Notes on Public Key Cryptography
And Primality Testing
Part 1: Randomized Algorithms
Miller–Rabin and Solovay–Strassen Tests

Jean Gallier
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu

© Jean Gallier

July 3, 2017
Contents

1 Public Key Cryptography 5
 1.1 Public Key Cryptography; The RSA System 5
 1.2 Correctness of The RSA System 10
 1.3 Algorithms for Computing Powers and Inverses Modulo m 13
 1.4 Finding Large Primes; Signatures; Safety of RSA 18

2 Primality Testing Using Randomized Algorithms 25

3 Basic Facts About Groups, and Number Theory 29
 3.1 Groups, Subgroups, Cosets 29
 3.2 Cyclic Groups 36
 3.3 Primitive Roots 43
 3.4 Rings and Fields 54
 3.5 The Structure of Finite Fields 58

4 The Miller–Rabin Test 61
 4.1 The Fermat Test; F-Witnesses and F-Liars 61
 4.2 Carmichael Numbers 67
 4.3 The Miller–Rabin Test; MR-Witnesses and MR-Liars 70
 4.4 The Monier–Rabin Bound on the Size of the Set of MR-Liars 79
 4.5 The Least MR-Witness for n 85

5 The Solovay–Strassen Test 87
 5.1 Quadratic Residues 87
 5.2 The Legendre Symbol 89
 5.3 The Jacobi Symbol 94
 5.4 The Solovay–Strassen Test; E-Witnesses and E-Liars 96
 5.5 The Quadratic Reciprocity Law 99
 5.6 Proof of the Quadratic Reciprocity Law 103
 5.7 Strong Pseudoprimes are Euler Pseudoprimes 107

Bibliography 111
Chapter 1

Public Key Cryptography

1.1 Public Key Cryptography; The RSA System

Ever since written communication was used, people have been interested in trying to conceal the content of their messages from their adversaries. This has led to the development of techniques of secret communication, a science known as cryptography.

The basic situation is that one party, A, say Albert, wants to send a message to another party, J, say Julia. However, there is a danger that some ill-intentioned third party, Machiavelli, may intercept the message and learn things that he is not supposed to know about and as a result, do evil things. The original message, understandable to all parties, is known as the plain text. To protect the content of the message, Albert encrypts his message. When Julia receives the encrypted message, she must decrypt it in order to be able to read it. Both Albert and Julia share some information that Machiavelli does not have, a key. Without a key, Machiavelli, is incapable of decrypting the message and thus, to do harm.

There are many schemes for generating keys to encrypt and decrypt messages. We are going to describe a method involving public and private keys known as the RSA Cryptosystem, named after its inventors, Ronald Rivest, Adi Shamir, and Leonard Adleman (1978), based on ideas by Diffie and Hellman (1976). We highly recommend reading the orginal paper by Rivest, Shamir, and Adleman [16]. It is beautifully written and easy to follow. A very clear, but concise exposition can also be found in Koblitz [9]. An encyclopedic coverage of cryptography can be found in Menezes, van Oorschot, and Vanstone’s Handbook [13].

The RSA system is widely used in practice, for example in SSL (Secure Socket Layer), which in turn is used in https (secure http). Any time you visit a “secure site” on the Internet (to read e-mail or to order merchandise), your computer generates a public key and a private key for you and uses them to make sure that your credit card number and other personal data remain secret. Interestingly, although one might think that the mathematics behind such a scheme is very advanced and complicated, this is not so. Therefore, in this section, we are going to explain the basics of RSA.

The first step is to convert the plain text of characters into an integer. This can be done
easily by assigning distinct integers to the distinct characters, for example, by converting each character to its ASCII code. From now on, we assume that this conversion has been performed.

The next and more subtle step is to use modular arithmetic. We assume that the reader has some familiarity with basic facts of arithmetic (greatest common divisors, etc.). A "gentle" exposition is given in Gallier [6], Chapter 5. We pick a (large) positive integer \(m \) and perform arithmetic modulo \(m \). Let us explain this step in more detail.

Recall that for all \(a, b \in \mathbb{Z} \), we write \(a \equiv b \pmod{m} \) iff \(a - b = km \), for some \(k \in \mathbb{Z} \), and we say that \(a \) and \(b \) are congruent modulo \(m \). We already know that congruence is an equivalence relation but it also satisfies the following properties.

Proposition 1.1. For any positive integer \(m \), for all \(a_1, a_2, b_1, b_2 \in \mathbb{Z} \), the following properties hold. If \(a_1 \equiv b_1 \pmod{m} \) and \(a_2 \equiv b_2 \pmod{m} \), then

1. \(a_1 + a_2 \equiv b_1 + b_2 \pmod{m} \).
2. \(a_1 - a_2 \equiv b_1 - b_2 \pmod{m} \).
3. \(a_1 a_2 \equiv b_1 b_2 \pmod{m} \).

Proof. We only check (3), leaving (1) and (2) as easy exercises. Because \(a_1 \equiv b_1 \pmod{m} \) and \(a_2 \equiv b_2 \pmod{m} \), we have \(a_1 = b_1 + k_1 m \) and \(a_2 = b_2 + k_2 m \), for some \(k_1, k_2 \in \mathbb{Z} \), and so

\[
a_1 a_2 = (b_1 + k_1 m)(b_2 + k_2 m) = b_1 b_2 + (b_1 k_2 + k_1 b_2 + k_1 m k_2) m,
\]

which means that \(a_1 a_2 \equiv b_1 b_2 \pmod{m} \). A more elegant proof consists in observing that

\[
a_1 a_2 - b_1 b_2 = a_1(a_2 - b_2) + (a_1 - b_1)b_2 = (a_1 k_2 + k_1 b_2) m,
\]

as claimed. \(\square \)

Proposition 1.1 allows us to define addition, subtraction, and multiplication on equivalence classes modulo \(m \). If we denote by \(\mathbb{Z}/m\mathbb{Z} \) the set of equivalence classes modulo \(m \) and if we write \(\overline{a} \) for the equivalence class of \(a \), then we define

\[
\overline{a} + \overline{b} = \overline{a + b},
\]
\[
\overline{a} - \overline{b} = \overline{a - b},
\]
\[
\overline{a} \overline{b} = \overline{ab}.
\]

The above make sense because \(\overline{a + b} \) does not depend on the representatives chosen in the equivalence classes \(\overline{a} \) and \(\overline{b} \), and similarly for \(\overline{a - b} \) and \(\overline{ab} \). Of course, each equivalence class \(\overline{a} \) contains a unique representative from the set of remainders \(\{0, 1, \ldots, m - 1\} \), modulo \(m \),
so the above operations are completely determined by $m \times m$ tables. Using the arithmetic operations of $\mathbb{Z}/m\mathbb{Z}$ is called **modular arithmetic**.

For an arbitrary m, the set $\mathbb{Z}/m\mathbb{Z}$ is an algebraic structure known as a *ring*. Addition and subtraction behave as in \mathbb{Z} but multiplication is stranger. For example, when $m = 6$,

$$2 \cdot 3 = 0$$
$$3 \cdot 4 = 0,$$

inasmuch as $2 \cdot 3 = 6 \equiv 0 \pmod{6}$, and $3 \cdot 4 = 12 \equiv 0 \pmod{6}$. Therefore, it is not true that every nonzero element has a multiplicative inverse. However, it is known (see Gallier [6], Chapter 5) that a nonzero integer a has a multiplicative inverse iff $\gcd(a, m) = 1$ (use the Bézout identity). For example,

$$5 \cdot 5 = 1,$$

because $5 \cdot 5 = 25 \equiv 1 \pmod{6}$.

As a consequence, when m is a prime number, every nonzero element not divisible by m has a multiplicative inverse. In this case, $\mathbb{Z}/m\mathbb{Z}$ is more like \mathbb{Q}; it is a finite field. However, note that in $\mathbb{Z}/m\mathbb{Z}$ we have

$$\underbrace{1 + 1 + \cdots + 1}_{m \text{ times}} = 0$$

(because $m \equiv 0 \pmod{m}$), a phenomenon that does not happen in \mathbb{Q} (or \mathbb{R}).

The RSA method uses modular arithmetic. One of the main ingredients of public key cryptography is that one should use an encryption function, $f : \mathbb{Z}/m\mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z}$, which is easy to compute (i.e., can be computed efficiently) but such that its inverse f^{-1} is practically impossible to compute unless one has *special additional information*. Such functions are usually referred to as *trapdoor one-way functions*. Remarkably, exponentiation modulo m, that is, the function, $x \mapsto x^e \mod m$, is a trapdoor one-way function for suitably chosen m and e.

Thus, we claim the following.

(1) Computing $x^e \mod m$ can be done efficiently.

(2) Finding x such that

$$x^e \equiv y \pmod{m}$$

with $0 \leq x, y \leq m - 1$, is hard, unless one has extra information about m. The function that finds an eth root modulo m is sometimes called a *discrete logarithm*.

We explain shortly how to compute $x^e \mod m$ efficiently using the *square and multiply* method also known as *repeated squaring*.

As to the second claim, actually, no proof has been given yet that this function is a one-way function but, so far, this has not been refuted either.
Now, what’s the trick to make it a trapdoor function?

What we do is to pick two distinct large prime numbers, \(p \) and \(q \) (say over 200 decimal digits), which are “sufficiently random” and we let

\[
m = pq.
\]

Next, we pick a random \(e \), with \(1 < e < (p - 1)(q - 1) \), relatively prime to \((p - 1)(q - 1)\).

Because \(\gcd(e, (p - 1)(q - 1)) = 1 \), there is some \(d \) with \(1 < d < (p - 1)(q - 1) \), such that \(ed \equiv 1 \pmod{(p - 1)(q - 1)} \).

Then, we claim that to find \(x \) such that

\[
x^e \equiv y \pmod{m},
\]

we simply compute \(y^d \pmod{m} \), and this can be done easily, as we claimed earlier. The reason why the above “works” is that

\[
x^{ed} \equiv x \pmod{m},
\]

for all \(x \in \mathbb{Z} \), which we prove later.

Setting up RSA

In summary to set up RSA for Albert (A) to receive encrypted messages, perform the following steps.

1. Albert generates two distinct large and sufficiently random primes, \(p_A \) and \(q_A \). They are kept secret.

2. Albert computes \(m_A = p_A q_A \). This number called the *modulus* will be made public.

3. Albert picks at random some \(e_A \), with \(1 < e_A < (p_A - 1)(q_A - 1) \), so that \(\gcd(e_A, (p_A - 1)(q_A - 1)) = 1 \). The number \(e_A \) is called the *encryption key* and it will also be public.

4. Albert computes the inverse, \(d_A = e_A^{-1} \) modulo \(m_A \), of \(e_A \). This number is kept secret. The pair \((d_A, m_A)\) is Albert’s *private key* and \(d_A \) is called the *decryption key*.

5. Albert publishes the pair \((e_A, m_A)\) as his *public key*.

Encrypting a Message

Now, if Julia wants to send a message, \(x \), to Albert, she proceeds as follows. First, she splits \(x \) into chunks, \(x_1, \ldots, x_k \), each of length at most \(m_A - 1 \), if necessary (again, I assume that \(x \) has been converted to an integer in a preliminary step). Then she looks up Albert’s public key \((e_A, m_A)\) and she computes

\[
y_i = E_A(x_i) = x_i^{e_A} \pmod{m_A},
\]
1.1. PUBLIC KEY CRYPTOGRAPHY; THE RSA SYSTEM

for $i = 1, \ldots, k$. Finally, she sends the sequence y_1, \ldots, y_k to Albert. This encrypted message is known as the *cyphertext*. The function E_A is Albert’s *encryption function*.

Decrypting a Message

In order to decrypt the message y_1, \ldots, y_k that Julia sent him, Albert uses his private key (d_A, m_A) to compute each

$$x_i = D_A(y_i) = y_i^{d_A} \mod m_A,$$

and this yields the sequence x_1, \ldots, x_k. The function D_A is Albert’s *decryption function*.

Similarly, in order for Julia to receive encrypted messages, she must set her own public key (e_J, m_J) and private key (d_J, m_J) by picking two distinct primes p_J and q_J and e_J, as explained earlier.

The beauty of the scheme is that the sender only needs to know the public key of the recipient to send a message but an eavesdropper is unable to decrypt the encoded message unless he somehow gets his hands on the secret key of the receiver.

Let us give a concrete illustration of the RSA scheme using an example borrowed from Silverman [18] (Chapter 18). We write messages using only the 26 upper-case letters A, B, \ldots, Z, encoded as the integers $A = 11, B = 12, \ldots, Z = 36$. It would be more convenient to have assigned a number to represent a blank space but to keep things as simple as possible we do not do that.

Say Albert picks the two primes $p_A = 12553$ and $q_A = 13007$, so that $m_A = p_A q_A = 163,276,871$ and $(p_A - 1)(q_A - 1) = 163,251,312$. Albert also picks $e_A = 79921$, relatively prime to $(p_A - 1)(q_A - 1)$ and then finds the inverse d_A, of e_A modulo $(p_A - 1)(q_A - 1)$ using the extended Euclidean algorithm (more details are given in Section 1.3) which turns out to be $d_A = 145,604,785$. One can check that

$$145,604,785 \cdot 79921 - 71282 \cdot 163,251,312 = 1,$$

which confirms that d_A is indeed the inverse of e_A modulo 163,251,312.

Now, assume that Albert receives the following message, broken in chunks of at most nine digits, because $m_A = 163,276,871$ has nine digits.

$$145387828 \quad 47164891 \quad 152020614 \quad 27279275 \quad 35356191.$$

Albert decrypts the above messages using his private key (d_A, m_A), where $d_A = 145,604,785$, using the repeated squaring method (described in Section 1.3) and finds that

$$145387828^{145,604,785} \equiv 30182523 \pmod{163,276,871}$$
$$47164891^{145,604,785} \equiv 26292524 \pmod{163,276,871}$$
$$152020614^{145,604,785} \equiv 19291924 \pmod{163,276,871}$$
$$27279275^{145,604,785} \equiv 30282531 \pmod{163,276,871}$$
which yields the message

30182523 26292524 19291924 30282531 122215,

and finally, translating each two-digit numeric code to its corresponding character, to the
message

THOMPSONISINTROUBLE

or, in more readable format

Thompson is in trouble

It would be instructive to encrypt the decoded message

30182523 26292524 19291924 30282531 122215

using the public key $e_A = 79921$. If everything goes well, we should get our original message

145387828 47164891 152020614 27279275 35356191

back.

Let us now explain in more detail how the RSA system works and why it is correct.

1.2 Correctness of The RSA System

We begin by proving the correctness of the inversion formula (\ast). For this, we need a classical result known as *Fermat’s little theorem*.

This result was first stated by Fermat in 1640 but apparently no proof was published at the time and the first known proof was given by Leibnitz (1646–1716). A different proof was given by Ivory in 1806 and this is the proof that we give here. It has the advantage that it can be easily generalized to Euler’s version (1760) of Fermat’s little theorem.
Theorem 1.2. (Fermat’s Little Theorem) If p is any prime number, then the following two equivalent properties hold.

(1) For every integer, $a \in \mathbb{Z}$, if a is not divisible by p, then we have

$$a^{p-1} \equiv 1 \pmod{p}.$$

(2) For every integer, $a \in \mathbb{Z}$, we have

$$a^p \equiv a \pmod{p}.$$

Proof. (1) Consider the integers

$$a, 2a, 3a, \ldots, (p - 1)a$$

and let

$$r_1, r_2, r_3, \ldots, r_{p-1}$$

be the sequence of remainders of the division of the numbers in the first sequence by p. Because $\gcd(a, p) = 1$, none of the numbers in the first sequence is divisible by p, so $1 \leq r_i \leq p - 1$, for $i = 1, \ldots, p - 1$. We claim that these remainders are all distinct. If not, then say $r_i = r_j$, with $1 \leq i < j \leq p - 1$. But then, because

$$ai \equiv r_i \pmod{p}$$

and

$$aj \equiv r_j \pmod{p},$$

we deduce that

$$aj - ai \equiv r_j - r_i \pmod{p},$$

and because $r_i = r_j$, we get,

$$a(j - i) \equiv 0 \pmod{p}.$$

This means that p divides $a(j - i)$, but $\gcd(a, p) = 1$ so, by Euclid’s proposition, p must divide $j - i$. However $1 \leq j - i < p - 1$, so we get a contradiction and the remainders are indeed all distinct.

There are $p - 1$ distinct remainders and they are all nonzero, therefore we must have

$$\{r_1, r_2, \ldots, r_{p-1}\} = \{1, 2, \ldots, p - 1\}.$$

Using Property (3) of congruences (see Proposition 1.1), we get

$$a \cdot 2a \cdot 3a \cdots (p - 1)a \equiv 1 \cdot 2 \cdot 3 \cdots (p - 1) \pmod{p};$$

that is,

$$(a^{p-1} - 1) \cdot (p - 1)! \equiv 0 \pmod{p}.$$
Again, p divides $(a^{p-1} - 1) \cdot (p-1)!$, but because p is relatively prime to $(p-1)!$, it must divide $a^{p-1} - 1$, as claimed.

(2) If $\gcd(a, p) = 1$, we proved in (1) that

$$a^{p-1} \equiv 1 \pmod{p},$$

from which we get

$$a^p \equiv a \pmod{p},$$

because $a \equiv a \pmod{p}$. If a is divisible by p, then $a \equiv 0 \pmod{p}$, which implies $a^p \equiv 0 \pmod{p}$, and thus, that

$$a^p \equiv a \pmod{p}.$$

Therefore, (2) holds for all $a \in \mathbb{Z}$ and we just proved that (1) implies (2). Finally, if (2) holds and if $\gcd(a, p) = 1$, as p divides $a^p - a = a(a^{p-1} - 1)$, it must divide $a^{p-1} - 1$, which shows that (1) holds and so, (2) implies (1).

It is now easy to establish the correctness of RSA.

Proposition 1.3. For any two distinct prime numbers p and q, if e and d are any two positive integers such that

1. $1 < e, d < (p-1)(q-1),$
2. $ed \equiv 1 \pmod{(p-1)(q-1)},$

then for every $x \in \mathbb{Z}$ we have

$$x^{ed} \equiv x \pmod{pq}.$$

Proof. Because p and q are two distinct prime numbers, by Euclid’s proposition it is enough to prove that both p and q divide $x^{ed} - x$. We show that $x^{ed} - x$ is divisible by p, the proof of divisibility by q being similar.

By condition (2), we have

$$ed = 1 + (p-1)(q-1)k,$$

with $k \geq 1$, inasmuch as $1 < e, d < (p-1)(q-1)$. Thus, if we write $h = (q-1)k$, we have $h \geq 1$ and

$$x^{ed} - x \equiv x^{1+(p-1)h} - x \pmod{p}$$

$$\equiv x((x^{p-1})^h - 1) \pmod{p}$$

$$\equiv x(x^{p-1} - 1)((x^{p-1})^{h-1} + (x^{p-1})^{h-2} + \cdots + 1) \pmod{p}$$

$$\equiv (x^p - x)((x^{p-1})^{h-1} + (x^{p-1})^{h-2} + \cdots + 1) \pmod{p}$$

$$\equiv 0 \pmod{p},$$

because $x^p - x \equiv 0 \pmod{p}$, by Fermat’s little theorem.
Remark: Of course, Proposition 1.3 holds if we allow \(e = d = 1 \), but this not interesting for encryption. The number \((p - 1)(q - 1)\) turns out to be the number of positive integers less than \(pq\) that are relatively prime to \(pq\). For any arbitrary positive integer, \(m\), the number of positive integers less than \(m\) that are relatively prime to \(m\) is given by the Euler \(\phi\) function (or Euler totient), denoted \(\phi\) (see Niven, Zuckerman, and Montgomery [14], Section 2.1, for basic properties of \(\phi\)).

Fermat’s little theorem can be generalized to what is known as Euler’s formula: For every integer \(a\), if \(\gcd(a, m) = 1\), then
\[
a^{\phi(m)} \equiv 1 \pmod{m}.
\]
Because \(\phi(pq) = (p - 1)(q - 1)\), when \(\gcd(x, \phi(pq)) = 1\), Proposition 1.3 follows from Euler’s formula. However, that argument does not show that Proposition 1.3 holds when \(\gcd(x, \phi(pq)) > 1\) and a special argument is required in this case.

It can be shown that if we replace \(pq\) by a positive integer \(m\) that is square-free (does not contain a square factor) and if we assume that \(e\) and \(d\) are chosen so that \(1 < e, d < \phi(m)\) and \(ed \equiv 1 \pmod{\phi(m)}\), then
\[
x^{ed} \equiv x \pmod{m}
\]
for all \(x \in \mathbb{Z}\) (see Niven, Zuckerman, and Montgomery [14], Section 2.5, Problem 4).

We see no great advantage in using this fancier argument and this is why we used the more elementary proof based on Fermat’s little theorem.

Proposition 1.3 immediately implies that the decrypting and encrypting RSA functions \(D_A\) and \(E_A\) are mutual inverses for any \(A\). Furthermore, \(E_A\) is easy to compute but, without extra information, namely, the trapdoor \(d_A\), it is practically impossible to compute \(D_A = E_A^{-1}\). That \(D_A\) is hard to compute without a trapdoor is related to the fact that factoring a large number, such as \(m_A\), into its factors \(p_A\) and \(q_A\) is hard. Today, it is practically impossible to factor numbers over 300 decimal digits long. Although no proof has been given so far, it is believed that factoring will remain a hard problem. So, even if in the next few years it becomes possible to factor 300-digit numbers, it will still be impossible to factor 400-digit numbers. RSA has the peculiar property that it depends both on the fact that primality testing is easy but that factoring is hard. What a stroke of genius!

1.3 Algorithms for Computing Powers and Inverses Modulo \(m\)

First, we explain how to compute \(x^n \pmod{m}\) efficiently, where \(n \geq 1\). Let us first consider computing the \(n\)th power \(x^n\) of some positive integer. The idea is to look at the parity of \(n\) and to proceed recursively. If \(n\) is even, say \(n = 2k\), then
\[
x^n = x^{2k} = (x^k)^2,
\]
so, compute x^k recursively and then square the result. If n is odd, say $n = 2k + 1$, then

$$x^n = x^{2k+1} = (x^k)^2 \cdot x,$$

so, compute x^k recursively, square it, and multiply the result by x.

What this suggests is to write $n \geq 1$ in binary, say

$$n = b_\ell \cdot 2^\ell + b_{\ell-1} \cdot 2^{\ell-1} + \cdots + b_1 \cdot 2^1 + b_0,$$

where $b_i \in \{0, 1\}$ with $b_\ell = 1$ or, if we let $J = \{j \mid b_j = 1\}$, as

$$n = \sum_{j \in J} 2^j.$$

Then we have

$$x^n \equiv x^{\sum_{j \in J} 2^j} = \prod_{j \in J} x^{2^j} \mod m.$$

This suggests computing the residues r_j such that

$$x^{2^j} \equiv r_j \pmod{m},$$

because then,

$$x^n \equiv \prod_{j \in J} r_j \pmod{m},$$

where we can compute this latter product modulo m two terms at a time.

For example, say we want to compute $999^{179} \mod 1763$. First, we observe that

$$179 = 2^7 + 2^5 + 2^4 + 2^1 + 1,$$

and we compute the powers modulo 1763:

$$
\begin{align*}
999^{2^1} &\equiv 143 \pmod{1763} \\
999^{2^2} &\equiv 143^2 \equiv 1056 \pmod{1763} \\
999^{2^3} &\equiv 1056^2 \equiv 920 \pmod{1763} \\
999^{2^4} &\equiv 920^2 \equiv 160 \pmod{1763} \\
999^{2^5} &\equiv 160^2 \equiv 918 \pmod{1763} \\
999^{2^6} &\equiv 918^2 \equiv 10 \pmod{1763} \\
999^{2^7} &\equiv 10^2 \equiv 100 \pmod{1763}.
\end{align*}
$$

Consequently,

$$999^{179} \equiv 999 \cdot 143 \cdot 160 \cdot 918 \cdot 100 \pmod{1763} \equiv 54 \cdot 160 \cdot 918 \cdot 100 \pmod{1763}.$$
1.3. ALGORITHMS FOR COMPUTING POWERS AND INVERSES MODULO \(M\)

\[
\equiv 1588 \cdot 918 \cdot 100 \pmod{1763}
\equiv 1546 \cdot 100 \pmod{1763}
\equiv 1219 \pmod{1763},
\]

and we find that

\[999^{179} \equiv 1219 \pmod{1763}.
\]

Of course, it would be impossible to exponentiate \(999^{179}\) first and then reduce modulo 1763. As we can see, the number of multiplications needed is \(O(\log_2 n)\), which is quite good.

The above method can be implemented without actually converting \(n\) to base 2. If \(n\) is even, say \(n = 2k\), then \(n/2 = k\) and if \(n\) is odd, say \(n = 2k + 1\), then \((n - 1)/2 = k\), so we have a way of dropping the unit digit in the binary expansion of \(n\) and shifting the remaining digits one place to the right without explicitly computing this binary expansion. Here is an algorithm for computing \(x^n \pmod{m}\), with \(n \geq 1\), using the repeated squaring method.

An Algorithm to Compute \(x^n \pmod{m}\) Using Repeated Squaring

begin
\[
\begin{align*}
&u := 1; \quad a := x; \\
&\text{while } n > 1 \text{ do} \\
&\quad \text{if even}(n) \text{ then } e := 0 \text{ else } e := 1; \\
&\quad \text{if } e = 1 \text{ then } u := a \cdot u \pmod{m}; \\
&\quad \quad a := a^2 \pmod{m}; \quad n := (n - e)/2 \\
&\text{endwhile; } \\
&u := a \cdot u \pmod{m}
\end{align*}
\]
end

The final value of \(u\) is the result. The reason why the algorithm is correct is that after \(j\) rounds through the while loop, \(a = x^{2^j} \pmod{m}\) and

\[
u = \prod_{i \in J \mid i < j} x^{2^i} \pmod{m},
\]

with this product interpreted as 1 when \(j = 0\).

Observe that the while loop is only executed \(n - 1\) times to avoid squaring once more unnecessarily and the last multiplication \(a \cdot u\) is performed outside of the while loop. Also, if we delete the reductions modulo \(m\), the above algorithm is a fast method for computing the \(n\)th power of an integer \(x\) and the time speed-up of not performing the last squaring step is more significant. We leave the details of the proof that the above algorithm is correct as an exercise.

Let us now consider the problem of computing efficiently the inverse of an integer \(a\), modulo \(m\), provided that \(\gcd(a, m) = 1\). Full details are given in Gallier [6], Chapter 5.
The extended Euclidean algorithm can be used to find some integers \(x, y \), such that
\[
ax + by = \gcd(a, b),
\]
where \(a \) and \(b \) are any two positive integers. In our situation, \(a = m \) and \(b = a \) and we only need to find \(y \) (we would like a positive integer).

When using the Euclidean algorithm for computing \(\gcd(m, a) \), with \(2 \leq a < m \), we compute the following sequence of quotients and remainders.
\[
m = aq_1 + r_1
\]
\[
a = r_1q_2 + r_2
\]
\[
r_1 = r_2q_3 + r_3
\]
\[
\vdots
\]
\[
r_{k-1} = r_kq_{k+1} + r_{k+1}
\]
\[
\vdots
\]
\[
r_{n-3} = r_{n-2}q_{n-1} + r_{n-1}
\]
\[
r_{n-2} = r_{n-1}q_n + 0,
\]
with \(n \geq 3 \), \(0 < r_1 < b \), \(q_k \geq 1 \), for \(k = 1, \ldots, n \), and \(0 < r_{k+1} < r_k \), for \(k = 1, \ldots, n - 2 \). Observe that \(r_n = 0 \). If \(n = 2 \), we have just two divisions,
\[
m = aq_1 + r_1
\]
\[
a = r_1q_2 + 0,
\]
with \(0 < r_1 < b \), \(q_1, q_2 \geq 1 \), and \(r_2 = 0 \). Thus, it is convenient to set \(r_{-1} = m \) and \(r_0 = a \).

It can be shown (Gallier [6], Chapter 5) that if we set
\[
x_{-1} = 1
\]
\[
y_{-1} = 0
\]
\[
x_0 = 0
\]
\[
y_0 = 1
\]
\[
x_{i+1} = x_{i-1} - x_iq_{i+1}
\]
\[
y_{i+1} = y_{i-1} - y_iq_{i+1},
\]
for \(i = 0, \ldots, n - 2 \), then
\[
m x_{n-1} + ay_{n-1} = \gcd(m, a) = r_{n-1},
\]
and so, if \(\gcd(m, a) = 1 \), then \(r_{n-1} = 1 \) and we have
\[
ay_{n-1} \equiv 1 \pmod{m}.
\]
Now, y_{n-1} may be greater than m or negative but we already know how to deal with that. This suggests reducing modulo m during the recurrence and we are led to the following recurrence.

\[
\begin{align*}
 y_{-1} &= 0 \\
 y_0 &= 1 \\
 z_{i+1} &= y_{i-1} - y_i q_{i+1} \\
 y_{i+1} &= z_{i+1} \mod m \quad \text{if} \quad z_{i+1} \geq 0 \\
 y_{i+1} &= m - (z_{i+1} \mod m) \quad \text{if} \quad z_{i+1} < 0,
\end{align*}
\]

for $i = 0, \ldots, n - 2$.

It is easy to prove by induction that

\[ay_i \equiv r_i \pmod{m} \]

for $i = 0, \ldots, n - 1$ and thus, if $\gcd(a, m) > 1$, then a does not have an inverse modulo m, else

\[ay_{n-1} \equiv 1 \pmod{m} \]

and y_{n-1} is the inverse of a modulo m such that $1 \leq y_{n-1} < m$, as desired. Note that we also get $y_0 = 1$ when $a = 1$.

We leave this proof as an exercise. Here is an algorithm.

An Algorithm for Computing the Inverse of a Modulo m

Given any natural number a with $1 \leq a < m$ and $\gcd(a, m) = 1$, the following algorithm returns the inverse of a modulo m as y.

```
begn
  y := 0; v := 1; g := m; r := a;
  pr := r; q := \lfloor g/pr \rfloor; r := g - pr q; \quad \text{(divide } g \text{ by } pr, \text{ to get } g = pr q + r)
  if r = 0 then
    y := 1; g := pr
  else
    r := pr;
    while r ≠ 0 do
      pr := r; pv := v;
      q := \lfloor g/pr \rfloor; r := g - pr q; \quad \text{(divide } g \text{ by } pr, \text{ to get } g = pr q + r)
      v := y - pv q;
      if v < 0 then
        v := m - (-(v) mod m)
      else
```
\[v = v \mod m \]
endif
\[g := pr; y := pv \]
endwhile;
edif;
inverse(a) := y
end

For example, we used the above algorithm to find that \(d_A = 145,604,785 \) is the inverse of \(e_A = 79,921 \) modulo \((p_A - 1)(q_A - 1) = 163,251,312\).

The remaining issues are how to choose large random prime numbers \(p, q \), and how to find a random number \(e \), which is relatively prime to \((p - 1)(q - 1)\). For this, we rely on a deep result of number theory known as the prime number theorem.

1.4 Finding Large Primes; Signatures; Safety of RSA

Roughly speaking, the prime number theorem ensures that the density of primes is high enough to guarantee that there are many primes with a large specified number of digits. The relevant function is the prime counting function \(\pi(n) \).

Definition 1.1. The prime counting function \(\pi \) is the function defined so that

\[\pi(n) = \text{number of prime numbers } p, \text{ such that } p \leq n, \]

for every natural number \(n \in \mathbb{N} \).

Obviously, \(\pi(0) = \pi(1) = 0 \). We have \(\pi(10) = 4 \) because the primes no greater than 10 are 2, 3, 5, 7 and \(\pi(20) = 8 \) because the primes no greater than 20 are 2, 3, 5, 7, 11, 13, 17, 19. The growth of the function \(\pi \) was studied by Legendre, Gauss, Chebyshev, and Riemann between 1808 and 1859. By then, it was conjectured that

\[\pi(n) \sim \frac{n}{\ln(n)}, \]

for \(n \) large, which means that

\[\lim_{n \to \infty} \frac{\pi(n)}{n/\ln(n)} = 1. \]

However, a rigorous proof was not found until 1896. Indeed, in 1896, Jacques Hadamard and Charles de la Vallée-Poussin independently gave a proof of this “most wanted theorem,” using methods from complex analysis. These proofs are difficult and although more elementary proofs were given later, in particular by Erdős and Selberg (1949), those proofs are still quite hard. Thus, we content ourselves with a statement of the theorem.
1.4. FINDING LARGE PRIMES; SIGNATURES; SAFETY OF RSA

Figure 1.2: Pafnuti Lvovich Chebyshev, 1821–1894 (left), Jacques Salomon Hadamard, 1865–1963 (middle), and Charles Jean de la Vallée Poussin, 1866–1962 (right)

Figure 1.3: Paul Erdős, 1913–1996 (left), Atle Selberg, 1917–2007 (right)

Theorem 1.4. (Prime Number Theorem) For \(n \) large, the number of primes \(\pi(n) \) no larger than \(n \) is approximately equal to \(\frac{n}{\ln(n)} \), which means that

\[
\lim_{n \to \infty} \frac{\pi(n)}{n/\ln(n)} = 1.
\]

For a rather detailed account of the history of the prime number theorem (for short, \(PNT \)), we refer the reader to Ribenboim [15] (Chapter 4).

As an illustration of the use of the PNT, we can estimate the number of primes with 200 decimal digits. Indeed this is the difference of the number of primes up to \(10^{200} \) minus the number of primes up to \(10^{199} \), which is approximately

\[
\frac{10^{200}}{200 \ln 10} - \frac{10^{199}}{199 \ln 10} \approx 1.95 \cdot 10^{197}.
\]

Thus, we see that there is a huge number of primes with 200 decimal digits. The number of natural numbers with 200 digits is \(10^{200} - 10^{199} = 9 \cdot 10^{199} \), thus the proportion of 200-digit numbers that are prime is

\[
\frac{1.95 \cdot 10^{197}}{9 \cdot 10^{199}} \approx \frac{1}{460}.
\]

Consequently, among the natural numbers with 200 digits, roughly one in every 460 is a prime.
Beware that the above argument is not entirely rigorous because the prime number theorem only yields an approximation of \(\pi(n) \) but sharper estimates can be used to say how large \(n \) should be to guarantee a prescribed error on the probability, say 1%.

The implication of the above fact is that if we wish to find a random prime with 200 digits, we pick at random some natural number with 200 digits and test whether it is prime. If this number is not prime, then we discard it and try again, and so on. On the average, after 460 trials, a prime should pop up.

This leads us the question: How do we test for primality?

Primality testing has also been studied for a long time. Remarkably, Fermat’s little theorem yields a test for nonprimality. Indeed, if \(p > 1 \) fails to divide \(a^{p-1} - 1 \) for some natural number \(a \), where \(2 \leq a \leq p-1 \), then \(p \) cannot be a prime. The simplest \(a \) to try is \(a = 2 \). From a practical point of view, we can compute \(a^{p-1} \mod p \) using the method of repeated squaring and check whether the remainder is 1.

But what if \(p \) fails the Fermat test? Unfortunately, there are natural numbers \(p \), such that \(p \) divides \(a^{p-1} - 1 \) and yet, \(p \) is composite. For example \(p = 341 = 11 \cdot 31 \) is such a number.

Actually, \(2^{340} \) being quite big, how do we check that \(2^{340} - 1 \) is divisible by 341?

We just have to show that \(2^{340} - 1 \) is divisible by 11 and by 31. We can use Fermat’s little theorem. Because 11 is prime, we know that 11 divides \(2^{10} - 1 \). But,

\[
2^{340} - 1 = (2^{10})^{34} - 1 = (2^{10} - 1)((2^{10})^{33} + (2^{10})^{32} + \cdots + 1),
\]
so \(2^{340} - 1 \) is also divisible by 11.

As to divisibility by 31, observe that \(31 = 2^5 - 1 \), and

\[
2^{340} - 1 = (2^5)^{68} - 1 = (2^5 - 1)((2^5)^{67} + (2^5)^{66} + \cdots + 1),
\]
so \(2^{340} - 1 \) is also divisible by 31.

A number \(p \) that is not a prime but behaves like a prime in the sense that \(p \) divides \(2^{p-1} - 1 \), is called a pseudo-prime. Unfortunately, the Fermat test gives a “false positive” for pseudo-primes.

Rather than simply testing whether \(2^{p-1} - 1 \) is divisible by \(p \), we can also try whether \(3^{p-1} - 1 \) is divisible by \(p \) and whether \(5^{p-1} - 1 \) is divisible by \(p \), and so on.

Unfortunately, there are composite natural numbers \(p \), such that \(p \) divides \(a^{p-1} - 1 \), for all positive natural numbers \(a \) with \(\gcd(a, p) = 1 \). Such numbers are known as Carmichael numbers. The smallest Carmichael number is \(p = 561 = 3 \cdot 11 \cdot 17 \). The reader should try proving that, in fact, \(6^{560} - 1 \) is divisible by 561 for every positive natural number \(a \), such that \(\gcd(a, 561) = 1 \), using the technique that we used to prove that 341 divides \(2^{340} - 1 \).
It turns out that there are infinitely many Carmichael numbers. Again, for a thorough introduction to primality testing, pseudo-primes, Carmichael numbers, and more, we highly recommend Ribenboim [15] (Chapter 2). An excellent (but more terse) account is also given in Koblitz [9] (Chapter V).

Still, what do we do about the problem of false positives? The key is to switch to probabilistic methods. Indeed, if we can design a method that is guaranteed to give a false positive with probability less than 0.5, then we can repeat this test for randomly chosen as and reduce the probability of false positive considerably. For example, if we repeat the experiment 100 times, the probability of false positive is less than $2^{-100} < 10^{-30}$. This is probably less than the probability of hardware failure.

Various probabilistic methods for primality testing have been designed. One of them is the Miller–Rabin test, another the APR test, and yet another the Solovay–Strassen test. Since 2002, it has been known that primality testing can be done in polynomial time. This result is due to Agrawal, Kayal, and Saxena and known as the AKS test solved a long-standing problem; see Dietzfelbinger [4] and Crandall and Pomerance [3] (Chapter 4). Remarkably, Agrawal and Kayal worked on this problem for their senior project in order to complete their bachelor’s degree. It remains to be seen whether this test is really practical for very large numbers.

A very important point to make is that these primality testing methods do not provide a factorization of m when m is composite. This is actually a crucial ingredient for the security of the RSA scheme. So far, it appears (and it is hoped) that factoring an integer is a much harder problem than testing for primality and all known methods are incapable of factoring natural numbers with over 300 decimal digits (it would take centuries).

For a comprehensive exposition of the subject of primality-testing, we refer the reader to Crandall and Pomerance [3] (Chapters 3 and 4) and again, to Ribenboim [15] (Chapter 2) and Koblitz [9] (Chapter V). We give a thorough presentation of the Miller–Rabin and the Solovay–Strassen tests in Chapters 4 and 5 (with complete proofs).

Going back to the RSA method, we now have ways of finding the large random primes p and q by picking at random some 200-digit numbers and testing for primality. Rivest, Shamir, and Adleman also recommend to pick p and q so that they differ by a few decimal
digits, that both \(p - 1 \) and \(q - 1 \) should contain large prime factors and that \(\gcd(p - 1, q - 1) \) should be small. The public key, \(e \), relatively prime to \((p - 1)(q - 1) \) can also be found by a similar method: Pick at random a number, \(e < (p - 1)(q - 1) \), which is large enough (say, greater than \(\max\{p, q\} \)) and test whether \(\gcd(e, (p - 1)(q - 1)) = 1 \), which can be done quickly using the extended Euclidean algorithm. If not, discard \(e \) and try another number, and so on. It is easy to see that such an \(e \) will be found in no more trials than it takes to find a prime; see Lovász, Pelikán, and Vesztergombi [12] (Chapter 15), which contains one of the simplest and clearest presentations of RSA that we know of. Koblitz [9] (Chapter IV) also provides some details on this topic as well as Menezes, van Oorschot, and Vanstone’s Handbook [13].

If Albert receives a message coming from Julia, how can he be sure that this message does not come from an imposter? Just because the message is signed “Julia” does not mean that it comes from Julia; it could have been sent by someone else pretending to be Julia, inasmuch as all that is needed to send a message to Albert is Albert’s public key, which is known to everybody. This leads us to the issue of signatures.

There are various schemes for adding a signature to an encrypted message to ensure that the sender of a message is really who he or she claims to be (with a high degree of confidence). The trick is to make use of the the sender’s keys. We propose two scenarios.

1. The sender, Julia, encrypts the message \(x \) to be sent with her own private key, \((d_J, m_J) \), creating the message \(D_J(x) = y_1 \). Then, Julia adds her signature, “Julia”, at the end of the message \(y_1 \), encrypts the message “\(y_1 \) Julia” using Albert’s public key, \((e_A, m_A) \), creating the message \(y_2 = E_A(y_1 \text{ Julia}) \), and finally sends the message \(y_2 \) to Albert.

When Albert receives the encrypted message \(y_2 \) claiming to come from Julia, first he decrypts the message using his private key \((d_A, m_A) \). He will see an encrypted message, \(D_A(y_2) = y_1 \text{ Julia} \), with the legible signature, Julia. He will then delete the signature from this message and decrypt the message \(y_1 \) using Julia’s public key \((e_J, m_J) \), getting \(x = E_J(y_1) \). Albert will know whether someone else faked this message if the result is garbage. Indeed, only Julia could have encrypted the original message \(x \) with her private key, which is only known to her. An eavesdropper who is pretending to be Julia would not know Julia’s private key and so, would not have encrypted the original message to be sent using Julia’s secret key.

2. The sender, Julia, first adds her signature, “Julia”, to the message \(x \) to be sent and then, she encrypts the message “\(x \) Julia” with Albert’s public key \((e_A, m_A) \), creating the message \(y_1 = E_A(x \text{ Julia}) \). Julia also encrypts the original message \(x \) using her private key \((d_J, m_J) \) creating the message \(y_2 = D_J(x) \), and finally she sends the pair of messages \((y_1, y_2) \).

When Albert receives a pair of messages \((y_1, y_2) \), claiming to have been sent by Julia, first Albert decrypts \(y_1 \) using his private key \((d_A, m_A) \), getting the message \(D_A(y_1) = x \text{ Julia} \). Albert finds the signature, Julia, and then decrypts \(y_2 \) using Julia’s public key.
(e_j, m_j), getting the message \(x' = E_j(y_2) \). If \(x = x' \), then Albert has serious assurance that the sender is indeed Julia and not an imposter.

The last topic that we would like to discuss is the security of the RSA scheme. This is a difficult issue and many researchers have worked on it. As we remarked earlier, the security of RSA hinges on the fact that factoring is hard. It has been shown that if one has a method for breaking the RSA scheme (namely, to find the secret key \(d \)), then there is a probabilistic method for finding the factors \(p \) and \(q \), of \(m = pq \) (see Koblitz [9], Chapter IV, Section 2, or Menezes, van Oorschot, and Vanstone [13], Section 8.2.2). If \(p \) and \(q \) are chosen to be large enough, factoring \(m = pq \) will be practically impossible and so it is unlikely that RSA can be cracked. However, there may be other attacks and, at present, there is no proof that RSA is fully secure.

Observe that because \(m = pq \) is known to everybody, if somehow one can learn \(N = (p-1)(q-1) \), then \(p \) and \(q \) can be recovered. Indeed \(N = (p-1)(q-1) = pq - (p + q) + 1 = m - (p + q) + 1 \) and so,

\[
\begin{align*}
 pq &= m \\
p + q &= m - N + 1,
\end{align*}
\]

and \(p \) and \(q \) are the roots of the quadratic equation

\[X^2 - (m - N + 1)X + m = 0.\]

Thus, a line of attack is to try to find the value of \((p-1)(q-1)\). For more on the security of RSA, see Menezes, van Oorschot, and Vanstone’s Handbook [13].
Chapter 2

Primality Testing Using Randomized Algorithms; Introduction

In article 329 of his famous *Disquisitiones Arithmeticae* [7] (published in 1801, when he was 24 years old), C.F. Gauss writes (in Latin!):

“The problem of distinguishing prime numbers from composite numbers and resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. It has engaged the industry and wisdom of ancient and modern geometers to such an extent that it would be superfluous to discuss the problem at length. Nevertheless we must confess that all methods that have been proposed thus far are either restricted to very special cases or are so laborious and difficult that even for numbers that do not exceed the limits of tables constructed by estimable men, they try the patience of even the practiced calculator. And these methods do not apply at all to larger numbers ... The techniques that were previously known would require intolerable labor even for the most indefatigable calculator.”

The problem of determining whether a given integer is prime is one of the better known and most easily understood problems of pure mathematics. This problem has caught the interest of mathematicians again and again for centuries. However, it was not until the 20th century that questions about primality testing and factoring were recognized as problems of practical importance, and a central part of applied mathematics. The advent of cryptographic systems that use large primes, such as RSA, was the main driving force for the development of fast and reliable methods for primality testing. Indeed, as we saw in earlier sections of these notes, in order to create RSA keys, one needs to produce large prime numbers. How do we do that?

One method is to produce a random string of digits (say of 200 digits), and then to test whether this number is prime or not. As we explained earlier, by the Prime Number Theorem, among the natural numbers with 200 digits, roughly one in every 460 is a prime. Thus, it should take at most 460 trials (picking at random some natural number with 200
digits) before a prime shows up. Note that we need a mechanism to generate random numbers, an interesting and tricky problem, but for now, we postpone discussing random number generation.

It remains to find methods for testing an integer for primality, and perhaps for factoring composite numbers.

In 1903, at the meeting of the American Mathematical Society, F.N. Cole came to the blackboard and, without saying a word, wrote down

\[2^{67} - 1 = 147573952589676412927 = 193707721 \times 761838257287, \]

and then used long multiplication to multiply the two numbers on the right-hand side to prove that he was indeed correct. Afterwards, he said that figuring this out had taken him “three years of Sundays.” Too bad laptops did not exist in 1903.

The moral of this tale is that checking that a number is composite can be done quickly (that is, in polynomial time), but finding a factorization is hard. In general, it requires an exhaustive search. Another important observation is that most efficient tests for compositeness do not produce a factorization. For example, Lucas had already shown that \(2^{67} - 1 \) is composite, but without finding a factor.

In fact, although this has not been proved, factoring appears to be a much harder problem than primality testing, which is a good thing since the safety of many cryptographic systems depends on the assumption that factoring is hard!

Most algorithms for testing whether an integer \(n \) is prime actually test for compositeness. This is because tests for compositeness usually try to find a counterexample to some property, say \(A \), implied by primality. If such a counterexample can be guessed, then it is cheap to check that property \(A \) fails, and then we know for sure that \(n \) is composite. We also have a witness (or certificate) that \(n \) is composite. If the algorithm fails to show that \(n \) is composite, does this imply that \(n \) is prime? Unfortunately, no. This is because, in general, the algorithm has not tested all potential counterexamples. So, how do we fix the algorithm?

One possibility is to try systematically all potential counterexamples. If the algorithm fails on all counterexamples, then the number \(n \) has to be prime. The problem with this approach is that the number of counterexamples is generally too big, and this method is not practical.

Another approach is to use a randomized algorithm. Typically, a counterexample is some number \(a \) randomly chosen from the set \(\{2, \ldots, n-2\} \). If the algorithm fails to report that \(n \) is composite, we can call it again several times, each time picking (independently from previous trials) another random number \(a \). If the algorithm ever reports that \(a \) is a witness to the fact that \(n \) is a composite during one of these trials, then for sure \(n \) is a composite. But what if we call the algorithm say 20 times, and every time it fails to declare that \(n \) is a composite. Can we be sure that \(n \) is a prime?

Not necessarily, but if the probability that the algorithm fails to report that \(n \) is composite is small enough, say less than \(1/2 \), then it can be shown that the conditional probability
that n is composite, given that the algorithm fails to declare 20 times that n is composite, is less than $\ln(n) \cdot (1/2)^{20}$ (see Section 4.3).

Therefore, by running the algorithm repeatedly with independent random choices each time, we can make the probability that the algorithm gives the wrong answer arbitrarily small. Such a randomized algorithm is called a *Monte Carlo algorithm*.

Several randomized algorithms for primality testing have been designed, including the Miller–Rabin and the Solovay–Strassen tests, to be discussed in Chapters 4 and 5. Then, in the summer of 2002, a paper with the title “PRIMES is in P,” by Agrawal, Kayal and Saxena, appeared on the website of the Indian Institute of Technology at Kanpur, India. In this paper, it was shown that testing for primality has a deterministic (nonrandomized) algorithm that runs in polynomial time. Finally, the long-standing open problem of “deciding whether primality testing is in P” was settled in this amazing paper, by an algorithm usually referred to as the *AKS algorithm*. We will not discuss this algorithm in these notes (but, perhaps in another set of notes ...).
Chapter 3

Basic Facts About Groups, Rings, Fields, and Number Theory

3.1 Groups, Subgroups, Cosets

Definition 3.1. A group is a set G equipped with a binary operation $\cdot : G \times G \to G$ that associates an element $a \cdot b \in G$ to every pair of elements $a, b \in G$, and having the following properties: \cdot is associative, has an identity element $e \in G$, and every element in G is invertible (w.r.t. \cdot). More explicitly, this means that the following equations hold for all $a, b, c \in G$:

(G1) $a \cdot (b \cdot c) = (a \cdot b) \cdot c.$ (associativity);

(G2) $a \cdot e = e \cdot a = a.$ (identity);

(G3) For every $a \in G$, there is some $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e.$ (inverse).

A group G is abelian (or commutative) if $a \cdot b = b \cdot a$ for all $a, b \in G$.

A set M together with an operation $\cdot : M \times M \to M$ and an element e satisfying only conditions (G1) and (G2) is called a monoid. For example, the set $\mathbb{N} = \{0, 1, \ldots, n, \ldots\}$ of natural numbers is a (commutative) monoid under addition. However, it is not a group.

Some examples of groups are given below.

Example 3.1.

1. The set $\mathbb{Z} = \{\ldots, -n, \ldots, -1, 0, 1, \ldots, n, \ldots\}$ of integers is a group under addition, with identity element 0. However, $\mathbb{Z}^* = \mathbb{Z} - \{0\}$ is not a group under multiplication.

2. The set \mathbb{Q} of rational numbers (fractions p/q with $p, q \in \mathbb{Z}$ and $q \neq 0$) is a group under addition, with identity element 0. The set $\mathbb{Q}^* = \mathbb{Q} - \{0\}$ is also a group under multiplication, with identity element 1.
3. Given any nonempty set \(S \), the set of bijections \(f: S \to S \), also called \textit{permutations of} \(S \), is a group under function composition (i.e., the multiplication of \(f \) and \(g \) is the composition \(g \circ f \)), with identity element the identity function \(\text{id}_S \). This group is not abelian as soon as \(S \) has more than two elements.

4. The set of \(n \times n \) invertible matrices with real (or complex) coefficients is a group under matrix multiplication, with identity element the identity matrix \(I_n \). This group is called the \textit{general linear group} and is usually denoted by \(\text{GL}(n, \mathbb{R}) \) (or \(\text{GL}(n, \mathbb{C}) \)).

It is customary to denote the operation of an abelian group \(G \) by \(+\), in which case the inverse \(a^{-1} \) of an element \(a \in G \) is denoted by \(-a\).

The identity element of a group is \textit{unique}. In fact, we can prove a more general fact:

\textbf{Fact 1.} If a binary operation \(\cdot: M \times M \to M \) is associative and if \(e' \in M \) is a left identity and \(e'' \in M \) is a right identity, which means that
\[
e' \cdot a = a \quad \text{for all} \quad a \in M \tag{G2l}
\]
and
\[
a \cdot e'' = a \quad \text{for all} \quad a \in M, \tag{G2r}
\]
then \(e' = e'' \).

\textit{Proof.} If we let \(a = e'' \) in equation (G2l), we get
\[
e' \cdot e'' = e'',
\]
and if we let \(a = e' \) in equation (G2r), we get
\[
e' \cdot e'' = e',
\]
and thus
\[
e' = e' \cdot e'' = e'',
\]
as claimed. \(\square \)

Fact 1 implies that the identity element of a monoid is unique, and since every group is a monoid, the identity element of a group is unique. Furthermore, every element in a group has a \textit{unique inverse}. This is a consequence of a slightly more general fact:

\textbf{Fact 2.} In a monoid \(M \) with identity element \(e \), if some element \(a \in M \) has some left inverse \(a' \in M \) and some right inverse \(a'' \in M \), which means that
\[
a' \cdot a = e \tag{G3l}
\]
and
\[
a \cdot a'' = e, \tag{G3r}
\]
then \(a' = a'' \).
Proof. Using (G3l) and the fact that \(e \) is an identity element, we have
\[
(a' \cdot a) \cdot a'' = e \cdot a'' = a''.
\]
Similarly, Using (G3r) and the fact that \(e \) is an identity element, we have
\[
a' \cdot (a \cdot a'') = a' \cdot e = a'.
\]
However, since \(M \) is monoid, the operation \(\cdot \) is associative, so
\[
a' = a' \cdot (a \cdot a'') = (a' \cdot a) \cdot a'' = a'',
\]
as claimed.

Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only (G2r) (the existence of a right identity) and (G3r) (the existence of a right inverse for every element) (or (G2l) and (G3l)). It is a good exercise to prove that the group axioms (G2) and (G3) follow from (G2r) and (G3r).

If a group \(G \) has a finite number \(n \) of elements, we say that \(G \) is a group of order \(n \). If \(G \) is infinite, we say that \(G \) has infinite order. The order of a group is usually denoted by \(|G| \) (if \(G \) is finite).

Given a group \(G \), for any two subsets \(R, S \subseteq G \), we let
\[
RS = \{ r \cdot s \mid r \in R, s \in S \}.
\]
In particular, for any \(g \in G \), if \(R = \{ g \} \), we write
\[
gS = \{ g \cdot s \mid s \in S \},
\]
and similarly, if \(S = \{ g \} \), we write
\[
Rg = \{ r \cdot g \mid r \in R \}.
\]

From now on, we will drop the multiplication sign and write \(g_1g_2 \) for \(g_1 \cdot g_2 \).

For any \(g \in G \), define \(L_g \), the left translation by \(g \), by \(L_g(a) = ga \), for all \(a \in G \), and \(R_g \), the right translation by \(g \), by \(R_g(a) = ag \), for all \(a \in G \). Observe that \(L_g \) and \(R_g \) are bijections. We show this for \(L_g \), the proof for \(R_g \) being similar.

If \(L_g(a) = L_g(b) \), then \(ga = gb \), and multiplying on the left by \(g^{-1} \), we get \(a = b \), so \(L_g \) is injective. For any \(b \in G \), we have \(L_g(g^{-1}b) = gg^{-1}b = b \), so \(L_g \) is surjective. Therefore, \(L_g \) is bijective.

Definition 3.2. Given a group \(G \), a subset \(H \) of \(G \) is a subgroup of \(G \) iff

1. The identity element \(e \) of \(G \) also belongs to \(H \) (\(e \in H \));
(2) For all $h_1, h_2 \in H$, we have $h_1 h_2 \in H$;

(3) For all $h \in H$, we have $h^{-1} \in H$.

The proof of the following proposition is left as an exercise.

Proposition 3.1. Given a group G, a subset $H \subseteq G$ is a subgroup of G iff H is nonempty and whenever $h_1, h_2 \in H$, then $h_1 h_2^{-1} \in H$.

If the group G is finite, then the following criterion can be used.

Proposition 3.2. Given a finite group G, a subset $H \subseteq G$ is a subgroup of G iff

1. $e \in H$;
2. H is closed under multiplication.

Proof. We just have to prove that condition (3) of Definition 3.2 holds. For any $a \in H$, since the left translation L_a is bijective, its restriction to H is injective, and since H is finite, it is also bijective. Since $e \in H$, there is a unique $b \in H$ such that $L_a(b) = ab = e$. However, if a^{-1} is the inverse of a in G, we also have $L_a(a^{-1}) = aa^{-1} = e$, and by injectivity of L_a, we have $a^{-1} = b \in H$. \hfill \Box

Definition 3.3. If H is a subgroup of G and $g \in G$ is any element, the sets of the form gH are called left cosets of H in G and the sets of the form Hg are called right cosets of H in G.

The left cosets (resp. right cosets) of H induce an equivalence relation \sim defined as follows: For all $g_1, g_2 \in G$,

$$g_1 \sim g_2 \iff g_1 H = g_2 H$$

(resp. $g_1 \sim g_2$ iff $Hg_1 = Hg_2$). Obviously, \sim is an equivalence relation.

Now, we claim that $g_1 H = g_2 H$ iff $g_2^{-1} g_1 H = H$ iff $g_2^{-1} g_1 \in H$.

Proof. If we apply the bijection $L_{g_2^{-1}}$ to both $g_1 H$ and $g_2 H$ we get $L_{g_2^{-1}}(g_1 H) = g_2^{-1} g_1 H$ and $L_{g_2^{-1}}(g_2 H) = H$, so $g_1 H = g_2 H$ iff $g_2^{-1} g_1 H = H$. If $g_2^{-1} g_1 H = H$, since $1 \in H$, we get $g_2^{-1} g_1 \in H$. Conversely, if $g_2^{-1} g_1 \in H$, since H is a group, the left translation $L_{g_2^{-1} g_1}$ is a bijection of H, so $g_2^{-1} g_1 H = H$. Thus, $g_2^{-1} g_1 H = H$ iff $g_2^{-1} g_1 \in H$. \hfill \Box

It follows that the equivalence class of an element $g \in G$ is the coset gH (resp. Hg).

Since L_g is a bijection between H and gH, the cosets gH all have the same cardinality. The map $L_{g^{-1}} \circ R_g$ is a bijection between the left coset gH and the right coset Hg, so they also have the same cardinality. Since the distinct cosets gH form a partition of G, we obtain the following fact:
Proposition 3.3. (Lagrange) For any finite group \(G \) and any subgroup \(H \) of \(G \), the order \(h \) of \(H \) divides the order \(n \) of \(G \).

The ratio \(n/h \) is denoted by \((G : H)\) and is called the \textit{index of } \(H \) \textit{in } \(G \). The index \((G : H)\) is the number of left (and right) cosets of \(H \) in \(G \). Proposition 3.3 can be stated as

\[|G| = (G : H)|H|. \]

The set of left cosets of \(H \) in \(G \) (which, in general, is \textbf{not} a group) is denoted \(G/H \). The “points” of \(G/H \) are obtained by “collapsing” all the elements in a coset into a single element.

It is tempting to define a multiplication operation on left cosets (or right cosets) by setting

\[(g_1H)(g_2H) = (g_1g_2)H, \]

but this operation is not well defined in general, unless the subgroup \(H \) possesses a special property. This property is typical of the kernels of group homomorphisms, so we are led to

Definition 3.4. Given any two groups \(G \) and \(G' \), a function \(\varphi: G \to G' \) is a \textit{homomorphism} iff

\[\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2), \quad \text{for all } g_1, g_2 \in G. \]

Taking \(g_1 = g_2 = e \) (in \(G \)), we see that

\[\varphi(e) = e', \]

and taking \(g_1 = g \) and \(g_2 = g^{-1} \), we see that

\[\varphi(g^{-1}) = \varphi(g)^{-1}. \]

If \(\varphi: G \to G' \) and \(\psi: G' \to G'' \) are group homomorphisms, then \(\psi \circ \varphi: G \to G'' \) is also a homomorphism. If \(\varphi: G \to G' \) is a homomorphism of groups, and \(H \subseteq G \), \(H' \subseteq G' \) are two subgroups, then it is easily checked that

\[\text{Im } H = \varphi(H) = \{ \varphi(g) \mid g \in H \} \]

is a subgroup of \(G' \) called the \textit{image of } \(H \) \textit{by } \(\varphi \), and

\[\varphi^{-1}(H') = \{ g \in G \mid \varphi(g) \in H' \} \]

is a subgroup of \(G \). In particular, when \(H' = \{ e' \} \), we obtain the \textit{kernel} \(\text{Ker } \varphi \) of \(\varphi \). Thus,

\[\text{Ker } \varphi = \{ g \in G \mid \varphi(g) = e' \}. \]
It is immediately verified that $\varphi: G \to G'$ is injective iff $\text{Ker} \varphi = \{e\}$. (We also write $\text{Ker} \varphi = (0)$.) We say that φ is an isomorphism if there is a homomorphism $\psi: G' \to G$, so that

$$\psi \circ \varphi = \text{id}_G \quad \text{and} \quad \varphi \circ \psi = \text{id}_{G'}.$$

In this case, ψ is unique and it is denoted φ^{-1}. When φ is an isomorphism we say the the groups G and G' are isomorphic. It is easy to see that a bijective homomorphism is an isomorphism. When $G' = G$, a group isomorphism is called an automorphism. The left translations L_g and the right translations R_g are automorphisms of G.

We claim that $H = \text{Ker} \varphi$ satisfies the following property:

$$gH = Hg, \quad \text{for all } g \in G. \quad (*)$$

First, note that $(*)$ is equivalent to

$$gHg^{-1} = H, \quad \text{for all } g \in G,$$

and the above is equivalent to

$$gHg^{-1} \subseteq H, \quad \text{for all } g \in G. \quad (**)$$

This is because $gHg^{-1} \subseteq H$ implies $H \subseteq g^{-1}Hg$, and this for all $g \in G$. But,

$$\varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g^{-1}) = \varphi(g)e'\varphi(g)^{-1} = \varphi(g)\varphi(g)^{-1} = e',$$

for all $h \in H = \text{Ker} \varphi$ and all $g \in G$. Thus, by definition of $H = \text{Ker} \varphi$, we have $gHg^{-1} \subseteq H$.

Definition 3.5. For any group G, a subgroup N of G is a normal subgroup of G iff

$$gNg^{-1} = N, \quad \text{for all } g \in G.$$

This is denoted by $N \triangleleft G$.

Observe that if G is abelian, then every subgroup of G is normal.

If N is a normal subgroup of G, the equivalence relation induced by left cosets is the same as the equivalence induced by right cosets. Furthermore, this equivalence relation \sim is a congruence, which means that: For all $g_1, g_2, g_1', g_2' \in G$,

1. If $g_1N = g_1'N$ and $g_2N = g_2'N$, then $g_1g_2N = g_1'g_2'N$, and
2. If $g_1N = g_2N$, then $g_1^{-1}N = g_2^{-1}N$.

As a consequence, we can define a group structure on the set G/\sim of equivalence classes modulo \sim, by setting

$$(g_1N)(g_2N) = (g_1g_2)N.$$
This group is denoted G/N and called the \emph{quotient of G by N}. The equivalence class gN of an element $g \in G$ is also denoted \overline{g} (or $[g]$). The map $\pi : G \to G/N$ given by

$$\pi(g) = \overline{g} = gN$$

is clearly a group homomorphism called the \emph{canonical projection}.

Given a homomorphism of groups $\varphi : G \to G'$, we easily check that the groups $G/\text{Ker } \varphi$ and $\text{Im } \varphi = \varphi(G)$ are isomorphic. This is often called the \emph{first isomorphism theorem}.

A useful way to construct groups is the \emph{direct product} construction. Given two groups G and H, we let $G \times H$ be the Cartestian product of the sets G and H with the multiplication operation \cdot given by

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2).$$

It is immediately verified that $G \times H$ is a group. Similarly, given any n groups G_1, \ldots, G_n, we can define the direct product $G_1 \times \cdots \times G_n$ in a similar way.

If G is an abelian group and H_1, \ldots, H_n are subgroups of G, the situation is simpler. Consider the map

$$a : H_1 \times \cdots \times H_n \to G$$

given by

$$a(h_1, \ldots, h_n) = h_1 + \cdots + h_n,$$

using $+$ for the operation of the group G. It is easy to verify that a is a group homomorphism, so its image is a subgroup of G denoted by $H_1 + \cdots + H_n$, and called the \emph{sum} of the groups H_i. The following proposition will be needed.

Proposition 3.4. Given an abelian group G, if H_1 and H_2 are any subgroups of G such that $H_1 \cap H_2 = \{0\}$, then the map a is an isomorphism

$$a : H_1 \times H_2 \to H_1 + H_2.$$

Proof. The map is surjective by definition, so we just have to check that it is injective. For this, we show that $\text{Ker } a = \{(0, 0)\}$. We have $a(a_1, a_2) = 0$ iff $a_1 + a_2 = 0$ iff $a_1 = -a_2$. Since $a_1 \in H_1$ and $a_2 \in H_2$, we see that $a_1, a_2 \in H_1 \cap H_2 = \{0\}$, so $a_1 = a_2 = 0$, which proves that $\text{Ker } a = \{(0, 0)\}$. \hfill \square

Under the conditions of Proposition 3.4, namely $H_1 \cap H_2 = \{0\}$, the group $H_1 + H_2$ is called the \emph{direct sum} of H_1 and H_2; it is denoted by $H_1 \oplus H_2$, and we have an isomorphism $H_1 \times H_2 \cong H_1 \oplus H_2$.
3.2 Cyclic Groups

Given a group G with unit element 1, for any element $g \in G$ and for any natural number $n \in \mathbb{N}$, define g^n as follows:

$$
g^0 = 1
$$

$$
g^{n+1} = g \cdot g^n.
$$

For any integer $n \in \mathbb{Z}$, we define g^n by

$$
g^n = \begin{cases}
g^n & \text{if } n \geq 0 \\
(g^{-1})(-n) & \text{if } n < 0.
\end{cases}
$$

The following properties are easily verified:

$$
g^i \cdot g^j = g^{i+j}
$$

$$
(g^i)^{-1} = g^{-i}
$$

$$
g^i \cdot g^j = g^j \cdot g^i,
$$

for all $i, j \in \mathbb{Z}$.

Define the subset $\langle g \rangle$ of G by

$$
\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}.
$$

The following proposition is left as an exercise.

\textbf{Proposition 3.5.} Given a group G, for any element $g \in G$, the set $\langle g \rangle$ is the smallest abelian subgroup of G containing g.

\textbf{Definition 3.6.} A group G is cyclic iff there is some element $g \in G$ such that $G = \langle g \rangle$. An element $g \in G$ with this property is called a generator of G.

Cyclic groups are quotients of \mathbb{Z}. For this, we use a basic property of \mathbb{Z}. Recall that for any $n \in \mathbb{Z}$, we let $n\mathbb{Z}$ denote the set of multiples of n,

$$
n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}.
$$

\textbf{Proposition 3.6.} Every subgroup H of \mathbb{Z} is of the form $H = n\mathbb{Z}$ for some $n \in \mathbb{N}$.

\textit{Proof.} If H is the trivial group $\{0\}$, then let $n = 0$. If H is nontrivial, for any nonzero element $m \in H$, we also have $-m \in H$ and either m or $-m$ is positive, so let n be the smallest positive integer in H. By Proposition 3.5, $n\mathbb{Z}$ is the smallest subgroup of H containing n. For any $m \in H$ with $m \neq 0$, we can write

$$
m = nq + r, \quad \text{with} \quad 0 \leq r < n.
$$

Now, since $n\mathbb{Z} \subseteq H$, we have $nq \in H$, and since $m \in H$, we get $r = m - nq \in H$. However, $0 \leq r < n$, contradicting the minimality of n, so $r = 0$, and $H = n\mathbb{Z}$. \hfill \Box
3.2. CYCLIC GROUPS

Given any cyclic group G, for any generator g of G, we can define a mapping $\varphi : \mathbb{Z} \to G$ by $\varphi(m) = g^m$. Since g generates G, this mapping is surjective. The mapping φ is clearly a group homomorphism, so let $H = \text{Ker } \varphi$ be its kernel. By a previous observation, $H = n\mathbb{Z}$ for some $n \in \mathbb{Z}$, so by the first homomorphism theorem, we obtain an isomorphism

$$\varphi : \mathbb{Z}/n\mathbb{Z} \longrightarrow G$$

from the quotient group $\mathbb{Z}/n\mathbb{Z}$ onto G. Obviously, if G has finite order, then $|G| = n$. In summary, we have the following result.

Proposition 3.7. Every cyclic group G is either isomorphic to \mathbb{Z}, or to $\mathbb{Z}/n\mathbb{Z}$, for some natural number $n > 0$. In the first case, we say that G is an infinite cyclic group, and in the second case, we say that G is a cyclic group of order n.

The quotient group $\mathbb{Z}/n\mathbb{Z}$ consists of the cosets $m + n\mathbb{Z} = \{m + kn \mid k \in \mathbb{Z}\}$, with $m \in \mathbb{Z}$, that is, of the equivalence classes of \mathbb{Z} under the equivalence relation \equiv defined such that

$$x \equiv y \text{ iff } x - y \in n\mathbb{Z} \text{ iff } x \equiv y \pmod{n}.$$

We also denote the equivalence class $x + n\mathbb{Z}$ of x by \overline{x}, or if we want to be more precise by $[x]_n$. The group operation is given by

$$\overline{x} + \overline{y} = \overline{x + y}.$$

For every $x \in \mathbb{Z}$, there is a unique representative, $x \mod n$ (the nonnegative remainder of the division of x by n) in the class \overline{x} of x, such that $0 \leq x \mod n \leq n - 1$. For this reason, we often identify $\mathbb{Z}/n\mathbb{Z}$ with the set $\{0, \ldots, n-1\}$. To be more rigorous, we can give $\{0, \ldots, n-1\}$ a group structure by defining $+_n$ such that

$$x +_n y = (x + y) \mod n.$$

Then, it is easy to see that $\{0, \ldots, n-1\}$ with the operation $+_n$ is a group with identity element 0 isomorphic to $\mathbb{Z}/n\mathbb{Z}$.

We can also define a multiplication operation \cdot on $\mathbb{Z}/n\mathbb{Z}$ as follows:

$$\overline{a} \cdot \overline{b} = \overline{ab} = \overline{ab \mod n}.$$

Then, it is easy to check that \cdot is abelian, associative, that 1 is an identity element for \cdot, and that \cdot is distributive on the left and on the right with respect to addition. This makes $\mathbb{Z}/n\mathbb{Z}$ into a commutative ring. We usually suppress the dot and write $\overline{a} \overline{b}$ instead of $\overline{a} \cdot \overline{b}$.

Bezout’s identity implies that $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ is invertible with respect to multiplication iff $\gcd(a, n) = 1$.

Indeed, if \overline{a} has inverse \overline{b} in $\mathbb{Z}/n\mathbb{Z}$, then $\overline{a} \overline{b} = 1$, which means that

$$ab \equiv 1 \pmod{n},$$

$$\frac{ab}{n} \in \mathbb{Z}.$$

Then, a is invertible.
that is \(ab = 1 + nk \) for some \(k \in \mathbb{Z} \), which is the Bezout identity

\[
ab - nk = 1
\]

and implies that \(\gcd(a, n) = 1 \). Conversely, if \(\gcd(a, n) = 1 \), then by Bezout’s identity there exist \(u, v \in \mathbb{Z} \) such that

\[
au + nv = 1,
\]

so \(au = 1 - nv \), that is,

\[
au \equiv 1 \pmod{n},
\]

which means that \(a \equiv 1 \pmod{n} \), so \(a \) is invertible in \(\mathbb{Z}/n\mathbb{Z} \).

The group of invertible elements of the ring \(\mathbb{Z}/n\mathbb{Z} \) is denoted by \((\mathbb{Z}/n\mathbb{Z})^*\). Note that this group is only defined if \(n \geq 2 \).

Given any positive integer \(n \geq 1 \), recall that the Euler \(\varphi \)-function (or Euler totient function) is defined such that \(\varphi(n) \) is the number of integers \(a \), with \(1 \leq a \leq n \), which are relatively prime to \(n \); that is, with \(\gcd(a, n) = 1 \).\(^1\) Then, we see that the group \((\mathbb{Z}/n\mathbb{Z})^*\) has order \(\varphi(n) \).

For \(n = 2 \), \((\mathbb{Z}/2\mathbb{Z})^* = \{1\} \), the trivial group. For \(n = 3 \), \((\mathbb{Z}/3\mathbb{Z})^* = \{1, 2\} \), and for \(n = 4 \), we have \((\mathbb{Z}/4\mathbb{Z})^* = \{1, 3\} \). Both groups are isomorphic to the group \(\{-1, 1\} \). Since \(\gcd(a, n) = 1 \) for every \(a \in \{1, \ldots, n - 1\} \) iff \(n \) is prime, we see that \((\mathbb{Z}/n\mathbb{Z})^* = \mathbb{Z}/n\mathbb{Z} - \{0\} \) iff \(n \) is prime, so \(\mathbb{Z}/n\mathbb{Z} \) is a field iff \(n \) is prime.

Even though in principle a finite cyclic group has a very simple structure, finding a generator for a finite cyclic group is generally hard. For example, it turns out that the multiplicative group \((\mathbb{Z}/p\mathbb{Z})^*\) is a cyclic group when \(p \) is prime, but no efficient method for finding a generator for \((\mathbb{Z}/p\mathbb{Z})^*\) is known (besides a brute-force search). More generally, the multiplicative group \((\mathbb{Z}/p^k\mathbb{Z})^*\) is a cyclic group when \(p \) is prime and \(k \geq 1 \).

The notion of order an element in a group plays an important role.

Definition 3.7. Given a group \(G \), for any \(g \in G \), the *order of \(g \) in \(G \)*, denoted by \(\text{ord}_G(g) \), is either infinite if the cyclic group \(\langle g \rangle \) is infinite, or defined so that \(\text{ord}_G(g) = |\langle g \rangle| \) if \(\langle g \rangle \) has finite order.

The following characterization of the order of an element will be needed.

Proposition 3.8. Given a group \(G \) and an element \(g \in G \), if \(g \) has finite order, then \(\text{ord}_G(g) = p \) is characterized as follows: \(p \) is the smallest positive integer such that \(g^p = 1 \). Furthermore, \(g, g^2, \ldots, g^p = 1 \) are all distinct, and for any \(n \) such that \(g^n = 1 \), then \(p \) divides \(n \).

\(^1\)We allow \(a = n \) to accommodate the special case \(n = 1 \).
Proof. We have the isomorphism \(\mathbb{Z}/p\mathbb{Z} \cong G \), so \(p \equiv 0 \pmod{p} \) and \(g^p = 1 \). If \(q < p \) is a positive integer such that \(g^q = 1 \), then \(q = 1 \) in \(\mathbb{Z}/p\mathbb{Z} \), a contradiction.

Conversely, if \(p \) is the least positive integer such that \(g^p = 1 \), then \(g, g^2, \ldots, g^p = 1 \) are all distinct, since otherwise we would have \(g^i = g^j \) for some \(i, j \) with \(1 \leq i < j \leq p \), and then we would have

\[
g^{i-j} = 1
\]

with \(0 < j - i < p \), contradicting the minimality of \(p \). For any \(n \in \mathbb{Z} \), we can write \(n = pq + r \), with \(0 \leq r < p \), and we get

\[
g^n = g^{pq+r} = (g^p)^q \cdot g^r = g^r.
\]

Then, it is clear that we have an isomorphism \(\mathbb{Z}/p\mathbb{Z} \cong G \).

If \(g^n = 1 \), then writing \(n = pq + r \), with \(0 \leq r < p \), we get

\[
1 = g^{pq+r} = (g^p)^q \cdot g^r = g^r,
\]

so \(g^r = 1 \) with \(0 \leq r < p \), contradicting the minimality of \(p \), so \(r = 0 \) and \(p \) divides \(n \). \(\square \)

The next proposition deals with subgroups of cyclic groups.

Proposition 3.9. Let \(G = \langle g \rangle \) be a finite cyclic group of order \(n \) and let \(H \) be any subgroup of \(G \).

(a) The group \(H \) is cyclic and generated by some element \(g^k \), where \(k \geq 1 \) is the least integer such that \(g^k \in H \).

(b) The order \(d = |H| \) of \(H \) divides \(n \) and \(n = dk \).

(c) We have \(H = \{ a \in G \mid a^d = 1 \} \), with \(d \) from (b).

(d) For every \(d \geq 1 \), the set

\[
H_d = \{ a \in G \mid a^d = 1 \}
\]

is a cyclic subgroup of \(G \) of order \(\gcd(n, d) \).

(e) For every divisor \(d \) of \(n \), there is a unique cyclic subgroup \(H \) of order \(d \) given by

\[
H = \{ a \in G \mid a^d = 1 \}.
\]

Proof. If \(H = \{1\} \), then all claims are true with \(k = n \) and \(d = 1 \). From now on, assume that \(|H| > 1 \), and pick \(g^k \in H \) with \(k \geq 1 \) minimal. Since \(|H| > 1 \), we must have \(k < n \).

(a) For any element \(g^m \in H \), we can write \(m = kq + r \), with \(0 \leq r < k \). Then, we have

\[
g^m = g^{kq+r} = (g^k)^q \cdot g^r,
\]
and since $g^m, g^k \in H$, we have $g^r = (g^k)^{-a} \cdot g^m \in H$. However, $0 \leq r < k$, contradicting the minimality of k, so $r = 0$. It follows that $H = \langle g^k \rangle$ is cyclic.

(b) Let us prove that k divides n. Let $s = \gcd(k, n)$. By Bezout’s theorem, we can write

$$s = ku + nv$$

for some $u, v \in \mathbb{Z}$. Then, since $g^n = 1$, we have

$$g^s = g^{ku+nv} = (g^k)^u \cdot (g^n)^v = (g^k)^u,$$

which shows that $g^s \in H$. Since k is the least positive integer such that $g^k \in H$, we must have $s = k$; that is, k divides n. But then, g^k must have order $d = n/k$, since the order of g^k is the smallest natural number h such that $g^{kh} = 1$, and since $n = dk$ is the order of g, it must divide hk, which means that d must divide h, and so $h = d$.

(c) From (b), $H = \{g^k, g^{2k}, \ldots, g^{dk} = 1\}$, and we have $(g^{jk})^d = (g^{dk})^i = 1$, which shows that every $a \in H$ satisfies the equation $a^d = 1$. Conversely, if $a \in H$ satisfies $a^d = 1$, since $a = g^i$ for some i, we have $g^{id} = 1$, and since g has order n, the number $n = kd$ must divide id, which means that k must divide i. Consequently, $a = (g^k)^{i/k} \in H$.

(d) It is immediately verified that H_d is a subgroup of G. We have $a = g^i \in H_d$ iff $(g^i)^d = g^{id} = 1$. Write $r = \gcd(d, n)$, $n = n_1r$ and $d = d_1r$. Then $\gcd(n_1, d_1) = 1$. Since g has order n, the number $n = n_1r$ divides $id = id_1r$, so n_1 divides id_1. Since $\gcd(n_1, d_1) = 1$, the number n_1 divides i, and since $1 \leq i \leq n$, we conclude that $i = n_1, 2n_1, \ldots, rn_1 = n$. Therefore, H_d has order $r = \gcd(d, n)$.

(e) This follows immediately from (d).

Proposition 3.10. Let $G = \langle g \rangle$ be a finite cyclic group of order n. Then we have:

(a) For any $a \in G$, the order $\operatorname{ord}_G(a)$ of a divides n.

(b) For any i, with $1 \leq i \leq n$, the order of g^i is $n/\gcd(i, n)$.

(c) For every divisor d of n, the group G contains $\varphi(d)$ elements of order d.

Proof. (a) The order $\operatorname{ord}_G(a)$ of a is the order of the cyclic group $\langle a \rangle$, and by Lagrange’s theorem (Proposition 3.3), $\operatorname{ord}_G(a)$ divides n.

(b) Write $k = \gcd(i, n)$, $i = i_1k$, and $n = n_1k$. The order d of g^i is the smallest positive integer such that $(g^i)^d = g^{id} = 1$. Since g has order n, the number $n = n_1k$ must divide $id = i_1kd$, so that n_1 divides i_1d. Since $\gcd(i_1, n_1) = 1$, the number n_1 must divide d, and so $d = n_1 = n/k$, as claimed.

(c) By (b), we need to know how many $i \in \{1, \ldots, n\}$ have the property $n/\gcd(i, n) = d$, or equivalently

$$\gcd(i, n) = n/d = k.$$
3.2. CYCLIC GROUPS

Obviously, i must be of the form $i = jk$, with $1 \leq j \leq d$. Now,

$$k = \gcd(i, n) = \gcd(jk, dk) = k \gcd(j, d),$$

so $\gcd(j, d) = 1$. But, there are $\varphi(d)$ integers $i \in \{1, \ldots, d\}$ such that $\gcd(j, d) = 1$, which yields (c).

Here is another useful proposition.

Proposition 3.11. For any abelian group G, if a is an element of finite order n_1, b is an element of finite order n_2, and $\gcd(n_1, n_2) = 1$, then $a + b$ has order $n_1 n_2$.

Proof. The first step is to prove that $\langle a \rangle \cap \langle b \rangle = \{0\}$. This is because $\langle a \rangle \cap \langle b \rangle$ is a subgroup of both $\langle a \rangle$ and $\langle b \rangle$, so by Lagrange’s theorem, the order m of $\langle a \rangle \cap \langle b \rangle$ divide both n_1 and n_2. Since $\gcd(n_1, n_2) = 1$, we must have $m = 1$. Next, we claim that if $k(a + b) = 0$, then $ka = kb = 0$ is because if $k(a + b) = 0$, then $ka = -kb$, so $ka, kb \in \langle a \rangle \cap \langle b \rangle = \{0\}$, which means that $ka = 0$ and $kb = 0$. Now, the order of $a + b$ is the smallest positive integer s such that $s(a + b) = 0$. From what we just proved, $sa = 0$ and $sb = 0$, and since n_1 and n_2 are the orders of a and b respectively, n_1 and n_2 must divide s. Since $\gcd(n_1, n_2) = 1$, we conclude that $n_1 n_2$ divides s. On the other hand, since n_1 and n_2 are the orders of a and b respectively, $n_1 a = 0$ and $n_2 b = 0$, so $n_1 n_2(a + b) = n_2 n_1 a + n_1 n_2 b = 0$, and since s is the least positive integer such that $s(a + b) = 0$, we see that s divides $n_1 n_2$, so we must have $s = n_1 n_2$.

We can now prove the following important fact.

Proposition 3.12. For every integer $n \geq 1$, we have

$$n = \sum_{d | n} \varphi(d).$$

Proof. By proposition 3.9, for every divisor d of n, there is a unique cyclic subgroup C_d of $\mathbb{Z}/n\mathbb{Z}$ of order d, and let Φ_d be the set of generators of C_d. Since by Proposition 3.9, every element of $\mathbb{Z}/n\mathbb{Z}$ generates some cyclic subgroup C_d, the subsets Φ_d form a partition of $\mathbb{Z}/n\mathbb{Z}$, and since by Proposition 3.10, each group C_d has $\varphi(d)$ generators, we conclude that

$$n = |\mathbb{Z}/n\mathbb{Z}| = \sum_{d | n} |\Phi_d| = \sum_{d | n} \varphi(d),$$

as claimed.

Proposition 3.12 yields a very useful characterization of cyclic groups. The proof is due to J.P. Serre.
Theorem 3.13. Let G be a finite group of order n. Then, G is cyclic iff for every divisor d of n, there are at most d elements $a \in G$ such that $a^d = 1$. If G is cyclic, then it has $\varphi(n)$ generators.

Proof. If G is cyclic, we proved in Proposition 3.9 that for every divisor d of n there is a unique subgroup of order d given by $H_d = \{ a \in G \mid a^d = 1 \}$.

Let us now prove the converse. If there is some $x \in G$ of order d, then the subgroup $\langle x \rangle = \{ x, x^2, \ldots, x^d = 1 \}$ is cyclic of order d, and the d elements in $\langle x \rangle$ satisfy the equation $a^d = 1$. If some $y \in G$ satisfies the equation $y^d = 1$, then we already have d solutions in $\langle x \rangle$, so $y \in \langle x \rangle$. In particular, all elements of G of order d are generators of $\langle x \rangle$, and there are $\varphi(d)$ such elements. Hence, the number of elements of G of order d is either 0 or $\varphi(d)$. If it were 0 for some divisor d of n, then the formula

$$n = \sum_{d \mid n} \varphi(d).$$

from Proposition 3.12 would say that G has strictly less than n elements, a contradiction. Therefore, for every divisor d of n, there are $\varphi(d)$ elements of order n. In particular, for $n = d$, we have an element x of order n, which shows that $G = \langle x \rangle$ is cyclic.

We also have the following simple result which yields a short proof of a result of Euler.

Proposition 3.14. If G is any finite group of order n, then the order of any element $g \in G$ divides n. Thus,

$$g^n = 1, \quad \text{for all } g \in G.$$

Proof. The cyclic subgroup $\langle g \rangle$ is a subgroup of G, so by Lagrange's theorem, its order k divides the order of G. By Proposition 3.8, we have $g^k = 1$, and since k divides n we get $g^n = 1$.

For any integer $n \geq 2$, let $(\mathbb{Z}/n\mathbb{Z})^*$ be the group of invertible elements of the ring $\mathbb{Z}/n\mathbb{Z}$. This is a group of order $\varphi(n)$. Then, Proposition 3.14 yields the following result.

Theorem 3.15. (Euler) For any integer $n \geq 2$ and any $a \in \{1, \ldots, n - 1\}$ such that $\gcd(a, n) = 1$, we have

$$a^{\varphi(n)} \equiv 1 \pmod{n}.$$

In particular, if n is a prime, then $\varphi(n) = n - 1$, and we get Fermat’s little theorem.

Theorem 3.16. (Fermat’s little theorem) For any prime p and any $a \in \{1, \ldots, p - 1\}$, we have

$$a^{p-1} \equiv 1 \pmod{p}.$$
3.3 Primitive Roots

In this section, we prove that certain multiplicative groups of the form $(\mathbb{Z}/n\mathbb{Z})^*$ are cyclic. It turns out that the group $(\mathbb{Z}/n\mathbb{Z})^*$ is cyclic if $n = 2, 4, p^m$, and $2p^m$, where p is an odd prime and $m \geq 1$. A generator for $(\mathbb{Z}/n\mathbb{Z})^*$ is called a primitive root modulo n. This terminology goes back to Euler, and is also used by Gauss in his *Disquisitiones Arithmeticae* [7]; see Article 57. In fact, it is remarkable that most of the results of this section are due to Gauss. Translations of the *Disquisitiones Arithmeticae* are available, for example, in French, and we highly recommend reading Articles 52 through 93. Gauss’ style is strikingly lively and clear. Basically all the results of this section are also proved in another famous book, namely the *Vorlesungen über Zahlentheorie*, by Lejeune–Dirichlet [11]. This book was actually written by Richard Dedekind and published in 1863 after Dirichlet’s death in 1859. The English translation is by John Stillwell. We were amazed to see that most contemporary books on number theory, including Apostol excellent’s book [1], give proofs of the existence of primitive roots, and proofs of the quadratic reciprocity theorem, which are basically Dirichlet’s proofs.

First, we review a basic structure theorem for the rings of the form $\mathbb{Z}/n\mathbb{Z}$. For this, we need the following form of the Chinese remainder theorem.

Theorem 3.17. (Chinese remainder theorem, abstract version) For any integer $n \geq 1$, if $n = n_1 \cdots n_r$ where the n_i are relatively prime in pair, which means that $\gcd(n_i, n_j) = 1$ for all $i \neq j$, then we have an isomorphism

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}.$$

Proof. Consider the map $\varphi: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}$ given by

$$\varphi(a) = (a \mod n_1, \ldots, a \mod n_r).$$

The map φ is a homomorphism, so let’s determine its kernel $\ker \varphi$. We have $\varphi(a) = (0, \ldots, 0)$ iff

$$a \equiv 0 \pmod{n_i}, \quad i = 1, \ldots, n_r,$$

and since the n_i are pairwise relatively prime, this is equivalent to

$$a \equiv 0 \pmod{n_1 \cdots n_r}.$$

Thus, $\ker \varphi = n\mathbb{Z}$, and we get an injection

$$\varphi: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}.$$

However, $|\mathbb{Z}/n\mathbb{Z}| = n = n_1 \cdots n_r$ and $|\mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}| = n_1 \cdots n_r$, which shows that φ is a bijection, and thus an isomorphism. \qed
Theorem 3.17 does not explicitly tell us how to solve a system of congruences
\[x \equiv b_1 \pmod{n_1} \]
\[\vdots \]
\[x \equiv b_r \pmod{n_r}, \]
but the following version of the Chinese Remainder Theorem tells us how to do so.

Theorem 3.18. (Chinese remainder theorem) For any integer \(n \geq 1 \), if \(n = n_1 \cdots n_r \) where the \(n_i \) are relatively prime in pairs, which means that \(\gcd(n_i, n_j) = 1 \) for all \(i \neq j \), for any \(b_1, \ldots, b_r \in \mathbb{Z} \), there exists a unique \(x \) with \(0 \leq x \leq n - 1 \) such that
\[x \equiv b_1 \pmod{n_1} \]
\[\vdots \]
\[x \equiv b_r \pmod{n_r}. \]

Proof. Let \(m_i = n/n_i \), for \(i = 1, \ldots, r \). Since the \(n_i \) are pairwise relatively prime, we have \(\gcd(m_i, n_i) = 1 \), so \(m_i \) has a unique inverse \(m_i' \pmod{n_i} \); that is,
\[m_i m_i' \equiv 1 \pmod{n_i}. \]
Let
\[x = b_1 m_1 m_1' + \cdots + b_r m_r m_r'. \]
We claim that \(x \) is a solution of our congruences. Indeed, since each \(m_j \) contains the factor \(n_i \) if \(i \neq j \), we have
\[b_1 m_1 m_1' + \cdots + b_r m_r m_r' \equiv b_i m_i m_i' \pmod{n_i}, \]
and since \(m_i m_i' \equiv 1 \pmod{n_i} \), we get
\[b_1 m_1 m_1' + \cdots + b_r m_r m_r' \equiv b_i \pmod{n_i}, \]
as required. The uniqueness of \(x \) follows from Theorem 3.17. We can also observe that if \(x, y \) are two solutions such that \(0 \leq x, y \leq n - 1 \), then \(x \equiv y \pmod{n_i} \) for \(i = 1, \ldots, r \), which implies \(x \equiv y \pmod{n} \), and thus \(x = y \). \(\square \)

Interestingly, Theorem 3.17 also applies to the group \((\mathbb{Z}/n\mathbb{Z})^*\) of units (invertible elements) of the ring \(\mathbb{Z}/n\mathbb{Z} \). Note that we must have \(n \geq 2 \).

Theorem 3.19. For any integer \(n > 1 \), if \(n = n_1 \cdots n_r \) where the \(n_i \) are relatively prime in pairs, which means that \(\gcd(n_i, n_j) = 1 \) for all \(i \neq j \), then we have an isomorphism
\[(\mathbb{Z}/n\mathbb{Z})^* \cong (\mathbb{Z}/n_1\mathbb{Z})^* \times \cdots \times (\mathbb{Z}/n_r\mathbb{Z})^*. \]
3.3. PRIMITIVE ROOTS

Proof. By Theorem 3.17, we have an isomorphism

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}.$$

However, an element \((a_1, \ldots, a_r)\) of the product ring \(\mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}\) is invertible if and only if each \(a_i\) is invertible in \(\mathbb{Z}/n_i\mathbb{Z}\), which shows that the above isomorphism induces a group isomorphism

$$(\mathbb{Z}/n\mathbb{Z})^* \cong (\mathbb{Z}/n_1\mathbb{Z})^* \times \cdots \times (\mathbb{Z}/n_r\mathbb{Z})^*,$$

as claimed. \(\square\)

As a corollary of Theorem 3.19, since the group \((\mathbb{Z}/n_i\mathbb{Z})^*\) has order \(\varphi(n_i)\), we obtain the multiplicative property of the Euler \(\varphi\)-function.

Proposition 3.20. For any two positive integers \(m, n\), if \(\gcd(m, n) = 1\), then

$$\varphi(mn) = \varphi(m)\varphi(n).$$

Since \(\varphi(p) = p - 1\) when \(p\) is prime and \(\varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p - 1)\) if \(k \geq 2\) (with \(p\) prime), we can compute \(\varphi(n)\) for every \(n\) (we start with \(\varphi(1) = 1\)). Since every positive integer \(n > 1\) has a unique prime factorization

$$n = p_1^{k_1} \cdots p_r^{k_r},$$

we get

$$\varphi(n) = p_1^{k_1-1} \cdots p_r^{k_r-1}(p_1 - 1) \cdots (p_r - 1) = n \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right).$$

Theorem 3.19 reduces the study of the group \((\mathbb{Z}/n\mathbb{Z})^*\) to the structure of the groups \((\mathbb{Z}/p^k\mathbb{Z})^*\), where \(p\) is a prime and \(k \geq 1\). The case \(p = 2\) is exceptional, but the case where \(p\) is an odd prime is nice; namely, \((\mathbb{Z}/p^k\mathbb{Z})^*\) is a cyclic group. We begin with the case \(k = 1\).

Theorem 3.21. (Gauss) For every odd prime \(p\), the group \((\mathbb{Z}/p\mathbb{Z})^*\) is cyclic. It has \(\varphi(p-1)\) generators.

Proof. We use Theorem 3.13 applied to \(G = (\mathbb{Z}/p\mathbb{Z})^*\) and \(n = \varphi(p) = p - 1\). Since \(p\) is prime, \(\mathbb{Z}/p\mathbb{Z}\) is a field, for every divisor \(d\) of \(p - 1\), the equation \(x^d - 1 = 0\) has at most \(d\) roots in \(\mathbb{Z}/p\mathbb{Z}\), and a fortiori in \((\mathbb{Z}/p\mathbb{Z})^*\). Therefore, \((\mathbb{Z}/p\mathbb{Z})^*\) is cyclic and has \(\varphi(p-1)\) generators. \(\square\)

Integers \(a \in \mathbb{Z}\) such that \(a \mod p\) is a generator of \((\mathbb{Z}/p\mathbb{Z})^*\) are called primitive roots mod \(p\).

Remark: Gauss’ proof is not all that different from the one we gave. For every divisor \(d\) of \(p - 1\), Gauss defines \(\psi(d)\) as the number of integers \(a\), with \(a \leq a \leq p - 1\), that
have order d, and then proves that $\psi(d) = \varphi(d)$. For this, he proves Proposition 3.12; see Articles 52–56 of the *Disquisitiones Arithmeticae* [7]. Gauss also warns about the danger of regarding as established, statements which are not proved. He goes on to say that “nobody has attempted to prove Theorem 3.21, except Euler,” and that Euler has talked extensively about the necessity of proving it, but that his proof is flawed in two respects! A version of the same proof is also given in Dirichlet [11] (Chapter 2, Section 30).

Gauss proposes an algorithm for finding a primitive root modulo p in Articles 73 and 74 in the *Disquisitiones Arithmeticae* [7]. The algorithm is as follows:

Step 1. Pick any integer a with $2 \leq a \leq p - 1$, and find the order t of a, that is, the least positive integer such that $a^t \equiv 1 \pmod{p}$. If a has order $p - 1$, then it is a primitive root modulo p. Otherwise, go to the next step.

Step 2. Find any any number b, with $2 \leq b \leq p - 1$, such that $b \not\equiv a^i \pmod{p}$, for $i = 1, \ldots, t$. Let u be the order of b, the least positive integer such that $b^u \equiv 1 \pmod{p}$. I claim that u does not divide t.

This is because if u divides t, since $b^u \equiv 1 \pmod{p}$, we would get $b^t \equiv 1 \pmod{p}$, but since the congruence $X^t \equiv 1 \pmod{p}$ has t solutions (a, a^2, \ldots, a^t), then we would have $b \equiv a^i \pmod{p}$ for some i with $1 \leq i \leq t$, a contradiction. If $u = p - 1$, then b is a primitive root. Otherwise, let y be the least common multiple of t and u. Then, we can split y as $y = mn$, where $\gcd(m, n) = 1$, m divides t, and n divides u. As explained by Gauss in a footnote, m and n can be obtained from prime factorizations of t and u. All prime powers only in t are included in m, all prime powers only in u are included in n, and prime powers both in t and u are included in m or n, it doesn’t matter. Then, $a' \equiv a^t/m \pmod{p}$ has order m, $b' \equiv b^{u/n} \pmod{p}$ has order n, and because $\gcd(m, n) = 1$, the element $c = ab'$ has order $y = mn > t$ modulo p. If $mn = p - 1$, then c is a primitive root modulo p. Otherwise, go back to Step 2 with $a = c$ and $t = y$.

Since $y > t$ in step 2, the order of t keeps increasing while dividing $p - 1$, so eventually $t = p - 1$, and a primitive root is found. Gauss illustrates this process for $p = 73$, and finds the primitive root 5. Gauss’ algorithm requires factoring y as mn with $\gcd(m, n) = 1$, and this step requires prime factorizations of t and u. For large p, this is not a practical method. Still, it is impressive that Gauss gave an algorithm for finding a primitive root over 200 years ago.

The above algorithm does not necessarily yield the smallest primitive root g_p modulo p. It is known that $g_p > C \log p$ for infinitely many primes (for some constant C), and that $g_p < p^{0.499}$ for all $p > e^{24}$ (see Ribenboim [15], Chapter 2, Section II).

We now consider the case where $n = p^m$, with p prime and $m \geq 2$. We follow the beautiful exposition given in Apostol [1]. As we mentioned earlier, this exposition is extremely close to Dirichlet’s presentation (as written up by Dedekind) [11]. The following technical proposition is needed.
Proposition 3.22. For any odd prime p, let g be a primitive root modulo p such that

$$g^{p-1} \not\equiv 1 \pmod{p^2}.$$

Then, for all $i \geq 2$, we have

$$g^{\varphi(p^{i-1})} \not\equiv 1 \pmod{p^i}.$$

Proof. We proceed by induction on i. The base case $i = 2$ is the hypothesis. For the induction step, assume that

$$g^{\varphi(p^{i-1})} \not\equiv 1 \pmod{p^{i-1}}. \quad (*)$$

By Euler’s theorem,

$$g^{\varphi(p^{i-1})} \equiv 1 \pmod{p^{i-1}},$$

so we have

$$g^{\varphi(p^{i-1})} = 1 + kp^{i-1}$$

for some $k \in \mathbb{Z}$, and p does not divide k because of $(*)$. Raising the above equation to the pth power, since $\varphi(p^{i-1}) = p^{i-1} - p^{i-2}$, we get $p\varphi(p^{i-1}) = \varphi(p^i)$, and

$$g^{\varphi(p^i)} = (1 + kp^{i-1})^p = 1 + kp^i + k^2 \frac{p(p-1)}{2} p^{2(i-1)} + rp^{3(i-1)}$$

$$= 1 + kp^i + k^2 \frac{p-1}{2} p^{2i-1} + rp^{3(i-1)},$$

for some $r \in \mathbb{Z}$. Now, $2i - 1 \geq i + 1$ and $3i - 3 \geq i + 1$ since $i \geq 2$, so we get the congruence

$$g^{\varphi(p^i)} = 1 + kp^i \pmod{p^{i+1}},$$

where p does not divide k, and therefore

$$g^{\varphi(p^i)} \not\equiv 1 \pmod{p^{i+1}},$$

establishing the induction hypothesis.

The next step if to “promote” a primitive root modulo p to a primitive root modulo p^m. For this, we use the following proposition.

Proposition 3.23. For any odd prime p, there is a primitive root g modulo p such that

$$g^{p-1} \not\equiv 1 \pmod{p^2}. \quad (*)$$

Proof. Let g be any primitive root modulo p. If $(*)$ holds, we are done. Otherwise, $g^{p-1} \equiv 1 \pmod{p^2}$, in which case we consider $g_1 = g + p$. Obviously, g_1 is a primitive root modulo p, and we claim that it satisfies $(*)$. We have

$$g_1^{p-1} = (g + p)^{p-1}$$

$$= g^{p-1} + (p - 1)g^{p-2}p + tp^2,$$

$$= g^{p-1} - g^{p-2}p + (t + g^{p-2})p^2,$$
for some $t \in \mathbb{Z}$, and because $g^{p-1} \equiv 1 \pmod{p^2}$, we get

$$g_1^{p-1} \equiv g^{p-1} - pg^{p-2} \pmod{p^2}$$

$$\equiv 1 - pg^{p-2} \pmod{p^2}.$$

But, we cannot have $pg^{p-2} \equiv 0 \pmod{p^2}$, for this would imply that $g^{p-2} \equiv 0 \pmod{p}$, contradicting the fact that g is a primitive roots modulo p. Therefore, $g_1^{p-1} \not\equiv 1 \pmod{p^2}$, as claimed.

Finally, we can prove that primitive roots modulo p^m exist.

Proposition 3.24. For any odd prime p, a primitive root g modulo p is a primitive root modulo p^m for all $m \geq 2$ iff

$$g^{p-1} \not\equiv 1 \pmod{p^2}. \quad (*)$$

Proof. Suppose that g is a primitive root modulo p^m for all $m \geq 1$. In particular, g is a primitive root modulo p^2. We have (by Fermat’s little theorem)

$$g^{p-1} \equiv 1 \pmod{p},$$

and since $\varphi(p^2) = p(p-1) > p - 1$, if

$$g^{p-1} \equiv 1 \pmod{p^2},$$

then g can’t be a primitive root modulo p^2, so $g^{p-1} \not\equiv 1 \pmod{p^2}$ must hold.

Conversely, assume that the primitive root g modulo p satisfies $(*)$. We prove that g is a primitive root modulo p^m for all $m \geq 2$. Let t be the order of g in $\left(\mathbb{Z}/p^m\mathbb{Z}\right)^*$. We need to prove that

$$t = \varphi(p^m).$$

Since $g^t \equiv 1 \pmod{p^m}$, we also have $g^t \equiv 1 \pmod{p}$, and since g has order $p - 1$ modulo p, we conclude that $p - 1$ divides t, so we can write

$$t = q(p - 1)$$

for some $q \in \mathbb{Z}$. Since $g^{\varphi(p^m)} \equiv 1 \pmod{p^m}$ and t is the order of g modulo p^m, the number t must divide $\varphi(p^m) = p^m(p-1)$; that is, $q(p-1)$ divides $p^{m-1}(p-1)$, so q divides p^{m-1}. Therefore, we can write

$$t = p^b(p - 1), \quad \text{with} \quad b \leq m - 1.$$

If we can prove that $b = m - 1$, then we are done.

Assume by contradiction that $b < m - 1$. If so, $b \leq m - 2$ and $t = p^b(p - 1)$ divides $p^{m-2}(p - 1) = \varphi(p^{m-1})$. As a consequence, from $g^t \equiv 1 \pmod{p^m}$, we get

$$g^{\varphi(p^{m-1})} \equiv 1 \pmod{p^m}.$$
3.3. PRIMITIVE ROOTS

However, since by assumption
\[g^{p-1} \not\equiv 1 \pmod{p^2}, \]
Proposition 3.22 implies that
\[g^{\varphi(p^{i-1})} \not\equiv 1 \pmod{p^i} \quad \text{for all} \quad i \geq 2, \]
a contradiction. Therefore, \(b = m - 1 \) and the proof is complete. □

Putting Propositions 3.23 and 3.24, we obtain our theorem.

Theorem 3.25. (Gauss) For every odd prime \(p \) and every integer \(m \geq 2 \), the group \((\mathbb{Z}/p^m\mathbb{Z})^*\) is cyclic. Furthermore, it has \(\varphi(\varphi(p^m)) = p^{m-2}(p-1)\varphi(p-1) \) primitive roots.

Remark: Gauss proves Theorem 3.25 in Articles 82–89 of the *Disquisitiones Arithmeticae* [7]. The above proof is basically Dedekind’s proof [11] (Supplement V).

The case \(n = 2p^m \) is easily handled.

Theorem 3.26. For every odd prime \(p \) and every integer \(m \geq 1 \), the group \((\mathbb{Z}/2p^m\mathbb{Z})^*\) is modulo \(p^m \), and each such \(g \) is also a primitive root modulo \(2p^m \).

Proof. Since \(p \) is an odd prime, \(\gcd(2, p) = 1 \), so Theorem 3.19 yields an isomorphism
\[(\mathbb{Z}/2p^m\mathbb{Z})^* \cong (\mathbb{Z}/2\mathbb{Z})^* \times (\mathbb{Z}/p^m\mathbb{Z})^* \cong (\mathbb{Z}/p^m\mathbb{Z})^*, \]
since \((\mathbb{Z}/2\mathbb{Z})^*\) is the trivial group \(\{1\} \).

If \(g \) is a primitive root modulo \(p^m \), then \(g + p^m \) is also a primitive root modulo \(p^m \), and since \(p \) is odd, either \(g \) or \(g + p^m \) is odd (\(p^m \) is odd). Let \(g \) be an odd primitive root modulo \(p^m \) and let \(t \) be its order modulo \(p^{m+1} \). We need to prove that \(t = \varphi(2p^m) = \varphi(2)\varphi(p^m) = \varphi(p^m) \).

Now, \(t \) must divide \(\varphi(2p^m) = \varphi(p^m) \) (since \(g^{\varphi(2p^m)} = 1 \pmod{2p^m} \)). On the other hand, \(g^t \equiv 1 \pmod{2p^m} \), which implies \(g^t \equiv 1 \pmod{p^m} \), so \(\varphi(p^m) \) divides \(t \) since \(g \) is a primitive root modulo \(p^m \) (it has order \(\varphi(p^m) \) modulo \(p^m \)). Therefore, \(t = \varphi(p^m) = \varphi(2p^m) \), as claimed. □

The situation for \(p = 2^m \) with \(m \geq 3 \) is quite different.

Proposition 3.27. (Gauss) If \(a \) is an odd integer, then for all \(m \geq 3 \), we have
\[a^{\varphi(2^m)/2} \equiv a^{2^{m-2}} \equiv 1 \pmod{2^m}. \]
Therefore, there are no primitive roots modulo \(2^m \).
Proof. We proceed by induction on \(m \). When \(m = 3 \), we need to show that \(a^2 \equiv 1 \pmod{8} \), if \(a \) is odd. This is because \(a \) is of the form \(a = 2k + 1 \),
\[
(2k + 1)^2 = 4k^2 + 4k + 1 = 4k(k + 1) + 1,
\]
and \(k(k + 1) \) is always even.

For the induction step, the induction hypothesis says that
\[
a^{2m-2} = 1 + 2^mt,
\]
for some \(t \in \mathbb{Z} \). Squaring both sides, we get
\[
a^{2m-1} = 1 + 2^{m+1}t + 2^{2mt^2},
\]
so
\[
a^{2m-1} \equiv 1 \pmod{2^{m+1}},
\]
establishing the induction hypothesis. \(\square \)

Remark: Gauss proves Proposition 3.27 in Article 90 of the *Disquisitiones Arithmeticae* [7]. It also appears in Dirichlet-Dedekind [11] (Supplement V).

In summary, we proved that primitive roots exist if \(n = 2, 4, p^m \), or \(2^m p^m \). We also showed that they do not exist if \(n = 2^m \), with \(m \geq 3 \). In fact, primitive roots do not exist in all the remaining cases.

Proposition 3.28. Given any integer \(n \geq 2 \), if \(n \) is not of the form \(n = 2, 4, p^m \), or \(2^m p^m \), where \(p \) is an odd prime, then for any integer \(a \) with \(\gcd(a, n) = 1 \), we have
\[
a^{\varphi(n)/2} \equiv 1 \pmod{n}.
\]
Therefore, there are no primitive roots modulo \(n \).

Proof. We already proved that primitive roots do not exist if \(n = 2^m \) with \(m \geq 3 \). Therefore, we may assume that \(n \) has a factorization of the form
\[
n = 2^k p_1^{k_1} \cdots p_s^{k_s},
\]
where the \(p_i \) are odd primes, \(s \geq 1 \), \(k_i \geq 1 \), and \(k \geq 0 \). Furthermore, since \(n \) is not of the form \(n = 2, 4, p^m \), or \(2^m p^m \), we have \(k \geq 2 \) if \(s = 1 \), and \(s \geq 2 \) if \(k = 0, 1 \). We have
\[
\varphi(n) = \varphi(2^k) \varphi(p_1^{k_1}) \cdots \varphi(p_s^{k_s}).
\]
Pick \(a \in \mathbb{Z} \) such that \(\gcd(a, n) = 1 \). We need to prove that
\[
a^{\varphi(n)/2} \equiv 1 \pmod{n}.
\]
Let g be a primitive root modulo $p_1^{k_1}$, and write

$$a \equiv g^i \pmod{p_1^{k_1}}.$$

Then, we have

$$a^{\phi(n)/2} \equiv g^{i\phi(n)/2} \equiv g^{t\phi(p_1^{k_1})} \pmod{p_1^{k_1}},$$

with

$$t = i\phi(2^k)\phi(p_2^{k_2})\cdots\phi(p_s^{k_s})/2.$$

We claim that t is an integer.

If $k \geq 2$, then $\phi(2^k) = 2^{k-1}$ is even, so t is an integer. If $k = 0$ or $k = 1$, then $s \geq 2$ and the factor $\phi(p_2^{k_2}) = p_2^{k_2-1}(p_2 - 1)$ is even, so t is also an integer.

Since

$$g^{\phi(p_1^{k_1})} \equiv 1 \pmod{p_1^{k_1}},$$

from

$$a^{\phi(n)/2} \equiv g^{t\phi(p_1^{k_1})} \pmod{p_1^{k_1}},$$

we obtain

$$a^{\phi(n)/2} \equiv 1 \pmod{p_1^{k_1}}.$$

A similar proof shows that

$$a^{\phi(n)/2} \equiv 1 \pmod{p_i^{k_i}}$$

for $i = 1, \ldots, s$. We still need to prove that a similar congruence holds modulo 2^k.

If $k \geq 3$, since $\gcd(a, n) = 1$, the number a must be odd, and by Proposition 3.27, we have

$$a^{\phi(k)/2} \equiv a^{2^{k-2}} \equiv 1 \pmod{2^k}.$$

Since $\phi(2^k)$ divides $\phi(n)$, we get

$$a^{\phi(n)/2} \equiv 1 \pmod{2^k}, \quad k \geq 3.$$

If $k \leq 2$, then we have

$$a^{\phi(2^k)} \equiv 1 \pmod{2^k}.$$

But $s \geq 1$, so

$$\phi(n) = \phi(2^k)\phi(p_1^{k_1})\cdots\phi(p_s^{k_s}) = \phi(2^k)p_1^{k_1-1}(p_1 - 1)\phi(p_2^{k_2})\cdots\phi(p_s^{k_s}) = 2r\phi(2^k),$$

for some integer r. Thus, $\phi(2^k)$ divides $\phi(n)/2$, and

$$a^{\phi(n)/2} \equiv 1 \pmod{2^k}$$

holds for $k \leq 2$. In summary, the congruences

$$a^{\phi(n)/2} \equiv 1 \pmod{p_i^{k_i}}$$

$$a^{\phi(n)/2} \equiv 1 \pmod{2^k}$$
hold for \(i = 1, \ldots, s \) and \(k \geq 0 \). Since the moduli are pairwise relatively prime, we obtain
\[
a^{\varphi(n)/2} \equiv 1 \pmod{n},
\]
as claimed.

Putting everything together, we have the following remarkable result, most of which is due to Gauss.

Theorem 3.29. The group \((\mathbb{Z}/n\mathbb{Z})^*\) is cyclic iff \(n = 2, 4, p^m, \) or \(2p^m \), where \(p \) is an odd prime and \(m \geq 1 \). There are \(\varphi(\varphi(n)) \) primitive roots modulo \(n \).

Surprisingly, even in the case where \(n = p \) is an odd prime, there is no known criterion to determine whether an integer \(a \) is a primitive root modulo \(p \). For example, we don’t know how to determine if \(2 \) is a primitive root modulo \(p \), other than by computing all powers \(2^i \) modulo \(p \). In fact, we have the following conjecture made by Emil Artin around 1920:

Artin’s Conjecture. The number \(2 \) is a primitive root for infinitely many primes.

Also, it is easy to see that a perfect square (a number of the form \(a^2 \)) and \(-1\) are not primitive roots. Artin also made the following conjecture.

The Generalized Artin Conjecture. Every integer which is not a perfect square and is different from \(-1\) is a primitive root for infinitely many primes.

It has been shown by Christopher Hooley (1967) that if the Extended Riemann Hypothesis (ERH) holds, then the generalized Artin conjecture also holds. For a brief description of the ERH, see Section 4.5.

More can be said in the “bad” case \(n = 2^k \) with \(m \geq 3 \). Amazingly, 5 plays a special role.

Proposition 3.30. For any integers \(x, y \), if \(x \equiv 1 + 4y \pmod{8} \), then
\[
x^{2^k} \equiv 1 + 2^{k+2}y \pmod{2^{k+3}},
\]
for all \(k \geq 0 \).

Proof. We proceed by induction on \(k \). The case \(k = 0 \) is the hypothesis. For the induction step, it is enough to prove that if \(a \equiv 1 + 2^{k+1}b \pmod{2^{k+2}} \) for any \(k \geq 1 \), then \(a^2 \equiv 1 + 2^{k+2}b \pmod{2^{k+3}} \).

If \(a \equiv 1 + 2^{k+1}b \pmod{2^{k+2}} \), then \(a = 1 + 2^{k+1}b + c2^{k+2} \), for some \(c \), so we get
\[
a^2 = (1 + 2^{k+1}b + c2^{k+2})^2 \\
= (1 + 2^{k+1}(b + 2c))^2 \\
= 1 + 2^{k+2}(b + 2c) + 2^{2k+2}(b + 2c)^2 \\
= 1 + 2^{k+2}b + 2^{k+3}c + 2^{2k+2}(b + 2c)^2 ,
\]
and because $k \geq 1$, we have $2k + 2 \geq k + 3$, so we get

$$a^2 \equiv 1 + 2^{k+2}b \pmod{2^{k+3}},$$

establishing the induction hypothesis.

Observe that if we set $x = 5$ and $y = 1$, then $5 \equiv 5 \pmod{8}$, so by Proposition 3.30, we have

$$5^{2^k} \equiv 1 + 2^{k+2}b \pmod{2^{k+3}}, \quad \text{for all } k \geq 0.$$

On the other hand, since 5 is odd, by Proposition 3.27, we have

$$5^{2^m-2} \equiv 1 \pmod{2^m}.$$

Therefore, 5 has order 2^m-2 modulo 2^m. We can use this fact to prove the following result (following Bourbaki [2], Chapter VII). This result is more or less implicit in Article 91 of the *Disquisitiones Arithmeticae* [7]. It is explicitly proved in Dirichlet-Dedekind [11] (Supplement V).

Theorem 3.31. For any $m \geq 3$, the group $(\mathbb{Z}/2^m\mathbb{Z})^*$ is isomorphic to the direct product $\{-1, 1\} \times \langle 5 \rangle$ of the cyclic subgroup $\{-1, 1\}$ generated by -1 and the cyclic subgroup $\langle 5 \rangle$ of order 2^{m-2} generated by 5.

Proof. We already know that the cyclic subgroup group $\langle 5 \rangle$ generated by 5 has order 2^{m-2}. We claim that $-1 \notin \langle 5 \rangle$. Since -1 has order 2, and since $\varphi(2) = 1$, there is a unique element of order 2 in $(\mathbb{Z}/2^m\mathbb{Z})^*$, so if $-1 \in \langle 5 \rangle$, then we must have

$$-1 \equiv 5^{2^{m-3}} \equiv 1 + 2^{m-1} \pmod{2^m},$$

namely $2^{m-1} + 2 \equiv 0 \pmod{2^m}$, which is false if $m \geq 1$. Consequently, if $H = \{-1, 1\}$ is the subgroup generated by -1, we have $H \cap \langle 5 \rangle = \{0\}$. By Proposition 3.4, we have an isomorphism

$$\{-1, 1\} \times \langle 5 \rangle \cong \{-1, 1\} \oplus \langle 5 \rangle.$$

Now, $(\mathbb{Z}/2^m\mathbb{Z})^*$ has order 2^m-1, the subgroup $\langle 5 \rangle$ has order 2^{m-2}, and $\{-1, 1\}$ has order 2, so

$$(\mathbb{Z}/2^m\mathbb{Z})^* = \{-1, 1\} \oplus \langle 5 \rangle$$

and we have an isomorphism $(\mathbb{Z}/2^m\mathbb{Z})^* \cong \{-1, 1\} \times \langle 5 \rangle$.

Remarks: For $n \geq 3$, we have the homomorphism $\pi: (\mathbb{Z}/2^n\mathbb{Z})^* \to (\mathbb{Z}/4\mathbb{Z})^*$ given by

$$\pi(a \pmod{2^n}) = a \pmod{4},$$

with $\gcd(a, 2^n) = 1$. The kernel of this homomorphism is the subgroup $U(2^n)$ of $(\mathbb{Z}/2^n\mathbb{Z})^*$ given by

$$U(2^n) = \{a \pmod{2^n} \mid a \equiv 1 \pmod{4}\}.$$
The subgroup $U(2^m)$ has order 2^{m-2}, and we have an isomorphism $U(2^m) \cong \langle 5 \rangle$.

Another way to prove Theorem 3.25 is to proceed as follows (following Bourbaki [2], Chapter VII). First, we show that $p+1$ has order p^{m-1} in $(\mathbb{Z}/p^m\mathbb{Z})^\times$. For this we prove that if p is an odd prime and $x \equiv 1 + py \pmod{p^2}$, then $x^{p^k} \equiv 1 + p^{k+1}y \pmod{p^{k+2}}$, for all $k \geq 0$.

Then, using a primitive root of $(\mathbb{Z}/p\mathbb{Z})^\times$, we can find an element y of order $p-1$ in $(\mathbb{Z}/p^m\mathbb{Z})^\times$. By proposition 3.11, since $\gcd(p^{m-1}, p-1) = 1$, we conclude that $(p+1)y$ has order $p^{m-1}(p-1) = \varphi(p^m)$, so $(p+1)y$ is a primitive root modulo p^m.

3.4 Rings and Fields

The groups $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/n\mathbb{Z}$, and $M_n(\mathbb{R})$ are more than an abelian groups, they are also commutative rings. Furthermore, \mathbb{Q}, \mathbb{R}, and \mathbb{C} are fields. We now introduce rings and fields.

Definition 3.8. A ring is a set A equipped with two operations $+: A \times A \to A$ (called addition) and $\ast: A \times A \to A$ (called multiplication) having the following properties:

1. (R1) A is an abelian group w.r.t. $+$;
2. (R2) \ast is associative and has an identity element $1 \in A$;
3. (R3) \ast is distributive w.r.t. $+$.

The identity element for addition is denoted 0, and the additive inverse of $a \in A$ is denoted by $-a$. More explicitly, the axioms of a ring are the following equations which hold for all $a, b, c \in A$:

$$
\begin{align*}
(a + b + c) &= (a + b) + c & \text{(associativity of $+$)} \\
(a + b) &= b + a & \text{(commutativity of $+$)} \\
a + 0 &= 0 + a = a & \text{(zero)} \\
a + (-a) &= (-a) + a = 0 & \text{(additive inverse)} \\
da \ast (b \ast c) &= (a \ast b) \ast c & \text{(associativity of \ast)} \\
da \ast 1 &= 1 \ast a = a & \text{(identity for \ast)} \\
(a + b) \ast c &= (a \ast c) + (b \ast c) & \text{(distributivity)} \\
da \ast (b + c) &= (a \ast b) + (a \ast c) & \text{(distributivity)}
\end{align*}
$$

The ring A is commutative if

$$a \ast b = b \ast a$$

for all $a, b \in A$.

From (3.7) and (3.8), we easily obtain

\[a \ast 0 = 0 \ast a = 0 \] \hspace{1cm} (3.9)
\[a \ast (-b) = (-a) \ast b = -(a \ast b). \] \hspace{1cm} (3.10)

Note that (3.9) implies that if 1 = 0, then a = 0 for all a ∈ A, and thus, A = {0}. The ring A = {0} is called the trivial ring. A ring for which 1 ≠ 0 is called nontrivial. The multiplication a * b of two elements a, b ∈ A is often denoted by ab.

Example 3.2.

1. The additive groups \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \), are commutative rings.
2. The group \(\mathbb{R}[X] \) of polynomials in one variable with real coefficients is a ring under multiplication of polynomials. It is a commutative ring.
3. The group of \(n \times n \) matrices \(M_n(\mathbb{R}) \) is a ring under matrix multiplication. However, it is not a commutative ring.
4. The group \(C([a, b]) \) of continuous functions \(f : [a, b] \to \mathbb{R} \) is a ring under the operation \(f \cdot g \) defined such that

\[(f \cdot g)(x) = f(x)g(x) \]

for all \(x \in [a, b] \).

When \(ab = 0 \) with \(b \neq 0 \), we say that a is a zero divisor. A ring \(A \) is an integral domain (or an entire ring) if \(0 \neq 1 \), \(A \) is commutative, and \(ab = 0 \) implies that \(a = 0 \) or \(b = 0 \), for all \(a, b \in A \). In other words, an integral domain is a nontrivial commutative ring with no zero divisors besides 0.

Example 3.3.

1. The rings \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \), are integral domains.
2. The ring \(\mathbb{R}[X] \) of polynomials in one variable with real coefficients is an integral domain.
3. For any positive integer, \(n \in \mathbb{N} \), the group \(\mathbb{Z}/n\mathbb{Z} \) is a group under addition. We can also define a multiplication operation by

\[\overline{a} \cdot \overline{b} = \overline{ab} \mod n, \]

for all \(a, b \in \mathbb{Z} \). The reader will easily check that the ring axioms are satisfied, with \(\overline{0} \) as zero and \(\overline{1} \) as multiplicative unit. The resulting ring is denoted by \(\mathbb{Z}/n\mathbb{Z} \).\(^2\) Observe

\(^2\)The notation \(\mathbb{Z}_n \) is sometimes used instead of \(\mathbb{Z}/n\mathbb{Z} \) but it clashes with the notation for the \(n \)-adic integers so we prefer not to use it.
that if \(n \) is composite, then this ring has zero-divisors. For example, if \(n = 4 \), then we have

\[
2 \cdot 2 \equiv 0 \pmod{4}.
\]

However, the reader should prove that \(\mathbb{Z}/n\mathbb{Z} \) is an integral domain iff \(n \) is prime (in fact, it is a field).

4. The ring of \(n \times n \) matrices \(M_n(\mathbb{R}) \) is not an integral domain. It has zero divisors.

A homomorphism between rings is a mapping preserving addition and multiplication (and 0 and 1).

Definition 3.9. Given two rings \(A \) and \(B \), a homomorphism between \(A \) and \(B \) is a function \(h: A \to B \) satisfying the following conditions for all \(x, y \in A \):

\[
\begin{align*}
h(x + y) &= h(x) + h(y) \\
h(xy) &= h(x)h(y) \\
h(0) &= 0 \\
h(1) &= 1.
\end{align*}
\]

Actually, because \(B \) is a group under addition, \(h(0) = 0 \) follows from

\[
h(x + y) = h(x) + h(y).
\]

Example 3.4.

1. If \(A \) is a ring, for any integer \(n \in \mathbb{Z} \), for any \(a \in A \), we define \(n \cdot a \) by

\[
n \cdot a = a + \cdots + a \quad \text{with} \quad n \geq 0 \quad \text{and} \quad n \cdot a = -(n) \cdot a
\]

if \(n \leq 0 \). Then, the map \(h: \mathbb{Z} \to A \) given by

\[
h(n) = n \cdot 1_A
\]

is a ring homomorphism (where \(1_A \) is the multiplicative identity of \(A \)).

2. Given any real \(\lambda \in \mathbb{R} \), the evaluation map \(\eta_\lambda: \mathbb{R}[X] \to \mathbb{R} \) defined by

\[
\eta_\lambda(f(X)) = f(\lambda)
\]

for every polynomial \(f(X) \in \mathbb{R}[X] \) is a ring homomorphism.
A ring homomorphism \(h: A \to B \) is an \textit{isomorphism} iff there is a homomorphism \(g: B \to A \) such that \(g \circ f = \text{id}_A \) and \(f \circ g = \text{id}_B \). Then, \(g \) is unique and denoted by \(h^{-1} \). It is easy to show that a bijective ring homomorphism \(h: A \to B \) is an isomorphism. An isomorphism from a ring to itself is called an \textit{automorphism}.

Given a ring \(A \), a subset \(A' \) of \(A \) is a \textit{subring} of \(A \) if \(A' \) is a subgroup of \(A \) (under addition), is closed under multiplication, and contains 1. If \(h: A \to B \) is a homomorphism of rings, then for any subring \(A' \), the image \(h(A') \) is a subring of \(B \), and for any subring \(B' \) of \(B \), the inverse image \(h^{-1}(B') \) is a subring of \(A \).

A field is a commutative ring \(K \) for which \(A - \{0\} \) is a group under multiplication.

\begin{definition}
A set \(K \) is a \textit{field} if it is a ring and the following properties hold:
\begin{enumerate}[(F1)]
 \item \(0 \neq 1 \);
 \item \(K^* = K - \{0\} \) is a group w.r.t. \(* \) (i.e., every \(a \neq 0 \) has an inverse w.r.t. \(* \));
 \item \(* \) is commutative.
\end{enumerate}
If \(* \) is not commutative but (F1) and (F2) hold, we say that we have a \textit{skew field} (or \textit{noncommutative field}).
\end{definition}

Note that we are assuming that the operation \(* \) of a field is commutative. This convention is not universally adopted, but since \(* \) will be commutative for most fields we will encounter, we may as well include this condition in the definition.

\begin{example}
\begin{enumerate}
 \item The rings \(\mathbb{Q}, \mathbb{R}, \) and \(\mathbb{C} \) are fields.
 \item The set of (formal) fractions \(f(X)/g(X) \) of polynomials \(f(X), g(X) \in \mathbb{R}[X] \), where \(g(X) \) is not the null polynomial, is a field.
 \item The ring \(\mathbb{C}([a,b]) \) of continuous functions \(f:]a,b[\to \mathbb{R} \) such that \(f(x) \neq 0 \) for all \(x \in]a,b[\) is a field.
 \item The ring \(\mathbb{Z}/p\mathbb{Z} \) is a field whenever \(p \) is prime.
\end{enumerate}
\end{example}

A homomorphism \(h: K_1 \to K_2 \) between two fields \(K_1 \) and \(K_2 \) is just a homomorphism between the rings \(K_1 \) and \(K_2 \). However, because \(K_1^* \) and \(K_2^* \) are groups under multiplication, a homomorphism of fields must be injective.

First, observe that for any \(x \neq 0 \),
\[1 = h(1) = h(xx^{-1}) = h(x)h(x^{-1}) \]
and
\[1 = h(1) = h(x^{-1}x) = h(x^{-1})h(x), \]
so $h(x) \neq 0$ and
\[h(x^{-1}) = h(x)^{-1} . \]
But then, if $h(x) = 0$, we must have $x = 0$. Consequently, h is injective.

A field homomorphism $h: K_1 \to K_2$ is an isomorphism iff there is a homomorphism $g: K_2 \to K_1$ such that $g \circ f = \text{id}_{K_1}$ and $f \circ g = \text{id}_{K_2}$. Then, g is unique and denoted by h^{-1}. It is easy to show that a bijective field homomorphism $h: K_1 \to K_2$ is an isomorphism. An isomorphism from a field to itself is called an automorphism.

Since every homomorphism $h: K_1 \to K_2$ between two fields is injective, the image $f(K_1)$ is a subfield of K_2. We also say that K_2 is an extension of K_1. A field K is said to be algebraically closed if every polynomial $p(X)$ with coefficients in K has some root in K; that is, there is some $a \in K$ such that $p(a) = 0$. It can be shown that every field K has some minimal extension Ω which is algebraically closed, called an algebraic closure of K. For example, \mathbb{C} is the algebraic closure of both \mathbb{Q} and \mathbb{C}.

Given a field K and an automorphism $h: K \to K$ of K, it is easy to check that the set
\[\text{Fix}(h) = \{a \in K \mid h(a) = a\} \]
of elements of K fixed by h is a subfield of K called the field fixed by h.

If K is a field, we have the ring homomorphism $h: \mathbb{Z} \to K$ given by $h(n) = n \cdot 1$. If h is injective, then K contains a copy of \mathbb{Z}, and since it is a field, it contains a copy of \mathbb{Q}. In this case, we say that K has characteristic 0. If h is not injective, then $h(\mathbb{Z})$ is a subring of K, and thus an integral domain, which is isomorphic to $\mathbb{Z}/p\mathbb{Z}$ for some $p \geq 1$. But then, p must be prime since $\mathbb{Z}/p\mathbb{Z}$ is an integral domain if it is a field iff p is prime. The prime p is called the characteristic of K, and we also says that K is of finite characteristic.

If K_2 is a field extension of K_1, then K_2 is a vector space over K_1. If the K_1-vector space K_2 has finite dimension m, we say that K_2 is an extension of degree m over K_1. The degree of K_2 over K_1 is denoted by $[K_2: K_1]$.

Finite fields are necessarily of finite characteristic. They can be completely classified, which is the object of the next section.

3.5 The Structure of Finite Fields

Suppose K is a field of characteristic p. For every i, with $0 \leq i \leq p$, the binomial coefficient $\binom{p}{i}$ is given by
\[\binom{p}{i} = \frac{p!}{i!(p-i)!} , \]
so if $1 \leq i \leq p - 1$, we have
\[i \binom{p}{i} = p \binom{p-1}{i-1} . \]
Since $1 \leq i \leq p - 1$ and p is prime, we have $\gcd(p, i) = 1$, and so p divides $\binom{p}{i}$.
3.5. THE STRUCTURE OF FINITE FIELDS

Proposition 3.32. If K is a field of characteristic p, the map (Frobenius map) $\sigma: K \to K$ given by

$$\sigma(a) = a^p$$

is an isomorphism of K onto a subfield of K denoted K^p.

Proof. Since K is commutative, it is clear that $\sigma(ab) = \sigma(a)\sigma(b)$. Obviously $\sigma(0) = 0$ and $\sigma(1) = 1$. By the binomial formula and using the fact that p divides $\binom{p}{i}$ for $i = 1, \ldots, p-1$, since K has characteristic p, we have $\binom{p}{i} = 0$ for $i = 1, \ldots, p-1$, so we have

$$\sigma(a + b) = (a + b)^p = a^p + \sum_{i=1}^{p-1} \binom{p}{i} a^{p-i} b^i + b^p = a^p + b^p = \sigma(a) + \sigma(b).$$

Therefore, σ is a homomorphism, and as we remarked earlier, it is injective.

The field $\mathbb{Z}/p\mathbb{Z}$ with p prime is also denoted by \mathbb{F}_p. Here is the structure theorem for finite fields (after J.P. Serre).

Theorem 3.33. Let K be a finite field.

(i) The field K is of characteristic $p \geq 2$ (p prime). If K is of degree m over \mathbb{F}_p, then K has $q = p^m$ elements.

(ii) Let p be any prime, let m be any natural number $m \geq 1$, and write $q = p^m$. For any algebraically closed field Ω of characteristic p, there exists a unique subfield \mathbb{F}_q of Ω with q elements. The map $\sigma_q: \Omega \to \Omega$ given by $\sigma_q(x) = x^q$ is an automorphism of Ω, and the field \mathbb{F}_q is the set of roots of the polynomial $X^q - X$; that is, $\mathbb{F}_q = \text{Fix}(\sigma_q)$.

(iii) Every finite field with $q = p^m$ elements is isomorphic to \mathbb{F}_q.

Proof. (i) Since K is finite, the map $\mathbb{Z} \to K$ given by $n \mapsto n \cdot 1$ cannot be injective, so K must have characteristic $p \geq 2$, and it contains \mathbb{F}_p as a subfield. If K has dimension m as a vector space over \mathbb{F}_p, then it is obvious that K has p^m elements.

(ii) We know from proposition 3.32 that the map $\sigma: \Omega \to \Omega$ given by $\sigma(x) = x^p$ is an injective homomorphism. Since $\sigma_q = \sigma^m$, the map σ_q is also an injective homomorphism. Since Ω is algebraically closed, for any $a \in K$, the polynomial $X^q - a$ has a root in Ω, which shows that σ_q is also surjective, thus an automorphism of Ω. Then, the field \mathbb{F}_q fixed by σ_q is a subfield of Ω. Since \mathbb{F}_q is also the set of roots of the polynomial $X^q - X$, it has at most q roots. We claim that $F(X) = X^q - X$ has simple roots. From a result of algebra, this is the case if the derivative $F'(X)$ of $F(X)$ is not the zero polynomial. But, since we are in characteristic p and $m \geq 1$, we have

$$F'(X) = qX^{q-1} - 1 = pp^{m-1}X^{q-1} - 1 = -1$$
so \(F'(X) \) is not zero. Therefore, \(F(X) \) has exactly \(q \) roots, and \(\mathbb{F}_q \) has \(q = p^m \) elements.

If \(K \) is any other subfield of \(\Omega \) with \(q \) elements, since the multiplicative group \(K^* \) of \(K \) is a finite group of order \(q - 1 \), we have

\[
x^{q-1} = 1, \quad \text{for all } x \in K^*,
\]

and so

\[
x^q - x = 0 \quad \text{for all } x \in K,
\]

which shows that \(K \) is fixed by \(\sigma_q \), and so \(K \subseteq \mathbb{F}_q \). Since \(|K| = \mathbb{F}_q | = q \), we must have \(K = \mathbb{F}_q \).

(iii) If \(K \) is a finite field with \(q = p^m \) elements, then the reasoning in (ii) shows that \(K \) is the set of roots of the polynomial \(F(X) = X^q - X \). This means that \(K \) is the splitting field of \(\mathbb{F}_p \) (the smallest field extension of \(\mathbb{F}_p \) in which \(F(X) \) has all its roots). But, as \(\Omega \) is algebraically closed and contains a copy of \(\mathbb{F}_p \), it contains a splitting field \(K' \) of \(\mathbb{F}_p \). Since any two splitting fields are isomorphic (see Lang [10], Chapter 5), the field \(K \) can be embedded in \(\Omega \) (as \(K' \)), so by (ii) \(K \) is isomorphic to \(\mathbb{F}_q \).

Using Theorem 3.13, we obtain the following important result.

Theorem 3.34. For every prime \(p \) and every integer \(m \geq 1 \), the multiplicative group \(\mathbb{F}_{p^m}^* \) of the finite field \(\mathbb{F}_{p^m} \) is a cyclic group with \(p^m - 1 \) elements.

Proof. For any divisor \(d \) of \(p^m - 1 \), the polynomial \(X^d - 1 \) has at most \(d \) roots in \(\mathbb{F}_{p^m}^* \), therefore by Theorem 3.13, the group \(\mathbb{F}_{p^m}^* \) is cyclic. \(\square \)

Any generator of \(\mathbb{F}_{p^m}^* \) is called a *primitive root of unity* (to be more precise, a primitive \((p^m - 1)\)th root of unity). Observe that the proof of theorem 3.34 actually shows that *every* finite subgroup of the multiplicative subgroup \(K^* \) of any field \(K \) is cyclic.
Chapter 4

The Miller–Rabin Test

4.1 The Fermat Test; F-Witnesses and F-Liars

This chapter is heavily inspired by Dietzfelbinger [4] and Crandall and Pomerance [3]. The Miller–Rabin test makes use of two basic properties of the prime numbers:

(1) *Fermat’s little theorem*, which says that if p is a prime and if a is any integer which is not a multiple of p, then

$$a^{p-1} \equiv 1 \pmod{p}.$$

Usually, we assume that $1 \leq a \leq p - 1$.

(2) If p is a prime, then 1 has only trivial square roots, which means that the only solutions a with $1 \leq a \leq p - 1$ of the congruence

$$a^2 \equiv 1 \pmod{p}$$

are $a = 1$ and $a = p - 1$.

To prove (2), observe that if $a^2 \equiv 1 \pmod{p}$, then $a^2 - 1 = (a + 1)(a - 1)$ is divisible by p, and since p is prime, either p divides $a - 1$ or p divides $a + 1$. Because $1 \leq a \leq p - 1$, we conclude that $a = 1$ or $a = p - 1$. On the other hand, 1 and $p - 1$ are always square roots of unity modulo p (even if p is not prime), since $1^2 \equiv 1 \pmod{p}$ and $(p - 1)^2 \equiv (-1)^2 \equiv 1 \pmod{p}$.

It turns out that 1 and -1 are the only square roots of unity modulo n iff n is of the form 4, p^m, or $2p^m$, where p is an odd prime.\(^1\) To prove this fact, we use the following proposition.

Proposition 4.1. If p is an odd prime, then there are exactly two square roots of unity modulo p^m and $2p^m$ ($m \geq 1$), namely 1 and -1. There is a unique square root of unity modulo 2 (i.e. 1), two square roots of unity modulo 4 (i.e. ± 1), and four square roots of unity modulo 2^m if $m \geq 3$, namely ± 1 and $2^{m-1} \pm 1$.

\(^1\)I thank Peter Freyd for communicating this result to me.
Proof. First, assume that \(n = p^m \) with \(p \) an odd prime. In this case, we know that primitive roots modulo \(p^m \) exist, so pick one, say \(g \). Then, every \(x \in (\mathbb{Z}/p^m\mathbb{Z})^* \) can be written as \(x = g^i \), with \(1 \leq i \leq \varphi(p^m) = p^{m-1}(p-1) \), and \(x^2 \equiv 1 \pmod{p^m} \) is equivalent to \(g^{2i} \equiv 1 \pmod{p^m} \). Since \(g \) has order \(\varphi(p^m) \), the congruence \(g^{2i} \equiv 1 \pmod{p^m} \) holds iff \(\varphi(p^m) = p^{m-1}(p-1) \) divides \(2i \), that is, iff \(p^{m-1}((p-1)/2) \) divides \(i \) (since \(p \) is odd). Since \(1 \leq i \leq p^{m-1}(p-1) \), there are only two possibilities: \(i = p^{m-1}((p-1)/2) \) and \(i = p^{m-1}((p-1)/2) \), which correspond to \(x = -1 \) and \(x = 1 \).

The case \(n = 2p^m \) is analogous, since primitive roots also exist and since \(\varphi(2p^m) = \varphi(p^m) \).

The cases \(n = 2 \) and \(n = 4 \) are clear.

Assume that \(n = 2^m \) with \(m \geq 3 \). We are seeking solutions of the congruence \(x^2 \equiv 1 \pmod{2^m} \), with \(1 \leq x \leq 2^m - 1 \). Note that

\[
(2^{m-1} + x)^2 \equiv 2^{2m-2} + 2^m x + x^2 \equiv x^2 \pmod{2^m}
\]

since \(m \geq 3 \). Therefore, it is sufficient to find solutions \(x \) such that \(1 \leq x \leq 2^{m-1} - 1 \). We have \(x^2 \equiv 1 \pmod{2^m} \) iff \((x-1)(x+1) \equiv 0 \pmod{2^m} \), so there are three mutually exclusive possibilities:

1. \(x \equiv 1 \pmod{2^m} \). Since \(1 \leq x \leq 2^m - 1 \), we must have \(x = 1 \).

2. \(x \equiv -1 \equiv 2^m - 1 \pmod{2^m} \). Since \(1 \leq x \leq 2^{m-1} - 1 \), this case is impossible.

3. \(x - 1 = h2^i \) and \(x + 1 = k2^{m-i} \), with \(1 \leq i \leq m - 1 \) and \(h, k > 0 \).

In the third case, we deduce that

\[
x = h2^{i-1} + k2^{m-i-1} = k2^{m-i-1} - h2^{i-1}.
\]

If \(2 \leq i \leq m - 2 \), then \(1 \) is divisible by \(2 \), which is absurd. Therefore \(i = 1 \) or \(i = m - 1 \).

If \(i = 1 \), since \(x+1 = k2^{m-i} \), we have \(x = k2^{m-1} - 1 \), and since \(k > 0 \) and \(1 \leq x \leq 2^{m-1} - 1 \), we must have \(k = 1 \), so

\[
x = 2^{m-1} - 1.
\]

Since \(m \geq 3 \), we have \(2^{m-1} - 1 \not\equiv 1 \pmod{2^m} \), and \(2^{m-1} - 1 \) is a square root of unity distinct from \(1 \).

If \(i = m - 1 \), since \(x - 1 = h2^i \), we have \(x = h2^{m-1} + 1 \), and since \(1 \leq x \leq 2^{m-1} - 1 \) and \(h > 0 \), this case is impossible.

In summary, we proved that there are exactly two square roots of unity \(x = 1 \) and \(x = 2^{m-1} - 1 \) such that \(1 \leq x \leq 2^{m-1} - 1 \), and thus, exactly four square roots of unity modulo \(2^m \); namely \(\pm 1 \) and \(2^{m-1} \pm 1 \). \(\square \)
Remark: The fact that there are precisely four square roots of unity modulo \(2^m\) when \(m \geq 3\) follows immediately from the fact that \((\mathbb{Z}/2^m\mathbb{Z})^*\) is isomorphic to the direct product of the two cyclic subgroups \(-1, 1\) and \(\langle 5 \rangle\), both of even order (see Theorem 3.31).

Now, we can determine the exact number of square roots of unity modulo \(n\).

Theorem 4.2. For any natural number \(n > 1\), if the prime factorization of \(n\) is

\[n = 2^m p_1^{j_1} \cdots p_k^{j_k}, \]

where \(p_1, \ldots, p_k\) are distinct odd primes and \(m + k \geq 1\), then the number \(s\) of distinct square roots of unity modulo \(n\) is given by

\[s = \begin{cases}
2^k & \text{if } m = 0 \text{ and } k \geq 1 \text{ or } m = 1 \text{ and } k \geq 0 \\
2^{k+1} & \text{if } m = 2 \text{ and } k \geq 0 \\
2^{k+2} & \text{if } m \geq 3 \text{ and } k \geq 0.
\end{cases} \]

Proof. First, consider the case where \(m = 0\). Since \(p_1, \ldots, p_k\) are pairwise relatively prime, the congruence \(x^2 \equiv 1 \pmod{n}\) is equivalent to the \(k\) congruences

\[x^2 \equiv 1 \pmod{p_1^{j_1}} \]
\[\vdots \]
\[x^2 \equiv 1 \pmod{p_k^{j_k}}. \]

From Proposition 4.1, each congruence \(x^2 \equiv 1 \pmod{p_1^{j_1}}\) has the two solutions \(x = 1\) and \(x = -1\) modulo \(p_1^{j_1}\). By the Chinese remainder theorem, there is a bijection between the set of solutions \(x\) modulo \(n\) and the set of \(k\) tuples of solutions \((x_1, \ldots, x_k)\) where \(x_i\) is a solution modulo \(p_i^{j_i}\), and since there are \(2^k\) solutions \((x_1, \ldots, x_k)\) with \(x_i = \pm 1\), there are \(2^s\) square roots modulo \(n\).

If \(k = 0\), then Proposition 4.1 says that the congruence \(x^2 \equiv 1 \pmod{2^m}\) has one solution if \(m = 1\), two solutions if \(m = 2\), and 4 solutions if \(m \geq 3\).

If \(m \geq 1\) and \(k \geq 1\), since \(2, p_1, \ldots, p_k\) are pairwise relatively prime, the congruence \(x^2 \equiv 1 \pmod{n}\) is equivalent to the \(k + 1\) congruences

\[x^2 \equiv 1 \pmod{2^m} \]
\[x^2 \equiv 1 \pmod{p_1^{j_1}} \]
\[\vdots \]
\[x^2 \equiv 1 \pmod{p_k^{j_k}}. \]

Again, we use the Chinese remainder theorem. Each congruence \(x^2 \equiv 1 \pmod{p_1^{j_1}}\) has the two solutions 1 and \(-1\), and the congruence \(x^2 \equiv 1 \pmod{2^m}\) has one solution if \(m = 1\), two solutions if \(m = 2\), and 4 solutions if \(m \geq 3\). Therefore, there are \(2^k\) square roots if \(m = 1\), \(2 \times 2^k = 2^{k+1}\) square roots if \(m = 2\), and \(4 \times 2^k = 2^{k+2}\) square roots if \(m = 3\). \(\square\)
For example, if \(p = 91 = 7 \times 13 \), then \(27^2 = 729 = 8 \times 91 + 1 \), so 27 is a square root of 1 (mod 91). The other nontrivial square root of 1 (mod 91) is 64.

If we find some nontrivial square root of unity \(a \) modulo \(p \), then we know that \(p \) is composite (and \(a \) is a witness to the fact that \(p \) is composite). Unfortunately, if \(p \) is composite, unless the number \(k \) of distinct primes dividing \(p \) is large, the number of nontrivial square roots of unity modulo \(p \) (at most \(2^{k+2} - 2 \)) is a lot smaller than \(p \), so it is not practical to test a randomly chosen \(a \in \{2, \ldots, p-2\} \).

Going back to (1), observe that if \(n \geq 2 \), then by the binomial formula, we have

\[
(n - 1)^{n-1} \equiv (-1)^{n-1} \quad (\text{mod } n).
\]

Consequently, if \(n \geq 3 \) is odd, then

\[
(n - 1)^{n-1} \equiv 1 \quad (\text{mod } n),
\]

and if \(n \geq 4 \) is even, then

\[
(n - 1)^{n-1} \equiv -1 \quad (\text{mod } n).
\]

(In the special case where \(n = 2 \), we have \(1 \equiv -1 \) (mod 2).) Now, for any natural number \(n \geq 4 \), if \(2 \leq a \leq n - 2 \) and if

\[
a^{p-1} \not\equiv 1 \quad (\text{mod } n),
\]

then \(n \) is not prime, since Fermat’s little theorem does not hold. Since all primes except 2 are odd integers, we only need to test odd integers for compositeness and this suggests the following test:

Fermat test: For any odd integer \(n \geq 5 \), pick randomly some \(a \in \{2, \ldots, n-2\} \).

If \(a^{n-1} \not\equiv 1 \) (mod \(n \)), then return “\(n \) is composite,” else return “\(n \) is a probable prime.”

Of course, we compute exponentiation modulo \(n \) using fast algorithms based on repeated squaring.

Definition 4.1. Let \(n \in \mathbb{N} \) be any integer such that \(n \geq 3 \).

1. An integer \(a \) such that \(2 \leq a \leq n - 1 \) is called a Fermat witness, for short an \(F \)-witness for \(n \), if \(a^{n-1} \not\equiv 1 \) (mod \(n \)).

2. If \(n \) is an odd composite, then an integer \(a \) with \(1 \leq a \leq n - 1 \) is a Fermat liar, for short an \(F \)-liar for \(n \), if \(a^{n-1} \equiv 1 \) (mod \(n \)). The set of \(F \)-liars for \(n \) is denoted by \(L_n^F \).

Every even number \(n \geq 4 \) has \(n - 1 \) has an \(F \)-witness. This is a bit of an overkill, since every positive even number, except 2, is a composite. The number 1 is a trivial \(F \)-liar, and by a previous observation, when \(n \) is an odd composite, \(n - 1 \) is always an \(F \)-liar.

A composite number \(n \geq 4 \) such \(a \geq 2 \) is an \(F \)-liar for \(n \) is called a Fermat pseudoprime base \(a \) (for short, a pseudoprime base \(a \)).
4.1. THE FERMAT TEST; F-WITNESSES AND F-LIARS

It can be checked that 2 is an F-witness for all integers \(n \geq 3 \) up to \(n = 340 \). However, for \(n = 341 = 11 \times 31 \), we get
\[
2^{340} \equiv 1 \pmod{341},
\]
so 2 is an F-lier for 341, and 341 is a pseudoprime base 2. If we try \(a = 3 \), we find that
\[
3^{340} \equiv 56 \pmod{341},
\]
so 3 is an F-witness for 341, and 341 is not a pseudoprime base 3. On the other hand, it is easy to check that 91 = 7 \times 13 is not a pseudoprime base 2, but it is a pseudoprime base 3.

The above considerations suggest the following question: if \(n \geq 3 \) is a (odd) composite, does it necessarily have some F-witness? The answer is yes, but this is not of practical use.

Recall that if \(n \geq 2 \), the group \((\mathbb{Z}/n\mathbb{Z})^*\) is the multiplicative group of units of the ring \(\mathbb{Z}/n\mathbb{Z} \); that is,
\[
(\mathbb{Z}/n\mathbb{Z})^* = \{ a \in \mathbb{Z} \mid 1 \leq a \leq n-1, \gcd(a, n) = 1 \}.
\]
Here and in several places later, with a slight abuse of notation, we are identifying the equivalence class \(\bar{a} \) of \(a \) with its representative \(a \mod n \).

The order (number of elements) of \((\mathbb{Z}/n\mathbb{Z})^*\) is \(\varphi(n) \), where \(\varphi(n) \) is the number of integers \(a \), with \(1 \leq a \leq n \), which are relatively prime to \(n \) (\(\gcd(a, n) = 1 \)). The function \(n \mapsto \varphi(n) \) is the Euler \(\varphi \)-function, or totient function. We have
\[
\varphi(1) = 1, \text{ if } p \text{ is prime and } r \geq 1, \text{ then } \varphi(p^r) = p^r - p^{r-1} = p^{r-1}(p-1), \text{ and if } m, n \geq 1 \text{ and } \gcd(m, n) = 1, \text{ then } \varphi(mn) = \varphi(m)\varphi(n);
\]
see Section 3.2 and Proposition 3.20 for details.

Proposition 4.3. For any integer \(n \geq 2 \), the following properties hold:

1. For any integer \(a \) such that \(1 \leq a \leq n-1 \), if \(a^r \equiv 1 \pmod{n} \) for some \(r \geq 1 \), then \(a \in (\mathbb{Z}/n\mathbb{Z})^* \).
2. If \(a^{n-1} \equiv 1 \pmod{n} \) for all \(a \) with \(1 \leq a \leq n-1 \), then \(n \) is prime.

Proof. (a) if \(r = 1 \), then we must have \(a = 1 \), and if \(r \geq 2 \), then \(a^{r-1}a \equiv 1 \pmod{n} \) shows that \(a \) is a unit, so in both cases \(a \in (\mathbb{Z}/n\mathbb{Z})^* \).

(b) If \(a^{n-1} \equiv 1 \pmod{n} \) for all \(a \) with \(1 \leq a \leq n-1 \), then by (a), we have \((\mathbb{Z}/n\mathbb{Z})^* = \{1, \ldots, n-1\} \), so \(\gcd(a, n) = 1 \) for all \(a = 2, \ldots, n-1 \), which implies that \(n \) is prime. \(\square \)

By Proposition 4.3 (b), if \(n \geq 4 \) is a composite, then it must have some F-witness. Furthermore, by (a), the \(n - 1 - \varphi(n) \) elements of the set
\[
\{1, \ldots, n-1\} - (\mathbb{Z}/n\mathbb{Z})^* = \{ a \in \mathbb{Z} \mid 2 \leq a \leq n-2 \mid \gcd(a, n) > 1 \}
\]
must be F-witnesses \(a^{n-1} \not\equiv 1 \pmod{n} \).

Unfortunately, this set is very slim for many composite numbers. For example, if \(n = pq \) is the product of two distinct primes \(p \) and \(q \), then this sets contains \(pq - 1 - (p-1)(q-1) = \)
There are 36 F-witnesses not in $(\mathbb{Z}/91\mathbb{Z})^*$ (multiples of 7 and 13):

\[7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84 \]
\[13, 26, 39, 52, 65, 78. \]

There are 36 F-witnesses in $(\mathbb{Z}/91\mathbb{Z})^*$:

\[2, 5, 6, 8, 11, 15, 18, 19, 20, 24, 31, 32, \]
\[33, 34, 37, 41, 44, 45, 46, 47, 50, 54, 57, 58, \]
\[59, 60, 67, 71, 72, 73, 76, 80, 83, 85, 86, 89. \]

Finally, there and 36 F-liars (necessarily in $(\mathbb{Z}/91\mathbb{Z})^*$);

\[1, 3, 4, 9, 10, 12, 16, 17, 22, 23, 25, 27, \]
\[29, 30, 36, 38, 40, 43, 48, 51, 53, 55, 61, 62, \]
\[64, 66, 68, 69, 74, 75, 79, 81, 82, 87, 88, 90. \]

The Fermat test gives the wrong answer if the random choice for a hits one the 34 F-liars other and 1 and 90, which has probability $34/88 = 17/44$. Observe that $17/34 < 1/2$. This is a general fact, provided that the odd composite n has some F-witness in $(\mathbb{Z}/n\mathbb{Z})^*$. This follows from the interesting fact that the set L_n^F of F-liars is a subgroup of $(\mathbb{Z}/n\mathbb{Z})^*$.

Proposition 4.4. For any integer $n \geq 2$, the set L_n^F of F-liars is a subgroup of $(\mathbb{Z}/n\mathbb{Z})^*$. Furthermore, if n is an odd composite and if n possesses at least some F-witness in $(\mathbb{Z}/n\mathbb{Z})^*$, then the probability that the Fermat test gives the wrong answer (n is prime) is at most $1/2$.

Proof. Since $1 \equiv 1 \pmod{n}$, we have $1 \in L_n^F$. Since $(\mathbb{Z}/n\mathbb{Z})^*$ is a finite group, to show that L_n^F is a subgroup, it suffices to show closure under multiplication. If $a^{n-1} \equiv 1 \pmod{n}$ and $b^{n-1} \equiv 1 \pmod{n}$, then $(ab)^{n-1} \equiv a^{n-1}b^{n-1} \equiv 1 \pmod{n}$, as desired.

By Lagrange’s theorem, the order $|L_n^F|$ of L_n^F divides the order $\varphi(n)$ of $(\mathbb{Z}/n\mathbb{Z})^*$. If there is some F-witness in $(\mathbb{Z}/n\mathbb{Z})^*$, then L_n^F is a proper subgroup of $(\mathbb{Z}/n\mathbb{Z})^*$. Since n is a composite and since L_n^F is a proper subgroup, we deduce that $\varphi(n) < n - 1$ and that $|L_n^F|$ is a proper divisor of $\varphi(n)$, which implies that

$$|L_n^F| \leq (n - 2)/2.$$

Thus, the probability that some a chosen in $\{2, \ldots, n - 2\}$ belongs to $L_n^F - \{1, n - 1\}$ is bounded by

$$\frac{(n - 2)/2 - 2}{n - 3} = \frac{n - 6}{2(n - 3)} < \frac{1}{2},$$

since $2n - 12 < 2n - 6$. \qed
The good news about Proposition 4.4 is that if n is an odd composite and if n has some F-witness in $(\mathbb{Z}/n\mathbb{Z})^*$, then the probability that the Fermat test gives the wrong answer is less than $1/2$. By repeating the test ℓ times, each time choosing randomly and independently some a in $\{2, \ldots, n-2\}$, we can make the probability of failure less than $(1/2)^\ell$.

4.2 Carmichael Numbers

The bad news is that there exist odd composites n such that $L_n^F = (\mathbb{Z}/n\mathbb{Z})^*$; that is, n has no F-witness in $(\mathbb{Z}/n\mathbb{Z})^*$. The smallest such number is $561 = 2 \times 11 \times 17$. This number is a pseudoprime in any base relatively prime to 561. Such “nasty” numbers were first discovered by R. Carmichael in 1910, and motivates the following definition.

Definition 4.2. An integer $n \geq 3$ for which $a^{n-1} \equiv 1 \pmod{n}$ for all $a \in \{2, \ldots, n-1\}$, with $\gcd(a, n) = 1$, is called a **probable prime**. A composite integer $n \geq 3$ which is a probable prime is called a **Carmichael number**.

If $n \geq 4$ is even, we observed that $n-1$ is an F-witness for n, so a Carmichael number must be odd.

Unfortunately for primality testing, there are infinitely many Carmichael numbers. This fact was proved in 1994 by Alford, Granville and Pomerance. They also proved that there is some integer $x_0 > 0$, such that for all $x \geq x_0$, the number $C(x)$ of Carmichael numbers not exceeding x satisfies $C(x) > x^{2/7}$.

Remark: The sufficiently large x_0 is not known explicitly, but it is conjectured that it is the 96th Carmichael number: 8719309.

Other authors define a Carmichael number as a composite integer $n \geq 3$ for which

$$a^n \equiv a \pmod{n} \quad \text{for all } a \in \mathbb{N}.$$

This second definition implies the first (Definition 4.2), because if $a^n \equiv a \pmod{n}$ and $\gcd(a, n) = 1$, then we can divide by a and we obtain $a^{n-1} \equiv 1 \pmod{n}$. Definition 4.2 implies the second definition, but this requires a little work. We can use of a criterion due to A. Korselt. This criterion was found in 1899, eleven years before Carmichael actually produced the first example. Presumably Korselt believed that such numbers did not exist, and he developed a criterion as a first step in proving this.

2We have to be careful about which conditional probability we are talking about. In this case, we are considering the conditional probability that the algorithm lies ℓ times (fails to report that n is composite), given that n is composite. However, as a user of the algorithm, it is more useful to know the conditional probability that n is composite, given that the algorithm runs ℓ times and each time fails to report that n is composite. The two conditional probabilities are related by Bayes’s formula. The second conditional probability involves the density of primes. A computation shows that the probability $(1/2)^\ell$ must be (approximately) multiplied by $\ln n$. We will come back to this point later on.
Theorem 4.5. \textit{(Korselt criterion)} An integer \(n \geq 2 \) is a Carmichael number iff the following two conditions hold.

1. The number \(n \) is composite and not divisible by the square of any prime (it is square-free).

2. For every prime \(p \), if \(p \) divides \(n \) then \(p - 1 \) divides \(n - 1 \).

Proof. First, let \(n \) be a Carmichael number.

1. Assume that \(n \) is divisible by the square of some prime \(p \). Since \(n \) must be odd, we can write \(n = p^k m \), where \(p \geq 3 \) is a prime, \(k \geq 2 \), and \(p \) does not divide \(m \). We produce an \(F \)-witness in \((\mathbb{Z}/n\mathbb{Z})^* \) for \(n \) as follows:

\[a^{n-1} \equiv (1+p)^{n-1} \equiv 1 + (n-1)p + \sum_{i=2}^{n-1} \binom{n-1}{i} p^i \equiv 1 + (n-1)p \quad (\text{mod } p^2). \]

Since \(a^{n-1} \equiv 1 \) (mod \(p^2 \)), we deduce that \((n-1)p \equiv 0 \) (mod \(p^2 \)), which means that \(p^2 \) divides \((n-1)p \), and since \(p \) is prime, \(p \) divides \(n - 1 \). However, \(n - 1 = p^k - 1 \) with \(k \geq 2 \), so \(p \) does not divide \(n - 1 \), a contradiction.

Case 2. If \(m \geq 3 \), then we use the Chinese remainder theorem to find some \(a \) with \(1 \leq a < p^2 m \leq n \) so that

\[a \equiv p + 1 \pmod{p^2} \]
\[a \equiv 1 \pmod{m}. \]

Since \(p^2 \) divides \(a - (p + 1) \), the prime \(p \) does not divide \(a \), so \(\gcd(a, p^k) = 1 \). Since \(a \equiv 1 \pmod{m} \), we also have \(\gcd(a, m) = 1 \). Because \(\gcd(p^k, m) = 1 \) and \(n = p^k m \), we conclude that \(\gcd(a, n) = 1 \). We claim that \(a^{n-1} \not\equiv 1 \) (mod \(n \)). As in case 1, we proceed by contradiction. Then, by the same reasoning, we deduce that \(p \) divides \(n - 1 \). This time, \(n - 1 = p^k - 1 \), and again \(p \) does not divide \(n - 1 \), a contradiction.

2. By (1), \(n \) is a product of distinct primes. Assume that the prime \(p \) divides \(n \). Since \(p \) is prime, the group \((\mathbb{Z}/p\mathbb{Z})^* \) is cyclic (see Theorem 3.21) so pick a generator \(g \) (a primitive root modulo \(p \)). By the Chinese remainder theorem, we can find some \(b \) such that

\[b \equiv g \pmod{p} \]
\[b \equiv 1 \pmod{n/p}. \]

Since \(n \) is a product of distinct primes, the numbers \(p \) and \(n/p \) have no common factor, so \(\gcd(b, n) = 1 \). Since \(n \) is a Carmichael number, we have

\[b^{n-1} \equiv 1 \pmod{n}, \]
and since p divides n, we get
\[g^{n-1} \equiv b^{n-1} \equiv 1 \pmod{p}. \]
Since g has order $p - 1$, the number $p - 1$ divides $n - 1$.

Conversely, assume that (1) and (2) hold. Let $a \in \{1, \ldots, n - 1\}$ be any integer such that $\gcd(a, n) = 1$. For any prime p dividing n, we also have $\gcd(a, p) = 1$, so by Fermat’s little theorem,
\[a^{p-1} \equiv 1 \pmod{p}. \]
Since $p - 1$ divides $n - 1$, we also have
\[a^{n-1} \equiv 1 \pmod{p}. \]
Since the prime factors of n are all distinct, we deduce that
\[a^{n-1} \equiv 1 \pmod{n}, \]
which shows that n is a Carmichael number.

We leave it as an exercise to prove that if n is a Carmichael number, then
\[a^n \equiv a \pmod{n} \quad \text{for all } n \in \mathbb{N}. \]

Hint: use Theorem 4.5.

We saw in Theorem 4.5 that every Carmichael numbers contains distinct prime factors. The number of distinct prime factors must be at least three.

Proposition 4.6. Every Carmichael number contains at least three distinct prime factors.

Proof. We make use of Theorem 4.5. Assume that some Carmichael number n is the product of two distinct primes p and q. We may suppose that $p < q$. By Theorem 4.5, property (2) says that $p - 1$ and $q - 1$ both divide $n - 1$. But, $n - 1 = pq - 1 = p(q - 1) + p - 1$, so $n - 1 \equiv p - 1 \pmod{(q - 1)}$, and $p - 1 \not\equiv 0 \pmod{(q - 1)}$ since $q > p > 3$, a contradiction. \(\Box \)

If n is a Carmichael number, then $L^F_n = (\mathbb{Z}/n\mathbb{Z})^*$, so the set \{1, \ldots, n - 1\} - $(\mathbb{Z}/n\mathbb{Z})^*$ of F-witnesses is quite thin, and the probabilty that the Fermat test gives the wrong answer (n is prime) is
\[\frac{\varphi(n) - 2}{n - 3} > \frac{\varphi(n)}{n} = \prod_{p \mid n, \text{ prime}} \left(1 - \frac{1}{p}\right). \]
This bound is annoyingly close to 1 if n has only few large prime factors. For example, if
\[n = 651693055693681 = 72931 \times 87517 \times 102103, \]
we find that $\varphi(n)/n > 0.99996$. Repeating the test does not help, because if n has only 3 or 4 factors and if the smallest prime factor is p_0, then it is not hard to see that we would have to repeat the test a number of times proportional to p_0 to make the error probability less than 1/2. Therefore, a new idea is necessary to break the curse of Carmichael numbers.
4.3 The Miller–Rabin Test; MR-Witnesses and MR-Liars

The new idea is to make use of the nontrivial square root of unity test. If \(n \geq 3 \) is an odd integer, we can factor the largest power of 2 in \(n - 1 \); that is, we write

\[
 n - 1 = 2^k t,
\]

where \(t \) is odd. The point is that if \(n \) is prime, then for any \(a \) which is not a multiple of \(n \), the residues of \(a^t \) and \(a^{2^i t} \) (with \(0 \leq i \leq k - 1 \)) modulo \(n \) must satisfy some special condition.

Proposition 4.7. Let \(n \) be an odd prime, and write

\[
 n = 2^k t, \quad \text{with } t \text{ odd and } k \geq 1.
\]

For any natural number \(a \) which is not a multiple of \(n \), one of the following two conditions must hold:

1. either \(a^t \equiv 1 \pmod{n} \),
2. or \(a^{2^i t} \equiv n - 1 \pmod{n} \), for some \(i \) with \(0 \leq i \leq k - 1 \).

Proof. By Fermat’s little theorem, we have

\[
 a^{n-1} \equiv 1 \pmod{n},
\]

that is

\[
 a^{2^k t} \equiv 1 \pmod{n}.
\]

This implies that if we consider the list

\[
 b_0 = a^t, b_1 = a^{2^2 t}, b_2 = a^{2^3 t}, \ldots, b_{k-1} = a^{2^{k-1} t}, b_k = a^{2^k t} = a^{n-1},
\]

the last number is congruent to 1 modulo \(n \), and since

\[
 a^{2^{i+1} t} = \left(a^{2^i t}\right)^2,
\]

we have \(b_{i+1} = b_i^2 \), for \(i = 0, \ldots, k - 1 \). There are only two possibilities:

(i) We have \(b_0 = a^t \equiv 1 \pmod{n} \).

(ii) There is some \(b_i \) such that \(b_i \not\equiv 1 \pmod{n} \), but \(b_i^2 \equiv 1 \pmod{n} \), for some \(i \) with \(0 \leq i \leq k - 1 \). Because \(n \) is prime, we know that \(b_i^2 \equiv 1 \pmod{n} \) implies that \(b_i \equiv \pm 1 \pmod{n} \), and since +1 is ruled out, we must have \(b_i \equiv -1 \equiv n - 1 \pmod{n} \).

Case (i) corresponds to case (1) and case (ii) corresponds to case (2). \(\square \)
Proposition 4.7 implies that if we can find some natural number \(a \) such that

(a) \(a^t \not\equiv \pm 1 \pmod{n} \), and

(b) \(a^{2^it} \not\equiv n - 1 \pmod{n} \), for all \(i \) with \(1 \leq i \leq k - 1 \),

then \(n \) must be a composite. Clearly, \(a \neq 1 \), but \(a \neq n - 1 \) as well, since \((n - 1)^t \equiv -1\), because \(t \) is odd. The above leads to the following definition.

Definition 4.3. Let \(n \geq 3 \) be any odd integer, and write \(n - 1 = 2^k t \), with \(k \geq 1 \) and \(t \) odd.

1. A number \(a \) such that \(2 \leq a \leq n - 2 \) is a *Miller–Rabin witness*, for short a *MR-witness* for \(n \), if the following two conditions hold:

 (a) \(a^t \not\equiv \pm 1 \pmod{n} \), and

 (b) \(a^{2^it} \not\equiv n - 1 \pmod{n} \), for all \(i \) with \(1 \leq i \leq k - 1 \).

2. If \(n \) is composite, then any integer \(a \) with \(1 \leq a \leq n - 1 \) is a *Miller–Rabin liar*, for short an *MR-liar* for \(n \), iff \(a \) is not a *MR-witness* for \(n \). The set of *MR-liars* for \(n \) is denoted by \(L_{n}^{\text{MR}} \), and we have

\[
L_{n}^{\text{MR}} = \{ a \in \{1, \ldots, n-1\}, \text{either } a^t \equiv 1 \pmod{n}, \\
 \text{or } a^{2^it} \equiv n - 1 \pmod{n}, \text{for some } i \text{ with } 0 \leq i \leq k - 1 \}.
\]

The numbers \(a = 1 \) and \(a = n - 1 \) are trivial MR-liars. Observe that every MR-liar is an F-liar: If \(a^t \equiv 1 \pmod{n} \), then

\[
a^{n-1} \equiv (a^t)^{2^k} \equiv (1)^{2^k} \equiv 1 \pmod{n},
\]

and if \(a^{2^it} \equiv n - 1 \pmod{n} \), for some \(i \) with \(0 \leq i \leq k - 1 \), then

\[
a^{n-1} \equiv (a^{2^it})^{2^{k-i}} \equiv (-1)^{2^{k-i}} \equiv 1 \pmod{n},
\]

since \(i \leq k - 1 \).

Thus, \(L_{n}^{\text{MR}} \subseteq L_{n}^{\text{F}} \), but unfortunately, \(L_{n}^{\text{MR}} \) is not a group. For example, if \(n = 325 = 5^2 \times 13 \), then \(n - 1 = 2^2 \times 81 \), and it is easy to verify that

\[
7^{2 \times 81} \equiv 324 \pmod{325} \\
32^{2 \times 81} \equiv 324 \pmod{325} \\
224^{81} \equiv 274 \pmod{325} \\
224^{2 \times 81} \equiv 1 \pmod{325} \\
224^{2^2 \times 81} \equiv 1 \pmod{325},
\]
so 7 and 32 are both \(MR \)-liars, but their product 224 is a \(MR \)-witness. When \(n \) is not a Carmichael number, \(L_n^{MR} \) is contained in \(L_f^r \) which is a proper subgroup of \((\mathbb{Z}/n\mathbb{Z})^*\), so the proportion of \(MR \)-liars is less than 1/2, but when \(n \) is a Carmichael number, we need to find another proper subgroup of \((\mathbb{Z}/n\mathbb{Z})^*\) containing \(L_n^{MR} \). Fortunately, this is possible.

An odd composite number \(n \) such that \(a \) with \(2 \leq a \leq n - 2 \) is an \(MR \)-liar for \(n \) is called a strong pseudoprime base \(a \).

Because every \(MR \)-liar is an \(F \)-liar, every strong pseudoprime base \(a \) is a pseudoprime base \(a \). The converse is false.

For example, we saw earlier that \(n = 341 \) is a pseudoprime base 2. But 341 is not a strong pseudoprime base 2, because \(340 = 2^2 \times 85 \), \(2^{85} \equiv 32 \) (mod 341), and \(2^{2 \times 85} \equiv 1 \) (mod 341), so 2 is an \(MR \)-witness for 341. In fact, 32 is a nontrivial square root of unity modulo 341.

Here is an example of a pseudoprime base 10 which is also a strong pseudoprime base 10, namely \(n = 91 \). Indeed, \(90 = 2 \times 45 \), and \(10^{45} \equiv 90 \) (mod 91), which shows that 10 is an \(MR \)-liar.

The Carmichael number \(n = 561 = 2 \times 11 \times 17 \) is a pseudoprime for every base relatively prime to 561, and \(560 = 2^4 \times 35 \). For \(a = 2 \), we obtain

\[
\begin{align*}
2^{35} & \equiv 263 \pmod{561} \\
2^{2 \times 35} & \equiv 263^2 \equiv 166 \pmod{561} \\
2^{2^2 \times 35} & \equiv 166^2 \equiv 67 \pmod{561} \\
2^{2^4 \times 35} & \equiv 67^2 \equiv 1 \pmod{561}
\end{align*}
\]

Since \(263 \not\equiv \pm1 \) (mod 561), and \(166, 67, 1 \not\equiv 560 \) (mod 561), the number 2 is an \(MR \)-witness for 561, which is not a strong pseudoprime base 2.

We leave it as an exercise to check that if \(n = 172947529 \), then \(n - 1 = 2^3 \times 21618441 \), with \(a = 17 \), we get

\[
17^{21618441} \equiv 1 \pmod{172947529},
\]

so 17 is not an \(MR \)-witness for 172947529. With \(a = 3 \), we get

\[
3^{21618441} \equiv -1 \pmod{172947529},
\]

and 3 is not an \(MR \)-witness for 172947529 either. However, \(a = 23 \) is an \(MR \)-witness for 172947529, which happens to be a Carmichael number with factorization

\[
172947529 = 307 \times 613 \times 919.
\]

The idea to use the sequence \(b_0, \ldots, b_k \) of Proposition 4.7 to design a test for compositeness was suggested around 1976 by J. Selfridge. Also around 1976, G. Miller designed a deterministic test whose polynomial running time depends on the truth of the Extended
Riemann Hypothesis (for short, ERH), a yet famous unproved number-theoretic conjecture. We will say a little more about it later. Some years later, around 1980, M. Rabin (and independently L. Monier) found a way of making Miller’s test into a randomized algorithm. This algorithm is now known as the Miller–Rabin test. Here it is.

Miller–Rabin test

The input is an odd integer \(n > 3 \).

```plaintext
procedure miller-rabin(n)
begin
Decompose \( n \) as \( n - 1 = 2^k t \), with \( t \) odd
Choose random integer \( a \in \{ 2, \ldots, n - 2 \} \);
\( b := a^t \mod n \);
if \( b = 1 \) or \( b = n - 1 \) then \( c := 0 \); return \( c \); exit;
\( \ast n \) is a strong pseudoprime base \( a \) \( \ast \)
for \( i = 1 \) to \( k - 1 \) do
\( b := b^2 \mod n \);
if \( b = n - 1 \) then \( c := 0 \); return \( c \); exit
\( \ast n \) is a strong pseudoprime base \( a \) \( \ast \)
if \( b = 1 \) then \( c := 1 \); return \( c \); exit \( \ast n \) is composite \( \ast \)
endfor;
\( c := 1 \); return \( c \) \( \ast n \) is composite \( \ast \)
end
```

We need to show that the algorithm behaves correctly; that is, we need to show that \(n \) is indeed composite when it returns the output \(c = 1 \) (“composite”). There are two ways that this can happen. Let \(b_0 = a^t \mod n \) and \(a_i = a^{2^i} \mod n \), for \(i = 1, \ldots, k \).

(a) For some \(i, 1 \leq i \leq k - 1 \), the algorithm finds that \(b = 1 \). In order to reach this condition, it must be the case that \(b_0, b_1, \ldots, b_{i-1} \notin \{1, n - 1\} \), since otherwise the program would have stopped. As soon as \(b_i = 1 \), we also have \(b_{i+1} = \ldots = b_k = 1 \). But then, \(b_0 \notin \{1, -1\} \) and \(b_i \neq n - 1 \) for \(i = 1, \ldots, k - 1 \), so \(a \) is an MR-witness and \(n \) is indeed composite.

(b) The program goes through all \(k - 1 \) rounds through the for loop and returns \(c = 1 \) (“composite”). In this case, all the tests (in the if statements) have failed, and we must have \(b_i \notin \{1, n - 1\} \) for \(i = 0, \ldots, k - 1 \). Again \(a \) is an MR-witness and \(n \) is composite.

The computational complexity of this algorithm depends on what kind of fast algorithm is used to compute exponentiation modulo \(n \). As explained in Dietzfelbinger [4] (Chapter 5, Section 5.2), it takes \(O(\log_2 n) \) arithmetic operations and \(O((\log_2 n)^3) \) bit operations. If a faster method is used for integer multiplication, then it takes \(O^\sim((\log_2 n)^2) \) bit operations.
Here, the notation \(f = O^\sim(g) \) means that \(f = O(g(\log_2(g))^k) \), for some \(k \geq 0 \); for details, see Dietzfelbinger [4] (Chapter 2, Sections 2.2 and 2.3). In brief, the Miller–Rabin test is polynomial in the bit length of the input \(n \) (of degree at most 3).

It remains to show that the probability that the Miller–Rabin test gives the wrong answer, “strong pseudoprime,” when \(n \) is a composite, is less than \(1/2 \). Monier and Rabin proved that this probability is actually less than \(1/4 \), but for now, we show that this probability is less than \(1/2 \) because the proof is simpler. We follow the nice proof given in Dietzfelbinger [4] (Chapter 5).

We need to find an upper bound on \(|L_n^{MR}| \). As we explained earlier, the set \(L_n^{MR} \) of MR-liars is contained in \(L_n^F \), but it is not a subgroup.

If \(n \) is not a Carmichael number, then \(L_n^F \) is a proper subgroup of \((\mathbb{Z}/n\mathbb{Z})^*\), so the reasoning used in the proof of Proposition 4.4 applies, and the fraction of MR-liars in \(\{2, \ldots, n-2\} \) is less than \(1/2 \).

If \(n \) is a Carmichael number, then we can find a proper subgroup \(B_n \) of \((\mathbb{Z}/n\mathbb{Z})^*\) that contains \(L_n^{MR} \) as follows. Write \(n-1 = 2^kt \), with \(t \) odd. Since \(t \) is odd, we have \((n-1)^t \equiv n-1 \pmod{n} \), so there is a largest index \(i \geq 0 \) such that there is an MR- liar \(a_0 \) with

\[
a_0^{2^it} \equiv n-1 \pmod{n}.
\]

Denote this largest index by \(i_0 \). Since \(n \) is a Carmichael number, we have

\[
a_0^{2^kt} \equiv a_0^{n-1} \equiv 1 \pmod{n},
\]

hence \(0 \leq i_0 \leq k-1 \). Define \(B_n \) by

\[
B_n = \{a \in \{1, \ldots, n-1\} \mid a^{2^{it}} \pmod{n} \in \{1, n-1\}\}.
\]

The following proposition is the key ingredient.

Proposition 4.8. The set \(B_n \) defined above (for a Carmichael number \(n \)) has the following properties:

1. \(L_n^{MR} \subseteq B_n \).
2. The set \(B_n \) is a subgroup of \((\mathbb{Z}/n\mathbb{Z})^*\).
3. The group \(B_n \) is a proper subgroup of \((\mathbb{Z}/n\mathbb{Z})^*\).

Proof. (1) Pick any \(a \in L_n^{MR} \).

Case 1: \(a^t \equiv 1 \pmod{n} \). Then, \(a^{2^{i_0}t} \equiv 1 \pmod{n} \) as well, and thus \(a \in B_n \).

Case 2: \(a^{2^{it}} \equiv n-1 \pmod{n} \), for some \(i \) with \(0 \leq i \leq k-1 \). By the maximality of \(i_0 \), we have \(i \leq i_0 \). If \(i = i_0 \), then we get immediately that \(a \in B_n \). If \(i < i_0 \), then

\[
a^{2^{i_0}t} \equiv \left(a^{2^it} \pmod{n} \right)^{2^{i_0}-i} \equiv 1 \pmod{n}
\]
4.3. THE MILLER–RABIN TEST; MR-WITNESSES AND MR-LIARS

since \(i_0 - i \geq 1 \), and we conclude that \(a \in B_n \).

(2) Obviously, \(1 \in B_n \). Since \((\mathbb{Z}/n\mathbb{Z})^* \), we only need to check that \(B_n \) is closed under multiplication. Pick \(a, b \in B_n \). This means that \(a^{2^{i_0}t} \mod n \) and \(b^{2^{i_0}t} \mod n \) belong to \(\{1, n - 1\} \). Now, we have

\[
1 \cdot 1 \equiv 1 \pmod{n} \\
1 \cdot (n - 1) \equiv n - 1 \pmod{n} \\
(n - 1) \cdot 1 \equiv n - 1 \pmod{n} \\
(n - 1) \cdot (n - 1) \equiv 1 \pmod{n},
\]

which implies that

\[
(ab)^{2^{i_0}t} \equiv a^{2^{i_0}t}b^{2^{i_0}t} \equiv 1 \text{ or } n - 1 \pmod{n};
\]

that is, \(ab \in B_n \), as required.

(3) We need to find some \(a \in (\mathbb{Z}/n\mathbb{Z})^* \) which does not belong to \(B_n \). We use the fact that a Carmichael number can be written as the product \(n = n_1n_2 \) of two distinct odd numbers \(n_1 \) and \(n_2 \) such that \(\gcd(n_1, n_2) = 1 \), which is a consequence of the fact that a Carmichael number is a product of (at least 3) distinct primes.

Recall that \(a_0 \) is an MR-liar with \(a_0^{2^{i_0}t} \equiv n - 1 \pmod{n} \). Since \(n_1 \) and \(n_2 \) divide \(n \), we also have \(a_0^{2^{i_0}t} \equiv n - 1 \pmod{n_1} \) and \(a_0^{2^{i_0}t} \equiv n - 1 \pmod{n_2} \). If we let \(a_1 \equiv a_0 \pmod{n_1} \), then by the Chinese remainder theorem, there is a unique \(a \in \{0, \ldots, n - 1\} \) such that

\[
a \equiv a_1 \pmod{n_1} \\
a \equiv 1 \pmod{n_2}.
\]

We claim that \(a \in (\mathbb{Z}/n\mathbb{Z})^* \), but \(a \notin B_n \). First, we show that \(a \notin B_n \).

From \(a_1 \equiv a_0 \pmod{n_1} \) and \(a \equiv a_1 \pmod{n_1} \), we get \(a \equiv a_0 \pmod{n_1} \), and since \(a_0^{2^{i_0}t} \equiv n - 1 \pmod{n_1} \), we get

\[
a^{2^{i_0}t} \equiv n - 1 \pmod{n_1}, \quad (*)
\]

From \(a \equiv 1 \pmod{n_2} \), we get

\[
a^{2^{i_0}t} \equiv 1 \pmod{n_2}, \quad (**) \]

Now, since \(n_1 \) divides \(n \), \((*) \) implies that

\[
a^{2^{i_0}t} \neq 1 \pmod{n},
\]

and since \(n_2 \) divides \(n \), \((**) \) implies that

\[
a^{2^{i_0}t} \neq n - 1 \pmod{n}.
\]
Consequently, \(a^{2^{io}t} \mod n \not\in \{1, n-1\} \), and thus \(a \not\in B_n \). It remains to show that \(a \in (\mathbb{Z}/n\mathbb{Z})^* \). By squaring \((*)\) and \((**)*\), we get

\[
a^{2^{io+1}t} \equiv 1 \pmod{n_1} \quad \text{and} \quad a^{2^{io+1}t} \equiv 1 \pmod{n_2},
\]

and since \(\gcd(n_1, n_2) = 1 \), this yields

\[
a^{2^{io+1}t} \equiv 1 \pmod{n},
\]

which shows that \(a \in (\mathbb{Z}/n\mathbb{Z})^* \) (by Proposition 4.3).

Proposition 4.8 shows that if \(n \) is a Carmichael number, then \(L^M_n \) is contained in the proper subgroup \(B_n \) of \((\mathbb{Z}/n\mathbb{Z})^*\), and by the reasoning used when \(L^M_n \) is contained in the proper subgroup \(L^n \) of \((\mathbb{Z}/n\mathbb{Z})^*\), we conclude that the fraction of MR-liars in \(\{2, \ldots, n-2\} \) is also less than \(1/2 \). In summary, we proved the following result.

Theorem 4.9. If \(n > 3 \) is an odd composite, then the fraction of MR-liars in \(\{2, \ldots, n-2\} \) is less than \(1/2 \). Consequently, the probability that the Miller–Rabin test gives the wrong answer \(c = 0 \) (\(n \) is a strong pseudoprime base \(a \)), given that \(n \) is composite, is less than \(1/2 \).

By repeating the Miller–Rabin test \(\ell \) times, we can make the probability that the algorithm gives the answer \(c = 0 \) every time arbitrarily smaller, given that \(n \) is composite. Here is the algorithm.

Algorithm Provable Prime

\[
\text{begin } \quad \text{Decompose } n \text{ as } n - 1 = 2^k t, \text{ with } t \text{ odd}

\text{for } i = 1 \text{ to } \ell \text{ do}
\quad c = \text{miller-rabin}(n); \\
\quad \text{if } c = 1 \text{ then } res = 1; \text{ return } res; \text{ exit } (* n \text{ is composite } *)
\text{endfor ;}
\quad res = 0; \text{ return } res (* n \text{ is a probable prime } *)
\text{end}
\]

If the algorithm stops with \(res = 1 \), then \(n \) is definitely composite. If \(n \) is prime, then the algorithm will runs through all \(\ell \) steps and correctly return \(res = 0 \). If \(n \) is composite, the algorithm may return the wrong answer \(res = 0 \), but the probability that this event happens is bounded by \((1/2)^\ell \).

We hinted earlier at the fact that the above conditional probability is not really what we would like to know. To make this point clearer, let us define the events \(P, C, SP \) and \(SP_\ell \) by

\[
P = \{ \text{an odd integer } n \geq 3 \text{ is prime} \}
\]
\[
C = \{ \text{an odd integer } n \geq 3 \text{ is a composite} \}
\]
\[
SP = \{ \text{the miller-rabin procedure returns } c = 0 \}
\]
\[
SP_\ell = \{ \text{the miller-rabin procedure returns } \ell \text{ times } c = 0 \}.
\]
Observe that $P = \overline{C}$, the complement of C. Then, we have the three conditional probabilities

$$\Pr(P \mid SP_\ell) = \Pr(n \text{ is not composite } \mid \text{miller-rabin returns } \ell \text{ times } c = 0) = \Pr(n \text{ is prime } \mid \text{miller-rabin returns } \ell \text{ times } c = 0),$$

$$\Pr(SP_\ell \mid P) = \Pr(\text{miller-rabin returns } \ell \text{ times } c = 0 \mid n \text{ is not composite}) = \Pr(\text{miller-rabin returns } \ell \text{ times } c = 0 \mid n \text{ is prime})$$

and

$$\Pr(SP_\ell \mid C) = \Pr(\text{miller-rabin returns } \ell \text{ times } c = 0 \mid n \text{ is composite}).$$

The third probability $\Pr(SP_\ell \mid C)$ is the one we have been considering so far, but we should be more interested in the level of confidence that n is prime given that miller-rabin returns $res = 0$, and this is the first probability $\Pr(P \mid SP_\ell)$. This point is clearly articulated in Hoffstein, Pipher and Silverman [8]; most of the literature ignores it, and it is important to make it perfectly clear. Fortunately, $\Pr(P \mid SP_\ell)$ can be obtained using Bayes’s formula:

$$\Pr(P \mid SP_\ell) = \frac{\Pr(SP_\ell \mid P)\Pr(P)}{\Pr(SP_\ell \mid P)\Pr(P) + \Pr(SP_\ell \mid P)\Pr(\overline{P})}.$$

To compute the probabilities on the righthand side, we use the fact that our Miller–Rabin algorithm (the procedure miller-rabin, not the algorithm Probable Prime) is a Monte Carlo algorithm, which means the following:

1. If miller-rabin returns $c = 1$, then n definitely is composite (i.e. has property C). This is expressed by

$$\Pr(n \text{ composite } \mid \text{miller-rabin returns } c = 1) = 1,$$

or more concisely as

$$\Pr(C \mid \overline{SP}) = 1.$$

2. If n is composite (has property C), then miller-rabin returns $c = 1$ for at least $1/2$ of the number of choices for a. This is expressed by

$$\Pr(\text{miller-rabin returns } c = 1 \mid n \text{ is composite}) \geq \frac{1}{2},$$

or more concisely as

$$\Pr(\overline{SP} \mid C) \geq \frac{1}{2}.$$

From property (1) of a Monte Carlo algorithm, by contrapositive, we see that if n is not composite, then the algorithm always returns $c = 0$; that is,

$$\Pr(\text{miller-rabin returns } c = 0 \mid n \text{ is prime}) = 1,$$
or more concisely as
\[\Pr(SP \mid P) = 1. \]

It follows that
\[\Pr(SP_\ell \mid P) = \Pr(SP \mid P)^\ell = 1. \]

To evaluate \(\Pr(SP_\ell \mid \overline{P}) = \Pr(SP_\ell \mid C) \) we make use of the assumption that miller-rabin is run \(\ell \) independent times and that by property (2) of a Monte Carlo algorithm,
\[\Pr(\overline{SP} \mid C) \geq \frac{1}{2}, \]
so we have
\[
\begin{align*}
\Pr(SP_\ell \mid C) &= \Pr(SP \mid C)^\ell \\
&= (1 - \Pr(\overline{SP} \mid C))^\ell \\
&\leq \left(1 - \frac{1}{2}\right)^\ell \\
&= \left(\frac{1}{2}\right)^\ell.
\end{align*}
\]

The above derivation shows rigorously what we have been claiming: the probability that the algorithm says \(\ell \) times that \(n \) is not a composite when in fact it is, is very small. Indeed,
\[\Pr(SP_\ell \mid C) \leq \left(\frac{1}{2}\right)^\ell. \]

As we said earlier, the probability we really want to know is \(\Pr(P \mid SP_\ell) \). We have all the ingredients to compute it, except for the probability \(\Pr(P) \). To estimate \(\Pr(P) \), we can make use of the Prime Number Theorem, which implies that for \(n \) large enough, the fraction of primes between 2 and \(n \) is approximately \(\frac{1}{\ln(n)} \). Using this fact, we get (approximately!) that \(\Pr(P) = \frac{1}{\ln(n)} \), so
\[
\Pr(P \mid SP_\ell) = \frac{\Pr(SP_\ell \mid P)\Pr(P)}{\Pr(SP_\ell \mid P)\Pr(P) + \Pr(SP_\ell \mid \overline{P})\Pr(\overline{P})} \\
\geq \frac{1}{1} \cdot \frac{1}{\ln(n)} + 2^{-\ell} \left(1 - \frac{1}{\ln(n)}\right) \\
= \frac{1}{1 + 2^{-\ell}(\ln(n) - 1)} \\
= 1 - \frac{\ln(n) - 1}{2^\ell + \ln(n) - 1} > 1 - \frac{\ln(n)}{2^\ell}.
\]

Therefore,
\[\Pr(P \mid SP_\ell) > 1 - \frac{\ln(n)}{2^\ell}. \]
(approximately), and we see that it is necessary to add a correction term approximately equal to $\ln(n)$, but this correction term is quickly offset by making ℓ a little bigger.

Actually, Rabin and Monier independently proved in 1980 that if n is composite then the Miller–Rabin procedure returns $c = 1$ for at least $3/4$ of the number of choices for a (provided that $n > 9$); that is

$$\Pr(\overline{SP} \mid C) \geq \frac{3}{4}.$$

Therefore, $\Pr(SP \mid C) \leq 1/4$, and for n large enough, we have

$$\Pr(P \mid SP_{\ell}) > 1 - \frac{\ln(n)}{4^\ell}.$$

Rabin and Monier proved that if $n > 9$ is an odd composite, then

$$|L_n^{MR}| \leq \frac{\varphi(n)}{4}.$$

The proof is harder than the proof of Proposition 4.8, but it is not out of reach given a little bit of number theory. The general strategy is also to find a proper subgroup of $(\mathbb{Z}/n\mathbb{Z})^*$ that contains L_n^{MR} and to estimate its order, to show that it is bounded by $\varphi(n)/4$. The proof given in Crandall and Pomerance [3] (Chapter 3, Section 5) is presented in the next section. This proof mixes combinatorial and number theoretic ideas in a beautiful and clever way, but it can be omitted without causing a major gap in the understanding of the Miller–Rabin test. The probability $\Pr(SP \mid C) \leq 1/2$ is good enough to prove that the Miller–Rabin test can be trusted with a high degree of confidence.

4.4 The Monier–Rabin Bound on the Size of the Set of MR-liars

Let $n \geq 2$ be any integer and suppose that its prime factorization is

$$n = p_1^{j_1} p_2^{j_2} \cdots p_k^{j_k}, \quad j_i \geq 1, i = 1, \ldots, k.$$

Write $\omega(n) = k$ for the number of distinct prime factors in n. The key point is that L_n^{MR} is a subset of a group $\mathcal{S}(n)$ of the form

$$\mathcal{S}(n) = \{a \in (\mathbb{Z}/n\mathbb{Z})^* \mid a^m \equiv \pm 1 \pmod{n}\},$$

for some suitable m (depending on n), such that m divides $n - 1$. Thus, to estimate the order of this group, we need to find the number of solutions $a \pmod{n}$ to the congruence

$$a^m \equiv \pm 1 \pmod{n}.$$
We will see that the second congruence (the case -1) reduces to the first (the case $+1$), so we are reduced to the problem of counting the number of solutions $a \pmod{n}$ to the congruence
\[a^m \equiv 1 \pmod{n}. \quad (\ast) \]

This is where some number theory comes in handy. Firstly, since the $p_i^{j_i}$ are relatively prime, $a \in \mathbb{Z}$ is a solution of (\ast) iff a is a solution of the k congruences
\[a^m \equiv 1 \pmod{p_i^{j_i}}, \quad i = 1, \ldots, k. \quad (\ast\ast) \]

Now, because p_i is an odd prime, the group of units $(\mathbb{Z}/p_i^{j_i}\mathbb{Z})^*$ of the ring $\mathbb{Z}/p_i^{j_i}\mathbb{Z}$ is cyclic (see Theorem 3.29). This means that there is some $g \in (\mathbb{Z}/p_i^{j_i}\mathbb{Z})^*$ (called a primitive root modulo $p_i^{j_i}$) such that
\[g, g^2, \ldots, g^{\varphi(p_i^{j_i}) - 1}, g^{\varphi(p_i^{j_i})} = 1 \]
is a list of all elements in $(\mathbb{Z}/p_i^{j_i}\mathbb{Z})^*$. Then, we can easily determine when an element $a \in (\mathbb{Z}/p_i^{j_i}\mathbb{Z})^*$ is a solution of
\[a^m \equiv 1 \pmod{p_i^{j_i}}. \quad (\dagger) \]

If we write $a = g^k$, for some k with $1 \leq k \leq \varphi(p_i^{j_i})$, then we must have
\[g^{km} \equiv 1 \pmod{p_i^{j_i}}. \]

Now, $g \in (\mathbb{Z}/p_i^{j_i}\mathbb{Z})^*$ has order $\varphi(p_i^{j_i})$ (the smallest integer r such that $g^r \equiv 1 \pmod{p_i^{j_i}}$), so $\varphi(p_i^{j_i})$ must divide km. If $d = \gcd(m, \varphi(p_i^{j_i}))$ and if we write $m = dm_1$ and $\varphi(p_i^{j_i}) = dn_1$, then $\gcd(m_1, n_1) = 1$ and $\varphi(p_i^{j_i})$ must divide km iff n_1 divides km_1. Since $\gcd(m_1, n_1) = 1$, the number n_1 must divide k, and we find d solutions for k:
\[n_1, 2n_1, \ldots, (d - 1)n_1, dn_1 = \varphi(p_i^{j_i}). \]

Therefore, we proved that equation (\dagger) has
\[\gcd(m, \varphi(p_i^{j_i})) \]
solutions modulo $p_i^{j_i}$. Since m divides $n - 1$, it is not divisible by p_i, and since $\varphi(p_i^{j_i}) = p_i^{j_i}(p_i - 1)$, we get
\[\gcd(m, \varphi(p_i^{j_i})) = \gcd(m, p_i^{j_i}(p_i - 1)) = \gcd(m, p_i - 1). \]

By the Chinese remainder theorem, the solutions of (\ast) modulo n are in bijection with the k-tuples (a_1, \ldots, a_k), where each a_i is a solution of (\dagger) modulo $p_i^{j_i}$. It follows that the number of solutions modulo n of the congruence $a^m \equiv 1 \pmod{n}$ is
\[\prod_{i=1}^{k} \gcd(m, p_i - 1). \]

In summary, we proved the following result.
4.4. THE MONIER–RABIN BOUND ON THE SIZE OF THE SET OF MR-LIARS

Proposition 4.10. Let $n \geq 2$ be any integer and suppose that its prime factorization is

$$n = p_1^{j_1} p_2^{j_2} \cdots p_k^{j_k}, \quad j_i \geq 1, i = 1, \ldots, k.$$

For any integer $m \geq 1$ such that m divides $n - 1$, the number of solutions modulo n of the congruence

$$a^m \equiv 1 \pmod{n}$$

is

$$\prod_{i=1}^{k} \gcd(m, p_i - 1).$$

An interesting corollary of Proposition 4.10 obtained by setting $m = n - 1$ is that every odd composite number n is a pseudoprime for at least two nontrivial bases $a \neq \pm 1$ modulo n, unless n is a power of 3.

We now return to the definition of the group $\mathcal{S}(n)$.

Definition 4.4. For any odd composite n, if $n - 1 = 2^s t$, with t odd, then let $\nu(n)$ be the largest integer such that $2^{\nu(n)-1} t$ divides $p - 1$ for every prime factor p of n. Then let

$$\mathcal{S}(n) = \{a \in \mathbb{Z}/n\mathbb{Z} \mid a^{2^{\nu(n)-1} t} \equiv 1 \pmod{n}\}.$$

The following proposition shows why $\mathcal{S}(n)$ is relevant.

Proposition 4.11. For any odd composite integer n, the following properties hold:

1. The set of MR-liars L_{n}^{MR} is contained in $\mathcal{S}(n)$.
2. The set $\mathcal{S}(n)$ is a subgroup of $(\mathbb{Z}/n\mathbb{Z})^*$.

Proof. (1) Pick any $a \in L_{n}^{MR}$. There are two cases.

(i) If $a^t \equiv 1 \pmod{n}$, then obviously $a^{2^{\nu(n)-1} t} \equiv 1 \pmod{n}$, so $a \in \mathcal{S}(n)$.

(ii) There is some smallest index i with $0 \leq i \leq s - 1$ such that $a^{2^i t} \equiv -1 \pmod{n}$. For any prime p dividing n, we also have $a^{2^i t} \equiv -1 \pmod{p}$, and so

$$a^{2^{i+1} t} \equiv 1 \pmod{p}.$$

If k is the order of a in $(\mathbb{Z}/p\mathbb{Z})^*$, then k divides $2^{i+1} t$ but k does not divide $2^i t$ (because k is the least integer such that $a^k \equiv 1 \pmod{p}$). If follows that 2^{i+1} is the exact power of 2 in the prime factorization of k. Since by Fermat’s little theorem, $a^{p-1} \equiv 1 \pmod{p}$, we see that k divides $p - 1$, and so 2^{i+1} divides $p - 1$. Since this holds for every prime p dividing n, we have $i + 1 \leq \nu(n)$. Since $a^{2^i t} \equiv -1 \pmod{n}$, if $i + 1 < \nu(n)$, then $a^{2^i t} \equiv -1 \pmod{n}$, else if $i + 1 = \nu(n)$, then $a^{2^i t} \equiv 1 \pmod{n}$. In both cases, $a \in \mathcal{S}(n)$.

(2) The proof that $\mathcal{S}(n)$ is a group is very similar to the fact that B_n is a group (see the proof of Proposition 4.8) and is left as an exercise. \qed
The next proposition gives a formula for the order of the group $\mathfrak{S}(n)$.

Proposition 4.12. For any odd composite integer n, if we denote the number of distinct prime factors of n by $\omega(n)$ and if $n - 1 = 2^st$ with s, t and $\nu(n)$ as in Definition 4.4, then the order of the group $\mathfrak{S}(n)$ is given by

$$|\mathfrak{S}(n)| = 2 \cdot 2^{(\nu(n)-1)\omega(n)} \prod_{p|n} \gcd(t, p - 1).$$

Proof. Since

$$\mathfrak{S}(n) = \{ a \in \mathbb{Z}/n\mathbb{Z} \mid a^{2^{\nu(n)-1}t} \equiv \pm 1 \pmod{n} \},$$

we need to count the number s_1 of solutions of the congruence $a^{2^{\nu(n)-1}t} \equiv 1 \pmod{n}$ and the number s_2 of solutions of $a^{2^{\nu(n)-1}t} \equiv -1 \pmod{n}$. As to the first congruence, if we let $m = 2^{\nu(n)-1}t$, by definition of $\nu(n)$, we know that $2^{\nu(n)}$ divides $p - 1$ for every prime p dividing n. Let $n = p_1^{i_1} \cdots p_k^{i_k}$ be prime factorization of n, where p_1, \ldots, p_k are the distinct prime factors of n (with $k = \omega(n)$), which must be odd since n is odd. If we had $\nu(n) > s$, then we could write $p_i = 1 + 2^{s+1}u_i$ for some integers u_i, and then $n - 1 = 2^st$ would yield

$$(2^{s+1}u_1 + 1) \cdots (2^{s+1}u_k + 1) - 1 = 2^st,$$

which would imply that

$$2^{s+1}u = 2^st,$$

for some integer u. Since t is odd, this is impossible, and thus $\nu(n) \leq s$. Consequently, $m = 2^{\nu(n)-1}t$ divides $n - 1 = 2^st$. By Proposition 4.10, we have

$$s_1 = \prod_{i=1}^{\omega(n)} \gcd(m, p_i - 1).$$

But $m = 2^{\nu(n)-1}t$, t is odd and $2^{\nu(n)}$ divides each $p_i - 1$, so

$$\gcd(m, p_i - 1) = \gcd(2^{\nu(n)-1}t, p_i - 1) = 2^{\nu(n)-1} \gcd(t, p_i - 1),$$

so we get

$$s_1 = 2^{(\nu(n)-1)\omega(n)} \prod_{i=1}^{\omega(n)} \gcd(t, p_i - 1).$$

We now show that because n is odd the congruence $a^m \equiv -1 \pmod{n}$ has the same number of solutions as the congruence $a^m \equiv 1 \pmod{n}$.

For every prime p_i as above, observe that $a^m \equiv -1 \pmod{p_i^{i_i}}$ iff $a^{2m} \equiv 1 \pmod{p_i^{i_i}}$ and $a^m \not\equiv 1 \pmod{p_i^{i_i}}).$. This is because $a^{2m} \equiv 1 \pmod{p_i^{i_i}}$ iff $a^{2m} - 1 \equiv 0 \pmod{p_i^{i_i}}$ iff $(a^m - 1)(a^m + 1) \equiv 0 \pmod{p_i^{i_i}}$). We claim that if p_i does not divide $a^m - 1$ and divides $(a^m - 1)(a^m + 1)$, then p_i does not divide $a^m - 1$. Indeed, if p_i divides $(a^m - 1)(a^m + 1)$
and does not divide \(a^m - 1\), since \(p_i\) is prime, by the prime factorization theorem \(p_i\) divides \(a^m + 1\), so if \(p_i\) also divides \(a^m - 1\) then \(p_i\) divides 2, which is absurd since \(p_i\) is an odd prime. It follows that \(p_i^{\nu_i}\) is relatively prime to \(a^m - 1\), and thus it divides \(a^m + 1\).

We observed earlier that \(2^{\nu(n)}\) divides \(p_i - 1\), and it follows as above that the number of solutions of the equation \(a^m \equiv -1 \pmod{p_i^{\nu_i}}\) is

\[
2^{\nu(n)} \gcd(t, p_i - 1) - 2^{\nu(n)-1} \gcd(t, p_i - 1) = 2^{\nu(n)-1} \gcd(t, p_i - 1).
\]

It follows that the number \(s_2\) of solutions of \(a^m \equiv -1 \pmod{n}\) is

\[
s_2 = s_1.
\]

Therefore, the order of the group \(S(n)\) is indeed

\[
|S(n)| = 2 \cdot 2^{(\nu(n)-1)\omega(n)} \prod_{p|n} \gcd(t, p - 1),
\]

as claimed.

Proposition 4.12 yields the main result of this section.

Theorem 4.13. (Monier–Rabin) For every odd composite \(n > 9\), we have

\[
|L_{n}^{\text{MR}}| \leq \frac{\phi(n)}{4} \leq \frac{n - 1}{4}.
\]

Proof. As usual, write \(n - 1 = 2^s t\), with \(t\) odd. By Proposition 4.11, \(L_{n}^{\text{MR}} \subseteq \overline{S}(n)\), so it suffices to prove that \(|\overline{S}(n)|/\phi(n) \leq \frac{1}{4}\). By Proposition 4.12,

\[
|\overline{S}(n)| = 2 \cdot 2^{(\nu(n)-1)\omega(n)} \prod_{p|n} \gcd(t, p - 1),
\]

so we need to prove that

\[
\frac{\phi(n)}{|\overline{S}(n)|} = \frac{1}{2^{s+1}} \prod_{p^k || n} p^{k-1} \frac{p - 1}{2^{\nu(p)-1} \gcd(t, p - 1)} \geq 4,
\]

where the notation \(p^k || n\) means that \(p^k\) is the exact power of the prime \(p\) in the prime factorization of \(n\). Each factor

\[
\frac{p - 1}{2^{\nu(p)-1} \gcd(t, p - 1)} \tag{\ast}
\]

is an even integer. There are several cases.

\(^3\)I thank Tian Bai for pointing out an error in my previous proof, which claimed that the above fact held for any \(n\) rather that for each \(p_i^{\nu_i}\) with \(p_i\) an odd prime.
Case 1: $\omega(n) \geq 3$. In this case, at least three of the factors (*) are equal to 2, so $
phi(n)/|\mathcal{S}(n)| \geq 4$.

Case 2: $\omega(n) = 2$ and n is not squarefree. Then, some exponent $k - 1$ is at least 1, and since all the primes p are odd, the product of the p^{k-1} is at least 3, each factor (*) is at least 2, so $
phi(n)/|\mathcal{S}(n)| \geq 6$.

Case 3: $n = pq$, for two distinct primes, p, q, with $p < q$. If $2^{\nu(n)+1}$ divides $q - 1$, then $q - 1 = 2^{\nu(n)+1}u$, and t is odd, we get

$$2^{\nu(n)-1}\gcd(t, q - 1) = 2^{\nu(n)-1}\gcd(t, 2^{\nu(n)+1}u) = 2^{\nu(n)-1}\gcd(t, u) \leq 2^{\nu(n)-1}u = (q - 1)/4,$$

and since the other fraction involving $p - 1$ is at least 2, and we get $\nphi(n)/|\mathcal{S}(n)| \geq 4$.

The remaining subcase is that $2^{\nu(n)}$ is the exact power of 2 in $q - 1$, and we can write $q - 1 = 2^{\nu(n)}u$, where u is odd. Because $n - 1 = pq - 1 = p(q - 1) + p - 1$ and $p < q$, we see that $q - 1$ does not divide $n - 1$. This implies that there is an odd prime q_1 dividing $q - 1$ to a higher power than it divides $n - 1$. Since $n - 1 = 2^t$ and $q - 1 = 2^{\nu(n)}u$, we have $t = q_1^h t_1$ and $u = q_1^{b+1}u_1$ for some $h \geq 1$ and some t_1, u_1 with $\gcd(q_1, t_1) = 1$. It follows that

$$2^{\nu(n)-1}\gcd(t, q - 1) = 2^{\nu(n)-1}\gcd(q_1^h t_1, 2^{\nu(n)}q_1^{b+1}u_1)$$

$$= 2^{\nu(n)-1} q_1^h \gcd(t_1, q_1 u_1)$$

$$= 2^{\nu(n)-1} q_1^h \gcd(t_1, u_1)$$

$$\leq 2^{\nu(n)-1} q_1^h u_1$$

$$= \frac{(q - 1)}{2q_1} \leq \frac{q - 1}{6}.$$

Since the other fraction is at least 2, we conclude that $\nphi(n)/|\mathcal{S}(n)| \geq 6$.

Case 4: $n = p^k$, for some $k \geq 2$. In this case, $n - 1 = p^k - 1 = 2^t$ with t odd. Since $k \geq 2$, we have

$$p^k - 1 = (p - 1)(p^{k-1} + \cdots + p + 1) = 2^t,$$

and since

$$p - 1 = 2^{\nu(n)}u$$

with u odd, we conclude that u is a divisor of t. Then

$$\gcd(t, p - 1) = \gcd(t, 2^{\nu(n)}u) = \gcd(t, u) = u,$$

which implies that

$$\frac{p - 1}{2^{\nu(n)-1}\gcd(t, p - 1)} = \frac{2^{\nu(n)}u}{2^{\nu(n)-1}u} = 2,$$

and thus, $\nphi(n)/|\mathcal{S}(n)| = p^{k-1}$. Therefore, unless $p^k = 9$, we have $\nphi(n)/|\mathcal{S}(n)| \geq 5$. This last case finishes the proof. \qed
4.5. THE LEAST MR-WITNESS FOR N

Remarks:

1. Another proof of Theorem 4.13 is given in Koblitz [9] (Chapter V, Proposition V.1.7).
2. The group $\mathfrak{S}(n)$ is actually the group generated by the set L_n^{MR} of MR-liars. This result due to Jim Haglund is Problem 3.16 in Crandall and Pomerance [3].

4.5 The Least MR-Witness for n

Theorem 4.13 shows that an odd composite n has at least $3n/4$ MR-witnesses in the set $\{2, \ldots, n-2\}$. A natural question then arises: what is the size of the smallest MR-witness, $W(n)$, for n? If, by luck, the size of $W(n)$ is bounded by a constant, or a slow-growing function, then there is hope that a practical deterministic algorithm (that is, not a randomized algorithm) can be found.

Unfortunately, there is no constant bound. Indeed, Alford, Granville and Pomerance showed that for infinitely many odd composite n, we have

$$W(n) > (\ln n)^{1/(3\ln\ln n)}.$$

In Crandall and Pomerance [3], it is also shown that $W(n) \geq 3$ for infinitely many n (with an explicit description). Around 1976, Gary Miller showed that $W(n) = O((\ln n)^2)$, assuming that the Extended Riemann Hypothesis (for short ERH) holds. Then, Bach (1985) proved that $W(n) < 2(\ln n)^2$.

The ERH is a generalization of the Riemann Hypothesis (for short RH), one of the most famous conjectures of mathematics. Explaining what is the ERH would lead us to far, and we refer the reader to Crandall and Pomerance for an explanation [3] (Chapter 1, Section 1.4). However, we discuss briefly the RH.

The RH has to with the location of the zeros of the zeta function, ζ. For any real $s > 1$, the function $\zeta(s)$ is given by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

If we allow s to be a complex argument, then the above sum converges absolutely for $\text{Re}(s) > 1$. It is also possible to extend ζ to the entire complex plane (by analytic continuation), so that $\zeta(s)$ is regular for every s except $s = 1$, where it has a simple pole with residue 1 (this means that $(s-1)\zeta(s)$ is holomorphic in \mathbb{C}, with value 1 at $s = 1$). Two good sources are Apostol [1] and Edwards [5]. Ribenboim’s lovely book [15] (especially Chapter 4) is also highly recommended. The connection with prime numbers was noticed by Euler and is this:

Theorem 4.14. (Euler) If \mathcal{P} denotes the set of all primes, then for every $s \in \mathbb{C}$ such that $\text{Re}(s) > 1$,

$$\zeta(s) = \prod_{p \in \mathcal{P}} \frac{1}{1 - p^{-s}}.$$
The value \(\zeta(s) \) of the zeta-function is known when \(s \) is an even integer, but \(\zeta(s) \) is not known for not a single odd integer! Remarkably, the location of the zeros of \(\zeta \) has crucial impact on the distribution of the primes. For example, the fact that \(\zeta(s) \neq 0 \) on the line \(\text{Re}(s) = 1 \) leads to the Prime Number Theorem. The Riemann Hypothesis, stated in 1859 by Riemann in an eight-page memoir, says this:

Conjecture (Riemann hypothesis (RH))

All the zeros of \(\zeta \) in the critical strip \(0 < \text{Re}(s) < 1 \) lie on the vertical line \(\text{Re}(s) = 1/2 \).

The RH has been verified by computer calculations for many values of \(n \), but it still remains one of the central conjectures of mathematics. It is equivalent to various statements about the distribution of the primes. For example, von Koch proved in 1901 that the RH is equivalent to the following fact:

\[
|\pi(x) - \text{Li}(x)| < \sqrt{x} \cdot \ln(x), \quad \text{for all } x \geq 2.01,
\]

where \(\pi(x) \) is the number of primes not exceeding \(x \), and the function \(\text{Li} \) (logarithmic integral) is given by

\[
\text{Li}(x) = \int_2^x \frac{dt}{\ln t}.
\]

It is easy to see that

\[
\text{Li}(x) = \frac{x}{\ln x} + \int_2^x \frac{dt}{(\ln t)^2} - \frac{2}{\ln 2}.
\]

It is amazing that Gauss conjectured in 1791 (at the age of fourteen) that \(\pi(x) \sim \text{Li}(x) \). We refer the reader to Crandall and Pomerance [3] (Chapter 1) for more on this topic.

The Extended Riemann Hypothesis (ERH) has to do with the zeros of the Dirichlet \(L \)-functions \(L(s, \chi) \), which generalizes the \(\zeta \)-function. Here, \(\chi \) denotes a Dirichlet character. Apostol [1] is an excellent source to learn about \(L \)-functions. The \(\zeta \)-function corresponds to the special case \(\chi = 1 \). The ERH says this:

Conjecture (Extended Riemann hypothesis (ERH))

For any Dirichlet character \(\chi \), all the zeros of \(L(s, \chi) \) in the region \(\text{Re}(s) > 0 \) lie on the vertical line \(\text{Re}(s) = 1/2 \).

Assuming the ERH, Bach’s result, that \(W(n) < 2(\ln)^2 \), yields a deterministic algorithm for testing for primality. Simply try the Miller–Rabin procedure for \(a = 2, 3, \ldots, 2(\ln n)^2 \). Besides the fact that the ERH is still not proved, in practice, the randomized version of the Miller–Rabin test is faster. As of now, if you want a reliable test, either you have to have faith in the ERH, or faith that an event that has probability less than \(10^{-30} \) will never happen in our lifetime. This probability is much smaller than the probability of hardware or software failure anyway!
Chapter 5

The Solovay–Strassen Test

5.1 Quadratic Residues

The Solovay–Strassen primality test was published in 1977, and thus slightly predates the Miller–Rabin test. It is also a randomized algorithm of Monte Carlo type, and it gives the output “composite,” given that the input n is composite, with probability greater than $\frac{1}{2}$. The Solovay–Strassen is based on a criterion due to Euler to test whether a number which is not a multiple of a prime n is a quadratic residue. This test involves the Jacobi symbol, which is a generalization of the Legendre symbol. Properties of the Jacobi symbol yield a fast method for checking Euler’s criterion.

If p is a prime and m is an integer which is not a multiple of p, we can look for solutions x of the quadratic congruence

$$x^2 \equiv m \pmod{p}.$$ (\ast)

First, note that since the modulus is prime, the above congruence has at most two solutions. Indeed, $\mathbb{Z}/p\mathbb{Z}$ is a field, so the polynomial $x^2 - m$ has at most two roots. Moreover, if x is a solution of (\ast), then so is $-x$, hence the number of solutions is either 0 or 2.

It is convenient to allow p to be any integer $n \geq 2$.

Definition 5.1. Given any integer $n \geq 2$, for any integer m such that $\gcd(m, n) = 1$, we say that m is a **quadratic residue** mod n if the congruence

$$x^2 \equiv m \pmod{n}$$ (\dagger)

has a solution, and we write mRn. If (\dagger) has no solution we say that m is a **quadratic nonresidue** mod n and we write $m\overline{R}n$.

Observe that the integers m such that $\gcd(m, n) > 1$ are considered neither quadratic residues nor quadratic nonresidues. When $n = 2$, every odd integer is a quadratic residue and there are no quadratic nonresidues. This case is not very interesting, so typically we assume that $n \geq 3$.

87
Consider the example $n = 13$. The squares modulo 13 of the numbers in $\{1, 2, \ldots, 12\}$ are

$$1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1,$$

and thus, there are $6 = 12/2$ quadratic residues:

$$1, 3, 4, 9, 10, 12.$$

For $n = 26$, the quadratic residues are

$$1, 3, 9, 17, 23, 25.$$

Because 26 is even, they must be odd. For $n = 27$, the quadratic residues are

$$1, 4, 7, 10, 13, 16, 19, 22, 25.$$

When n is prime, as in the case $n = 13$, there is the same number of quadratic residues and nonresidues. This is a general fact.

Proposition 5.1. Let p be an odd prime. Then the set of quadratic residues is a subgroup of $\mathbb{Z}/p\mathbb{Z}$ of order $(p - 1)/2$. This subgroup consists of the residues modulo p of the numbers

$$1^2, 2^2, 3^2, \ldots, \left(\frac{p - 1}{2}\right)^2.$$

Proof. It is clear that 1 is a quadratic residue. If $x^2 \equiv a \pmod{p}$ and $y^2 \equiv b \pmod{p}$, then

$$(xy)^2 \equiv x^2y^2 \equiv ab \pmod{p},$$

so ab is also a quadratic residue, and the quadratic residues form a group.

If $x^2 \equiv y^2 \pmod{p}$, then

$$(x - y)(x + y) \equiv 0 \pmod{p}.$$

Since p is prime, either p divides $x - y$ or p divides $x + y$. But, $1 \leq x, y \leq (p - 1)/2$, which implies $2 \leq x + y \leq p - 1$, so $x - y$ must be divisible by p, and thus $x = y$. Therefore, the residues modulo p of the square numbers listed in the Proposition are all distinct. Since

$$(p - k)^2 \equiv k^2 \pmod{p},$$

every quadratic residue modulo p is congruent to a unique number in this list. \[\square\]

When p is an odd prime, we know that $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic (see Theorem 3.21). If g is any primitive root for $(\mathbb{Z}/p\mathbb{Z})^*$, Proposition 5.1 shows that the quadratic residues are the even powers g^{2i}, and the quadratic nonresidues are the odd powers g^{2i+1}, with $0 \leq i \leq (p - 3)/2$.

We can use this fact to find square roots modulo p for primes of the form $p = 4k + 3$. Indeed, if $a = g^{2i}$ is any quadratic residue, then we claim that

$$x = a^{(p+1)/4} = a^{k+1}$$

is a square root of a modulo p.

Since $p = 4k + 3$, we have $(p - 1)/2 = 2k + 1$, so $g^{i(p-1)/2}$ is a quadratic nonresidue,

$$x \equiv a^{(p+1)/4} \equiv (g^{2i})^{(p+1)/4} \equiv g^{i(p+1)/2} \equiv g^{i(p-1)/2} g^i \equiv (-1)^i g^i \pmod{p},$$

and thus,

$$x^2 \equiv (-1)^{2i} g^{2i} \equiv a \pmod{p}.$$

If p is a prime of the form $p = 4k + 1$, it is (a lot!) harder to find square roots modulo p; see Crandall and Pomerance [3].

5.2 The Legendre Symbol

At this stage, it is convenient to introduce the Legendre symbol.

Definition 5.2. Let p be an odd prime. For any integer m, the *Legendre symbol* $(\frac{m}{p})$ is defined as follows:

$$
\left(\frac{m}{p} \right) =
\begin{cases}
+1 & \text{if } m \text{ is quadratic residue modulo } p \\
-1 & \text{if } m \text{ is quadratic nonresidue modulo } p \\
0 & \text{if } p \text{ divides } m.
\end{cases}
$$

Observe that $(\frac{1}{p}) = 1$ and $(\frac{m^2}{p}) = 1$ for every integer m which is not a multiple of p. For a numerical example, $(\frac{7}{11}) = -1$, and $(\frac{3}{13}) = 1$.

If $m \equiv n \pmod{p}$, then clearly $(\frac{m}{p}) = (\frac{n}{p})$, so the function $m \mapsto (\frac{m}{p})$ is periodic with period p. We also have

$$
(\frac{m \cdot n}{p}) = (\frac{m}{p}) (\frac{n}{p}),
$$

a very useful property for evaluating the Legendre symbol. To prove this property easily, we establish Euler’s criterion. First, observe that for any m which is not a multiple of p, by Fermat’s little theorem, we have

$$
m^{p-1} \equiv 1 \pmod{p}.
$$

If p is odd, then we get

$$
m^{p-1} \equiv (m^{(p-1)/2} - 1)(m^{(p-1)/2} + 1) \equiv 0 \pmod{p},
$$

and it follows that $m^{(p-1)/2} \equiv \pm 1 \pmod{p}$. Remarkably, $m^{(p-1)/2} \equiv 1 \pmod{p}$ iff m is a quadratic residue modulo p.

Chapter 5. The Solovay–Strassen Test

Theorem 5.2. (Euler’s criterion) If p is an odd prime, then for any integer m, we have

$$\left(\frac{m}{p}\right) \equiv m^{(p-1)/2} \pmod{p}.$$

Proof. If $m \equiv 0 \pmod{p}$, then both sides of the equation are 0, so the equation is trivially true.

Suppose $\left(\frac{m}{p}\right) = 1$, In this case, there is some $x \in \{1, \ldots, p - 1\}$ such that $x^2 \equiv m \pmod{p}$, by Fermat’s little theorem, $x^{p-1} \equiv 1 \pmod{p}$, and so,

$$m^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{p-1} \equiv 1 \equiv \left(\frac{m}{p}\right) \pmod{p}.$$

This proves the formula if $\left(\frac{m}{p}\right) = 1$.

Finally, assume that $\left(\frac{m}{p}\right) = -1$. The polynomial $x^{(p-1)/2} - 1$ has degree $(p - 1)/2$, and since $\mathbb{Z}/p\mathbb{Z}$ is a field (since p is prime), it has at most $(p - 1)/2$ roots in $\mathbb{Z}/p\mathbb{Z}$. However, by Proposition 5.1, the $(p - 1)/2$ quadratic residues are roots and the nonresidues are not, and since m is a nonresidue, we must have

$$m^{(p-1)/2} \not\equiv 1 \pmod{p}.$$

Since $m^{(p-1)/2} \equiv \pm 1 \pmod{p}$, we conclude that

$$m^{(p-1)/2} \equiv -1 \equiv \left(\frac{m}{p}\right) \pmod{p},$$

which finishes the proof. \qed

Remark: Following Serre [17], another proof of Euler’s criterion can be given using some algebra. Let Ω be an algebraic closure of $\mathbb{Z}/p\mathbb{Z}$. For any $x \in (\mathbb{Z}/p\mathbb{Z})^*$, let $y \in \Omega$ be a square root of x,\(^1\) so that $x = y^2$. Then,

$$y^{p-1} = x^{(p-1)/2} = \pm 1,$$

since $x^{p-1} = 1$ and $(x^{(p-1)/2})^2 = 1$ in $\mathbb{Z}/p\mathbb{Z}$. Observe that x is a square in $(\mathbb{Z}/p\mathbb{Z})^*$ iff $y \in (\mathbb{Z}/p\mathbb{Z})^*$ iff $y^{p-1} = 1$. For the second equivalence, note that if $y^{p-1} = 1$ and $y \notin (\mathbb{Z}/p\mathbb{Z})^*$, then the equation $z^{p-1} - 1 = 0$ has p roots in Ω, since the $p - 1$ elements of $(\mathbb{Z}/p\mathbb{Z})^*$ are roots of $z^{p-1} - 1 = 0$, a contradiction since Ω is a field. It is obvious that the map $x \mapsto x^{(p-1)/2}$ is a homomorphism from $(\mathbb{Z}/p\mathbb{Z})^*$ to $\{-1, +1\}$, and from the above discussion, its kernel is the set $(\mathbb{Z}/p\mathbb{Z})^{*2}$ of squares in $(\mathbb{Z}/p\mathbb{Z})^*$. Now, $(\mathbb{Z}/p\mathbb{Z})^*$ is a cyclic group of order $p - 1$, so the

\(^1\)Instead of an algebraic closure of $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, we can use any field extension of \mathbb{F}_p which contains a square root of x.
above homomorphism must be surjective (otherwise, every element of \((\mathbb{Z}/p\mathbb{Z})^*\) would have order \((p-1)/2\)). It follows that \((\mathbb{Z}/p\mathbb{Z})^*\) is a subgroup of order \((p-1)/2\) and that
\[
\left(\frac{x}{p} \right) = x^{(p-1)/2} = y^{p-1} \quad \text{in} \quad (\mathbb{Z}/p\mathbb{Z})^*.
\]

It is now easy to establish the multiplicative property of the Legendre symbol.

Proposition 5.3. For any odd prime \(p\) and any integers \(m, n\), we have
\[
\left(\frac{m \cdot n}{p} \right) = \left(\frac{m}{p} \right) \left(\frac{n}{p} \right).
\]

Proof. If \(p\) divides \(m\) or \(p\) divides \(n\), then \(p\) divides \(mn\) so \(\left(\frac{mn}{p} \right) = 0\), and either \(\left(\frac{m}{p} \right) = 0\) or \(\left(\frac{n}{p} \right) = 0\); it follows that \(0 = \left(\frac{mn}{p} \right) = \left(\frac{m}{p} \right) \left(\frac{n}{p} \right) = 0\).

If \(p\) divides neither \(m\) nor \(n\), then \(p\) does not divide \(mn\) and by Euler’s criterion, we have
\[
\left(\frac{mn}{p} \right) \equiv (mn)^{(p-1)/2} \equiv m^{(p-1)/2} n^{(p-1)/2} \equiv \left(\frac{m}{p} \right) \left(\frac{n}{p} \right).
\]
The symbols \(\left(\frac{mn}{p} \right), \left(\frac{m}{p} \right), \left(\frac{n}{p} \right)\) are all equal to +1 or −1, so \(\left(\frac{mn}{p} \right) - \left(\frac{m}{p} \right) \left(\frac{n}{p} \right)\) is either 0, +2, or −2, and since \(\left(\frac{mn}{p} \right) - \left(\frac{m}{p} \right) \left(\frac{n}{p} \right)\) is divisible by \(p \geq 3\), we must have \(\left(\frac{mn}{p} \right) = \left(\frac{m}{p} \right) \left(\frac{n}{p} \right)\). □

The following properties are also useful for evaluating the Legendre symbol.

Proposition 5.4. For any odd prime \(p\), the following properties hold:

1. If \(m \equiv n \pmod{p}\), then \(\left(\frac{m}{p} \right) = \left(\frac{n}{p} \right)\).
2. If \(\gcd(m, p) = 1\), then \(\left(\frac{m^2}{p} \right) = 1\) and \(\left(\frac{m^2 \cdot n}{p} \right) = \left(\frac{n}{p} \right)\).
3. \(\left(\frac{-1}{p} \right) = (-1)^{\frac{p-1}{2}}\), or equivalently

\[
\left(\frac{-1}{p} \right) = \begin{cases}
1 & \text{if } p \equiv 1 \pmod{4} \\
-1 & \text{if } p \equiv 3 \pmod{4}.
\end{cases}
\]

4. \(\left(\frac{2}{p} \right) = (-1)^{\frac{p^2-1}{8}}\), or equivalently

\[
\left(\frac{2}{p} \right) = \begin{cases}
1 & \text{if } p \equiv 1 \pmod{8} \text{ or } p \equiv 7 \pmod{8} \\
-1 & \text{if } p \equiv 3 \pmod{8} \text{ or } p \equiv 5 \pmod{8}.
\end{cases}
\]
Proof. Parts (1)–(3) of Proposition 5.4 follows from Euler’s criterion and Proposition 5.3. The details are left to the reader. To prove (4), consider the \((p - 1)/2\) congruences:

\[
\begin{align*}
p - 1 & \equiv 1(-1)^1 \pmod{p} \\
2 & \equiv 2(-1)^2 \pmod{p} \\
p - 3 & \equiv 3(-1)^3 \pmod{p} \\
4 & \equiv 4(-1)^4 \pmod{p} \\
& \vdots \\
r & \equiv \frac{p - 1}{2}(-1)^{(p-1)/2} \pmod{p},
\end{align*}
\]

where \(r = p - (p - 1)/2\) or \(r = (p - 1)/2\). Multiply all these together, and observe that every integer on the left is even. We obtain

\[
2 \cdot 4 \cdot 6 \cdots (p - 1) \equiv \left(\frac{p - 1}{2}\right)!(-1)^{1+2+\cdots+(p-1)/2} \pmod{p},
\]

which yields

\[
2^{(p-1)/2} \left(\frac{p - 1}{2}\right)! \equiv \left(\frac{p - 1}{2}\right)!(-1)^{(p^2-1)/8} \pmod{p}.
\]

However, \(((p - 1)/2)!\) is not a multiple of \(p\), so we get

\[
\left(\frac{2}{p}\right) = 2^{(p-1)/2} \equiv (-1)^{(p^2-1)/8} \pmod{p},
\]

as claimed. \qed

Part (3) of Proposition 5.4 says that \(-1\) (equivalently \(p - 1\)) is a quadratic residue modulo \(p\) iff \(p\) is a prime of the form \(p = 4k + 1\), and a nonresidue iff \(p\) is of the form \(p = 4k + 3\). Part (4) says that \(2\) is quadratic residue modulo \(p\) iff \(p\) is of the form \(p = 8k + 1\) or \(p = 8k + 7\), and a nonresidue iff \(p\) is of the form \(p = 8k + 3\) or \(p = 8k + 5\).

Remark: Another proof of Part (4) can be given using a primitive eighth root of unity. Here is a slick proof due to Jean–Pierre Serre (see [17]). If \(p\) is an odd prime, then \(p\) is of the form \(4k \pm 1\), so \(p^2 - 1 \equiv 0 \pmod{8}\). Since the multiplicative group of the finite field \(\mathbb{F}_{p^2}\) is cyclic of order \(p^2 - 1\), there is an element \(\alpha \in \mathbb{F}_{p^2}\) which has order 8 (a primitive eighth root of unity), and let \(y = \alpha + \alpha^{-1}\). Since \(\alpha\) has order 8, we have \(\alpha^4 = -1\), so \(\alpha^2 + \alpha^{-2} = 0\), and thus \(y^2 = (\alpha + \alpha^{-1})^2 = 2\). Since \(\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p\) is a subfield of \(\mathbb{F}_{p^2}\) and \(\alpha\) is a square root of 2 in \(\mathbb{F}_{p^2}\), from a previous remark and Euler’s criterion,

\[
\left(\frac{2}{p}\right) = y^{p-1}.
\]
If \(p \equiv \pm 1 \pmod{8} \), then \(y^p = \alpha + \alpha^{-1} = y \), and thus
\[
\left(\frac{2}{p} \right) = y^{p-1} = 1.
\]

If \(p \equiv \pm 5 \pmod{8} \), since \(\alpha^4 = -1 \), we get
\[
y^p = \alpha^5 + \alpha^{-5} = -(\alpha + \alpha^{-1}) = -y.
\]
This implies that
\[
\left(\frac{2}{p} \right) = y^{p-1} = -1.
\]

Using Propositions 5.3 and 5.4, we can evaluate \(\left(\frac{m}{p} \right) \) provided that we know how to factor \(m \). Actually, by extending \(\left(\frac{m}{p} \right) \) to the Jacobi symbol and using the quadratic reciprocity law, it is possible to evaluate \(\left(\frac{m}{p} \right) \) using Euclidean division, without knowing how to factor.

Euler’s criterion has the following corollary which is the basis of the Solovay–Strassen test.

Proposition 5.5. If \(p \) is an odd prime, then for any integer \(m \in \{1, \ldots, p-1\} \), we have
\[
\left(\frac{m}{p} \right) m^{(p-1)/2} \equiv 1 \pmod{p}.
\]

Proof. Since \(m \in \{1, \ldots, p-1\} \), the Legendre symbol \(\left(\frac{m}{p} \right) \) is not zero, and Euler’s criterion tells us that \(\left(\frac{m}{p} \right) \) and \(m^{(p-1)/2} \pmod{p} \) are either both +1 or both \(-1\), which implies that their product is 1 modulo \(p \).

By taking the contrapositive, it appears that we obtain a criterion for compositeness used in the Solovay–Strassen test:

If \(n \geq 3 \) is odd and if there is some \(a \in \{2, \ldots, n-1\} \) such that
\[
\left(\frac{a}{n} \right) a^{(n-1)/2} \not\equiv 1 \pmod{n},
\]
then \(n \) is composite.

However, we haven’t yet defined \(\left(\frac{a}{n} \right) \) for a composite number \(n \). This can be done by introducing the Jacobi symbol. Having made sense of \(\left(\frac{a}{n} \right) \) where \(n \) is composite, two issues remain:

1. Proving that only a fraction of numbers in \(\{2, \ldots, n-1\} \) are liars, that is, satisfy the condition of Proposition 5.5 even though \(n \) is composite.

2. Find an efficient method to evaluate \(\left(\frac{a}{n} \right) a^{(n-1)/2} \pmod{n} \).

Fortunately, at most half of the integers in \(\{2, \ldots, n-1\} \) are liars. For the second point, we make use of the famous quadratic reciprocity law.
5.3 The Jacobi Symbol

The definition of the Jacobi symbol favors the quadratic reciprocity law at the expense of the connection with quadratic residues. As a consequence, \(\left(\frac{m}{n} \right) = 1 \) does not necessarily imply that \(m \) is a quadratic residue modulo \(n \). On the positive side, properties of the Jacobi symbol yield a more efficient algorithm for evaluating \(\left(\frac{m}{n} \right) \).

Definition 5.3. Let \(P \geq 3 \) be a positive odd integer and let \(P = p_1^{j_1} p_2^{j_2} \cdots p_k^{j_k} \) be the prime factorization of \(P \). For any integer \(m \), the *Jacobi symbol* \(\left(\frac{m}{P} \right) \) is defined as follows:

\[
\left(\frac{m}{P} \right) = \left(\frac{m}{p_1} \right)^{j_1} \left(\frac{m}{p_2} \right)^{j_2} \cdots \left(\frac{m}{p_k} \right)^{j_k}.
\]

By convention, \(\left(\frac{m}{1} \right) = 1 \).

Clearly,

\[
\left(\frac{1}{P} \right) = 1,
\]

and the Jacobi symbol agrees with the Legendre symbol if \(P \) is prime. If \(\gcd(m, P) > 1 \), then \(m \) is a multiple of some prime factor \(p_i \) of \(P \), so \(\left(\frac{m}{P} \right) = 0 \), and otherwise \(\left(\frac{m}{P} \right) = \pm 1 \).

Since the primes \(p_1, \ldots, p_k \) are all distinct, \(m \) is a quadratic residue modulo \(P \) iff \(\left(\frac{m}{p_i} \right) = 1 \) for all \(p_i \), but is is possible that \(\left(\frac{m}{P} \right) = 1 \) even though \(m \) is a quadratic nonresidue modulo \(P \). For example, we have

\[
\left(\frac{2}{15} \right) = \left(\frac{2}{3} \right) \left(\frac{2}{5} \right) = (-1)(-1) = 1,
\]

but 2 is not a quadratic residue modulo 15. On the other hand, if \(\left(\frac{m}{P} \right) \equiv -1 \pmod{p} \), then \(\gcd(m, P) = 1 \) and \(m \) is a quadratic nonresidue modulo \(P \).

The Jacobi symbol satisfies the following properties which are very useful for evaluating it.

Proposition 5.6. For any odd positive integers \(m, n \geq 3 \), and any integers \(a, b \), the following properties hold:

1. \(\left(\frac{a \cdot b}{m} \right) = \left(\frac{a}{m} \right) \left(\frac{b}{m} \right) \).

2. \(\left(\frac{a}{mn} \right) = \left(\frac{a}{m} \right) \left(\frac{a}{n} \right) \).

3. If \(a \equiv b \pmod{m} \), then \(\left(\frac{a}{m} \right) = \left(\frac{b}{m} \right) \).
5.3. THE JACOBI SYMBOL

(4) If \(\gcd(a, m) = 1 \), then \(\left(\frac{a^2 \cdot b}{m} \right) = \left(\frac{b}{m} \right) \).

(5) If \(\gcd(a, m) = 1 \), then \(\left(\frac{a}{m^2 \cdot n} \right) = \left(\frac{a}{n} \right) \).

(6) \(\left(\frac{2^{2k} \cdot a}{m} \right) = \left(\frac{a}{m} \right) \) and \(\left(\frac{2^{2k+1} \cdot a}{m} \right) = \left(\frac{2}{m} \right) \left(\frac{a}{m} \right) \), for all \(k \geq 1 \).

(7) \(\left(\frac{-1}{m} \right) = (-1)^{\frac{m+1}{2}} \), or equivalently

\[
\left(\frac{-1}{m} \right) = \begin{cases}
1 & \text{if } m \equiv 1 \mod 4 \\
-1 & \text{if } m \equiv 3 \mod 4.
\end{cases}
\]

(8) \(\left(\frac{2}{m} \right) = (-1)^{\frac{m^2-1}{8}} \), or equivalently

\[
\left(\frac{2}{m} \right) = \begin{cases}
1 & \text{if } m \equiv 1 \mod 8 \text{ or } m \equiv 7 \mod 8 \\
-1 & \text{if } m \equiv 3 \mod 8 \text{ or } m \equiv 5 \mod 8.
\end{cases}
\]

Proof. Parts (1)–(4) follow easily from Propositions 5.3 and 5.4, and Definition 5.3. Part (5) follows from part (2). For part 6, observe that \(\left(\frac{4}{m} \right) = \left(\frac{2}{m} \right)^2 = 1 \), and then apply (4) repeatedly to eliminates factors of 4 in the “numerator.” For part (7), write \(m = p_1 p_2 \cdots p_k \) as a product of odd prime factors \(p_i \), not necessarily distinct. Then, we have

\[
m = \prod_{i=1}^{k} (1 + p_i - 1) = 1 + \sum_{i=1}^{k} (p_i - 1) + R,
\]

where \(R \) consists of a sum of products of at least two factors of the form \(p_i - 1 \), so that \(R \) is a multiple of 4. Hence,

\[
m \equiv 1 + \sum_{i=1}^{k} (p_i - 1) \pmod{4},
\]

or

\[
m - 1 \equiv \sum_{i=1}^{k} \frac{(p_i - 1)}{2} \pmod{2}.
\]

Therefore,

\[
\left(\frac{-1}{m} \right) = \prod_{i=1}^{k} \left(\frac{-1}{p_i} \right) = \prod_{i=1}^{k} (-1)^{(p_i-1)/2} = (-1)^{\sum_{i=1}^{k} (p_i-1)/2} = (-1)^{(m-1)/2},
\]

\[
\left(\frac{2}{m} \right) = (-1)^{\frac{m^2-1}{8}} = (-1)^{\sum_{i=1}^{k} (p_i-1)/2} = (-1)^{(m-1)/2},
\]
as claimed.

For part (8), write

$$m^2 = \prod_{i=1}^{k} (1 + p_i^2 - 1) = 1 + \sum_{i=1}^{k} (p_i^2 - 1) + R,$$

where R is a sum of products of at least two factors of the form $p_i^2 - 1$. Now, since $p_i \equiv \pm 1 \pmod{4}$, we have $p_i^2 - 1 \equiv 0 \pmod{8}$, and thus,

$$m^2 \equiv 1 + \sum_{i=1}^{k} (p_i^2 - 1) \pmod{64},$$

which yields

$$\frac{m^2 - 1}{8} \equiv \sum_{i=1}^{k} \frac{p_i^2 - 1}{8} \pmod{8}.$$

The above congruence also holds modulo 2, so we get

$$\left(\frac{2}{m}\right) = \prod_{i=1}^{k} \left(\frac{2}{p_i}\right) = \prod_{i=1}^{k} (-1)^{(p_i^2 - 1)/8} = (-1)^{(m^2 - 1)/8},$$

as claimed. \hfill \Box

Remark: Proposition 5.6 holds trivially if $m = 1$ or $n = 1$.

5.4 The Solovay–Strassen Test; E-Witnesses and E-Liars

Now that we have the Jacobi symbol, $\left(\frac{a}{m}\right)$ makes sense if m is an odd positive integer, and we are ready to present the Solovay–Strassen test. This test relies on the following fact:

If $n \geq 3$ is odd and if there is some $a \in \{2, \ldots, n-1\}$ such that

$$\left(\frac{a}{n}\right) a^{(n-1)/2} \not\equiv 1 \pmod{n},$$

then n is composite.

Definition 5.4. Let $n \geq 3$ be any odd integer.

1. An integer a such that $2 \leq a \leq n-1$ is called an Euler witness, for short an E-witness for n, if

$$\left(\frac{a}{n}\right) a^{(n-1)/2} \not\equiv 1 \pmod{n}.$$
5.4. THE SOLOVAY–STRASSEN TEST; E-WITNESSES AND E-LIARS

(2) If \(n > 3\) is an odd composite, then an integer \(a\) with \(1 \leq a \leq n - 1\) is an Euler liar, for short an E-liar for \(n\), if

\[
\left(\frac{a}{n} \right) a^{(n-1)/2} \equiv 1 \pmod{n}.
\]

The set of E-liars is denoted by \(L_n^E\). An odd composite number \(n\) such that \(a\) with \(2 \leq a \leq n - 2\) is an E-liar for \(n\) is called an Euler pseudoprime base \(a\).

Consider \(n = 325\), a composite. For \(a = 15\), we have \(\gcd(15, 325) = 5\), hence \(\left(\frac{15}{325} \right) = 0\), and 15 is an E-witness. For \(a = 2\), we have \(2^{162} \equiv 129 \pmod{325}\), so 2 is also an E-witness. For \(a = 7\), we have \(7^{162} \equiv 324 \pmod{325}\), and \(\left(\frac{7}{325} \right) = -1\); consequently, 7 is an E-liar for 325.

The first fact to observe is that every E-liar is an F-liar.

Proposition 5.7. For any odd composite \(n > 3\), we have \(L_n^E \subseteq L_n^F\).

Proof. This is because, if \(a\) is an E-liar, then

\[
\left(\frac{a}{n} \right) a^{(n-1)/2} \equiv 1 \pmod{n},
\]

and since \(\left(\frac{a}{n} \right) \in \{-1, 1\}\), we must have \(a^{(n-1)/2} \equiv \pm 1 \pmod{n}\), which yields

\[
a^{n-1} \equiv 1 \pmod{n},
\]

showing that \(a\) is an F-liar.

The second fact is that the number of E-liars is at most half of the number of elements in \((\mathbb{Z}/n\mathbb{Z})^*\). The reason is that \(L_n^E\) is a proper subgroup of \((\mathbb{Z}/n\mathbb{Z})^*\).

Theorem 5.8. If \(n > 3\) is an odd composite, then the set \(L_n^E\) of E-liars is a proper subgroup of \((\mathbb{Z}/n\mathbb{Z})^*\).

Proof. We already know that \(L_n^E \subseteq L_n^F \subseteq (\mathbb{Z}/n\mathbb{Z})^*\). Obviously, \(1 \in L_n^E\). If \(a, b \in L_n^E\), then we have \(\left(\frac{a}{n} \right) a^{(n-1)/2} \equiv 1 \pmod{n} \) and \(\left(\frac{b}{n} \right) b^{(n-1)/2} \equiv 1 \pmod{n}\). By property (1) of the Jacobi symbol (Proposition 5.6), we get

\[
\left(\frac{a \cdot b}{n} \right) (a \cdot b)^{(n-1)/2} \equiv \left(\frac{a}{n} \right) a^{(n-1)/2} \left(\frac{b}{n} \right) b^{(n-1)/2} \equiv 1 \cdot 1 \equiv 1 \pmod{n}
\]

which shows that \(ab \in L_n^E\). Therefore, \(L_n^E\) is a subgroup of \(L_n^F\).

It remains to show that there is some \(a \in (\mathbb{Z}/n\mathbb{Z})^*\) which does not belong to \(L_n^E\); that is, that there is some E-witness in \((\mathbb{Z}/n\mathbb{Z})^*\). There are two cases:
Case 1. The number n contains some square factor p, for some prime $p \geq 3$. In this case, when we proved (1) of Korselt’s criterion (Theorem 4.5), we produced an F-witness a in $(\mathbb{Z}/n\mathbb{Z})^*$. By Proposition 5.7, we conclude that a is an E-witness in $(\mathbb{Z}/n\mathbb{Z})^*$.

Case 2. The number n is squarefree, so we can write $n = pm$, for some odd prime p and some odd number $m \geq 3$ which is not a multiple of p.

Let $b \in \{1, \ldots, p-1\}$ be some quadratic nonresidue modulo p, so that $\left(\frac{b}{p}\right) = -1$. Using the Chinese remainder theorem, we find some a with $1 \leq a \leq n-1$ such that

\[
a \equiv b \pmod{p} \quad \text{and} \quad a \equiv 1 \pmod{m}.
\]

We claim that a is an E-witness in $(\mathbb{Z}/n\mathbb{Z})^*$. Since b is a nonresidue modulo p, the prime p does not divide a, and $\gcd(a, m) = 1$, so $\gcd(a, n) = 1$ and $a \in (\mathbb{Z}/n\mathbb{Z})^*$.

Next, observe that

\[
\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right) \left(\frac{a}{m}\right) = \left(\frac{b}{p}\right) \left(\frac{1}{m}\right) = (-1) \cdot 1 = -1.
\]

If a were an E-liar, then the fact that $\left(\frac{a}{n}\right) = -1$ would imply that

\[
a^{(n-1)/2} \equiv -1 \pmod{n}.
\]

Since m divides n, we would have

\[
a^{(n-1)/2} \equiv -1 \pmod{m},
\]

contradicting the fact that $a \equiv 1 \pmod{m}$. Therefore, a is indeed an E-witness in $(\mathbb{Z}/n\mathbb{Z})^*$ for n. \hfill \Box

Theorem 5.8 implies that the order $|L_n^E|$ of the group L_n^E divides the order $\varphi(n)$ of $(\mathbb{Z}/n\mathbb{Z})^*$, and therefore,

\[
|L_n^E| \leq \frac{\varphi(n)}{2} \leq \frac{n-1}{2}.
\]

Here is the Solovay–Strassen primality test.

Solovay–Strassen test

The input is an odd integer $n > 3$.

procedure solovay-strassen(n)

begin

Choose random integer $a \in \{2, \ldots, n-2\}$;

if $\left(\frac{a}{n}\right)a^{(n-1)/2} \not\equiv 1 \pmod{n}$

then $c := 1$; return c; exit; (* n is a composite *)

else $c := 0$; return c (* n is a probable prime *)

end
5.5. **THE QUADRATIC RECIPROCITY LAW**

The Solovay–Strassen test is a Monte-Carlo algorithm. If the procedure returns $c = 1$, then n is composite: that is,

$$\Pr(n \text{ composite } | \text{ solovay strassen return } c = 1) = 1.$$

If n is composite, then the solovay-strassen test returns $c = 1$ for at least $1/2$ of the number of choices for a; that is,

$$\Pr(\text{solovay strassen return } c = 1 \mid n \text{ is composite}) \geq \frac{1}{2}.$$

If we repeat the Solovay–Strassen test ℓ times, as in the case of the Miller–Rabin test, we obtain the fact that

$$\Pr(\text{solovay strassen return } \ell \text{ times } c = 0 \mid n \text{ is composite}) \leq \left(\frac{1}{2}\right)^\ell,$$

and that (approximately)

$$\Pr(n \text{ is prime } \mid \text{ solovay strassen return } \ell \text{ times } c = 0) \geq 1 - \frac{\ln(n)}{2^\ell}.$$

We still have to show how the Jacobi symbol can be evaluated quickly. For this, we need the quadratic reciprocity law.

5.5 The Quadratic Reciprocity Law

The *quadratic reciprocity law*, first stated by Euler (in a complicated form) around 1744–1746, was rediscovered in 1785 by Legendre who gave a partial proof. Gauss discovered the quadratic reciprocity independently at the age of eighteen and was the first one to give a complete proof in 1796. In fact, according to Dedekind [11] (Chapter 3, Section 42), Gauss gave six different proofs of the quadratic reciprocity law! A seventh proof was found in Gauss’ Nachlass. Curiously, some authors (including Apostol) claim that Gauss gave eight different proofs.

The quadratic reciprocity law states that if p and q are distinct odd primes, then $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$ unless $p \equiv q \equiv 3 \pmod{4}$, in which case $\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$. The extension of the quadratic reciprocity law to the Jacobi symbol for distinct odd integers $m, n \geq 3$ such that $\gcd(m, n) = 1$ is easy.

Theorem 5.9. *(Quadratic reciprocity law)* If m and n are any odd integers $m, n \geq 3$ such that $\gcd(m, n) = 1$, then

$$\left(\frac{m}{n}\right) = (-1)^{m-1} \frac{n-1}{2} \left(\frac{n}{m}\right).$$
Equivalentely,

\[
\left(\frac{m}{n} \right) = \begin{cases}
\left(\frac{n}{m} \right) & \text{if } m \equiv 1 \mod 4 \text{ or } n \equiv 1 \mod 4 \\
-\left(\frac{n}{m} \right) & \text{if } m \equiv 3 \mod 4 \text{ and } n \equiv 3 \mod 4.
\end{cases}
\]

Furthermore,

\[
\left(\frac{1}{m} \right) = 1,
\left(\frac{-1}{m} \right) = (-1)^{\frac{m-1}{2}},
\left(\frac{2}{m} \right) = (-1)^{\frac{m^2-1}{8}},
\]

or equivalently

\[
\left(\frac{-1}{m} \right) = \begin{cases}
1 & \text{if } m \equiv 1 \mod 4 \\
-1 & \text{if } m \equiv 3 \mod 4,
\end{cases}
\]

and

\[
\left(\frac{2}{m} \right) = \begin{cases}
1 & \text{if } m \equiv 1 \mod 8 \text{ or } m \equiv 7 \mod 8 \\
-1 & \text{if } m \equiv 3 \mod 8 \text{ or } m \equiv 5 \mod 8.
\end{cases}
\]

Observe that the quadratic reciprocity law holds trivially if \(\gcd(m, n) > 1 \), since in this case \(\left(\frac{m}{n} \right) = \left(\frac{n}{m} \right) = 0. \)

Remark: We could define the Legendre symbol for \(n = 2 \). Since every odd number \(m = 2k + 1 \) is a quadratic residue modulo 2 and there are no quadratic nonresides, we can set

\[
\left(\frac{m}{2} \right) = \begin{cases}
+1 & \text{if } m \text{ is odd} \\
0 & \text{if } m \text{ is even}.
\end{cases}
\]

But then, the quadratic reciprocity law fails. Similarly, we could define the Jacobi symbol if \(n \) is even, but this is futile since the quadratic reciprocity law also fails. This is the reason why the Legendre symbol \(\left(\frac{m}{p} \right) \) is only defined for an odd prime \(p \) and the Jacobi symbol \(\left(\frac{m}{n} \right) \) for a positive odd integer \(n \).

We prove the quadratic reciprocity law in section 5.6, but first we show how it can be used together with the properties stated in Proposition 5.6 to evaluate quickly the Jacobi symbol.

We use the following steps recursively to evaluate the Jacobi symbol \(\left(\frac{a}{n} \right) \).

1. Reduce modulo \(n \). If \(a \notin \{1, \ldots, n-1\} \), compute \(\left(\frac{a \mod n}{n} \right) \).
5.5. THE QUADRATIC RECIPROCITY LAW

(2) If \(a = 0 \), then the result is 0.

(3) If \(a = 1 \), then the result is 1.

(4) Remove factors of 4 from the numerator. If 4 divides \(a \), then compute \(\left(\frac{a/4}{n} \right) \).

(5) Remove factors of 2 from the numerator. If 2 divides \(a \), then if \(n \equiv 1, 7 \pmod{8} \), compute \(\left(\frac{a/2}{n} \right) \), else if \(n \equiv 3, 5 \pmod{8} \), compute \(-\left(\frac{a/2}{n} \right) \).

(6) Apply quadratic reciprocity, case 1. If \(n > a > 1 \) and \((a \equiv 1 \pmod{4} \) or \(n \equiv 1 \pmod{4} \)), then compute \(\left(\frac{n \mod a}{a} \right) \).

(7) Apply quadratic reciprocity, case 2. If \(n > a \), \(a \equiv 3 \pmod{4} \) and \(n \equiv 3 \pmod{4} \), then compute \(-\left(\frac{n \mod a}{a} \right) \).

The rules for evaluating the Jacobi symbol are more powerful than the rules for evaluating the Legendre symbol because in (6) and (7) it is not necessary to assume that \(a \) is prime. Thus, there is no need for factoring \(a \), which is a great advantage, because factoring is generally considered hard.

Here is an illustration of the use of the above rules to evaluate a Jacobi symbol. Consider

\[
\left(\frac{773}{1373} \right).
\]

In the present case, 773 and 1373 are prime, so we are in fact computing the Legendre symbol. We have

\[
\left(\frac{773}{1373} \right) = 6 \left(\frac{600}{773} \right)^4 = \left(\frac{150}{773} \right)^5 = -\left(\frac{75}{773} \right)^6 = -\left(\frac{23}{75} \right)^7 = \left(\frac{6}{23} \right)^5 = \left(\frac{3}{23} \right)^6 - \left(\frac{2}{3} \right)^5 = \left(\frac{1}{3} \right)^3 = 1.
\]

Therefore, 773 is a quadratic residue modulo 1373. Another way to show this is to use the Euler criterion and to compute \(773^{686} \pmod{1373} \) (we find that the result is indeed 1).

The following example taken from Hoffstein, Pipher and Silverman [8] shows the superiority of the Jacobi symbol. Consider computing

\[
\left(\frac{228530738017}{9365449244297} \right),
\]

where the two numbers involved are indeed prime (check it using Miller-Rabin or Solovay-Strassen!). By the quadratic reciprocity law, we get

\[
\left(\frac{228530738017}{9365449244297} \right) = \left(\frac{9365449244297}{228530738017} \right),
\]
and since 936549244297 ≡ 224219723617 (mod 228530738017), we have
\[
\left(\frac{936549244297}{228530738017} \right) = \left(\frac{224219723617}{228530738017} \right).
\]

Now, although this is not obvious, 224219723617 is composite, so to proceed with the Legendre symbol we need to factor 224219723617, not an easy task. With the Jacobi symbol, we can apply the law of quadratic reciprocity and then reduce modulo the denominator and we get
\[
\left(\frac{224219723617}{228530738017} \right) = \left(\frac{228530738017}{224219723617} \right) = \left(\frac{4311014400}{224219723617} \right).
\]

Since 4311014400 = 2^{10} · 4209975, we get
\[
\left(\frac{4311014400}{224219723617} \right) = \left(\frac{4209975}{224219723617} \right) = \left(\frac{224219723617}{4209975} \right) = \left(\frac{665092}{4209975} \right).
\]

We will let the reader finish the computation and eventually find that the answer is −1.

Here is an iterative algorithm for evaluating the Jacobi symbol \(\left(\frac{a}{n} \right) \) where \(n \geq 3 \) is an odd integer.

Evaluation of the Jacobi Symbol

```plaintext
function jacobi(n, a)
    b := a mod n; c := n; s := 1;
    while b ≥ 2 do
        while 4 | b do
            b := b/4
        endwhile;
        if 2 | b then
            if c ≡ 3, 5 (mod 8) then s := −s endif;
            b := b/2
        endif;
        if b = 1 then return s exit endif;
        if b ≡ c ≡ 3 (mod 4) then s := −s endif;
        b := c mod b; c := b
    endwhile;
    return s · b
end
```

It is not hard to see that the invariant
\[
s · \left(\frac{b}{c} \right) = \left(\frac{a}{n} \right)
\]
is maintained during execution of the program. Also, if $\gcd(a, n) > 1$, then at some point b becomes 0, so there is no need to compute $\gcd(a, n)$. We leave it as an exercise to prove that the above program computes the Jacobi symbol $\left(\frac{a}{n} \right)$; for help, consult Dietzfelbinger [4] (Section 6.3). It is also easy to prove that the number of iterations of the main while loop is $O(\log n)$ and that the program runs in $O((\log n)^2)$ bit operations if $|a| < n$ (see Crandall and Pomerance [3], Chapter 2).

It is remarkable that deciding whether a is a quadratic residue modulo n can be done quickly (in polynomial time in $\log n$), basically the same complexity as computing the gcd. However finding a square root in $\mathbb{Z}/p\mathbb{Z}$ is hard (with p prime). So far, no known polynomial-time algorithm is known. It is known that if the ERH holds, then there is a quadratic nonresidue $d < 2(\log p)^2$. From this, a square root can be found in polynomial time, if it exists. If n is composite, there is no known fast method for computing square roots. In fact, it can be shown that doing so is essentially equivalent to factoring n. We will elaborate on these points later.

5.6 Proof of the Quadratic Reciprocity Law

At least 150 proofs of the quadratic reciprocity law have been published. Gauss himself gave seven different proofs. We follow a short proof using “Gauss sums” due to Jean-Pierre Serre [17]. This proof is not entirely elementary because it uses the fact that if p and q are distinct odd primes, then there is a field extension Ω of $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ in which there is an element of order q (a primitive qth root of unity). Any algebraic closure of \mathbb{F}_p will do. Since $p^{q-1} \equiv 1 \pmod{q}$ (by Fermat’s little theorem), the finite field $\mathbb{F}_{p^{q-1}}$ also works, since its multiplicative group is cyclic of order $p^{q-1} - 1$.

Theorem 5.10. (Quadratic reciprocity law for primes (Gauss)) For any two distinct odd primes p, q, we have

$$\left(\frac{p}{q} \right) = (-1)^{(\frac{q-1}{2})(\frac{p}{q})} \left(\frac{q}{p} \right).$$

Proof. Let Ω be any field extension of $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ in which there is a primitive qth root of unity, for example $\Omega = \mathbb{F}_{p^{q-1}}$. If $w \in \Omega$ is a primitive qth root of unity, define the Gauss sum y by

$$y = \sum_{a \in \mathbb{F}_q} \left(\frac{a}{q} \right) w^a,$$

with $\left(\frac{a}{q} \right) = 0$. Then, we have two steps.

Step 1. We prove that

$$y^2 = (-1)^{(q-1)/2} q.$$

Step 2. We prove that

$$y^{p-1} = \left(\frac{p}{q} \right).$$
If we assume that Step 1 and Step 2 have been established, by Step 1, \(y \) is a square root of \((-1)^{(q-1)/2}q\), and by a previous remark

\[
\left(\frac{(-1)^{(q-1)/2}q}{p} \right) = y^{p-1},
\]

so by Step 2

\[
\left(\frac{(-1)^{(q-1)/2}q}{p} \right) = \left(\frac{p}{q} \right).
\]

On the other hand, by Proposition 5.3 and Proposition 5.4, we have

\[
\left(\frac{p}{q} \right) = \left(\frac{(-1)^{(q-1)/2}q}{p} \right) = \left(\frac{(-1)^{(q-1)/2}}{p} \right) \left(\frac{q}{p} \right) = (-1)^{(p-1)(q-1)/4} \left(\frac{q}{p} \right),
\]

which proves the desired formula.

\(\square \)

Proof of Step 1. We have

\[
y^2 = \left(\sum_{a \in \mathbb{F}_q} \left(\frac{a}{q} \right) w^a \right) \left(\sum_{b \in \mathbb{F}_q} \left(\frac{b}{q} \right) w^b \right) = \sum_{a,b \in \mathbb{F}_q} \left(\frac{ab}{q} \right) w^{a+b} = \sum_{c \in \mathbb{F}_q} w^c \left(\sum_{a \in \mathbb{F}_q} \left(\frac{a(c-a)}{q} \right) \right),
\]

by making the change of variable \(c = a + b \). Now, if \(a \neq 0 \), we have \(a(c-a) = -a^2(1-ca^{-1}) \), so

\[
\left(\frac{a(c-a)}{q} \right) = \left(\frac{-a^2(1-ca^{-1})}{q} \right) = \left(\frac{a}{q} \right)^2 \left(-1 \right) \left(\frac{1-ca^{-1}}{q} \right) = (-1)^{(q-1)/2} \left(\frac{1-ca^{-1}}{q} \right),
\]

and thus,

\[
(-1)^{(q-1)/2}y^2 = \sum_{c \in \mathbb{F}_q} S_c w^c;
\]

with

\[
S_c = \sum_{a \in \mathbb{F}_q} \left(\frac{1-ca^{-1}}{q} \right).
\]

If \(c = 0 \), then

\[
S_0 = \sum_{a \in \mathbb{F}_q} \left(\frac{1}{q} \right) = q - 1.
\]

Otherwise, \(d = 1 - ca^{-1} \) runs over \(\mathbb{F}_q - \{1\} \), and we have

\[
S_c = \sum_{a \in \mathbb{F}_q} \left(\frac{1-ca^{-1}}{q} \right) = \sum_{d \in \mathbb{F}_q} \left(\frac{d}{q} \right) - \left(\frac{1}{q} \right) = \sum_{d \in \mathbb{F}_q^*} \left(\frac{d}{q} \right) - \left(\frac{1}{q} \right) = -\left(\frac{1}{q} \right) = -1,
\]
5.6. PROOF OF THE QUADRATIC RECIPROCITY LAW

since in \mathbb{F}_q^* there are as many squares as nonsquares (see Proposition 5.1). As a consequence,

$$\sum_{c \in \mathbb{F}_q^*} S_c w^c = S_0 + \sum_{c \in \mathbb{F}_q^*} S_c w^c = q - 1 - \sum_{c \in \mathbb{F}_q^*} w^c = q,$$

since $\sum_{c \in \mathbb{F}_q^*} w^c = -1$ (because w is a primitive qth root of unity, so $w^q = 1$,

$$0 = w^q - 1 = (w - 1)(w^{q-1} + \cdots + q + 1),$$

which implies $w^{q-1} + \cdots + q + 1 = 0$, and thus, $\sum_{c \in \mathbb{F}_q^*} w^c = w^{q-1} + \cdots + q = -1$), which proves Step 1.

Proof of Step 2. Since Ω is a field of characteristic p, we have

$$(x_1 + \cdots + x_m)^p = x_1^p + \cdots + x_m^p,$$

for all $x_1, \ldots, x_m \in \Omega$, so we get

$$y^p = \sum_{a \in \mathbb{F}_q} \left(\frac{a}{q}\right)^p w^{ap} = \sum_{a \in \mathbb{F}_q} \left(\frac{a}{q}\right) w^{ap}$$

since p is odd, and by making the change of variable $b = ap$, we get

$$y^p = \sum_{b \in \mathbb{F}_q} \left(\frac{bp^{-1}}{q}\right) w^b = \sum_{b \in \mathbb{F}_q} \left(\frac{p}{q}\right)^2 \left(\frac{bp^{-1}}{q}\right) w^b = \sum_{b \in \mathbb{F}_q} \left(\frac{bp}{q}\right) w^b = \left(\frac{p}{q}\right) \sum_{b \in \mathbb{F}_q} \left(\frac{b}{q}\right) w^b = \left(\frac{p}{q}\right) y.$$

Therefore, $y^{p-1} = \left(\frac{p}{q}\right)$, as claimed. \qed

The proof of the quadratic reciprocity law for the Jacobi symbol is now easy to obtain. For the reader’s convenience, we repeat the statement of the theorem.

Theorem 5.11. (Quadratic reciprocity law for the Jacobi symbol) If m and n are any odd integers $m, n \geq 3$ such that $\gcd(m, n) = 1$, then

$$\left(\frac{m}{n}\right) = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}} \left(\frac{n}{m}\right).$$

Equivalently,

$$\left(\frac{m}{n}\right) = \begin{cases}
\left(\frac{n}{m}\right) & \text{if } m \equiv 1 \mod 4 \text{ or } n \equiv 1 \mod 4 \\
-\left(\frac{n}{m}\right) & \text{if } m \equiv 3 \mod 4 \text{ and } n \equiv 3 \mod 4.
\end{cases}$$
Proof. Write the prime factorizations of \(m\) and \(n\) as \(m = p_1 \cdots p_s\) and \(n = q_1 \cdots q_t\), where the \(p_i\) and \(q_j\) are primes. Then, we have

\[
\left(\frac{m}{n}\right) \left(\frac{n}{m}\right) = \prod_{i=1}^{s} \prod_{j=1}^{t} \left(\frac{p_i}{q_j}\right) = (-1)^r,
\]

for some integer \(r\). Applying the quadratic reciprocity law for primes to each factor, we find that

\[
r = \sum_{i=1}^{s} \sum_{j=1}^{t} \frac{(p_i - 1)(q_j - 1)}{2} = \sum_{i=1}^{s} \frac{p_i - 1}{2} \sum_{j=1}^{t} \frac{q_j - 1}{2}.
\]

During the proof of part (7) of Proposition 5.6, we showed that

\[
\sum_{i=1}^{s} \frac{p_i - 1}{2} \equiv \frac{m - 1}{2} \pmod{2}
\]

and

\[
\sum_{j=1}^{t} \frac{q_j - 1}{2} \equiv \frac{n - 1}{2} \pmod{2}.
\]

Therefore,

\[
r \equiv \frac{(m - 1)(n - 1)}{2} \pmod{2},
\]

which proves our formula.

Another way of proving the law of quadratic reciprocity (for primes) is to use Gauss sets. Given any odd prime \(p\), any subset \(S\) of \(\mathbb{F}_p^* = \{1, 2, \ldots, p-1\}\) such that

\[
\mathbb{F}_p^* = S \cup -S
\]

is called a Gauss set. In particular,

\[
S = \left\{1, 2, \ldots, \frac{p-1}{2}\right\}
\]

is a Gauss set. Then, for any \(s \in S\) and any \(a \in \mathbb{F}_p^*\), we can write

\[
as = e_s(a)s_a,
\]

for some \(s_a \in S\) and with \(e_s(a) = \pm 1\). (Of course, \(as\) is multiplication in \(\mathbb{F}_p\), so \(as \equiv e_s(a)s_a \pmod{p}\).)

Lemma 5.12. (Gauss’ lemma) For any odd prime \(p\) and any \(a \in \mathbb{F}_p^*\), we have

\[
\left(\frac{a}{p}\right) = \prod_{s \in S} e_s(a).
\]
5.7. STRONG PSEUDOPRIMES ARE EULER PSEUDOPRIMES

Proof. First, observe that if \(s \neq s' \), then \(s_a \neq s'_a \); since otherwise we would have \(s = \pm s' \), contradicting the fact that \(\mathbb{F}_p^* = S \cup -S \). Therefore, the map \(s \mapsto s_a \) is a bijection of \(S \). If we multiply the equations

\[
as = e_s(a)s_a
\]

for all \(s \in S \), we get

\[
a^{(p-1)/2} \prod_{s \in S} s = \left(\prod_{s \in S} e_s(a) \right) \prod_{s \in S} s_a = \left(\prod_{s \in S} e_s(a) \right) \prod_{s \in S} s,
\]

which implies that

\[
a^{(p-1)/2} = \prod_{s \in S} e_s(a).
\]

However, we know that

\[
\left(\frac{a}{p} \right) = a^{(p-1)/2},
\]

which proves the lemma. \(\Box \)

As an application of Lemma 5.12, the reader should reprove that

\[
\left(\frac{2}{p} \right) = (-1)^{(p-1)/2},
\]

by setting \(a = 2 \) and using the set \(S \) from above. It turns out that

\[
\left(\frac{2}{p} \right) = (-1)^{n(p)},
\]

where \(n(p) \) is the number of integers \(s \) such that

\[
\frac{p - 1}{4} < s \leq \frac{p - 1}{2}.
\]

Several elementary proofs of the law of quadratic reciprocity can be obtained from Gauss’ lemma. For example, see Apostol [1] (Chapter 9, Sections 9.4, 9.5). A striking proof due to Eisenstein (1845) using a trigonometric identity is given in Serre [17].

5.7 Strong Pseudoprimes are Euler Pseudoprimes

We conclude this chapter by showing that every strong pseudoprime base \(a \) is also an Euler pseudoprime base \(a \). This is another indication that the Miller–Rabin test is somewhat better than the Solovay–Strassen test (recall that the proportion of \(MR \)-liars is at most \(1/4 \), whereas the proportion of \(E \)-liars is at most \(1/2 \)). We follow Koblitz’s proof [9] (Chapter V).
We begin with an easy result, but first, observe that if \(a \) is an \(E \)-liar, then
\[
\left(\frac{a}{n} \right) a^{(n-1)/2} \equiv 1 \pmod{n},
\]
which implies that \(\gcd(a, n) = 1 \), and since \(\left(\frac{a}{n} \right) \in \{-1, 1\} \), the above condition is equivalent to
\[
\left(\frac{a}{n} \right) \equiv a^{(n-1)/2} \pmod{n}.
\]

Proposition 5.13. If \(n \) is any composite of the form \(n = 4k + 3 \), then \(n \) is a strong pseudoprime base \(a \) iff \(n \) is an Euler pseudoprime base \(a \).

Proof. Since \(n = 4k + 3 \), we have \(n-1 = 2(2k+1) \), so \(n-1 = 2^s t \) with \(s = 1 \) and \(t = (n-1)/2 \). Thus, \(n \) is a strong pseudoprime base \(a \) iff \(a^{(n-1)/2} \equiv \pm 1 \pmod{n} \). If \(n \) is an Euler pseudoprime, then the above congruence holds, by definition.

Conversely, assume that \(a^{(n-1)/2} \equiv \pm 1 \pmod{n} \). Then, since \((n-3)/4 = k \) is an integer, we have
\[
\left(\frac{a}{n} \right) = \left(\frac{a^{(n-3)/4}}{n} \right)^2 \left(\frac{a}{n} \right) = \left(\frac{a^{(n-3)/2}}{n} \right) \left(\frac{a}{n} \right) = \left(\frac{a^{(n-3)/2} \cdot a}{n} \right) = \left(\frac{a^{n-1}/2}{n} \right),
\]
and because \((n-1)/2 = 2k + 1 \), we have
\[
\left(\frac{-1}{n} \right) = -1,
\]
which implies that
\[
\left(\frac{a}{n} \right) \equiv a^{(n-1)/2} \pmod{n},
\]
as desired. \(\square \)

The case were \(n = 4k + 1 \) is more involved.

Theorem 5.14. If \(n \) is a strong pseudoprime base \(a \), then \(n \) is an Euler pseudoprime base \(a \).

Proof. Write \(n = 2^t \) with \(t \) odd and assume that \(a \) in an MR-liar for \(n \), which means that either
\[
\begin{align*}
(a) \quad a^t &\equiv 1 \pmod{n}, \\
(b) \quad a^{2^i t} &\equiv n - 1 \pmod{n}, \text{ for some } i \text{ with } 0 \leq i \leq s - 1.
\end{align*}
\]
5.7. **STRONG PSEUDOPRIMES ARE EULER PSEUDOPRIMES**

We consider several cases.

Case 1. Assume that \(a^t \equiv 1 \pmod{n} \). In this case, since \((n - 1)/2 = 2^{s-1}t\), we have

\[
a^{(n-1)/2} \equiv 1 \pmod{n}.
\]

We also have

\[
1 = \left(\frac{1}{n}\right) = \left(\frac{a^t}{n}\right) = \left(\frac{a}{n}\right)^t,
\]

and since \(t \) is odd, \(\left(\frac{a}{n}\right) = 1 \), so \(\left(\frac{a}{n}\right)^{\frac{n-1}{2}} \equiv (a^{(n-1)/2}) \pmod{n} \).

Case 2. Assume that (b) holds for \(i = s - 1 \); that is, \(a^{(n-1)/2} \equiv -1 \pmod{n} \). We must show that \(\left(\frac{a}{n}\right) = -1 \).

Let \(p \) be any prime divisor of \(n \) and write \(p - 1 = 2^{s'} t' \), with \(t' \) odd. We make the following claim:

Claim. We have \(s' \geq s \) and

\[
\left(\frac{a}{p}\right) = \begin{cases}
-1 & \text{if } s' = s \\
1 & \text{if } s' > s.
\end{cases}
\]

Proof of the claim. From

\[
a^{(n-1)/2} = a^{2^{s-1}t} \equiv -1 \pmod{n},
\]

raising both sides to the power \(t' \) we we obtain

\[
\left(\frac{a}{2^{s-1}t'}\right)^t \equiv -1 \pmod{n},
\]

and since \(p \) divides \(n \), we also have

\[
\left(\frac{a}{2^{s-1}t'}\right)^t \equiv -1 \pmod{p}.
\]

If we had \(s' < s \), then we would not have

\[
a^{p-1} \equiv a^{2^{s'} t'} \equiv 1 \pmod{p},
\]

contradicting Fermat’s little theorem. Thus, \(s' \geq s \). If \(s' = s \), then

\[
\left(\frac{a}{2^{s-1}t'}\right)^t \equiv -1 \pmod{p}.
\]
implies that
\[
\left(\frac{a}{p} \right) \equiv a^{(p-1)/2} = b^{2^{s'-1}t'} \equiv -1 \pmod{p}.
\]

On the other hand, if \(s' > s \), then the congruence
\[
\left(a^{2^{s'-1}t'} \right)^t \equiv -1 \pmod{p}
\]
raised to the power \(2^{s'-s} \) implies that \(a^{2^{s'-1}t'} \equiv a^{(p-1)/2} \equiv 1 \pmod{p} \), and \(\left(\frac{a}{p} \right) = 1 \). \(\square \)

Write \(n \) as a product of primes (not necessarily distinct), \(n = p_1p_2 \cdots p_m \), and let \(k \) be the number of primes \(p \) such that \(s' = s \) when we write \(p - 1 = 2^st' \) with \(t' \) odd, counting such a prime with its multiplicity. By the claim, \(s' \geq s \) and
\[
\left(\frac{a}{n} \right) = \prod_{i=1}^{m} \left(\frac{a}{p_i} \right) = (-1)^k.
\]

On the other hand, working modulo \(2^{s+1} \), we see that \(p \equiv 1 \pmod{2^{s+1}} \) unless \(p \) is one of the \(k \) primes for which \(s' = s \), in which case \(p - 1 = 2^st' \equiv 1 \pmod{2^{s+1}} \). Since \(n = 1 + 2^st' \equiv 1 + 2^s \pmod{2^{s+1}} \), we have
\[
1 + 2^s \equiv p_1 \cdots p_m \equiv (1 + 2^s)^k \equiv 1 + k2^s \pmod{2^{s+1}},
\]
using the binomial formula in the last step. The congruence
\[
2^s \equiv k2^s \pmod{2^{s+1}}
\]
implies that \(k \) is odd, hence
\[
\left(\frac{a}{n} \right) = (-1)^k = -1,
\]
as was to be proved.

Case 3. Assume that (b) holds for \(i < s - 1 \); that is, \(a^{2^i} \equiv -1 \pmod{n} \). Raising this congruence to the power \(2^{s-i-1} \), we get \(a^{(n-1)/2} \equiv 1 \pmod{n} \), so we have to prove that \(\left(\frac{a}{n} \right) = 1 \). As in case 2, write \(p - 1 = s't' \) with \(t' \) odd for every prime factor \(p \) of \(n \).

Claim. We have \(s' \geq i + 1 \) and
\[
\left(\frac{a}{p} \right) = \begin{cases} -1 & \text{if } s' = i + 1 \\ 1 & \text{if } s' > i + 1. \end{cases}
\]

The proof of the above claim is identical to the proof of the claim in Case (2). Similarly to Case (2), let \(k \) be the number of primes (not necessarily distinct) such that \(s' = i + 1 \). As in Case (2), we have
\[
\left(\frac{a}{n} \right) = (-1)^k.
\]
On the other hand, since \(i < s - 1 \), we have \(n = 1 + 2^s t \equiv 1 \pmod{2^{i+2}} \), and also
\[
n \equiv p_1 \cdots p_m \equiv (1 + 2^{i+1})^k \equiv 1 + k2^{i+1} \pmod{2^{i+2}},
\]
which implies
\[
2^s t \equiv k2^{i+1} \pmod{2^{i+2}}.
\]
Since \(i + 2 \leq s \), the number \(k \) must be even, and
\[
\left(\frac{a}{n} \right) = (-1)^k = 1,
\]
as desired.

There are examples of composite numbers \(n \) such that \(n \) is an Euler pseudoprime base \(a \) but \(n \) is not a strong pseudoprime base \(a \). This behavior is observed for numbers of the form \((6m + 1)(12m + 1)(18m + 1)\), where each factor is prime and \(m \) is odd; see Exercise 17 in Section 1 of Chapter V of Koblitz [9].

Acknowledgments: I wish to thank Dan Guralnik for inspiring me to write up the review sections on groups. I learned about Theorem 3.13 from his wonderful’s lectures in ESE 680-001. Not too surprisingly, I found that this theorem is used by J.P. Serre in his outstanding Lectures in Arithmetic [17]. I also thank Peter Freyd, Ron Donagi and Steve Shatz. Peter made a number of suggestions/corrections. In particular, he brought to my attention the facts about square roots of unity stated as Proposition 4.1 and Theorem 4.2. Ron and Steve pointed out that Theorem 3.31 implies that there are four square roots of unity when \(n = 2^m \) with \(m \geq 3 \).
CHAPTER 5. THE SOLOVAY–STRASSEN TEST
Bibliography

