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Chapter 1

Introduction

1.1 Prime Numbers and Composite Numbers

Prime numbers have fascinated mathematicians and more generally curious minds for thou-
sands of years. What is a prime number? Well, 2, 3, 5, 7, 11, 13, . . . , 9973 are prime numbers.
The defining property of a prime number p is that it is a positive integer p ≥ 2 that is only
divisible by 1 and p. Equivalently, p is prime if and only if p is a positive integer p ≥ 2 that
is not divisible by any integer m such that 2 ≤ m < p. A positive integer n ≥ 2 which is
not prime is called composite. Observe that the number 1 is considered neither a prime nor
a composite. For example, 6 = 2 · 3 is composite. Is 3 215 031 751 composite? Yes, because

3 215 031 751 = 151 · 751 · 28351.

The above number has the remarkable property of being the only composite integer less than
25 · 109 which a strong pseudoprime simultaneously to the bases 2, 3, 5, 7; see Definition 5.5,
and Ribenboim [18] (Chapter 2, Section XI).

Even though the definition of primality is very simple, the structure of the set of prime
numbers is highly nontrivial. The prime numbers are the basic building blocks of the natu-
ral numbers because of the following theorem bearing the impressive name of fundamental
theorem of arithmetic.

Theorem 1.1. Every natural number n ≥ 2 has a unique factorization

n = pi11 p
i2
2 · · · p

ik
k ,

where the exponents i1, . . . , ik are positive integers and p1 < p2 < · · · < pk are primes.

Every book on number theory has a proof of Theorem 1.1. The proof is not difficult and
uses induction. It has two parts. The first part shows the existence of a factorization. The
second part shows its uniqueness. For example, see Apostol [1] (Chapter 1, Theorem 1.10).

How many prime numbers are there? Many! In fact, infinitely many.

5



6 CHAPTER 1. INTRODUCTION

Theorem 1.2. The set of prime numbers is infinite.

Proof. We give three proofs. These proofs only use the fact that every integer greater than
1 has some prime divisor.

(1) (Euclid) Suppose that p1 = 2 < p2 = 3 < · · · < pm are all the primes. Consider
N = p1p2 · · · pm + 1. The number N must be divisible by some prime p (p = N
is possible). Then p must be one of the pi, so p = pi divides N − p1p2 · · · pm = 1,
contradicting the fact that pi ≥ 2.

(2) (Kummer) Suppose that p1 = 2 < p2 = 3 < · · · < pm are all the primes, as in (1),
but this time let N = p1p2 · · · pm. Observe that N > 2. The number N − 1 must be
divisible by one of the primes pi (pi = N − 1 is possible). But if pi divides N − 1, then
pi divides N − (N − 1) = 1, a contradiction.

(3) (Hermite) We prove that for every natural number n ≥ 2, there is some prime p > n.
Consider N = n! + 1. The number N must be divisible by some prime p (p = N is
possible). Any prime p dividing N is distinct from 2, 3, . . . , n, since otherwise p would
divide N − n! = 1, a contradiction.

There are many more proofs; see Ribenboim [18].

The problem of determining whether a given integer is prime is one of the better known
and most easily understood problems of pure mathematics. This problem has caught the
interest of mathematicians again and again for centuries. However, it was not until the 20th
century that questions about primality testing and factoring were recognized as problems
of practical importance, and a central part of applied mathematics. The advent of cryp-
tographic systems that use large primes, such as RSA, was the main driving force for the
development of fast and reliable methods for primality testing. Indeed, as we see in Chapter
2, in order to create RSA keys, one needs to produce large prime numbers. How do we do
that?

1.2 Methods for Primality Testing

The general strategy to test whether an integer n > 2 is prime or composite is to choose
some property, say A, implied by primality, and to search for a counterexample a to this
property for the number n, namely some a for which property A fails. We look for properties
for which checking that a candidate a is indeed a countexample can be done quickly.

Typically, together with the number n being tested for primality, some candidate coun-
terexample a is supplied to an algorithm which runs a test to determine whether a is really a
counterexample to property A for n. If the test says that a is a counterexample, also called
a witness , then we know for sure that n is composite. If the algorithm reports that a is not a
witness to the fact that n is composite, does this imply that n is prime? Unfortunately, no.
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This is because, there may be some composite number n and some candidate counterexample
a for which the test says that a is not a countexample. Such a number a is called a liar .
The other reason is that we haven’t tested all the candidate counterexamples a for n.

The remedy is to make sure that we pick a property A such that if n is composite, then at
least some candidate a is not a liar, and to test all potential countexamples a. The difficulty
is that trying all candidate countexamples can be too expensive to be practical.

The following analogy may be helpful to understand the nature of such a method. Sup-
pose we have a population and we are interested in determining whether some individual
is rich or not (we will say that someone who is not rich is poor). Every individual n has
several bank accounts a, and there is a test to check whether a bank account a has a negative
balance. The test has the property that if it is applied to an individual n and to one of its
bank accounts a, and if it is positive (it says that account a has a negative balance), then
the individual n is definitely poor. Note that we are assuming that a rich person is honest,
namely that all bank accounts of a rich person have a nonnegative balance. This may be
an unrealistic assumption. But if the test is negative (which means that account a has a
nonnegative balance), this does not imply that n is rich.

The problem is that the test may not be 100% reliable. It is possible that an individual
n is poor, yet the test is negative for account a (account a has a nonnegative balance). We
may also not have tested all the accounts of n.

One way to deal with this problem is to use probabilities. If we know that the conditional
probability that the test is positive for some account a given that n is poor is greater than
p ≥ 1/2, then we can apply the test to ` accounts chosen independently at random. It is
easy to show that the conditional probability that the test is negative ` times given that an
individual n is poor is less than (1−p)`. For p close to 1 and ` large enough, this probability
is very small. Thus, if we have high confidence in the test (p is close to 1) and if an individual
n is poor, it is very unlikely that the test will be negative ` times.

Actually, what we would really like to know is the conditional probability that the indi-
vidual n is rich given that the test is negative ` times. If the probability that an individual
n is rich is known, then the above conditional probability can be computed using Bayes’s
rule. We will show how to do this later. A Monte Carlo algorithm does not give a definite
answer. However, if ` is large enough (say ` = 100), then the conditional probability that
the property of interest holds (here, n is rich), given that the test is negative ` times, is very
close to 1. In other words, if ` is large enough and if the test is negative ` times, then we
have high confidence that n is rich.

There are two classes of primality testing algorithms:

(1) Algorithms that try all possible countexamples, and for which the test does not lie.
These algorithms give a definite answer: n is prime or n is composite. Until 2002,
no algorithms running in polynomial time, were known. The situation changed in
2002 when a paper with the title “PRIMES is in P,” by Agrawal, Kayal and Saxena,
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appeared on the website of the Indian Institute of Technology at Kanpur, India. In
this paper, it was shown that testing for primality has a deterministic (nonrandomized)
algorithm that runs in polynomial time.

We will not discuss algorithms of this type here, and instead refer the reader to Crandall
and Pomerance [3] and Ribenboim [18].

(2) Randomized algorithms. To avoid having problems with infinite events, we assume
that we are testing numbers in some large finite interval I. Given any positive integer
m ∈ I, some candidate witness a is chosen at random. We have a test which, given m
and a potential witness a, determines whether or not a is indeed a witness to the fact
that m is composite. Such an algorithm is a Monte Carlo algorithm, which means the
following:

(1) If the test is positive, then m ∈ I is composite. In terms of probabilities, this
is expressed by saying that the conditional probability that m ∈ I is composite
given that the test is positive is equal to 1. If we denote the event that some
positive integer m ∈ I is composite by C, then we can express the above as

Pr(C | test is positive) = 1.

(2) If m ∈ I is composite, then the test is positive for at least 50% of the choices for
a. We can express the above as

Pr(test is positive | C) ≥ 1

2
.

This gives us a degree of confidence in the test.

The contrapositive of (1) says that if m ∈ I is prime, then the test is negative. If we
denote by P the event that some positive integer m ∈ I is prime, then this is expressed
as

Pr(test is negative | P ) = 1.

If we repeat the test ` times by picking independent potential witnesses, then the con-
ditional probability that the test is negative ` times given that n is composite, written
Pr(test is negative ` times | C), is given by

Pr(test is negative ` times | C) = Pr(test is negative | C)`

= (1− Pr(test is positive | C))`

≤
(

1− 1

2

)`
=

(
1

2

)`
,
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where we used Property (2) of a Monte Carlo algorithm that

Pr(test is positive | C) ≥ 1

2

and the independence of the trials. This confirms that if we run the algorithm ` times, then
Pr(test is negative ` times | C) is very small. In other words, it is very unlikely that the test
will lie ` times (is negative) given that the number m ∈ I is composite.

If the probabilty Pr(P ) of the event P is known, which requires knowledge of the distri-
bution of the primes in the interval I, then the conditional probability

Pr(P | test is negative ` times)

can be determined using Bayes’s rule. We do this in Section 5.4.

Our Monte Carlo algorithm does not give a definite answer. However, if ` is large enough
(say ` = 100), then the conditional probability that the number n being tested is prime given
that the test is negative ` times, is very close to 1.

1.3 Some Tests for Compositeness

The algorithms that we will discuss test three kinds of properties:

(1) The Fermat test . For any odd integer n ≥ 5, pick randomly some a ∈ {2, . . . , n− 2},
and test whether

an−1 6≡ 1 (mod n).

If the test is positive, then return n is composite, else n is a “probable prime.”

(2) The Miller–Rabin test . For any odd integer n ≥ 5, write n − 1 = 2kt with t odd and
k ≥ 1, pick randomly some a ∈ {2, . . . , n− 2}, and test whether

(a) at 6≡ ±1 (mod n), and

(b) a2
it 6≡ n− 1 (mod n), for all i with 1 ≤ i ≤ k − 1.

If the test is positive, then return n is composite, else n is a “probable prime.”

(3) The Euler test . For any odd integer n ≥ 5, pick randomly some a ∈ {2, . . . , n − 2},
and test whether (

a

n

)
a(n−1)/2 6≡ 1 (mod n).

If the test is positive, then return n is composite, else n is a “probable prime.” The
expression

(
a
n

)
is the Jacobi symbol . It is a generalization of the Legendre symbol .

These symbols have to do with quadratic residues. Given any integer n ≥ 2, an integer
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m such that gcd(m,n) = 1 is said to be a quadratic residue mod n (or a square mod n)
if the congruence

x2 ≡ m (mod n)

has a solution. Let p be an odd prime. For any integer m, the Legendre symbol
(
m
p

)
is

defined as follows:

(
m

p

)
=


+1 if m is a quadratic residue modulo p

−1 if m is a quadratic nonresidue modulo p

0 if p divides m.

The Jacobi symbol
(
m
P

)
is defined for a positive odd integer P ≥ 3 in terms of the

prime factorization of P ; see Definition 6.3.

The remarkable fact about the Legendre symbol is that it gives us an efficient method
for testing whether a number m is a quadratic residue mod n without actually solving the
congruence x2 ≡ m (mod n). The Jacobi symbol gives us an even more efficient method
which avoids factoring. The reason is that there is an unexpected and deep relationship
between the symbols

(
p
q

)
and

(
q
p

)
, known as the law of quadratic reciprocity .

The law of quadratic reciprocity was conjectured by Legendre and proved by Gauss, who
gave no less than seven proofs. It is one of the gems of number theory, and we will prove it
in Section 6.7.

Property (1) of a Monte Carlo algorithm holds for all three tests. Next we need to show
that Property (2) holds. For this, it is helpful to define the following sets of liars: for every
odd composite n ≥ 3, write n− 1 = 2kt with t odd and k ≥ 1,

LFn = {a ∈ {1 ≤ a ≤ n− 1} | an−1 ≡ 1 (mod n)},
LMR
n = {a ∈ {1, . . . , n− 1}, either at ≡ 1 (mod n),

or a2
it ≡ n− 1 (mod n), for some i with 0 ≤ i ≤ k − 1}

LEn = {a ∈ {1, . . . , n} |
(
a

n

)
a(n−1)/2 ≡ 1 (mod n)}.

The set LFn is called the set of F -liars (Fermat liars), the set LMR
n is called the set of

MR-liars (Miller–Rabin liars) and the set LEn is called the set of E-liars (Euler liars).

It is easy to see that all three sets of liars are subsets of the multiplicative group (Z/nZ)∗

of invertible elements of the ring Z/nZ. The order of this group is ϕ(n), a famous function
due Euler, where ϕ(n) is the number of integers a with 1 ≤ a ≤ n such that gcd(a, n) = 1.
Obviously, ϕ(n) < n if n > 1.

Now if we could prove that our sets of liars are proper subsets of (Z/nZ)∗ of size at most
ϕ(n)/2, then we woud be done, because the conditional probability that a is a liar given that
n is composite would be at most ϕ(n)/(2n) < 1/2.
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It turns out that both LFn and LEn are subgroups of (Z/nZ)∗, but unfortunately LMR
n is

not closed under multiplication. If we can prove that LFn and LEn are proper subgroups of
(Z/nZ)∗, then by Lagrange’s theorem we are done, because the order of a subgroup divides
the order of the group, so a proper subgroup has order at most ϕ(n)/2.

Solovay and Strassen proved that LEn is a proper subgroup of (Z/nZ)∗; see Theorem 6.12.
This is a nice an nontrivial proof.

As to LFn , unfortunately there are composites n for which LFn = (Z/nZ)∗; all numbers
a ∈ {1. . . . , n − 1} are liars! Such trouble makers are called Carmichael numbers . The
smallest one is 561 = 3 × 11 × 17. More bad news: there are infinitely many Carmichael
numbers; see Section 5.3.

The Miller–Rabin test, which is a stronger version of the Fermat test, is immune to
Carmichael numbers. Indeed, even though LMR

n is not a group, it is contained is a subgroup
S(n) of (Z/nZ)∗ of the form

S(n) = {a ∈ (Z/nZ)∗ | am ≡ ±1 (mod n)},

for some suitable m (depending on n), such that m divides n− 1. Monier and Rabin proved
that the subgroup S(n) is a proper subgroup of (Z/nZ)∗, and that if n > 9, then the order
of S(n) is at most ϕ(n)/4 ≤ (n − 1/4); see Theorem 5.13. This is a beautiful proof that
mixes combinatorial and number theoretic ideas. We also show that LMR

n ⊆ LEn ; see Section
6.9.

Having some powerful methods for testing for primality, we show in Chapter 2 how
prime numbers can be used for public key cryptography, and in particular we present the
RSA system.

The investigation of primality testing algorithms and cryptographic methods provides
wonderful and strong motivations for delving more deeply into number theory.

One will quickly realize that in order to get more than a superficial understanding of
randomized algorithms for primality testing, one needs to know some basic properties of
groups, rings, and fields, and in particular properties of cyclic groups. In particular, the
multiplicative group (Z/nZ)∗ of invertible elements of the ring Z/nZ plays an important
role. It is crucial to know when the group (Z/nZ)∗ is cyclic, which means that it is generated
by a single element called a primitive root . A famous theorem of Gauss tells us that the
group (Z/nZ)∗ has a primitive root iff n = 2, 4, pm, or 2pm where p is an odd prime. We
give a complete proof of this result in Sections 4.4 and 4.5. In Sections 4.1, 4.2, and 4.3, we
provide a review of groups, rings, and fields.

Quadratic residues, the Legendre symbol, and the Jacobi symbol, play a crucial role in
the Solovay–Strassen test. We also present a randomized algorithm for finding the square
root of a number which is a quadratic residue modulo an odd prime. One of the jewels of
number theory is the law of quadratic reciprocity , which was also proved by Gauss (in fact,
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he gave seven proofs). The law of quadratic reciprocity relates the symbols
(
p
q

)
and

(
q
p

)
,

and yields a fast method to evaluate the Legendre (and the Jacobi) symbol.

Even though it is not absolutely necessary to know how to prove the law of quadratic
reciprocity to understand the Solovay–Strassen test, we feel that it would be a shame not to
include a proof, so we do. In fact, we give two proofs. The second one, due to Eisenstein
(1845), is particularly original because is uses a trigonometric identity.

Our philosophy is that primality testing and cryptographic methods give us a great excuse
to present some deep and beautiful mathematics, with an emphasis on number theory. We
also believe that it is important to prove everything we state, and we (mostly) do!

Two excellent references on cryptography and its mathematical underpinnings are Hoff-
stein, Pipher and Silverman [8], and Shoup [21]. A more advanced treatment is given in
Crandall and Pomerance’s remarkable book [3] and in Ribenboim’s delightful book [18];
Dietzfelbinger [4] is also very good but less encyclopedic. An easy going and delightful intro-
duction to number theory is found in Silverman [22]. More advanced presentations are given
in Apostol [1], Niven, Zuckerman, and Montgomery [16], and Ireland and Rosen [9]. Serre’s
book [20] is another great source for those intetested in advanced topics in number theory.
For those interested in original sources, Dirichlet–Dedekind [12] is a real jewel. This book is
based on a manuscript of Dirichlet but was actually written by Richard Dedekind and pub-
lished in 1863 after Dirichlet’s death in 1859. The English translation is by John Stillwell.
The reader will be pleasantly surprised to see how clear and lively the style is, and will find a
masterly exposition of many of the results from Gauss’s famous Disquisitiones Arithmeticae
[7]. Incidently, if you can get your hands on a translation of Gauss’s masterpiece, you will
experience what it is to be exposed to pure genius.

Sorry, we will not discuss applications of elliptic curves and lattice methods to primality
testing, factoring, and cryptographic methods, in these notes. Perhaps in another set of
notes ...



Chapter 2

Public Key Cryptography

2.1 Public Key Cryptography; The RSA System

Ever since written communication was used, people have been interested in trying to conceal
the content of their messages from their adversaries. This has led to the development of
techniques of secret communication, a science known as cryptography .

The basic situation is that one party, A, say Albert, wants to send a message to another
party, J, say Julia. However, there is a danger that some ill-intentioned third party, Machi-
avelli, may intercept the message and learn things that he is not supposed to know about
and as a result, do evil things. The original message, understandable to all parties, is known
as the plain text . To protect the content of the message, Albert encrypts his message. When
Julia receives the encrypted message, she must decrypt it in order to be able to read it. Both
Albert and Julia share some information that Machiavelli does not have, a key . Without a
key, Machiavelli, is incapable of decrypting the message and thus, to do harm.

There are many schemes for generating keys to encrypt and decrypt messages. We are go-
ing to describe a method involving public and private keys known as the RSA Cryptosystem,
named after its inventors, Ronald Rivest, Adi Shamir, and Leonard Adleman (1978), based
on ideas by Diffie and Hellman (1976). We highly recommend reading the orginal paper
by Rivest, Shamir, and Adleman [19]. It is beautifully written and easy to follow. A very
clear, but concise exposition can also be found in Koblitz [10]. An encyclopedic coverage of
cryptography can be found in Menezes, van Oorschot, and Vanstone’s Handbook [14].

The RSA system is widely used in practice, for example in SSL (Secure Socket Layer),
which in turn is used in https (secure http). Any time you visit a “secure site” on the
Internet (to read e-mail or to order merchandise), your computer generates a public key and
a private key for you and uses them to make sure that your credit card number and other
personal data remain secret. Interestingly, although one might think that the mathematics
behind such a scheme is very advanced and complicated, this is not so. Therefore, in this
section, we are going to explain the basics of RSA.

The first step is to convert the plain text of characters into an integer. This can be done

13



14 CHAPTER 2. PUBLIC KEY CRYPTOGRAPHY

easily by assigning distinct integers to the distinct characters, for example, by converting
each character to its ASCII code. From now on, we assume that this conversion has been
performed.

The next and more subtle step is to use modular arithmetic. We assume that the reader
has some familiarity with basic facts of arithmetic (greatest common divisors, etc.). A
“gentle” exposition is given in Gallier [6], Chapter 5. We pick a (large) positive integer m
and perform arithmetic modulo m. Let us explain this step in more detail.

Recall that for all a, b ∈ Z, we write a ≡ b (mod m) iff a − b = km, for some k ∈ Z,
and we say that a and b are congruent modulo m. We already know that congruence is an
equivalence relation but it also satisfies the following properties.

Proposition 2.1. For any positive integer m, for all a1, a2, b1, b2 ∈ Z, the following proper-
ties hold. If a1 ≡ b1 (modm) and a2 ≡ b2 (modm), then

(1) a1 + a2 ≡ b1 + b2 (modm).

(2) a1 − a2 ≡ b1 − b2 (modm).

(3) a1a2 ≡ b1b2 (modm).

Proof. We only check (3), leaving (1) and (2) as easy exercises. Because a1 ≡ b1 (mod m)
and a2 ≡ b2 (modm), we have a1 = b1 + k1m and a2 = b2 + k2m, for some k1, k2 ∈ Z, and so

a1a2 = (b1 + k1m)(b2 + k2m) = b1b2 + (b1k2 + k1b2 + k1mk2)m,

which means that a1a2 ≡ b1b2 (modm). A more elegant proof consists in observing that

a1a2 − b1b2 = a1(a2 − b2) + (a1 − b1)b2
= (a1k2 + k1b2)m,

as claimed.

Proposition 2.1 allows us to define addition, subtraction, and multiplication on equiva-
lence classes modulo m.

Definition 2.1. Given any positive integer m, we denote by Z/mZ the set of equivalence
classes modulo m. If we write a for the equivalence class of a ∈ Z, then we define addition,
subtraction, and multiplication on residue classes as follows:

a+ b = a+ b

a− b = a− b
ab = ab.
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The above operations make sense because a+ b does not depend on the representatives
chosen in the equivalence classes a and b, and similarly for a− b and ab. Each equivalence
class a contains a unique representative from the set of remainders {0, 1, . . . ,m−1}, modulo
m, so the above operations are completely determined by m×m tables. Using the arithmetic
operations of Z/mZ is called modular arithmetic.

For an arbitrary m, the set Z/mZ is an algebraic structure known as a ring . Addition
and subtraction behave as in Z but multiplication is stranger. For example, when m = 6,

2 · 3 = 0

3 · 4 = 0,

inasmuch as 2 · 3 = 6 ≡ 0 (mod 6), and 3 · 4 = 12 ≡ 0 (mod 6). Therefore, it is not true
that every nonzero element has a multiplicative inverse. However, it is known (see Gallier
[6], Chapter 5) that a nonzero integer a has a multiplicative inverse iff gcd(a,m) = 1 (use
the Bézout identity). For example,

5 · 5 = 1,

because 5 · 5 = 25 ≡ 1 (mod 6).

As a consequence, when m is a prime number, every nonzero element not divisible by m
has a multiplicative inverse. In this case, Z/mZ is more like Q; it is a finite field . However,
note that in Z/mZ we have

1 + 1 + · · ·+ 1︸ ︷︷ ︸
m times

= 0

(because m ≡ 0 (modm)), a phenomenom that does not happen in Q (or R).

The RSA method uses modular arithmetic. One of the main ingredients of public key
cryptography is that one should use an encryption function, f : Z/mZ → Z/mZ, which is
easy to compute (i.e., can be computed efficiently) but such that its inverse f−1 is practically
impossible to compute unless one has special additional information. Such functions are
usually referred to as trapdoor one-way functions . Remarkably, exponentiation modulo m,
that is, the function, x 7→ xe mod m, is a trapdoor one-way function for suitably chosen m
and e.

Thus, we claim the following.

(1) Computing xe modm can be done efficiently .

(2) Finding x such that

xe ≡ y (modm)

with 0 ≤ x, y ≤ m−1, is hard, unless one has extra information about m. The function
that finds an eth root modulo m is sometimes called a discrete logarithm.
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We explain shortly how to compute xe mod m efficiently using the square and multiply
method also known as repeated squaring .

As to the second claim, actually, no proof has been given yet that this function is a
one-way function but, so far, this has not been refuted either.

Now, what’s the trick to make it a trapdoor function?

What we do is to pick two distinct large prime numbers, p and q (say over 200 decimal
digits), which are “sufficiently random” and we let

m = pq.

Next, we pick a random e, with 1 < e < (p− 1)(q − 1), relatively prime to
(p− 1)(q − 1).

Because gcd(e, (p− 1)(q− 1)) = 1, there is some d with 1 < d < (p− 1)(q− 1), such that
ed ≡ 1 (mod (p− 1)(q − 1)).

Then, we claim that to find x such that

xe ≡ y (modm),

we simply compute yd modm, and this can be done easily, as we claimed earlier. The reason
why the above “works” is that

xed ≡ x (modm), (∗)

for all x ∈ Z, which we prove later.

Setting up RSA

In summary to set up RSA for Albert (A) to receive encrypted messages, perform the fol-
lowing steps.

1. Albert generates two distinct large and sufficiently random primes, pA and qA. They
are kept secret.

2. Albert computes mA = pAqA. This number called the modulus will be made public.

3. Albert picks at random some eA, with 1 < eA < (pA − 1)(qA − 1), so that
gcd(eA, (pA − 1)(qA − 1)) = 1. The number eA is called the encryption key and it will
also be public.

4. Albert computes the inverse, dA = e−1A modulo (pA− 1)(qA− 1), of eA. This number is
kept secret. The pair (dA,mA) is Albert’s private key and dA is called the decryption
key .

5. Albert publishes the pair (eA,mA) as his public key .
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Encrypting a Message

Now, if Julia wants to send a message, x, to Albert, she proceeds as follows. First, she splits
x into chunks, x1, . . . , xk, each of length at most mA − 1, if necessary (again, I assume that
x has been converted to an integer in a preliminary step). Then she looks up Albert’s public
key (eA,mA) and she computes

yi = EA(xi) = xeAi modmA,

for i = 1, . . . , k. Finally, she sends the sequence y1, . . . , yk to Albert. This encrypted message
is known as the cyphertext . The function EA is Albert’s encryption function.

Decrypting a Message

In order to decrypt the message y1, . . . , yk that Julia sent him, Albert uses his private key
(dA,mA) to compute each

xi = DA(yi) = ydAi modmA,

and this yields the sequence x1, . . . , xk. The function DA is Albert’s decryption function.

Similarly, in order for Julia to receive encrypted messages, she must set her own public
key (eJ ,mJ) and private key (dJ ,mJ) by picking two distinct primes pJ and qJ and eJ , as
explained earlier.

The beauty of the scheme is that the sender only needs to know the public key of the
recipient to send a message but an eavesdropper is unable to decrypt the encoded message
unless he somehow gets his hands on the secret key of the receiver.

Let us give a concrete illustration of the RSA scheme using an example borrowed from
Silverman [22] (Chapter 18). We write messages using only the 26 upper-case letters A, B,
. . . , Z, encoded as the integers A = 11, B = 12, . . . , Z = 36. It would be more convenient to
have assigned a number to represent a blank space but to keep things as simple as possible
we do not do that.

Say Albert picks the two primes pA = 12553 and qA = 13007, so that mA = pAqA =
163, 276, 871 and (pA − 1)(qA − 1) = 163, 251, 312. Albert also picks eA = 79921, relatively
prime to (pA− 1)(qA− 1) and then finds the inverse dA, of eA modulo (pA− 1)(qA− 1) using
the extended Euclidean algorithm (more details are given in Section 2.3) which turns out to
be dA = 145, 604, 785. One can check that

145, 604, 785 · 79921− 71282 · 163, 251, 312 = 1,

which confirms that dA is indeed the inverse of eA modulo 163, 251, 312.

Now, assume that Albert receives the following message, broken in chunks of at most
nine digits, because mA = 163, 276, 871 has nine digits.

145387828 47164891 152020614 27279275 35356191.
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Albert decrypts the above messages using his private key (dA,mA), where dA = 145, 604, 785,
using the repeated squaring method (described in Section 2.3) and finds that

145387828145,604,785 ≡ 30182523 (mod 163, 276, 871)

47164891145,604,785 ≡ 26292524 (mod 163, 276, 871)

152020614145,604,785 ≡ 19291924 (mod 163, 276, 871)

27279275145,604,785 ≡ 30282531 (mod 163, 276, 871)

35356191145,604,785 ≡ 122215 (mod 163, 276, 871)

which yields the message

30182523 26292524 19291924 30282531 122215,

and finally, translating each two-digit numeric code to its corresponding character, to the
message

T H O M P S O N I S I N T R O U B L E

or, in more readable format

Thompson is in trouble

It would be instructive to encrypt the decoded message

30182523 26292524 19291924 30282531 122215

using the public key eA = 79921. If everything goes well, we should get our original message

145387828 47164891 152020614 27279275 35356191

back.

Let us now explain in more detail how the RSA system works and why it is correct.

2.2 Correctness of The RSA System

We begin by proving the correctness of the inversion formula (∗). For this, we need a classical
result known as Fermat’s little theorem.

This result was first stated by Fermat in 1640 but apparently no proof was published at
the time and the first known proof was given by Leibnitz (1646–1716). A different proof was
given by Ivory in 1806 and this is the proof that we give here. It has the advantage that it
can be easily generalized to Euler’s version (1760) of Fermat’s little theorem.

Theorem 2.2. (Fermat’s Little Theorem) If p is any prime number, then the following two
equivalent properties hold.
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Figure 2.1: Pierre de Fermat, 1601–1665

(1) For every integer a ∈ Z, if a is not divisible by p, then we have

ap−1 ≡ 1 (mod p).

(2) For every integer a ∈ Z, we have

ap ≡ a (mod p).

Furthermore, (2) implies (1).

Proof. (1) Consider the integers

a, 2a, 3a, . . . , (p− 1)a

and let
r1, r2, r3, . . . , rp−1

be the sequence of remainders of the division of the numbers in the first sequence by p.
Because gcd(a, p) = 1, none of the numbers in the first sequence is divisible by p, so 1 ≤
ri ≤ p− 1, for i = 1, . . . , p− 1. We claim that these remainders are all distinct. If not, then
say ri = rj, with 1 ≤ i < j ≤ p− 1. But then, because

ai ≡ ri (mod p)

and
aj ≡ rj (mod p),

we deduce that
aj − ai ≡ rj − ri (mod p),

and because ri = rj, we get,
a(j − i) ≡ 0 (mod p).
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This means that p divides a(j − i), but gcd(a, p) = 1 so, by Euclid’s proposition, p must
divide j − i. However 1 ≤ j − i < p − 1, so we get a contradiction and the remainders are
indeed all distinct.

There are p− 1 distinct remainders and they are all nonzero, therefore we must have

{r1, r2, . . . , rp−1} = {1, 2, . . . , p− 1}.

Using Property (3) of congruences (see Proposition 2.1), we get

a · 2a · 3a · · · (p− 1)a ≡ 1 · 2 · 3 · · · (p− 1) (mod p);

that is,

(ap−1 − 1) · (p− 1)! ≡ 0 (mod p).

Again, p divides (ap−1 − 1) · (p − 1)!, but because p is relatively prime to (p − 1)!, it must
divide ap−1 − 1, as claimed.

(2) If gcd(a, p) = 1, we proved in (1) that

ap−1 ≡ 1 (mod p),

from which we get

ap ≡ a (mod p),

because a ≡ a(modp). If a is divisible by p, then a ≡ 0(modp), which implies ap ≡ 0(modp),
and thus, that

ap ≡ a (mod p).

Therefore, (2) holds for all a ∈ Z and we just proved that (1) implies (2). Finally, if (2)
holds and if gcd(a, p) = 1, as p divides ap − a = a(ap−1 − 1), it must divide ap−1 − 1, which
shows that (1) holds and so, (2) implies (1).

It is now easy to establish the correctness of RSA.

Proposition 2.3. For any two distinct prime numbers p and q, if e and d are any two
positive integers such that

1. 1 < e, d < (p− 1)(q − 1),

2. ed ≡ 1 (mod (p− 1)(q − 1)),

then for every x ∈ Z we have

xed ≡ x (mod pq).
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Proof. Because p and q are two distinct prime numbers, by Euclid’s proposition it is enough
to prove that both p and q divide xed − x. We show that xed − x is divisible by p, the proof
of divisibility by q being similar.

By Condition (2), we have

ed = 1 + (p− 1)(q − 1)k,

with k ≥ 1, inasmuch as 1 < e, d < (p− 1)(q − 1). Thus, if we write h = (q − 1)k, we have
h ≥ 1 and

xed − x ≡ x1+(p−1)h − x (mod p)

≡ x((xp−1)h − 1) (mod p)

≡ x(xp−1 − 1)((xp−1)h−1 + (xp−1)h−2 + · · ·+ 1) (mod p)

≡ (xp − x)((xp−1)h−1 + (xp−1)h−2 + · · ·+ 1) (mod p)

≡ 0 (mod p),

because xp − x ≡ 0 (mod p), by Fermat’s little theorem.

Remark: Of course, Proposition 2.3 holds if we allow e = d = 1, but this not interesting for
encryption. The number (p− 1)(q − 1) turns out to be the number of positive integers less
than pq that are relatively prime to pq. For any arbitrary positive integer, m, the number of
positive integers less than m that are relatively prime to m is given by the Euler ϕ function
(or Euler totient), denoted ϕ (see Niven, Zuckerman, and Montgomery [16], Section 2.1, for
basic properties of ϕ).

Fermat’s little theorem can be generalized to what is known as Euler’s formula: For
every integer a, if gcd(a,m) = 1, then

aϕ(m) ≡ 1 (modm).

Because ϕ(pq) = (p − 1)(q − 1), when gcd(x, ϕ(pq)) = 1, Proposition 2.3 follows from
Euler’s formula. However, that argument does not show that Proposition 2.3 holds when
gcd(x, ϕ(pq)) > 1 and a special argument is required in this case.

It can be shown that if we replace pq by a positive integer m that is square-free (does not
contain a square factor) and if we assume that e and d are chosen so that 1 < e, d < ϕ(m)
and ed ≡ 1 (mod ϕ(m)), then

xed ≡ x (modm)

for all x ∈ Z (see Proposition 4.33).

We see no great advantage in using this fancier argument and this is why we used the
more elementary proof based on Fermat’s little theorem.
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Proposition 2.3 immediately implies that the decrypting and encrypting RSA functions
DA and EA are mutual inverses for any A. Furthermore, EA is easy to compute but, without
extra information, namely, the trapdoor dA, it is practically impossible to compute DA =
E−1A . That DA is hard to compute without a trapdoor is related to the fact that factoring
a large number, such as mA, into its factors pA and qA is hard. Today, it is practically
impossible to factor numbers over 300 decimal digits long. Although no proof has been
given so far, it is believed that factoring will remain a hard problem. So, even if in the next
few years it becomes possible to factor 300-digit numbers, it will still be impossible to factor
400-digit numbers. RSA has the peculiar property that it depends both on the fact that
primality testing is easy but that factoring is hard. What a stroke of genius!

2.3 Algorithms for Computing Powers and Inverses

Modulo m

First, we explain how to compute xn mod m efficiently, where n ≥ 1. Let us first consider
computing the nth power xn of some positive integer. The idea is to look at the parity of n
and to proceed recursively. If n is even, say n = 2k, then

xn = x2k = (xk)2,

so, compute xk recursively and then square the result. If n is odd, say n = 2k + 1, then

xn = x2k+1 = (xk)2 · x,

so, compute xk recursively, square it, and multiply the result by x.

What this suggests is to write n ≥ 1 in binary, say

n = b` · 2` + b`−1 · 2`−1 + · · ·+ b1 · 21 + b0,

where bi ∈ {0, 1} with b` = 1 or, if we let J = {j | bj = 1}, as

n =
∑
j∈J

2j.

Then we have
xn ≡ x

∑
j∈J 2j =

∏
j∈J

x2
j

modm.

This suggests computing the residues rj such that

x2
j ≡ rj (modm),

because then,

xn ≡
∏
j∈J

rj (modm),
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where we can compute this latter product modulo m two terms at a time.

For example, let us compute 290 mod 91 (recall that 91 = 7 · 13). We have

91 = 26 + 24 + 23 + 21,

and we compute the following powers modulo 91:

221 ≡ 4 (mod 91)

222 ≡ 16 (mod 91)

223 ≡ 162 ≡ 74 (mod 91)

224 ≡ 742 ≡ 16 (mod 91)

225 ≡ 162 ≡ 74 (mod 91)

226 ≡ 742 ≡ 16 (mod 91).

Consequently,

290 ≡ 4 · 74 · 16 · 16 (mod 91)

≡ 23 · 16 · 16 (mod 91)

≡ 4 · 16 = 64 (mod 91),

so
290 ≡ 64 (mod 91).

As a second example, let us compute 390 mod 91. We have

91 = 26 + 24 + 23 + 21,

and we compute the following powers modulo 91:

321 ≡ 9 (mod 91)

322 ≡ 81 (mod 91)

323 ≡ 812 ≡ 9 (mod 91)

324 ≡ 81 (mod 91)

325 ≡ 9 (mod 91)

326 ≡ 81 (mod 91).

Consequently,

390 ≡ 9 · 9 · 81 · 81 (mod 91)

≡ 81 · 81 · 81 (mod 91)

≡ 9 · 81 (mod 91)

≡ 1 (mod 91),
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so
390 ≡ 1 (mod 91).

As a third example, say we want to compute 999179 mod 1763. First, we observe that

179 = 27 + 25 + 24 + 21 + 1,

and we compute following the powers modulo 1763:

99921 ≡ 143 (mod 1763)

99922 ≡ 1432 ≡ 1056 (mod 1763)

99923 ≡ 10562 ≡ 920 (mod 1763)

99924 ≡ 9202 ≡ 160 (mod 1763)

99925 ≡ 1602 ≡ 918 (mod 1763)

99926 ≡ 9182 ≡ 10 (mod 1763)

99927 ≡ 102 ≡ 100 (mod 1763).

Consequently,

999179 ≡ 999 · 143 · 160 · 918 · 100 (mod 1763)

≡ 54 · 160 · 918 · 100 (mod 1763)

≡ 1588 · 918 · 100 (mod 1763)

≡ 1546 · 100 (mod 1763)

≡ 1219 (mod 1763),

and we find that
999179 ≡ 1219 (mod 1763).

Of course, it would be impossible to exponentiate 999179 first and then reduce modulo 1763.
As we can see, the number of multiplications needed is bounded by 2 log2 n, which is quite
good.

The above method can be implemented without actually converting n to base 2. If n is
even, say n = 2k, then n/2 = k and if n is odd, say n = 2k + 1, then (n − 1)/2 = k, so we
have a way of dropping the unit digit in the binary expansion of n and shifting the remaining
digits one place to the right without explicitly computing this binary expansion. Here is an
algorithm for computing xn modm, with n ≥ 1, using the repeated squaring method.

An Algorithm to Compute xn modm Using Repeated Squaring
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begin
u := 1; a := x;
while n > 1 do

if even(n) then e := 0 else e := 1;
if e = 1 then u := a · u mod m;
a := a2 mod m; n := (n− e)/2

endwhile;
u := a · u mod m

end

The final value of u is the result. The reason why the algorithm is correct is that after j
rounds through the while loop, a = x2

j
modm and

u =
∏

i∈J | i<j

x2
i

modm,

with this product interpreted as 1 when j = 0.

Observe that the while loop is only executed n − 1 times to avoid squaring once more
unnecessarily and the last multiplication a ·u is performed outside of the while loop. Also, if
we delete the reductions modulo m, the above algorithm is a fast method for computing the
nth power of an integer x and the time speed-up of not performing the last squaring step is
more significant. We leave the details of the proof that the above algorithm is correct as an
exercise.

Let us now consider the problem of computing efficiently the inverse of an integer a,
modulo m, provided that gcd(a,m) = 1. Full details are given in Gallier [6], Chapter 5.

The extended Euclidean algorithm can be used to find some integers x, y, such that

ax+ by = gcd(a, b),

where a and b are any two positive integers. In our situation, a = m and b = a and we only
need to find y (we would like a positive integer).

When using the Euclidean algorithm for computing gcd(m, a), with 2 ≤ a < m, we
compute the following sequence of quotients and remainders.

m = aq1 + r1

a = r1q2 + r2

r1 = r2q3 + r3
...
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rk−1 = rkqk+1 + rk+1

...

rn−3 = rn−2qn−1 + rn−1

rn−2 = rn−1qn + 0,

with n ≥ 3, 0 < r1 < b, qk ≥ 1, for k = 1, . . . , n, and 0 < rk+1 < rk, for k = 1, . . . , n − 2.
Observe that rn = 0. If n = 2, we have just two divisions,

m = aq1 + r1

a = r1q2 + 0,

with 0 < r1 < b, q1, q2 ≥ 1, and r2 = 0. Thus, it is convenient to set r−1 = m and r0 = a.

It can be shown (Gallier [6], Chapter 5) that if we set

x−1 = 1

y−1 = 0

x0 = 0

y0 = 1

xi+1 = xi−1 − xiqi+1

yi+1 = yi−1 − yiqi+1,

for i = 0, . . . , n− 2, then

mxn−1 + ayn−1 = gcd(m, a) = rn−1,

and so, if gcd(m, a) = 1, then rn−1 = 1 and we have

ayn−1 ≡ 1 (modm).

Now, yn−1 may be greater than m or negative but we already know how to deal with that.
This suggests reducing modulo m during the recurrence and we are led to the following
recurrence.

y−1 = 0

y0 = 1

zi+1 = yi−1 − yiqi+1

yi+1 = zi+1 modm if zi+1 ≥ 0

yi+1 = m− ((−zi+1) modm) if zi+1 < 0,

for i = 0, . . . , n− 2.
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It is easy to prove by induction that

ayi ≡ ri (modm)

for i = 0, . . . , n − 1 and thus, if gcd(a,m) > 1, then a does not have an inverse modulo m,
else

ayn−1 ≡ 1 (modm)

and yn−1 is the inverse of a modulo m such that 1 ≤ yn−1 < m, as desired. Note that we
also get y0 = 1 when a = 1.

We leave this proof as an exercise. Here is an algorithm.

An Algorithm for Computing the Inverse of a Modulo m

Given any natural number a with 1 ≤ a < m and gcd(a,m) = 1, the following algorithm
returns the inverse of a modulo m as y.

begin
y := 0; v := 1; g := m; r := a;
pr := r; q := bg/prc; r := g − pr q; (divide g by pr, to get g = pr q + r)
if r = 0 then
y := 1; g := pr

else
r = pr;
while r 6= 0 do
pr := r; pv := v;
q := bg/prc; r := g − pr q; (divide g by pr, to get g = pr q + r)
v := y − pv q;
if v < 0 then
v := m− ((−v) mod m)

else
v = v mod m

endif
g := pr; y := pv

endwhile;
endif;
inverse(a) := y

end

For example, we used the above algorithm to find that dA = 145, 604, 785 is the inverse
of eA = 79921 modulo (pA − 1)(qA − 1) = 163, 251, 312.

The remaining issues are how to choose large random prime numbers p, q, and how to
find a random number e, which is relatively prime to (p − 1)(q − 1). For this, we rely on a
deep result of number theory known as the prime number theorem.
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Figure 2.2: Pafnuty Lvovich Chebyshev, 1821–1894 (left), Jacques Salomon Hadamard,
1865–1963 (middle), and Charles Jean de la Vallée Poussin, 1866–1962 (right)

2.4 Finding Large Primes; Signatures; Safety of RSA

Roughly speaking, the prime number theorem ensures that the density of primes is high
enough to guarantee that there are many primes with a large specified number of digits.
The relevant function is the prime counting function π(n).

Definition 2.2. The prime counting function π is the function defined so that

π(n) = number of prime numbers p, such that p ≤ n,

for every natural number n ∈ N.

Obviously, π(0) = π(1) = 0. We have π(10) = 4 because the primes no greater than 10
are 2, 3, 5, 7 and π(20) = 8 because the primes no greater than 20 are 2, 3, 5, 7, 11, 13, 17, 19.
The growth of the function π was studied by Legendre, Gauss, Chebyshev, and Riemann

between 1808 and 1859. By then, it was conjectured that

π(n) ∼ n

ln(n)
, 1

for n large, which means that

lim
n7→∞

π(n)

/
n

ln(n)
= 1.

However, a rigorous proof was not found until 1896. Indeed, in 1896, Jacques Hadamard
and Charles de la Vallée-Poussin independendly gave a proof of this “most wanted theorem,”
using methods from complex analysis. These proofs are difficult and although more elemen-
tary proofs were given later, in particular by Erdös and Selberg (1949), those proofs are still
quite hard. Thus, we content ourselves with a statement of the theorem.

Theorem 2.4. (Prime Number Theorem) For n large, the number of primes π(n) no larger
than n is approximately equal to n/ ln(n), which means that

lim
n7→∞

π(n)

/
n

ln(n)
= 1.

1We use ln(n) to denote the logarithm of n to the base e, known as the natural logarithm of n.
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Figure 2.3: Paul Erdös, 1913–1996 (left), Atle Selberg, 1917–2007 (right)

For a rather detailed account of the history of the prime number theorem (for short,
PNT ), we refer the reader to Ribenboim [18] (Chapter 4).

As an illustration of the use of the PNT, we can estimate the number of primes with 200
decimal digits. Indeed this is the difference of the number of primes up to 10200 minus the
number of primes up to 10199, which is approximately

10200

200 ln 10
− 10199

199 ln 10
≈ 1.95 · 10197.

Thus, we see that there is a huge number of primes with 200 decimal digits. The number of
natural numbers with 200 digits is 10200 − 10199 = 9 · 10199, thus the proportion of 200-digit
numbers that are prime is

1.95 · 10197

9 · 10199
≈ 1

460
.

Consequently, among the natural numbers with 200 digits, roughly one in every 460 is a
prime.

� Beware that the above argument is not entirely rigorous because the prime number
theorem only yields an approximation of π(n) but sharper estimates can be used to say

how large n should be to guarantee a prescribed error on the probability, say 1%.

The implication of the above fact is that if we wish to find a random prime with 200
digits, we pick at random some natural number with 200 digits and test whether it is prime.
If this number is not prime, then we discard it and try again, and so on. On the average,
after 460 trials, a prime should pop up,

This leads us the question: How do we test for primality?

Primality testing has also been studied for a long time. Remarkably, Fermat’s little
theorem yields a test for nonprimality. Indeed, if p > 1 fails to divide ap−1 − 1 for some
natural number a, where 2 ≤ a ≤ p − 1, then p cannot be a prime. The simplest a to try
is a = 2. From a practical point of view, we can compute ap−1 mod p using the method of
repeated squaring and check whether the remainder is 1.
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Figure 2.4: Robert Daniel Carmichael, 1879–1967

But what if p fails the Fermat test? Unfortunately, there are natural numbers p, such
that p divides 2p−1 − 1 and yet, p is composite. For example p = 341 = 11 · 31 is such a
number.

Actually, 2340 being quite big, how do we check that 2340 − 1 is divisible by 341?

We just have to show that 2340 − 1 is divisible by 11 and by 31. We can use Fermat’s
little theorem. Because 11 is prime, we know that 11 divides 210 − 1. But,

2340 − 1 = (210)34 − 1 = (210 − 1)((210)33 + (210)32 + · · ·+ 1),

so 2340 − 1 is also divisible by 11.

As to divisibility by 31, observe that 31 = 25 − 1, and

2340 − 1 = (25)68 − 1 = (25 − 1)((25)67 + (25)66 + · · ·+ 1),

so 2340 − 1 is also divisible by 31.

A number p that is not a prime but behaves like a prime in the sense that p divides
2p−1 − 1, is called a pseudo-prime. Unfortunately, the Fermat test gives a “false positive”
for pseudo-primes.

Rather than simply testing whether 2p−1 − 1 is divisible by p, we can also try whether
3p−1 − 1 is divisible by p and whether 5p−1 − 1 is divisible by p, and so on.

Unfortunately, there are composite natural numbers p, such that p divides ap−1 − 1, for
all positive natural numbers a with gcd(a, p) = 1. Such numbers are known as Carmichael
numbers . The smallest Carmichael number is p = 561 = 3 · 11 · 17. The reader should try
proving that, in fact, a560 − 1 is divisible by 561 for every positive natural number a, such
that gcd(a, 561) = 1, using the technique that we used to prove that 341 divides 2340 − 1.

It turns out that there are infinitely many Carmichael numbers. Again, for a thorough
introduction to primality testing, pseudo-primes, Carmichael numbers, and more, we highly
recommend Ribenboim [18] (Chapter 2). An excellent (but more terse) account is also given
in Koblitz [10] (Chapter V).
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Still, what do we do about the problem of false positives? The key is to switch to
probabilistic methods . Indeed, if we can design a method that is guaranteed to give a false
positive with probablity less than 0.5, then we can repeat this test for randomly chosen
as and reduce the probability of false positive considerably. For example, if we repeat the
experiment 100 times, the probability of false positive is less than 2−100 < 10−30. This is
probably less than the probability of hardware failure.

Various probabilistic methods for primality testing have been designed. One of them is the
Miller–Rabin test, another the APR test, and yet another the Solovay–Strassen test. Since
2002, it has been known that primality testing can be done in polynomial time. This result
is due to Agrawal, Kayal, and Saxena and known as the AKS test solved a long-standing
problem; see Dietzfelbinger [4] and Crandall and Pomerance [3] (Chapter 4). Remarkably,
Agrawal and Kayal worked on this problem for their senior project in order to complete their
bachelor’s degree. It remains to be seen whether this test is really practical for very large
numbers.

A very important point to make is that these primality testing methods do not provide a
factorization of m when m is composite. This is actually a crucial ingredient for the security
of the RSA scheme. So far, it appears (and it is hoped) that factoring an integer is a much
harder problem than testing for primality and all known methods are incapable of factoring
natural numbers with over 300 decimal digits (it would take centuries).

For a comprehensive exposition of the subject of primality-testing, we refer the reader to
Crandall and Pomerance [3] (Chapters 3 and 4) and again, to Ribenboim [18] (Chapter 2)
and Koblitz [10] (Chapter V). We give a thorough presentation of the Miller–Rabin and the
Solovay–Strassen tests in Chapters 5 and 6 (with complete proofs).

Going back to the RSA method, we now have ways of finding the large random primes
p and q by picking at random some 200-digit numbers and testing for primality. Rivest,
Shamir, and Adleman also recommend to pick p and q so that they differ by a few decimal
digits, that both p−1 and q−1 should contain large prime factors and that gcd(p−1, q−1)
should be small. The public key, e, relatively prime to (p − 1)(q − 1) can also be found
by a similar method: Pick at random a number, e < (p − 1)(q − 1), which is large enough
(say, greater than max{p, q}) and test whether gcd(e, (p− 1)(q− 1)) = 1, which can be done
quickly using the extended Euclidean algorithm. If not, discard e and try another number,
and so on. It is easy to see that such an e will be found in no more trials than it takes to
find a prime; see Lovász, Pelikán, and Vesztergombi [13] (Chapter 15), which contains one of
the simplest and clearest presentations of RSA that we know of. Koblitz [10] (Chapter IV)
also provides some details on this topic as well as Menezes, van Oorschot, and Vanstone’s
Handbook [14].

If Albert receives a message coming from Julia, how can he be sure that this message
does not come from an imposter? Just because the message is signed “Julia” does not mean
that it comes from Julia; it could have been sent by someone else pretending to be Julia,
inasmuch as all that is needed to send a message to Albert is Albert’s public key, which is
known to everybody. This leads us to the issue of signatures .
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There are various schemes for adding a signature to an encrypted message to ensure that
the sender of a message is really who he or she claims to be (with a high degree of confidence).
The trick is to make use of the sender’s keys. We propose two scenarios.

1. The sender, Julia, encrypts the message x to be sent with her own private key , (dJ ,mJ),
creating the message DJ(x) = y1. Then, Julia adds her signature, “Julia”, at the end
of the message y1, encrypts the message “y1 Julia” using Albert’s public key , (eA,mA),
creating the message y2 = EA(y1 Julia), and finally sends the message y2 to Albert.

When Albert receives the encrypted message y2 claiming to come from Julia, first he
decrypts the message using his private key (dA,mA). He will see an encrypted message,
DA(y2) = y1 Julia, with the legible signature, Julia. He will then delete the signature
from this message and decrypt the message y1 using Julia’s public key (eJ ,mJ), getting
x = EJ(y1). Albert will know whether someone else faked this message if the result
is garbage. Indeed, only Julia could have encrypted the original message x with her
private key, which is only known to her. An eavesdropper who is pretending to be
Julia would not know Julia’s private key and so, would not have encrypted the original
message to be sent using Julia’s secret key.

2. The sender, Julia, first adds her signature, “Julia”, to the message x to be sent and
then, she encrypts the message “x Julia” with Albert’s public key (eA,mA), creating
the message y1 = EA(x Julia). Julia also encrypts the original message x using her
private key (dJ ,mJ) creating the message y2 = DJ(x), and finally she sends the pair
of messages (y1, y2).

When Albert receives a pair of messages (y1, y2), claiming to have been sent by Julia,
first Albert decrypts y1 using his private key (dA,mA), getting the message DA(y1) =
x Julia. Albert finds the signature, Julia, and then decrypts y2 using Julia’s public key
(eJ ,mJ), getting the message x′ = EJ(y2). If x = x′, then Albert has serious assurance
that the sender is indeed Julia and not an imposter.

The last topic that we would like to discuss is the security of the RSA scheme. This is a
difficult issue and many researchers have worked on it. As we remarked earlier, the security
of RSA hinges on the fact that factoring is hard. It has been shown that if one has a method
for breaking the RSA scheme (namely, to find the secret key d), then there is a probabilistic
method for finding the factors p and q, of m = pq (see Koblitz [10], Chapter IV, Section 2,
or Menezes, van Oorschot, and Vanstone [14], Section 8.2.2). If p and q are chosen to be
large enough, factoring m = pq will be practically impossible and so it is unlikely that RSA
can be cracked. However, there may be other attacks and, at present, there is no proof that
RSA is fully secure.

Observe that because m = pq is known to everybody, if somehow one can learn N =
(p−1)(q−1), then p and q can be recovered. Indeed N = (p−1)(q−1) = pq− (p+ q) + 1 =
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m− (p+ q) + 1 and so,

pq = m

p+ q = m−N + 1,

and p and q are the roots of the quadratic equation

X2 − (m−N + 1)X +m = 0.

Thus, a line of attack is to try to find the value of (p− 1)(q − 1). For more on the security
of RSA, see Menezes, van Oorschot, and Vanstone’s Handbook [14].
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Chapter 3

Primality Testing Using Randomized
Algorithms; Introduction

In article 329 of his famous Disquisitiones Arithmeticae [7] (published in 1801, when he was
24 years old), C.F. Gauss writes (in Latin!):

“The problem of distinguishing prime numbers from composite numbers and
resolving the latter into their prime factors is known to be one of the most
important and useful in arithmetic. It has engaged the industry and wisdom of
ancient and moderm geometers to such an extent that it would be superfluous to
discuss the problem at length. Nevertherless we must confess that all methods
that have been proposed thus far are either restricted to very special cases or are
so laborious and difficult that even for numbers that do not exceed the limits of
tables constructed by estimable men, they try the patience of even the practiced
calculator. And these methods do not apply at all to larger numbers ... The
techniques that were previously known would require intolerable labor even for
the most indefatigable calculator.”

The problem of determining whether a given integer is prime is one of the better known
and most easily understood problems of pure mathematics. This problem has caught the
interest of mathematicians again and again for centuries. However, it was not until the 20th
century that questions about primality testing and factoring were recognized as problems
of practical importance, and a central part of applied mathematics. The advent of cryp-
tographic systems that use large primes, such as RSA, was the main driving force for the
development of fast and reliable methods for primality testing. Indeed, as we saw in ear-
lier sections of these notes, in order to create RSA keys, one needs to produce large prime
numbers. How do we do that?

One method is to produce a random string of digits (say of 200 digits), and then to
test whether this number is prime or not. As we explained earlier, by the Prime Number
Theorem, among the natural numbers with 200 digits, roughly one in every 460 is a prime.
Thus, it should take at most 460 trials (picking at random some natural number with 200
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digits) before a prime shows up. Note that we need a mechanism to generate random
numbers, an interesting and tricky problem, but for now, we postpone discussing random
number generation.

It remains to find methods for testing an integer for primality, and perhaps for factoring
composite numbers.

In 1903, at the meeting of the American Mathematical Society, F.N. Cole came to the
blackboard and, without saying a word, wrote down

267 − 1 = 147573952589676412927 = 193707721× 761838257287,

and then used long multiplication to multiply the two numbers on the right-hand side to
prove that he was indeed correct. Afterwards, he said that figuring this out had taken him
“three years of Sundays.” Too bad laptops did not exist in 1903.

The moral of this tale is that checking that a number is composite can be done quickly
(that is, in polynomial time), but finding a factorization is hard. In general, it requires an
exhaustive search. Another important observation is that most efficient tests for composite-
ness do not produce a factorization. For example, Lucas had already shown that 267 − 1 is
composite, but without finding a factor.

In fact, although this has not been proved, factoring appears to be a much harder problem
than primality testing, which is a good thing since the safety of many cryptographic systems
depends on the assumption that factoring is hard!

As we explained in the introduction, most algorithms for testing whether an integer n
is prime actually test for compositeness. This is because tests for compositeness usually
try to find a counterexample to some property, say A, implied by primality. If such a
counterexample can be guessed, then it is cheap to check that property A fails, and then
we know for sure that n is composite. We also have a witness (or certificate) that n is
composite. If the algorithm fails to show that n is composite, does this imply that n is
prime? Unfortunately, no. This is because, in general, the algorithm has not tested all
potential countexamples. So, how do we fix the algorithm?

One possibility is to try systematically all potential countexamples. If the algorithm fails
on all counterexamples, then the number n has to be prime. The problem with this approach
is that the number of counterexamples is generally too big, and this method is not practical.
Methods of this kind are presented in Crandall and Pomerance [3] and Ribenboim [18].

Another approach is to use a randomized algorithm. Typically, a counterexample is some
number a randomly chosen from the set {2, . . . , n − 2}, and the algorithm performs a test
on a and n to determine whether a is a counterexample. If the test is positive, then for sure
n is composite, and a is a witness to the fact that n is composite. If the test is negative,
then the algorithm does not find n to be composite, and we can call it again several times,
each time picking (independently from previous trials) another random number a. If the
algorithm ever reports a positive test, then for sure n is a composite. But what if we call the
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algorithm say 20 times, and every time the test is negative (which means that the algorithm
does not find n to be composite 20 times). Can we be sure that n is a prime?

Not necessarily, because the test performed by the algorithm may not be 100% reliable.
If n is prime, the test performed by the algorithm on every a is negative (as it should), but
there may be some composite n and some a for which the test is negative. Such a number a is
called a liar , because it fools the test. Even though n is composite, a does not trigger the test
to be positive, to indicate that n is indeed composite. But if the conditional probability that
the test performed by the algorithm is positive given that n is composite is large enough, say
at least 1/2, then it can be shown that the conditional probability that n is composite, given
that the test performed by the algorithm is negative 20 times, is less than ln(n) · (1/2)20 (see
Section 5.4).1 In summary, if we run the algorithm ` times (for ` large enough, say ` = 100)

on some number n, and if each time the test performed by the algorithm is negative, then
we can be very confident that n is prime. Such kind of randomized algorithm is called a
Monte Carlo algorithm.

Several randomized algorithms for primality testing have been designed, including the
Miller–Rabin and the Solovay–Strassen tests, to be discussed in Chapters 5 and 6. Then,
in the summer of 2002, a paper with the title “PRIMES is in P,” by Agrawal, Kayal and
Saxena, appeared on the website of the Indian Institute of Technology at Kanpur, India.
In this paper, it was shown that testing for primality has a deterministic (nonrandomized)
algorithm that runs in polynomial time. Finally, the long-standing open problem of “deciding
whether primality testing is in P” was settled in this amazing paper, by an algorithm usually
referred to as the AKS algorithm. We will not discuss this algorithm in these notes (but,
perhaps in another set of notes ...).

1Recall that we use ln(n) to denote the logarithm of n to the base e, known as the natural logarithm of n.
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Chapter 4

Basic Facts About Groups, Rings,
Fields, and Number Theory

This chapter provides a review of the mathematical background needed to thoroughly under-
stand the randomized algorithms for primality testing presented in the following chapters,
especially the proofs. This includes some basics on groups, the structure of cyclic groups,
rings, fields, and finite fields. The multiplicative groups (Z/nZ)∗ of invertible elements of the
rings Z/nZ play a particularly important role. It is crucial to know when the group (Z/nZ)∗

is cyclic, which means that it is generated by a single element called a primitive root . A
famous result due to Gauss says that the group (Z/nZ)∗ has a primitive root iff n = 2, 4, pm,
or 2pm where p is an odd prime. We give a complete proof of this result in Sections 4.4 and
4.5.

Readers familiar with groups, rings and fields should probably skip Sections 4.1, 4.2, and
4.3. However, the reader may want to read Sections 4.4 and 4.5, skipping proofs the first
time, before reading Chapter 5. The material in these two sections is classical and very
beautiful. Similarly, the reader may want to read Section 4.7, omitting proofs the first time,
before reading Chapter 6.

4.1 Groups, Subgroups, Cosets

Definition 4.1. A group is a set G equipped with a binary operation · : G × G → G that
associates an element a · b ∈ G to every pair of elements a, b ∈ G, and having the following
properties: · is associative, has an identity element e ∈ G, and every element in G is invertible
(w.r.t. ·). More explicitly, this means that the following equations hold for all a, b, c ∈ G:

(G1) a · (b · c) = (a · b) · c. (associativity);

(G2) a · e = e · a = a. (identity);

(G3) For every a ∈ G, there is some a−1 ∈ G such that a · a−1 = a−1 · a = e. (inverse).
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A group G is abelian (or commutative) if

a · b = b · a for all a, b ∈ G.

A set M together with an operation · : M ×M → M and an element e satisfying only
Conditions (G1) and (G2) is called a monoid . For example, the set N = {0, 1, . . . , n, . . .} of
natural numbers is a (commutative) monoid under addition. However, it is not a group.

Some examples of groups are given below.

Example 4.1.

1. The set Z = {. . . ,−n, . . . ,−1, 0, 1, . . . , n, . . .} of integers is an abelian group under
addition, with identity element 0. However, Z∗ = Z − {0} is not a group under
multiplication.

2. The set Q of rational numbers (fractions p/q with p, q ∈ Z and q 6= 0) is an abelian
group under addition, with identity element 0. The set Q∗ = Q−{0} is also an abelian
group under multiplication, with identity element 1.

3. Given any nonempty set S, the set of bijections f : S → S, also called permutations
of S, is a group under function composition (i.e., the multiplication of f and g is the
composition g ◦ f), with identity element the identity function idS. This group is not
abelian as soon as S has more than two elements. The permutation group of the set
S = {1, . . . , n} is often denoted Sn and called the symmetric group on n elements.

4. For any natural number n ≥ 1, the set Z/nZ of residues modulo n as in Definition 2.1
is an abelian group under addition modulo n.

5. The set of n×n invertible matrices with real (or complex) coefficients is a group under
matrix multiplication, with identity element the identity matrix In. This group is
called the general linear group and is usually denoted by GL(n,R) (or GL(n,C)).

6. The set of n × n invertible matrices A with real (or complex) coefficients such that
det(A) = 1 is a group under matrix multiplication, with identity element the identity
matrix In. This group is called the special linear group and is usually denoted by
SL(n,R) (or SL(n,C)).

7. The set of n× n matrices Q with real coefficients such that

QQ> = Q>Q = In

is a group under matrix multiplication, with identity element the identity matrix In;
we have Q−1 = Q>. This group is called the orthogonal group and is usually denoted
by O(n).
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8. The set of n× n invertible matrices Q with real coefficients such that

QQ> = Q>Q = In and det(Q) = 1

is a group under matrix multiplication, with identity element the identity matrix In;
as in (6), we have Q−1 = Q>. This group is called the special orthogonal group or
rotation group and is usually denoted by SO(n).

The groups in (5)–(8) are nonabelian for n ≥ 2, except for SO(2) which is abelian (but O(2)
is not abelian).

It is customary to denote the operation of an abelian group G by +, in which case the
inverse a−1 of an element a ∈ G is denoted by −a.

The identity element of a group is unique. In fact, we can prove a more general fact:

Proposition 4.1. If a binary operation · : M ×M → M is associative and if e′ ∈ M is a
left identity and e′′ ∈M is a right identity, which means that

e′ · a = a for all a ∈M (G2l)

and
a · e′′ = a for all a ∈M, (G2r)

then e′ = e′′.

Proof. If we let a = e′′ in equation (G2l), we get

e′ · e′′ = e′′,

and if we let a = e′ in equation (G2r), we get

e′ · e′′ = e′,

and thus
e′ = e′ · e′′ = e′′,

as claimed.

Proposition 4.1 implies that the identity element of a monoid is unique, and since every
group is a monoid, the identity element of a group is unique. Furthermore, every element in
a group has a unique inverse. This is a consequence of a slightly more general fact:

Proposition 4.2. In a monoid M with identity element e, if some element a ∈M has some
left inverse a′ ∈M and some right inverse a′′ ∈M , which means that

a′ · a = e (G3l)

and
a · a′′ = e, (G3r)

then a′ = a′′.
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Proof. Using (G3l) and the fact that e is an identity element, we have

(a′ · a) · a′′ = e · a′′ = a′′.

Similarly, Using (G3r) and the fact that e is an identity element, we have

a′ · (a · a′′) = a′ · e = a′.

However, since M is monoid, the operation · is associative, so

a′ = a′ · (a · a′′) = (a′ · a) · a′′ = a′′,

as claimed.

Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only (G2r) (the exis-
tence of a right identity) and (G3r) (the existence of a right inverse for every element) (or
(G2l) and (G3l)). It is a good exercise to prove that the group axioms (G2) and (G3) follow
from (G2r) and (G3r).

Definition 4.2. If a group G has a finite number n of elements, we say that G is a group
of order n. If G is infinite, we say that G has infinite order . The order of a group is usually
denoted by |G| (if G is finite).

Given a group G, for any two subsets R, S ⊆ G, we let

RS = {r · s | r ∈ R, s ∈ S}.

In particular, for any g ∈ G, if R = {g}, we write

gS = {g · s | s ∈ S},

and similarly, if S = {g}, we write

Rg = {r · g | r ∈ R}.

From now on, we will drop the multiplication sign and write g1g2 for g1 · g2.

Definition 4.3. Let G be a group. For any g ∈ G, define Lg, the left translation by g, by
Lg(a) = ga, for all a ∈ G, and Rg, the right translation by g, by Rg(a) = ag, for all a ∈ G.

The following simple fact is often used.

Proposition 4.3. Given a group G, the translations Lg and Rg are bijections.

Proof. We show this for Lg, the proof for Rg being similar.

If Lg(a) = Lg(b), then ga = gb, and multiplying on the left by g−1, we get a = b, so Lg
injective. For any b ∈ G, we have Lg(g

−1b) = gg−1b = b, so Lg is surjective. Therefore, Lg
is bijective.
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Definition 4.4. Given a group G, a subset H of G is a subgroup of G iff

(1) The identity element e of G also belongs to H (e ∈ H);

(2) For all h1, h2 ∈ H, we have h1h2 ∈ H;

(3) For all h ∈ H, we have h−1 ∈ H.

The proof of the following proposition is left as an exercise.

Proposition 4.4. Given a group G, a subset H ⊆ G is a subgroup of G iff H is nonempty
and whenever h1, h2 ∈ H, then h1h

−1
2 ∈ H.

If the group G is finite, then the following criterion can be used.

Proposition 4.5. Given a finite group G, a subset H ⊆ G is a subgroup of G iff

(1) e ∈ H;

(2) H is closed under multiplication.

Proof. We just have to prove that Condition (3) of Definition 4.4 holds. For any a ∈ H,
since the left translation La is bijective, its restriction to H is injective, and since H is finite,
it is also bijective. Since e ∈ H, there is a unique b ∈ H such that La(b) = ab = e. However,
if a−1 is the inverse of a in G, we also have La(a

−1) = aa−1 = e, and by injectivity of La, we
have a−1 = b ∈ H.

Example 4.2.

1. For any integer n ∈ Z, the set

nZ = {nk | k ∈ Z}

is a subgroup of the group Z.

2. The set of matrices

GL+(n,R) = {A ∈ GL(n,R) | det(A) > 0}

is a subgroup of the group GL(n,R).

3. The group SL(n,R) is a subgroup of the group GL(n,R).

4. The group O(n) is a subgroup of the group GL(n,R).

5. The group SO(n) is a subgroup of the group O(n), and a subgroup of the group
SL(n,R).
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6. It is not hard to show that every 2× 2 rotation matrix R ∈ SO(2) can be written as

R =

(
cos θ − sin θ
sin θ cos θ

)
, with 0 ≤ θ < 2π.

Then SO(2) can be considered as a subgroup of SO(3) by viewing the matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
as the matrix

Q =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

7. The set of 2× 2 upper-triangular matrices of the form(
a b
0 c

)
a, b, c ∈ R, a, c 6= 0

is a subgroup of the group GL(2,R).

8. The set V consisting of the four matrices(
±1 0
0 ±1

)
is a subgroup of the group GL(2,R) called the Klein four-group.

Definition 4.5. If H is a subgroup of G and g ∈ G is any element, the sets of the form
gH are called left cosets of H in G and the sets of the form Hg are called right cosets of H
in G. The left cosets (resp. right cosets) of H induce an equivalence relation ∼ defined as
follows: For all g1, g2 ∈ G,

g1 ∼ g2 iff g1H = g2H

(resp. g1 ∼ g2 iff Hg1 = Hg2). Obviously, ∼ is an equivalence relation.

Now, we claim the following fact:

Proposition 4.6. Given a group G and any subgroup H of G, we have g1H = g2H iff
g−12 g1H = H iff g−12 g1 ∈ H, for all g1, g2 ∈ G.

Proof. If we apply the bijection Lg−1
2

to both g1H and g2H we get Lg−1
2

(g1H) = g−12 g1H

and Lg−1
2

(g2H) = H, so g1H = g2H iff g−12 g1H = H. If g−12 g1H = H, since 1 ∈ H, we get

g−12 g1 ∈ H. Conversely, if g−12 g1 ∈ H, since H is a group, the left translation Lg−1
2 g1

is a

bijection of H, so g−12 g1H = H. Thus, g−12 g1H = H iff g−12 g1 ∈ H.
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It follows that the equivalence class of an element g ∈ G is the coset gH (resp. Hg).
Since Lg is a bijection between H and gH, the cosets gH all have the same cardinality. The
map Lg−1 ◦ Rg is a bijection between the left coset gH and the right coset Hg, so they also
have the same cardinality. Since the distinct cosets gH form a partition of G, we obtain the
following fact:

Proposition 4.7. (Lagrange) For any finite group G and any subgroup H of G, the order
h of H divides the order n of G.

Definition 4.6. Given a finite group G and a subgroup H of G, if n = |G| and h = |H|,
then the ratio n/h is denoted by (G : H) and is called the index of H in G.

The index (G : H) is the number of left (and right) cosets of H in G. Proposition 4.7
can be stated as

|G| = (G : H)|H|.

The set of left cosets of H in G (which, in general, is not a group) is denoted G/H.
The “points” of G/H are obtained by “collapsing” all the elements in a coset into a single
element.

Example 4.3.

1. Let n be any positive integer, and consider the subgroup nZ of Z (under addition).
The coset of any integer m ∈ Z is

m+ nZ = {m+ nk | k ∈ Z}.

In particular, the coset of 0 is the set nZ. By dividing m by n, we have m = nq + r
for some unique r such that 0 ≤ r ≤ n − 1. But then we see that r is the smallest
nonnegative element of the coset m+nZ. This implies that there is a bijection betwen
the cosets of the subgroup nZ of Z and the set of residues {0, 1, . . . , n− 1} modulo n,
or equivalently a bijection with Z/nZ.

2. The cosets of SL(n,R) in GL(n,R) are the sets of matrices

ASL(n,R) = {AB | B ∈ SL(n,R)}, A ∈ GL(n,R).

Since A is invertible, det(A) 6= 0, and we can write A = (det(A))1/n((det(A))−1/nA)
if det(A) > 0 and A = (− det(A))1/n((− det(A))−1/nA) if det(A) < 0. But we have
(det(A))−1/nA ∈ SL(n,R) if det(A) > 0 and −(− det(A))−1/nA ∈ SL(n,R) if det(A) <
0, so the coset ASL(n,R) contains the matrix

(det(A))1/nIn if det(A) > 0, −(− det(A))1/nIn if det(A) < 0.

It follows that there is a bijection between the cosets of SL(n,R) in GL(n,R) and R.
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3. The cosets of SO(n) in GL+(n,R) are the sets of matrices

ASO(n) = {AQ | Q ∈ SO(n)}, A ∈ GL+(n,R).

It can be shown (using the polar form for matrices) that there is a bijection between
the cosets of SO(n) in GL+(n,R) and the set of n × n symmetric, positive, definite
matrices; these are the symmetric matrices whose eigenvalues are strictly positive.

4. The cosets of SO(2) in SO(3) are the sets of matrices

QSO(2) = {QR | R ∈ SO(2)}, Q ∈ SO(3).

The group SO(3) moves the points on the sphere S2 in R3, namely for any x ∈ S2,

x 7→ Qx for any rotation Q ∈ SO(3).

Here,
S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

Let N = (0, 0, 1) be the north pole on the sphere S2. Then it is not hard to show that
SO(2) is precisely the subgroup of SO(3) that leaves N fixed. As a consequence, all
rotations QR in the coset QSO(2) map N to the same point QN ∈ S2, and it can be
shown that there is a bijection between the cosets of SO(2) in SO(3) and the points
on S2. The surjectivity of this map has to do with the fact that the action of SO(3)
on S2 is transitive, which means that for any point x ∈ S2, there is some rotation
Q ∈ SO(3) such that QN = x.

It is tempting to define a multiplication operation on left cosets (or right cosets) by
setting

(g1H)(g2H) = (g1g2)H,

but this operation is not well defined in general, unless the subgroup H possesses a special
property. In Example 4.3, it is possible to define multiplication of cosets in (1), but it is not
possible in (2) and (3).

The property of the subgroup H that allows defining a multiplication operation on left
cosets is typical of the kernels of group homomorphisms, so we are led to the following
definition.

Definition 4.7. Given any two groups G and G′, a function ϕ : G→ G′ is a homomorphism
iff

ϕ(g1g2) = ϕ(g1)ϕ(g2), for all g1, g2 ∈ G.

Taking g1 = g2 = e (in G), we see that

ϕ(e) = e′,

and taking g1 = g and g2 = g−1, we see that

ϕ(g−1) = (ϕ(g))−1.
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Example 4.4.

1. The map ϕ : Z→ Z/nZ given by ϕ(m) = m mod n for all m ∈ Z is a homomorphism.

2. The map det : GL(n,R) → R is a homomorphism because det(AB) = det(A) det(B)
for any two matrices A,B. Similarly, the map det : O(n)→ R is a homomorphism.

If ϕ : G → G′ and ψ : G′ → G′′ are group homomorphisms, then ψ ◦ ϕ : G → G′′ is also
a homomorphism. If ϕ : G→ G′ is a homomorphism of groups, and if H ⊆ G, H ′ ⊆ G′ are
two subgroups, then it is easily checked that

Im ϕ = ϕ(H) = {ϕ(g) | g ∈ H}

is a subgroup of G′ and
ϕ−1(H ′) = {g ∈ G | ϕ(g) ∈ H ′}

is a subgroup of G. In particular, when H ′ = {e′}, we obtain the kernel , Ker ϕ, of ϕ.

Definition 4.8. If ϕ : G → G′ is a homomorphism of groups, and if H ⊆ G is a subgroup
of G, then the subgroup of G′,

Im ϕ = ϕ(H) = {ϕ(g) | g ∈ H},

is called the image of H by ϕ, and the subgroup of G,

Ker ϕ = {g ∈ G | ϕ(g) = e′},

is called the kernel of ϕ.

Example 4.5.

1. The kernel of the homomorphism ϕ : Z→ Z/nZ is nZ.

2. The kernel of the homomorphism det : GL(n,R)→ R is SL(n,R). Similarly, the kernel
of the homomorphism det : O(n)→ R is SO(n).

The following characterization of the injectivity of a group homomorphism is used all the
time.

Proposition 4.8. If ϕ : G→ G′ is a homomorphism of groups, then ϕ : G→ G′ is injective
iff Ker ϕ = {e}. (We also write Ker ϕ = (0).)

Proof. Assume ϕ is injective. Since ϕ(e) = e′, if ϕ(g) = e′, then ϕ(g) = ϕ(e), and by
injectivity of ϕ we must have g = e, so Ker ϕ = {e}.

Conversely, assume that Ker ϕ = {e}. If ϕ(g1) = ϕ(g2), then by multiplication on the
left by (ϕ(g1))

−1 we get

e′ = (ϕ(g1))
−1ϕ(g1) = (ϕ(g1))

−1ϕ(g2),
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and since ϕ is a homomorphism (ϕ(g1))
−1 = ϕ(g−11 ), so

e′ = (ϕ(g1))
−1ϕ(g2) = ϕ(g−11 )ϕ(g2) = ϕ(g−11 g2).

This shows that g−11 g2 ∈ Ker ϕ, but since Ker ϕ = {e} we have g−11 g2 = e, and thus g2 = g1,
proving that ϕ is injective.

The maps g 7→ Lg (where Lg is left translation by g) and g 7→ Rg (where Rg is right
translation by g) are injective homomorphisms of G into the group of bijections of G (because
Lg1g2 = Lg1 ◦ Lg2 and Rg1g2 = Rg1 ◦Rg2 , and the kernels of these homomorphisms are {e}).

Definition 4.9. We say that a group homomorphism ϕ : G→ G′ is an isomorphism if there
is a homomorphism ψ : G′ → G, so that

ψ ◦ ϕ = idG and ϕ ◦ ψ = idG′ . (†)

If ϕ is an isomorphism we say that the groups G and G′ are isomorphic. When G′ = G, a
group isomorphism is called an automorphism.

The reasoning used in the proof of Proposition 4.2 shows that if a a group homomorphism
ϕ : G→ G′ is an isomorphism, then the homomorphism ψ : G′ → G satisfying Condition (†)
is unique. This homomorphism is denoted ϕ−1.

Suppose ϕ : G → G′ is a bijective homomorphism, and let ϕ−1 be the inverse of ϕ (as a
function). Then for all a, b ∈ G, we have

ϕ(ϕ−1(a)ϕ−1(b)) = ϕ(ϕ−1(a))ϕ(ϕ−1(b)) = ab,

and so
ϕ−1(ab) = ϕ−1(a)ϕ−1(b),

which proves that ϕ−1 is a homomorphism. Therefore, we proved the following fact.

Proposition 4.9. A bijective group homomorphism ϕ : G→ G′ is an isomorphism.

Observe that the property

gH = Hg, for all g ∈ G. (∗)

is equivalent by multiplication on the right by g−1 to

gHg−1 = H, for all g ∈ G,

and the above is equivalent to

gHg−1 ⊆ H, for all g ∈ G. (∗∗)

This is because gHg−1 ⊆ H implies H ⊆ g−1Hg, and this for all g ∈ G.
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Proposition 4.10. Let ϕ : G → G′ be a group homomorphism. Then H = Ker ϕ satisfies
Property (∗∗), and thus Property (∗).

Proof. We have

ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g−1) = ϕ(g)e′ϕ(g)−1 = ϕ(g)ϕ(g)−1 = e′,

for all h ∈ H = Ker ϕ and all g ∈ G. Thus, by definition of H = Ker ϕ, we have gHg−1 ⊆
H.

Definition 4.10. For any group G, a subgroup N of G is a normal subgroup of G iff

gNg−1 = N, for all g ∈ G.

This is denoted by N CG.

Proposition 4.10 shows that the kernel Ker ϕ of a homomorphism ϕ : G→ G′ is a normal
subgroup of G.

Observe that if G is abelian, then every subgroup of G is normal.

Consider Example 4.2. Let R ∈ SO(2) and A ∈ SL(2,R) be the matrices

R =

(
0 −1
1 0

)
, A =

(
1 1
0 1

)
.

Then

A−1 =

(
1 −1
0 1

)
and we have

ARA−1 =

(
1 1
0 1

)(
0 −1
1 0

)(
1 −1
0 1

)
=

(
1 −1
1 0

)(
1 −1
0 1

)
=

(
1 −2
1 −1

)
,

and clearly ARA−1 /∈ SO(2). Therefore SO(2) is not a normal subgroup of SL(2,R). The
same counter-example shows that O(2) is not a normal subgroup of GL(2,R).

Let R ∈ SO(2) and Q ∈ SO(3) be the matrices

R =

0 −1 0
1 0 0
0 0 1

 , Q =

1 0 0
0 0 −1
0 1 0

 .

Then

Q−1 = Q> =

1 0 0
0 0 1
0 −1 0
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and we have

QRQ−1 =

1 0 0
0 0 −1
0 1 0

0 −1 0
1 0 0
0 0 1

1 0 0
0 0 1
0 −1 0

 =

0 −1 0
0 0 −1
1 0 0

1 0 0
0 0 1
0 −1 0


=

0 0 −1
0 1 0
1 0 0

 .

Observe that QRQ−1 /∈ SO(2), so SO(2) is not a normal subgroup of SO(3).

Let T and A ∈ GL(2,R) be the following matrices

T =

(
1 1
0 1

)
, A =

(
0 1
1 0

)
.

We have

A−1 =

(
0 1
1 0

)
= A,

and

ATA−1 =

(
0 1
1 0

)(
1 1
0 1

)(
0 1
1 0

)
=

(
0 1
1 1

)(
0 1
1 0

)
=

(
1 0
1 1

)
.

The matrix T is upper triangular, but ATA−1 is not, so the group of 2× 2 upper triangular
matrices is not a normal subgroup of GL(2,R).

Let Q ∈ V and A ∈ GL(2,R) be the following matrices

Q =

(
1 0
0 −1

)
, A =

(
1 1
0 1

)
.

We have

A−1 =

(
1 −1
0 1

)
and

AQA−1 =

(
1 1
0 1

)(
1 0
0 −1

)(
1 −1
0 1

)
=

(
1 −1
0 −1

)(
1 −1
0 1

)
=

(
1 −2
0 −1

)
.

Clearly AQA−1 /∈ V , which shows that the Klein four group is not a normal subgroup of
GL(2,R).

The reader should check that the subgroups nZ, GL+(n,R), SL(n,R), and SO(n,R) as
a subgroup of O(n,R), are normal subgroups.

If N is a normal subgroup of G, the equivalence relation ∼ induced by left cosets (see
Definition 4.5) is the same as the equivalence induced by right cosets. Furthermore, this
equivalence relation is a congruence, which means that: For all g1, g2, g

′
1, g
′
2 ∈ G,
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(1) If g1N = g′1N and g2N = g′2N , then g1g2N = g′1g
′
2N , and

(2) If g1N = g2N , then g−11 N = g−12 N .

As a consequence, we can define a group structure on the set G/ ∼ of equivalence classes
modulo ∼, by setting

(g1N)(g2N) = (g1g2)N.

Definition 4.11. Let G be a group and N be a normal subgroup of G. The group obtained
by defining the multiplication of (left) cosets by

(g1N)(g2N) = (g1g2)N, g1, g2 ∈ G

is denoted G/N , and called the quotient of G by N . The equivalence class gN of an element
g ∈ G is also denoted g (or [g]). The map π : G→ G/N given by

π(g) = g = gN

is a group homomorphism called the canonical projection.

Since the kernel of a homomorphism is a normal subgroup, we obtain the following very
useful result.

Proposition 4.11. Given a homomorphism of groups ϕ : G→ G′, the groups G/Ker ϕ and
Im ϕ = ϕ(G) are isomorphic.

Proof. Since ϕ is surjective onto its image, we may assume that ϕ is surjective, so that
G′ = Im ϕ. We define a map ϕ : G/Ker ϕ→ G′ as follows:

ϕ(g) = ϕ(g), g ∈ G.

We need to check that the definition of this map does not depend on the representative
chosen in the coset g = gKer ϕ, and that it is a homomorphism. If g′ is another element in
the coset gKer ϕ, which means that g′ = gh for some h ∈ Kerϕ, then

ϕ(g′) = ϕ(gh) = ϕ(g)ϕ(h) = ϕ(g)e′ = ϕ(g),

since ϕ(h) = e′ as h ∈ Ker ϕ. This shows that

ϕ(g′) = ϕ(g′) = ϕ(g) = ϕ(g),

so the map ϕ is well defined. It is a homomorphism because

ϕ(gg′) = ϕ(gg′)

= ϕ(gg′)

= ϕ(g)ϕ(g′)

= ϕ(g)ϕ(g′).

The map ϕ is injective because ϕ(g) = e′ iff ϕ(g) = e′ iff g ∈ Ker ϕ, iff g = e. The map ϕ
is surjective because ϕ is surjective. Therefore ϕ is a bijective homomorphism, and thus an
isomorphism, as claimed.
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Proposition 4.11 is called the first isomorphism theorem.

A useful way to construct groups is the direct product construction.

Definition 4.12. Given two groups G an H, we let G×H be the Cartestian product of the
sets G and H with the multiplication operation · given by

(g1, h1) · (g2, h2) = (g1g2, h1h2).

It is immediately verified that G×H is a group called the direct product of G and H.

Similarly, given any n groups G1, . . . , Gn, we can define the direct product G1× · · ·×Gn

is a similar way.

If G is an abelian group and H1, . . . , Hn are subgroups of G, the situation is simpler.
Consider the map

a : H1 × · · · ×Hn → G

given by
a(h1, . . . , hn) = h1 + · · ·+ hn,

using + for the operation of the group G. It is easy to verify that a is a group homomorphism,
so its image is a subgroup of G denoted by H1 + · · ·+Hn, and called the sum of the groups
Hi. The following proposition will be needed.

Proposition 4.12. Given an abelian group G, if H1 and H2 are any subgroups of G such
that H1 ∩H2 = {0}, then the map a is an isomorphism

a : H1 ×H2 → H1 +H2.

Proof. The map is surjective by definition, so we just have to check that it is injective. For
this, we show that Ker a = {(0, 0)}. We have a(a1, a2) = 0 iff a1 + a2 = 0 iff a1 = −a2. Since
a1 ∈ H1 and a2 ∈ H2, we see that a1, a2 ∈ H1 ∩H2 = {0}, so a1 = a2 = 0, which proves that
Ker a = {(0, 0)}.

Under the conditions of Proposition 4.12, namely H1 ∩H2 = {0}, the group H1 + H2 is
called the direct sum of H1 and H2; it is denoted by H1 ⊕H2, and we have an isomorphism
H1 ×H2

∼= H1 ⊕H2.

4.2 Cyclic Groups

Given a group G with unit element 1, for any element g ∈ G and for any natural number
n ∈ N, define gn as follows:

g0 = 1

gn+1 = g · gn.
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For any integer n ∈ Z, we define gn by

gn =

{
gn if n ≥ 0

(g−1)(−n) if n < 0.

The following properties are easily verified:

gi · gj = gi+j

(gi)−1 = g−i

gi · gj = gj · gi,

for all i, j ∈ Z.

Define the subset 〈g〉 of G by

〈g〉 = {gn | n ∈ Z}.

The following proposition is left as an exercise.

Proposition 4.13. Given a group G, for any element g ∈ G, the set 〈g〉 is the smallest
abelian subgroup of G containing g.

Definition 4.13. A group G is cyclic iff there is some element g ∈ G such that G = 〈g〉.
An element g ∈ G with this property is called a generator of G.

The Klein four group V of Example 4.2 is abelian, but not cyclic. This is because V has
four elements, but all the elements different from the identity have order 2.

Cyclic groups are quotients of Z. For this, we use a basic property of Z. Recall that for
any n ∈ Z, we let nZ denote the set of multiples of n,

nZ = {nk | k ∈ Z}.

Proposition 4.14. Every subgroup H of Z is of the form H = nZ for some n ∈ N.

Proof. If H is the trivial group {0}, then let n = 0. If H is nontrivial, for any nonzero element
m ∈ H, we also have −m ∈ H and either m or −m is positive, so let n be the smallest
positive integer in H. By Proposition 4.13, nZ is the smallest subgroup of H containing n.
For any m ∈ H with m 6= 0, we can write

m = nq + r, with 0 ≤ r < n.

Now, since nZ ⊆ H, we have nq ∈ H, and since m ∈ H, we get r = m− nq ∈ H. However,
0 ≤ r < n, contradicting the minimality of n, so r = 0, and H = nZ.
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Given any cyclic group G, for any generator g of G, we can define a mapping ϕ : Z→ G
by ϕ(m) = gm. Since g generates G, this mapping is surjective. The mapping ϕ is clearly a
group homomorphism, so let H = Kerϕ be its kernel. By a previous observation, H = nZ
for some n ∈ Z, so by the first homomorphism theorem, we obtain an isomorphism

ϕ : Z/nZ −→ G

from the quotient group Z/nZ onto G. Obviously, if G has finite order, then |G| = n. In
summary, we have the following result.

Proposition 4.15. Every cyclic group G is either isomorphic to Z, or to Z/nZ, for some
natural number n > 0. In the first case, we say that G is an infinite cyclic group, and in the
second case, we say that G is a cyclic group of order n.

The quotient group Z/nZ consists of the cosets m+nZ = {m+nk | k ∈ Z}, with m ∈ Z,
that is, of the equivalence classes of Z under the equivalence relation ≡ defined such that

x ≡ y iff x− y ∈ nZ iff x ≡ y (mod n).

We also denote the equivalence class x + nZ of x by x, or if we want to be more precise by
[x]n. The group operation is given by x + y = x+ y. For every x ∈ Z, there is a unique
representative, x mod n (the nonnegative remainder of the division of x by n) in the class x
of x, such that 0 ≤ x mod n ≤ n − 1. For this reason, we often identify Z/nZ with the set
{0, . . . , n−1}. To be more rigorous, we can give {0, . . . , n−1} a group structure by defining
+n such that

x+n y = (x+ y) mod n.

Then, it is easy to see that {0, . . . , n − 1} with the operation +n is a group with identity
element 0 isomorphic to Z/nZ. The additions tables of Z/nZ for n = 2, 3, 4, 5, 6, 7 are shown
below.

n = 2
+ 0 1

0 0 1
1 1 0

n = 3
+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

n = 4
+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

n = 5
+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

n = 6
+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

n = 7
+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5
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We can also define a multiplication operation · on Z/nZ as follows:

a · b = ab = ab mod n.

Then, it is easy to check that · is abelian, associative, that 1 is an identity element for ·, and
that · is distributive on the left and on the right with respect to addition. This makes Z/nZ
into a commutative ring . We usually suppress the dot and write a b instead of a · b. The
multiplication tables of Z/nZ for n = 2, 3, . . . , 9 are shown below. Since 0 ·m = m · 0 = 0
for all m, these tables are only given for nonzero arguments.

n = 2
· 1

1 1

n = 3
· 1 2

1 1 2
2 2 1

n = 4
· 1 2 3

1 1 2 3
2 2 0 2
3 3 2 1

n = 5
· 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

n = 6
· 1 2 3 4 5

1 1 2 3 4 5
2 2 4 0 2 4
3 3 0 3 0 3
4 4 2 0 4 2
5 5 4 3 2 1

n = 7
· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

n = 8
· 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 4 6 0 2 4 6
3 3 6 1 4 7 2 5
4 4 0 4 0 4 0 4
5 5 2 7 4 1 6 3
6 6 4 2 0 6 4 2
7 7 6 5 4 3 2 1

n = 9
· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 4 6 8 1 3 5 7
3 3 6 0 3 6 0 3 6
4 4 8 3 7 2 6 1 5
5 5 1 6 2 7 3 8 4
6 6 3 0 6 3 0 6 3
7 7 5 3 1 8 6 4 2
8 8 7 6 5 4 3 2 1

Examining the above tables, we observe that for n = 2, 3, 5, 7, which are primes, every
element has an inverse, and thus Z/nZ− {0} is an abelian group under multiplication. For
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n = 4, 6, 8, 9, the elements a that have an inverse are precisely those that are relatively prime
to the modulus n (that is, gcd(a, n) = 1). The subset of these elements, shown in boldface,
forms an abelian group under multiplication.

These observations hold in general.

Proposition 4.16. Given any integer n ≥ 1, for any a ∈ Z, the residue class a ∈ Z/nZ is
invertible with respect to multiplication iff gcd(a, n) = 1.

Proof. If a has inverse b in Z/nZ, then a b = 1, which means that

ab ≡ 1 (mod n),

that is ab = 1 + nk for some k ∈ Z, which is the Bezout identity

ab− nk = 1

and implies that gcd(a, n) = 1. Conversely, if gcd(a, n) = 1, then by Bezout’s identity there
exist u, v ∈ Z such that

au+ nv = 1,

so au = 1− nv, that is,

au ≡ 1 (mod n),

which means that a u = 1, so a is invertible in Z/nZ.

Definition 4.14. The group (under multiplication) of invertible elements of the ring Z/nZ
is denoted by (Z/nZ)∗. Note that this group is abelian and only defined if n ≥ 2.

The Euler ϕ-function plays an important role in the theory of the groups (Z/nZ)∗.

Definition 4.15. Given any positive integer n ≥ 1, the Euler ϕ-function (or Euler totient
function) is defined such that ϕ(n) is the number of integers a, with 1 ≤ a ≤ n, which are
relatively prime to n; that is, with gcd(a, n) = 1.1

Then, by Proposition 4.16, we see that the group (Z/nZ)∗ has order ϕ(n).

For n = 2, (Z/2Z)∗ = {1}, the trivial group. For n = 3, (Z/3Z)∗ = {1, 2}, and for
n = 4, we have (Z/4Z)∗ = {1, 3}. Both groups are isomorphic to the group {−1, 1}. For
n = 6 = 2 · 3, we have ϕ(6) = 2, which is confirmed since (Z/6Z)∗ = {1, 5}, for n = 8, we
have ϕ(8) = 4, which is confirmed since (Z/8Z)∗ = {1, 3, 5, 7}, and for n = 9 = 3 ·3, we have
ϕ(9) = 6, which is confirmed since (Z/9Z)∗ = {1, 2, 4, 5, 7, 8}.

Since gcd(a, n) = 1 for every a ∈ {1, . . . , n− 1} iff n is prime, by Proposition 4.16 we see
that (Z/nZ)∗ = Z/nZ− {0} iff n is prime.

1We allow a = n to accomodate the special case n = 1.
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Even though in principle a finite cyclic group has a very simple structure, finding a
generator for a finite cyclic group is generally hard. For example, it turns out that the
multiplicative group (Z/pZ)∗ is a cyclic group when p is prime, but no efficient method for
finding a generator for (Z/pZ)∗ is known (besides a brute-force search).

Examining the multiplication tables for (Z/nZ)∗ for n = 3, 4, . . . , 9, we can check the
following facts:

1. 2 is a generator for (Z/3Z)∗.

2. 3 is a generator for (Z/4Z)∗.

3. 2 is a generator for (Z/5Z)∗.

4. 5 is a generator for (Z/6Z)∗.

5. 3 is a generator for (Z/7Z)∗.

6. Every element of (Z/8Z)∗ satisfies the equation a2 = 1 (mod 8), thus (Z/8Z)∗ has no
generators.

7. 2 is a generator for (Z/9Z)∗.

More generally, the multiplicative groups (Z/pkZ)∗ and (Z/2pkZ)∗ are cyclic groups when
p is an odd prime and k ≥ 1. A generator of the group (Z/nZ)∗ (when there is one), is called
a primitive root modulo n. As an exercise, the reader should check that the next value of n
for which (Z/nZ)∗ has no generator is n = 12. The existence of primitive roots is thoroughly
investigated in Section 4.4.

The notion of order an element in a group plays an important role.

Definition 4.16. Given a group G, for any g ∈ G, the order of g in G, denoted by ordG(g),
is either infinite if the cyclic group 〈g〉 is infinite, or defined so that ordG(g) = |〈g〉| if 〈g〉
has finite order.

The following characterization of the order of an element will be needed.

Proposition 4.17. Given a group G and an element g ∈ G, if g has finite order, then
ordG(g) = s is characterized as follows: s is the smallest positive integer such that gs = 1.
Furthermore, g, g2, . . . , gs = 1 are all distinct, and for any positive integer m such that
gm = 1, then s divides m.

Proof. Assume 〈g〉 has order s. By proposition 4.15, we have an isomorphism ϕ : Z/sZ→ 〈g〉
with ϕ(1) = g. Consequently, 〈g〉 = {1 = gs, g, g2, . . . , gs−1}, where these elements are all
distinct, so s is indeed the smallest positive integer such that gs = 1.
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Conversely, if s is the least positive integer such that gs = 1, then g, g2, . . . , gs = 1 are all
distinct, since otherwise we would have gi = gj for some i, j with 1 ≤ i < j ≤ s, and then
we would have

gj−i = 1

with 0 < j − i < s, contradicting the minimality of s.

For any n ∈ N, we can write n = sq + r, with 0 ≤ r < s, and we get

gn = gsq+r = (gs)q · gr = gr.

Consequently, 〈g〉 = {1, g, . . . , gs−1}, and 〈g〉 has order s.

If gm = 1, then writing m = sq + r, with 0 ≤ r < s, we get

1 = gm = gsq+r = (gs)q · gr = gr,

so gr = 1 with 0 ≤ r < s, contradicting the minimality of s, so r = 0 and s divides m.

The next proposition deals with subgroups of cyclic groups.

Proposition 4.18. Let G = 〈g〉 be a finite cyclic group of order n and let H be any subgroup
of G.

(a) The group H is cyclic and generated by some element gk, where k ≥ 1 is the least
integer such that gk ∈ H.

(b) The order d = |H| of H divides n and n = dk.

(c) We have H = {a ∈ G | ad = 1}, with d from (b).

(d) For every d ≥ 1, the set
Hd = {a ∈ G | ad = 1}

is a cyclic subgroup of G of order gcd(n, d).

(e) For every divisor d of n, there is a unique cyclic subgroup H of order d given by

H = {a ∈ G | ad = 1}.

Proof. If H = {1}, then all claims are true with k = n and d = 1. From now on, assume
that |H| > 1, and pick gk ∈ H with k ≥ 1 minimal. Since |H| > 1, we must have k < n.

(a) For any element gm ∈ H, we can write m = kq + r, with 0 ≤ r < k. Then, we have

gm = gkq+r = (gk)q · gr,

and since gm, gk ∈ H, we have gr = (gk)−q · gm ∈ H. However, 0 ≤ r < k, contradicting the
minimality of k, so r = 0. It follows that H = 〈gk〉 is cyclic.
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(b) Let us prove that k divides n. Let s = gcd(k, n). By Bezout’s theorem, we can write

s = ku+ nv

for some u, v ∈ Z. Then, since gn = 1, we have

gs = gku+nv = (gk)u · (gn)v = (gk)u,

which shows that gs ∈ H. Since k is the least positive integer such that gk ∈ H, we must
have s = k; that is, k divides n. But then, gk must have order d = n/k, since the order of
gk is the smallest natural number h such that gkh = 1, and since n = dk is the order of g, it
must divide hk, which means that d must divide h, and so h = d.

(c) From (b), H = {gk, g2k, . . . , gdk = 1}, and we have (gjk)d = (gdk)j = 1, which shows
that every a ∈ H satisfies the equation ad = 1. Conversely, if a ∈ H satisfies ad = 1, since
a = gi for some i, we have gid = 1, and since g has order n, the number n = kd must divide
id, which means that k must divide i. Consequently, a = (gk)i/k ∈ H.

(d) It is immediately verified that Hd is a subgroup of G. We have a = gi ∈ Hd iff
(gi)d = gid = 1. Write r = gcd(d, n), n = n1r and d = d1r. Then gcd(n1, d1) = 1. Since g
has order n, the number n = n1r divides id = id1r, so n1 divides id1. Since gcd(n1, d1) = 1,
the number n1 divides i, and since 1 ≤ i ≤ n, we conclude that i = n1, 2n1, . . . , rn1 = n.
Therefore, Hd has order r = gcd(d, n).

(e) This follows immediately from (d).

Proposition 4.19. Let G = 〈g〉 be a finite cyclic group of order n. Then we have:

(a) For any a ∈ G, the order ordG(a) of a divides n.

(b) For any i, with 1 ≤ i ≤ n, the order of gi is n/gcd(i, n).

(c) For every divisor d of n, the group G contains ϕ(d) elements of order d. In particular,
a cyclic group of order n has ϕ(n) generators.

Proof. (a) The order ordG(a) of a is the order of the cyclic group 〈a〉, and by Lagrange’s
theorem (Proposition 4.7), ordG(a) divides n.

(b) Write k = gcd(i, n), i = i1k, and n = n1k. The order d of gi is the smallest positive
integer such that (gi)d = gid = 1. Since g has order n, the number n = n1k must divide
id = i1kd, so that n1 divides i1d. Since gcd(i1, n1) = 1, the number n1 must divide d, and
so d = n1 = n/k, as claimed.

(c) By (b), we need to know how many i ∈ {1, . . . , n} have the property n/gcd(i, n) = d,
or equivalently

gcd(i, n) = n/d = k.

Obviously, i must be of the form i = jk, with 1 ≤ j ≤ d. Now,

k = gcd(i, n) = gcd(jk, dk) = k gcd(j, d),
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so gcd(j, d) = 1. But, there are ϕ(d) integers i ∈ {1, . . . , d} such that gcd(j, d) = 1, which
yields (c).

Here is another useful proposition.

Proposition 4.20. For any abelian group G, if a is an element of finite order n1, b is an
element of finite order n2, and gcd(n1, n2) = 1, then a+ b has order n1n2.

Proof. The first step is to prove that 〈a〉 ∩ 〈b〉 = {0}. This is because 〈a〉 ∩ 〈b〉 is a subgroup
of both 〈a〉 and 〈b〉, so by Lagrange’s theorem, the order m of 〈a〉 ∩ 〈b〉 divide both n1 and
n2. Since gcd(n1, n2) = 1, we must have m = 1. Next, we claim that if k(a + b) = 0, then
ka = kb = 0. This is because if k(a + b) = 0, then ka = −kb, so ka, kb ∈ 〈a〉 ∩ 〈b〉 = {0},
which means that ka = 0 and kb = 0. Now, the order of a+ b is the smallest positive integer
s such that s(a + b) = 0. From what we just proved, sa = 0 and sb = 0, and since n1 and
n2 are the orders of a and b respectively, n1 and n2 must divide s. Since gcd(n1, n2) = 1, we
conclude that n1n2 divides s. On the other hand, since n1 and n2 are the orders of a and b
respectively, n1a = 0 and n2b = 0, so n1n2(a + b) = n2n1a + n1n2b = 0, and since s is the
least positive integer such that s(a + b) = 0, we see that s divides n1n2, so we must have
s = n1n2.

We can now prove the following important fact.

Proposition 4.21. For every integer n ≥ 1, we have

n =
∑
d|n

ϕ(d).

Proof. By Proposition 4.18 (e), for every divisor d of n, there is a unique cyclic subgroup
Cd of Z/nZ of order d, and let Φd be the set of generators of Cd. Clearly, the sets Φd are
pairwise disjoint. Every g ∈ Z/nZ generates a cyclic group 〈g〉 of some order d, which by
Proposition 4.18 (b) and (e) must be the cyclic subgroup Cd for some divisor d of n, so g is a
generator for Cd, which means that g ∈ Φd. It follows that the subsets Φd form a partition of
Z/nZ, and since by Proposition 4.19, each group Cd has ϕ(d) generators, we conclude that

n = |Z/nZ| =
∑
d|n

|Φd| =
∑
d|n

ϕ(d),

as claimed.

Proposition 4.21 yields a very useful characterization of cyclic groups. The proof is due
to J.P. Serre; see Serre [20].

Theorem 4.22. Let G be a finite group of order n. Then, G is cyclic iff for every divisor
d of n, there are at most d elements a ∈ G such that ad = 1.
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Proof. If G is cyclic, we proved in Proposition 4.18 that for every divisor d of n there is a
unique subgroup of order d given by Hd = {a ∈ G | ad = 1}.

Let us now prove the converse. If there is some x ∈ G of order d, then the subgroup
〈x〉 = {x, x2, . . . , xd = 1} is cyclic of order d, and the d elements in 〈x〉 satisfy the equation
ad = 1. If some y ∈ G satisfies the equation yd = 1, then we already have d solutions in 〈x〉,
so y ∈ 〈x〉. In particular, all elements of G of order d are generators of 〈x〉, and there are
ϕ(d) such elements. Hence, the number of elements of G of order d is either 0 or ϕ(d). If it
were 0 for some divisor d of n, then the formula

n =
∑
d|n

ϕ(d).

from Proposition 4.21 would say that G has strictly less than n elements, a contradiction.
Therefore, for every divisor d of n, there are ϕ(d) elements of order d. In particular, for
n = d, we have an element x of order n, which shows that G = 〈x〉 is cyclic.

We also have the following simple result which yields a short proof of a result of Euler.

Proposition 4.23. If G is any finite group of order n, then the order of any element g ∈ G
divides n. Thus,

gn = 1, for all g ∈ G.

Proof. The cyclic subgroup 〈g〉 is a subgroup of G, so by Lagrange’s theorem, its order k
divides the order of G. By Proposition 4.17, we have gk = 1, and since k divides n we get
gn = 1.

For any integer n ≥ 2, let (Z/nZ)∗ be the group of invertible elements of the ring Z/nZ.
This is a group of order ϕ(n). Then, Proposition 4.23 yields the following result.

Theorem 4.24. (Euler) For any integer n ≥ 2 and any a ∈ {1, . . . , n − 1} such that
gcd(a, n) = 1, we have

aϕ(n) ≡ 1 (mod n).

In particular, if n is a prime, then ϕ(n) = n− 1, and we get Fermat’s little theorem.

Theorem 4.25. (Fermat’s little theorem) For any prime p and any a ∈ {1, . . . , p− 1}, we
have

ap−1 ≡ 1 (mod p).
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4.3 Rings and Fields

The groups Z,Q,R, C, Z/nZ, and Mn(R) are more than abelian groups, they are also
commutative rings. Furthermore, Q, R, and C are fields. We now introduce rings and fields.

Definition 4.17. A ring is a set A equipped with two operations +: A × A → A (called
addition) and ∗ : A× A→ A (called multiplication) having the following properties:

(R1) A is an abelian group w.r.t. +;

(R2) ∗ is associative and has an identity element 1 ∈ A;

(R3) ∗ is distributive w.r.t. +.

The identity element for addition is denoted 0, and the additive inverse of a ∈ A is
denoted by −a. More explicitly, the axioms of a ring are the following equations which hold
for all a, b, c ∈ A:

a+ (b+ c) = (a+ b) + c (associativity of +) (4.1)

a+ b = b+ a (commutativity of +) (4.2)

a+ 0 = 0 + a = a (zero) (4.3)

a+ (−a) = (−a) + a = 0 (additive inverse) (4.4)

a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity of ∗) (4.5)

a ∗ 1 = 1 ∗ a = a (identity for ∗) (4.6)

(a+ b) ∗ c = (a ∗ c) + (b ∗ c) (distributivity) (4.7)

a ∗ (b+ c) = (a ∗ b) + (a ∗ c) (distributivity) (4.8)

The ring A is commutative if

a ∗ b = b ∗ a for all a, b ∈ A.

From (4.7) and (4.8), we easily obtain

a ∗ 0 = 0 ∗ a = 0 (4.9)

a ∗ (−b) = (−a) ∗ b = −(a ∗ b). (4.10)

Note that (4.9) implies that if 1 = 0, then a = 0 for all a ∈ A, and thus, A = {0}. The
ring A = {0} is called the trivial ring . A ring for which 1 6= 0 is called nontrivial . The
multiplication a ∗ b of two elements a, b ∈ A is often denoted by ab.

Example 4.6.

1. The additive groups Z,Q,R,C, are commutative rings.
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2. For any positive integer n ∈ N, the group Z/nZ is a group under addition. We can
also define a multiplication operation by

a · b = ab = ab mod n,

for all a, b ∈ Z. The reader will easily check that the ring axioms are satisfied, with 0
as zero and 1 as multiplicative unit. The resulting ring is denoted by Z/nZ.2

3. The group R[X] of polynomials in one variable with real coefficients is a ring under
multiplication of polynomials. It is a commutative ring.

4. Let d be any positive integer. If d is not divisible by any integer of the form m2, with
m ∈ N and m ≥ 2, then we say that d is square-free. For example, d = 1, 2, 3, 5, 6, 7, 10
are square-free, but 4, 8, 9, 12 are not square-free. If d is any square-free integer and if
d ≥ 2, then the set of real numbers

Z[
√
d] = {a+ b

√
d ∈ R | a, b ∈ Z}

is a commutative a ring. If z = a + b
√
d ∈ Z[

√
d], we write z = a − b

√
d. Note that

zz = a2 − db2.

5. Similarly, if d ≥ 1 is a positive square-free integer, then the set of complex numbers

Z[
√
−d] = {a+ ib

√
d ∈ C | a, b ∈ Z}

is a commutative ring. If z = a + ib
√
d ∈ Z[

√
−d], we write z = a− ib

√
d. Note that

zz = a2 + db2. The case where d = 1 is a famous example that was investigated by
Gauss, and Z[

√
−1], also denoted Z[i], is called the ring of Gaussian integers .

6. The group of n× n matrices Mn(R) is a ring under matrix multiplication. However, it
is not a commutative ring.

7. The group C(a, b) of continuous functions f : (a, b) → R is a ring under the operation
f · g defined such that

(f · g)(x) = f(x)g(x)

for all x ∈ (a, b).

Definition 4.18. Given a ring A, for any element a ∈ A, if there is some element b ∈ A
such that b 6= 0 and ab = 0, then we say that a is a zero divisor . A ring A is an integral
domain (or an entire ring) if 0 6= 1, A is commutative, and ab = 0 implies that a = 0 or
b = 0, for all a, b ∈ A. In other words, an integral domain is a nontrivial commutative ring
with no zero divisors besides 0.

2The notation Zn is sometimes used instead of Z/nZ but it clashes with the notation for the n-adic
integers so we prefer not to use it.
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Example 4.7.

1. The rings Z,Q,R,C, are integral domains.

2. The ring R[X] of polynomials in one variable with real coefficients is an integral domain.

3. For any positive integer, n ∈ N, we have the ring Z/nZ. Observe that if n is composite,
then this ring has zero-divisors. For example, if n = 4, then we have

2 · 2 ≡ 0 (mod 4).

The reader should prove that Z/nZ is an integral domain iff n is prime (use Proposition
4.16).

4. If d is a square-free positive integer and if d ≥ 2, the ring Z[
√
d] is an integral domain.

Similarly, if d ≥ 1 is a square-free positive integer, the ring Z[
√
−d] is an integral

domain. Finding the invertible elements of these rings is a very interesting problem.

5. The ring of n× n matrices Mn(R) has zero divisors.

A homomorphism between rings is a mapping preserving addition and multiplication
(and 0 and 1).

Definition 4.19. Given two rings A and B, a homomorphism between A and B is a function
h : A→ B satisfying the following conditions for all x, y ∈ A:

h(x+ y) = h(x) + h(y)

h(xy) = h(x)h(y)

h(0) = 0

h(1) = 1.

Actually, because B is a group under addition, h(0) = 0 follows from

h(x+ y) = h(x) + h(y).

Example 4.8.

1. If A is a ring, for any integer n ∈ Z, for any a ∈ A, we define n · a by

n · a = a+ · · ·+ a︸ ︷︷ ︸
n

if n ≥ 0 (with 0 · a = 0) and
n · a = −(−n) · a

if n < 0. Then, the map h : Z→ A given by

h(n) = n · 1A

is a ring homomorphism (where 1A is the multiplicative identity of A).
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2. Given any real λ ∈ R, the evaluation map ηλ : R[X]→ R defined by

ηλ(f(X)) = f(λ)

for every polynomial f(X) ∈ R[X] is a ring homomorphism.

Definition 4.20. A ring homomorphism h : A → B is an isomorphism iff there is a ring
homomorphism g : B → A such that g ◦ f = idA and f ◦ g = idB. An isomorphism from a
ring to itself is called an automorphism.

As in the case of a group isomorphism, the homomorphism g is unique and denoted by
h−1, and it is easy to show that a bijective ring homomorphism h : A→ B is an isomorphism.

Definition 4.21. Given a ring A, a subset A′ of A is a subring of A if A′ is a subgroup of
A (under addition), is closed under multiplication, and contains 1.

For example, we have the following sequence in which every ring on the left of an inlcusion
sign is a subring of the ring on the right of the inclusion sign:

Z ⊆ Q ⊆ R ⊆ C.

The ring Z is a subring of both Z[
√
d] and Z[

√
−d], the ring Z[

√
d] is a subring of R and the

ring Z[
√
−d] is a subring of C.

If h : A→ B is a homomorphism of rings, then it is easy to show for any subring A′, the
image h(A′) is a subring of B, and for any subring B′ of B, the inverse image h−1(B′) is a
subring of A.

As for groups, the kernel of a ring homomorphism h : A→ B is defined by

Ker h = {a ∈ A | h(a) = 0}.

Just as in the case of groups, we have the following criterion for the injectivity of a ring
homomorphism. The proof is identical to the proof for groups.

Proposition 4.26. If h : A → B is a homomorphism of rings, then h : A → B is injective
iff Ker h = {0}. (We also write Ker h = (0).)

The kernel of a ring homomorphism is an abelian subgroup of the additive group A, but
in general it is not a subring of A, because it may not contain the multiplicative identity
element 1. However, it satisfies the following closure property under multiplication:

ab ∈ Ker h and ba ∈ Ker h for all a ∈ Ker h and all b ∈ A.

This is because if h(a) = 0, then for all b ∈ A we have

h(ab) = h(a)h(b) = 0h(b) = 0 and h(ba) = h(b)h(a) = h(b)0 = 0.
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Definition 4.22. Given a ring A, an additive subgroup I of A satisfying the property below

ab ∈ I and ba ∈ I for all a ∈ I and all b ∈ A (∗ideal)

is called a two-sided ideal . If A is a commutative ring, we simply say an ideal .

It turns out that for any ring A and any two-sided ideal I, the set A/I of additive cosets
a + I (with a ∈ A) is a ring called a quotient ring . Then we have the following analog of
Proposition 4.11, also called the first isomorphism theorem.

Proposition 4.27. Given a homomorphism of rings h : A → B, the rings A/Ker h and
Im h = h(A) are isomorphic.

A field is a commutative ring K for which A− {0} is a group under multiplication.

Definition 4.23. A set K is a field if it is a ring and the following properties hold:

(F1) 0 6= 1;

(F2) K∗ = K − {0} is a group w.r.t. ∗ (i.e., every a 6= 0 has an inverse w.r.t. ∗);

(F3) ∗ is commutative.

If ∗ is not commutative but (F1) and (F2) hold, we say that we have a skew field (or
noncommutative field).

Note that we are assuming that the operation ∗ of a field is commutative. This convention
is not universally adopted, but since ∗ will be commutative for most fields we will encounter,
we may as well include this condition in the definition.

Example 4.9.

1. The rings Q, R, and C are fields.

2. The set of (formal) fractions f(X)/g(X) of polynomials f(X), g(X) ∈ R[X], where
g(X) is not the null polynomial, is a field.

3. The ring C(a, b) of continuous functions f : (a, b) → R such that f(x) 6= 0 for all
x ∈ (a, b) is a field.

4. Using Proposition 4.16, it is easy to see that the ring Z/pZ is a field iff p is prime.

5. If d is a square-free positive integer and if d ≥ 2, the set

Q(
√
d) = {a+ b

√
d ∈ R | a, b ∈ Q}

is a field. If z = a + b
√
d ∈ Q(

√
d) and z = a − b

√
d, then it is easy to check that if

z 6= 0, then z−1 = z/(zz).
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6. Similarly, If d ≥ 1 is a square-free positive integer, the set of complex numbers

Q(
√
−d) = {a+ ib

√
d ∈ C | a, b ∈ Q}

is a field. If z = a + ib
√
d ∈ Q(

√
−d) and z = a− ib

√
d, then it is easy to check that

if z 6= 0, then z−1 = z/(zz).

Definition 4.24. A homomorphism h : K1 → K2 between two fields K1 and K2 is just a
homomorphism between the rings K1 and K2.

However, because K∗1 and K∗2 are groups under multiplication, a homomorphism of fields
must be injective.

Proof. First, observe that for any x 6= 0,

1 = h(1) = h(xx−1) = h(x)h(x−1)

and
1 = h(1) = h(x−1x) = h(x−1)h(x),

so h(x) 6= 0 and
h(x−1) = h(x)−1.

But then, if h(x) = 0, we must have x = 0. Consequently, h is injective.

Definition 4.25. A field homomorphism h : K1 → K2 is an isomorphism iff there is a
homomorphism g : K2 → K1 such that g ◦ f = idK1 and f ◦ g = idK2 . An isomorphism from
a field to itself is called an automorphism.

Then, just as in the case of rings, g is unique and denoted by h−1, and a bijective field
homomorphism h : K1 → K2 is an isomorphism.

Definition 4.26. Since every homomorphism h : K1 → K2 between two fields is injective,
the image f(K1) of K1 is a subfield of K2. We say that K2 is an extension of K1.

For example, R is an extension of Q and C is an extension of R. The fields Q(
√
d) and

Q(
√
−d) are extensions of Q, the field R is an extension of Q(

√
d) and the field C is an

extension of Q(
√
−d).

Definition 4.27. A field K is said to be algebraically closed if every polynomial p(X) with
coefficients in K has some root in K; that is, there is some a ∈ K such that p(a) = 0.

It can be shown that every field K has some minimal extension Ω which is algebraically
closed, called an algebraic closure of K. For example, C is the algebraic closure of R. The
algebraic closure of Q is called the field of algebraic numbers . This field consists of all
complex numbers that are zeros of a polynomial with coefficients in Q.
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Definition 4.28. Given a field K and an automorphism h : K → K of K, it is easy to check
that the set

Fix(h) = {a ∈ K | h(a) = a}

of elements of K fixed by h is a subfield of K called the field fixed by h.

For example, if d ≥ 2 is square-free, then the map c : Q(
√
d)→ Q(

√
d) given by

c(a+ b
√
d) = a− b

√
d

is an automorphism of Q(
√
d), and Fix(c) = Q.

If K is a field, we have the ring homomorphism h : Z → K given by h(n) = n · 1. If h
is injective, then K contains a copy of Z, and since it is a field, it contains a copy of Q. In
this case, we say that K has characteristic 0. If h is not injective, then h(Z) is a subring of
K, and thus an integral domain, the kernel of h is a subgroup of Z, which by Proposition
4.14 must be of the form pZ for some p ≥ 1. By the first isomorphism theorem, h(Z) is
isomorphic to Z/pZ for some p ≥ 1. But then, p must be prime since Z/pZ is an integral
domain iff it is a field iff p is prime. The prime p is called the characteristic of K, and we
also says that K is of finite characteristic.

Definition 4.29. If K is a field, then either

(1) n · 1 6= 0 for all integer n ≥ 1, in which case we say that K has characteristic 0, or

(2) There is some smallest prime number p such that p · 1 = 0 called the characteristic of
K, and we say K is of finite characteristic.

A field K of characteristic 0 contains a copy of Q, thus is infinite. As we will see in
Section 4.7, a finite field has nonzero characteristic p. However, there are infinite fields of
nonzero characteristic.

If K2 is a field extension of K1, then K2 is a vector space over K1.

Definition 4.30. If K2 is a field extension of K1 and if the K1-vector space K2 has finite
dimension m, we say that K2 is an extension of degree m over K1. The degree of K2 over
K1 is denoted by [K2 : K1].

For example, the fields Q(
√
d) and Q(

√
−d) have degree 2 over Q.

Finite fields can be completely classified, which is the object Section 4.7.
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4.4 Primitive Roots

In this section, we prove that certain multiplicative groups of the form (Z/nZ)∗ are cyclic. It
turns out that the group (Z/nZ)∗ is cyclic if n = 2, 4, pm, and 2pm, where p is an odd prime
and m ≥ 1. A generator for (Z/nZ)∗ is called a primitive root modulo n. This terminology
goes back to Euler, and is also used by Gauss in his Disquisitiones Arithmeticae [7]; see
Article 57. In fact, it is remarkable that most of the results of this section are due to Gauss.
Translations of the Disquisitiones Arithmeticae are available, for example, in French, and we
highly recommend reading Articles 52 through 93. Gauss’ style is strikingly lively and clear.
Basically all the results of this section are also proved in another famous book, namely the
Vorlesungen über Zahlentheorie, by Lejeune–Dirichlet [12]. This book was actually written
by Richard Dedekind and published in 1863 after Dirichlet’s death in 1859. The English
translation is by John Stillwell. We were amazed to see that most contemporary books on
number theory, including Apostol excellent’s book [1], give proofs of the existence of primitive
roots, and proofs of the quadratic reciprocity theorem, which are basically Dirichlet’s proofs.

First, we review a basic structure theorem for the rings of the form Z/nZ. For this, we
need the following form of the Chinese remainder theorem.

Theorem 4.28. (Chinese remainder theorem, abstract version) For any integer n ≥ 1, if
n = n1 · · ·nr where the ni are relatively prime in pair, which means that gcd(ni, nj) = 1 for
all i 6= j, then we have an isomorphism

Z/nZ ∼= Z/n1Z× · · · × Z/nrZ.

Proof. Consider the map ϕ : Z/nZ→ Z/n1Z× · · · × Z/nrZ given by

ϕ(a) = (a mod n1, . . . , a mod nr).

The map ϕ is a homomorphism, so let’s determine its kernel Kerϕ. We have ϕ(a) = (0, . . . , 0)
iff

a ≡ 0 (mod ni), i = 1, . . . , nr,

and since the ni are pairwise relatively prime, this is equivalent to

a ≡ 0 (mod n1 · · ·nr).

Thus, Kerϕ = nZ, and we get an injection

ϕ : Z/nZ −→ Z/n1Z× · · · × Z/nrZ.

However, |Z/nZ| = n = n1 · · ·nr and |Z/n1Z × · · · × Z/nrZ| = n1 · · ·nr, which shows that
ϕ is a bijection, and thus an isomorphism.
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Theorem 4.28 does not explicitly tells us how to solve a system of congruences

x ≡ b1 (mod n1)

...

x ≡ br (mod nr),

but the following version of the Chinese remainder theorem tells us how to do so.

Theorem 4.29. (Chinese remainder theorem) For any integer n ≥ 1, if n = n1 · · ·nr where
the ni are relatively prime in pair, which means that gcd(ni, nj) = 1 for all i 6= j, for any
b1, . . . , br ∈ Z, there exists a unique x with 0 ≤ x ≤ n− 1 such that

x ≡ b1 (mod n1)

...

x ≡ br (mod nr).

Proof. Let mi = n/ni, for i = 1, . . . , r. Since the ni are pairwise relatively prime, we have
gcd(mi, ni) = 1, so mi has a unique inverse m′i modulo ni; that is,

mim
′
i ≡ 1 (mod ni).

Let
x = b1m1m

′
1 + · · ·+ brmrm

′
r.

We claim that x is a solution of our congruences. Indeed, since each mj contains the factor
ni if i 6= j, we have

b1m1m
′
1 + · · ·+ brmrm

′
r ≡ bimim

′
i (mod ni),

and since mim
′
i ≡ 1 (mod ni), we get

b1m1m
′
1 + · · ·+ brmrm

′
r ≡ bi (mod ni),

as required. The uniqueness of x follows from Theorem 4.28. We can also observe that if x, y
are two solutions such that 0 ≤ x, y ≤ n − 1, then x ≡ y (mod ni) for i = 1, . . . , r, which
implies x ≡ y (mod n), and thus x = y.

Interestingly, Theorem 4.28 also applies to the group (Z/nZ)∗ of units (invertible ele-
ments) of the ring Z/nZ. Note that we must have n ≥ 2.

Theorem 4.30. For any integer n > 1, if n = n1 · · ·nr where the ni are relatively prime in
pair, which means that gcd(ni, nj) = 1 for all i 6= j, then we have an isomorphism

(Z/nZ)∗ ∼= (Z/n1Z)∗ × · · · × (Z/nrZ)∗.
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Proof. By Theorem 4.28, we have an isomorphism

Z/nZ ∼= Z/n1Z× · · · × Z/nrZ.

However, an element (a1, . . . , ar) of the product ring Z/n1Z × · · · × Z/nrZ is invertible iff
each ai is invertible in Z/niZ, which shows that the above isomorphism induces a group
isomorphism

(Z/nZ)∗ ∼= (Z/n1Z)∗ × · · · × (Z/nrZ)∗,

as claimed.

As a corollary of Theorem 4.30, since the group (Z/niZ)∗ has order ϕ(ni), we obtain the
multiplicative property of the Euler ϕ-function.

Proposition 4.31. For any two positive integers m,n, if gcd(m,n) = 1, then

ϕ(mn) = ϕ(m)ϕ(n).

If p is prime then ϕ(p) = p − 1. Also, if k ≥ 2 and if p is prime, then the numbers
between 1 and pk not relatively prime to pk are of the form ps with 1 ≤ s ≤ pk−1 so
ϕ(pk) = pk−pk−1 = pk−1(p−1). Since these equations are used a lot, we record them below.

For every prime number p, for all m ≥ 2, we have

ϕ(p) = p− 1, ϕ(pm) = pm−1(p− 1). (∗ϕ)

Using Proposition 4.31 and the above equations, we can compute ϕ(n) for every n (we
start with ϕ(1) = 1). Since every positive integer n > 1 has a unique prime factorization

n = pk11 · · · pkrr ,

we get

ϕ(n) = pk1−11 · · · pkr−1r (p1 − 1) · · · (pr − 1) = n

(
1− 1

p1

)
· · ·
(

1− 1

pr

)
.

As an application of Proposition 4.31 and Theorem 4.24, we prove the property mentioned
in the Remark after Proposition 2.3. We begin with the following result.

Proposition 4.32. For any positive integer m ≥ 2 and any integer a such that gcd(a,m) =
1, for any two positive integers d, e, if ed ≡ 1 (mod ϕ(m)), then aed ≡ a (mod m).

Proof. Since ed ≡ 1 (mod ϕ(m)) and e, d,m > 0, we can write ed = 1 + kϕ(m) for some
integer k ≥ 0. Since gcd(a,m) = 1, by Euler’s theorem (Theorem 4.24)

aϕ(m) ≡ 1 (mod m),

so we have
aed ≡ a1+kϕ(m) ≡ aakϕ(m) ≡ a(aϕ(m))k ≡ a 1k ≡ a (mod m),

as claimed.
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Recall that an integer m is square-free if it is not divisible by any integer d2 with d ≥
2. Using Proposition 4.32, we can prove the following result from Niven, Zuckerman, and
Montgomery [16] (Section 2.5, Problem 4).

Proposition 4.33. Let m ≥ 2 be any positive square-free integer. For any two positive
integers d, e, if ed ≡ 1 (mod ϕ(m)), then aed ≡ a (mod m) for all integers a ∈ Z.

Proof. First observe that if g and m are positive integers such that g divides m, then ϕ(g)

divides ϕ(m). This is because we can write g = pi11 · · · p
ih
h and m = pj11 · · · p

jh
h p

jh+1

h+1 · · · p
jk
k , for

some distinct primes p1, . . . , ph, ph+1, . . . , pk, with h ≤ k, 1 ≤ i1 ≤ j1, . . . , 1 ≤ ih ≤ jh, and
jh+1, . . . , jk ≥ 1, and we have

ϕ(g) = pi1−11 · · · pih−1h (p1 − 1) · · · (ph − 1)

ϕ(m) = pj1−11 · · · pjh−1h p
jh+1−1
h+1 · · · pjk−1k (p1 − 1) · · · (ph − 1)(ph+1 − 1) · · · (pk − 1),

so ϕ(g) divides ϕ(m).

If a = 0, then result is trivial, so assume that a 6= 0. Let g = gcd(a,m) and write
m = gm1. Since m is square-free, m can be expressed as m = p1 · · · pk for distinct primes pi,
and sincem = gm1, the numbers g andm1 have no prime factor in common so gcd(m1, g) = 1.
Since g = gcd(a,m), we also have gcd(a,m1) = 1.

By hypothesis ed ≡ 1 (mod ϕ(m)), and since both g and m1 divide m, by the previous
observation ϕ(g) divides ϕ(m) and ϕ(m1) divides ϕ(m). Therefore

ed ≡ 1 (mod ϕ(g)) and ed ≡ 1 (mod ϕ(m1)).

Since gcd(a,m1) = 1, by proposition 4.32 applied to a and m1, we get

aed ≡ a (mod m1). (∗1)

Since g divides a, trivially we have

aed ≡ a (mod g). (∗2)

Since gcd(m1, g) = 1, by the Chinese reminder theorem applied to (∗1) and (∗2), we deduce
that

aed ≡ a (mod m),

as claimed.

Observe that if m = pq where p and q are two distinct primes, then Proposition 2.3 is a
consequence of Proposition 4.33. We now return to the existence of primitive roots.

Theorem 4.30 reduces the study of the group (Z/nZ)∗ to the stucture of the groups
(Z/pkZ)∗, where p is a prime and k ≥ 1. The case p = 2 is exceptional, but the case where
p is an odd prime is nice; namely, (Z/pkZ)∗ is a cyclic group. We begin with the case k = 1.
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Theorem 4.34. (Gauss) For every odd prime p, the group (Z/pZ)∗ is cyclic of order p− 1.
It has ϕ(p− 1) generators.

Proof. We use Theorem 4.22 applied to G = (Z/pZ)∗ and n = ϕ(p) = p−1. Since p is prime,
Z/pZ is a field, for every divisor d of p − 1, the equation xd − 1 = 0 has at most d roots
in Z/pZ, and a fortiori in (Z/pZ)∗. Here, we used the fact known from algebra that every
nonzero polynomial of degree d with coefficients in a field has a most d roots. Therefore,
(Z/pZ)∗ is cyclic and has ϕ(p− 1) generators.

Definition 4.31. For any positive integer n, the integers a ∈ Z such that a mod n is a
generator of (Z/nZ)∗ are called primitive roots mod n.

Remark: Gauss’ proof is not all that different from the one we gave. For every divisor
d of p − 1, Gauss defines ψ(d) as the number of integers a, with 1 ≤ a ≤ p − 1, that
have order d, and then proves that ψ(d) = ϕ(d). For this, he proves Proposition 4.21; see
Articles 52–56 of the Disquisitiones Arithmeticae [7]. Gauss also warns about the danger of
regarding as established, statements which are not proved. He goes on to say that “nobody
has attempted to prove Theorem 4.34, except Euler,” and that Euler has talked extensively
about the necessity of proving it, but that his proof is flawed in two respects! A version of
the same proof is also given in Dirichlet–Dedekind [12] (Chapter 2, Section 30).

Ribenboim reports that Gauss proposes an algorithm for finding a primitive root modulo
p in Articles 73 and 74 in the Disquisitiones Arithmeticae [7]; see Ribenboim[18] (Chapter
2, Section II). The algorithm is as follows:

Step 1. Pick any integer a with 2 ≤ a ≤ p− 1, and find the order t of a, that is, the least
positive integer such that at ≡ 1 (mod p). If a has order p − 1, then it is a primitive root
modulo p. Otherwise, go to the next step.

Step 2. Find any any number b, with 2 ≤ b ≤ p − 1, such that b 6≡ ai (mod p), for
i = 1, . . . , t. Let u be the order of b, the least positive integer such that bu ≡ 1 (mod p). I
claim that u does not divide t.

This is because if u divides t, since bu ≡ 1 (mod p), we would get bt ≡ 1 (mod p), but
since the congruence X t ≡ 1 (mod p) has t solutions (a, a2, . . . , at), then we would have
b ≡ ai (mod p) for some i with 1 ≤ i ≤ t, a contradiction. If u = p− 1, then b is a primitive
root. Otherwise, let y be the least common multiple of t and u. Then, we can split y as
y = mn, where gcd(m,n) = 1, m divides t, and n divides u. As explained by Gauss in a
footnote, m and n can be obtained from prime factorizations of t and u. All prime powers
only in t are included in m, all prime powers only in u are included in n, and prime powers
both in t and u are included in m or n, it doesn’t matter. Then, a′ ≡ at/m (mod p) has
order m, b′ ≡ bu/n (mod p) has order n, and because gcd(m,n) = 1, the element c = a′b′ has
order y = mn > t modulo p. If mn = p− 1, then c is a primitive root modulo p. Otherwise,
go back to Step 2 with a = c and t = y.
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Since y > t in Step 2, the order of t keeps increasing while dividing p− 1, so eventually
t = p− 1, and a primitive root is found. Gauss illutrates this process for p = 73, and finds
the primitive root 5. Gauss’ algorithm requires factoring y as mn with gcd(m,n) = 1, and
this step requires prime factorizations of t and u. For large p, this is not a practical method.
Still, it is impressive that Gauss gave an algorithm for finding a primitive root over 200 years
ago.

The above algorithm does not necessarily yield the smallest primitive root gp modulo p.
It is known that gp > C log p for infinitely many primes (for some constant C), and that
gp < p0.499 for all p > ee

24
(see Ribenboim [18], Chapter 2, Section II).

We now consider the case where n = pm, with p prime and m ≥ 2. We follow the beautiful
exposition given in Apostol [1]. As we mentioned earlier, this exposition is extremely close to
Dirichlet’s presentation (as written up by Dedekind) [12]. The following technical proposition
is needed.

Proposition 4.35. For any odd prime p, let g be a primitive root modulo p such that

gp−1 6≡ 1 (mod p2).

Then, for all i ≥ 2, we have
gϕ(p

i−1) 6≡ 1 (mod pi).

Proof. We proceed by induction on i. The base case i = 2 is the hypothesis since ϕ(p) = p−1
as p is prime. For the induction step, assume that

gϕ(p
i−1) 6≡ 1 (mod pi). (∗)

By Euler’s theorem,
gϕ(p

i−1) ≡ 1 (mod pi−1),

so we have
gϕ(p

i−1) = 1 + kpi−1

for some k ∈ Z, and p does not divide k because of (∗). Raising the above equation to the
pth power, since ϕ(pi−1) = pi−1 − pi−2 by (∗ϕ), we get pϕ(pi−1) = pi − pi−1 = ϕ(pi), and
using the binomial formula

gϕ(p
i) = (1 + kpi−1)p = 1 + kpi + k2

p(p− 1)

2
p2(i−1) + rp3(i−1)

= 1 + kpi + k2
p− 1

2
p2i−1 + rp3(i−1),

for some r ∈ Z. Now, 2i− 1 ≥ i+ 1 and 3i− 3 ≥ i+ 1 since i ≥ 2, so we get the congruence

gϕ(p
i) = 1 + kpi (mod pi+1),

where p does not divide k, and therefore

gϕ(p
i) 6≡ 1 (mod pi+1),

establishing the induction step.
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The next step if to “promote” a primitive root modulo p to a primitive root modulo pm.
For this, we use the following proposition.

Proposition 4.36. For any odd prime p, there is a primitive root g modulo p such that

gp−1 6≡ 1 (mod p2). (∗)

Proof. Let g be any primitive root modulo p. If (∗) holds, we are done. Otherwise, gp−1 ≡ 1
(mod p2), in which case we consider g1 = g + p. Since g is a primitive root modulo p and
since g+ p ≡ g (mod p), the integer g1 is also a primitive root modulo p, and we claim that
it satisfies (∗). By the binomial formula we have

gp−11 = (g + p)p−1

= gp−1 + (p− 1)gp−2p+ tp2,

= gp−1 − gp−2p+ (t+ gp−2)p2,

for some t ∈ Z, and because gp−1 ≡ 1 (mod p2), we get

gp−11 ≡ gp−1 − pgp−2 (mod p2)

≡ 1− pgp−2 (mod p2).

But, we cannot have pgp−2 ≡ 0 (mod p2), for this would imply that gp−2 ≡ 0 (mod p),
contradicting the fact that g is a primitive root modulo p. Therefore, gp−11 6≡ 1 (mod p2), as
claimed.

Finally, we can prove that primitive roots modulo pm exist.

Proposition 4.37. For any odd prime p, a primitive root g modulo p is a primitive root
modulo pm for all m ≥ 2 iff

gp−1 6≡ 1 (mod p2). (∗)

Proof. Suppose that g is a primitive root modulo pm for all m ≥ 1. In particular, g is a
primitive root modulo p2. We have (by Fermat’s little theorem)

gp−1 ≡ 1 (mod p),

and since ϕ(p2) = p(p− 1) > p− 1, if

gp−1 ≡ 1 (mod p2),

then g can’t be a primitive root modulo p2, so gp−1 6≡ 1 (mod p2) must hold.

Conversely, assume that the primitive root g modulo p satisfies (∗). We prove that g is
a primitive root modulo pm for all m ≥ 2. Let t be the order of g in (Z/pmZ)∗. We need to
prove that

t = ϕ(pm).
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Since gt ≡ 1 (mod pm), we also have gt ≡ 1 (mod p), and since g has order p− 1 modulo p,
we conclude that p− 1 divides t, so we can write

t = q(p− 1)

for some q ∈ Z. Since g is a primitive root modulo p, we have gcd(g, p) = 1, which implies
gcd(g, pm) = 1, and by Euler’s Theorem we have gϕ(p

m) ≡ 1 (mod pm), and since t is the
order of g modulo pm, the number t must divide ϕ(pm) = pm−1(p − 1); that is, q(p − 1)
divides pm−1(p− 1), so q divides pm−1. Therefore, we can write

t = pb(p− 1), with b ≤ m− 1.

If we can prove that b = m− 1, then we are done.

Assume by contradiction that b < m − 1. If so, b ≤ m − 2 and t = pb(p − 1) divides
pm−2(p− 1) = ϕ(pm−1). As a consequence, from gt ≡ 1 (mod pm), we get

gϕ(p
m−1) ≡ 1 (mod pm).

However, since by assumption
gp−1 6≡ 1 (mod p2),

Proposition 4.35 implies that

gϕ(p
i−1) 6≡ 1 (mod pi) for all i ≥ 2,

a contradiction. Therefore, b = m− 1 and the proof is complete.

Putting Propositions 4.36 and 4.37 together, and using the fact that

ϕ(ϕ(pm)) = ϕ(pm−1(p− 1)) = ϕ(pm−1)ϕ(p− 1) = pm−2(p− 1)ϕ(p− 1),

we obtain our theorem.

Theorem 4.38. (Gauss) For every odd prime p and every integer m ≥ 2, the group
(Z/pmZ)∗ is cyclic of order pm−1(p−1). Furthermore, it has ϕ(ϕ(pm)) = pm−2(p−1)ϕ(p−1)
primitive roots.

Remark: Gauss proves Theorem 4.38 in Articles 82–89 of the Disquisitiones Arithmeticae
[7]. The above proof is basically Dedekind’s proof [12] (Supplement V).

The case n = 2pm is easily handled.

Theorem 4.39. For every odd prime p and every integer m ≥ 1, the group (Z/2pmZ)∗

is cyclic. In fact, (Z/2pmZ)∗ ∼= (Z/pmZ)∗. Furthermore, there exist odd primitive roots g
modulo pm, and each such g is also a primitive root modulo 2pm.



4.5. WHICH GROUPS (Z/nZ)∗ HAVE PRIMITIVE ROOTS 77

Proof. Since p is an odd prime, gcd(2, p) = 1, so Theorem 4.30 yields an isomorphism

(Z/2pmZ)∗ ∼= (Z/2Z)∗ × (Z/pmZ)∗ ∼= (Z/pmZ)∗,

since (Z/2Z)∗ is the trivial group {1}.
If g is a primitive root modulo pm, since g + pm ≡ g (mod pm), the integer g + pm is

also a primitive root modulo pm, and since p is odd, either g or g + pm is odd (pm is odd).
Let g be an odd primitive root modulo pm and let t be its order modulo 2pm. We need to
prove that t = ϕ(2pm) = ϕ(2)ϕ(pm) = ϕ(pm). Now, t must divide ϕ(2pm) = ϕ(pm), since
gcd(g, pm) = 1 and g odd implies that gcd(g, 2pm) = 1 so by Euler’s theorem gϕ(2p

m) ≡ 1
(mod 2pm). On the other hand, gt ≡ 1 (mod 2pm), which implies gt ≡ 1 (mod pm), so ϕ(pm)
divides t since g is a primitive root modulo pm (it has order ϕ(pm) modulo pm). Therefore,
t = ϕ(pm) = ϕ(2pm), as claimed.

In summary, we proved that primitive roots exist if n = 2, 4, pm, or 2pm where p is an
odd prime. In the next section, we show that primitive roots do not exist in all the other
cases.

4.5 Which Groups (Z/nZ)∗ Have Primitive Roots

We begin with the case p = 2m with m ≥ 3. Observe that by (∗ϕ), we have ϕ(2m) =
2m−1(2− 1) = 2m−1, so if m ≥ 2, then ϕ(2m)/2 = 2m−2.

Proposition 4.40. (Gauss) If a is an odd integer, then for all m ≥ 3, we have

aϕ(2
m)/2 ≡ a2

m−2 ≡ 1 (mod 2m).

Therefore, there are no primitive roots modulo 2m.

Proof. We proceed by induction on m. When m = 3, we need to show that a2 ≡ 1 (mod 8),
if a is odd. This is because a is of the form a = 2k + 1,

(2k + 1)2 = 4k2 + 4k + 1 = 4k(k + 1) + 1,

and k(k + 1) is always even.

For the induction step, the induction hypothesis says that

a2
m−2

= 1 + 2mt,

for some t ∈ Z. Squaring both sides, we get

a2
m−1

= 1 + 2m+1t+ 22mt2,

so
a2

m−1 ≡ 1 (mod 2m+1),

establishing the induction step.
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Remark: Gauss proves Proposition 4.40 in Article 90 of the Disquisitiones Arithmeticae
[7]. It also appears in Dirichlet–Dedekind [12] (Supplement V).

In fact, primitive roots do not exist in all the following cases.

Proposition 4.41. Given any integer n ≥ 2, if n is not of the form n = 2, 4, pm, or 2pm,
where p is an odd prime, then for any integer a with gcd(a, n) = 1, we have

aϕ(n)/2 ≡ 1 (mod n).

Therefore, there are no primitive roots modulo n.

Proof. We already proved that primitive roots do not exist if n = 2m with m ≥ 3. Therefore,
we may assume that n has a factorization of the form

n = 2kpk11 · · · pkss ,

where the pi are odd primes, s ≥ 1, ki ≥ 1, and k ≥ 0. Furthermore, since n is not of the
form n = 2, 4, pm, or 2pm, we have k ≥ 2 if s = 1, and s ≥ 2 if k = 0, 1. We have

ϕ(n) = ϕ(2k)ϕ(pk11 ) · · ·ϕ(pkss ).

Pick a ∈ Z such that gcd(a, n) = 1. We need to prove that

aϕ(n)/2 ≡ 1 (mod n).

Let g be a primitive root modulo pk11 , and write

a ≡ gi (mod pk11 ).

Then, we have

aϕ(n)/2 ≡ giϕ(n)/2 ≡ gtϕ(p
k1
1 ) (mod pk11 ),

with
t = iϕ(2k)ϕ(pk22 ) · · ·ϕ(pkss )/2.

We claim that t is an integer.

If k ≥ 2, then ϕ(2k) = 2k−1 is even, so t is an integer. If k = 0 or k = 1, then s ≥ 2 and
the factor ϕ(pk22 ) = pk2−12 (p2 − 1) is even, so t is also an integer.

Since
gϕ(p

k1
1 ) ≡ 1 (mod pk11 ),

from
aϕ(n)/2 ≡ gtϕ(p

k1
1 ) (mod pk11 ),

we obtain
aϕ(n)/2 ≡ 1 (mod pk11 ).
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A similar proof shows that
aϕ(n)/2 ≡ 1 (mod pkii )

for i = 1, . . . s. We still need to prove that a similar congruence holds modulo 2k.

If k ≥ 3, since gcd(a, n) = 1, the number a must be odd, and by Proposition 4.40, we
have

aϕ(2
k)/2 ≡ a2

k−2 ≡ 1 (mod 2k).

Since ϕ(2k) divides ϕ(n), we get

aϕ(n)/2 ≡ 1 (mod 2k), k ≥ 3.

If k ≤ 2, then we check directly that

aϕ(2
k) ≡ 1 (mod 2k).

If k = 1 or k = 2, since gcd(a, n) = 1, the number a must be odd. If k = 1, since
ϕ(21) = ϕ(2) = 1 and a is odd, we have a ≡ 1 (mod 2) as desired. If k = 2, since a is odd,
either a = 4s+ 1 or a = 4s+ 3 for some integer s, but then since ϕ(22) = 2,

a2 ≡ (4s+ 1)2 = 16s2 + 8s+ 1 ≡ 1 (mod 4)

and
a2 ≡ (4s+ 3)2 = 16s2 + 24s+ 9 ≡ 1 (mod 4),

as desired.

But if k ≤ 2, then s ≥ 2, so

ϕ(n) = ϕ(2k)ϕ(pk11 ) · · ·ϕ(pkss ) = ϕ(2k)pk1−11 (p1 − 1)ϕ(pk22 ) · · ·ϕ(pkss ) = 2rϕ(2k),

for some integer r. Thus, ϕ(2k) divides ϕ(n)/2, and

aϕ(n)/2 ≡ 1 (mod 2k)

holds for k ≤ 2. In summary, the congruences

aϕ(n)/2 ≡ 1 (mod pkii )

aϕ(n)/2 ≡ 1 (mod 2k)

hold for i = 1, . . . , s and k ≥ 0. Since the moduli are pairwise relatively prime, we obtain

aϕ(n)/2 ≡ 1 (mod n),

as claimed.

Putting everything together, we have the following remarkable result, most of which is
due to Gauss.
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Theorem 4.42. The group (Z/nZ)∗ is cyclic of order ϕ(n) iff n = 2, 4, pm, or 2pm, where
p is an odd prime and m ≥ 1. There are ϕ(ϕ(n)) primitive roots modulo n.

Surprisingly, even in the case where n = p is an odd prime, there is no known criterion
to determine whether an integer a is a primitive root modulo p. For example, we don’t know
how to determine if 2 is a primitive root modulo p, other than by computing all powers 2i

modulo p. In fact, we have the following conjecture made by Emil Artin around 1920 (see
Silverman [22], Chapter 21):

Artin’s Conjecture. The number 2 is a primitive root for infinitely many primes.

Also, it is easy to see that a perfect square (a number of the form a2) and −1 are not
primitive roots. Artin also made the following conjecture.

The Generalized Artin Conjecture. Every integer which is not a perfect square and
is different from −1 is a primitive root for infinitely many primes.

It has been shown by Christopher Hooley (1967) that if the Extended Riemann Hypoth-
esis (ERH) holds, then the generalized Artin conjecture also holds. For a brief decription of
the ERH, see Section 5.6.

More can be said in the “bad” case n = 2m with m ≥ 3, Amazingly, 5 plays a special
role.

Proposition 4.43. For any integers x, y, if x ≡ 1 + 4y (mod 8), then

x2
k ≡ 1 + 2k+2y (mod 2k+3),

for all k ≥ 0.

Proof. We proceed by induction on k. The case k = 0 is the hypothesis. For the induction
step, it is enough to prove that if a ≡ 1+2k+1b (mod 2k+2) for some k ≥ 1, then a2 ≡ 1+2k+2b
(mod 2k+3).

If a ≡ 1 + 2k+1b (mod 2k+2), then a = 1 + 2k+1b+ c2k+2, for some c, so we get

a2 = (1 + 2k+1b+ c2k+2)2

= (1 + 2k+1(b+ 2c))2

= 1 + 2k+2(b+ 2c) + 22k+2(b+ 2c)2

= 1 + 2k+2b+ 2k+3c+ 22k+2(b+ 2c)2,

and because k ≥ 1, we have 2k + 2 ≥ k + 3, so we get

a2 ≡ 1 + 2k+2b (mod 2k+3),

establishing the induction step.
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Observe that if we set x = 5 and y = 1, then 5 ≡ 5 (mod 8), so by Proposition 4.43, we
have

52k ≡ 1 + 2k+2 (mod 2k+3), for all k ≥ 0.

On the other hand, since 5 is odd, by Proposition 4.40, we have

52m−2 ≡ 1 (mod 2m).

Therefore, 5 has order 2m−2 modulo 2m. We can use this fact to prove the following result
(following Bourbaki [2], Chapter VII, §2.4). This result is more or less implicit in Article
91 of the Disquisitiones Arithmeticae [7]. It is explicitly proved in Dirichlet–Dedekind [12]
(Supplement V).

Theorem 4.44. For any m ≥ 3, the group (Z/2mZ)∗ is isomorphic to the direct product
{−1, 1} × 〈5〉 of the cyclic subgroup {−1, 1} generated by −1 and the cyclic subgroup 〈5〉 of
order 2m−2 generated by 5.

Proof. For m ≥ 3, we have the homomorphism π : (Z/2mZ)∗ → (Z/4Z)∗ given by

π(a mod 2m) = a mod 4.

The kernel of this homomorphism is the subgroup U(2m) of (Z/2mZ)∗ given by

U(2m) = {a mod 2m | a ≡ 1 (mod 4)},

and so U(2m) has order 2m−2. By the first isomorphism theorem, (Z/4Z)∗ is isomorphic
to (Z/2mZ)∗/U(2m), and by Lagrange’s theorem, since (Z/4Z)∗ has order 2 and U(2m) has
order 2m−2, we conclude that (Z/2mZ)∗ has order 2m−1.

We already know that the cyclic subgroup group 〈5〉 generated by 5 has order 2m−2

modulo 2m, and since 5 ≡ 1 (mod 4), we see that 5 ∈ U(2m), and thus U(2m) = 〈5〉. We
claim that −1 /∈ 〈5〉. This follows because π(−1) = −1 mod 4, and −1 6≡ 1 (mod 4), so −1
does not belong to the kernel U(2m) of π, which is equal to 〈5〉.

I

Consequently, if H = {−1, 1} is the subgroup generated by −1, we have H ∩ 〈5〉 = {0}.
By Proposition 4.12, we have an isomorphism

{−1, 1} × 〈5〉 ∼= {−1, 1} ⊕ 〈5〉.

Now, (Z/2mZ)∗ has order 2m−1, the subgroup 〈5〉 has order 2m−2, and {−1, 1} has order 2,
so

(Z/2mZ)∗ = {−1, 1} ⊕ 〈5〉

and we have an isomorphism (Z/2mZ)∗ ∼= {−1, 1} × 〈5〉.
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Remarks: Another way to prove Theorem 4.38 is to proceed as follows (following Bourbaki
[2], Chapter VII, §2.4). We have the homomorphism π : (Z/pmZ)∗ → (Z/pZ)∗ given by

π(a mod pm) = a mod p.

The kernel of this homomorphism is the subgroup U(pm) of (Z/pmZ)∗ given by

U(pm) = {a mod pm | a ≡ 1 (mod p)},

and so U(pm) has order pm−1. By the first isomorphism theorem, (Z/pZ)∗ is isomorphic to
(Z/pmZ)∗/U(pm), and by Lagrange’s theorem, since (Z/pZ)∗ has order p− 1 and U(pm) has
order pm−1, we conclude that (Z/pmZ)∗ has order pm−1(p− 1).

Next, we show that p + 1 has order pm−1 in (Z/pmZ)∗, and since p + 1 ≡ 1 (mod p),
p + 1 is a generator for U(pm). For this we prove that if p is an odd prime and x ≡ 1 + py
(mod p2), then xp

k ≡ 1 + pk+1y (mod pk+2), for all k ≥ 0.

Then, using a primitive root of (Z/pZ)∗, we can find an element y of order p − 1 in
(Z/pmZ)∗. By Proposition 4.20, since gcd(pm−1, p − 1) = 1, we conclude that (p + 1)y has
order pm−1(p− 1) = ϕ(pm), so (p+ 1)y is a primitive root modulo pm.

4.6 The Lucas Theorem, PRIMES is in NP

In this section we discuss an application of the existence of primitive roots in (Z/pZ)∗ where
p is an odd prime, known an the n− 1 test . This test due to E. Lucas determines whether a
positive odd integer n is prime or not by examining the prime factors of n− 1 and checking
some congruences.

The n− 1 test can be described as the construction of a certain kind of tree rooted with
n, and it turns out that the number of nodes in this tree is bounded by 2 log2 n, and that
the number of modular multiplications involved in checking the congruences is bounded by
2 log2

2 n.

Recall that when we talk about the complexity of algorithms dealing with numbers,
we assume that all inputs (to a Turing machine) are strings representing these numbers,
typically in base 2. Since the length of the binary representation of a natural number n ≥ 1
is blog2 nc + 1 (or dlog2(n + 1)e, which allows n = 0), the complexity of algorithms dealing
with (nonzero) numbers m,n, etc. is expressed in terms of log2m, log2 n, etc. Recall that for
any real number x ∈ R, the floor of x is the greatest integer bxc that is less that or equal to
x, and the ceiling of x is the least integer dxe that is greater that or equal to x. If we choose
to represent numbers in base 10, since for any base b we have logb x = lnx/ ln b, we have

log2 x =
ln 10

ln 2
log10 x.
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Since (ln 10)/(ln 2) ≈ 3.322 ≈ 10/3, we see that the number of decimal digits needed to
represent the integer n in base 10 is approximately 30% of the number of bits needed to
represent n in base 2.

Since the Lucas test yields a tree such that the number of modular multiplications in-
volved in checking the congruences is bounded by 2 log2

2 n, it is not hard to show that testing
whether or not a positive integer n is prime, a problem denoted PRIMES, belongs to the
complexity class NP. This result was shown by V. Pratt [17] (1975), but Peter Freyd told
me that it was “folklore.” Of course, since 2002, thanks to the AKS algorithm, we know
that PRIMES actually belongs to the class P, but this is a much harder result.

Here is Lehmer’s version of the Lucas result, from 1876.

Theorem 4.45. (Lucas theorem) Let n be a positive integer with n ≥ 2. Then n is prime
iff there is some integer a ∈ {1, 2, . . . , n− 1} such that the following two conditions hold:

(1) an−1 ≡ 1 (mod n).

(2) If n > 2, then a(n−1)/q 6≡ 1 (mod n) for all prime divisors q of n− 1.

Proof. First, assume that Conditions (1) and (2) hold. If n = 2, since 2 is prime, we are
done. Thus assume that n ≥ 3, and let r be the order of a. We claim that r = n − 1. The
condition an−1 ≡ 1 (mod n) implies that r divides n− 1. Suppose that r < n− 1, and let q
be a prime divisor of (n− 1)/r (so q divides n− 1). Since r is the order or a we have ar ≡ 1
(mod n), so we get

a(n−1)/q ≡ ar(n−1)/(rq) ≡ (ar)(n−1)/(rq) ≡ 1(n−1)/(rq) ≡ 1 (mod n),

contradicting Condition (2). Therefore, r = n− 1, as claimed.

We now show that n must be prime. Now an−1 ≡ 1 (mod n) implies that a and n are
relatively prime so by Euler’s Theorem (Theorem 4.24),

aϕ(n) ≡ 1 (mod n).

Since the order of a is n− 1, we have n− 1 ≤ ϕ(n). If n ≥ 3 is not prime, then n has some
prime divisor p, but n and p are integers in {1, 2, . . . , n} that are not relatively prime to n,
so by definition of ϕ(n), we have ϕ(n) ≤ n − 2, contradicting the fact that n − 1 ≤ ϕ(n).
Therefore, n must be prime.

Conversely, assume that n is prime. If n = 2, then we set a = 1. Otherwise, pick a to be
any primitive root modulo p.

Clearly, if n > 2 then we may assume that a ≥ 2. The main difficulty with the n − 1
test is not so much guessing the primitive root a, but finding a complete prime factorization
of n − 1. However, as a nondeterministic algorithm, the n − 1 test yields a “proof” that a
number n is indeed prime which can be represented as a tree, and the number of operations
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needed to check the required conditions (the congruences) is bounded by c log2
2 n for some

positive constant c, and this implies that testing primality is in NP.

Before explaining the details of this method, we sharpen slightly Lucas’ theorem to deal
only with odd prime divisors.

Theorem 4.46. Let n be a positive odd integer with n ≥ 3. Then n is prime iff there is some
integer a ∈ {2, . . . , n − 1} (a guess for a primitive root modulo n) such that the following
two conditions hold:

(1b) a(n−1)/2 ≡ −1 (mod n).

(2b) If n− 1 is not a power of 2, then a(n−1)/2q 6≡ −1 (mod n) for all odd prime divisors q
of n− 1.

Proof. Assume that Conditions (1b) and (2b) of Theorem 4.46 hold. Then we claim that
Conditions (1) and (2) of Theorem 4.45 hold. By squaring the congruence a(n−1)/2 ≡ −1
(mod n), we get an−1 ≡ 1 (mod n), which is Condition (1) of Theorem 4.45. Since a(n−1)/2 ≡
−1 (mod n), Condition (2) of Theorem 4.45 holds for q = 2. Next, if q is an odd prime
divisor of n− 1, let m = a(n−1)/2q. Condition (1b) means that

mq ≡ a(n−1)/2 ≡ −1 (mod n).

Now if m2 ≡ a(n−1)/q ≡ 1 (mod n), since q is an odd prime, we can write q = 2k + 1 for
some k ≥ 1, and then

mq ≡ m2k+1 ≡ (m2)km ≡ 1km ≡ m (mod n),

and since mq ≡ −1 (mod n), we get

m ≡ −1 (mod n)

(regardless of whether n is prime or not). Thus we proved that if mq ≡ −1 (mod n) and
m2 ≡ 1 (mod n), thenm ≡ −1 (mod n). By contrapositive, we see that ifm 6≡ −1 (mod n),
then m2 6≡ 1 (mod n) or mq 6≡ −1 (mod n), but since mq ≡ a(n−1)/2 ≡ −1 (mod n) by
Condition (1a), we conclude that m2 ≡ a(n−1)/q 6≡ 1 (mod n), which is Condition (2) of
Theorem 4.45. But then, Theorem 4.45 implies that n is prime.

Conversely, assume that n is an odd prime, and let a be any primitive root modulo n.
Then by little Fermat we know that

an−1 ≡ 1 (mod n),

so
(a(n−1)/2 − 1)(a(n−1)/2 + 1) ≡ 0 (mod n).

Since n is prime, either a(n−1)/2 ≡ 1 (mod n) or a(n−1)/2 ≡ −1 (mod n), but since a generates
(Z/nZ)∗, it has order n − 1, so the congruence a(n−1)/2 ≡ 1 (mod n) is impossible, and
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Condition (1b) must hold. Similarly, if we had a(n−1)/2q ≡ −1 (mod n) for some odd prime
divisor q of n− 1, then by squaring we would have

a(n−1)/q ≡ 1 (mod n),

and a would have order at most (n− 1)/q < n− 1, which is absurd.

If n is an odd prime, we can use Theorem 4.46 to build recursively a tree which is a
proof, or certificate, of the fact that n is indeed prime. We first illustrate this process with
the prime n = 1279.

Example 4.10. If n = 1279, then we easily check that n− 1 = 1278 = 2 · 32 · 71. We build
a tree whose root node contains the triple (1279, ((2, 1), (3, 2), (71, 1)), 3), where a = 3 is the
guess for a primitive root modulo 1279. In this simple example, it is clear that 3 and 71 are
prime, but we must supply proofs that these number are prime, so we recursively apply the
process to the odd divisors 3 and 71.

Since 3− 1 = 21 is a power of 2, we create a one-node tree (3, ((2, 1)), 2), where a = 2 is
a guess for a primitive root modulo 3. This is a leaf node.

Since 71−1 = 70 = 2·5·7, we create a tree whose root node is (71, ((2, 1), (5, 1), (7, 1)), 7),
where a = 7 is the guess for a primitive root modulo 71. Since 5 − 1 = 4 = 22, and
7− 1 = 6 = 2 · 3, this node has two successors (5, ((2, 2)), 2) and (7, ((2, 1), (3, 1)), 3), where
2 is the guess for a primitive root modulo 5, and 3 is the guess for a primitive root modulo
7.

Since 4 = 22 is a power of 2, the node (5, ((2, 2)), 2) is a leaf node.

Since 3 − 1 = 21, the node (7, ((2, 1), (3, 1)), 3) has a single successor, (3, ((2, 1)), 2),
where a = 2 is a guess for a primitive root modulo 3. Since 2 = 21 is a power of 2, the node
(3, ((2, 1)), 2) is a leaf node.

To recap, we obtain the following tree:

(1279,
((2, 1), (3, 2), (71, 1)), 3)

wwnnn
nnn

nnn
nnn

n

))SSS
SSSS

SSSS
SSS

(3,
((2, 1)), 2)

(71,
((2, 1), (5, 1), (7, 1)), 7)
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(5,
((2, 2)), 2)

(7,
((2, 1), (3, 1)), 3)
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(3,

((2, 1)), 2)
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We still have to check that the relevant congruences hold at every node. For the root
node (1279, ((2, 1), (3, 2), (71, 1)), 3), we check that

31278/2 ≡ 3864 ≡ −1 (mod 1279) (1b)

31278/(2·3) ≡ 3213 ≡ 775 (mod 1279) (2b)

31278/(2·71) ≡ 39 ≡ 498 (mod 1279). (2b)

Assuming that 3 and 71 are prime, the above congruences check that Conditions (1a) and
(2b) are satisfied, and by Theorem 4.46 this proves that 1279 is prime. We still have to
certify that 3 and 71 are prime, and we do this recursively.

For the leaf node (3, ((2, 1)), 2), we check that

22/2 ≡ −1 (mod 3). (1b)

For the node (71, ((2, 1), (5, 1), (7, 1)), 7), we check that

770/2 ≡ 735 ≡ −1 (mod 71) (1b)

770/(2·5) ≡ 77 ≡ 14 (mod 71) (2b)

770/(2·7) ≡ 75 ≡ 51 (mod 71). (2b)

Now, we certified that 3 and 71 are prime, assuming that 5 and 7 are prime, which we now
establish.

For the leaf node (5, ((2, 2)), 2), we check that

24/2 ≡ 22 ≡ −1 (mod 5). (1b)

For the node (7, ((2, 1), (3, 1)), 3), we check that

36/2 ≡ 33 ≡ −1 (mod 7) (1b)

36/(2·3) ≡ 31 ≡ 3 (mod 7). (2b)

We have certified that 5 and 7 are prime, given that 3 is prime, which we finally verify.

At last, for the leaf node (3, ((2, 1)), 2), we check that

22/2 ≡ −1 (mod 3). (1b)

The above example suggests the following definition.

Definition 4.32. Given any odd integer n ≥ 3, a pre-Lucas tree for n is defined inductively
as follows:

(1) It is a one-node tree labeled with (n, ((2, i0)), a), such that n− 1 = 2i0 , for some i0 ≥ 1
and some a ∈ {2, . . . , n− 1}.
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(2) If L1, . . . , Lk are k pre-Lucas (with k ≥ 1), where the tree Lj is a pre-Lucas tree for some
odd integer qj ≥ 3, then the tree L whose root is labeled with (n, ((2, i0), ((q1, i1), . . .,
(qk, ik)), a) and whose jth subtree is Lj is a pre-Lucas tree for n if

n− 1 = 2i0qi11 · · · q
ik
k ,

for some i0, i1, . . . , ik ≥ 1, and some a ∈ {2, . . . , n− 1}.

Both in (1) and (2), the number a is a guess for a primitive root modulo n.

A pre-Lucas tree for n is a Lucas tree for n if the following conditions are satisfied:

(3) If L is a one-node tree labeled with (n, ((2, i0)), a), then

a(n−1)/2 ≡ −1 (mod n).

(4) If L is a pre-Lucas tree whose root is labeled with (n, ((2, i0), ((q1, i1), . . . , (qk, ik)), a),
and whose jth subtree Lj is a pre-Lucas tree for qj, then Lj is a Lucas tree for qj for
j = 1, . . . , k, and

(a) a(n−1)/2 ≡ −1 (mod n).

(b) a(n−1)/2qj 6≡ −1 (mod n) for j = 1, . . . , k.

Since Conditions (3) and (4) of Definition 4.32 are Conditions (1b) and (2b) of Theorem,
4.46, we see that Definition 4.32 has been designed in such a way that Theorem 4.46 yields
the following result.

Theorem 4.47. An odd integer n ≥ 3 is prime iff it has some Lucas tree.

The issue is now to see how long it takes to check that a pre-Lucas tree is a Lucas
tree. Of course, exponentiation modulo n is performed by repeated squaring, as explained in
Section 2.3. In that section, we observed that computing xm mod n requires at most 2 log2m
modular multiplications. Using this fact we obtain the following result.

Proposition 4.48. If p is any odd prime, then any pre-Lucas tree L for p has at most log2 p
nodes, and the number M(p) of modular multiplications required to check that the pre-Lucas
tree L is a Lucas tree is less than 2 log2

2 p.

Proof. Let N(p) be the number of nodes in a pre-Lucas tree for p. We proceed by complete
induction. If p = 3, then p− 1 = 21, any pre-Lucas tree has a single node, and 1 < log2 3.

Suppose the results holds for any odd prime less than p. If p − 1 = 2i0 , then any Lucas
tree has a single node, and 1 < log2 3 < log2 p. If p− 1 has the prime factorization

p− 1 = 2i0qi11 · · · q
ik
k ,
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then by the induction hypothesis, each pre-Lucas tree Lj for qj has less than log2 qj nodes,
so

N(p) = 1 +
k∑
j=1

N(qj) < 1 +
k∑
j=1

log2 qj = 1 + log2(q1 · · · qk) ≤ 1 + log2

(
p− 1

2

)
< log2 p,

establishing the induction hypothesis.

If r is one of the odd primes in the pre-Lucas tree for p, and r < p, then there is
some other odd prime q in this pre-Lucas tree such that r divides q − 1 and q ≤ p. We
also have to show that at some point, a(q−1)/2r 6≡ −1 (mod q) for some a, and at another
point, that b(r−1)/2 ≡ −1 (mod r) for some b. Using the fact that the number of modular
multiplications required to exponentiate to the power m is at most 2 log2m, we see that the
number of multiplications required by the above two exponentiations does not exceed

2 log2

(
q − 1

2r

)
+ 2 log2

(
r − 1

2

)
< 2 log2 q − 4 < 2 log2 p.

As a consequence, we have

M(p) < 2 log2

(
p− 1

2

)
+ (N(p)− 1)2 log2 p < 2 log2 p+ (log2 p− 1)2 log2 p = 2 log2

2 p,

as claimed.

The following impressive example is from Pratt [17].

Example 4.11. Let n = 474 397 531. It is easy to check that n − 1 = 474 397 531 − 1 =
474 397 530 = 2 · 3 · 5 · 2513. We claim that the following is a Lucas tree for n = 474 397 531:

(474 397 531, ((2, 1), (3, 1), (5, 1), (251, 3)), 2)

ssggggg
ggggg

ggggg
ggggg

g

�� ,,XXXXX
XXXXXX

XXXXXX
XXXXXX

X

(3, ((2, 1)), 2) (5, ((2, 2)), 2) (251, ((2, 1), (5, 3)), 6)

��
(5, ((2, 2)), 2)

To verify that the above pre-Lucas tree is a Lucas tree, we check that 2 is indeed a
primitive root modulo 474 397 531 by computing (using Mathematica) that

2474 397 530/2 ≡ 2237 198 765 ≡ −1 (mod 474 397 531) (1)

2474 397 530/(2·3) ≡ 279 066 255 ≡ 9 583 569 (mod 474 397 531) (2)

2474 397 530/(2·5) ≡ 247 439 753 ≡ 91 151 207 (mod 474 397 531) (3)

2474 397 530/(2·251) ≡ 2945 015 ≡ 282 211 150 (mod 474 397 531). (4)
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The number of modular multiplications is: 27 in (1), 26 in (2), 25 in (3) and 19 in (4).

We have 251− 1 = 250 = 2 · 53, and we verify that 6 is a primitive root modulo 251 by
computing:

6250/2 ≡ 6125 ≡ −1 (mod 251) (5)

6250/(2·5) ≡ 610 ≡ 175 (mod 251). (6)

The number of modular multiplications is: 6 in (5), and 3 in (6).

We have 5− 1 = 4 = 22, and 2 is a primitive root modulo 5, since

24/2 ≡ 22 ≡ −1 (mod 5). (7)

This takes one multiplication.

We have 3− 1 = 2 = 21, and 2 is a primitive root modulo 3, since

22/2 ≡ 21 ≡ −1 (mod 3). (8)

This takes 0 multiplications.

Therefore, 474 397 531 is prime.

As nice as it is, Proposition 4.48 is deceiving, because finding a Lucas tree is hard.

Remark: Pratt [17] presents his method for finding a certificate of primality in terms of
a proof system. Although quite elegant, we feel that this method is not as transparent as
the method using Lucas trees, which we adapted from Crandall and Pomerance [3]. Pratt’s
proofs can be represented as trees, as Pratt sketches in Section 3 of his paper. However,
Pratt uses the basic version of Lucas’ theorem, Theorem 4.45, instead of the improved
version, Theorem 4.46, so his proof trees have at least twice as many nodes as ours.

The following nice result was first shown by V. Pratt [17] in 1975.

Theorem 4.49. The problem PRIMES (testing whether an integer is prime) is in NP.

Proof. Since all even integers besides 2 are composite, we can restrict out attention to odd
integers n ≥ 3. By Theorem 4.47, an odd integer n ≥ 3 is prime iff it has a Lucas tree.
Given any odd integer n ≥ 3, since all the numbers involved in the definition of a pre-Lucas
tree are less than n, there is a finite (very large) number of pre-Lucas trees for n. Given a
guess of a Lucas tree for n, checking that this tree is a pre-Lucas tree can be performed in
O(log2 n), and by Proposition 4.48, checking that it is a Lucas tree can be done in O(log2

2 n).
Therefore PRIMES is in NP.
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Of course, checking whether a number n is composite is in NP, since it suffices to guess
to factors n1, n2 and to check that n = n1n2, which can be done in polynomial time in log2 n.
Therefore, PRIMES ∈ NP ∩ coNP. As we said earlier, this was the situation until the
discovery of the AKS algorithm, which places PRIMES in P.

Remark: Altough finding a primitive root modulo p is hard, we know that the number of
primitive roots modulo p is ϕ(ϕ(p)). If p is large enough, this number is actually quite large.
According to Crandal and Pomerance [3] (Chapter 4, Section 4.1.1), if p is a prime and if
p > 200560490131, then p has more than p/(2 ln ln p) primitive roots.

The Lucas test yields a method to check whether certain numbers known as Fermat
numbers are prime. These are numbers for which the prime factorization of n− 1 is a power
of 2.

Example 4.12. First, let us find a tree for n = 17. Since 17 − 1 = 16 = 24, we get the
one-node tree (17, ((2, 4)), 3), where 3 is a guess for a primitive root of 17. Since

316/2 ≡ 38 ≡ −1 (mod 17),

we have a proof that 17 = 24 + 1 = 222 + 1 is prime.

Let us now find a tree for n = 257. Since 257− 1 = 256 = 28, we have the one-node tree
(257, ((2, 8)), 3). We can check that

3256/2 = 3128 ≡ −1 (mod 257),

which proves that 257 = 28 + 1 = 223 + 1 is prime.

Finally, let us now find a tree for n = 65537. Since 65537 − 1 = 65536 = 216, we have
the one-node tree (65537, ((2, 16)), 3). We can check that

365536/2 = 332768 ≡ −1 (mod 65537),

which proves that 65537 = 216 + 1 = 224 + 1 is prime.

The numbers Fk = 22k + 1 are known as Fermat numbers . We just verified that F0 = 3,
F1 = 5, F2 = 17, F3 = 257, and F4 = 65537, are prime.

Is Fk prime for any k ≥ 5? Since 22k grows very fast with k, this is a very hard problem.

Euler found that F5 = 232 + 1 = 4294967297 = 641 · 6700417, so F5 is not prime. We
determined that F2, F3, F4 are prime by applying Theorem 4.46 with a = 3. Actually, it can
be shown that the converse is true, and there is a criterion due to Pepin (1877) to determine
whether Fk is prime.

Theorem 4.50. (Pepin test) For all k ≥ 1, the Fermat number Fk = 22k + 1 is prime iff
3(Fk−1)/2 ≡ −1 (mod Fk).



4.6. THE LUCAS THEOREM, PRIMES IS IN NP 91

Proof. One direction of the Pepin test follows from Theorem 4.46 with a = 3. The converse is
shown using the Legendre symbol and the law of quadratic reciprocity discussed in Chapter
6. The reader can skip this proof until she/he has read Chapter 6, or at least Sections 6.2
and 6.5.

Assume that Fk is prime, the goal is to prove that(
3

Fk

)
= −1,

where
(

3
Fk

)
is the Legendre symbol. First, observe that if k ≥ 1, we have

22k ≡ 222k−1 ≡ 42k−1 ≡ 1 (mod 3).

Consequently Fk = 22k + 1 ≡ 2 (mod 3). Since k ≥ 1, we also have Fk ≡ 1 (mod 4). It
follows that

3− 1

2

Fk − 1

2
≡ 0 (mod 2),

so by quadratic reciprocity (Theorem 6.13) and since Fk ≡ 2 (mod 3), by Proposition 6.6,
since 3 ≡ 3 (mod 8), we have (

3

Fk

)
=

(
Fk
3

)
=

(
2

3

)
= −1.

By Euler’s criterion (Theorem 6.3), we have

3
Fk−1

2 ≡
(

3

Fk

)
≡ −1 (mod Fk),

as claimed.

There is also a nice result restricting the kinds of prime factors that a Fermat number
may have.

Theorem 4.51. (Euler, Lucas) For any integer n ≥ 2, every prime factor p of Fn = 22n + 1
must satisfy p ≡ 1 (mod 2n+2).

Proof. Let p be a prime factor of Fn, and let h be the least positive integer such that
2h ≡ 1 (mod p). Since p divides 22n + 1, we have 22n ≡ −1 (mod p), which implies that
h = (2n)2 = 2n+1. By Fermat’s little theorem, 2p−1 ≡ 1 (mod p), so h being the least
positive integer such that 2h ≡ 1 (mod p), we deduce that 2n+1 divides p− 1. Since n ≥ 2,
this implies that p ≡ 1 (mod 8). By Proposition 6.6, we have(

2

p

)
= 1,
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so 2 is a quadratic residue modulo p, and by Euler’s criterion (Theorem 6.3), we have

2(p−1)/2 ≡
(

2

p

)
≡ 1 (mod p),

so h = 2n+1 divides (p− 1)/2, which means that p ≡ 1 (mod 2n+2).

For n = 5, it happens that the prime p = 641 = 1 + 128 · 5 = 1 + 27 · 5, so by Theorem
4.51, the prime 641 is a factor of the Fermat number F5 = 225 + 1 = 232 + 1. This is how
Euler found that F5 was composite.

The Pepin test and Theorem 4.51 have been used to show that F5, . . . , F24 are composite.
It has also been established by other methods that F25, . . . , F32 are composite, but whether
any number Fk is prime for k ≥ 33 is a famous open problem.

It is interesting to observe that any prime factor of Fn is not a prime factor of any of its
predecessors F0, . . . , Fn−1. This is because for n ≥ 1, we have

F0F1 · · ·Fn−1 = Fn − 2,

which is easily shown by induction using the fact that

(Fn − 2)Fn = F 2
n − 2Fn

= (22n + 1)2 − 2(22n + 1)

= 22n+1

+ 222n + 1− 222n − 2

= 22n+1 − 1 = Fn+1 − 2.

Any prime factor of Fn and Fj for j < n would divide 2, but the Fk are odd, so this is
impossible. As a corollary we obtain an amusing proof of the fact that there are infinitely
many primes.

For more on Fermat numbers, see Crandal and Pomerance [3] (Chapter 1, Section 1.3.2).

4.7 The Structure of Finite Fields

Suppose K is a field of characteristic p. For every i, with 0 ≤ i ≤ p, the binomial coefficient(
p
i

)
is given by (

p

i

)
=

p!

i!(p− i)!
,

so if 1 ≤ i ≤ p− 1, we have

i

(
p

i

)
= p

(
p− 1

i− 1

)
.

Since 1 ≤ i ≤ p− 1 and p is prime, we have gcd(p, i) = 1, and so p divides
(
p
i

)
.
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Proposition 4.52. If K is a field of characteristic p, the map (Frobenius map) σ : K → K
given by

σ(a) = ap

is an isomorphism of K onto a subfield of K denoted Kp.

Proof. Since K is commutative, it is clear that σ(ab) = σ(a)σ(b). Obviously σ(0) = 0 and
σ(1) = 1. By the binomial formula and using the fact that p divides

(
p
i

)
for i = 1, . . . , p− 1,

since K has characteristic p, we have
(
p
i

)
= 0 for i = 1, . . . , p− 1, so we have

σ(a+ b) = (a+ b)p

= ap +

p−1∑
i=1

(
p

i

)
ap−ibi + bp

= ap + bp = σ(a) + σ(b).

Therefore, σ is a homomorphism, and as we remarked earlier, it is injective.

The field Z/pZ with p prime is also denoted by Fp. Here is the structure theorem for
finite fields (after J.P. Serre; see Serre [20]).

Theorem 4.53. Let K be a finite field.

(i) The field K is of characteristic p ≥ 2 (p prime). If K is of degree m over Fp, then K
has q = pm elements.

(ii) Let p be any prime, let m be any natural number m ≥ 1, and write q = pm. For any
algebraicaly closed field Ω of characteristic p, there exists a unique subfield Fq of Ω with
q elements. The map σq : Ω → Ω given by σq(x) = xq is an automorphism of Ω, and
the field Fq is the set of roots of the polynomial Xq −X; that is, Fq = Fix(σq).

(iii) Every finite field with q = pm elements is isomorphic to Fq.

Proof. (i) Since K is finite, the map Z −→ K given by n 7→ n · 1 cannot be injective, so K
must have characteristic p ≥ 2, and it contains Fp as a subfield. If K has dimension m as a
vector space over Fp, then it is obvious that K has pm elements.

(ii) We know from Proposition 4.52 that the map σ : Ω → Ω given by σ(x) = xp is an
injective homomorphism. Since σq = σm, the map σq is also an injective homomorphism.
Since Ω is algebraically closed, for any a ∈ K, the polynomial Xq − a has a root in Ω, which
shows that σq is also surjective, thus an automorphism of Ω. Then, the field Fq fixed by σq
is a subfield of Ω. Since Fq is also the set of roots of the polynomial Xq −X, it has at most
q roots. We claim that F (X) = Xq −X has simple roots. From a result of algebra, this is
the case if the derivative F ′(X) of F (X) is not the zero polynomial. But, since we are in
characteristic p and m ≥ 1, we have

F ′(X) = qXq−1 − 1 = ppm−1Xq−1 − 1 = −1
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so F ′(X) is not zero. Therefore, F (X) has exactly q roots, and Fq has q = pm elements.

If K is any other subfield of Ω with q elements, since the multiplicative group K∗ of K
is a finite group of order q − 1, we have

xq−1 = 1, for all x ∈ K∗,

and so
xq − x = 0 for all x ∈ K,

which shows that K is fixed by σq, and so K ⊆ Fq. Since |K| = |Fq| = q, we must have
K = Fq.

(iii) If K is a finite field with q = pm elements, then the reasoning in (ii) shows that K
is the set of roots of the polynomial F (X) = Xq − X. This means that K is the splitting
field of Fp (the smallest field extension of Fp in which F (X) has all its roots). But, as Ω is
algebraically closed and contains a copy of Fp, it contains a splitting field K ′ of Fp. Since any
two splitting fields are isomorphic (see Lang [11], Chapter 5), the field K can be embedded
in Ω (as K ′), so by (ii) K is isomorphic to Fq.

Using Theorem 4.22, we obtain the following important result.

Theorem 4.54. For every prime p and every integer m ≥ 1, the multiplicative group F∗pm
of the finite field Fpm is a cyclic group with pm − 1 elements.

Proof. For any divisor d of pm − 1, the polynomial Xd − 1 has at most d roots in F∗pm ,
therefore by Theorem 4.22, the group F∗pm is cyclic.

Any generator of F∗pm is called a primitive root of unity (to be more precise, a primitive
(pm− 1)th root of unity). Observe that the proof of Theorem 4.54 actually shows that every
finite subgroup of the multiplicative subgroup K∗ of any field K is cyclic.



Chapter 5

The Miller–Rabin Test

This chapter is heavily inspired by Dietzfelbinger [4] and Crandall and Pomerance [3]. The
Miller–Rabin test makes use of two basic properties of the prime numbers:

(1) Fermat’s little theorem, which says that if p is a prime and if a is any integer which is
not a multiple of p, then

ap−1 ≡ 1 (mod p).

Usually, we assume that 1 ≤ a ≤ p− 1.

(2) If p is a prime, then 1 has only trivial square roots, which means that the only solutions
a with 1 ≤ a ≤ p− 1 of the congruence

a2 ≡ 1 (mod p)

are a = 1 and a = p− 1 ≡ −1 (mod p).

Property (2) is proved as follows.

Proof. Observe that if a2 ≡ 1 (mod p), then a2 − 1 = (a + 1)(a − 1) is divisible by p, and
since p is prime, either p divides a − 1 or p divides a + 1. Because 1 ≤ a ≤ p − 1, we
conclude that a = 1 or a = p − 1. On the other hand, 1 and p − 1 are always square roots
of unity modulo p (even if p is not prime), since 12 ≡ 1 (mod p) and (p − 1)2 ≡ (−1)2 ≡ 1
(mod p).

Since computing a mod n is cheap, a first approach to test whether a number n is prime
is to see if (2) fails. To understand how practical this method is, we need to know how many
square roots modulo n the equation x2 ≡ 1 (mod n) has. This is the purpose of the next
section.

Recall that if n ≥ 2, the group (Z/nZ)∗ is the multiplicative group of units of the ring
Z/nZ; that is,

(Z/nZ)∗ = {a ∈ N | 1 ≤ a ≤ n− 1, gcd(a, n) = 1}.

95
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Here and in several places later, with a slight abuse of notation, we are identifying the
equivalence class a of a with its representative a mod n. The order (number of elements)
of (Z/nZ)∗ is ϕ(n), where ϕ(n) is the number of integers a, with 1 ≤ a ≤ n, which are
relatively prime to n (gcd(a, n) = 1).

5.1 Square Roots of Unity

It turns out that 1 and −1 are the only square roots of unity modulo n iff n is of the form 4,
pm, or 2pm, where p is an odd prime.1 To prove this fact, we use the following proposition.

Proposition 5.1. If p is an odd prime, then there are exactly two square roots of unity
modulo pm and 2pm (m ≥ 1), namely 1 and −1. There is a unique square root of unity
modulo 2 (i.e. 1), two square roots of unity modulo 4 (i.e. ±1), and four square root of unity
modulo 2m if m ≥ 3, namely ±1 and 2m−1 ± 1.

Proof. If x2 ≡ 1 (mod n), then x is its own invere modulo n, so x mod n ∈ (Z/nZ)∗, and
we may assume that x ∈ (Z/nZ)∗. First, assume that n = pm with p an odd prime. In
this case, we know that primitive roots modulo pm exist, so pick one, say g. Then, every
x ∈ (Z/pmZ)∗ can be written as x = gi, with 1 ≤ i ≤ ϕ(pm) = pm−1(p − 1), and x2 ≡ 1
(mod pm) is equivalent to g2i ≡ 1 (mod pm). Since g has order ϕ(pm), the congruence g2i ≡ 1
(mod pm) holds iff ϕ(pm) = pm−1(p− 1) divides 2i, that is, iff pm−1(p− 1)/2 divides i (since
p is odd). Since 1 ≤ i ≤ pm−1(p− 1), there are only two possibilities: i = pm−1(p− 1)/2 and
i = pm−1(p− 1), which correspond to x = −1 and x = 1.

The case n = 2pm is analogous, since primitive roots also exist and since ϕ(2pm) = ϕ(pm).

The cases n = 2 and n = 4 are clear.

Assume that n = 2m with m ≥ 3. We are seeking solutions of the congruence x2 ≡ 1
(mod 2m), with 1 ≤ x ≤ 2m − 1. Note that

(2m−1 + x)2 ≡ 22m−2 + 2mx+ x2 ≡ x2 (mod 2m)

since m ≥ 3. Therefore, it is sufficient to find solutions x such that 1 ≤ x ≤ 2m−1 − 1. We
have x2 ≡ 1 (mod 2m) iff (x− 1)(x+ 1) ≡ 0 (mod 2m), so there are three mutally exclusive
possibilities:

1. x ≡ 1 (mod 2m). Since 1 ≤ x ≤ 2m − 1, we must have x = 1.

2. x ≡ −1 ≡ 2m − 1 (mod 2m). Since 1 ≤ x ≤ 2m−1 − 1, this case is impossible.

3. x− 1 = h2i and x+ 1 = k2m−i, with 1 ≤ i ≤ m− 2 and h, k > 0.

1I thank Peter Freyd for communicating this result to me.
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In the third case, we deduce that

x = h2i−1 + k2m−i−1

1 = k2m−i−1 − h2i−1.

If 2 ≤ i ≤ m− 2, then 1 is divisible by 2, which is absurd. Therefore i = 1.

If i = 1, since x+1 = k2m−i, we have x = k2m−1−1, and since k > 0 and 1 ≤ x ≤ 2m−1−1,
we must have k = 1, so

x = 2m−1 − 1.

Since m ≥ 3, we have 2m−1−1 6≡ 1 (mod 2m), and 2m−1−1 is a square root of unity distinct
from 1.

In summary, we proved that there are exactly two square roots of unity x = 1 and
x = 2m−1 − 1 such that 1 ≤ x ≤ 2m−1 − 1. Since x + 2m−1 is also a square root of unity,
2m−1 + 1 and 2m−1 + 2m−1 − 1 = 2m − 1 ≡ −1 (mod m), are also squares roots of unity, so
there are exactly four square roots of unity modulo 2m; namely ±1 and 2m−1 ± 1.

Remark: The fact that there are precisely four square roots of unity modulo 2m when m ≥ 3
follows immediately from the fact that (Z/2mZ)∗ is isomorphic to the direct product of the
two cyclic subgroups {−1, 1} and 〈5〉, both of even order (see Theorem 4.44).

Now, we can determine the exact number of square roots of unity modulo n.

Theorem 5.2. For any natural number n > 1, if the prime factorization of n is

n = 2mpj11 · · · p
jk
k ,

where p1, . . . , pk are distinct odd primes and m+ k ≥ 1, then the number s of disinct square
roots of unity modulo n is given by

s =


2k if m = 0 and k ≥ 1 or m = 1 and k ≥ 0

2k+1 if m = 2 and k ≥ 0

2k+2 if m ≥ 3 and k ≥ 0.

Proof. First, consider the case where m = 0. Since p1, . . . , pk are pairwise relatively prime,
the congruence x2 ≡ 1 (mod n) is equivalent to the k congruences

x2 ≡ 1 (mod pj11 )

...

x2 ≡ 1 (mod pjk1 ).

From Proposition 5.1, each congruence x2 ≡ 1 (mod pji1 ) has the two solutions x = 1 and
x = −1 modulo pj

ji . By the Chinese remainder theorem, there is a bijection between the



98 CHAPTER 5. THE MILLER–RABIN TEST

set of solutions x modulo n and the set of k tuples of solutions (x1, . . . , xk) where xi is a
solution modulo pj

ji , and since there are 2k solutions (x1, . . . , xk) with xi = ±1, there are 2s

square roots modulo n.

If k = 0, then Proposition 5.1 says that the congruence x2 ≡ 1 (mod 2m) has one solution
if m = 1, two solutions if m = 2, and 4 solutions if m ≥ 3.

If m ≥ 1 and k ≥ 1, since 2, p1, . . . , pk are pairwise relatively prime, the congruence
x2 ≡ 1 (mod n) is equivalent to the k + 1 congruences

x2 ≡ 1 (mod 2m)

x2 ≡ 1 (mod pj11 )

...

x2 ≡ 1 (mod pjk1 ).

Again, we use the Chinese remainder theorem. Each congruence x2 ≡ 1 (mod pji1 ) has the
two solutions 1 and −1, and the congruence x2 ≡ 1 (mod 2m) has one solution if m = 1, two
solutions if m = 2, and 4 solutions if m ≥ 3. Therefore, there are 2k square roots if m = 1,
2× 2k = 2k+1 square roots if m = 2, and 4× 2k = 2k+2 square roots if m = 3.

For example, if n = 91 = 7× 13, then 272 = 729 = 8× 91 + 1, so 27 is a square root of 1
(mod 91). The other nontrivial square root of 1 (mod 91) is 64.

If we find some nontrivial square root of unity a modulo n, then we know that n is com-
posite (and a is a witness to the fact that n is composite). Unfortunately, if n is composite,
unless the number k of distinct primes dividing n is large, the number of nontrivial square
roots of unity modulo n (at most 2k+2 − 2) is a lot smaller than n, so it is not practical to
test a randomly chosen a ∈ {2, . . . , n − 2}. Therefore we consider making use of (1) for a
more practical test.

5.2 The Fermat Test; F -Witnesses and F -Liars

Going back to (1), observe that if n ≥ 2, then by the binomial formula, we have

(n− 1)n−1 ≡ (−1)n−1 (mod n).

Consequently, if n ≥ 3 is odd, then

(n− 1)n−1 ≡ 1 (mod n),

and if n ≥ 4 is even, then

(n− 1)n−1 ≡ −1 (mod n).
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(In the special case where n = 2, we have 1 ≡ −1 (mod 2).) Now, for any natural number
n ≥ 4, if 2 ≤ a ≤ n− 2 and if

an−1 6≡ 1 (mod n),

then n is not prime, since Fermat’s little theorem does not hold. Since all primes except 2
are odd integers, we only need to test odd integers for compositeness and this suggests the
following test:

Fermat test: For any odd integer n ≥ 5, pick randomly some a ∈ {2, . . . , n− 2}.
If an−1 6≡ 1 (mod n), then return “n is composite,” else return “n is a probable prime.”

Of course, we compute exponentiation modulo n using fast algorithms based on repeated
squaring.

Definition 5.1. Let n ∈ N be any integer such that n ≥ 3.

(1) An integer a such that 2 ≤ a ≤ n−1 is called a Fermat witness , for short an F -witness
for n, if an−1 6≡ 1 (mod n).

(2) If n is an odd composite, then an integer a with 1 ≤ a ≤ n − 1 is a Fermat liar , for
short an F -liar for n, if an−1 ≡ 1 (mod n). The set of F -liars for n is denoted by LFn .

Every even number n ≥ 4 has n− 1 has an F -witness. This is a bit of an overkill, since
every positive even number, except 2, is a composite. The number 1 is a trivial F -liar, and
by a previous observation, when n is an odd composite, n− 1 is always an F -liar.

Definition 5.2. A composite number n ≥ 4 such a ≥ 2 is an F -liar for n is called a Fermat
pseudoprime base a (for short, a pseudoprime base a).

It can be checked that 2 is an F -witness for all integers n ≥ 3 up to n = 340. However,
for n = 341 = 11× 31, we get

2340 ≡ 1 (mod 341),

so 2 is an F -liar for 341, and 341 is a pseudoprime base 2. If we try a = 3, we find that

3340 ≡ 56 (mod 341),

so 3 is an F -witness for 341, and 341 is not a pseudoprime base 3. On the other hand, it is
easy to check that 91 = 7× 13 is not a pseudoprime base 2 because 290 ≡ 64 (mod 91), but
it is a pseudoprime base 3 because 390 ≡ 1 (mod 91); see Section 2.3 for the computations.

The above considerations suggest the following question: if n ≥ 3 is a (odd) composite,
does it necessarily have some F -witness? The answer is yes, but this is not of practical use.

Proposition 5.3. For any integer n ≥ 2, the following properties hold:

(a) For any integer a such that 1 ≤ a ≤ n − 1, if ar ≡ 1 (mod n) for some r ≥ 1, then
a ∈ (Z/nZ)∗.
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(b) If an−1 ≡ 1 (mod n) for all a with 1 ≤ a ≤ n− 1, then n is prime.

Proof. (a) if r = 1, then we must have a = 1, and if r ≥ 2, then ar−1a ≡ 1 (mod n) shows
that a is a unit, so in both cases a ∈ (Z/nZ)∗.

(b) If an−1 ≡ 1 (mod n) for all a with 1 ≤ a ≤ n − 1, then by (a), we have (Z/nZ)∗ =
{1, . . . , n− 1}, so gcd(a, n) = 1 for all a = 2, . . . , n− 1, which implies that n is prime.

By Proposition 5.3 (b), if n ≥ 4 is a composite, then it must have some F -witness.
Furthermore, by (a), the n− 1− ϕ(n) elements of the set

{1, . . . , n− 1} − (Z/nZ)∗ = {a ∈ N | 2 ≤ a ≤ n− 2 | gcd(a, n) > 1}

must be all F -witnesses (an−1 6≡ 1 (mod n)).

Unfortunately, this set is very slim for many composite numbers. For example, if n = pq
is the product of two distinct primes p and q, then this sets contains pq−1− (p−1)(q−1) =
p+ q − 2 elements. If p and q are roughly equal, then p+ q − 2 is very small in comparison
to n = pq.

The case n = 91 = 7 × 13 gives us a concrete idea of what is going on. There are 18
F -witnesses not in (Z/91Z)∗ (multiples of 7 and 13):

7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84

13, 26, 39, 52, 65, 78.

There are 36 F -witnesses in (Z/91Z)∗:

2, 5, 6, 8, 11, 15, 18, 19, 20, 24, 31, 32,

33, 34, 37, 41, 44, 45, 46, 47, 50, 54, 57, 58,

59, 60, 67, 71, 72, 73, 76, 80, 83, 85, 86, 89.

Finally, there and 36 F -liars (necessarily in (Z/91Z)∗);

1, 3, 4, 9, 10, 12, 16, 17, 22, 23, 25, 27,

29, 30, 36, 38, 40, 43, 48, 51, 53, 55, 61, 62,

64, 66, 68, 69, 74, 75, 79, 81, 82, 87, 88, 90.

The Fermat test gives the wrong answer if the random choice for a hits one the 34 F -liars
other and 1 and 90, which has probabilty 34/88 = 17/44. Observe that 17/34 < 1/2. This
is a general fact, provided that the odd composite n has some F -witness in (Z/nZ)∗. This
follows from the interesting fact that the set LFn of F -liars is a subgroup of (Z/nZ)∗.

Proposition 5.4. For any integer n ≥ 2, the set LFn of F -liars is a subgroup of (Z/nZ)∗.
Furthermore, if n is an odd composite and if n possesses at least some F -witness in (Z/nZ)∗,
then the probability that the Fermat test gives the wrong answer, more precisely the probability
that any a ∈ {2, . . . , n− 2} is an F -liar for n, is at most 1/2.
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Proof. Since 1 ≡ 1 (mod n), we have 1 ∈ LFn . Since (Z/nZ)∗ is a finite group, to show that
LFn is a subgroup, it suffices to show closure under multiplication. If an−1 ≡ 1 (mod n) and
bn−1 ≡ 1 (mod n), then (ab)n−1 ≡ an−1bn−1 ≡ 1 (mod n), as desired.

By Lagrange’s theorem, the order |LFn | of LFn divides the order ϕ(n) of (Z/nZ)∗. If
there is some F -witness in (Z/nZ)∗, then LFn is a proper subgroup of (Z/nZ)∗. Since n is a
composite and since LFn is a proper subgroup, we deduce that ϕ(n) < n− 1 and that |LFn | is
a proper divisor of ϕ(n), which implies that

|LFn | ≤ (n− 2)/2.

Thus, the probability that some a chosen in {2, . . . , n − 2} belongs to LFn − {1, n − 1} is
bounded by

(n− 2)/2− 2

n− 3
=

n− 6

2(n− 3)
<

1

2
,

since 2n− 12 < 2n− 6.

The good news about Proposition 5.4 is that if n is an odd composite and if n has some
F -witness in (Z/nZ)∗, then the probability that the Fermat test gives the wrong answer is
less than 1/2. By repeating the test ` times, each time choosing randomly and independently
some a in {2, . . . , n− 2}, we can make the probability of failure less than (1/2)`.2

5.3 Carmichael Numbers

The bad news is that there exist odd composites n such that LFn = (Z/nZ)∗; that is, n has
no F -witness in (Z/nZ)∗. The smallest such number is 561 = 3× 11× 17. This number is a
pseudoprime in any base relatively prime to 561. Such “nasty” numbers were first discovered
by R. Carmichael in 1910, and motivates the following definition.

Definition 5.3. An integer n ≥ 3 for which an−1 ≡ 1 (mod n) for all a ∈ {2, . . . , n − 1},
with gcd(a, n) = 1, is called a probable prime. A composite integer n ≥ 3 which is a probable
prime is called a Carmichael number .

If n ≥ 4 is even, we observed that n− 1 is an F -witness for n, so a Carmichael number
must be odd.

2We have to be careful about which probability we are talking about. In this case, we are considering the
conditional probability that the algorithm lies ` times (fails to report that n is composite), given that n is
composite. However, as a user of the algorithm, it is more useful to know the conditional probability that n
is composite, given that the algorithm runs ` times and each time fails to report that n is composite. The
two conditional probabilities are related by Bayes’s formula. The second conditional probability involves the
density of primes. A computation shows that the probability (1/2)` must be (approximately) multiplied by
lnn. We will come back to this point later on.
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Unfortunately for primality testing, there are infinitely many Carmichael numbers. This
fact was proved in 1994 by Alford, Granville and Pomerance. They also proved that there is
some integer x0 > 0, such that for all x ≥ x0, the number C(x) of Carmichael numbers not
exceeding x satisfies C(x) > x2/7.

Remark: The sufficiently large x0 is not known explicitly, but it is conjectured that it is
the 96th Carmichael number: 8719309.

Other authors define a Carmichael number as a composite integer n ≥ 3 for which

an ≡ a (mod n) for all a ∈ N.

This second definition implies the first (Definition 5.3), because if an ≡ a (mod n) and if
gcd(a, n) = 1, then we can divide by a and we obtain an−1 ≡ 1 (mod n). Definition 5.3
implies the second definition, but this requires a little work. We can use of a criterion due
to A. Korselt. This criterion was found in 1899, eleven years before Carmichael actually
produced the first example. Presumably Korselt believed that such numbers did not exist,
and he developed a criterion as a first step in proving this.

Theorem 5.5. (Korselt criterion) An integer n ≥ 2 is a Carmichael number iff the following
two conditions hold.

(1) The number n is composite and not divisible by the square of any prime (it is square-
free).

(2) For every prime p, if p divides n then p− 1 divides n− 1.

Proof. First, let n be a Carmichael number.

(1) Assume that n is divisible by the square of some prime p. Since n must be odd, we
can write n = pkm, where p ≥ 3 is a prime, k ≥ 2, and p does not divide m. We produce an
F -witness in (Z/nZ)∗ for n as follows:

Case 1. If m = 1, let a = p + 1. Clearly, gcd(p + 1, pk) = 1. We claim that an−1 6≡ 1
(mod n). We proceed by contradiction. If an−1 ≡ 1 (mod n), then since p2 divides n, we
have an−1 ≡ 1 (mod p2). However, by the binomial formula, we have

an−1 ≡ (1 + p)n−1 ≡ 1 + (n− 1)p+
n−1∑
i=2

(
n− 1

i

)
pi ≡ 1 + (n− 1)p (mod p2).

Since an−1 ≡ 1 (mod p2), we deduce that (n − 1)p ≡ 0 (mod p2), which means that p2

divides (n− 1)p, and since p is prime, p divides n− 1. However, n− 1 = pk − 1 with k ≥ 2,
so p does not divide n− 1, a contradiction.

Case 2. If m ≥ 3, then we use the Chinese remainder theorem to find some a with
1 ≤ a < p2m ≤ n so that

a ≡ p+ 1 (mod p2)

a ≡ 1 (mod m).
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Since p2 divides a − (p + 1), the prime p does not divide a, so gcd(a, pk) = 1. Since
a ≡ 1 (mod m), we also have gcd(a,m) = 1. Because gcd(pk,m) = 1 and n = pkm, we
conclude that gcd(a, n) = 1. We claim that an−1 6≡ 1 (mod n). As in Case 1, we proceed
by contradiction. Then, by the same reasoning, we deduce that p divides n− 1. This time,
n− 1 = pkm− 1, and again p does not divide n− 1, a contradiction.

(2) By (1), n is a product of distinct primes. Assume that the prime p divides n. Since
p is prime, the group (Z/pZ)∗ is cyclic (see Theorem 4.34) so pick a generator g (a primitive
root modulo p). By the Chinese remainder theorem, we can find some b such that

b ≡ g (mod p)

b ≡ 1 (mod n/p).

Since n is a product of distinct primes, the numbers p and n/p have no common factor, so
gcd(b, n) = 1. Since n is a Carmichael number, we have

bn−1 ≡ 1 (mod n),

and since p divides n, we get

gn−1 ≡ bn−1 ≡ 1 (mod p).

Since g has order p− 1, the number p− 1 divides n− 1.

Conversely, assume that (1) and (2) hold. Let a ∈ {1, . . . , n − 1} be any integer such
that gcd(a, n) = 1. For any prime p dividing n, we also have gcd(a, p) = 1, so by Fermat’s
little theorem,

ap−1 ≡ 1 (mod p).

Since p− 1 divides n− 1, we also have

an−1 ≡ 1 (mod p).

Since the prime factors of n are all distinct, we deduce that

an−1 ≡ 1 (mod n),

which shows that n is a Carmichael number.

Suppose n is a Carmichael number. Then by Korselt’s criterion (Proposition 5.5) Condi-
tions (1) and (2) hold. If gcd(a, p) = 1, then the proof of (2) shows that an−1 ≡ 1 (mod p),
thus an ≡ a (mod p). If p divides a then an ≡ a (mod p) holds trivially (since p divides
n). Therefore an ≡ a (mod p) for all a, and since the prime factors of n are all distinct, we
conclude that

an ≡ a (mod n) for all n ∈ N.

We saw in Theorem 5.5 that every Carmichael numbers contains distinct prime factors.
The number of distinct prime factors must be at least three.
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Proposition 5.6. Every Carmichael number contains at least three distinct prime factors.

Proof. We make use of Theorem 5.5. Assume that some Carmichael number n is the product
of two distinct primes p and q. We may suppose that 3 ≤ p < q. By Theorem 5.5, Property
(2) says that p− 1 and q − 1 both divide n− 1. But, n− 1 = pq − 1 = p(q − 1) + p− 1, so
n−1 ≡ p−1 (mod (q−1)), and p−1 6≡ 0 (mod (q−1)) since q > p ≥ 3, a contradiction.

Here is a list of the first ten smallest Carmichael numbers; see Ribenboim [18] (Chapter
2, Section IX):

651 = 3 · 11 · 17

1105 = 5 · 13 · 17

1729 = 7 · 13 · 19

2465 = 5 · 17 · 29

2821 = 7 · 13 · 31

6601 = 7 · 23 · 41

8911 = 7 · 19 · 67

10585 = 5 · 29 · 73

15841 = 7 · 31 · 73

29341 = 13 · 37 · 61.

If n is a Carmichael number, then LFn = (Z/nZ)∗, so the set {1, . . . , n− 1} − (Z/nZ)∗ of
F -witnesses is quite thin, and the probability that the Fermat test gives the wrong answer
(n is prime) is

ϕ(n)− 2

n− 3
>
ϕ(n)

n
=

∏
p is prime

p|n

(
1− 1

p

)
.

This bound is annoyingly close to 1 if n has only few large prime factors. For example, if n
is the Carmichael number

n = 651693055693681 = 72931× 87517× 102103,

we find that ϕ(n)/n > 0.99996. Repeating the test does not help, because if n has only 3
or 4 factors and if the smallest prime factor is p0, then it is not hard to see that we would
have to repeat the test a number of times proportional to p0 to make the error probability
less than 1/2. Therefore, a new idea is necessary to break the curse of Carmichael numbers.
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5.4 The Miller–Rabin Test; MR-Witnesses and MR-

Liars

The new idea is to make use of the nontrivial square root of unity test. If n ≥ 3 is an odd
integer, we can factor the largest power of 2 in n− 1; that is, we write

n− 1 = 2kt,

where t is odd. The point is that if p is prime, then for any a which is not a multiple of p,
the residues of at and a2

it (with 0 ≤ i ≤ k−1) modulo p must satisfy some special condition.

Proposition 5.7. Let p be an odd prime, and write

p− 1 = 2kt, with t odd and k ≥ 1.

For any natural number a which is not a multiple of p, one of the following two conditions
must hold:

(1) either at ≡ 1 (mod p),

(2) or a2
it ≡ n− 1 (mod p), for some i with 0 ≤ i ≤ k − 1.

Proof. By Fermat’s little theorem, we have

ap−1 ≡ 1 (mod p),

that is
a2

kt ≡ 1 (mod p).

This implies that if we consider the list

b0 = at, b1 = a2t, b2 = a2
2t, . . . , bk−1 = a2

k−1t, bk = a2
kt = an−1,

the last number is congruent to 1 modulo p, and since

a2
i+1t =

(
a2

it
)2
,

we have bi+1 = b2i , for i = 0, . . . , k − 1. There are only two possibilities:

(i) We have b0 = at ≡ 1 (mod p).

(ii) There is some bi such that bi 6≡ 1 (mod p), but b2i ≡ 1 (mod p), for some i with
0 ≤ i ≤ k− 1. Because n is prime, we know that b2i ≡ 1 (mod p) implies that bi ≡ ±1
(mod p), and since +1 is ruled out, we must have bi ≡ −1 ≡ n− 1 (mod p).

Case (i) corresponds to Case (1) and Case (ii) corresponds to Case (2).
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Observe that Condition (2) for i = 0 says that at ≡ n − 1 (mod n), or equivalently
at ≡ −1 (mod n). Proposition 5.7 implies that if we can find some natural number a such

that

(a) at 6≡ ±1 (mod n), and

(b) a2
it 6≡ n− 1 (mod n), for all i with 1 ≤ i ≤ k − 1,

then n must be a composite.

Indeed, if a satisfies both properties (a) and (b) above, then a is not a multiple of n, since
otherwise we would have at ≡ 0 (mod n) and a2

it ≡ 0 (mod n) for all i with 1 ≤ i ≤ k − 1,
so (a) and (b) would not hold. Then, by the contrapositive of Proposition 5.7, the number
n can’t be prime.

Clearly, a 6= 1, but a 6= n−1 as well, since (n−1)t ≡ −1, because t is odd. Furthermore,
if a ∈ {2, . . . , n−2} then we may assume that gcd(a, n) = 1, since otherwise 2 ≤ gcd(a, n) ≤
n− 2, and n is composite.

The above leads to to the following definition.

Definition 5.4. Let n ≥ 3 be any odd integer, and write n− 1 = 2kt, with k ≥ 1 and t odd.

(1) A number a such that 2 ≤ a ≤ n− 2 with gcd(a, n) = 1 is a Miller–Rabin witness , for
short a MR-witness for n, if the following two conditions hold:

(a) at 6≡ ±1 (mod n), and

(b) a2
it 6≡ n− 1 (mod n), for all i with 1 ≤ i ≤ k − 1.

(2) If n is composite, then any integer a with 1 ≤ a ≤ n− 1 is Miller–Rabin liar , for short
an MR-liar for n, iff a is not an MR-witness for n. The set of MR-liars for n is denoted
by LMR

n , and we have

LMR
n = {a ∈ {1, . . . , n− 1}, either at ≡ 1 (mod n),

or a2
it ≡ n− 1 (mod n), for some i with 0 ≤ i ≤ k − 1}.

The numbers a = 1 and a = n − 1 are trivial MR-liars. Observe that every MR-liar is
an F -liar: If at ≡ 1 (mod n), then

an−1 ≡
(
at
)2k ≡ (1)2

k ≡ 1 (mod n),

and if a2
it ≡ n− 1 (mod n), for some i with 0 ≤ i ≤ k − 1, then

an−1 ≡
(
a2

it
)2k−i

≡ (−1)2
k−i ≡ 1 (mod n),

since i ≤ k − 1.
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Thus, LMR
n ⊆ LFn , but unfortunately, LMR

n is not a group. For example, if n = 325 =
52 × 13, then n− 1 = 22 × 81, and it is easy to verify that

72×81 ≡ 324 (mod 325)

322×81 ≡ 324 (mod 325)

22481 ≡ 274 (mod 325)

2242×81 ≡ 1 (mod 325)

22422×81 ≡ 1 (mod 325),

so 7 and 32 are both MR-liars, but their product 224 is a MR-witness. When n is not a
Carmichael number, LMR

n is contained in LFn which is a proper subgroup of (Z/nZ)∗, so the
proportion of MR-liars is less than 1/2, but when n is a Carmichael number, we need to find
another proper subgroup of (Z/nZ)∗ containing LMR

n . Fortunately, this is possible.

Definition 5.5. An odd composite number n such that a with 2 ≤ a ≤ n− 2 is an MR-liar
for n is called a strong pseudoprime base a.

Because every MR-liar is an F -liar, every strong pseudoprime base a is a pseudoprime
base a. The converse is false.

The number 91 is an example of a pseudoprime base 10 which is also a strong pseudoprime
base 10. Indeed, 90 = 2× 45, and 1045 ≡ 90 (mod 91), which shows that 10 is an MR-liar.

We saw earlier that n = 341 is a pseudoprime base 2. But 341 is not a strong pseudoprime
base 2, because 340 = 22 × 85, 285 ≡ 32 (mod 341), and 22×85 ≡ 1 (mod 341), so 2 is an
MR-witness for 341. In fact, 32 is a nontrivial square root of unity modulo 341.

The Carmichael number n = 561 = 3× 11× 17 is a pseudoprime for every base relatively
prime to 561, and 560 = 24 × 35. For a = 2, we obtain

235 ≡ 263 (mod 561)

22×35 ≡ 2632 ≡ 166 (mod 561)

222×35 ≡ 1662 ≡ 67 (mod 561)

223×35 ≡ 672 ≡ 1 (mod 561)

Since 263 6≡ ±1 (mod 561), and 166, 67, 1 6≡ 560 (mod 561), the number 2 is an MR-witness
for 561, which is not a strong pseudoprime base 2.

Here is another example from Hoffstein, Pipher and Silverman [8] (Chapter 3, Section
3.4). We leave it as an exercise to check that if n = 172947529, then n− 1 = 23× 21618441,
and with a = 17, we get

1721618441 ≡ 1 (mod 172947529),

so 17 is not an MR-witness for 172947529. With a = 3, we get

321618441 ≡ −1 (mod 172947529),
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and 3 is not an MR-witness for 172947529 either. However, with a = 23 we have

2321618441 ≡ 40063806 (mod 172947529)

232·21618441 ≡ 2257065 (mod 172947529)

234·21618441 ≡ 1 (mod 172947529)

so a = 23 is an MR-witness for 172947529, which happens to be a Carmichael number with
factorization

172947529 = 307× 613× 919.

The reader should check that the above number is indeed a Carmichael number by using
Korselt’s criterion.

Ribenboim gives an interesting table of the numbers below N = 25 · 109 which are strong
pseudoprimes to the bases 2, 3, 5 simultaneously; see [18], Chapter 2, Section VIII, Table 11.

In the table below, the abbrevation psp means pseudoprime, and the abbreviation spsp
means strong pseudprime.

psp to bases
Number 7 11 13 Factorization

25 326 001 no no no 2251 · 11251
161 304 001 no spsp no 7333 · 21997
960 946 321 no no no 11717 · 82013

1 157 839 381 no no no 24061 · 48121
3 215 031 751 spsp psp psp 151 · 751 · 28351
3 697 278 427 no no no 30403 · 121609
5 764 643 587 no no spsp 37963 · 151849
6 770 862 367 no no no 41143 · 164569

14 386 156 093 psp psp psp 397 · 4357 · 8317
15 579 919 981 psp spsp no 88261 · 176521
18 459 366 157 no no no 67933 · 271729
19 887 974 881 psp no no 81421 · 244261
21 276 028 621 no psp psp 103141 · 206281

There are π(N) = 1 091 987 405 primes and 2163 Carmichael numbers less that or equal
to N = 25 · 109. The number 3 215 031 751 has the remarkable property that it is a strong
pseudoprime simulaneously to the bases 2, 3, 5, 7. Consequently, if N is any positive integer
such that N < 25·109 and N 6= 3 215 031 751, and if 2, 3, 5, 7 are not MR-witnesses, then N is
prime. This can be checked very quickly using repeated squaring. According to Ribenboim,
this is also true up to N < 118 670 087 467; see [18] (Chapter 2, Section XI) and Niven,
Zuckerman, and Montgomery [16] (Section 2.4).

The idea to use the sequence b0, . . . , bk of Proposition 5.7 to design a test for compos-
iteness was suggested around 1976 by J. Selfridge. Also around 1976, G. Miller designed
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a deterministic test whose polynomial running time depends on the truth of the Extended
Riemann Hypothesis (for short, ERH), a yet famous unproved number-theoretic conjecture.
We will say a little more about it later. Some years later, around 1980, M. Rabin (and
independently L. Monier) found a way of making Miller’s test into a randomized algorithm.
This algorithm is now know as the Miller–Rabin test. Here it is.

Miller–Rabin test

The input is an integer n > 3.

procedure miller-rabin(n)
begin

Choose random integer a ∈ {2, . . . , n− 2};
If n is even or gcd(a, n) 6= 1 then c := 1; return c; exit (∗ n is composite ∗)
Decompose n as n− 1 = 2kt, with t odd
b := at mod n;
if b = 1 or b = n− 1 then c := 0; return c; exit;

(∗ n is a strong pseudoprime base a ∗)
for i = 1 to k − 1 do
b := b2 mod n;
if b = n− 1 then c := 0; return c; exit
(∗ n is a strong pseudoprime base a ∗)
if b = 1 then c := 1; return c; exit (∗ n is composite ∗)

endfor ;
c := 1; return c (∗ n is composite ∗)

end

We need to show that the algorithm behaves correctly; that is, we need to show that
n is indeed composite when it returns the output c = 1 (“composite”). If n is even or if
gcd(a, n) 6= 1, then n is obviously composite. Othwerwise n is odd, and there are two ways
that the algorithm returns the output c = 1. Let b0 = at mod n and ai = a2

it mod n, for
i = 1, . . . , k.

(a) For some i, 1 ≤ i ≤ k − 1, the algorithm finds that b = 1. In order to reach this
condition, it must be the case that b0, b1, . . . , bi−1 /∈ {1, n − 1}, since otherwise the
program would have stopped. As soon as bi = 1, we also have bi+1 = . . . = bk = 1. But
then, b0 /∈ {1, n− 1} and bi 6= n− 1 for i = 1, . . . , k− 1, so a is an MR-witness and n is
indeed composite. Actually, b2i−1 = 1 and bi /∈ {1, n− 1}, so n has a nontrivial square
root and thus must be composite.

(b) The program goes through all k − 1 rounds through the for loop and returns c = 1
(“composite”). In this case, all the tests (in the if statements) have failed, and we
must have bi /∈ {1, n − 1} for i = 0, . . . , k − 1. Again a is an MR-witness and n is
composite.
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The computational complexity of this algorithm depends on what kind of fast algorithm
is used to compute exponentiation modulo n. As explained in Dietzfelbinger [4] (Chapter 5,
Section 5.2), it takes O(log2 n) arithmetic operations and O((log2 n)3) bit operations. If a
faster method is used for integer multiplication, then it takes O∼((log2 n)2) bit operations.
Here, the notation f = O∼(g) means that f = O(g(log2(g))k), for some k ≥ 0; for details,
see Dietzfelbinger [4] (Chapter 2, Sections 2.2 and 2.3). In brief, the Miller–Rabin test is
polynomial in the bit length of the input n (of degree at most 3).

It remains to show that the probability that the Miller–Rabin test gives the wrong answer,
“strong pseudoprime,” when n is a composite, is less than 1/2. Monier and Rabin proved
that this probability is actually less than 1/4, but for now, we show that this probability is
less than 1/2 because the proof is simpler. We follow the nice proof given in Dietzfelbinger
[4] (Chapter 5).

We need to find an upper bound on |LMR
n |. As we explained earlier, the set LMR

n of
MR-liars is contained in LFn , but it is not a subgroup.

If n is not a Carmichael number, then LFn is a proper subgroup of (Z/nZ)∗, so the reason-
ing used in the proof of Proposition 5.4 applies, and the fraction of MR-liars in {2, . . . , n−2}
is less than 1/2.

If n is a Carmichael number, then we can find a proper subgroup Bn of (Z/nZ)∗ that
contains LMR

n as follows. Write n−1 = 2kt, with t odd. Since t is odd, we have (n−1)t ≡ n−1
(mod n), so there is a largest index i ≥ 0 such that there is an MR-liar a0 (recall that
a0 ∈ {1, . . . , n− 1}) with

a2
it

0 ≡ n− 1 (mod n).

Denote this largest index by i0. Since n is a Carmichael number, we have

a2
kt

0 ≡ an−10 ≡ 1 (mod n),

hence 0 ≤ i0 ≤ k − 1. Define Bn by

Bn = {a ∈ {1, . . . , n− 1} | a2i0 t mod n ∈ {1, n− 1}}.

The following proposition is the key ingredient.

Proposition 5.8. The set Bn defined above (for a Carmichael number n) has the following
properties:

(1) LMR
n ⊆ Bn.

(2) The set Bn is a subgroup of (Z/nZ)∗.

(3) The group Bn is a proper subgroup of (Z/nZ)∗.
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Proof. (1) Pick any a ∈ LMR
n .

Case 1: at ≡ 1 (mod n). Then, a2
i0 t ≡ 1 (mod n) as well, and thus a ∈ Bn.

Case 2: a2
it ≡ n − 1 (mod n), for some i with 0 ≤ i ≤ k − 1. By the maximality of i0,

we have i ≤ i0. If i = i0, then we get immediately that a ∈ Bn. If i < i0, then

a2
i0 t ≡

(
a2

it mod n
)2i0−i

≡ 1 (mod n)

since i0 − i ≥ 1, and we conclude that a ∈ Bn.

(2) Obviously, 1 ∈ Bn. Since (Z/nZ)∗ is finite, we only need to check that Bn is closed
under multiplication. Pick a, b ∈ Bn. This means that a2

i0 t mod n and b2
i0 t mod n belong

to {1, n− 1}. Now, we have

1 · 1 ≡ 1 (mod n)

1 · (n− 1) ≡ n− 1 (mod n)

(n− 1) · 1 ≡ n− 1 (mod n)

(n− 1) · (n− 1) ≡ 1 (mod n),

which implies that
(ab)2

i0 t ≡ a2
i0 tb2

i0 t ≡ 1 or n− 1 (mod n);

that is, ab ∈ Bn, as required.

(3) We need to find some a ∈ (Z/nZ)∗ which does not belong to Bn. We use the fact that
a Carmichael number can be written as the product n = n1n2 of two distinct odd numbers
n1 and n2 such that gcd(n1, n2) = 1, which is a consequence of the fact that a Carmichael
number is a product of (at least 3) distinct primes.

Recall that a0 is an MR-liar with a2
i0 t

0 ≡ n − 1 (mod n). Since n1 and n2 divide n, we
also have a2

i0 t
0 ≡ n− 1 (mod n1) and a2

i0 t
0 ≡ n− 1 (mod n2). If we let a1 ≡ a0 mod n1, then

by the Chinese remainder theorem, there is a unique a ∈ {0, . . . , n− 1} such that

a ≡ a1 (mod n1)

a ≡ 1 (mod n2).

We claim that a ∈ (Z/nZ)∗, but a /∈ Bn. First, we show that a /∈ Bn.

From a1 ≡ a0 (mod n1) and a ≡ a1 (mod n1), we get a ≡ a0 (mod n1), and since
a2

i0 t
0 ≡ n− 1 (mod n1), we get

a2
i0 t ≡ n− 1 (mod n1). (∗)

From a ≡ 1 (mod n2), we get

a2
i0 t ≡ 1 (mod n2). (∗∗)
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Now, since n1 divides n, (∗) implies that

a2
i0 t 6≡ 1 (mod n),

and since n2 divides n, (∗∗) implies that

a2
i0 t 6≡ n− 1 (mod n).

Consequently, a2
i0 t mod n /∈ {1, n − 1}, and thus a /∈ Bn. It remains to show that a ∈

(Z/nZ)∗. By squaring (∗) and (∗∗) , we get

a2
i0+1t ≡ 1 (mod n1) and a2

i0+1t ≡ 1 (mod n2),

and since gcd(n1, n2) = 1, this yields

a2
i0+1t ≡ 1 (mod n),

which shows that a ∈ (Z/nZ)∗ (by Proposition 5.3).

Proposition 5.8 shows that if n is a Carmichael number, then LMR
n is contained in the

proper subgroup Bn of (Z/nZ)∗, and by the reasoning used when LMR
n is contained in the

proper subgroup LFn of (Z/nZ)∗, we conclude that the fraction of MR-liars in {2, . . . , n− 2}
is also less than 1/2. In summary, we proved the following result.

Theorem 5.9. If n > 3 is an odd composite, then the fraction of MR-liars in {2, . . . , n− 2}
is less than 1/2. Consequently, the probability that the Miller–Rabin test gives the wrong
answer c = 0, more precisely the probability that any a ∈ {2, . . . , n− 2} is a MR-liar, is less
than 1/2.

We will show below that if we repeat the Miller–Rabin test ` times, then the probability
that the algorithm gives the answer c = 0 every time when n is composite is at most (1/2)`.
Here is the algorithm.

Algorithm Probable Prime

The input is an integer n > 3.

begin
for i = 1 to ` do
c = miller-rabin(n);
if c = 1 then res = 1; return res; exit (∗ n is composite ∗)

endfor ;
res = 0; return res (∗ n is a probable prime ∗)

end
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We can easily modify miller-rabin to avoid redecomposing n again and again when it is
called.

If the algorithm stops with res = 1, then n is definitely composite. If n is prime, then
the algorithm will runs through all ` steps and correctly return res = 0. If n is composite,
the algorithm may return the wrong answer res = 0, but the probability that this happens
is bounded by (1/2)`.

We hinted earlier at the fact that the above probabilily is not really what we would like
to know. To make this point clearer, let us define the events P,C, SP and SP ` by

P = {n | n ≥ 3, n is prime}
C = {n | n ≥ 3, n is composite}

SP = {n | n ≥ 3, the miller-rabin procedure returns c = 0}
SP ` = {n | n ≥ 3, the miller-rabin procedure returns c = 0 ` times}.

Observe that P = C, the complement of C. Then, we have the three conditional probabilities

Pr(P | SP `) = Pr(n is not composite | miller-rabin returns c = 0 ` times)

= Pr(n is prime | miller-rabin returns c = 0 ` times),

Pr(SP ` | P ) = Pr(miller-rabin returns c = 0 ` times | n is not composite)

= Pr(miller-rabin returns c = 0 ` times | n is prime)

and
Pr(SP ` | C) = Pr(miller-rabin returns c = 0 ` times | n is composite).

The third probability Pr(SP ` | C) is the one we have been considering so far, but we should
be more interested in the level of confidence that n is prime given that miller-rabin returns
res = 0, and this is the first probability Pr(P | SP `). This point is clearly articulated in
Hoffstein, Pipher and Silverman [8]; most of the literature ignores it, and it is important to
make it perfectly clear. Fortunately, Pr(P | SP `) can be obtained using Bayes’s formula:

Pr(P | SP `) =
Pr(SP ` | P )Pr(P )

Pr(SP ` | P )Pr(P ) + Pr(SP ` | P )Pr(P )
.

In particular, we need to compute the probability Pr(P ) that an integer n ≥ 3 is prime. But
there is a problem: the events under consideration are all infinite, so their probabilities are
not well defined! A positive integer either is prime or is not prime; it cannot be 30% prime
and 70% composite.

The problem with infinite events is pointed out by Hoffstein, Pipher and Silverman in
[8] (Chapter 3, Section 3.4.1). The statement often found that a randomly chosen positive
integer has probability 1/ lnn of being prime is meaningless. In order for all these probabil-
ities to make sense, we need our events to be finite, and this can be achieved if we consider
finite intervals.
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We can make this idea precise following the hint given in Exercise 3.18 in Hoffstein,
Pipher and Silverman in [8].

Let c1 < c2 be any two positive real numbers. For any positive integer n, let us find the
probabilty P (c1, c2;n) that an integer m such that c1n ≤ m ≤ c2n is prime,

P (c1, c2;n) = Pr(m is prime, c1n ≤ m ≤ c2n).

The condition c1n ≤ m ≤ c2n is really dc1ne ≤ m ≤ bc2nc. Since c1 < c2, there are bc2nc −
dc1ne+1 ≈ (c2−c2)n integers in the interval [dc1ne, bc2nc]. There are π(bc2nc)−π(dc1ne−1)
primes in the interval [dc1ne, bc2nc], which by the Prime Number Theorem is approximately

π(bc2nc)− π(dc1ne − 1) ≈ c2n

ln(c1n)
− c1n

ln(c1n)

=
n(c2 ln(c1n)− c1 ln(c2n))

ln(c1n) ln(c2n)

=
n((c2 − c1) lnn+ c2 ln c1 − c1 ln c2)

(lnn+ ln c1)(lnn+ ln c2)
.

Consequently, the probability P (c1, c2;n) given by

P (c1, c2;n) =
π(bc2nc)− π(dc1ne − 1)

bc2nc − dc1ne+ 1

is approximately

P (c1, c2;n) =

(
1 +

c2 ln(c1)− c1 ln(c2)

(c2 − c1) lnn

)
lnn

(
1 +

ln c1
lnn

)(
1 +

ln c2
lnn

) .
When n is large, this probability is approximately

P (c1, c2;n) =
1

lnn
,

independently of c1 and c2.

The above derivation justifies saying that for n large enough, the probability that an
integer m in an interval [dc1ne, bc2nc] is prime is approximately 1/ lnn.

We can choose c1 and c2 so that 0 < c1 < 1 and c2 > 1 (for example, c1 = 1
2
, c2 = 3

2
) so

that c1n ≤ n ≤ c2n , and as long as n is large enough so that

c2 ln(c1)− c1 ln(c2)

(c2 − c1) lnn
,

ln c1
lnn

, and
ln c2
lnn

are very close to 0, the probability that some m ∈ [dc1ne, bc2nc] is prime is approximately
1

lnn
.



5.4. THE MILLER–RABIN TEST; MR-WITNESSES AND MR-LIARS 115

In view of all this, we revise the definitions of our events P,C, SP and SP ` as follows.
We pick some real numbers c1 and c2 such that 0 < c1 < 1 and c2 > 1; for example, c1 = 1

2

and c2 = 3
2
. For any positive integer n, let I(c1, c2;n) be the interval

I(c1, c2;n) = {m ∈ N | dc1ne ≤ m ≤ bc2nc]}.

We may assume that n is large enough and that c1 is chosen so that dc1ne ≥ 3. For example,
c1 = 1

2
and n ≥ 6 will do. Then we define the following events:

P (c1, c2;n) = {m | m ∈ I(c1, c2;n), m is prime}
C(c1, c2;n) = {m | m ∈ I(c1, c2;n), m is composite}

SP(c1, c2;n) = {m | m ∈ I(c1, c2;n), the miller-rabin procedure returns c = 0}
SP `(c1, c2;n) = {m | m ∈ I(c1, c2;n), the miller-rabin procedure returns c = 0 ` times},

To simplify notation, we write P (n), C(n), SP(n), SP `(n) instead of P (c1, c2;n), C(c1, c2;n),
SP(c1, c2;n), SP `(c1, c2;n), and we also write I(n) instead of I(c1, c2;n). Then we define
the three conditional probabilities

Pr(P (n) | SP `(n)) = Pr(m ∈ I(n) is prime | miller-rabin returns c = 0 ` times),

Pr(SP `(n) | P (n)) = Pr(miller-rabin returns c = 0 ` times | m ∈ I(n) is prime)

and

Pr(SP `(n) | C(n)) = Pr(miller-rabin returns c = 0 ` times | m ∈ I(n) is composite).

To compute the probabilities on the righthand side, we use the fact that our Miller–Rabin
algorithm (the procedure miller-rabin, not the algorithm Probable Prime) is a Monte Carlo
algorithm, which means the following:

(1) If miller-rabin returns c = 1, then m ∈ I(n) definitely is composite (i.e. has Property
C(n)). This is expressed by

Pr(m ∈ I(n) is composite | miller-rabin returns c = 1) = 1,

or more concisely as
Pr(C(n) | SP(n)) = 1.

(2) If m ∈ I(n) is composite (has property C(n)), then miller-rabin returns c = 1 for at
least 1/2 of the number of choices for a. This is expressed by

Pr(miller-rabin returns c = 1 | m ∈ I(n) is composite) ≥ 1

2
,

or more concisely as

Pr(SP(n) | C(n)) ≥ 1

2
.
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From Property (1) of a Monte Carlo algorithm, by contrapositive, we see that if m is not
composite, then the algorithm always returns c = 0; that is,

Pr(miller-rabin returns c = 0 | m ∈ I(n) is prime) = 1,

or more concisely as
Pr(SP(n) | P (n)) = 1.

It follows that
Pr(SP `(n) | P (n)) = Pr(SP(n) | P (n))` = 1.

To evaluate Pr(SP ` | P (n)) = Pr(SP ` | C(n)) we make use of the assumption that miller-
rabin is run ` independent times and that by Property (2) of a Monte Carlo algorithm,

Pr(SP(n) | C(n)) ≥ 1

2
,

so we have

Pr(SP `(n) | C(n)) = Pr(SP(n) | C(n))`

= (1− Pr(SP(n) | C(n)))`

≤
(

1− 1

2

)`
=

(
1

2

)`
.

The above derivation shows rigorously what we have been claiming: the probability that the
algorithm says ` times that m ∈ I(n) is not a composite when in fact it is, is very small.
Indeed,

Pr(SP `(n) | C(n)) ≤
(

1

2

)`
.

As we said earlier, the probability we really want to know is Pr(P (n) | SP `(n)). We have all
the ingredients to compute it, since we showed earlier that Pr(P (n)) is approximately

Pr(P (n)) =
1

lnn
.

Then we compute Pr(P (n) | SP `) using Bayes’rule, and we have

Pr(P (n) | SP `(n)) =
Pr(SP `(n) | P (n))Pr(P (n))

Pr(SP `(n) | P (n))Pr(P (n)) + Pr(SP `(n) | P (n))Pr(P (n))

≥
1 · 1

ln(n)

1 · 1
ln(n)

+ 2−`
(

1− 1
ln(n)

)
=

1

1 + 2−`(ln(n)− 1)

= 1− ln(n)− 1

2` + ln(n)− 1
> 1− ln(n)

2`
.
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Therefore, if ` is large enough so that 2` > ln(n)

Pr(P (n) | SP `(n)) > 1− ln(n)

2`
,

(approximately), and we see that it is necessary to add a correction term approximately
equal to ln(n), but this correction term is quickly offset by making ` a little bigger.

Our Monte Carlo algorithm does not give a definite answer. However, if ` is large enough,
say ` = 100, then the conditional probability that the number being tested is prime given
that the test is negative ` times, is very close to 1 (note that 2−100 < 10−30). In other words,
the degree of confidence that the number being tested is prime is very high.

Actually, Rabin and Monier independently proved in 1980 that if m is composite then
the Miller–Rabin procedure returns c = 1 for at least 3/4 of the number of choices for a
(provided that m > 9); this implies that

Pr(SP(n) | C(n)) ≥ 3

4
.

Therefore, Pr(SP(n) | C(n)) ≤ 1/4, and for ` large enough, we have

Pr(P (n) | SP `(n)) > 1− ln(n)

4`
.

This shows that the Miller–Rabin procedure provides a higher degree of confidence than
we originally found, in the sense that if the test is negative ` times for ` large enough, say
` = 100, then Pr(P (n) | SP `(n)) is much closer to 1 than we originally determined.

For example, since (1/4)100 < 2−60 and since ln(10) ≈ 2.303, for n = 101020 (a very large
number with 1020 digits), we have

Pr(P (n) | SP100(n)) > 1− ln(n)

4`
> 1− 2.31 · 1020 · 10−60 > 1− 10−39.

This is a very small probability.

In order to prove that Pr(SP(n) | C(n)) ≤ 1/4, Rabin and Monier proved that if n > 9
is an odd composite, then

|LMR
n | ≤

ϕ(n)

4
.

The proof is harder than the proof of Proposition 5.8, but it is not out of reach given a little
bit of number theory. The general strategy is also to find a proper subgroup of (Z/nZ)∗ that
contains LMR

n and to estimate its order, to show that it is bounded by ϕ(n)/4. The proof
given in Crandall and Pomerance [3] (Chapter 3, Section 5) is presented in the next section.
This proof mixes combinatorial and number theoretic ideas in a beautiful and clever way,
but it can be omitted without causing a major gap in the understanding of the Miller–Rabin
test. The probability Pr(SP(n) | C(n)) ≤ 1/2 is good enough to prove that the Miller–Rabin
test can be trusted with a high degree of confidence.
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5.5 The Monier–Rabin Bound on the Size of the Set

of MR-liars

Let n ≥ 2 be any odd integer and suppose that its prime factorization is

n = pj11 p
j2
2 · · · p

jk
k , ji ≥ 1, i = 1, . . . , k.

Since n is odd, all the pi are odd. Write ω(n) = k for the number of distinct prime factors
in n. The key point is that LMR

n is a subset of a group S(n) of the form

S(n) = {a ∈ (Z/nZ)∗ | am ≡ ±1 (mod n)},

for some suitable m (depending on n), such that m divides n − 1. Thus, to estimate the
order of this group, we need to find the number of solutions a (mod n) to the congruence

am ≡ ±1 (mod n).

We will see that the second congruence (the case −1) reduces to the first (the case +1), so we
are reduced to the problem of counting the number of solutions a (mod n) to the congruence

am ≡ 1 (mod n). (∗)

This is where some number theory comes in handy. Firstly, since the pjii are relatively prime,
a ∈ Z is a solution of (∗) iff a is a solution of the k congruences

am ≡ 1 (mod pjii ), i = 1, . . . , k. (∗∗)

Now, because pi is an odd prime, the group of units (Z/pjii Z)∗ of the ring Z/pjii Z is cyclic
(see Theorem 4.42). This means that there is some g ∈ (Z/pjii Z)∗ (called a primitive root
modulo pjii ) such that

g, g2, . . . , gϕ(p
ji
i )−1, gϕ(p

ji
i ) = 1

is a list of all elements in (Z/pjii Z)∗. Then, we can easily determine when an element
a ∈ (Z/pjii Z)∗ is a solution of

am ≡ 1 (mod pjii ). (†)

If we write a = gk, for some k with 1 ≤ k ≤ ϕ(pjii ), then we must have

gkm ≡ 1 (mod pjii ).

Now, g ∈ (Z/pjii Z)∗ has order ϕ(pjii ) (the smallest integer r such that gr ≡ 1 (mod pjii )), so
ϕ(pjii ) must divide km. If d = gcd(m,ϕ(pjii )) and if we write m = dm1 and ϕ(pjii ) = dn1,
then gcd(m1, n1) = 1 and ϕ(pjii ) must divide km iff n1 divides km1. Since gcd(m1, n1) = 1,
the number n1 must divide k, and we find d solutions for k:

n1, 2n1, . . . , (d− 1)n1, dn1 = ϕ(pjii ).
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Therefore, we proved that equation (†) has

gcd(m,ϕ(pjii ))

solutions modulo pjii . Since m divides n − 1, it is not divisible by pi (because pi divides n
and pi ≥ 3), and since ϕ(pjii ) = pjii (pi − 1), we get

gcd(m,ϕ(pjii )) = gcd(m, pjii (pi − 1)) = gcd(m, pi − 1).

By the Chinese remainder theorem, the solutions of (∗) modulo n are in bijection with the
k-tuples (a1, . . . , ak), where each ai is a solution of (†) modulo pjii . It follows that the number
of solutions modulo n of the congruence am ≡ 1 (mod n) is

k∏
i=1

gcd(m, pi − 1).

In summary, we proved the following result.

Proposition 5.10. Let n ≥ 2 be any odd integer and suppose that its prime factorization is

n = pj11 p
j2
2 · · · p

jk
k , ji ≥ 1, i = 1, . . . , k.

For any integer m ≥ 1 such that m divides n − 1, the number of solutions modulo n of the
congruence

am ≡ 1 (mod n)

is
k∏
i=1

gcd(m, pi − 1).

An interesting corollary of Proposition 5.10 obtained by setting m = n− 1 is that every
odd composite number n is a pseudoprime for at least two nontrivial bases a 6= ±1 modulo
n, unless n is a power of 3.

We now return to the definition of the group S(n).

Definition 5.6. For any odd composite n, if n − 1 = 2st, with t odd, then let ν(n) be the
largest integer such that 2ν(n) divides p− 1 for every prime factor p of n. Then let

S(n) = {a ∈ (Z/nZ)∗ | a2ν(n)−1t ≡ ±1 (mod n)}.

The following proposition shows why S(n) is relevant.

Proposition 5.11. For any odd composite integer n, the following properties hold:

(1) The set of MR-liars LMR
n is contained in S(n).
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(2) The set S(n) is a subgroup of (Z/nZ)∗.

Proof. (1) Pick any a ∈ LMR
n . There are two cases.

(i) If at ≡ 1 (mod n), then obviously a2
ν(n)−1t ≡ 1 (mod n), so a ∈ S(n).

(ii) There is some smallest index i with 0 ≤ i ≤ s − 1 such that a2
it ≡ n − 1 ≡ −1

(mod n). For any prime p dividing n, we also have a2
it ≡ −1 (mod p), and so

a2
i+1t ≡ 1 (mod p).

If k is the order of a in (Z/pZ)∗, then k divides 2i+1t but k does not divide 2it. This is
because if k divides 2it, then we can write 2it = kq, and then

a2
it ≡ akq ≡ (ak)q ≡ 1q ≡ 1 (mod p)

since ak ≡ 1 (mod p) as k is the order of a modulo p, contradicting a2
it ≡ −1 (mod p).

It follows that 2i+1 is the exact power of 2 in the prime factorization of k so we can write
k = 2i+1t1 for some t1. Since by Fermat’s little theorem, ap−1 ≡ 1 (mod p), we see that
k = 2i+1t1 divides p−1, and so 2i+1 divides p−1. Since this holds for every prime p dividing
n, we have i + 1 ≤ ν(n). Since a2

it ≡ −1 (mod n), if i + 1 < ν(n), then by squaring we

obtain a2
i+1t ≡ 1 (mod n), so a2

ν(n)−1t ≡ 1 (mod n), else if i+ 1 = ν(n), then a2
ν(n)−1t ≡ −1

(mod n). In both cases, a ∈ S(n).

(2) The proof that S(n) is a group is very similar to the fact that Bn is a group (see the
proof of Proposition 5.8) and is left an an exercise.

The next proposition gives a formula for the order of the group S(n).

Proposition 5.12. For any odd composite integer n, if we denote the number of distinct
prime factors of n by ω(n) and if n − 1 = 2st with s, t and ν(n) as in Definition 5.6, then
the order of the group S(n) is given by

|S(n)| = 2 · 2(ν(n)−1)ω(n)
∏
p|n

gcd(t, p− 1).

Proof. Since

S(n) = {a ∈ Z/nZ | a2ν(n)−1t ≡ ±1 (mod n)},

we need to count the number s1 of solutions of the congruence a2
ν(n)−1t ≡ 1 (mod n) and

the number s2 of solutions of a2
ν(n)−1t ≡ −1 (mod n). As to the first congruence, if we let

m = 2ν(n)−1t, by definition of ν(n), we know that 2ν(n) divides p−1 for every prime p dividing
n. Let n = pj11 · · · p

jk
k be a prime factorization of n, where p1, . . . , pk are the distinct prime

factors of n (with k = ω(n)), which must be odd since n is odd. We have pi− 1 = 2ν(n)ti for
some ti. If we had ν(n) > s, then since

pi − 1 = 2ν(n)ti = 2s+12ν(n)−s−1ti
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we could write pi = 1 + 2s+1ui for some integers ui = 2ν(n)−s−1ti, and then n− 1 = 2st would
yield

(2s+1u1 + 1) · · · (2s+1uk + 1)− 1 = 2st,

which would imply that
2s+1u = 2st,

for some integer u. Since t is odd, this is impossible, and thus ν(n) ≤ s. Consequently,
m = 2ν(n)−1t divides n− 1 = 2st. By Proposition 5.10, we have

s1 =

ω(n)∏
i=1

gcd(m, pi − 1).

But m = 2ν(n)−1t, t is odd and 2ν(n) divides each pi − 1, so

gcd(m, pi − 1) = gcd(2ν(n)−1t, pi − 1) = 2ν(n)−1gcd(t, pi − 1),

so we get

s1 = 2(ν(n)−1)ω(n)
ω(n)∏
i=1

gcd(t, pi − 1).

We now show that because n is odd the congruence am ≡ −1 (mod n) has the same number
of solutions as the congruence am ≡ 1 (mod n).

For every odd prime pi as above, we claim that am ≡ −1 (mod pjii ) iff a2m ≡ 1 (mod pjii )
and am 6≡ 1 (mod pjii ).3 Obviously, if am ≡ −1 (mod pjii ), then (am)2 ≡ a2m ≡ 1 (mod pjii )
and am 6≡ 1 (mod pjii ). Conversely, by Proposition 5.1, if pi is an odd prime then there
are exactly two square roots of unity mod pjii , namely +1 and −1. So if (am)2 ≡ a2m ≡ 1
(mod pjii ), then either am ≡ 1 (mod pjii ) or am ≡ −1 (mod pjii ), but since am 6≡ 1 (mod pjii ),
we mut have am ≡ −1 (mod pjii ).

We observed earlier that 2ν(n) divides pi − 1, and it follows as above that the number of
solutions of the equation am ≡ −1 (mod pjii ) is

2ν(n)gcd(t, pi − 1)− 2ν(n)−1gcd(t, pi − 1) = 2ν(n)−1gcd(t, pi − 1).

It follows that the number s2 of solutions of am ≡ −1 (mod n) is

s2 = s1.

Therefore, the order of the group S(n) is indeed

|S(n)| = 2 · 2(ν(n)−1)ω(n)
∏
p|n

gcd(t, p− 1),

as claimed.
3I thank Tian Bai for pointing out an error in my previous proof, which claimed that the above fact held

for any n rather that for each pjii with pi an odd prime.
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Proposition 5.12 yields the main result of this section.

Theorem 5.13. (Monier–Rabin) For every odd composite n > 9, we have

|LMR
n | ≤

ϕ(n)

4
≤ n− 1

4
.

Proof. As usual, write n − 1 = 2st, with t odd. By Proposition 5.11, LMR
n ⊆ S(n), so it

suffices to prove that |S(n)|/ϕ(n) ≤ 1
4
. If n = pj11 p

j2
2 · · · p

jk
k is the prime factorization of n,

recall that
ϕ(n) = pj1−11 (p1 − 1)pj2−12 (p2 − 1) · · · pjk−1k (pk − 1).

By Proposition 5.12,

|S(n)| = 2 · 2(ν(n)−1)ω(n)
∏
p|n

gcd(t, p− 1),

so we need to prove that

ϕ(n)

|S(n)|
=

1

2

∏
pk‖n

pk−1
p− 1

2ν(n)−1gcd(t, p− 1)
≥ 4,

where the notation pk‖n means that pk is the exact power of the prime p in the prime
factorization of n. Each factor

p− 1

2ν(n)−1gcd(t, p− 1)
(∗)

is an even integer. There are several cases.

Case 1: ω(n) ≥ 3. In this case, at least three of the factors (∗) are equal to 2, so
ϕ(n)/|S(n)| ≥ 4.

Case 2: ω(n) = 2 and n is not squarefree. Then, some exponent k − 1 is at least 1, and
since all the primes p are odd, the product of the pk−1 is at least 3, each factor (∗) is at least
2, so ϕ(n)/|S(n)| ≥ 6.

Case 3: n = pq, for two distinct primes, p, q, with p < q. If 2ν(n)+1 divides q − 1, then
q − 1 = 2ν(n)+1u, and t is odd, we get

2ν(n)−1gcd(t, q − 1) = 2ν(n)−1gcd(t, 2ν(n)+1u) = 2ν(n)−1gcd(t, u) ≤ 2ν(n)−1u = (q − 1)/4,

and since the other fraction involving p− 1 is at least 2, we get ϕ(n)/|S(n)| ≥ 4.

The remaining subcase is that 2ν(n) is the exact power of 2 in q − 1, and we can write
q− 1 = 2ν(n)u, where u is odd. Because n− 1 = pq− 1 = p(q− 1) + p− 1 and p < q, we see
that q− 1 does not divide n− 1. This implies that there is an odd prime q1 dividing q− 1 to
a higher power than it divides n− 1. Since n− 1 = 2st and q − 1 = 2ν(n)u, we have t = qh1 t1
and u = qh+1

1 u1 for some h ≥ 1 and some t1, u1 with gcd(q1, t1) = 1. It follows that

q − 1 = 2ν(n)qh+1
1 u1
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and

2ν(n)−1gcd(t, q − 1) = 2ν(n)−1gcd(qh1 t1, 2
ν(n)qh+1

1 u1)

= 2ν(n)−1qh1gcd(t1, q1u1)

= 2ν(n)−1qh1gcd(t1, u1)

≤ 2ν(n)−1qh1u1

=
(q − 1)

2q1
≤ q − 1

6
.

Since the other fraction is at least 2, we conclude that ϕ(n)/|S(n)| ≥ 6.

Case 4: n = pk, for some k ≥ 2. In this case, n − 1 = pk − 1 = 2st with t odd. Since
k ≥ 2, we have

pk − 1 = (p− 1)(pk−1 + · · ·+ p+ 1) = 2st,

and since
p− 1 = 2ν(n)u

with u odd, we conclude that u is a divisor of t. Then

gcd(t, p− 1) = gcd(t, 2ν(n)u) = gcd(t, u) = u,

which implies that
p− 1

2ν(n)−1gcd(t, p− 1)
=

2ν(n)u

2ν(n)−1u
= 2,

and thus, ϕ(n)/|S(n)| = pk−1. Therefore, unless pk = 9, which means that k = 2 and p = 3,
we have ϕ(n)/|S(n)| ≥ 5 (since 5 is the next prime after 3). This last case finishes the
proof.

Remarks:

1. Another proof of Theorem 5.13 is given in Koblitz [10] (Chapter V, Proposition V.1.7).

2. The group S(n) is actually the group generated by the set LMR
n of MR-liars. This

result due to Jim Haglund is Problem 3.16 in Crandall and Pomerance [3].

5.6 The Least MR-Witness for n

Theorem 5.13 shows that an odd composite n has at least 3n/4 MR-witnesses in the set
{2, . . . , n− 2}. A natural question then arises: what is the size of the smallest MR-witness,
W (n), for n? If, by luck, the size of W (n) is bounded by a constant, or a slow-growing func-
tion, then there is hope that a practical deterministic algorithm (that is, not a randomized
algorithm) can be found.
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Unfortunately, there is no constant bound. Indeed, Alford, Granville and Pomerance
showed that for infinitely many odd composite n, we have

W (n) > (lnn)1/(3 ln ln lnn).

In Crandall and Pomerance [3], it is also shown that W (n) ≥ 3 for infinitely many n (with an
explicit description). Around 1976, Gary Miller showed that W (n) = O((lnn)2), assuming
that the Extended Riemann Hypothesis (for short ERH) holds. Then, Bach (1985) proved
that W (n) < 2(lnn)2; see Crandall and Pomerance [3] (Chapter 3, Section 3.5).

The ERH is a generalization of the Riemann Hypothesis (for short RH), one of the most
famous conjectures of mathematics. Explaining what is the ERH would lead us to far, and
we refer the reader to Crandall and Pomerance for an explanation [3] (Chapter 1, Section
1.4). However, we discuss briefly the RH.

The RH has to with the location of the zeros of the zeta function, ζ. For any real s > 1,
the function ζ(s) is given by

ζ(s) =
∞∑
n=1

1

ns
.

If we allow s to be a complex argument, then the above sum converges absolutely for Re(s) >
1. It is also possible to extend ζ to the entire complex plane (by analytic continuation), so
that ζ(s) is regular for every s except s = 1, where it has a simple pole with residue 1 (this
means that (s − 1)ζ(s) is holomorphic in C, with value 1 at s = 1). Two good sources are
Apostol [1] and Edwards [5]. Ribenboim’s lovely book [18] (especially Chapter 4) is also
highly recommended. The connection with prime numbers was noticed by Euler and is this:

Theorem 5.14. (Euler) If P denotes the set of all primes, then for every s ∈ C such that
Re(s) > 1,

ζ(s) =
∏
p∈P

1

1− p−s
.

The value ζ(s) of the zeta-function is known when s is an even integer, but ζ(s) is not
known for not a single odd integer! Remarkably, the location of the zeros of ζ has crucial
impact on the distribution of the primes. For example, the fact that ζ(s) 6= 0 on the line
Re(s) = 1 leads to the Prime Number Theorem. The Riemann Hypothesis, stated in 1859
by Riemann in an eight-page memoir, says this:

Conjecture (Riemann hypothesis (RH))

All the zeros of ζ in the critical strip 0 < Re(s) < 1 lie on the vertical line Re(s) = 1/2.

The RH has been verified by computer calculations for many values of n, but it still
remains one of the central conjectures of mathematics. It is equivalent to various statements
about the distribution of the primes. For example, von Koch proved in 1901 that the RH is
equivalent to the following fact:

|π(x)− Li(x)| <
√
x · ln(x), for all x ≥ 2.01,
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where π(x) is the number of primes not exceeding x, and the function Li (logarithmic integral)
is given by

Li(x) =

∫ x

2

dt

ln t
.

It is easy to see that

Li(x) =
x

lnx
+

∫ x

2

dt

(ln t)2
− 2

ln 2
.

It is amazing that Gauss conjectured in 1791 (at the age of fourteen) that π(x) ∼ Li(x). We
refer the reader to Crandall and Pomerance [3] (Chapter 1) for more on this topic.

The Extended Riemann Hypothesis (ERH) has to do with the zeros of the Dirichlet L-
functions L(s, χ), which generalizes the ζ-function. Here, χ denotes a Dirichlet character.
Apostol [1] is an excellent source to learn about L-functions. The ζ-function corresponds to
the special case χ = 1. The ERH says this:

Conjecture (Extended Riemann hypothesis (ERH))

For any Dirichlet character χ, all the zeros of L(s, χ) in the region Re(s) > 0 lie on the
vertical line Re(s) = 1/2.

Assuming the ERH, Bach’s result, that W (n) < 2(ln)2, yields a deterministic algorithm
for testing for primality. Simply try the Miller–Rabin procedure for a = 2, 3, . . . , 2(lnn)2.
Besides the fact that the ERH is still not proved, in practice, the randomized version of
the Miller–Rabin test is faster. As of now, if you want a reliable test, either you have to
have faith in the ERH, or faith that an event that has probability less than 10−30 will never
happen in our lifetime. This probability is much smaller than the probability of hardware
or software failure anyway!
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Chapter 6

The Solovay–Strassen Test

6.1 Quadratic Residues

The Solovay–Strassen primality test was published in 1977, and thus slightly predates the
Miller–Rabin test. It is also a randomized algorithm of Monte Carlo type, and it gives the
output “composite,” given that the input n is composite, with probability greater than 1/2.
The Solovay–Strassen is based on a criterion due to Euler to test whether a number which
is not a multiple of a prime p is a quadratic residue. This test involves the Jacobi symbol,
which is a generalization of the Legendre symbol. Properties of the Jacobi symbol yield a
fast method for checking Euler’s criterion.

If p is a prime and m is an integer which is not a multiple of p, we can look for solutions
x of the quadratic congruence

x2 ≡ m (mod p). (∗)
In other words, we are looking for a square root of m modulo p.

When p = 2, every odd integer is a quadratic residue and there are no quadratic non-
residues. This case is not very interesting, so from now on we assume that p ≥ 3.

If p is an odd prime, note that the above congruence has at most two solutions. Indeed,
Z/pZ is a field, so the polynomial x2−m has at most two roots. Moreover, if x is a solution
of (∗), then so is −x, hence the number of solutions is either 0 or 2.

It is convenient to allow p to be any integer ≥ 3.

Definition 6.1. Given any integer n ≥ 3, for any integer m such that gcd(m,n) = 1, we
say that m is a quadratic residue mod n (or a square mod n) if the congruence

x2 ≡ m (mod n) (†)

has a solution. If (†) has no solution we say that m is a quadratic nonresidue mod n.

Observe that the integers m such that gcd(m,n) > 1 are considered neither quadratic
residues nor quadratic nonresidues.

127
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Consider the example n = 13. The squares modulo 13 of the numbers in {1, 2, . . . , 12}
are

1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1,

and thus, there are 6 = 12/2 quadratic residues:

1, 3, 4, 9, 10, 12.

The square roots of 12 modulo 13 are 5 and 8. For n = 26, the quadratic residues are

1, 3, 9, 17, 23, 25.

Because 26 is even, they must be odd. For n = 27, the quadratic residues are

1, 4, 7, 10, 13, 16, 19, 22, 25.

When n is prime, as in the case n = 13, there is the same number of quadratic residues
and nonresidues. This is a general fact.

Proposition 6.1. Let p be an odd prime. Then the set of quadratic residues is a subgroup of
(Z/pZ)∗ of order (p− 1)/2. This subgroup consists of the residues modulo p of the numbers

12, 22, 32, . . . ,

(
p− 1

2

)2

.

Proof. It is clear that 1 is a quadratic residue. If x2 ≡ a (mod p) and y2 ≡ b (mod p), then

(xy)2 ≡ x2y2 ≡ ab (mod p),

so ab is also a quadratic residue, and the quadratic residues form a group.

If x2 ≡ y2 (mod p), then

(x− y)(x+ y) ≡ 0 (mod p).

Assume that 1 ≤ x, y ≤ (p− 1)/2. Since p is prime, either p divides x− y or p divides x+ y.
But, 1 ≤ x, y ≤ (p − 1)/2, which implies 2 ≤ x + y ≤ p − 1, so x − y must be divisible by
p, and thus x = y. Therefore, the residues modulo p of the square numbers listed in the
proposition are all distinct. Since

(p− k)2 ≡ k2 (mod p),

every quadratic residue modulo p is congruent to a unique number in this list.
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When p is an odd prime, we know that (Z/pZ)∗ is cyclic (see Theorem 4.34). If g is any
primitive root for (Z/pZ)∗, then gp−1 ≡ 1 (mod p), so

(g(p−1)/2)2 ≡ gp−1 ≡ 1 (mod p),

and g(p−1)/2 is a square root of 1. Since Z/pZ is a field, the only square roots of 1 are ±1,
so g(p−1)/2 ≡ ±1 (mod p). But if g(p−1)/2 ≡ 1 (mod p) then g is not a primitive root, so
g(p−1)/2 ≡ −1 (mod p).

Proposition 6.1 also shows the following fact.

Proposition 6.2. If p is an odd prime, then for any primitive root g ∈ (Z/pZ)∗, the
quadratic residues are the even powers g2i, and the quadratic nonresidues are the odd powers
g2i+1, with 0 ≤ i ≤ (p− 3)/2.

We can use the above fact to find square roots modulo p for primes of the form p = 4k+3.
Indeed, if a = g2i is any quadratic residue, then we claim that

x = a(p+1)/4 = ak+1

is a square root of a modulo p.

Since g(p−1)/2 ≡ −1 (mod p), we get

x ≡ a(p+1)/4 ≡ (g2i)(p+1)/4 ≡ gi(p+1)/2 ≡ gi(p−1)/2gi ≡ (g(p−1)/2)igi ≡ (−1)igi (mod p),

and thus,
x2 ≡ (−1)2ig2i ≡ a (mod p).

If p is a prime of the form p = 4k+ 1, it is (a lot!) harder to find square roots modulo p; see
the end of Section 6.5, and Crandall and Pomerance [3] (Chapter 2, Section 3).

6.2 The Legendre Symbol

At this stage, it is convenient to introduce the Legendre symbol. The remarkable fact about
the Legendre symbol is that it gives us an efficient method for testing whether a number m
is a quadratic residue mod n without actually solving the congruence x2 ≡ m (mod n). The
Jacobi symbol defined in Section 6.3 gives us an even more efficient method which avoids
factoring.

Definition 6.2. Let p be an odd prime. For any integer m, the Legendre symbol
(
m
p

)
is

defined as follows:

(
m

p

)
=


+1 if m is a quadratic residue modulo p

−1 if m is a quadratic nonresidue modulo p

0 if p divides m.
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Observe that
(
1
p

)
= 1 and

(
m2

p

)
= 1 for every integer m which is not a multiple of p. For

a numerical example, since the squares modulo 11 of the numbers in {1, 2, . . . , 10} are

1, 4, 9, 5, 3, 3, 5, 9, 4, 1,

we see that 7 is not a quadratic residue modulo 11, so
(

7
11

)
= −1. We saw earlier that the

quadratic residues modulo 13 are 1, 3, 4, 9, 10, 1 so
(

3
13

)
= 1.

If m ≡ n (mod p), then clearly
(
m
p

)
=
(
n
p

)
, so the function m 7→

(
m
p

)
is periodic with

period p. We also have (
mn

p

)
=

(
m

p

)(
n

p

)
,

a very useful property for evaluating the Legendre symbol. To prove this property easily, we
will establish Euler’s criterion. First, observe that for any m which is not a multiple of p,
by Fermat’s little theorem, we have

mp−1 ≡ 1 (mod p).

If p is an odd prime, then we get

mp−1 − 1 ≡ (m(p−1)/2 − 1)(m(p−1)/2 + 1) ≡ 0 (mod p),

and it follows that
m(p−1)/2 ≡ ±1 (mod p). (∗E)

Remarkably, m(p−1)/2 ≡ 1 (mod p) iff m is a quadratic residue modulo p.

Theorem 6.3. (Euler’s criterion) If p is an odd prime, then for any integer m, we have(
m

p

)
≡ m(p−1)/2 (mod p).

Proof. If m ≡ 0 (mod p), then both sides of the equation are 0, so the equation is trivially
true.

Suppose
(
m
p

)
= 1. In this case, there is some x ∈ {1, . . . , p − 1} such that x2 ≡ m

(mod p); by Fermat’s little theorem xp−1 ≡ 1 (mod p), and so,

m(p−1)/2 ≡ (x2)(p−1)/2 ≡ xp−1 ≡ 1 ≡
(
m

p

)
(mod p).

This proves the formula if
(
m
p

)
= 1.

Finally, assume that
(
m
p

)
= −1. The polynomial x(p−1)/2 − 1 has degree (p − 1)/2, and

since Z/pZ is a field (since p is prime), it has at most (p− 1)/2 roots in Z/pZ. However, by
Proposition 6.1, the (p− 1)/2 quadratic residues a in Z/pZ are the residues of the numbers

12, 22, 32, . . . ,

(
p− 1

2

)2
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modulo p, so a ≡ y2 (mod p) for y ∈ {1, 2, . . . , (p − 1)/2}. By Fermat’s little theorem
yp−1 ≡ 1 (mod p), so we get a(p−1)/2 ≡ (y2)(p−1)/2 ≡ yp−1 ≡ 1 (mod p). Therefore, the
(p− 1)/2 quadratic residues are roots of x(p−1)/2− 1, and the nonresidues are not, and since
m is a nonresidue, we must have

m(p−1)/2 6≡ 1 (mod p).

Since by (∗E) we have m(p−1)/2 ≡ ±1 (mod p), we conclude that

m(p−1)/2 ≡ −1 ≡
(
m

p

)
(mod p),

which finishes the proof.

Following Serre [20], another proof of Euler’s criterion can be given using some algebra.
This proof shows a result that will be used in the proof of the law of quadratic reciprocity
so we record it as the following proposition.

Proposition 6.4. Let p be an odd prime.

(1) Pick any m ∈ (Z/pZ)∗, and Let Ω be any field extension of Fp which contains a square
root y of m (an algebraic closure of Z/pZ, will do). Then(

m

p

)
= m(p−1)/2 = yp−1 in (Z/pZ)∗.

(2) The set (Z/pZ)∗2 of squares in (Z/pZ)∗ is a a subgroup of order (p − 1)/2. This
subgroup is the kernel of the homomorphism m 7→ m(p−1)/2 from (Z/pZ)∗ to {−1,+1}.

Proof. (1) Since y ∈ Ω is a square root of m ∈ (Z/pZ)∗ ⊆ Ω, we have m = y2. Then (in
Z/pZ) we deduce that

yp−1 = (y2)(p−1)/2 = m(p−1)/2 = ±1,

since 1 = mp−1 = (m(p−1)/2)2 = (yp−1)2 = 1, and because p being an odd prime, the only
roots of unity are +1 and −1.

We claim that m is a square in (Z/pZ)∗ iff y ∈ (Z/pZ)∗ iff yp−1 = 1. By definition of the
Legendre symbol, this is equivalent to(

m

p

)
= m(p−1)/2 = yp−1 in (Z/pZ)∗,

as claimed.

If y ∈ (Z/pZ)∗, then m = y2 is a square in (Z/pZ)∗. Conversely, assume that m = a2 for
some a ∈ (Z/pZ)∗. Since we also have m = y2, we get y2 = a2, that is, y2 ≡ a2 (mod p),
thus (y − a)(y + a) ≡ 0 (mod p), and since p is prime either y = a or y = −a, which shows
that y ∈ (Z/pZ)∗.
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If y ∈ (Z/pZ)∗, then by Fermat’s little theorem yp−1 ≡ 1 (mod p). For the other direction
of the second equivalence, note that if yp−1 = 1 and y /∈ (Z/pZ)∗, then the equation zp−1−1 =
0 has p roots in Ω, since the p−1 elements of (Z/pZ)∗ are roots of zp−1−1 = 0, a contradiction
since Ω is a field.

(2) It is obvious that the map m 7→ m(p−1)/2 is a homomorphism from (Z/pZ)∗ to
{−1,+1}, and from the above discussion, its kernel is the set (Z/pZ)∗2 of squares in (Z/pZ)∗.
Now, (Z/pZ)∗ is a cyclic group of order p−1, so the above homomorphism must be surjective
(otherwise, every element of (Z/pZ)∗ would have order (p− 1)/2). It follows that (Z/pZ)∗2

is a subgroup of order (p− 1)/2.

It is now easy to establish the multiplicative property of the Legendre symbol.

Proposition 6.5. For any odd prime p and any integers m,n, we have(
mn

p

)
=

(
m

p

)(
n

p

)
.

Proof. If p divides m or p divides n, then p divides mn so
(
mn
p

)
= 0, and either

(
m
p

)
= 0 or(

n
p

)
= 0; it follows that 0 =

(
mn
p

)
=
(
m
p

)(
n
p

)
= 0.

If p divides neither m nor n, then p does not divide mn and by Euler’s criterion, we have(
mn

p

)
≡ (mn)(p−1)/2 ≡ m(p−1)/2n(p−1)/2 ≡

(
m

p

)(
n

p

)
(mod p).

The symbols
(
mn
p

)
,
(
m
p

)
,
(
n
p

)
are all equal to +1 or −1, so

(
mn
p

)
−
(
m
p

)(
n
p

)
is either 0, +2, or

−2, and since
(
mn
p

)
−
(
m
p

)(
n
p

)
is divisible by p ≥ 3, we must have

(
mn
p

)
=
(
m
p

)(
n
p

)
.

The following properties are also useful for evaluating the Legendre symbol.

Proposition 6.6. For any odd prime p, the following properties hold:

(1) If m ≡ n (mod p), then

(
m

p

)
=

(
n

p

)
.

(2) If gcd(m, p) = 1, then

(
m2

p

)
= 1 and

(
m2n

p

)
=

(
n

p

)
.

(3)

(
−1

p

)
= (−1)

p−1
2 , or equivalently

(
−1

p

)
=

{
1 if p ≡ 1 mod 4

−1 if p ≡ 3 mod 4.
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(4)

(
2

p

)
= (−1)

p2−1
8 , or equivalently

(
2

p

)
=

{
1 if p ≡ 1 mod 8 or p ≡ 7 mod 8

−1 if p ≡ 3 mod 8 or p ≡ 5 mod 8.

Proof. Part (1) is obvious from the definition of the Legendre symbol. Part (2) follows from
Euler’s criterion and Proposition 6.5. The details are left to the reader.

By Euler’s criterion we have (
−1

p

)
= (−1)(p−1)/2.

Since p is an odd prime, either p is of the form p = 4k + 1, in which case (p− 1)/2 = 2k, so
(−1)(p−1)/2 = (−1)2k = 1, or p is of the form p = 4k + 3, in which case (p − 1)/2 = 2k + 1,
so (−1)(p−1)/2 = (−1)2k+1 = −1. This proves Part (3).

To prove (4), consider the (p− 1)/2 congruences:

p− 1 ≡ 1(−1)1 (mod p)

2 ≡ 2(−1)2 (mod p)

p− 3 ≡ 3(−1)3 (mod p)

4 ≡ 4(−1)4 (mod p)

...

r ≡ p− 1

2
(−1)(p−1)/2 (mod p),

where r = p− (p−1)/2 or r = (p−1)/2. Multiply all these together, and observe that every
integer on the left is even. We obtain

2 · 4 · 6 · · · (p− 1) ≡
(
p− 1

2

)
!(−1)1+2+···+(p−1)/2 (mod p),

an since

1 + 2 + · · ·+ p− 1

2
=

1

2

(p− 1)

2

(
p− 1

2
+ 1

)
=
p2 − 1

8
,

we get

2(p−1)/2
(
p− 1

2

)
! ≡

(
p− 1

2

)
!(−1)(p

2−1)/8 (mod p).

However, ((p− 1)/2)! is not a multiple of p, so we get(
2

p

)
= 2(p−1)/2 ≡ (−1)(p

2−1)/8 (mod p),

as claimed.
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Part (3) of Proposition 6.6 says that −1 (equivalently p−1) is a quadratic residue modulo
p iff p is a prime of the form p = 4k+1, and a nonresidue iff p is of the form p = 4k+3. Part
(4) says that 2 is quadratic residue modulo p iff p is of the form p = 8k + 1 or p = 8k + 7,
and a nonresidue iff p is of the form p = 8k + 3 or p = 8k + 5.

Remark: Another proof of Part (4) can be given using a primitive eighth root of unity.
Here is a slick proof due to Jean–Pierre Serre (see [20]). If p is an odd prime, then p is of the
form 4k ± 1, so p2 − 1 ≡ 0 (mod 8). Since the multiplicative group of the finite field Fp2 is

cyclic of order p2 − 1, and since 8 divides p2 − 1, if g generates Fp2 then α = g(p
2−1)/8 ∈ F∗p2

has order 8 (a primitive eigth root of unity), and let y = α + α−1. Since α has order 8, we
have α4 = −1, so α2 +α−2 = 0, and thus y2 = (α+α−1)2 = 2. Since Z/pZ = Fp is a subfield
of Fp2 and y is a square root of 2 in Fp2 , from Proposition 6.4(1) and Euler’s criterion,(

2

p

)
= yp−1.

Since p is prime, we also have

yp = (α + α−1)p = αp + α−p.

If p ≡ ±1 (mod 8), since α8 = 1, we get yp = α + α−1 = y, and thus(
2

p

)
= yp−1 = 1.

If p ≡ ±5 (mod 8), since α8 = 1 and α4 = −1, we get

yp = α5 + α−5 = −(α + α−1) = −y.

This implies that (
2

p

)
= yp−1 = −1.

Using Propositions 6.5 and 6.6, we can evaluate
(
m
p

)
provided that we know how to factor

m. Actually, by extending
(
m
p

)
to the Jacobi symbol and using the quadratic reciprocity

law, it is possible to evaluate
(
m
p

)
using Euclidean division, without knowing how to factor.

The distribution of the quadratic residues is a topic of great importance. In spite of
intense research, the current state of knowledge is still rather incomplete. The following
result from Niven, Zuckerman, and Montgomery [16] (Section 3.3, Theorem 3.9) tells us that
the least positive quadratic nonresidue cannot be too large.

Proposition 6.7. If p is an odd prime, then the least positive quadratic nonresidue n modulo
p satisfies the inequality n ≤ √p.
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Proof. Let m be the smallest positive integer such that mn > p, so that (m−1)n ≤ p. Since
n ≥ 2 and p is an odd prime, we have (m− 1)n < p. Thus

0 < mn− p < n.

Since n is the least positive nonresidue mod p, the number mn − p must be a quadratic
residue mod p, so (

mn− p
p

)
= 1.

Since
(
n
p

)
= −1, by Proposition 6.5 and Proposition 6.6, we get(

mn− p
p

)
=

(
mn

p

)
=

(
m

p

)(
n

p

)
= −

(
m

p

)
,

so (
m

p

)
= −1.

Since n is the smallest positive quadratic nonresidue mod p, we must have m ≥ n, and since
(m− 1)n < p, we get

(n− 1)2 < (n− 1)n ≤ (m− 1)n < p.

Thus n− 1 <
√
p, that is, n ≤ √p, as claimed.

Euler’s criterion has the following corollary which is the basis of the Solovay–Strassen
test.

Proposition 6.8. If p is an odd prime, then for any integer m ∈ {1, . . . , p− 1}, we have(
m

p

)
m(p−1)/2 ≡ 1 (mod p).

Proof. Since m ∈ {1, . . . , p− 1}, the Legendre symbol
(
m
p

)
is not zero, and Euler’s criterion

tells us that
(
m
p

)
and m(p−1)/2 mod p are either both +1 or both −1, which implies that their

product is 1 modulo p.

By taking the contrapositive, it appears that we obtain a criterion for compositeness used
in the Solovay–Strassen test:

If n ≥ 3 is odd and if there is some a ∈ {2, . . . , n− 1} such that(
a

n

)
a(n−1)/2 6≡ 1 (mod n),

then n is composite.

However, we haven’t yet defined
(
a
n

)
for a composite number n. This can be done by

introducing the Jacobi symbol. Having made sense of
(
a
n

)
where n is composite, two issues

remain:
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1. Proving that only a fraction of numbers in {2, . . . , n− 1} are liars, that is, satisfy the
condition of Proposition 6.8 even though n is composite.

2. Find an efficient method to evaluate
(
a
n

)
a(n−1)/2 modulo n.

Fortunately, at most half of the integers in {2, . . . , n− 1} are liars. For the second point,
we make use of the famous quadratic reciprocity law.

6.3 The Jacobi Symbol

The definition of the Jacobi symbol favors the quadratic reciprocity law at the expense of
the connection with quadratic residues. As a consequence,

(
m
n

)
= 1 does not necessarily

imply that m is a quadratic residue modulo n. On the positive side, properties of the Jacobi
symbol yield a more efficient algorithm for evaluating

(
m
n

)
.

Definition 6.3. Let P ≥ 3 be a positive odd integer and let P = pj11 p
j2
2 · · · p

jk
k be the prime

factorization of P . For any integer m, the Jacobi symbol
(
m
P

)
is defined as follows:(

m

P

)
=

(
m

p1

)j1(m
p2

)j2
· · ·
(
m

pk

)jk
.

By convention,

(
m

1

)
= 1.

Clearly, (
1

P

)
= 1,

and the Jacobi symbol agrees with the Legendre symbol if P is prime. If gcd(m,P ) > 1,
then m is a multiple of some prime factor pi of P , so

(
m
P

)
= 0, and otherwise

(
m
P

)
= ±1.

Since the primes p1, . . . , pk are all distinct, m is a quadratic residue modulo P iff
(
m
pi

)
= 1

for all pi, but is is possible that
(
m
P

)
= 1 even though m is a quadratic nonresidue modulo

P . For example, we have (
2

15

)
=

(
2

3

)(
2

5

)
= (−1)(−1) = 1,

but 2 is not a quadratic residue modulo 15. On the other hand, if
(
m
P

)
≡ −1 (mod p), then

gcd(m,P ) = 1, and m is a quadratic nonresidue modulo P .

The Jacobi symbol satisfies the following properties which are very useful for evaluating
it.

Proposition 6.9. For any odd positive integers m,n ≥ 3, and any integers a, b, the following
properties hold:
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(1)

(
ab

m

)
=

(
a

m

)(
b

m

)
.

(2)

(
a

mn

)
=

(
a

m

)(
a

n

)
.

(3) If a ≡ b (mod m), then

(
a

m

)
=

(
b

m

)
.

(4) If gcd(a,m) = 1, then

(
a2b

m

)
=

(
b

m

)
.

(5) If gcd(a,m) = 1, then

(
a

m2n

)
=

(
a

n

)
.

(6)

(
22ka

m

)
=

(
a

m

)
and

(
22k+1a

m

)
=

(
2

m

)(
a

m

)
, for all k ≥ 1.

(7)

(
−1

m

)
= (−1)

m−1
2 , or equivalently

(
−1

m

)
=

{
1 if m ≡ 1 mod 4

−1 if m ≡ 3 mod 4.

(8)

(
2

m

)
= (−1)

m2−1
8 , or equivalently

(
2

m

)
=

{
1 if m ≡ 1 mod 8 or m ≡ 7 mod 8

−1 if m ≡ 3 mod 8 or m ≡ 5 mod 8.

Proof. Parts (1)–(4) follow easily from Propositions 6.5 and 6.6, and Definition 6.3. Part

(5) follows from Part (2). For Part 6, observe that
(

4
m

)
=
(

2
m

)2
= 1, and then apply (4)

repeatedly to eliminates factors of 4 in the “numerator.” For Part (7), write m = p1p2 · · · pk
as a product of odd prime factors pi, not necessarily distinct. Then, we have

m =
k∏
i=1

(1 + pi − 1) = 1 +
k∑
i=1

(pi − 1) +R,

where R consists of a sum of products of at least two factors of the form pi− 1, so that R is
a multiple of 4. Hence,

m ≡ 1 +
k∑
i=1

(pi − 1) (mod 4),
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or
m− 1

2
≡

k∑
i=1

(pi − 1)

2
(mod 2).

Therefore,(
−1

m

)
=

k∏
i=1

(
−1

pi

)
=

k∏
i=1

(−1)(pi−1)/2 = (−1)
∑k
i=1(pi−1)/2 = (−1)(m−1)/2,

as claimed.

For Part (8), write

m2 =
k∏
i=1

(1 + p2i − 1) = 1 +
k∑
i=1

(p2i − 1) +R,

where R is a sum of products of at least two factors of the form p2i − 1. Now, since pi ≡ ±1
(mod 4), we have p2i − 1 ≡ 0 (mod 8), and thus,

m2 ≡ 1 +
k∑
i=1

(p2i − 1) (mod 64),

which yields

m2 − 1

8
≡

k∑
i=1

p2i − 1

8
(mod 8).

The above congruence also holds modulo 2, so we get(
2

m

)
=

k∏
i=1

(
2

pi

)
=

k∏
i=1

(−1)(p
2
i−1)/8 = (−1)(m

2−1)/8,

as claimed.

Remark: Proposition 6.9 holds trivally if m = 1 or n = 1.

If p is an odd prime, deciding whether some integer m is a quadratic residue mod p can
be done by computing the Legendre symbol

(
m
p

)
. Using the Jacobi symbol, this computation

can be performed in polynomial time (see Section 6.5). However, finding a square root of m
modulo p is hard. So far, no polynomial-time algorithm is known. The inherent difficulty of
finding square roots modulo p can be exploited in designing encryption schemes.

We observed that if P is not prime, the fact that
(
m
P

)
= 1 does not necessarily imply

that m is quadratic residue mod P . However, if P = pq is the product of two distinct odd
primes, then we have the following result.
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Proposition 6.10. Let p and q be two distinct odd primes. If
(
m
p

)
= 1 and

(
m
q

)
= 1, then

m is a quadratic residue modulo pq.

Proof. By hypothesis there exist c1 and c2 such that c21 ≡ m (mod p) and c22 ≡ m (mod q).
Since p and q are distinct primes, gcd(p, q) = 1, so by the Chinese remainder theorem we
can find c such that

c ≡ c1 (mod p)

c ≡ c2 (mod q).

We deduce that

c2 ≡ c21 ≡ m (mod p) and c2 ≡ c22 ≡ m (mod q),

and since gcd(p, q) = 1, we conclude that c2 ≡ m (mod pq), which means that m is a
quadratic residue modulo pq.

The fact that if N = pq is the product of two distinct odd primes kept secret, then it is
generally difficult to decide whether some integer m is a quadratic residue modulo N (since
computing the Jacobi symbol

(
m
N

)
does not help), is the basis of an encryption scheme due

to Goldwasser and Micali.

The Goldwasser–Micali encryption scheme is elegant and easy to prove correct but the
problem is that this encryption scheme encodes one bit at a time, so it is not really practical
because the length of the encoded message (the ciphertext) is equal to the length of the
plaintext multiplied by log2N . If N has 1000 bits, the expansion factor is 1000. We refer
the interested reader to Hoffstein, Pipher and Silverman [8] (Chapter 3, Section 3.10) for a
presentation of the Goldwasser–Micali encryption scheme.

6.4 The Solovay–Strassen Test; E-Witnesses and E-

Liars

Now that we have the Jacobi symbol,
(
a
m

)
makes sense if m is an odd positive integer, and

we are we ready to present the Solovay–Strassen test. This test relies on the following fact:

If n ≥ 3 is odd and if there is some a ∈ {2, . . . , n− 1} such that(
a

n

)
a(n−1)/2 6≡ 1 (mod n),

then n is composite.

Definition 6.4. Let n ≥ 3 be any odd integer.
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(1) An integer a such that 2 ≤ a ≤ n−1 is called an Euler witness , for short an E-witness
for n, if (

a

n

)
a(n−1)/2 6≡ 1 (mod n).

(2) If n > 3 is an odd composite, then an integer a with 1 ≤ a ≤ n − 1 is an Euler liar ,
for short an E-liar for n, if (

a

n

)
a(n−1)/2 ≡ 1 (mod n).

The set of E-liars is denoted by LEn . An odd composite number n such that a with
2 ≤ a ≤ n− 2 is an E-liar for n is called an Euler pseudoprime base a.

Consider n = 325, a composite. For a = 15, we have gcd(15, 325) = 5, hence
(

15
325

)
= 0,

and 15 is an E-witness. For a = 2, we have 2162 ≡ 129 (mod 325), so 2 is also an E-witness.
For a = 7, we have 7162 ≡ 324 (mod 325), and

(
7

325

)
= −1; consequently, 7 is an E-liar for

325.

The first fact to observe is that every E-liar is an F -liar.

Proposition 6.11. For any odd composite n > 3, we have LEn ⊆ LFn .

Proof. If a is an E-liar, then (
a

n

)
a(n−1)/2 ≡ 1 (mod n),

and since
(
a
n

)
∈ {−1, 1}, we must have a(n−1)/2 ≡ ±1 (mod n), which yields

an−1 ≡ 1 (mod n),

showing that a is an F -liar.

The second fact is that the number of E-liars is at most half of the number of elements
in (Z/nZ)∗. The reason is that LEn is a proper subgroup of (Z/nZ)∗.

Theorem 6.12. If n > 3 is an odd composite, then the set LEn of E-liars is a proper subgroup
of (Z/nZ)∗.

Proof. We already know that LEn ⊆ LFn ⊆ (Z/nZ)∗. Obviously, 1 ∈ LEn . If a, b ∈ LEn , then we
have

(
a
n

)
a(n−1)/2 ≡ 1 (mod n) and

(
b
n

)
b(n−1)/2 ≡ 1 (mod n). By Property (1) of the Jacobi

symbol (Proposition 6.9), we get(
ab

n

)
(ab)(n−1)/2 ≡

(
a

n

)
a(n−1)/2

(
b

n

)
b(n−1)/2 ≡ 1 · 1 ≡ 1 (mod n)
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which shows that ab ∈ LEn . Therefore, LEn is a subgroup of LFn .

It remains to show that there is some a ∈ (Z/nZ)∗ which does not belong to LEn ; that is,
that there is some E-witness in (Z/nZ)∗. There are two cases:

Case 1. The number n contains some square factor p2, for some prime p ≥ 3. In this
case, when we proved (1) of Korselt’s criterion (Theorem 5.5), we produced an F -witness a in
(Z/nZ)∗. By Proposition 6.11 (using its contrapositive), we conclude that a is an E-witness
in (Z/nZ)∗.

Case 2. The number n is squarefree, so we can write n = pm, for some odd prime p and
some odd number m ≥ 3 which is not a multiple of p.

Let b ∈ {1, . . . , p− 1} be some quadratic nonresidue modulo p, so that
(
b
p

)
= −1. Using

the Chinese remainder theorem, we find some a with 1 ≤ a ≤ n− 1 such that

a ≡ b (mod p)

a ≡ 1 (mod m).

We claim that a is an E-witness in (Z/nZ)∗. Since b is a nonresidue modulo p, the prime p
does not divide a, and gcd(a,m) = 1, so gcd(a, n) = 1 and a ∈ (Z/nZ)∗.

Next, observe that(
a

n

)
=

(
a

p

)(
a

m

)
=

(
b

p

)(
1

m

)
= (−1) · 1 = −1.

If a were an E-liar, then the fact that
(
a
n

)
= −1 would imply that

a(n−1)/2 ≡ −1 (mod n).

Since m divides n, we would have

a(n−1)/2 ≡ −1 (mod m),

contradicting the fact that a ≡ 1 (mod m). Therefore, a is indeed an E-witness in (Z/nZ)∗

for n.

Theorem 6.12 implies that the order |LEn | of the group LEn divides the order ϕ(n) of
(Z/nZ)∗, and therefore,

|LEn | ≤
ϕ(n)

2
≤ n− 1

2
.

Here is the Solovay–Strassen primality test.

Solovay–Strassen test

The input is an odd integer n > 3.
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procedure solovay-strassen(n)
begin

Choose random integer a ∈ {2, . . . , n− 2};
if
(
a
n

)
a(n−1)/2 6≡ 1 (mod n)

then c := 1; return c; exit; (∗ n is a composite ∗)
else c := 0; return c (∗ n is a probable prime ∗)

end

The Solovay–Strassen test is a Monte-Carlo algorithm. If the procedure returns c = 1,
then n is composite: that is,

Pr(n composite | solovay strassen return c = 1) = 1.

If n is composite, then the solovay-strassen test returns c = 1 for at least 1/2 of the number
of choices for a; that is,

Pr(solovay strassen return c = 1 | n is composite) ≥ 1

2
.

If we repeat the Solovay–Strassen test ` times, as in the case of the Miller–Rabin test, we
obtain the fact that

Pr(solovay strassen return c = 0 ` times | n is composite) ≤
(

1

2

)`
,

and that (approximately)

Pr(n is prime | solovay strassen return c = 0 ` times) ≥ 1− ln(n)

2`
.

We still have to show how the Jacobi symbol can be evaluated quickly. For this we need
the quadratic reciprocity law.

6.5 The Quadratic Reciprocity Law

The quadratic reciprocity law , first stated by Euler (in a complicated form) around 1744–
1746, was rediscovered in 1785 by Legendre who gave a partial proof. Gauss discovered the
quadratic reciprocity independently at the age of eighteen and was the first one to give a
complete proof in 1796. In fact, according to Dirichlet–Dedekind [12] (Chapter 3, Section
42), Gauss gave six different proofs of the quadratic reciprocity law! A seventh proof was
found in Gauss’ Nachlass. Curiously, some authors (including Apostol) claim that Gauss
gave eight different proofs.

The quadratic recipocity law states that if p and q are distinct odd primes, then
(
p
q

)
=
(
q
p

)
unless p ≡ q ≡ 3 (mod 4), in which case

(
p
q

)
= −

(
q
p

)
. The extension of the quadratic

reciprocity law to the Jacobi symbol for distinct odd integers m,n ≥ 3 such that gcd(m,n) =
1 is easy.
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Theorem 6.13. (Quadratic reciprocity law) If m and n are any odd integers m,n ≥ 3 such
that gcd(m,n) = 1, then (

m

n

)
= (−1)

m−1
2

n−1
2

(
n

m

)
.

Equivalently, (
m

n

)
=


(
n

m

)
if m ≡ 1 mod 4 or n ≡ 1 mod 4

−
(
n

m

)
if m ≡ 3 mod 4 and n ≡ 3 mod 4.

Furthermore, (
1

m

)
= 1(

−1

m

)
= (−1)

m−1
2(

2

m

)
= (−1)

m2−1
8 ,

or equivalently (
−1

m

)
=

{
1 if m ≡ 1 mod 4

−1 if m ≡ 3 mod 4,

and (
2

m

)
=

{
1 if m ≡ 1 mod 8 or m ≡ 7 mod 8

−1 if m ≡ 3 mod 8 or m ≡ 5 mod 8.

Observe that the quadratic reciprocity law holds trivially if gcd(m,n) > 1, since in this
case

(
m
n

)
=
(
n
m

)
= 0.

Remark: We could define the Legendre symbol for n = 2. Since every odd number m =
2k + 1 is a quadratic residue modulo 2 and there are no quadratic nonresides, we can set(

m

2

)
=

{
+1 if m is odd

0 if m is even.

But then, the quadratic reciprocity law fails. Similarly, we could define the Jacobi symbol if
n is even, but this is futile since the quadratic reciprocity law also fails. This is the reason
why the Legendre symbol

(
m
p

)
is only defined for an odd prime p and the Jacobi symbol

(
m
n

)
for a positive odd integer n.

We prove the quadratic reciprocity law in Section 6.7, but first we show how it can be
used together with the properties stated in Proposition 6.9 to evaluate quickly the Jacobi
symbol.

We use the following steps recursively to evaluate the Jacobi symbol
(
a
n

)
.
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(1) Reduce modulo n. If a /∈ {1, . . . , n− 1}, compute
(
a mod n

n

)
.

(2) If a = 0, then the result is 0.

(3) If a = 1, then the result is 1.

(4) Remove factors of 4 from the numerator. If 4 divides a, then compute
(a/4
n

)
.

(5) Remove factors of 2 from the numerator. If 2 divides a, then if n ≡ 1, 7 (mod 8),

compute
(a/2
n

)
, else if n ≡ 3, 5 (mod 8), compute −

(a/2
n

)
.

(6) Apply quadratic reciprocity, Case 1. If n > a > 1 and (a ≡ 1 (mod 4) or n ≡ 1
(mod 4)), then compute

(
n mod a

a

)
.

(7) Apply quadratic reciprocity, Case 2. If n > a, a ≡ 3 (mod 4) and n ≡ 3 (mod 4),
then compute −

(
n mod a

a

)
.

The rules for evaluating the Jacobi symbol are more powerful than the rules for evaluating
the Legendre symbol because in (6) and (7) it is not necessary to assume that a is prime.
Thus, there is no need for factoring a, which is a great advantage, because factoring is
generally considered hard.

Here is an illustration of the use of the above rules to evaluate a Jacobi symbol. Consider(
773

1373

)
.

In the present case, 773 and 1373 are prime, so we are in fact computing the Legendre
symbol. We have(

773

1373

)
6
=

(
600

773

)
4
=

(
150

773

)
5
= −

(
75

773

)
6
= −

(
23

75

)
7
=

(
6

23

)
5
=(

3

23

)
6
= −

(
2

3

)
5
=

(
1

3

)
3
= 1.

Therefore, 773 is a quadratic residue modulo 1373. Another way to show this is to use the
Euler criterion and to compute 773686 mod 1373 (we find that the result is indeed 1).

The following example taken from Hoffstein, Pipher and Silverman [8] shows the superi-
ority of the Jacobi symbol. Consider computing(

228530738017

9365449244297

)
,

where the two numbers involved are indeed prime (check it using Miller-Rabin or Solovay–
Strassen!). By the quadratic reciprocity law, we get(

228530738017

9365449244297

)
=

(
9365449244297

228530738017

)
,
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and since 9365449244297 ≡ 224219723617 (mod 228530738017), we have(
9365449244297

228530738017

)
=

(
224219723617

228530738017

)
.

Now, although this is not obvious, 224219723617 is composite, so to proceed with the Leg-
endre symbol we need to factor 224219723617, not an easy task. With the Jacobi symbol,
we can apply the law of quadratic reciprocity and then reduce modulo the denominator and
we get (

224219723617

228530738017

)
=

(
228530738017

224219723617

)
=

(
4311014400

224219723617

)
.

Since 4311014400 = 210 · 4209975, we get(
4311014400

224219723617

)
=

(
4209975

224219723617

)
=

(
224219723617

4209975

)
=

(
665092

4209975

)
.

We will let the reader finish the computation and eventually find that the answer is −1.

Here is an iterative algorithm for evaluating the Jacobi symbol
(
a
n

)
where n ≥ 3 is an

odd integer.

Evaluation of the Jacobi Symbol

(
a

n

)

function jacobi(a, n)
b := a mod n; c := n; s := 1;
while b ≥ 2 do

while 4 | b do
b := b/4

endwhile;
if 2 | b then

if c ≡ 3, 5 (mod 8) then s := −s endif;
b := b/2

endif;
if b = 1 then return s exit endif;
if b ≡ c ≡ 3 (mod 4) then s := −s endif;
b := c mod b; c := b

endwhile;
return sb

end

It is not hard to see that the invariant

s

(
b

c

)
=

(
a

n

)
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is maintained during execution of the program. Also, if gcd(a, n) > 1, then at some point
b becomes 0, so there is no need to compute gcd(a, n). We leave it as an exercise to prove
that the above program computes the Jacobi symbol

(
a
n

)
; for help, consult Dietzfelbinger

[4] (Section 6.3). It is also easy to prove that the number of iterations of the main while
loop is O(log n) and that that the program runs in O((log n)2) bit operations if |a| < n (see
Crandall and Pomerance [3], Chapter 2).

It is remarkable that deciding whether a is a quadratic residue modulo p (p prime) can
be done quickly (in polynomial time in log p), basically the same complexity as computing
the gcd. However finding a square root in Z/pZ is hard (with p prime). So far, no known
deterministic polynomial-time algorithm is known. It is known that if the ERH holds, then
there is a quadratic nonresidue d < 2(log p)2. From this, a square root can be found in
polynomial time, if it exists.

6.6 A Randomized Algorithm to Find a Square

Root mod p

If p is an odd prime, we saw in Section 6.1 that if p is of the form p = 4k + 3, then a square
root of a quadratic residue a is easily found: a(p+1)/4 is a square root of a mod p. We now
show that if p = 4k+ 1 is prime, then there is a randomized algorithm to find a square root
of a quadratic residue a mod p.

First, we show that if p = 8k+ 3 or if p = 8k+ 7 is prime, then it is easy to find a square
root of a quadratic residue a mod p. We can write p− 1 = 2(4k + 1) or p− 1 = 2(4k + 3),
that is, p− 1 = 2t where t is odd. Since a is a quadratic residue mod p, by Euler’s criterion

a(p−1)/2 ≡ at ≡ 1 (mod p).

Thus at+1 ≡ a (mod p), and since t is odd, t+ 1 is even, so y = a(t+1)/2 = a(p+1)/4 mod p is
a square root of a.

If p = 8k + 5 is prime, then p− 1 = 4(2k + 1), that is, p− 1 = 4t = 2st with s = 2 and
t odd, and if p = 8k + 1 is prime, then p − 1 = 8k. In the second case, p − 1 = 2st with
s ≥ 3 and t odd. Since a is a quadratic residue mod p, by Euler’s criterion we still have
a(p−1)/2 ≡ 1 (mod p), namely

a2
s−1t ≡ 1 (mod p).

We deduce that a1+2s−1t ≡ a (mod p), but since s ≥ 2, the number 1 + 2s−1t is odd, so this
does not help.

What we have though, is
(at)2

s−1 ≡ 1 (mod p). (∗)

This implies that the order of A = at is a divisor of 2s−1, and let this order be 2h, with
0 ≤ h ≤ s− 1.
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Surprisingly, having a quadratic nonresidue d mod p helps. By Euler’s criterion, since
(p− 1)/2 = 2s−1t, we have

(dt)2
s−1 ≡ d2

s−1t ≡ d(p−1)/2 ≡ −1 (mod p).

If we let D ≡ dt (mod p), then we see that

D2s−1 ≡ −1 (mod p),

so D has order exactly 2s, and so does D−1. This is because since D is invertible, Dk ≡ 1
(mod p) iff 1 ≡ (D−1)k (mod p). Since (Z/pZ)∗ is a cyclic group, by Proposition 4.18(e),
it contains a single subgroup of order 2s generated by D−1, and since A has order at most
2s−1, it must belong to this subgroup, so it must be some power of D−1. Thus A ≡ (D−1)r

(mod p) for some r such that 1 ≤ r ≤ 2s.

Since the order of A is 2h we have

A2h ≡ ((D−1)r)2
h ≡ (D−1)r2

h ≡ 1 (mod p),

and since D−1 has order 2s, we see that 2s divides r2h. Therefore r = r12
s−h, and since

r ≤ 2s, we have 1 ≤ r1 ≤ 2h with 0 ≤ h ≤ s − 1. If r1 is even, say r1 = 2r2, then
r = r22

s−h+1, and then

A2h−1 ≡ ((D−1)r22
s−h+1

)2
h−1 ≡ (D−1)r22

s ≡ ((D−1)2
s

)r2 ≡ 1 (mod p),

contradicting the fact that A has order 2h.

Therefore, we showed that A ≡ (D−1)r (mod p), with r = r12
s−h, for some odd r1 such

that 1 ≤ r1 < 2h, and 0 ≤ h ≤ s− 1.

If h = 0, then r1 = 1 and r = 2s, in which case A ≡ (D−1)2
s ≡ 1 (mod p), so equivalently

we set r = 0. Thus either r = 0, or r = r12
s−h for some odd r1 with 1 ≤ r1 < 2h and

1 ≤ h ≤ s− 1. Observe that if r 6= 0 then r < 2s.

If we decompose r = r12
s−h 6= 0 into a sum of powers of 2, which amounts to writing r

in binary, we obtain
r = 2s−h + 2i2 + · · ·+ 2ik

for some increasing sequence s − h < i2 < · · · < ik. Since r < 2s, we have 1 ≤ k ≤ s − 1,
and since h ≤ s − 1, the number r is even. We let µ = r/2, and because r < 2s, we have
µ < 2s−1.

Since A ≡ (D−1)r ≡ D−2µ (mod p), we have

AD2µ ≡ 1 (mod p), (∗∗)

that is, atD2µ ≡ 1 (mod p), and thus

at+1D2µ ≡ a (mod p).
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Since t is odd, t+ 1 is even, and so y = a(t+1)/2Dµ is a square root of a mod p.

Observe that (∗∗) is equivalent to

D2µ ≡ A−1 (mod p),

that is, we are trying to find a discrete logarithm for A−1 to the base D. In general, finding
a discrete logarithm is very hard. Luckily, in the present case, the discrete logarithm 2µ can
be easily found. What happens is that the pieces 2ij in the binary decomposition of r = 2µ
can be found using a simple test.

Let us examine the case s = 2 more closely. In this case, p − 1 = 4t with t odd, that is
p = 4(2h+ 1) + 1 = 8h+ 5. By Theorem 6.13, we have(

2

p

)
= −1,

that is, 2 is a quadratic nonresidue. Then with A ≡ at (mod p) and D = 2t (mod p), we
have AD2µ ≡ 1 (mod p) for some µ such that 0 ≤ µ < 2s−1 = 21 = 2. Either µ = 0 and
then a(t+1)/2 is a square root of a, or a(t+1)/22t is is a square root of a. Since p = 4t + 1,
we have t = (p − 1)/4 and (t + 1)/2 = (p + 3)/8, so either a(p+3)/8 is a square root of a, or
a(p+3)/82(p−1)/4 is a square root of a.

In summary, we have the following algorithm. Given an odd prime p, write p − 1 = 2st
with s ≥ 1 and t odd.

(1) If s = 1, then p ≡ 3, 7 (mod 8), and y = a(t+1)/2 = a(p+1)/4 mod p is a square root of
a mod p.

(2) If s = 2, then p ≡ 5 (mod 8), and either a(p+3)/8, or a(p+3)/82(p−1)/4, is a square root of
a mod p.

(3) If s ≥ 3, then p ≡ 1 (mod 8). Choose at random some integer d ∈ {2, . . . , p− 1} such
that d is quadratic nonresidue mod p. We can check this by computing the Legendre
symbol

(
d
p

)
(using the fast method for computing Jacobi symbols).

Compute A ≡ at (mod p) and D ≡ dt (mod p). Search for µ such that 0 ≤ µ < 2s−1

and AD2µ ≡ 1 (mod p) as follows:

Initialize m as m := 0. For i = 1, . . . , s−1, check whether (ADm)2
s−1−i ≡ −1 (mod p).

If yes, then increment m by 2i; m := m + 2i. Otherwise, increment i by 1; i :=
i + 1. When i = s, stop; we found m = 2µ such that ADm ≡ 1 (mod p), and
y = a(t+1)/2Dm/2 mod p is a square root of a mod p.
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The correctness of Step 3 of the algorithm can be shown as follows. If A has order 1,
then r = 0 and A ≡ at ≡ 1 (mod p). For m = 0, since AD0 ≡ A ≡ 1 (mod p), the test
(ADm)2

s−1−i ≡ −1 (mod p) fails for i = 1, . . . , s− 1, so the program ends with m = 0, and
a(t+1)/2 is indeed a square root of a mod p.

If A has order 2h greater than 1, then 1 ≤ h ≤ s − 1, r = 2s−hr1 with r1 odd, so
A = (D−1)r12

s−h
, with 1 ≤ r1 < 2h. For m = 0,

(AD0)2
s−1−i ≡ ((D−1)r12

s−h
)2
s−1−i ≡ (D−1)r12

s+s−h−i−1

(mod p).

For i = s− h, we have s+ s− h− i− 1 = s− 1, and since r1 is odd the test

(AD0)2
s−1−(s−h) ≡ (D−1)r12

s−1 ≡ ((D−1)2
s−1

)r1 ≡ (D−1)2
s−1 ≡ −1 (mod p)

succeeds, but for 1 ≤ i ≤ s− h− 1, we have

(AD0)2
s−1−i ≡ (D−1)r12

s+s−h−i−1 ≡ ((D−1)2
s

)r12
s−h−i−1 ≡ 1 (mod p),

so the test
(AD0)2

s−1−i ≡ −1 (mod p)

fails for 1 ≤ i ≤ s − h − 1. Thus we set m = 2s−h. If r1 = 1, we are done. Otherwise
r = 2s−h + r22

i2 with i2 > s− h and r2 odd. Next we look at

(AD2s−h)2
s−1−i ≡ ((D−1)2

s−h+r22i2D2s−h)2
s−1−i ≡ (D−1)r22

s−1+i2−i (mod p).

Since i2 > s− h, for i2 − i > 0, that is, i = s− h+ 1, . . . , i2 − 1, we have

(AD2s−h)2
s−1−i ≡ (D−1)r22

s−1+i2−i ≡ 1 (mod p),

so the test fails, but for i = i2, we have

(AD2s−h)2
s−1−i2 ≡ (D−1)r22

s−1 ≡ −1 (mod p),

and the test succeed, so we set m = m + 2i2 . If r2 = 1 we are done. Otherwise r =
2s−h + 2i2 + r32

i3 with i3 > i2 and r3 odd. We repeat the test

(ADm)s−1−i ≡ −1 (mod p)

starting with i = i2 + 1. As in the previous case we will have

(ADm)s−1−i ≡ 1 (mod p)

for i = i2 + 1, . . . , i3 − 1, but

(ADm)s−1−i3 ≡ −1 (mod p),
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so we set m = m+ 2i3 . What is going on is now clear, and by an argument by induction left
to the reader, we can prove that when the algorithm stops with i = s, we have

m = r = 2s−h + 2i2 + · · ·+ 2ik .

Then a(t+1)/2Dm/2 mod p is a square root of a mod p.

It is informative to apply the above algorithm to p = 17. It is easily seen that the
quadratic residues mod 17 are

1, 4, 9, 16, 8, 2, 15, 13.

Let us apply the algorithm to a = 2. We have p−1 = 16 = 24 ·1, so s = 4 and t = 1. It easy
to see that 2 has order 8 = 23 mod 17, and the inverse of 2 mod 17 is 9. Let us pick d = 5,
which is indeed a quadratic nonresidue mod 17. We could have picked d = 3, but d = 5 is
less trivial. Since t = 1, we have

A = a1 = 2, D = d1 = 5.

It is easy to check that 5 has order 16 = 24 mod 17. The inverse of 5 modulo 17 is 7, and we
are trying to find r such that 2 · 5r ≡ 1 (mod 17), which is equivalent to 2 ≡ 7r (mod 17),
and to 5r ≡ 9 (mod 17). It turns out that r = 10 works. Let us see how the algorithm finds
r = 10 = 21 + 23.

Recall that we are performing the test

(ADm)2
s−1−i ≡ −1 (mod p),

that is
(2 · 5m)2

3−i ≡ −1 (mod 17),

starting with m = 0, and from i = 1, . . . , s − 1. The index i runs from i = 1 to i = 3, and
so 3− i runs from 2 to 0.

For m = 0 and i = 1, that is 3− i = 2, the algorithm finds that 222 ≡ 16 ≡ −1 (mod 17).
Thus we set m = 21 = 2, and we test whether (2 · 52)2

3−i ≡ −1 (mod 17) for i = 2, 3. We
find that (2 · 52)2 ≡ 1 (mod 17) for i = 2 and that (2 · 52)1 ≡ −1 (mod 17) for i = 3, so we
set m = m+ 23 = 2 + 23 = 10.

The algorithm found m = 10, so y = 2 · 55 (mod 17) is a square root of 2 mod 17. We
can check that 2 · 55 ≡ 11 (mod 17), and 112 ≡ 2 (mod 17), so 11 is a square root of 2
mod 17.

As an exercise, the reader should check that with d = 3, again the order of 3 is 16 = 24, the
inverse of 3 mod 17 is 6, and 2 ≡ 62 (mod 17). In this case m = r = 2. Since 222 ≡ 24 ≡ −1
(mod 17) for i = 1, we get m = 21 = 2. Since 2 · 32 ≡ 18 ≡ 1 (mod 17), the algorithm
terminates with m = 2, and we find 2 · 3 = 6 as square root of 2 mod 17.
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Here is another example from Koblitz [10] (Chapter II, Section 2). Let p = 401 and
a = 186. By computing the Legendre symbol

(
186
401

)
, we find that a is a quadratic residue

mod 401. We also find that 3 is a quadratic nonresidue mod 401 by computing the Legendre
symbol

(
3

401

)
. We have p− 1 = 401− 1 = 400 = 24 × 25, so s = 4 and t = 25. We find that

A ≡ 18625 ≡ 98 (mod 401), D ≡ 325 ≡ 268 (mod 401).

We have s− 1− i = 3− i and we are testing whether

(98 · 268m)2
3−i ≡ −1 (mod 401),

starting from m = 0, with i = 1, 2, 3.

For i = 1, we have 3− i = 2, and we check that

984 ≡ −1 (mod 401),

so we set m = 21 = 2. Next i = 2, so 3− i = 1, and we compute

(98× 2682)2 ≡ (982 mod 401)× (2684 mod 401) ≡ 381× 20 ≡ 1 (mod 401),

so we increment i to i = 3, and we compute

(98× 2682)1 ≡ 98× (2682 mod 401) ≡ 98× 45 ≡ −1 (mod 401),

so m = m+ 23 = 2 + 8 = 10. The algorithm stops with m = 10.

We check that 26810 ≡ 356 (mod 401), and that 356 is the inverse of 98 mod 401, so
indeed

98× 26810 ≡ 1 (mod 401).

The square root a(t+1)/2Dm/2 mod p is equal to

18623 × 2685 mod 401 = (18623 mod 401)× (2685 mod 401) = 103× 147 mod 401 = 304.

We easily confirm that y = 304 is a square root of 186 mod 401.

According to Crandall and Pomerance [3] (Chapter 2, Algorithm 2.3.8), the above algo-
rithm was originally invented by Tonelli in 1891, based on ideas of Gauss. They also give
another randomized algorithm using arithmetic in the finite field Fp2 due to Cipolla (1907).

If n is composite, there is no known fast method for computing square roots. In fact, it
can be shown that doing so is essentially equivalent to factoring n in the following sense: if
there is a polynomial time, possibly randomized, algorithm to compute square roots modulo
any n, then there is a randomized polynomial time algorithm for factoring n. This is Theorem
14.21 in Motwani and Raghavan [15].
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6.7 Proof of the Quadratic Reciprocity Law

At least 150 proofs of the quadratic reciprocity law have been published. Gauss himself gave
seven different proofs. We follow a short proof using “Gauss sums” due to Jean-Pierre Serre
[20]. This proof is not entirely elementary because it uses the fact that if p and q are distinct
odd primes, then there is a field extension Ω of Fp = Z/pZ in which there is an element of
order q (a primitive qth root of unity). Any algebraic closure of Fp will do. Since pq−1 ≡ 1
(mod q) (by Fermat’s little theorem), q divides pq−1 − 1, so the finite field Fpq−1 also works
since its multiplicative group is cyclic of order pq−1 − 1.

Theorem 6.14. (Quadratic reciprocity law for primes (Gauss)) For any two distinct odd
primes p, q, we have (

p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
.

Proof. Let Ω be any field extension of Fp = Z/pZ in which there is a primitive qth root of
unity, for example Ω = Fpq−1 . If w ∈ Ω is a primitive qth root of unity, define the Gauss sum
y by

y =
∑
a∈Fq

(
a

q

)
wa,

with
(
0
q

)
= 0. Then, we have two steps.

Step 1. We prove that

y2 = (−1)(q−1)/2q.

Step 2. We prove that

yp−1 =

(
p

q

)
.

If we assume that Step 1 and Step 2 have been established, by Step 1, y is a square root of
(−1)(q−1)/2q, and by a Proposition 6.4(1)(

(−1)(q−1)/2q

p

)
= yp−1,

so by Step 2 (
(−1)(q−1)/2q

p

)
=

(
p

q

)
.

On the other hand, by Proposition 6.5 and Proposition 6.6, we have(
p

q

)
=

(
(−1)(q−1)/2q

p

)
=

(
(−1)(q−1)/2

p

)(
q

p

)
= (−1)(p−1)(q−1)/4

(
q

p

)
,

which proves the desired formula.
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Proof of Step 1. We have

y2 =

(∑
a∈Fq

(
a

q

)
wa
)(∑

b∈Fq

(
b

q

)
wb
)

=
∑
a,b∈Fq

(
ab

q

)
wa+b =

∑
c∈Fq

wc
(∑
a∈Fq

(
a(c− a)

q

))
,

by making the change of variable c = a+ b. Now, if a 6= 0, we have a(c−a) = −a2(1− ca−1),
and since

(
a
q

)
= ±1 since a ∈ Fq, we have

(
a
q

)2
= 1, so(

a(c− a)

q

)
=

(
−a2(1− ca−1)

q

)
=

(
a

q

)2(−1

q

)(
1− ca−1

q

)
= (−1)(q−1)/2

(
1− ca−1

q

)
,

and thus,

(−1)(q−1)/2y2 =
∑
c∈Fq

Scw
c,

with

Sc =
∑
a∈F∗q

(
1− ca−1

q

)
.

If c = 0, then

S0 =
∑
a∈F∗q

(
1

q

)
= q − 1.

Otherwise, d = 1− ca−1 runs over Fq − {1}, and we have

Sc =
∑
a∈F∗q

(
1− ca−1

q

)
=
∑
d∈Fq

(
d

q

)
−
(

1

q

)
=
∑
d∈F∗q

(
d

q

)
−
(

1

q

)
= −

(
1

q

)
= −1,

since in F∗q there are as many squares as nonsquares (see Proposition 6.1). As a consequence.∑
c∈Fq

Scw
c = S0 +

∑
c∈F∗q

Scw
c = q − 1−

∑
c∈F∗q

wc = q,

since
∑

c∈F∗q
wc = −1 (because w is a primitive qth root of unity, so wq = 1,

0 = wq − 1 = (w − 1)(wq−1 + · · ·+ w + 1),

which implies wq−1 + · · · + w + 1 = 0, and thus,
∑

c∈F∗q
wc = wq−1 + · · · + w = −1), which

proves Step 1.

Proof of Step 2. Since Ω is a field of characteristic p, we have

(x1 + x2)
p = xp1 + xp2.
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Then if m ≥ 3 we have

(x1 + · · ·+ xm)p = (x1 + · · ·+ xm−1)
p + xpm,

and by induction
(x1 + · · ·+ xm)p = xp1 + · · ·+ xpm,

for all x1, . . . , xm ∈ Ω. Consequently, since p is odd
(
a
q

)p
=
(
a
q

)
, we get

yp =
∑
a∈Fq

(
a

q

)p
wap =

∑
a∈Fq

(
a

q

)
wap,

and by making the change of variable b = ap, we get

yp =
∑
b∈Fq

(
bp−1

q

)
wb =

∑
b∈Fq

(
p

q

)2(
bp−1

q

)
wb =

∑
b∈Fq

(
bp

q

)
wb =

(
p

q

)∑
b∈Fq

(
b

q

)
wb =

(
p

q

)
y.

Therefore, yp−1 =

(
p

q

)
, as claimed.

The proof of the quadratic reciprocity law for the Jacobi symbol is now easy to obtain.
For the reader’s convenience, we repeat the statement of the theorem.

Theorem 6.15. (Quadratic reciprocity law for the Jacobi symbol) If m and n are any odd
integers m,n ≥ 3 such that gcd(m,n) = 1, then(

m

n

)
= (−1)

m−1
2

n−1
2

(
n

m

)
.

Equivalently, (
m

n

)
=


(
n

m

)
if m ≡ 1 mod 4 or n ≡ 1 mod 4

−
(
n

m

)
if m ≡ 3 mod 4 and n ≡ 3 mod 4.

Proof. Write the prime factorizations of m and n as m = p1 · · · ps and n = q1 · · · qt, where
the pi and qj are primes. Then, we have(

m

n

)(
n

m

)
=

s∏
i=1

t∏
j=1

(
pi
qj

)(
qj
pi

)
= (−1)r,

for some integer r. Applying the quadratic reciprocity law for primes to each factor, we find
that

r =
s∑
i=1

t∑
j=1

(pi − 1)

2

(qj − 1)

2
=

s∑
i=1

pi − 1

2

t∑
j=1

qj − 1

2
.
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During the proof of part (7) of Proposition 6.9, we showed that

s∑
i=1

pi − 1

2
≡ m− 1

2
(mod 2)

t∑
j=1

qj − 1

2
≡ n− 1

2
(mod 2).

Therefore,

r ≡ (m− 1)

2

(n− 1)

2
(mod 2),

which proves our formula.

Another way of proving the law of quadratic reciprocity (for primes) is to use Gauss sets.
Given any odd prime p, any subset S of F∗p = {1, 2, . . . , p− 1} such that S ∩ (−S) = ∅ and

F∗p = S ∪ −S

is called a Gauss set . Observe that since |S| = | − S|, the fact that F∗p is the disjoint union
of S and −S implies that |S| = (p− 1)/2. In particular,

S =

{
1, 2, . . . ,

p− 1

2

}
is a Gauss set. Then, for any s ∈ S and any a ∈ F∗p, we can write

as = es(a)sa,

for some sa ∈ S and with es(a) = ±1. (Of course, as is multiplication in Fp, so as ≡ es(a)sa
(mod p).)

Lemma 6.16. (Gauss’s lemma) For any odd prime p and any a ∈ F∗p, we have(
a

p

)
=
∏
s∈S

es(a).

Proof. First, observe that if s 6= s′, then sa 6= s′a, because if sa = s′a, since as = es(a)sa,
as′ = es′(a)s′a = es′(a)sa, and es(a), es′(a) ∈ {−1, 1}, we would have as = as′, thus s = ±s′,
contradicting the fact that S and −S disjoint. Therefore, the map s 7→ sa is a bijection of
S. If we multiply the equations

as = es(a)sa

for all s ∈ S, we get

a(p−1)/2
∏
s∈S

s =

(∏
s∈S

es(a)

)∏
s∈S

sa =

(∏
s∈S

es(a)

)∏
s∈S

s,
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which implies that

a(p−1)/2 =
∏
s∈S

es(a).

However, we know that (
a

p

)
= a(p−1)/2,

which proves the lemma.

As an application of Lemma 6.16, the reader should reprove that(
2

p

)
= (−1)(p−1)/2,

by setting a = 2 and using the set S from above. It turns out that(
2

p

)
= (−1)n(p),

where n(p) is the number of integers s such that

p− 1

4
< s ≤ p− 1

2
.

We can use the Gauss set

S =

{
1, 2, . . . ,

p− 1

2

}
and Lemma 6.16 to compute the Legendre symbol

(
p
q

)
. Given any a ∈ {1, . . . , p−1}, consider

the residues mod p of the multiples of a,{
a, 2a, . . . ,

p− 1

2
a

}
,

say r1, . . . , r(p−1)/2.

If rs ∈ S, then as = sa ≡ rs (mod p) so es(a) = +1, and if rs /∈ S, then p− rs ∈ S, and
as = sa ≡ rs ≡ −(p− rs) (mod p), we have es(a) = −1. It follows that

∏
s∈S ea(s) = (−1)µ,

where µ is the number of residues rs not in S.

Therefore, we proved that (
a

p

)
= (−1)µ,

where µ is the number of residues rs mod p of the multiples of a,{
a, 2a, . . . ,

p− 1

2
a

}
,
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such that rs is not in S. This is how Lemma 6.16 is stated in Apostol [1] (Chapter 9, Theorem
9.6) and Niven, Zuckerman, and Montgomery [16] (Section 3.1, Theorem 3.2).

There is a formula that gives the parity of m in terms of a and p; see Apostol [1] (Chapter
9, Theorem 9.7) and Niven, Zuckerman, and Montgomery [16] (Section 3.1, Theorem 3.3).
Using Lemma 6.16 and this formula, a short proof of the law of quadratic reciprocity can be
obtained; see Apostol [1] (Chapter 9, Theorem 9.8), and Niven, Zuckerman, and Montgomery
[16] (Section 3.2, Theorem 3.4). This is essentially Gauss’ third proof; see Dirichlet–Dedekind
[12] (Chapter 3, Sections 42 and 43). In some sense, this proof is more elementary than the
one we gave. Generalizations of the law of quadratic reciprocity are discussed in Ireland and
Rosen [9]. The historical notes found at the end of every chapter of Ireland and Rosen [9]
are also very informative.

6.8 Eisenstein’s Proof of the Quadratic

Reciprocity Law

Another strikingly short proof due to Eisenstein (1845) using a trigonometric identity is
given in Serre [20] (Chapter 1, Appendix). This proof is just too beautiful to be left aside,
so here is Serre’s proof of the quadratic reciprocity law after Eisenstein (1845).

Eisenstein’s proof. The idea is to use Gauss’s lemma, which says that(
a

p

)
=
∏
s∈S

es(a),

where ea(s) = ±1 is defined so that as = es(a)sa, with s and sa in the Gauss set

S =

{
1, 2, . . . ,

p− 1

2

}
.

The key ingredient (stroke of genius) of the proof is that if as = es(a)sa, then

sin

(
2π

p
as

)
= es(a) sin

(
2π

p
sa

)
. (∗sin)

We simply used the fact that the sine function has the property that sin(−x) = − sinx. But
(∗sin) yields

ea(a) =
sin
(

2πas
p

)
sin
(

2πsa
p

) ,
so we obtain (

a

p

)
=
∏
s∈S

es(a) =
∏
s∈S

sin
(

2πas
p

)
sin
(

2πsa
p

) =
∏
s∈S

sin
(

2πas
p

)
sin
(

2πs
p

) ,
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since the map s 7→ sa is bijective. Now we need to evaluate the expression involving the
ratios of sines. This can be done using the following proposition:

Proposition 6.17. For any positive odd integer m ≥ 3, we have

sinmx

sinx
= (−4)(m−1)/2

∏
1≤j≤m−1

2

(
sin2 x− sin2

(
2πj

m

))
.

Proof. We prove by induction that for any positive odd integer m ≥ 3, cosmx/cosx and
sinmx/sinx are polynomials of degree (m − 1)/2 in sin2 x whose leading coefficient is
(−4)(m−1)/2. For m = 3, we have the well known formulae

cos 3x = 4 cos3 x− 3 cosx

sin 3x = −4 sin3 x+ 3 sinx,

and we get

cos 3x

cosx
= 4 cos2 x− 3

= 4(1− sin2 x)− 3

= −4 sin3 x+ 1

sin 3x

sinx
= −4 sin2 x+ 3,

so the base case holds. For the induction step, we use the formulae

cos(m+ 2)x = cosmx cos 2x− sinmx sin 2x

sin(m+ 2)x = sinmx cos 2x+ cosmx sin 2x,

and

cos 2x = 1− 2 sin2 x

sin 2x = 2 sin x cosx.

Then we get

cos(m+ 2)x

cosx
=

cosmx

cosx
cos 2x− sinmx

sin 2x

cosx

=
cosmx

cosx
(1− 2 sin2 x)− sinmx

2 sinx cosx

cosx

=
cosmx

cosx
(1− 2 sin2 x)− 2

sinmx

sinx
sin2 x.

By the induction hypothesis, both cosmx/cosx and sinmx/sinx are polynomials of degree
(m − 1)/2 in sin2 x, so cos(m + 2)x/cosx is a polynomial of degree (m + 1)/2 in sin2 x.
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The leading terms of the polynomials in sin2 x for cosmx/cosx and sinmx/sinx are both
(−4)(m−1)/2, so the leading term of cos(m+ 2)x/cosx in sin2 x is

−2(−4)(m−1)/2 − 2(−4)(m−1)/2 = (−4)(m+1)/2,

establishing the induction step. We also get

sin(m+ 2)x

sinx
=

sinmx

sinx
cos 2x+ cosmx

sin 2x

sinx

=
sinmx

sinx
(1− 2 sin2 x) + cosmx

2 sinx cosx

sinx

=
sinmx

sinx
(1− 2 sin2 x) + 2

cosmx

cosx
cos2 x

=
sinmx

sinx
(1− 2 sin2 x) + 2

cosmx

cosx
(1− sin2 x).

By the induction hypothesis, both cosmx/cosx and sinmx/sinx are polynomials of degree
(m − 1)/2 in sin2 x, so sin(m + 2)x/sinx is a polynomial of degree (m + 1)/2 in sin2 x.
The leading terms of the polynomials in sin2 x for cosmx/cosx and sinmx/sinx are both
(−4)(m−1)/2, so the leading term of sin(m+ 2)x/sinx in sin2 x is

−2(−4)(m−1)/2 − 2(−4)(m−1)/2 = (−4)(m+1)/2,

establishing the induction step.

Finally, observe that sinmx/sinx vanishes for x = 2πj/m with j = 1, . . . , (m− 1)/2, so
the polynomial in sin2 x expressing sinmx/sinx vanishes for sin2 x = sin2

(
2πj
m

)
, and since

this polynomial has degree (m− 1)/2, it is the product of the factors

sin2 x− sin2

(
2πj

m

)
,

up to its leading coefficient. But we just showed that this leading coefficient is (−4)(m−1)/2,
which proves our formula.

Let T be the set

T =

{
1, 2, . . . ,

a− 1

2

}
.

Using Proposition 6.17 with m = a and x = (2πs)/p, we obtain(
a

p

)
=
∏
s∈S

es(a) =
∏
s∈S

(−4)(a−1)/2
∏
t∈T

(
sin2

(
2πs

p

)
− sin2

(
2πt

a

))
= (−4)(a−1)(p−1)/4

∏
s∈S

∏
t∈T

(
sin2

(
2πs

p

)
− sin2

(
2πt

a

))
,
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since S has (p− 1)/2 elements. Thus we have(
a

p

)
= (−4)(a−1)(p−1)/4

∏
s∈S

∏
t∈T

(
sin2

(
2πs

p

)
− sin2

(
2πt

a

))
. (∗1)

Exchanging the roles of a and p, we obtain(
p

a

)
= (−4)(a−1)(p−1)/4

∏
s∈S

∏
t∈T

(
sin2

(
2πt

a

)
− sin2

(
2πs

p

))
. (∗2)

Comparing (∗1) and (∗2), we see that the factors are identical except for their sign. Since
there are (a− 1)(p− 1)/4 factors, we deduce that(

p

a

)
= (−1)(a−1)(p−1)/4

(
p

a

)
,

which is indeed the law of quadratic reciprocity.

6.9 Strong Pseudoprimes are Euler Pseudoprimes

We conclude this chapter by showing that every strong pseudoprime base a is also an Euler
pseudoprime base a. This is another indication that the Miller–Rabin test is somewhat
better than the Solovay–Strassen test (recall that the proportion of MR-liars is at most 1/4,
whereas the proportion of E-liars is at most 1/2). We follow Koblitz’s proof [10] (Chapter
V).

We begin with an easy result, but first, observe that if a is an E-liar, then(
a

n

)
a(n−1)/2 ≡ 1 (mod n),

which implies that gcd(a, n) = 1, and since
(
a
n

)
∈ {−1, 1}, the above condition is equivalent

to (
a

n

)
≡ a(n−1)/2 (mod n).

Proposition 6.18. If n is any composite of the form n = 4k + 3, then n is a strong
pseudoprime base a iff n is an Euler pseudoprime base a.

Proof. Since n = 4k + 3, we have n − 1 = 2(2k + 1), so n − 1 = 2st with s = 1 and
t = (n− 1)/2. Thus, n is a strong pseudoprime base a iff a(n−1)/2 ≡ ±1 (mod n). If n is an
Euler pseudoprime, then the above congruence holds, by definition.

Conversely, assume that a(n−1)/2 ≡ ±1 (mod n). Then, since (n− 3)/4 = k is an integer,
we have(

a

n

)
=

(
a(n−3)/4

n

)2(
a

n

)
=

(
a(n−3)/2

n

)(
a

n

)
=

(
a(n−3)/2 · a

n

)
=

(
a(n−1)/2

n

)
,
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and because (n− 1)/2 = 2k + 1, we have(
−1

n

)
= −1,

which implies that (
a

n

)
≡ a(n−1)/2 (mod n),

as desired.

The case were n = 4k + 1 is more involved.

Theorem 6.19. If n is a strong pseudoprime base a, then n is an Euler pseudoprime base
a.

Proof. Write n − 1 = 2st with t odd and assume that a in an MR-liar for n, which means
that either

(a) at ≡ 1 (mod n), or

(b) a2
it ≡ n− 1 (mod n), for some i with 0 ≤ i ≤ s− 1.

We consider several cases.

Case 1. Assume that at ≡ 1 (mod n). In this case, since (n− 1)/2 = 2s−1t, we have

a(n−1)/2 ≡ 1 (mod n).

We also have

1 =

(
1

n

)
=

(
at

n

)
=

(
a

n

)t
,

and since t is odd me must have

(
a

n

)
= 1, so

(
a

n

)
≡ a(n−1)/2 (mod n).

Case 2. Assume that (b) holds for i = s − 1; that is, a(n−1)/2 ≡ −1 (mod n). We must
show that

(
a
n

)
= −1.

Let p be any prime divisor of n and write p−1 = 2s
′
t′, with t′ odd. We make the following

claim:

Claim. We have s′ ≥ s and (
a

p

)
=

{
−1 if s′ = s

1 if s′ > s.
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Proof of the claim. From

a(n−1)/2 = a2
s−1t ≡ −1 (mod n),

raising both sides to the power t′ we we obtain(
a2

s−1t

)t′
≡
(
a2

s−1t′
)t
≡ −1 (mod n),

and since p divides n, we also have(
a2

s−1t′
)t
≡ −1 (mod p).

If we had s′ < s, then we would not have

ap−1 ≡ a2
s′ t′ ≡ 1 (mod p),

contradicting Fermat’s little theorem. Thus, s′ ≥ s. If s′ = s, then(
a2

s−1t′
)t
≡ −1 (mod p),

and since t is odd this implies that(
a

p

)
≡
(
a

p

)t
≡ (a(p−1)/2)t ≡

(
a2

s′−1t′
)t
≡ −1 (mod p).

On the other hand, if s′ > s, then the congruence(
a2

s−1t′
)t
≡ −1 (mod p)

raised to the power 2s
′−s implies that

(
a2

s′−1t′
)t
≡
(
a(p−1)/2

)t ≡ 1 (mod p), and since t is

odd,
(
a
p

)t
=
(
a
p

)
= 1.

Write n as a product of primes (not necessarily distinct), n = p1p2 · · · pm, and let k be
the number of primes p such that s′ = s when we write p − 1 = 2s

′
t′ with t′ odd, counting

such a prime with its multiplicity. By the claim, s′ ≥ s and(
a

n

)
=

m∏
i=1

(
a

pi

)
= (−1)k.

On the other hand, working modulo 2s+1, we see that p ≡ 1 (mod 2s+1) unless p is one of the
k primes for which s′ = s, in which case p ≡ 1 + 2s (mod 2s+1). Since n = 1 + 2st ≡ 1 + 2s

(mod 2s+1), we have

1 + 2s ≡ p1 · · · pm ≡ (1 + 2s)k ≡ 1 + k2s (mod 2s+1),
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using the binomial formula in the last step. The congruence

2s ≡ k2s (mod 2s+1)

implies that k is odd, hence (
a

n

)
= (−1)k = −1,

as was to be proved.

Case 3. Assume that (b) holds for i < s − 1; that is, a2
it ≡ −1 (mod n). Raising this

congruence to the power 2s−1−i, we get a(n−1)/2 ≡ 1 (mod n), so we have to prove that(
a
n

)
= 1. As in Case 2, write p− 1 = ss

′
t′ with t′ odd for every prime factor p of n.

Claim. We have s′ ≥ i+ 1 and(
a

p

)
=

{
−1 if s′ = i+ 1

1 if s′ > i+ 1.

The proof of the above claim is identical to the proof of the claim in Case (2). Similarly
to Case (2), let k be the number of primes (not necessarily distinct) such that s′ = i+ 1. As
in Case (2), we have (

a

n

)
= (−1)k.

On the other hand, since i < s− 1, we have n = 1 + 2st ≡ 1 (mod 2i+2), and also

n ≡ p1 · · · pm ≡ (1 + 2i+1)k ≡ 1 + k2i+1 (mod 2i+2),

which implies
2st ≡ k2i+1 (mod 2i+2).

Since i+ 2 ≤ s, the number k must be even, and(
a

n

)
= (−1)k = 1,

as desired.

There are examples of composite numbers n such that n is an Euler pseudoprime base
a but n is not a strong pseudoprime base a. This behavior is observed for numbers of the
form (6m+ 1)(12m+ 1)(18m+ 1), where each factor is prime and m is odd; see Exercise 17
in Section 1 of Chapter V of Koblitz [10].
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