o is arbitrary, the proof is
complete.

Theorem 4.38 (Fundamental Theorem of Galois Theory) Suppose Q/k is a finite, normal extension. Write
G for G(QU/k) and write [K] for the Galois class of K C Q/k. Then, the maps

H — [Fix(H)] and [L]— G(Q/L)

establish a one-to-one order-reversing correspondence between all subgroups of G and all the Galois classes of
subextensions L/k C Q/k. Here, [K] C [L] means K*) C L™) as fields. In this correspondence, G(Q/L) <G
iff L) is a normal extension of k iff L. is a normal extension of k. When the latter is the case, then there
is a canonical exact sequence

0 — G(Q/L) — G(Q/k) — G(LY /k) — 0.
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Claim 1. If L = Fix(H), then L = L(¥).

Pick £ € L™, s0 &¢" € L, for some r > 0. Then, for all o € H, we have a({pr) =¢P", and by a standard
argument, ¢ € Fix(H) = L. Consequently, L(*) C L, yet L C L), so L = L(*).

Proof of Theorem 4.38. Now say H C H and look at Fix(H). If £ € Fix(#), then for every T € H, we have
7(£) =  and so, for every o € H, we have o({) = ¢, i.e., { € Fix(#H). Consequently, Fix(#) C Fix(#) and so,
[Fix(H)] C [Fix(H)], by Claim (1). Now, if [L] C [L], then L®*) C L™, If 0 € G(Q/L), then o € G(Q/L™M)

(by Remark (5), above); so, o € G(Q/L™*)) = G(Q/L) (again, by Remark (5)). Thus, G(Q/L) C G(Q/L).

Given H C H, say we know Fix(#) = Fix(H). By Artin’s theorem, we have

#(H) = [Q: Fix(H)] = [Q: Fix(H)] = #(H).

As H C H and #(H) = #(H), we get H = H.

then o fixes L, so 0 € H and H C H. But, Fix(H) = Fix(G(Q/L)) = L™, by Corollary 4.34. Thus,

Fix(H) = (Fi}(’}-{))(*). Claim 1 implies that (Fix(#))*) = Fix(#), so Fix(H) = Fix(#) and, by the above,
we get H = H. Therefore, H = G(Q/Fix(H)).

Choose a subgroup, H, of G and let L = Fix(#); write H for G(Q/L) = G(Q/Fix(H)). If ¢ € H,
)

Consider L, make G(Q2/L) and form Fix(G(Q/L)). By Corollary 4.34, we have Fix(G(Q/L)) = L™ and
L gal L) so [L] = [Fix(G(Q2/L))].

Having proved all the statements about the order inverting correspondence, we see that only normality
statements remain.

Claim 2. If L C Q/k, then L is normal over k iff for every o € G(Q/k), we have o(L) = L.
(=). For every o € G(Q2/k), the field o(L) is k-conjugate to L. As L is normal over k, we find o(L) = L.

(«). Assume o(L) = L, for every o € G(Q/k). Let g be any irreducible k-polynomial and assume that
a € Lis aroot of g. But, a € Q and € is normal; consequently, all the roots of g lie in 2. Say 5 € Q is any
other root of g. By SMA, I, there is some ¢ € G so that o(a) = 8. So, 8 € 0(L), and as (L) = L, we get
B € L. Thus, L contains all the roots of g which means that L is normal over k.

Assume G(Q/L) <1G. Look at L™ and choose any o € G and any n € o(L*)). Then, o~*(5) € L*) and
for all 7 € G(Q/L) = G(Q/L™), we have

(oo™ (n) = o(r(c™(n))) = (oo™ ") () = n,

because o~ () € L. Thus, (¢G(Q/L)o~)(n) = n, and as G(Q/L) < G, we get G(Q/L)(n) = n, so
n € Fix(G(Q/L)) = L™, as we know. In summary, if n € o(L™)), then n € L) ie., o(L™)) C LX), If we
apply this to o1, we get o~ H(L*)) C L™ ie. L*) C o(L™). Therefore, L*) = ¢(L(*)) and by Claim 2,
the extension L™ /k is normal.

Now, say L*) is normal over k. Then, we know o(L*)) = L™ for all o € G(Q/k). For any ¢ € L) and
any 7 € G(2/L), we have

(0707 1)(€) = a(r(071(€))) = (00~ 1)(€) =&,
because 0~ 1(¢) € o~ (LX) = L) by hypothesis. So, o7o~! € G(Q/L™) = G(Q/L) and thus, G(Q/L) <G.
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Suppose L*) is normal. We have a map G(Q/k) — G(L™) /k) via 0 — o | L) (o | L) € G(L™M /k),
by normality). This map is onto because, given any o € G(L(*) /k), we have the diagram

0—7 -

|

L 2o 1,
k

and by SMA, II, the automorphism o lifts to an automorphism, &, of . The kernel of our map is clearly

g(Q/L).

Lastly, we need to show that L*) is normal iff L, is normal. Say L) is normal and 0 € G. If € € Ly,
then ¢ € L™ and o(¢) € L™ (as L™ is normal). But, o(£) is separable over k as ¢ is. It follows that
o(€) € (L™) (4 = L(s) and so, 0(L(4)) € L(x). By the usual argument, (L,)) = L. and L, is normal.
If L, is normal and § € L) then & € L.y, for some r > 0. It follows that U(f”r) € o(L(yy) = Ly, s0
(0()P" € Ly, e, 0(€) € (L(x))™ = L™; thus, o(L™)) € L™ and, by the usual argument, we conclude
that L®*) is normal. []

—

—

*)

N —

)

Proposition 4.39 Suppose Q is normal over k and L/k C Q/k. Then L = L) iff Q is separable over L.

Proof. (=). Say € is separable over L, then as L*) C Q, we find L™ is separable over L. Yet, L*) is
purely inseparable over L. It follows that L = L(*).

(«<). We must prove that Q is separable over L(*). Pick a € Q and consider G(Q2/L*)). Choose
01, 0n € G(Q/LH) so that

(1) 01y =id and a = 01(«), 02(a), ..., 0, () are mutually distinct,
(2) n is maximal, i.e., no further o € G(2/L™*)) can be added while preserving (1).
Consider g(X) = [[[L,(X — oj(@)). If 0 € G(Q/LM), the elements ooy(a),...,00,(a) are a per-
mutation of «,o09(a),...,on(a), so cg(X) = g(X). This implies that the coefficients of g(X) belong to
(* *

Fix(G(Q/L™)) = L™, Thus, g(X) € LH[X], but the roots of g(X) are distinct and « is among them.
Therefore, « is separable over L*). ]

Corollary 4.40 Assume Q/k is a finite normal extension. Then, the following are equivalent:
(1) Q is separable over k.
(2) k) =k,
(3) For all subextensions, L, of Q/k, we have L*) = L.
(3a) For all subextensions, L, of Q/k, the equivalence class [L] has but one element.
(4) Same as (3) but for some extension L/k C Q/k.
(4a) Same as (3a) but for some extension L/k C Q/k.

(5) Q= Q-
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Proof . First, observe that the equivalences (3) <= (3a) and (4) <= (4a) are obvious.
(1) = (2). This is Proposition 4.39 when L = k.

(2) = (3). Given L C Q/k, then L*) C Q. By Proposition 4.39, Q is separable over k. Thus, L(*) is
separable over k and so L(*) is separable over L.; yet, L™ is purely inseparable over L4, so L™ = L.

(3) = (4) is a tautology.

(4) = (5). We have L(*) = L.y, for some L C Q/k. Proposition 4.39 implies that € is separable over L.
But, L, is always separable over k and separability is transitive, so €2 is separable over k, i.e., 2 = Q.

(5) = (1). By definition, €,y is separable over k and Q = Q,), so €2 is separable over k. (]
Proposition 4.41 Say Q/k is a finite normal extension. Then, Q = Q(*)k(*) (= the smallest field containing

Q. and k&) ). The natural map

is an isomorphism. Indeed, for all L/k C Q/k, we have
(1) L™ = LE® = L, k™).
(2) L(*) =LN Q(*).

(3) The natural map
Ls) ® ACHR C))

is an isomorphism.

Proof. We just have to prove (1)—(3) for L/k C Q/k and then set L = €2 to get the rest.

(1) Since L) D k™) and L) D L D L(,), we deduce that L*) D L, k™) and L) D Lk™. If £ € L),
then £ is purely inseparable over L.y, so £ is purely inseparable over L(*)k(*). If ¢ € L™, then ¢ is separable
over k(*) (by Proposition 4.39), so £ is separable over L(*)k‘(*). Thus, L) is both separable and purely
inseparable over L(*)k(*), which means that L®*) = L(*)k(*)

(2) This is the definition of L(,), as L C Q.

(3) The (illegal definition of the) map is a ® 8 — af. The image is L(*)k(*) = L™ So, we need to prove
our map is injective. Now, k(*) C kP~ (where kP~ = {£ € k | & € k, for some r > 0}). By Mac Lane I
and right limits, we get

L(*) Rk kpioo — L(*)kpioo

is injective (because L, is separable over k). But, 0 — k() — kP~ is exact and vector spaces over a
field are flat, so

oo

00— L(*) Rk k’(*) — L(*) Rk kP

is still exact. Then, the diagram

00— Ly @k k®) —— Ly @ kP

| |

L(*)k‘(*) [ L(*)kp’“’

commutes, and this shows that L) @ B — L(*)k(*) =LM™ is injective. []
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Proposition 4.42 Suppose Q/k is a finite normal extension and G = G(Q/k). Let L/k C Q/k and H =
G(Q/L). Then,

(1) [0: L) = #(H).
(2) [Ley: K] = (G2 H).

Moreover, we have [Q: Q)] = [L™): L] = [k™): k] = a p-power (the degree of inseparability of Q/k).

Proof. We know Fix(H) = L™*). So, (1) is just Artin’s theorem (Theorem 4.32).
Claim: The map o + o [ Q(,) is an isomorphism G — G(,/k).

We know €, is normal over k, so o | €, takes Q,y to itself. Therefore, the map G — G(Q,/k)
given by o = o | Q) is well defined. If o — id € G((,/k), then o [ Q(,) leaves (,) element-wise fixed.
If £ € Q, then 7" € (), for some r. Therefore, o(fpr) = &P". By the usual argument, we conclude that
o(§) = & Therefore, o = id on Q and our map is injective. Pick 7 € G(Q(,)/k). We have the diagram

Q) — Qe
k k.

By SMA, II, our automorphism & comes from a o:  — §; so, our map is onto.
We have Fix(G(Q.)/k)) = k (as k) =k in Q(,)). By Artin’s theorem, [Q(.): k] = #(G). Now,

and

H=G(Q/L) =G(Q/ L)) = GQULY) = G(Q) /L),
by what’s just been proved. By Artin’s theorem, [Q: L™)] = #(H), so
[Q: L) = #(H)ILY: L] = [Q: Qe l#(H);
it follows that [L): L] = [Q: Q,)], for all L. As remarked above,
#(G) = Qe k] = Qo LoDy k] = #(H) [ Ly 2 K.
Consequently, [Le: k] = (G: H). O

A picture of the situation is shown in Figure 4.1.
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Figure 4.1: Structure of Normal Extensions
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4.6 Primitive Elements, Natural Irrationalities, Normal Bases
Proposition 4.43 If G is a finite subgroup of K* = G,,(K), where K is a field, then G is cyclic.

Proof. An abelian finite group is cyclic iff its p-Sylow subgroups are cyclic (DX). So, we may assume that
#(G) = p", for some r > 0 and some prime p. Let x € G be an element of maximal order, ¢ = p*, with
t < r. Pick any y € Gj; the order of y is equal to p® for some s. But order(y) < order(x), so s < t. As
order(y) | order(z), we must have y? = 1. So, for every y € G, the element y is a root of 77 — 1. As K is
a field, this polynomial has at most ¢ roots. But, there exist ¢ roots in G: 1,x,...,297 1. Therefore, G is
generated by x. []

Corollary 4.44 In any field, the n-th roots of unity in the field form a cyclic group. It is a finite subgroup
of G (K).

Corollary 4.45 The multiplicative group of a finite field is always cyclic. Fvery nonzero element of a finite
field is a root of unity.

Theorem 4.46 (Artin’s Theorem of the Primitive Element) Suppose K/k is a finite extension of fields, then
there is some o € K so that K = k(«) iff there are only finitely many fields, L, with k C L C K. (Such an
a is called a primitive element).

Proof. (=). Assume K = k(«). Let L be any subfield of K, write f(X) for the minimal k-polynomial of «.
We know that f(X) is irreducible in k[X]. Let g(X) be the minimum L-polynomial for a. As k(a) = L(a),
we have [k(a): L] = [L(a): L] = deg(g). Take L’ to be the field obtained by adjoining the coefficients of ¢ to
k; we have L' C L. Thus, g(X) € L'[X] and g(X) is irreducible over L’. Consequently, [L'(a): L'] = deg(g).
But, L'(a) = k(«), so

deg(g) = [k(): L') = [k(a): L][L: I') = deg(g)[L: L'],

and we deduce that L = L/. This means that L is uniquely determined by g. However, every g(X) is a
factor of f(X) € K[X] and since there are only finitely many factors of f(X), there are only finitely many
subfields L.

(«). Say K/k possesses just finitely many subfields.
Claim: Given a, 8 € K, there is some v € K with k(a, 8) C k().

If the claim holds, we can finish the proof by induction on the number of generators, n, for K/k. The cases
n = 1,2, are clear. Assume that the induction hypothesis holds for n — 1 > 1, and let K = k(aq,...,ap) =
k(ag,...,an—2)(@n—1,a,). The claim implies that K = k(aq,...,a,—2)(7), and the induction hypothesis
finishes the proof. So, we just have to prove the claim.

If k is finite, so is K. Consequently, K* = G,,(K) is cyclic, which means that K* = Gp{a} and
K = k(). Thus, we may assume k is infinite. Make a map from k to the subfields of k(«, 8) via

A= k(a4 AB) (€ k(a, B)).
Since k is infinite and since there are only finitely many subfields, there is a pair (A, X), with \ # X, and
k(a4 A3) = k(a+ A8) = L.

Thus, both a + A8, a+ A3 € L, so (A—XN)B € L. But A—A#0, s0 8 € L, and then, a € L. It follows that
k(a,B8) C L =k(a+ \3), and v = a+ AS does the job. []

Corollary 4.47 (Kronecker’s Theorem of the Primitive Element) Suppose K/k is a finite separable field
extension, then there is some o € K so that K = k(«).
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Proof. If Q) is the normal closure of K, then it is normal and separable over k. By the main theorem of
Galois theory, there is a one-to-one correspondence between subfields of 2/k and subgroups of G(Q2/k). As
G(2/k) is finite, there are only finitely many subfields of ©/k. But, any subfield of K/k is a subfield of Q/k,
which means that there are only finitely many subfields of K/k. Then, Theorem 4.46 (Artin) implies that «
exists. []

Corollary 4.48 Say K/k is a finite degree field extension and Q) is some field with k C Q. Then, the
number of k-monomorphisms K — Q is at most [K: k]s. Iff? is a field k-isomorphic to K and K 5
then the number of k-monomorphisms K — Q is equal to [K: ks iff Q contains the normal closure of K.
In particular, if K C Q, then the number of k-monomorphisms K — Q) is equal to [K: k]s iff Q contains

the normal closure of K.

Proof. Look at K., then we know that [K(,: k] = [K: k]s. By Kronecker’s theorem of the primitive
element, there is some o € K,y so that K,y = k(). To give a k-monomorphism K — € implies that
we have a k-monomorphism K,y — € and the latter is determined by its value on . Furthermore, two
k-monomorphisms of K to £ which agree on K,) necessarily agree on K. Hence, the choice of an image of «
in  determines a k-monomorphism of K — €. The image of «, say 3, satisfies the minimal k-polynomial,
g(X), for a. Consequently, the number of k-monomorphisms K — 2 is at most equal to the number of
roots of g(X) in §, which is at most deg(g) = [K: k]s.

Take K with K 1 2 and say K is k-isomorphic to K. Since K = K, we are reduced to the case K = I?,

ie.,  ~ K. We obtain the maximum number of k-monomorphisms iff € contains all the roots of any

irreducible k-polynomial one root of which lies in k. For then all the conjugates of « are there and their p"th
roots for suitable r. []

Theorem 4.49 (Natural Irrationalities) Say Q/k is finite normal and k D k is some field with k o
Write Q for the compositum ofE and Q, denoted Ok (the smallest field containing Q and E} Then,

(1) Q/k is a normal extension (finite degree).

(2) The map o — o | Q gives a canonical injection Q(Q/E) — G(Q/k). The image of this injection is
G(Q/D), where D = QnNk.

Proof. (1) We know Q = k(aq,...,qt), where aq,...,; are all the roots of a k-polynomial, f. Now,
QO =k(aq,...,a:) = asplitting field of the same f, but now viewed as a k-polynomial. So (1) holds.

(2) Given o € G(G/k), look at o | Q. We know o(Q) is a k-conjugate to € (inside ). As € is normal,
o(Q) = Q, and so, o [  is an automomorphism of 2. As o fixes %, it fixes k C k. Thus, ¢ I Qe G(Q/k).
If o | Q were the identity, we would have o(a;) = ¢, for all j. Also, o | k = id and thus, o fixes all of
E(al, IS Q. Therefore, o = id in g(é/E), i.e., our map is injective.

Let D = QNk and let H be the image of G(Q/k) in G(Q2/k). We have H = G(Q/k). As D C k, we see that
H fixes D, so H C G(/D). Let L = Fix(H). We know that L = L(*). As D is fixed, D C L = L®*) C Q.
Now, all elements of # come from G(€/k), which implies that Fix(H) C Fix(G(2/k)) = k*), by Corollary
4.34. So, DC L =L1L" C k) and D C L = I,i(*) C Q. Pick £ € L. Then, € € E(*), so &P € E, for some 7.
But, £ € L C Q, so & € Q, and thus, € € kNQ = D. It follows that L € D®. As L = L™, we have
L™ C D™, Yet, D C L, so D™ C L™ and therefore L*) = D™ Tt follows that

9(Q/D) = G(Q/L) = G(Q/Fix(H)) = H,

by the fundamental theorem of Galois theory. []
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Corollary 4.50 (Original Form of Natural Irrationalities) Say f is a k-polynomial and k C k. Then, Gi(f)
is a subgroup of Gx(f) in a natural way and in fact, Gz(f) = Gp(f), where D = QNk and Q 3 k is a
splitting field of f.

Explanation: Let () be a given splitting field of f. The elements of {2 were termed the natural irrationalities
of f. The reduction in Gi(f) effected by considering f over k is the same as that achieved by considering f
over the field of those natural irrationalities of f contained in k.

Theorem 4.51 (Normal Basis Theorem) Suppose K/k is a finite normal and separable extension and let
G(K/k) be its Galois group. Then, there is some 8 € K so that {o0 | 0 € G(K/k)} is a k-basis for K. (This
is called a normal basis for K/k).

Proof. By Kronecker’s theorem, K = k(«), for some a € K; let f(X) be the minimum k-polynomial for «.
We know K = k[X]/(f(X)). Examine two rings: K[X] and A = K[X]/(f(X)). Note,

K op K = K o (K[X]/(f(X))) = K[X]/(f(X)) = A.
For o € G = G(K/k), write a, for o(a). Consider the K-polynomials

f(X)
f(aq)(X — ag) '

Note that g1(X) = f(X)/(f'(a)(X — «@)), so 091(X) = g,(X). The g,’s satisfy the following properties:
(1) Each g,(X) has degree deg(f) — 1.

90(X) =

(2) If o # 7, then g,(a,) = 0.
Also, by Taylor’s theorem,

f(X) = f(aa + (X - aa)) = f(aa) + f/(aa)(X - ao) + O((X - aa)Z)y
50, go(X) =14 O(X — ) and therefore,

(3) ga(ao) =L

Consider the polynomial } s g,(X)—1(€ K[X]). By (2) and (3), we see that this polynomial vanishes on
the n elements o, ag,, ..., a,, , where G = {1,09,...,0,}. By (1), this polynomial has degree n — 1. Hence,
the polynomial is identically zero and we have

Z go(X) = 1. (partition of unity) (*)
oceg
In A, we get
Z gG(X) =1. (;)
oc€g

Pick o, 7, with o # 7, and look at g,(X)g-(X). For all p € G, we have g,(a,)g-(c,) = 0. But,
F(X) =1l,e6(X —ay), so f(X) | go(X)g-(X) if o # 7. If we read this in A, we get

9o(X)g-(X)=0 in A, if o #7. (orthogonality) (%)

If we multiply (%) by g,(X), we get

> 9:(X)go(X) = g,(X),

oceg
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and if we read this in A and use (xx), we get

(96(X))? = go(X) in A. (idempotence) (k%)

Write e, = g5 (X), s0 e, € A = K @ K. Then, (*), (x) and (**x) say:
Z e =1; eser = 0pr,.
oceg
Therefore, the e,’s are an orthogonal decomposition of 1 by idempotents, and so,
K @, K = HK@G% HK.3
oc€eg oceg

Order the elements of G in some fashion as we did above: 1,09,...,0,, and consider the matrix
(90- (X)) € My (K[X]).

Let D(X) = det(g,-(X)). In order to compute D(X) in A, consider D(X)?. Since
det(go- (X)) = det(gor(X))T, we can compute D(X)? by multiplying columns by columns and summing.

We get
Y 90r(X)9op(X) = D 0(gr(X))o(95(X)) = D 0(g(X)gp(X))-

oceg oceg o€eg
If we read this in A, we get

Zgﬁ ) Gop!( ) = Z:a(gT(X)gp(X)):O7 if 7#p; and

oeg oceg

= Y o(gX), it r=p

oc€g

= Zgop(X)

4%

- e =1, i r=p

TEG

Therefore, we find that in A, the matrix (g,,(X))(go-(X))" is the identity matrix and so, D(X)? = 1.
Consequently, D(X)? = 1 (mod f(X)), which shows that D(X) # 0.

If k is infinite, then there is some &£ € k with D(§) # 0. Let § = ¢1(£). Then, 070 = 07¢1(§) = gor(§)-
Consequently, det(o7(0)) = det(g,-(£)) = D(€) # 0. If {o0},cg were linearly dependent, we would have

Z a,760 =0,

TEG

for some a, € k, not all zero. If we apply o, we get
Z aroTd = 0.
TEG
So, (a,) would be a nontrivial simultaneous solution to the linear system of equations
ZXTUTG =0, for oc€g,
TEG

a contradiction to the fact that det(o7(6)) # 0. Therefore, {06},eg is linearly independent and the case
where k is infinite is proved.

If k is finite, we don’t need the g,(X) and D(X). We do need the following facts to be proved below:

3 At this stage, we are essentially done. However, we’ve not kept track of the G action; so, a little more argument is needed.
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(1) The Galois group G(K/k) is cyclic.
(2) The Galois group G(K/k) has a canonical generator, F, where F(£) = ¢#(*) for all ¢ € K.

Recall that for a linear transformation, T', on a finite dimensional vector space, V, if m(X) is the minimal
polynomial for T then there exists a vector, v € V', so that m(T)v = 0 but no polynomial of smaller degree
than m(X) kills v. Now, our K plays the role of V' and the automorphism F plays the role of T. If we can
show that the minimum polynomial of F is exactly X™ — 1, where n = [K: k], then we take a © in K so
that no polynomial of smaller degree than F™ — 1 kills ©. This means that

0,F(0),--- ,F"1(0)

are linearly independent; so by (1) and (2) we have our normal basis.

Of course, by (1) and (2), F*~! — 1 = 0 on K; therefore, whatever is the minimal polynomial for F, it
divides X™ — 1 and its degree is at most n. Were m(X) = a9 X% +a; X%~ ! +- -+ a4 the minimal polynomial
for F and d < n, then

0= aoF*(&) + aF*71(€) + -+ + aa1F(€) + agF°(¢) (1)

for all £ € K. But this is a contradiction of Dedekind’s Theorem as () is a linear dependence among I,
F,--- ,F¢ and we are done. []

Remark: The argumeent actually proves (independently of previous arguments) that every cyclic extension
possesses a normal basis.

The facts concerning finite fields were proved by E.H. Moore. Here is his theorem:

Theorem 4.52 (E.H. Moore, 1892) If k is a finite field then char(k) = p > 0 and #(k) = p', for some
prime p and some | > 1. If F,, is the prime field of characteristic p, then for each integer | > 1, there
exists one and only one finite field of cardinality p', up to F,-isomorphism. If K/k is a finite extension of
degree n and k is a finite field, then K/k is always normal and separable; the Galois group G(K/k) is cyclic
of order n and has a canonical generator, F. This F is the Frobenius automorphism, and it is given by
E=F() = &#F) | for all € € K. Each finite field has exactly one extension of degree n for each n > 1.

Proof. The statement in the first sentence is well-known. Pick [ > 1 and look at the splitting field of the
polynomial XP - X e F,[X]. Note, if £ and 5 are roots of this polynomial, then & &+ 7, &{n, £/n are also
roots of the polynomial. Thus, the set of roots is a field and it contains F,, because for all £ € F,,, we have
&P = €. Tt follows that the splitting field is exactly the entire set of roots and as the derivative of X P X s
—1, the roots are distinct. Therefore, we get a field with p' elements. Conversely, any field with p! elements
has multiplicative group of order p! — 1. So, this group has a generator of order p! — 1 and for this generator,
0, we get gr' = 9. Consequently, any power of 6 satisfies X P _ X =0and so, our field is a splitting field of
xr' - X ; such fields are unique up to IF,-isomorphism.

Suppose K/k has degree n, then K is a splitting field, so K/k is normal. Moreover, finite fields are
perfect, so K/k is separable.

Consider Fj, € G(K/k) where F = F}, is defined by F(¢) = ¢#*). Look at 1 = FO,F! F2 ... F» L
These are distinct, as F"(f) = F*(0) implies F"=5(9) = 0; that is, 89 ~' = 1. Yet, ¢"° < #(K), a
contradiction. Now, F*(¢) = £9". Tt follows from linear algebra that ¢" = #(K) and by the above, 9" = ¢

implies F™ = 1. Observe, F(§) = £ when & € k, which implies that F is a k-automorphism and F has the
proper order. []

Interpretations of the Normal Basis Theorem

(1) Algebraic Interpretation
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Assume K/k is normal and separable, let G = G(K/k) with #(G) = n. We claim that there is a natural
ring homomorphism

Ko, K — HK.
oeg

(Here Haeg K consists of n factors of K under coordinatewise multiplication.) Take «, € K, and send
(a, B) to the n-tuple

(af,a02f, ..., ac,f3),
where G = {01 = 1,03,...,0,}. This is a bilinear map, so we get a map
Kop K — H K.
oceg

On the left hand side, we have a K-vector space via o € K acts as a ® 1. The righthand side is a K-vector
space via the action of K on each factor; thus, the above map is K-linear. We also have

(@a@p)(y®d) = (ay®pd)
(aoB)o(y0d)e = (aro(B6))s-

The normal basis theorem says that this ring map is an isomorphism. Say 6 is our normal basis element,
then

1@971®020,...,1®0n9

is a basis for K ®; K over K. Now, as
1®70 — (070),¢cq,

a basis on the left hand side goes to a basis on the right hand side; so, the map is an isomorphism. Check
the converse.

(2) Geometric Interpretation

Say X is a space; G is a group, and suppose G acts on X: There is a map G x X — X denoted
(0,2) = ox.

Definition 4.13 A space X is a principal homogeneous space for G (PHS for G) if

(1) X is a homogeneous space, i.e., for all z,y € G, there is some o € G with ox = y (G acts transitively),
i.e., X is equal to an orbit of G under the action.

(2) The group element o € G in (1) is uniquely determined by = and y.

Proposition 4.53 The following statements are equivalent:
(A) X is a PHS for G.
(B) The map G| X — X ][] X via (0,z) — (oz,x) is an isomorphism.
Proof. (A) = (B). Given (§,n) € X [[ X, there is a 0 € G with ¢ = 7. Thus, (0,£) — (n,€) under our
map, which shows its surjectivity. The map is injective by property (2) of the definition.
(B) = (A). This is a tautology. []

Let G be a group and let k be a field. Write A(G) for the k-algebra of all functions f: G — k under
pointwise operations (e.g., (fg)(o) = f(0)g(0), etc.). The k-algebra A(G) has a basis,
{es}, where e, (7) = 0y7.
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Suppose now G is a finite group, then there is a k-algebra map A: A(G) — A(G) ®i A(G) given by

(convolution)
(e‘r) = Z €o @ €Co-1r.
oceG

I claim: For all k-algebras, R,
A(G)(R) = Homy (A(G), R)

is a group. Given @, ¢ € A(G)(R), we define pi as the composition
A(G) 25 A(G) @ A(G) 228 R R™ R.

Let us see what (pv)(e,) is. We have

ep):Zeg(@erlp and (¢ @ ¥)(A( ng eo) @Y(eg-1,),

oceg oceg

SO

() (ep) Zapeg Y(e,-1,).

o€g
(Note: We can form k[G] = the group algebra and the reader should check that:

(1) As linear spaces, A(G) and k[G] are naturally dual.

(2) Multiplication in A(G) goes over to A for k[G] and A for A(G) goes over to ordinary multiplication in
K[G])

The space Spec A(G) = G is a geometric object (at least it’s a topological space). Indeed, it is described
by the equations XoX; = d5- Xy and ) . X, =1 (the e, have been replaced by the X, for convenience
of more usual notation). To find solutions in a ring R is to give a homomorphism A(G) — R, as above. If
Spec R is connected (i.e., e = e implies e = 0 or e = 1) then solutions correspond just to the set G' and we
recover the multiplication in G from our funny multiplication using A.

We know that
Spec(B ®4 C) = Spec B H Spec C.
Spec A

The meaning of this is exactly that
Hom p-a1(B ®4 C, R) = Hom g-a14 (B, R) H Hom g-15(C, R),

where on the right we have the ordinary cartesian product of sets.

Look at A(G)®y, K, where G = G(K/k). Remember, A(G) has the e,’s and K ®j, K has the g,(X) = e, s,
too. So, there is an isomorphism of rings

AG)er K =2 K @ K.

Upon taking Spec’s we see that
QHSpecK ~ SpocKHSpch.

Therefore, the fact Spec K is a PHS for G is exactly the normal basis theorem.
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4.7 Galois Cohomology, Norms and Traces

Recall that in Chapter 1, Section 1.4, we introduced the notion of cohomology of a group, G, with coefficients
in a G-module, M. I urge you to review the appropriate parts of Section 1.4 now.

If0— M — M — M"” — 0 is an exact sequence of G-modules, then, for each r > 0, the sequence
0— C"(G,M') — C"(G,M) — C"(G,M") — 0

is again exact and a commutative diagram of G-modules

0 M’ M M 0
0 N’ N N" 0

yields a similar commmutative diagram

0— C"(G,M') —— C"(G,M) —— C"(G,M") ——= 0

| l l

0—— C"(G,N) —— C"(G,N) —— C"(G,N")——= 0
for all » > 0. We'll see in the next chapter (Chapter 5, Lemma 5.7 and Corollary 5.8) that these statements
imply the following facts:
Fact I. If 0 — M’ — M — M"” — 0 is an ezact sequence of G-modules, then we have the long

exact sequence of cohomology

00— HYG, M) — H*(G, M) — H°(G, M")
50

C—>Hl(G,M')*>Hl(G7AM)*>Hl(G,M”)
sV
<—>H2(G,Z\4’)

<—>HT(G,M') —— H"(G,M) —— H" (G

5
£—> HY(G, M)

(The maps 5(") are the connecting homomorphisms of the long exact sequence. )

J U

sr=1

)

UL

Fact II. A small commutative diagram of G-modules

0 M’ M M 0

L

0 N’ N N 0
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yields a large (long) commutative diagram of cohomology:

0——HGM)— - —H(GM) — H"(G,M") —— H" "' (G,M') —— - --
0 —- H°G,N') ——+-+—— H"(G,N) —— H"(G,N") —— H""Y(G,N') —— - -~

The proofs of these facts do not use any of the material below, so we will assume them now without
circularity in our reasoning.

Suppose B is an abelian group. We can make, from B, a G-module, Map(G, B), as follows:
Map(G,B)={f| f: G— B, ie., f is a function from G to B}.

The module structure is
(cf)(r) = f(r0)

and one checks that if B is actually a G-module, there is a G-module injection
ep: B — Map(G, B)

given by
eg(b)(o) = ob. (DX)

The module Map(G, B) is special in that it is “cohomologically trivial.” This is
Proposition 4.54 For every abelian group, B and every n > 0, we have
H"(G,Map(G, B)) = (0).

Proof. Choose f € Z™(G,Map(G, B)) and assume n > 0. Then f is a function of n variables chosen from
G and has values in Map(G, B). We define a function, g, of n — 1 variables chosen from G with values in
Map(G, B) as follows:

g(o1,...yon_1)(T) = f(1,01,...,0n-1)(1).
Let us prove that g = f, which will finish the argument.

n—1
(69)(o1,.-.,0n) =019(02,...,0n) + Z(—l)rg(al, ey Op Oty o)+ (=1)"g(01, .., 0n_1).
r=1

So, upon evaluating §g on an arbitrary element, 7, we get

n—1
(0g9)(01,-- - on)(T) = g(o2,...,04)(T01) + Z(—I)Tg(al, ey O Opg 1y 0 )(T) + (=1)"g(01, ...y 0p1)(T)
n—1
= f(ro1,09,...,0n)(1) + Z(—l)rf(T, O1yevesOpOpity.-y0n) (1) + (=1)"f(1,01,...,0n-1)(1).

Now, f(o1,...,00)(7) = (7f)(01,...,00)(1), and

0=0f(r,01,...,00) = (7f)(01,...,0n) — f(TO1,02,...,00) +Z(—l)sf(’r,al,...,0'8710'57...7O'n)
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Therefore,

n

(tf)o1,...,00) = f(ro1,00,...,00n) + Z(—l)sflf(T, Oly.vey0s5—10g,...,0n) + (=1)"f(1,01,...,00-1).

s=2

Let n = s — 1 in the sum above and evaluate both sides at 1. We get immediately
flor,...,o0)(7) =d6g(01,...,00)(7). O

Proposition 4.54 is extremely useful and very powerful. Rather than explain this in abstract terms, let’s
begin to use Proposition 4.54 and, in so doing, show how to use it and why it is powerful. One of the facts
left unproved in Chapter 1 was the fact that H"(G, M) is #(G)-torsion if » > 0 (any module, M). Based
on Proposition 4.54, we can now prove this and, while our proof is not the most elegant known, it certainly
requires the least machinery:

Proposition 4.55 If G is a finite group and M is any G-module, then H" (G, M) is #(G)-torsion if r > 0.
Proof. Take the case r = 1, first. If f € Z1(G, M), we know
flop) = o f(p) + f(o).

Write o for the element —}°  f(p) of M. We compute oo

ca==3 0f(p) = =) (flor) - f(0))

peG peG

— > flop) + #(G) f(o)

peG

= a+#(G)f(o).
Therefore, (#(G)f)(o) = (0a))(o), and the case r = 1 is done.

Now, use induction on r—here is where Proposition 4.54 enters. Assume as induction hypothesis that
given r (r > 1), for all modules, N, we have H"(G, N) is #(G)-torsion. The step from r to r 4+ 1 goes like
this:

Choose M, embed M in Map(G, M), to get
0 — M 4 Map(G, M) — coker — 0.
Apply cohomology (i.e., use the long exact sequence of Fact I), we get
... — H"(G,Map(G, M)) — H"(G,coker) — H" " (G, M) — H™ " (G,Map(G, M)) — ... (%)
The ends of (x) vanish by Proposition 4.54 and we obtain the isomorphism
H"(G,coker) — H"™T (G, M), forallr>1. (xx)

But, the left side of (xx) is #(G)-torsion by our induction hypothesis, therefore H" (G, M) is also #(G)-
torsion. []

The special case when G is cyclic is both instructive and important for some material to follow. For
arbitrary (finite) G, and any G-module, M, we define the norm map, Ng, taking M to itself by

Ng(m) = Z om.

e
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Note that the image of Ng lies in M©. Further, Mg is actually a G-module map, for

Na(tm) = Z orm = Ng(m) = TNg(m).

ceG

(In cases of interest below, the map N¢ is usually called ¢race and when M is written multiplicatively then
Ng is called the norm.) Now, the equation Ng(7m) = TNg(m) shows that the elements 7m — m all lie in
Ker Ng. The submodule generated by all 7m — m, as 7 runs over G and m over M, is denoted IM; so,
IM C Ker Ng(M).

Proposition 4.56 If G is a (finite) cyclic group and o is one of its generators, then for any module, M :
(a) The map f — f(o) € M is a G-isomorphism of Z'(G, M) with Ker Ng(M),
(b) The submodule IM is generated by om — m for this fized o and m varying over M,
(¢) There is an isomorphism HY(G, M) — Ker Ng/IM.

Proof. The elements of G are 1,0,...,0" 1. Let f € Z1(G, M), so f(pr) = pf(r) + f(p) for all p and T of
G. Apply this successively to the powers of o:

f(o?) = floo) = af(o) + f(o);  f(o°) = flo0®) = o f(0?) + f(0) = 0*f(0) + o f(0) + f(0), etc. ()

We find that
fQ) = f(a") =" f(0) + 0" 2f(0) + - + f(0) = Na(f (o).
But, f(1) = f(1-1) = f(1) + f(1); so, f(1) = 0. Thus, when f € Z*(G, M), we get f(o) € Ker Ng(M).

From (%) above, we see that f(o) determines f when f is a cocycle, conversely an easy argument using
the inductive definition of f(o?) given by () (namely, o f(c'~!) + f(o)) shows that if f(o) € Ker Ng our
definition makes f a 1-cocycle (DX). This gives an abelian group isomorphism Z*(G, M) — Ker Ng. Since
ZY(G, M) is a G-module via M, the map is a G-module isomorphism, and (a) is proved.

To prove (b), all we need to show is that 7m —m is in the submodule generated by om — m as m ranges
over M, where 7 is a fixed arbitrary element of G. But, 7 = ¢*; so,

1

™m—m=oc'm-m=cm—-oc " 'm+ocim—m=0c"om—m)+o" " m—m.

A clear induction finishes the argument.

(c) The group BY(G, M) consists exactly of those f for which f(7) = 7m — m for some m € M. Hence,
f(o) = om—m € IM and part (a) now shows that in the isomorphism Z!(G, M) — Ker N the subgroup
BY(G, M) corresponds to I M; (c) is thereby proved. ]

Given a finite normal (field) extension K/k, we can consider the cohomology groups of the Galois group
G = G(K/k). These cohomology groups give a sequence of very interesting invariants of the layer K/k. As
nomenclature, the groups H"(G(K/k), M) are called the Galois cohomology groups of K/k with values in
M, and as notation we write H" (K /k, M) for H"(G(K/k), M ). Probably, the most useful facts about Galois
cohomology are the two forming the statement of the next proposition.

Proposition 4.57 (Hilbert Theorem 90*.) If K/k is a finite normal extension, then
(1) H"(K/k,K*) = (0), all * > 0 and
(2) H'(K/k,K*) = (0).

4When K/k is a cyclic extension, statement (2) is the essential content of Theorem 90 (§54) of Hilbert’s magnificient paper
[23]. The general case of a normal extension is due to E. Noether.
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Proof. For (1), we examine the layer K/k(*) and apply the normal basis theorem to it. I claim that, as
G = G(K/k)-modules, Map(G, k*)) and K are isomorphic. If we show this, then Proposition 4.54 and our
isomorphism establish (1).

If f € Map(G, k™), we send f to >, g f(0)o~'6, where 6 is a normal basis element for K/k(*). The
linear independence of the elements {06},cg shows our map is injective; that it is surjective is obvious. As
for the G-action, call our map © then,

O(rf)=> (o) '0 = > flor)o'0

oceg oceg

= > flpyrp'e

pEG

= 7> fpp'e

peG
= 7O(f),
as contended.

The proof of (2) has a similar flavor but depends on Dedekind’s theorem (our Theorem 4.30). We take
as family of characters of K* the elements of G = G(K/k). By Dedekind’s theorem, they are independent;
that is, any relation (with z, € K*)

> 2,0(0) =0, allAeK*
oeg

necessarily implies that all the z, = 0. Given f € Z'(K/k, K*), take as the x, the elements f(c) € K*.
None of the z, are zero, so there must be a A € K* with

B=>"flo)a(N) #0.
4%
Now, 78 =3, cq7f(0)T0()), and as f is a 1-cocycle, we have 7f(0) - f(7) = f(r0). Thus,
B=Y f(ro)ro)(\) = > (rf(0)- f(1)(ro)(N)

oc€eg oceg

= f(1)Y_ 7o) ro)(N)

4

= [f(1)-(78).
Let a = 1/8, then (ra)/a = f(7), as required. []

Remark: Proposition 4.57 gives yet another interpretation of the normal basis theorem. It shows that fo