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ABSTRACTS

INCREMENTAL ALGORITHMS FOR THE DESIGN OF

TRIANGULAR-BASED SPLINE SURFACES

Dianna Xu

Professor Jean Gallier

Spline surfaces consisting of triangular patches have a number of advantages over

their rectangular counterparts, such as the ability to handle surfaces of arbitrary

topology.

Designing and interpolating triangular-based spline surfaces has been a research

interest in the field of CAGD for some years. Algorithms for designing triangular

splines with local flexibility was left by Ramshaw [Ram87] as an open problem in

1987. Although many approaches have been proposed in the years since, none could

quite achieve the elegance and flexibility of the algorithms for designing rectangular

splines surfaces. The difficulty with triangular spline surfaces is that unlike tensor-

product surfaces, the familiar B-spline curve framework does not carry over.

We present a new de Boor-like algorithm to design triangular C1-splines based

on general triangulations of the parameter plane. Through careful analysis of the

continuity constraints based on polar forms, we discovered a way of choosing strate-

gic control points, so that the remaining control points are computed using a simple

iv



propagation scheme. Due to its local nature, the algorithm can be easily made incre-

mental. The algorithm operates in linear time and handles holes and sharp corners

easily. Preliminary results also suggest that the algorithm can be extended to C2-

splines.

Due to the amount of freedom our algorithm leaves around the vertex regions, it

is readily extendable to handle interpolation. However, fairing methods are needed

to improve the resulting surface quality.

We have also extended our algorithm to handle closed surfaces based on triangu-

lated polyhedra. Parametric data fitting is achieved through G1 triangular surfaces.

We provide a new rigorous definition of a piecewise polynomial surface based on a

triagulated polyhedron. We also define a new kind of geometric continuity associated

with such a polynomial surface, the AGk-continuity.
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Chapter 1

Introduction

In the early days of computer graphics, modeling was a matter of simple unstructured

polygonal meshes. However, it quickly became clear that polygonal meshes take up

large amounts of storage space, are difficult to manipulate, and most importantly,

lack the fundamental smoothness required by such tasks as designing the body of an

automobile or the wing of an aircraft.

Mathematically, polygonal lines and polygons are simply first-order linear approx-

imations to curves and surfaces, respectively. The study of computer-based higher

order free-form curves and surfaces then became the main focus of the field called

Computer Aided Geometric Design or CAGD.

The general approach is to use the parametric method to represent these higher

order functions. The resulting curves and surfaces are known as parametric curves

and surfaces. Parametric curves define points on curve segments in 3D using three

polynomials in one parameter (also called univariate). Parametric surfaces are natural

extensions of parametric curves, and they define points on curved surface patches in
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3D using three polynomials in two parameters (also called bivariate).

However, using a single parametric curve segment or surface patch poses many

problems.

• First, it leads to high degrees either due to smoothness requirements or inter-

polation restraints. High degrees not only complicate computation, they also

cause undesirable artifacts in curve or surface shape. For example, a high de-

gree interpolating curve might look like this between two of the data points it

is required to pass through, even if smoothness requirements are satisfied:

Figure 1.1: A wriggling interpolating curve

• More importantly, a single curve segment or surface patch lacks local control.

That is, the modification of any small part of a curve or surface will affect the

entire curve or surface. This forces recomputation of the entire curve or surface,

as opposed to just the immediate neighborhood of such a curve or surface.

• Finally, because a single parametric curve or surface is dependent on all of its

control points, computation of a single point on the curve or surface is much

more expensive.
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The solutions to all the aforementioned problems of simple parametric curves and

surfaces are spline curves and surfaces. Splines and spline surfaces are simply piece-

wise parametric curve segments or surface patches joined together for lower degree,

local control and more flexibility in shape design. Because these curve segments or

surface patches need to be “pieced” together, there are natural smoothness concerns

along the borders where they join. This leads to the concept of parametric continuity.

Parametric continuity requires that up to a certain order, parametric derivatives must

match at the boundaries.

1.1 Motivation

1.1.1 Triangular splines versus rectangular splines

Spline curves and surfaces have been used extensively in architecture, manufacturing,

graphics modeling and animation and a variety of other fields in the past decade. The

industry standard these days is unquestionably the nonuniform rational B-splines, or

NURBS. To a large extent, NURBS’ dominance can be attributed to its fundamental

B-splines properties, such as built-in continuity, incrementality and local control.

This is because the B-spline basis functions have local support, which means the

curve segments depend on just a few of the control points. There are two major

advantages to local control: moving one control point will only affect a small portion

of the curve in the immediate neighborhood and computation of a point on the curve

is greatly simplified as it depends on the number of control points involved.

There are two natural ways to extend B-spline curves into B-spline surfaces. The

3



first method generates tensor-product surfaces, as it regards the B-spline surface as

the tensor product (basically, Cartesian product) of B-spline curves in two directions.

This method partitions the parameter plane into a rectangular grid, therefore, the re-

sulting spline surfaces are also called rectangular spline surfaces. By construction, all

B-spline properties extend readily to tensor-product surfaces, including local control

and continuity constraints. Also all the techniques and algorithms for display carry

over directly. The ease with which tensor product surfaces can be understood and

implemented led to their overwhelming popularity. NURBS surfaces are all tensor

product surfaces.

However, the rectangular nature of tensor product surfaces severely limits their

ability to model surfaces of arbitrary topology. The alternative is to partition the

parameter plane into triangles and erect spline patches based on the domain trian-

gulations. Such surfaces are called triangular spline surfaces. Triangular splines have

been the focus of CAGD research for some years, as they are the natural choice in a

number of application areas:

• Closed surfaces with arbitrary topology.

Tensor-product surfaces are not well suited to represent closed surfaces of ar-

bitrary topology. Because they are based on a rectangular domain, they can

only represent sheets, cylinders and tori without introducing surface tangent

discontinuities. Other topologies require meshes with nonquadrilateral faces.

• Surface fitting.

The problem of finding a surface from a general mesh of points has attracted
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much interest in the recent years. This is related to advances in areas like

laser scanning technology, mesh reconstruction and mesh simplification. The

majority of meshes coming from these areas are often triangular in nature.

• Scattered data interpolation.

This is closely related to the area of surface fitting, except that interpolation

generally poses more constraints than approximation, as the surface is required

to pass through certain set of data points. It turns out that this problem is

often more easily solved with triangular splines [Far83, FN91].

In addition, triangular splines also have some other desirable properties:

• Generality.

Triangles are the most fundamental planar shapes. Triangular patches can be

easily assembled to form rectangular patches, or any other patches of arbitrary

number of sides.

• Locality.

It is often the case that triangular splines have more local control than their

tensor product counterparts. Though the comparisons can only be loosely con-

ducted, as it depends on whether a single triangular patch is compared to a

rectangular one, or each triangle is viewed as half of a rectangle, thereby com-

paring two triangular patches to a rectangular one [DeR85]. However triangular

splines seem to have a bit more local flexibility because the patches are only

three-sided.
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• Lower degree.

This is not necessarily true for the single patch per control mesh face approach,

but split-patch approaches often come up with lower degree surfaces than tensor

product surfaces for the same order of continuity.

1.1.2 Subdivsion surfaces

Besides the parametric spline surfaces, there is another class of surfaces that is able to

represent closed surfaces with arbitrary topology. These are known as the “subdivi-

sion sufaces.” With these techniques, polyhedra are subdivided repeatedly to approxi-

mate spline surfaces. There are rectangular (represented by Doo-Sabin [Doo78, DS78]

and Catmull-Clark [CJ78] methods) as well as triangular (see Loop [Loo87]) subdi-

vision surface algorithms. The implementation of these surfaces are straightforward,

which has led to recent popularity of these surfaces, such as usage in motion pictures

[DRKT98], and over a smooth domain surface [LMH00].

However, although it can been shown that the limit surface of a closed subdivided

surface is G1 continuous (see [BD88], [Zor96]), the continuity analysis is often com-

plicated. But most importantly, there is no easy way to parameterize a subdivision

surface for purposes such as texture-mapping.

1.1.3 The challenge of triangular splines

Despite the many nice properties of triangular spline surfaces, they remained largely

a research interest. Because the familiar B-spline curve framework does not carry
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over, they lack the simplity of tensor product surfaces.

Ramshaw [Ram87] pointed out in his 1987 technical report on blossoming that

while derivative constraints resulting from continuity conditions on the boundary

curves indicate that square patch spline surfaces should be constructed from bipoly-

nomial surfaces of degree (n, n), instead of arbitrary surfaces of degree 2n, it is not

clear what triangular patch spline surfaces should be constructed from, if not from

arbitrary surfaces of degree 3n+ 1. He went on to propose this open problem as the

following challenge:

Challenge 1.2 Find a natural way to blossom a triangular-patch surface F :P → A3

of degree 3n+ 1, that is, a way that builds in the appropriate derivative constraints.

This was the original inspiration of our research. There are many different pro-

posals to construct triangular Bézier spline surfaces or triangular B-spline surfaces,

but while theoretically sound, they all failed to provide a simple and intuitive way of

designing and manipulating the surface shape. In short, an algorithm in the spirit of

the elegant de Boor algorithm [Far92, Gal00a] for tensor product surfaces does not

exist for triangular surfaces.

This work introduces a new algorithm to design smooth triangular spline surfaces

with quintic Bézier patches. We believe that our approach is simple, geometrically

intuitive and computationally efficient. Our algorithm is designed to satisfy the fol-

lowing goals:

• Design of complex 3D shapes.
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• Shapes may have arbitrarily many holes and sharp corners.

• Shape modification by an incremental algorithm.

• Local control so that modifications only affect local neighborhood.

• Reasonable smoothness (C1).

Preliminary results show that the same scheme may be extended to C2, with

higher degree patches. Also our approach can be extended to handle interpolation

almost immediately, due to the freedom around each vertex region. However there

is a degrading effect in the surface quality without further fairing methods. Surface

fairing is a term that describes the “smoothing” of a surface to satisfy aesthetic

requirements. Additional degrees of freedom are often allowed to improve global

distribution of curvature (or optimization of other parameters contributing to shape

quality).

Most importantly, we will show that our approach can also be extended to handle

closed surfaces based on triangulated polyhedra, instead of planar triangulations,

while lowering the continuity to a G1 surface. This is a non-trivial extension, and to

our best knowledge, is also a new way of fitting G1 splines over arbitrary topology.

Our approach leads to a rigorous definition of triangular polynomial spline surfaces

based on a triangulated polyhedron, and also associated geometric continuity for such

surfaces.

The most relevant previous attempts we are Loop [Loo94], which cannot handle

interpolation and Hahmann et al [HBT00, HBT01], which extended Loop’s method

8



with a split-domain approach to achieve interpolation.

Note that the first and foremost aim of this work is to come up with an algo-

rithm for designing triangular spline surfaces. Because our framework allows enough

freedom for a theoretically easy extension to interpolation, it is always in the back

of our minds. In actual research, care has been taken to always take extension to

interpolation into account. However, so far we have not conducted any substantial

investigation to make claims for interpolation results. The algorithms we present here

are best thought of as producing surfaces that approximate a given triangular mesh,

especially in the G1 case.

1.3 Overview

This work logically consists of four major parts.

I. The first part is the entire Chapter 2. It provides related work and useful

mathematical background for this work. Section 2.1 surveys previous work

related to our C1 algorithm. Sections 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7 provide

background reading on mathematical concepts that we rely on heavily to obtain

our results. It includes affine geometry, parametric curves and surfaces, Bézier

and B-splines and polar forms for parametric curves and surfaces.

II. The second part is concerned with our algorithm to fit C1 splines over planar

triangulations. In Chapter 3 we move on to examine in detail the continuity

conditions for two triangular patches to join with Cn continuity. All the studies
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are done through polar forms. In this chapter we lay down the theoretical

foundations for our algorithm.

Chapter 4 discusses our algorithm in detail. Section 4.1 provides a detailed

sketch of our algorithm based on equilateral triangulations. In Section 4.2 it is

then extended to irregular triangulations. Section 4.3 discusses the local control

aspect of the algorithm, and Section 4.4 explores the strengths and weaknesses

of the algorithm and proposes directions for future work.

III. The third part presents the extension of the algorithm to construct closed sur-

faces based on triangulated polyhedra of arbitrary topology. In Chapter 5,

Section 5.1 presents previous work on geometric continuity and Section 5.2

gives a formal definition of a triangulated polyhedron. Our definition of AGk-

continuous surfaces is presented in Section 5.3, Section 5.4 presents some pre-

liminary results of fitting AG1 surfaces.

Chapter 6 proceeds to explore two approaches to construct an algorithm that

fits AG1 surfaces over triangulated polyhedra. The global approach is discussed

in Section 6.1 and the local approach and the subsequent lowering of continuity

conditions are discussed in Section 6.2.

IV. Lastly, a description of the current implementation is given in Chapter 7 and

conclusions and future work are given in Chapter 8.

The decision was made to separate the related work into two sections, one contain-

ing those related to C1 triangular splines and the other those related to G1 splines.

This method was chosen because although in our method, moving to G1 closed sur-
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faces was the natural next step, these two problems are actually quite different in

nature, with the G1 fitting being a lot harder and consequently having a larger body

of related literature.

1.4 Notation

The conventions used throughout this presentation are as follows:

• Points are denoted by lower case letters such as a.

• Vectors are denoted by one or two lower case letters topped by an arrow such

as −→v or
−→
ab. In the latter case,

−→
ab is a vector that goes from point a to point b.

• Vector spaces are denoted by blackboard bold upper case letters such as A.

• Coefficients and scalars are denoted by greek letters such as λ.

• Polynomial maps are denoted by upper case letters such as F , and their asso-

ciated polar forms are denoted by the lower case of the same letters, such as

f .

• t is the standard symbol used for curve parameters, while u and v are used for

parameters representing a surface.

• Given a function f(t), the ith derivative of f is denoted by f (i)(t).

11



Chapter 2

Related Work and Background

Review

2.1 Related works

Note that in this section, we only survey work related to fitting C1 triangular spline

surfaces. Previous work on geometric continuity and fitting G1 curves and surfaces

is given separately in Section 5.1. Sometimes it is hard to make a sharp separation

because in many approaches C1 is a special case of G1. In general, if a study seems

to focus more on G1, then it is included in the G1 section.

C1 surface fitting methods can first be divided into global and local categories.

Global methods always involve solving systems of equations which generally become

large and unmanageable as the data set gets bigger. Thus, majority of the methods

are local, although many of them do resort to global measures for shape fairing.

An extensive survey of local methods for scattered data interpolation has been

conducted by Franke [Fra82]. It is an excellent starting point for literature on this
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topic. According to Franke, the methods can be divided into inverse distance weighted

methods due to Shepard [She68], rectangle based methods, triangle based methods

and finite element based methods. We will only look at triangle based methods and

finite element based methods because they are all based on a domain triangulation,

and are, therefore, most relevant.

Early triangle based methods were all blending schemes with weight functions,

such as Gold et al [GCR77] and Franke and Nielson [FN83]. There has been no recent

literature in this category to our best knowledge, most likely due to the appearance

and popularity of geometric continuity and G1 surfaces.

Akima’s method [Aki78] belongs to the finite element category, but it is in fact the

closest in spirit to our approach. It fits a C1 surface using quintic finite elements, and

requires estimation of derivatives. In general estimating derivatives seems a common

theme in most finite element approaches, which is very similar to our tangent plane

placement problem (see Section 4.4.5). There are also finite element approaches using

split-domain schemes, such as Lawson [Law77].

2.2 Affine geometry and affine maps

Our main results make heavy use of affine geometry and its properties. It is therefore

appropriate to first introduce some of the definitions and notations here. This is

only intended as a brief review of affine geometry. For more information on affine

geometry, please refer to Gallier [Gal00a, Gal00b] and Berger [Ber90].

Affine space arises naturally from the need of coordinate-independent systems.
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The ability to focus on the object studied alone and not on its relations to some

arbitrary coordinate system is highly desirable.

The key to the problem of frame invariance is to make a clear distinction between

points and vectors. Thus the basic idea of an affine space is to duplicate R3 into two

copies, the first copy corresponding to points in R3, with no structure, and the second

copy corresponding to free vectors with vector space structure, acting on the points

of the first copy [Gal00a].

Definition 2.2.1 An affine space is either the degenerate space reduced to the empty

set, or a triple
〈
E,
−→
E ,+

〉
consisting of a nonempty set E (of points), a vector space

−→
E (of translations , or free vectors), and an action +:E × −→E → E, satisfying the

following conditions.

(A1) a+
−→
0 = a, for every a ∈ E.

(A2) (a+−→u ) +−→v = a+ (−→u +−→v ), for every a ∈ E, and every −→u ,−→v ∈ −→E .

(A3) For any two points a, b ∈ E, there is a unique −→u ∈ −→E such that a+−→u = b.

Remark : The unique vector −→u ∈ −→E such that a+−→u = b is denoted by
−→
ab. Thus,

we also write b = a+
−→
ab. We also denote

〈
Rn,Rn,+

〉
by An.

The fundamental operation on points in affine space is the affine combination.

An affine combination is the equivalent of a linear combination of points in a vector

space. A linear combination is frame dependent, and as we shall see, some restriction
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is necessary to achieve the desired frame independence for an affine combination.

This notion of frame independence requires careful definition such as Lemma 2.4.1

of [Gal00a]. This lemma guarantees that given an affine space An, for any family of

points, a0, . . . , an, and any family of scalars, λ0, . . . , λn, such that
∑n

i=0 λi = 1, the

point

x = a+
n∑

i=0

λi−→aai

is independent of the choice of the origin a ∈ An.

Definition 2.2.2 Given an affine space An, for any family of points, a0, . . . , an, the

affine combination of this family of points is denoted by

n∑

i=0

λiai, with
n∑

i=0

λi = 1, where 0 ≤ λi ≤ 1

An affine combination is also called a barycentric combination or a barycenter .

In linear algebra, the notion of linear combination lends to the definition of a

vector subspace as a non-empty set of a vector space closed under linear combinations.

Similarly, affine combinations lead naturally to a definition of affine subspaces.

Definition 2.2.3 Given an affine space
〈
E,
−→
E ,+

〉
, a subset V of E is an affine

subspace (of
〈
E,
−→
E ,+

〉
) if for every family of weighted points ((ai, λi))i∈I in V such

that
∑

i∈I λi = 1, the affine combination
∑

i∈I λiai belongs to V .

15



Lemma 2.2.4 Given an affine space
〈
E,
−→
E ,+

〉
, for any family (ai)i∈I of points in

E, the set V of barycenters
∑

i∈I λiai (where
∑

i∈I λi = 1) is the smallest affine

subspace containing (ai)i∈I .

Proof . The proof is straight-forward, because if (ai)i∈I is empty, then V = ∅, because

of the condition
∑

i∈I λi = 1. If (ai)i∈I is nonempty, then by definition the smallest

affine subspace containing (ai)i∈I must contain the set V of barycenters
∑

i∈I λiai,

and thus, it is enough to show that V is closed under affine combinations, which is

immediately verified.

Given a family (ai)i∈I of points in E, the set V of barycenters
∑

i∈I λiai (where

∑
i∈I λi = 1) is also called the affine span of (ai)i∈I . This naturally suggests the

notion of an affine basis.

Let
〈
E,
−→
E ,+

〉
be a nonempty affine space, and let (a0, . . . , am) be a family of

m + 1 points in E. The family (a0, . . . , am) determines the family of m vectors

(−−→a0a1, . . . ,−−→a0am) in
−→
E . When (−−→a0a1, . . . ,−−→a0am) is a basis of

−→
E , then for every x ∈ E,

since x = a0 +−→a0x, there is a unique family (x1, . . . , xm) of scalars such that

x = a0 + x1
−−→a0a1 + · · ·+ xm−−→a0am.

The scalars (x1, . . . , xm) may be considered as coordinates with respect to the basis

(a0, (−−→a0a1, . . . ,−−→a0am)).

Definition 2.2.5 Given an affine space
〈
E,
−→
E ,+

〉
, an affine frame with origin a0 is

a family (a0, . . . , am) of m+1 points in E such that the list of vectors (−−→a0a1, . . . ,−−→a0am)
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is a basis of
−→
E . The pair (a0, (−−→a0a1, . . . ,−−→a0am)) is also called an affine frame with

origin a0.

Just like vector spaces come with linear maps, affine spaces come with affine maps.

Definition 2.2.6 Given two affine spaces
〈
E,
−→
E ,+

〉
and

〈
E ′,
−→
E ′ ,+′

〉
, a map f :E →

E ′ is affine iff for every family of points ai in E and every family of coefficients λi

such that
∑n

i=0 λi = 1,

f

(
n∑

i=0

λiai

)
=

n∑

i=0

λif(ai).

That is, an affine map preserves affine combinations. Every affine map is a com-

position of a linear map and a translation.

2.3 Polynomial curves and surfaces

A mathematical representation of a curve or a curved surface is usually a system

of equations. Frequently, a curve or a curved surface is thought of as consisting of

a number of curve segments or surface patches that are joined together, with some

degree of smoothness where they join. Such composite curves are called splines, and

such composite surfaces are called spline surfaces.

The parametric model where a shape is viewed as the range of a system of equa-

tions, is generally preferred over the implicit model, where a shape is viewed as the

zero locus of the system of equations, because the former allows more freedom, e.g.,

17



the possibilities of a parametrization, that is, the assignment of a point and a param-

eter in some given inteval is not unique. Furthermore, the implicit model assumes the

existence of real solutions to the system of equations, which is not always possible.

Definition 2.3.1 Given the affine line A, any affine space An of finite dimension n

and any affine frame (a0, (−−→a0a1, . . . ,−−→a0an)) for An, a (parametrized) polynomial curve

of degree (at most) m is a map F :A→ An, such that for every t ∈ A,

F (t) = a0 + F1(t)−−→a0a1 + . . . + Fn(t)−−→a0an,

where t = (1−t)0+t1, and every Fi(X) is a polynomial of degree ≤ m, with 1 ≤ i ≤ n.

Given any r, s ∈ A, with r < s, a (parametrized) polynomial curve segment

F ([r, s]) of degree (at most) m is the restriction F : [r, s]→ An of a polynomial curve

F :A→ An. The trace of a polynomial curve F is defined as F (A), and therefore the

trace of F [r, s] is F ([r, s]).

Polynomial curves can also be defined as a set of barycenters of a finite set of

points. Since barycenters of a set of points can be obtained from repeated computa-

tions of barycenters of two points, this leads to the famous de Casteljau algorithm and

the Bézier curves. This finite set (in fact, sequence) of points is called the (Bézier)

control points.

2.4 Bézier and B-splines

Polynomial curves and surfaces are simple and easily computed using the de Casteljau

algorithm (see Sections 2.6.2 and 2.7.4), but the degree of a polynomial curve or
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surface is directly related to the number of control points given. For example, a

polynomial curve is of degree one less than the total number of control points in the

control polygon. The lack of local control is also undesirable. Splines became the

natural replacement to simple polynomial curves and surfaces.

The so-called “natural” splines are most often cubics, because they are the lowest

degree true space (i.e. nonplanar) curves, as well as the lowest degree C1 interpolating

curves.

However, in design more freedom is often preferred, and therefore approximation is

needed more than interpolation. The Bézier curves, named after Pierre Bézier, who

developed them for designing automobiles for Renault, give such freedom. Bézier

curves are splines of the blended form. Blended splines are splines whose curve seg-

ments are of the form

P (t) =
n∑

i=0

biF
k
i (t), where t ∈ [0, 1],

where bi are the control points and F k
i (t) are some basis functions, which together

produce a weighted average of the control points. In the case of Bézier splines, the

basis functions turn out to be the Bernstein polynomials [Far92, Gal00a].

Motivated by Bézier curves, Gordon and Riesenfeld [GR74b, GR74a] extended

them to B-splines. The Bernstein basis functions present in the Bézier curves are

replaced by B-spline basis functions, which then produce vector-valued B-spline ap-

proximation instead of the Bernstein approximations. The B-spline basis functions

have some important advantages over the Bernstein polynomials, one of which is local
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support, which means B-spline curves have local control.

B-spline curves have been studied extensively and are well understood. The well-

known de Boor algorithm provides an elegant way to compute points on a B-spline

curve, and the de Boor control points allow the curve segments of polar degree m to

join at Ck continuity, 0 ≤ k ≤ m [Gal00a]. The de Boor algorithm is also known as

a progressive generalization of the de Casteljau algorithm for Bézier curves, because

it has incrementality built in. The de Boor scheme can be generalized nicely to join

tensor product spline surfaces (rectangular spline surfaces) of bidegree < m,m >, but

unfortunately, there is no known method involving control points for joining triangular

spline surfaces similar to the de Boor scheme for the tensor product surfaces [Ram87].

For more information on parametric curves and surfaces, including Bézier and

B-spline curves and surfaces, please refer to Farin [Far92] and Gallier [Gal00a].

2.5 Multiaffine maps and polar forms

The principle of (affine) “blossoming” was first introduced by de Casteljau [dC86] and

Ramshaw [Ram88]. Yet, it is in fact much older and well known to the algebraists.

An example is Weyl’s book on classical groups from 1946 [Wey46]. Blossoming can

be viewed as a generalization of the well-known de Casteljau algorithm. In many

cases, it is more convenient to study curves and surfaces from their polar forms or

“blossoms”[Ram89], because it provides a way of labeling the Bézier or the de Boor

control points with symmetric, multivariate labels. As we shall see in Sections 2.6

and 2.7, these labels provide excellent geometric intuitions.
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Since their introduction, polar forms have gained considerable popularity because

of the geometric insights they provided to Bézier and B-splines related algorithms.

The theory of blossoming has been applied to B-spline knot insertion [Sei88, Sei89],

triangular B-spline surfaces [MS92] and geometrically continuous spline curves [Sei93].

For a more in-depth reading on the theory of blossoming, the readers are referred to

Ramshaw [Ram87] and Gallier [Gal00a].

Readers are assumed to have some degree of familiarity with the way polynomial

curves and surfaces are handled through their control points. However, since polar

forms are excellent tools to study this, we will also include discussions in Sections 2.6

and 2.7 for review purposes. Descriptions of the de Casteljau algorithm for polynomial

curves and surfaces are also given in Sections 2.6.2 and 2.7.4 respectively.

Since polar forms are in fact symmetric multiaffine maps, we first discuss the

representation of polynomial maps in terms of multiaffine maps.

Definition 2.5.1 A function f :Ad × · · · × Ad︸ ︷︷ ︸
m

→ An is a multiaffine map (or an

m-affine map), iff it is affine with respect to each of its argument, that is, for every i,

with 1 ≤ i ≤ m, considering a1, . . . , ai−1, ai+1, . . . , an fixed, for all ai ∈ Ad, the map

ai → f(a0, . . . , ai, . . . , am)

is affine.

Definition 2.5.2 A symmetric map is a function that is invariant under permutation

of its arguments, that is, the result of the function does not depend on any particular
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order of its arguments. In other words, given a map f :Ad × · · · × Ad︸ ︷︷ ︸
m

→ An,

f(aπ(1), . . . , aπ(m)) = f(a1, . . . , am),

for all a1, . . . , am, and all permutations π.

We can use multiaffine maps to define generalized polynomial maps between two

affine spaces of arbitrary dimensions. In the special case where the multiaffine map

maps from An to A, it is equivalent to the notion of a polynomial function induced

by a polynomial in n variables. In fact, every polynomial curve of degree m has a

unique symmetric m-affine map associated with it. It is called the m-polar form of

the curve, or its “blossom”.

For example, consider the parabola F :A→ A2, given by

x(t) = 4t,

y(t) = t2 − 3t+ 2.

The polynomial map F :A → A2 comes from a unique symmetric biaffine map

f :A2 → A2, where

f1(t1, t2) = 2(t1 + t2),

f2(t1, t2) = t1t2 −
3

2
(t1 + t2) + 2, such that

F (t) = f(t, t), for all t ∈ A.
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2.6 Polynomial Curves and Polar Forms

2.6.1 Polar forms and control points

We now show how polynomial curves are handled in terms of control points. This is

just a brief review. A comprehensive treatment of polynomial curves can be found in

Gallier [Gal00a]).

The key to the treatment of polynomial curves in terms of control points is that

polynomials can be multilinearized. Using definitions in Section 2.5, for every poly-

nomial F (t) of degree m, there is a unique symmetric and multiaffine map f :Rm → R

such that

F (t) = f(t, . . . , t︸ ︷︷ ︸
m

), for all t ∈ R.

This is an old “folk theorem”, probably already known to Newton. The proof is

easy. By linearity, it is enough to consider a monomial of the form xk, where k ≤ m.

The unique symmetric multiaffine map corresponding to xk is

σk(t1, . . . , tm)(
m

k

) ,

where σk(t1, . . . , tm) is the kth symmetric function in m variables, i.e.,

σk =
∑

I⊆{1,...,m}
|I|=k

(∏

i∈I
ti

)
.
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Given a polynomial curve F :R→ Rn of degree m

x1(t) = F1(t),

. . . = . . .

xn(t) = Fn(t),

where F1(t), . . . , Fn(t) are polynomials of degree at most m, the curve F :R → Rn

arises from a unique symmetric multiaffine map f :Rm → Rn, the polar form of F ,

such that

F (t) = f(t, . . . , t︸ ︷︷ ︸
m

),

for all t ∈ R (see Ramshaw [Ram87], Farin [Far92, Far95], Hoschek and Lasser [HL93],

or Gallier [Gal00a]).

For example, consider the plane cubic defined as follows:

F1(t) =
3

4
t2 − 3

2
t− 9

4
, F2(t) =

3

4
t3 − 3

2
t2 − 9

4
t.

We get the polar forms

f1(t1, t2, t3) =
1

4
(t1t2 + t1t3 + t2t3)− 1

2
(t1 + t2 + t3)− 9

4

f2(t1, t2, t3) =
3

4
t1t2t3 −

1

2
(t1t2 + t1t3 + t2t3)− 3

4
(t1 + t2 + t3).

Also, for r 6= s, the map f :Rm → Rn is determined by the m + 1 control points

(b0, . . . , bm), where

bi = f(r, . . . , r︸ ︷︷ ︸
m−i

, s, . . . , s︸ ︷︷ ︸
i

),
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since

f(t1, . . . , tm) =
m∑

k=0

∑

I∪J={1,...,m}
I∩J=∅, card(J)=k

∏

i∈I

(
s− ti
s− r

)∏

j∈J

(
tj − r
s− r

)
f(r, . . . , r︸ ︷︷ ︸

m−k

, s, . . . , s︸ ︷︷ ︸
k

).

For example, with respect to the affine frame r = −1, s = 3, the coordinates of

the control points of the cubic defined earlier are:

b0 = (0, 0)

b1 = (−4, 4)

b2 = (−4,−12)

b3 = (0, 0).

Conversely, for every sequence of m + 1 points (b0, . . . , bm), there is a unique

symmetric multiaffine map f such that

bi = f(r, . . . , r︸ ︷︷ ︸
m−i

, s, . . . , s︸ ︷︷ ︸
i

),

namely

f(t1, . . . , tm) =
m∑

k=0

∑

I∪J={1,...,m}
I∩J=∅, card(J)=k

∏

i∈I

(
s− ti
s− r

)∏

j∈J

(
tj − r
s− r

)
bk.

Thus, there is a bijection between the set of polynomial curves of degree m and

the set of sequences (b0, . . . , bm) of m+ 1 control points.

Figure 2.1 shows four control points b0, b1, b2, b3 specifying a polynomial curve of

degree 3, where b0 = f(r, r, r), b1 = f(r, r, s), b2 = f(r, s, s), b3 = f(s, s, s).
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Figure 2.1: Control points and control polygon

The upshot of all this is that for algorithmic purposes, it is convenient to define

polynomial curves in terms of polar forms. Recall that the canonical affine space

associated with the field R is denoted as A.

Definition 2.6.1 A (parameterized) polynomial curve in polar form of degree m is

an affine polynomial map F :A → E of polar degree m, defined by its m-polar form,

which is some symmetric m-affine map f :Am → E , where A is the real affine line,

and E is any affine space (of dimension at least 2). Given any r, s ∈ A, with r < s, a

(parameterized) polynomial curve segment F ([r, s]) in polar form of degree m is the

restriction F : [r, s] → E of an affine polynomial curve F :A → E in polar form of

degree m. We define the trace of F as F (A), and the the trace of F [r, s] as F ([r, s]).

Remark : Typically, the affine space E is the real affine space A3 of dimension 3.

Note that we define a polynomial curve in polar form of degree at most m, rather than

a polynomial curve in polar form of degree exactly m, because an affine polynomial
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map f of polar degree m may end up being degenerate, in the sense that it could

be equivalent to a polynomial map of lower polar degree. For convenience, we will

allow ourselves the abuse of language where we abbreviate “polynomial curve in polar

form” to “polynomial curve”.

We summarize the relationship between control points and polynomial curves in

the following lemma:

Lemma 2.6.2 Given any sequence of m+1 points a0, . . . , am in some affine space E ,

there is a unique polynomial curve F :A→ E of degree m, whose polar form f :Am → E

satisfies the conditions

f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

) = ak,

(where r, s ∈ A, r 6= s). Furthermore, the polar form f of F is given by the formula

f(t1, . . . , tm) =
m∑

k=0

∑

I∪J={1,...,m}
I∩J=∅, |J |=k

∏

i∈I

(
s− ti
s− r

)∏

j∈J

(
tj − r
s− r

)
ak,

and F (t) is given by the formula

F (t) =

m∑

k=0

Bm
k [r, s](t) ak,

where the polynomials

Bm
k [r, s](t) =

(
m

k

)(
s− t
s− r

)m−k( t− r
s− r

)k

are the Bernstein polynomials of degree m over [r, s].
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Note that since the polar form f of a polynomial curve F of degree m is symmetric,

the order of the arguments is irrelevant. Often, when arguments are repeated, we also

omit commas between arguments. For example, we abbreviate

f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

)

as f(risj). We will start using this convention from now on.

2.6.2 The de Casteljau algorithm

The definition of polynomial curves in terms of polar forms leads to a very nice

algorithm known as the de Casteljau algorithm, to draw polynomial curves. Using

the de Casteljau algorithm, it is possible to determine any point F (t) on the curve, by

repeated affine interpolations (see Farin [Far92, Far95], Hoschek and Lasser [HL93],

Risler [Ris92], or Gallier [Gal00a]). Figure 2.2 below shows F (1/2):
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Figure 2.2: A de Casteljau diagram for t = 1/2
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In the general case where a curve F is specified by m+1 control points (b0, . . . , bm)

with respect to an interval [r, s], let us define the following points bi,j used during the

computation of F (t) (where f is the polar form of F ):

bi,j =

{
bi if j = 0, 0 ≤ i ≤ m,

f(tjrm−i−jsi) if 1 ≤ j ≤ m, 0 ≤ i ≤ m− j.

Then, we have the following equations:

bi,j =

(
s− t
s− r

)
bi,j−1 +

(
t− r
s− r

)
bi+1,j−1.

The result is

F (t) = b0,m.

The computation can be conveniently represented in the following triangular form,

show in Table 2.1:
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0 1 . . . j − 1 j . . . m− k . . . m

b0,0

b0,1

b1,0
. . .

b0,j−1

... b0,j

bi,j−1
...

. . .

bi,j b0,m−k

bi+1,j−1
...

... bm−k−j,j
... b0,m

bm−k−j+1,j−1

... bk,m−k

bm−k−1,1
...

bm−k,0 bm−j,j
... bm−j+1,j−1

...

bm−1,0

bm−1,1

bm,0

Table 2.1: Computation of F (t) = b0,m

When r ≤ t ≤ s, each interpolation step computes a convex combination, and bi,j

lies between bi,j−1 and bi+1,j−1. In this case, geometrically the can be illustrated by a

diagram consisting of the following m polylines:

(b0,0, b1,0), (b1,0, b2,0), (b2,0, b3,0), (b3,0, b4,0), . . . , (bm−1,0, bm,0)

(b0,1, b1,1), (b1,1, b2,1), (b2,1, b3,1), . . . , (bm−2,1, bm−1,1)

(b0,2, b1,2), (b1,2, b2,2), . . . , (bm−3,2, bm−2,2)
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. . .

(b0,m−2, b1,m−2), (b1,m−2, b2,m−2)

(b0,m−1, b1,m−1)

called shells , and with the point b0,m, they form the de Casteljau diagram. Note that

the shells are nested nicely. The polyline

(b0, b1), (b1, b2), (b2, b3), (b3, b4), . . . , (bm−1, bm)

is also called a control polygon of the curve. When t is outside [r, s], we still obtain

m shells and a de Casteljau diagram, but the shells are not nicely nested.

One of the best features of the de Casteljau algorithm is that it lends itself very

well to recursion. Indeed, going back to the case of a cubic curve, it is easy to show

that the sequences of points (b0, b0,1, b0,2, b0,3) and (b0,3, b1,2, b2,1, b3) are also control

polygons for the exact same curve (see Farin [Far92, Far95], Hoschek and Lasser

[HL93], Gallier [Gal00a]).

Thus, we can compute the points corresponding to t = 1/2 with respect to the

control polygons

(b0, b0,1, b0,2, b0,3) and (b0,3, b1,2, b2,1, b3),

and this yields a recursive method for approximating the curve. This method called

the subdivision method applies to polynomial curves of any degree and can be used

to render efficiently a curve segment F over [r, s], as shown in Figure 2.3.

For much more on polynomial curves in terms of polar forms and control points,

see Gallier [Gal00a].
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Figure 2.3: Approximating a curve using subdivision

2.7 Polynomial Surfaces and Polar Forms

2.7.1 Polarizing polynomial surfaces

A polynomial curve is easily generalized to a polynomial surface by having the poly-

nomials take two parameters. Thus, we have a polynomial map F (u, v):A2 → A3.

For example, the following polynomials define a bipolynomial surface of degree

(3, 3), known as Enneper’s Surface:

F1(u, v) = u− u3

3
+ uv2

F2(u, v) = v − v3

3
+ u2v

F3(u, v) = u2 − v2.

Recall that symmetric multi-affine maps can be used to define the notion of a
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polynomial function between two affine spaces of arbitrary dimension. We have seen

in Section 2.5 that polynomial curves have associated polar forms. Similarly, we also

have polar forms associated with polynomial surfaces.

To polarize a polynomial means to find the unique symmetric affine map associated

with the given polynomial. Now, since we have polynomial surfaces, we have two

parameter variables (u, v) involved in the polynomials, and there are two natural

ways to polarize a given polynomial surface F :A2 → A3.

The first approach is to polarize separately in the two variables, which yields

bipolynomial surfaces, also commonly called tensor product surfaces. If p and q are

the two degrees of the bipolynomial surface, then we get a (p + q)-multiaffine map

which is symmetric in its first p arguments, and in its last q arguments, but not

symmetric in all its arguments. This approach basically divides the parameter plane

into rectangles.

The second approach treats the two variables (u, v) as a whole, namely, as co-

ordinates of a point (u, v) in the affine plane. This approach produces total degree

surfaces. If m is the degree of the total degree surface, then we get a m-affine map

which is symmetric in all of its arguments. In this sense, this method is a natural

generalization of the Bézier curves, and in fact, total degree surfaces (or Bézier trian-

gular surfaces) were the first surfaces to be considered by de Casteljau himself. This

approach triangulates the parameter plane.

A polynomial surface F of total degree m is completely specified by a (triangular)

control net, or Bézier net consisting of control points.
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2.7.2 Polar forms

We move on to show how polynomial surfaces are handled in terms of control points.

A comprehensive treatment of polynomial surfaces can be found in Gallier [Gal00a]).

The deep reason why polynomial surfaces can be effectively handled in terms of

control points is that multivariate polynomials arise from multiaffine symmetric maps

(see Ramshaw [Ram87], Farin [Far92, Far95], Hoschek and Lasser [HL93], or Gallier

[Gal00a]). Denoting the affine plane R2 as P , traditionally, a polynomial surface in

Rn is a function F :P → Rn, defined such that

x1 = F1(u, v),

. . . = . . .

xn = Fn(u, v),

for all (u, v) ∈ R2, where F1(U, V ), . . . , Fn(U, V ) are polynomials in R[U, V ].

We mentioned that there are two natural ways to polarize the polynomials defining

F . The first way is to polarize separately in u and v. If p is the highest degree in u

and q is the highest degree in v, we get a unique multiaffine map

f : (R)p × (R)q → Rn

of degree (p+ q) which is symmetric in its first p arguments and symmetric in its last

q arguments, such that

F (u, v) = f(u, . . . , u︸ ︷︷ ︸
p

; v, . . . , v︸ ︷︷ ︸
q

) or F (u, v) = f(upvq).
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We get what is traditionally called a tensor product surface, or as we prefer to

call it, a bipolynomial surface of bidegree 〈p, q〉 (or a rectangular surface patch). We

also say that the multiaffine maps arising in polarizing separately in u and v are

〈p, q〉-symmetric.

The second way to polarize is to treat the variables u and v as a whole. This way,

if F is a polynomial surface such that the maximum total degree of the monomials is

m, we get a unique symmetric degree m multiaffine map

f : (R2)m → Rn,

such that

F (u, v) = f((u, v), . . . , (u, v)︸ ︷︷ ︸
m

), or F (u, v) = f((u, v)m).

We get what is called a total degree surface (or a triangular surface patch).

Using linearity, all we have to do is to polarize a monomial uhvk. It is easily

verified that the unique 〈p, q〉-symmetric multiaffine polar form of degree p+ q

f p,qh,k(u1, . . . , up; v1, . . . , vq)

of the monomial uhvk is given by

f p,qh,k(u1, . . . , up; v1, . . . , vq) =
1(

p

h

)(
q

k

)
∑

I⊆{1,...,p},|I|=h
J⊆{1,...,q},|J|=k

(∏

i∈I
ui

)(∏

j∈J
vj

)
.

The denominator

(
p

h

)(
q

k

)
is the number of terms in the above sum.
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It is easily verified that the unique symmetric multiaffine polar form of degree m

fmh,k((u1, v1), . . . , (um, vm))

of the monomial uhvk is given by

fmh,k((u1, v1), . . . , (um, vm)) =
1(

m

h

)(
m− h
k

)
∑

I∪J⊆{1,...,m}
|I|=h,|J|=k,I∩J=∅

(∏

i∈I
ui

)(∏

j∈J
vj

)
.

The denominator

(
m

h

)(
m− h
k

)
=

(
m

h k (m− h− k)

)
is the number of terms

in the above sum.

As an example, consider the following surface known as Enneper’s surface:

F1(U, V ) = U − U 3

3
+ UV 2

F2(U, V ) = V − V 3

3
+ U 2V

F3(U, V ) = U 2 − V 2.

We get the polar forms

f1((U1, V1), (U2, V2), (U3, V3)) =
U1 + U2 + U3

3
− U1U2U3

3

+
U1V2V3 + U2V1V3 + U3V1V2

3

f2((U1, V1), (U2, V2), (U3, V3)) =
V1 + V2 + V3

3
− V1V2V3

3
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+
U1U2V3 + U1U3V2 + U2U3V1

3

f3((U1, V1), (U2, V2), (U3, V3)) =
U1U2 + U1U3 + U2U3

3
− V1V2 + V1V3 + V2V3

3
.

2.7.3 Control points for triangular surfaces

Given an affine frame ∆rst in the plane (where r, s, t ∈ P are affinely independent

points), it turns out that any symmetric multiaffine map f :Pm → E is uniquely

determined by a family of
(m+ 1)(m+ 2)

2
points (where E is any affine space, say

Rn). Let

∆m = {(i, j, k) ∈ N3 | i+ j + k = m}.

The following lemma is easily shown (see Ramshaw [Ram87] or Gallier [Gal00a]).

Lemma 2.7.1 Given a reference triangle ∆rst in the affine plane P, given any family

(bi, j, k)(i,j,k)∈∆m of
(m+ 1)(m+ 2)

2
points in E , there is a unique surface F :P → E of

total degree m, defined by a symmetric m-affine polar form f :Pm → E , such that

f(risjtk) = bi, j, k,

for all (i, j, k) ∈ ∆m. Furthermore, f is given by the expression

f(a1, . . . , am) =

∑

I∪J∪K={1,...,m}
I,J,K pairwise disjoint

(∏

i∈I
λi

)(∏

j∈J
µj

)(∏

k∈K
νk

)
f(r|I|s|J |t|K|),
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where ai = λir + µis+ νit, with λi + µi + νi = 1, and 1 ≤ i ≤ m.

A point F (a) on the surface F can be expressed in terms of the Bernstein polyno-

mials Bm
i,j,k(U, V, T ) =

m!

i!j!k!
U iV jT k, as

F (a) = f(am) =
∑

(i, j, k)∈∆m

Bm
i,j,k(λ, µ, ν) f(risjtk),

where a = λr + µs+ νt, with λ+ µ+ ν = 1.

Typically, the affine space E is the real affine space A3 of dimension three.

For example, with respect to the frame ∆rst = ((1, 0, 0), (0, 1, 0), (0, 0, 1)), we

obtain 10 control points for the Enneper surface, as illustrated in Table 2.2.

f(r, r, r)(
2

3
, 0, 1

)

f(r, r, t)(
2

3
, 0,

1

3

) f(r, r, s)(
2

3
,
2

3
,
1

3

)

f(r, t, t)(
1

3
, 0, 0

) f(r, s, t)(
1

3
,
1

3
, 0

) f(r, s, s)(
2

3
,
2

3
,−1

3

)

f(t, t, t)
(0, 0, 0)

f(s, t, t)(
0,

1

3
, 0

) f(s, s, t)(
0,

2

3
,−1

3

) f(s, s, s)(
0,

2

3
,−1

)

Table 2.2: Control points for Enneper’s surface
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A family N = (bi, j, k)(i,j,k)∈∆m of
(m+ 1)(m+ 2)

2
points in E is called a (triangu-

lar) control net, or Bézier net . Note that the points in

∆m = {(i, j, k) ∈ N3 | i+ j + k = m},

can be thought of as a triangular grid of points in P . For example, when m = 5, we

have a grid of 21 points illlustrated in Table 2.3.

500

401 410

302 311 320

203 212 221 230

104 113 122 131 140

005 014 023 032 041 050

Table 2.3: Grid of control points for a quintic Bézier patch

We intentionally let i be the row index, starting from the left lower corner, and

j be the column index, also starting from the left lower corner. The control net

N = (bi, j, k)(i,j,k)∈∆m can be viewed as an image of the triangular grid ∆m in the affine

space E . It follows from Lemma 2.7.1 that there is a bijection between polynomial

surfaces of degree m and control nets N = (bi, j, k)(i,j,k)∈∆m .

2.7.4 The de Casteljau algorithm and subdivision

In this section, we quickly review how the de Casteljau algorithm can be used to

subdivide a triangular patch into three subpatches. For more details, see Farin [Far92,
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Far95], Hoschek and Lasser [HL93], Risler [Ris92], or Gallier [Gal00a]. There are also

versions of the de Casteljau algorithm for rectangular patches, but we will not go into

this topic. Again, readers are invited to consult Farin [Far92, Far95], Hoschek and

Lasser [HL93], Risler [Ris92], or Gallier [Gal00a].

Given an affine frame ∆rst, given a triangular control net N = (bi, j, k)(i,j,k)∈∆m ,

recall that in terms of the polar form f :Pm → E of the polynomial surface F :P → E

defined by N , for every (i, j, k) ∈ ∆m, we have

bi, j, k = f(rrsjtk).

Given a = λr+µs+νt in P , where λ+µ+ν = 1, to compute F (a) = f(a, . . . , a), the

computation builds a sort of tetrahedron consisting of m + 1 layers. The base layer

consists of the original control points in N , which are also denoted as (b0
i, j, k)(i,j,k)∈∆m .

The other layers are computed in m stages, where at stage l, 1 ≤ l ≤ m, the points

(bli, j, k)(i,j,k)∈∆m−l are computed such that

bli, j, k = λbl−1
i+1, j, k + µbl−1

i, j+1, k + νbl−1
i, j, k+1.

During the last stage, the single point bm0, 0, 0 is computed. An easy induction shows

that

bli, j, k = f(alrisjtk),

where (i, j, k) ∈ ∆m−l, and thus, F (a) = bm0, 0, 0.

Assuming that a is not on one of the edges of ∆rst, the crux of the subdivision

method is that the three other faces of the tetrahedron of polar values bli, j, k besides
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the face corresponding to the original control net, yield three control nets

Nast = (bl0, j, k)(l,j,k)∈∈∆m , N rat = (bli, 0, k)(i,l,k)∈∈∆m , and N rsa = (bli, j, 0)(i,j,l)∈∈∆m ,

corresponding to the base triangle ∆rsa, ∆rat and ∆rsa respectively. If a belongs

to one of the edges, say rs, then the triangle ∆rsa is flat, i.e. ∆rsa is not an affine

frame, and the net N rsa does not define the surface, but instead a curve. However,

in such cases, the degenerate net N rsa is not needed anyway.

From an implementation point of view, we found it convenient to assume that a

triangular net N = (bi, j, k)(i,j,k)∈∆m is represented as the list consisting of the con-

catenation of the m+ 1 rows

bi, 0,m−i, bi, 1,m−i−1, . . . , bi,m−i, 0,

i.e.,

f(ritm−i), f(ristm−i−1), . . . , f(rism−i−1t), f(rism−i),

where 0 ≤ i ≤ m. As a triangle, the net N is listed (from top-down) as

f(t, . . . , t︸ ︷︷ ︸
m

) f(t, . . . , t︸ ︷︷ ︸
m−1

, s) . . . f(t, s, . . . , s︸ ︷︷ ︸
m−1

) f(s, . . . , s︸ ︷︷ ︸
m

)

. . . . . .

. . .

f(r, . . . , r︸ ︷︷ ︸
m−1

, t) f(r, . . . , r︸ ︷︷ ︸
m−1

, s)

f(r, . . . , r︸ ︷︷ ︸
m

)
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The main advantage of this representation is that we can view the net N as a

two-dimensional array net , such that net [i, j] = bi, j, k (with i + j + k = m). In fact,

only a triangular portion of this array is filled. This way of representing control nets

fits well with the convention that the affine frame ∆rst is represented as follows:

t s

r

a

Figure 2.4: An affine frame

Instead of simply computing F (a) = bm0, 0, 0, the de Casteljau algorithm can be

easily adapted to output the three nets Nast, N rat, and N rsa.

Using the above version of the de Casteljau algorithm, it is possible to recursively

subdivide a triangular patch. It would seem natural to subdivide ∆rst into the

three subtriangles ∆ars, ∆ast, and ∆art, where a = (1/3, 1/3, 1/3) is the center of

gravity of the triangle ∆rst, getting new control nets Nars, Nast and Nart using the

functions described earlier, and repeat this process recursively. However, this process

does not yield a good triangulation of the surface patch, because no progress is made

on the edges rs, st, and tr, and thus, such a triangulation does not converge to the

surface patch. Thus, to compute triangulations that converge to the surface patch,
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we need to subdivide the triangle ∆rst in such a way that the edges of the affine

frame are subdivided. There are many ways of performing such subdivisions, and we

propose a method which has the advantage of yielding a very regular triangulation

and of being very efficient.

The subdivision strategy that we propose is to divide the affine frame ∆rst

into four subtriangles ∆abt, ∆bac, ∆crb, and ∆sca, where a = (0, 1/2, 1/2), b =

(1/2, 0, 1/2), and c = (1/2, 1/2, 0), are the middle points of the sides st, rt and rs

respectively, as shown in the diagram below:

t r

s

a

b

c

abt
bac

crb

sca

Figure 2.5: Subdividing an affine frame ∆rst

It turns out that the four subpatches can be computed in four calls to the sub-

division version of the de Casteljau algorithm. Details of such an algorithm can be

found in Gallier [Gal00a], as well as subdivision algorithms for rectangular surfaces.
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Example: For the following control net,

net = {{0, 0, 0}, {2, 0, 2}, {4, 0, 2}, {6, 0, 0},

{1, 2, 2}, {3, 2, 5}, {5, 2, 2}, {2, 4, 2},

{4, 4, 2}, {3, 6, 0}};

the surface patch associated with the affine frame (r, s, t) can be approximated using

the subdivision version of the de Casteljau algorithm [Gal00a].
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Figure 2.6: A triangular surface patch
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Chapter 3

Continuity Conditions of

Triangular Spline Surfaces

3.1 Continuity conditions on polar forms

The most important issue in joining polynomial surfaces is continuity along the bound-

aries. The question of exactly what we mean by “smooth” is of central importance.

Today, the well-accepted standard is to look at parametric continuity. The parametric

functions that define the surfaces are considered smooth if and only if their respective

derivatives are well-defined up to some order.

Definition 3.1.1 Given two surface patches F and G, for any point a ∈ A2, F and

G are said to join with Ck-continuity at a if and only if

F (i)(a) = G(i)(a),

for all i, 0 ≤ i ≤ k. That is, their derivatives at a agree up to kth order.
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We shall look at conditions forced on polar forms if two surfaces are to join with

Ck-continuity. We focus our interest on spline surfaces based on a triangulation of

the plane.

Definition 3.1.2 Let A and B be two adjacent convex polygons in the plane, and let

(r, s) be the line segment along which they are adjacent (where r, s ∈ A2 are distinct

vertices of A and B). Given two polynomial surfaces FA and FB of degree m, FA and

FB join with Ck continuity along the line segment (r, s) iff FA and FB agree to kth

order for all a ∈ (r, s). That is, for any point a along the segment (r, s), all derivatives

of FA and FB up to the kth order must agree at a.

Lemma 3.1.3 For any a ∈ (r, s), FA and FB agree to kth order at a iff their polar

forms fA: (A2)m → Ad and fB: (A2)m → Ad agree on all multisets of points that

contain at least m− k copies of a, that is, iff

fA(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

) = fB(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

),

for all u1, . . . , uk ∈ A2.

Using the above lemma, we can prove the following crucial result:

Lemma 3.1.4 Let A and B be two adjacent convex polygons in the plane, and let

(r, s) be the line segment along which they are adjacent (where r, s ∈ A2 are distinct

vertices of A and B). Given two polynomial surface FA and FB of degree m, FA

and FB join with Ck continuity along (r, s) iff their polar forms fA: (A2)m → Ad and
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fB: (A2)m → Ad agree on all multisets of points that contain at least m− k points on

the line (r, s), that is, iff

fA(u1, . . . , uk, ak+1, . . . , am) = fB(u1, . . . , uk, ak+1, . . . , am),

for all u1, . . . , uk ∈ A2, and all ak+1, . . . , am ∈ (r, s).

Proof . As Lemma 3.1.3 states, for every a ∈ (r, s), FA and FB agree to kth order

at a iff

fA(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

) = fB(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

),

for all u1, . . . , uk ∈ A2. However, if we consider

a 7→ fA(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

)

and

a 7→ fB(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

)

as affine polynomial functions FA(u1, . . . , uk) and FB(u1, . . . , uk), if these functions

agree on all points in (r, s), because of the uniqueness of the polar form associ-

ated with a polynomial function, the corresponding polar forms fA(u1, . . . , uk) and

fB(u1, . . . , uk) agree for all points ak+1, . . . , am ∈ (r, s). Since this holds for all

u1, . . . , uk ∈ P , we have shown that

fA(u1, . . . , uk, ak+1, . . . , am) = fB(u1, . . . , uk, ak+1, . . . , am),

for all u1, . . . , uk ∈ A2, and all ak+1, . . . , am ∈ (r, s), as desired.
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3.2 Necessary and sufficient polar form conditions

for C1 continuity

As a consequence of Lemma 3.1.4, we obtain the necessary and sufficient conditions

on triangular control nets for two surface patches FA and FB of degree m to join with

Cn continuity along (r, s).

Let A = ∆prs and B = ∆qrs be two frames in the plane, sharing the edge (r, s).

��

��

��

��p q

s

r

A B

Figure 3.1: Two adjacent reference triangles

Then, Lemma 3.1.4 tells us that FA and FB join with Ck continuity along (r, s)

iff

fA(pgqhrisj) = fB(pgqhrisj),

for all g, h, i, j such that g + h+ i+ j = m, and i+ j ≥ m− k (0 ≤ k ≤ m).

For C0 continuity, we have k = 0. Thus, i + j ≥ m − 0 ⇒ i + j ≥ m, since
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g + h+ i+ j = m, we have g = h = 0. Therefore, we just have

fA(rism−i) = fB(rism−i),

with 0 ≤ i ≤ m, which means that the control points of the boundary curves along

(r, s) must agree.

For C1 continuity, we have k = 1. Thus, i+ j ≥ m− 1. Since g + h+ i+ j = m,

we have three cases. Either i + j = m, then g = h = 0, or i + j = m − 1, in which

case either g = 0 and h = 1, or g = 1 and h = 0. Thus, we have the conditions

fA(rism−i) = fB(rism−i), 0 ≤ i ≤ m, (3.1)

fA(prism−i−1) = fB(prism−i−1), 0 ≤ i ≤ m− 1, (3.2)

fA(qrism−i−1) = fB(qrism−i−1), 0 ≤ i ≤ m− 1. (3.3)

This is a total of 3m + 1 conditions. However, we will now show that in general,

only 2m + 1 of these conditions are independent. Let q = λp + µr + νs, where

λ+µ+ ν = 1. Since we are assuming that A and B are distinct triangles, λ 6= 0, and

p =
1

λ
q − µ

λ
r − ν

λ
s,

and Condition 3.2

fA(prism−i−1) = fB(prism−i−1)

becomes

fA(prism−i−1) = fB

((
1

λ
q − µ

λ
r − ν

λ
s

)
rism−i−1

)
,
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and since fB is multiaffine, this yields

fA(prism−i−1) =
1

λ
fB(qrism−i−1)− µ

λ
fB(ri+1sm−i−1)− ν

λ
fB(rism−i),

or equivalently

λfA(prism−i−1) + µfB(ri+1sm−i−1) + νfB(rism−i) = fB(qrism−i−1),

for 0 ≤ i ≤ m− 1.

Now using Condition 3.1

fA(rism−i) = fB(rism−i),

we get

(∗) λfA(prism−i−1) + µfA(ri+1sm−i−1) + νfA(rism−i) = fB(qrism−i−1),

for 0 ≤ i ≤ m− 1. Similarly, since q = λp+ µr + νs, from Condition 3.3

fA(qrism−i−1) = fB(qrism−i−1),

we get

fA((λp+ µr + νs)rism−i−1) = fB(qrism−i−1),

which yields

λfA(prism−i−1) + µfA(ri+1sm−i−1) + νfA(rism−i) = fB(qrism−i−1),

for 0 ≤ i ≤ m− 1. These are the conditions (∗) that we found earlier, and thus, the

conditions for C1-continuity are indeed the 2m+ 1 conditions

fA(rism−i) = fB(rism−i), 0 ≤ i ≤ m, (3.4)
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fB(qrism−i−1) = λfA(prism−i−1) + µfA(ri+1sm−i−1) + νfA(rism−i) (3.5)

0 ≤ i ≤ m− 1, with q = λp+ µr + νs.

These conditions show that the control points fA(prism−i−1), fA(ri+1sm−i−1),

fA(rism−i) and fB(qrism−i−1) satisfy the same affine relation that p, r, s, q satisfy,

i.e., the diamond formed by these control points is an affine image of the diamond

(p, r, s, q) under some unique affine map h.

��

��

��

��fA(prism−i−1) fB(qrism−i−1)

fA(rism−i)

fA(ri+1sm−i−1)

h(A) h(B)

Figure 3.2: C1-continuity conditions

In the special case where q = r+ s− p, or equivalently p+ q = r+ s, which means

that the line segments (p, q) and (r, s) have the same midpoint, the above Conditions

3.5 become

1

2
(fA(prism−i−1) + fB(qrism−i−1)) =

1

2
(fA(ri+1sm−i−1) + fA(rism−i)), (3.6)

0 ≤ i ≤ m− 1.

Now we will look at C1 continuity constraints in more detail. We start from the
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special case where adjacent triangles form a parallelogram. This is true if the all

triangles in the parameter plane are equilateral.

3.3 C1 continuity constraints – a closer look

3.3.1 Around a vertex

Assume that we have a (finite) triangulation of the parameter plane A2 consisting of

equilateral triangles. We know that to achieve C1 continuity, the line segment between

the apexes of any two triangular patches sharing an edge must have the same midpoint

as the edge itself, as stated by equation 3.6. Let us take a closer look at what this

means when three or more adjacent triangular patches have a common vertex. First

of all, we introduce a definition that will simplify our notations somewhat.

Definition 3.3.1 Given n ≥ 2 triangular patches of degree m that share a common

vertex v1, let T1, . . . , Tn be the n triangles in the planar domain and f1, . . . , fn be the

n polar forms associated with the patches. Let v1, . . . , vn+2 denote the vertices of the

domain triangles, so that Ti = (v1, vi+1, vi+2), with 1 ≤ i ≤ n. Let z1 = fi(v1
m), then

the control points zi+1 = fi(v1
m−1, vi+1), with 1 ≤ i ≤ n + 1, are called the star of

control points around z1, or simply, the star of z1 (See Figure 3.3).

We call the set {z2, . . . , zn+2} a complete star if z1 is completely surrounded by

patches. A complete star has n control points. An incomplete star has n+ 1 control

points.
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v3 v4

v5

v6v7

z2(z8)

z3 z4

z5

z6
z7

z1(v1)

Figure 3.3: z2, . . . , z7 is the complete star of z1

Notice that vertex vn+2 coincides with v2 if the star is complete.

We should also point out the vi are in the planar domain and the zi are control

points in space. However, the corner point and its star, i.e. the zi, are indeed coplanar

and their convex hull is an affine image of the convex hull given by the vi. One can

think of Figure 3.3 as having the zi superimposed onto the domain triangulation given

by the vi. Also, recall that the notation fi(vj
m) indicates that there are m copies of

vj in fi’s arguments, that is:

fi(vj
m) = fi(vj, . . . , vj︸ ︷︷ ︸

m

).

The star completely determines the continuity conditions around a vertex, and

therefore we will look at it closely. The necessary and sufficient polar form Conditions

3.6 given in Section 3.2 for C1 continuity apply, as we have an equilateral template

triangulation.
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To simplify the notation for the equations given by Conditions 3.6, we would like

to drop
1

2
. It turns out that it is all right to do so, because there is a contruction that

will embed an affine space in a vector space. Thus, affine points can be turned into

vectors, and then back to points. For more information on such a “homogenizing”

construction, please refer to Chapter 4 of Gallier [Gal00b], or Berger [Ber90]. We

begin with three patches sharing a common vertex.

Case 1: Three triangular patches.

�� ����

���	

z2

z3 z4

z5
z1

Figure 3.4: Three adjacent triangular patches

The two C1-equations are

z1 + z3 = z2 + z4,

z3 + z5 = z1 + z4.

Subtracting the second equation from the first, we get z1 − z5 = z2 − z1, or

z2 + z5 = 2z1.
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Thus, z1 is the middle of the line segment (z2, z5). There are three degrees of freedom,

for example, z1, z3, z4.

To avoid redundancy, we will skip over the next two cases, e.g. four and five

triangular patches, and go straight to six patches.

Case 2: Six triangular patches.

�� ����

���	


��

z2

z3 z4

z5

z6z7

z1

Figure 3.5: Six adjacent triangular patches

There are two more equations, and the six C1-equations are

z1 + z3 = z2 + z4,

z3 + z5 = z1 + z4,

z1 + z5 = z4 + z6,

z5 + z7 = z1 + z6,

z2 + z1 = z3 + z7,
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z2 + z6 = z1 + z7.

Remarkably, the last two equations follow from the first four. Indeed, as in the

previous case, we get

z2 + z5 = 2z1,

z3 + z6 = 2z1,

z4 + z7 = 2z1,

and by adding the two equations

z1 + z3 = z2 + z4,

z4 + z7 = 2z1,

we get

z1 + z3 + z4 + z7 = 2z1 + z2 + z4

which reduces to

z3 + z7 = z1 + z2,

that is,

z2 + z1 = z3 + z7.

Similarly, by adding the two equations

z2 + z1 = z3 + z7,

z3 + z6 = 2z1,

we get

z2 + z1 + z3 + z6 = 2z1 + z3 + z7
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which reduces to

z2 + z6 = z1 + z7.

Thus, the rank of the system is four, and it is easily seen that the equations

z2 + z5 = 2z1,

z3 + z6 = 2z1,

z4 + z7 = 2z1,

z2 + z4 + z6 = 3z1,

are linearly independent. There are three degrees of freedom, for example, z2, z4, z6

(or z3, z5, z7).

In all cases, there are three degrees of freedom among the vertex and its star, that

is, any three control points that are not collinear completely determine the continuity

condition around that vertex.

3.3.2 Along an edge

When two degree m patches meet, the C1 continuity constraints along the common

edge are completely determined by the parallelograms formed by the control points

across the common edge. Figure 3.6 shows two patches of degree four, which contains

three such parallelograms. In general, there are m − 1 such parallelograms for any

two degree m patches that share an edge.

We must have

vkA = vkB
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Figure 3.6: Two cubic patches that share an edge

along the common edge (r, s) and every diamond (vkp , v
k, vkq , v

k+1) must be the image

of (p, s, q, r) under a bijective affine map, as shown in Figure 3.2. We can pick any

three non-collinear points among (p, q, r, s). Assuming (p, r, q) are not collinear and

s = λp+ µr + νq, we get

vk = λvkp + µvk+1 + νvkq .

as shown in Conditions 3.5 in Chapter 3.

Similarly, in the special case where (p, s, q, r) is a parallelogram, Conditions 3.5

become Conditions 3.6, that is, the line segments (p, q) and (r, s) have the same

midpoint, and we get

1

2
(vk + vk+1) =

1

2
(vkp + vkq ),

written simply as:

vk + vk+1 = vkp + vkq .

Thus, any three non-collinear control points among the four control points that make

up a parallelogram will determine the fourth.
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3.3.3 Arbitrary triangulation

So far, we have seen that with a equilateral triangulation, there are three degrees of

freedom around a vertex control point and its star, and also in any parallelogram

across any shared edge. This is a nice result, but in obtaining the result, we relied

on diagonals of the parallelograms having the same midpoint. This is no longer true

when we have an arbitrary triangulation.

Much to our delight, the case of an arbitrary triangulation is not much more

difficult. It turns out that we still have three degrees of freedom among the vertex

and its star, regardless of how many patches come together at that vertex.

Recall Conditions 3.5 given in Section 3.2 for the general case:

fB(qrism−i−1) = λfA(prism−i−1) + µfA(ri+1sm−i−1) + νfA(rism−i),

where λ+ µ+ ν = 1.

These conditions show that the control points fA(prism−i−1), fA(ri+1sm−i−1),

fA(rism−i), and fB(qrism−i−1), satisfy the same affine relation that p, r, s, q satisfy,

i.e., the diamond formed by these control points is an affine image of the diamond

(p, r, s, q) under some affine map h.

Lemma 3.3.2 Given n ≥ 2 triangular patches that share a common vertex, let

T1, . . . , Tn be the n ≥ 2 triangles in the planar domain associated with the patches,

with Ti = (vi+1, v1, vi+2), so that Ti and Ti+1 share the vertex v1 and are adjacent

along the edge (v1, vi) (3 ≤ i ≤ n + 1). Let z1 be the control point associated to v1,

and z2, . . . , zn+2 the star of control points of z1 (note that vn+2 = v2 and zn+2 = z2
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if the star is complete). Also let F1, . . . , Fn be the polynomial maps associated with

the patches. If the patches Fi(Ti) and Fi+1(Ti+1) meet with C1 continuity, for all

1 ≤ i ≤ n, then there is a unique affine map h:A2 → A3 such that

hi(vi) = zi,

with 1 ≤ i ≤ n+ 2.

As a consequence, if (vi, vj , vk) are any three affinely independent points, for any

vl with l 6= i, j, k, if vl = λvi + µvj + νvk, we also have the equation

zl = λzi + µzj + νzk,

where λ+ µ+ ν = 1.

Proof . We proceed with induction on n. Base case: n = 2. There are two triangles,

T1 = (v2, v1, v3), and T2 = (v3, v1, v4) that meet with C1 continuity. According to

Conditions 3.5 obtained in Chapter 3, the points z4, z1, z2 and z3 are an image of

v4, v1, v2 and v3 under a unique affine map.

Assume that Lemma 3.3.2 holds for n. Now, we prove it for n + 1. According to

the induction hypothesis, patches Fi(Ti) and Fi+1(Ti+1) meet with C1 continuity for

all 1 ≤ i ≤ n, thus there is a unique affine map h such that

hi(vi) = zi,

with 1 ≤ i ≤ n + 2. Now, we have a new patch Fn+1(Tn+1) that meets with patch

Fn(Tn) with C1 along (v1, vn+2). According to Conditions 3.5, there is also an unique

affine map gi such that gi(vi) = zi, with i ∈ [1, n + 1, n + 2, n + 3]. Thus we have

60



the affine maps hi and gi overlap on the triangle Tn = (v1, vn+1, vn+2). Because the

triangle Tn is a proper triangle with three affinely independent vertices which form

an affine frame, this forces hi and gi to be the same affine map.

Since any three affinely independent points form an affine basis, any other point

is completely determined by a unique affine combination of these three points. When

any three non-collinear control points among z1 and its star are determined, to com-

pute any other control point in the star, we can immediately find the corresponding

vertices of the four control points involved, compute the barycentric coefficients for

the unique affine combination between the vertices, and use the same coefficients to

compute the fourth control point. Thus, regardless of how many patches come to-

gether, any three non-collinear control points among z1 and its star determine the

continuity conditions around a vertex completely. The same also holds for similar

quadrilaterals along the edges.
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Chapter 4

An Algorithm for Designing C1

Triangular Spline Surfaces

4.1 Algorithm to choose prescribed (free) control

points based on equilateral triangulations

The challenge is to come up with a way to systematically prescribe a certain set of

control points, so that the rest of the control points can be computed efficiently, and

the resulting surface has guaranteed C1 continuity. We restrict ourselves for now to

the special case where all triangles in the template triangulation are equilateral. This

guarantees that the two lines formed by the opposite apexes of any two adjacent tri-

angles (line segments (p, q) and (r, s)) have the same midpoint. Notice that restricting

all triangles to be isosceles, with the third, non-equilateral edge as the shared com-

mon edge between two triangles achieves the same effect, but the condition makes

the template triangulation a lot less regular, and harder to draw.
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4.1.1 Degree 5 patches

It is generally impossible to construct a triangular spline surface of degree m with

Ck continuity, if 2m ≤ 3k + 1. The proof of this is quite involved, and a detailed

account can be found on pages 317−320 in Gallier’s Curves and Surfaces in Geometric

Modeling [Gal00b].

Thus, we must have 2m ≥ 3k+2. For C1 continuity, we have k = 1, and therefore

m must be at least three. Because there are three degrees of freedom in all cases where

adjacent triangles share some common vertex, the systems of equations to solve for

control points are over-determined for m ≤ 4. It turns out that in order to have local

flexibility and a reasonably symmetric method, m = 5 is the smallest possible degree

to allow enough freedom. Therefore we turn our attention to quintic patches.

Since we have degree five, each patch has 21 control points. We divide these control

points into corner points, edge points and inner points. Recall that the control points

bi,j,k = f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
t

)

where i+ j + k = m can be viewed as an image of the triangular grid ∆m defined by

∆m = {(i, j, k) ∈ N3 |i+ j + k = m}.

As shown in Table 2.3, the 21 control points of a quintic patch forms a triangular

grid. We repeat the table here for the reader’s convenience.
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500

401 410

302 311 320

203 211 221 230

104 113 122 131 140

005 014 023 032 041 050

Table 4.1: Control points grid for a quintic triangular patch

Definition 4.1.1 Given a triangular control net of degree m,

1. Corner points are control points whose corresponding polar values have either

i = m, j = m or k = m, which means any two of i, j, k are 0.

2. Edge points are control points whose corresponding polar values have either

i+ j = m, j + k = m or i+ k = m, which means any one of i, j, k is 0.

3. Inner points are control points whose corresponding polar values have i+j+k =

m with i 6= 0, j 6= 0, k 6= 0.

When m = 5, the corner points are b0,0,5, b5,0,5 and b5,0,0, the edge points are

b4,0,1, b3,0,2, b2,0,3, b1,0,4, b0,1,4, b0,2,3, b0,3,2, b0,4,1, b1,4,0, b2,3,0, b3,2,0 and b4,1,0 and the

inner points are b3,1,1, b1,3,1, b1,1,3, b2,1,2, b2,2,1, b1,2,2. It is clear that the corner points

correspond to points on the three corners of the triangular surface patch, the edge

points correspond to points on the three edges of the triangular surface patch, and

the inner points correspond to points not on the boundary of the triangular surface

patch.
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4.1.2 Corner point region

First of all, we need to specify a uniform way to prescribe the corner points. As

we have seen earlier in Chapter 3, the continuity conditions around a corner point

depends on the number of patches (or the number of edges) coming together at that

particular point, although there are three degrees of freedom in all cases.

In fact, a corner point that is adjacent to exactly two edges is common to only

one face, and therefore does not contribute to or constrain the continuity conditions

of the patch. Such points and its two edges are commonly called an “ear” in many

literatures on triangulation, and we will refer to such corner points and edge points

on the two edges associated as ear points .

Because we are dealing with equilateral triangles, there can be at most six patches

coming together at a corner point. Thus, we need only to specify prescription methods

for corner points adjacent to two to six patches. They are shown in Figure 4.1, where

a square represents a corner point, a circle represents an edge point and a green square

or circle indicates that particular control point is prescribed.

In theory, there are three degrees of freedom in all of the above cases, and therefore

we can pick any three control points that are not collinear. We chose the above

schemes simply because they are more symmetric, and therefore are less likely to

cause undesired compensation effect due to excessive tilting of the affine reference

frame. In the case of a corner point adjacent to six faces, either of the two schemes is

permitted. We simply pick any three alternate points out of the six adjacent to the

corner point.
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Figure 4.1: Prescribing corner points

Once a corner point region is prescribed, propagation will determine the corner

point and its star completely. Corner point region propagations are computed based

on the fact that the midpoints of the two diagonals of the parallelograms must agree.

Because of the regularity of the equilateral triangles, the corner point is the midpoint

of three pairs of star points (in the case of six patches), and the center of gravity of any

three alternate star points. These special properties simplify propagation somewhat

and we take advantage of that. Propagation computations are simple. They consist

of only one addition and one subtraction in most cases, and are instantaneous.

As shown in Figure 4.2, where a corner point region consisting of z1 and its

complete star z2, . . . , z7 is given. We notice that z2, z4 and z6 are prescribed. We first
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Z 1
Z 2

Z 3 Z 4

Z 5

Z 6Z 7

Figure 4.2: Prescribing corner points, example

compute z1. Since it is the center of gravity of z2, z4 and z6,

z1 =
z2 + z4 + z6

3
.

Once z1 is obtained, z3, z5 and z7 follow immediately:

z3 = 2z1 − z6,

z5 = 2z1 − z2

z7 = 2z1 − z4,

z1 is obtained with two additions and one division, and the rest one addition (2z1 =

z1 + z1) and one subtraction.

4.1.3 Along the edges

What remains are continuity conditions along an edge, which are controlled by the

parallelograms formed by inner points and edge points across that edge. Clearly all
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edge points directly affect the continuity conditions across that particular edge, but

for every patch, only some of its inner points affect its C1 continuity conditions. These

are the inner points that form the aforementioned parallelograms.

For every two patches that share an edge, once the two corner point regions of

the shared edge are computed, we need only to prescribe two inner points per patch,

plus one inner point per shared edge to determine all the edge points.

3a 3b

1 2

13

z 1

z 2

z 3

z 4 z 5

z 6

z 7

z 8

z 9

z 10

z 11

z 12

z 13 z 14

z 15

z 16 z 10

z 4 z 13 z 14 z 8

z 11z 15

z 16 z 12

z 9

z 14

z 15

z 16 z 16

z 13 z 14

z 15

z

Figure 4.3: Prescriptions and propagations along the edges

Edge propagations are computed the same way as corner point region propaga-

tions. We force propagations along the shared edge from both ends to the center as
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shown in step 1 − 2. Step 1 shows an edge whose two endpoint corner-point-region

propagations (z1, z2, z3 → z4), (z5, z6, z7 → z8) are already completed. We adopt

the convention of drawing prescribed control points in green, and propagated control

points in red.

Next, following the directions of propagation as indicated by the two arrows, we

prescribe two inner points at each side of the edge, namely, (z9, z10) and (z11, z12).

Edge points z13 and z14 are then immediately computed via propagation in the fol-

lowing way:

z13 = z9 + z10 − z4,

z14 = z11 + z12 − z8

At this stage we have z15 and z16 still to be propagated. It’s clear that one of

them needs to be prescribed, and the other propagated. Step 3a and 3b are both legal

moves allowed by the algorithm. Prescribing either one of the inner points will lock

the other in. We therefore call them flip points. The flip point is propagated either

as z15 = z13 + z14 − z16, or z16 = z13 + z14 − z15, depending on which one we choose

to prescribe. The two directions of propagations are caught and stopped by the flip

points in the middle of the shared edge. All control points remaining (only inner and

ear points) are free and they do not constrain continuity conditions.

4.1.4 Six patches

When we have a large surface with many patches, the case where six patches share

a common corner point is typical except on the boundaries. In this case, three in-
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ner points per patch plus one flip point every two adjacent patches will suffice to

determine continuity conditions across the patches. We require that corner point re-

gion propagations always precede edge propagations. All propagations are computed

based on diagonal mid-point agreement of affected parallelograms.

1. Prescription 2. Corner-point region propagation

3. Edge propagation: edge points4. Edge propagation: flip points

Figure 4.4: When six patches come together
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4.2 Irregular triangulations

So far, we have based our algorithm on equilateral triangulations, which are quite

restrictive. The kind of surfaces they can represent tend to be geometrically regular

and are not very realistic. We started with equilateral triangulations due to the

nice properties brought by their regularity, but as we shall see, the properties of the

equilateral triangles are not necessary, and our algorithm needs minimal modifications

to adapt to irregular triangulations. In fact, equilateral triangulation is just a special

case of irregular triangulation.

First, let’s look at corner point region. From Lemma 3.3.2, we know that around

the corner point region, there are always three degrees of freedom regardless how

many patches come together. Therefore any three non-collinear control points among

the corner point and its star can be prescribed. The three prescribed control points

then form an affine frame. Therefore, propagation for any fourth point in this corner

region is computed based on affine relations with respect to that particular frame.

Along the edges, we have similar quadrilaterals instead of parallelograms because

the triangulation is no longer regular. Propagations still proceed in the same manner

and directions, and involve control points with the same positions (or polar values) in

their respective patches. The only thing that is different is in the actual computation.

Just like in the corner point region, instead of mid-point calculations, we compute

using affine relations.

The complexity of our algorithm stays the same, because the only thing that

is different in the irregular case is the actual computation step of the propagation.
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The exact same sets of control points are prescribed and propagated, respectively.

The computation based on affine relations is only slightly more complicated, which

requires the computation of 2× 2 determinants.

In Figure 4.5, following our convention, all the colored points, some labeled zi,

are control points in space, and the vi belong to the domain triangulation, and are

therefore in the plane.

PSfrag replacements
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Figure 4.5: Irregular triangulation

In general, it is easily shown that given three affinely independent point (a, b, c)

in A2, for any point x ∈ A2, if x = λa + µb + νc, where λ, µ, ν are the barycentric

coordinates of x with respect to (a, b, c),

λ =
det(
−→
xb,
−→
bc)

det(
−→
ab,−→ac)

, µ =
det(−→ax,−→ac)
det(
−→
ab,−→ac)

, ν =
det(
−→
ab,−→ax)

det(
−→
ab,−→ac)

.
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As shown in the above example, the corner point region of z1 and its star z2, . . . , z6

has the three points (z2, z4, z5) chosen as the affine frame. Computations for the rest

of the control points in the corner point region is given as follows:

z1 =
det(−−→v1v4,−−→v4v5)

det(−−→v2v4,−−→v2v5)
z2 +

det(−−→v2v1,−−→v2v5)

det(−−→v2v4,−−→v2v5)
z4 +

det(−−→v2v4,−−→v2v1)

det(−−→v2v4,−−→v2v5)
z5,

z3 =
det(−−→v3v4,−−→v4v5)

det(−−→v2v4,−−→v2v5)
z2 +

det(−−→v2v3,−−→v2v5)

det(−−→v2v4,−−→v2v5)
z4 +

det(−−→v2v4,−−→v2v3)

det(−−→v2v4,−−→v2v5)
z5,

z6 =
det(−−→v6v4,−−→v4v5)

det(−−→v2v4,−−→v2v5)
z2 +

det(−−→v2v6,−−→v2v5)

det(−−→v2v4,−−→v2v5)
z4 +

det(−−→v2v4,−−→v2v6)

det(−−→v2v4,−−→v2v5)
z5,

Along the edge, (z5, z7, z8) will be the affine frame used to compute z9, and simi-

larly, (z9, z10, z11) will give us the flip point z12.

We can handle most irregular triangulations, but not arbitrary triangulations. We

are limited by one case. We will discuss that in some detail in Section 4.4.

4.3 Local control

Locality is an important property for interactive design systems. The patches affected

by the modification of a single control vertex, the less recomputation is needed, and

therefore the faster the rendering speed. When it comes to locality, complete locality

is highly desired, which means modification of a control vertex only affects patches

that are incident to it.

Our algorithm generates propagations that are completely local. Local control

is achieved because propagations always end at the flip points. Modification of any
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control point on any patch F will affect at most those control points associated with

the patches that are adjacent to F . Only some of the control points of these incident

patches are affected at all times, and furthermore, not all incident patches are affected

under most circumstances.

Depending on the nature of the modified control point (corner, inner or flip),

more or less repropagation is needed. Only control points that were prescribed in the

original design are allowed to be modified.

4.3.1 Corner point region

Modification of a corner point or any of its star will result in repropagations of the

entire corner point region and along all of its affected adjacent edges.
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Figure 4.6: Local propagation in corner point region

In Figure 4.6, control point z5 is modified. We adopt the convention of drawing
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modified control points in magenta. Since z5 was one of the three points that formed

the affine frame in that particular corner point region, once the affine frame changed,

all the other control points in the same corner point region that do not belong to the

affine frame, namely z1, z2, z4 and z6 need to be recomputed with respect to the new

frame.

Notice that the example shows only one modified control point. All three control

points that make up the frame are allowed to be modified. The changes made to

z2, z4, z6 and also the original z5 will in turn affect the edges associated to them,

e2, e4, e6 and e5 respectively. Edges e3 and e7 are not affected, as z3 and z7 are not

modified.

Repropagation along any of the above edges is in fact only propagated through

half of the edge. We know that there are two directions of propagation along any

edge, but from any one corner point region, only one side of an edge is affected. Either

direction is stopped by the flip point, and cannot proceed further.

Repropagation of any one corner region and its adjacent edges does not affect any

other corner regions, as the flip points stops the propagation before it can reach any

other corner region. This means that all corner point region propagations can be

carried out in parallel, or when programmed sequentially, in any arbitrary order.

4.3.2 Inner points

Modification of an inner point (not a flip point) will result in repropagations along

its two incident edges, as illustrated in Figure 4.7.
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Figure 4.7: Local propagation along the edges

In Figure 4.7, inner point z1 is modified. As a result, on edge e1, the affine frame

(z1, z2, z3) has changed, and therefore z4 needs to be recomputed. The changes to z4

in turn affect the affine frame used to compute flip point z5, therefore z5 has to be

recomputed as well. No other changes occurred on e1. Similarly on edge e2, one edge

point and one flip point need to be recomputed.

Repropagation along an edge will not affect any other edges or corner point regions,

again because the flip points “sinks” the propagations from both ends of the edge.

All edge propagations can also be carried out in parallel, or in any arbitrary order.

4.3.3 Flip points

Modification of a flip point will result in repropagation of the other flip point across

the edge, as illustrated in Figure 4.8.
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Figure 4.8: Local propagation of flip points

In Figure 4.8 flip point z1 is modified. As a result, the affine frame (z1, z2, z3) is

changed, and therefore z4 needs to be recomputed with respect to the new frame. No

other control points are affected.

Repropagation of a flip point does not affect any corner point regions or any edges.

Therefore, when a set of control points is modified, first repropagate all affected corner

regions in any order, then along the affected edges in any order, finally recompute

affected flip points in any order. This order (corner first, edge second, flip last) assures

that all modifications take effect as they should.

4.4 Summary and future work

We believe that our algorithm provides a simple, fast way to design surfaces with

built-in C1 continuity. Since our method is based on triangular patches, there is no
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restriction on how many patches may come together at a control point, and thus it

offers more freedom in terms of modeling capability. Furthermore, there are enough

free (manipulatable) control points per patch (typically about 5 − 6) such that very

local changes might be made.

The triangular control net the algorithm generates lends very well to the subdivi-

sion version of the de Casteljau algorithm for evaluation. Given the minimum degree

we require, 5, usually two iterations are enough to generate a good approximation

of the surface. To manipulate and modify surface splines, it suffices to locally move

control points. Recomputation of control points is limited to the local vicinity, and

is therefore simple and easily implemented.

Complex topologies involving holes or sharp corners are automatically handled

by the algorithm without extra work, because they do not arise as special cases.

As long as the template triangulation reflects the existence of such topologies, they

are handled properly. All the computations involved in the algorithm are just the

propagations of the control points, which in most cases consist of just one addition

and one subtraction.

Bellow are some directions we are taking to extend this work.

4.4.1 C2

Preliminary experiment results have shown that our algorithm can likely be extended

to construct C2 triangular surfaces. The extension is in theory straight-forward, but

working out an actual local incremental algorithm analogous to what we have shown
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so far is not trivial.

It turns out that at least degree 8 patches are needed everywhere for C2, and in fact

we need to move to degree 9 to have enough freedom locally to design a propagation

scheme. Here, in addition to prescribing the first row cross-boundary control points,

some second row cross-boundary control points will need to be prescribed as well. A

balanced prescription scheme needs to be worked out to avoid shape defects.

4.4.2 Interpolation

The extension of our scheme to interpolate instead of approximate is almost instan-

taneous. Because we have three degrees of freedom around any corner-point region,

including the corner point itself, we have enough freedom to simply force the corner

point to pass through desired coordinates.

However, this does have the potential to lead to shape defects due to the problem

mentioned in the last subsection, tilting of local affine frame, that is, if the choice of

the corner-point’s placement is unfortunate, it will result in undesired undulations in

that corner point region. We will discuss this more in Subsection 4.4.5.

Also, recall that our C1 algorithm requires the existence of a parameterization in

the plane. If we assume that such a parameterization has been given, the extension to

handle interpolation is indeed just as decribed above. We have also run some sucessful

tests based on this assumption. However, in most cases, it is unrealistic to assume

a given parameterization for interpolation purposes. The input will be a collection

of data points given in space, although it is probably reasonable to assume that it is
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already meshed. We will need to come up with a reasonable parameterizaion of this

mesh in the plane.

This is a non-trivial problem. A simple projection to a plane is not enough. Even

with planes that are reasonably fitted to the data points, such as a least-squares fit-

ting, it is still not good enough to generate a parameterizaion with no self-intersection.

The problem arises when the mesh describe a surface that has folds (but no self-

intersection). Any projection will not deal with the folds correctly. A reasonable

parameterization in the plane will need to stretch out the folds in the mesh.

Gu, Gortler and Hoppe [GGH02] recently worked on remeshing irregular triangu-

lar meshes with meshes with (semi)-regular connectivity. In their work of representing

surfaces with geometry images, they have worked on methods of cutting a mesh to

open it into a topological disk, which then gives a parameterization of that mesh

within this disk. This is quite possibly exactly what we can use to find a parameter-

ization of our input mesh. Closer examination of Gu et al’s methods is needed.

Of course, we are also aware of some restrictions of our method, some of which

we are working on to resolve in the near future.

4.4.3 Shape parameters and automated shape control

Our algorithm is highly local and leaves quite a bit of freedom in the interior of

the patches and the boundaries. The disadvantage of this is that, in general, a fair

number of control points need to be modified before a change to a single patch will

be uniformly distributed. This is definitely not a task a user should handle. An
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automatic method is needed to prescribe a set of appropriate control points, given a

request for shape change. That is, some type of shape parameter needs to be set up.

A related issue has already been worked on (see Section 7.3), that is, to develop

an automatic method to prescribe all the control points needed for propagation when

given large sets of data to approximate. In this case, it is important to set good

initial values for optimal first approximation so that less modification is needed from

the user. It is still current research to set the initial free parameters to incorporate

as much of the known discrete surface geometry as possible.

4.4.4 Degenerate frames along the edges

First, we mentioned in Section 4.2 that we cannot handle just any arbitrary trian-

gulation, we are limited by one case. Recall that all propagations need the existence

of at least three affinely independent points. Around a corner point region, this is

guaranteed. But along the edges, because we have fixed directions of propagation, we

do not have the freedom to choose which three points from the four control points

that form the similar quadrilaterals will be our affine frame. They are fixed. In the

unfortunate cases when these three points are collinear, the algorithm breaks down.

As shown in Figure 4.9, the points v2, v1, v4 and v3, v1 v5 are respectively collinear

in the domain triangulation. The corner point region of z1 and its star z2, . . . , z5 is

not affected, and in the example, z3, z4, z5 are chosen as the affine frame, and z1

and z2 are then obtained through propagation. But then, the edge propagations

immediately present a problem. For example, along e1, the algorithm dictates that
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Figure 4.9: Frames along the edges are collinear

z6, z2, z9 shall form an affine frame, resulting in z10’s propagation. However, z6, z2, z9

are given by the same affine relations as v3, v1, v5, which are collinear. So are frames

(z6, z3, z7), (z7, z4, z8), (z8, z5, z9) along edges e2, e3 and e4, respectively. Thus, control

points z10, z11, z12 and z13 cannot be computed. In this case, we have two straight

lines going through v1/z1. In general, any straight line that goes through a corner

point will cause similar problem for two edge propagations adjacent to that particular

corner point.

There are two possible fixes for this problem. We can detect it and then change

the direction of propagations locally where such degenerate frames exist. Notice that

because our domain is a triangulation, there is always at least one direction along an

edge that does not contain degenerate frames.

Another approach is to leave the algorithm alone, but preprocess to remove the

degenerate frames. We simply need to move v1 slightly off to the side, to disrupt
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the straight lines. The move is therefore a small one, and will not cause noticeable

difference in the final surface generated. Any irregular triangulation will need to be

preprocessed to remove such degenerate cases.

4.4.5 Excessive tilting of the affine frames

This is the most serious problem that we have encountered so far. Recall that both

around the corner point region and across the edges, propagation places control points

on a plane determined by the affine frame formed by the three affinely independent

control points that we prescribed. This means that the placement of this plane relative

to the normals of the surface in that region is extremely important to the final shape

of the surface.

In general, we want this plane to be tangent to the surface as much as possible.

That is why in the G1 literature it is often called the “cross-boundary tangent plane”.

If by some unfortunate choice (most likely due to interpolation), the affine frame is

tilted towards the normal of the surface, then the resulting surface will contain severe

undulations.

Fortunately, even in the case of interpolation, we still have two other control points

which we can prescribe to mitigate the tilt, if it occurs. The best method of fairing

is currently being researched.
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Chapter 5

Geometric Continuity

5.1 Background and related work

The algorithm given in Chapter 4 works only on planar triangulations, which means

that it cannot produce closed surfaces. Closed surfaces will need triangulated polyhe-

dra as parameter space. We recognize that our problem is fundamentally that of going

from one topological space to another. Algebraic topology has already developed tools

to study such problems.

We know that surfaces are topologically 2-manifolds (see definition 5.4.1), which

are topological spaces in which each point has a neighborhood (an open set that con-

tains the point) homeomorphic to a portion of the Euclidean plane. Naturally, these

neighborhoods form an open cover of the manifold. An open cover of a topological

space X is a family of open subsets whose union is X . One can think of a manifold as

a structure imposed on a set, dividing the set into overlapping regions that covers the

set completely, with each of the region behaving much like a portion of the Euclidean
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plane. Now since the regions overlap, there are families of homeomorphisms called

charts , that describe how the regions overlap.

The difficulty of mapping a triangulated polyhedron to a surface is that we can-

not use open sets, but only closed sets, e.g. triangles. Therefore instead of loosely

“overlapping”, we must conduct precise boundary matching. (Incidentally, there have

been attempts to represent a surface with a topological 2-manifold thereby allowing

the surface patches to overlap [GH95].)

A common method to study closed triangulatable compact surfaces in algebraic

topology is to cut a surface open along the edges of the triangulation and “flatten” it

out, i.e. to realize the surface as a polygon in the plane, with certain identifications

on the boundary edges. The following diagram shows a triangulation of the sphere

which has been opened up:
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Figure 5.1: A triangulation of the sphere

The geometric realization of the above triangulation is obtained by pasting to-
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gether the pairs of edges labeled (a, d), (b, d), (c, d). The geometric realization forms

a tetrahedron. We recognize this as exactly the triangulated polyhedron we had in

mind as a parameter space. Algebraic topology states that if we view the triangulated

polyhedron as a geometric realization of the actual surface we are fitting on top of it,

they will be topologically equivalent.

However, it is well known that fitting a parametrically continuous surface over

triangulated polyhedra of arbitrary topology can not always be done. As Herron

showed in [Her85], requiring C1 continuity along the patch boundaries is only possible

if the corresponding domain triangles are adjacent. Instead, a common solution to

the problem is to relax the continuity constraints to what is know as geometrically

continuous, and fit Gk-continuous surfaces instead.

Geometric continuity is a different class of continuity as its definition is parame-

terization independent. Geometric continuity only concerns itself with the shape of a

curve or surface. Various early definitions of geometric continuity were given in Farin

[Far82], Sabin [Sab83], DeRose [DeR85], Herron [Her87], etc. There are also more

recent surveys on geometric continuity such as Veltkamp [Vel92] and Peters [Pet02].

Despite different interpretations, geometric continuity is basically defined as follows:

Definition 5.1.1 Two surface patches F and G are said to be Gk-continuous at the

joining point a if and only if there exist two reparameterizations f and g, such that

F ◦ f and G ◦ g are Ck-continuous at a.

It was also pointed out in the literature that although the definition suggests that

both F and G require reparameterizations, it is equivalent if only one of them is
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reparameterized, reducing the other reparameterization function to the identity.

The majority of the literature does not clearly specify what these reparameter-

ization functions f and g are. With the exception of Peters [Pet02], most of them

describe them as change of variables or change of parameters functions.

In this dissertation a reparameterization map is a Ck diffeomorphism f :A2 → A2,

that is, f is a bijection such that both f and its inverse are Ck. Recall that a

diffeomorphism f between manifolds (subsets of Rn) is an invertible map, such that

f and its inverse are infinitely differentiable.

Now, finding such reparametrizations is of course no easy task. It turns out that

for G1 and G2, they are easily worked out: two adjacent patches F and G are G1-

continuous at a if normal vectors at f(a) and g(a) are in the same direction. Therefore

G1-continuous is also called tangent plane continuous. Similarly, G2 requires that two

patches are tangent plane continuous and curvature continuous.

Many methods of building triangular G1 surfaces have been proposed. These tech-

niques differ mainly in the way they simultaneously satisfy smoothness conditions for

many patches around a common corner. This is also known as the “vertex consis-

tency” or “twist compatibility” problem. The difficulty arises when joining an even

number of C2 patches sharing a common vertex with G1 continuity, as the system of

linear equations involved may be singular.

There are three major approaches to deal with the vertex consistency problem.

1. Subdivision algorithms.
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These schemes average arbitrary input meshes to isolate irregularities. Exam-

ples on triangular meshes (i.e. subdivision of abstract complexes) are Loop

[Loo87], Cavaretta et al [CDM91], Hoppe et al [HDD+94] and Peters [Pet95],

and more recently, [BLZ00] and [Kob01]. For a survey of continuity conditions

of subdivision surfaces, please refer to Zorin [Zor96].

2. Split-patch methods.

These are Clough-Tocher like split-domain schemes. Earlier approaches includ-

ing Farin [Far82, Far83], Jensen [Jen87], Piper [Pip87] and Shirman and Sequin

[SS88]. A more recent approach due to Hahmann et al [HBT00, HBT01] applies

a new 4-split method. Split-domain schemes generally produce lower degree sur-

faces.

3. Convex combination schemes.

This type of methods such as Hagen [Hag86] and Hagen and Pottmann [HH89]

construct higher degree triangular patches with a single patch per parameter tri-

angle. They are named convex combination because n patches are constructed

for n-sided patches, and then a blended convex combination of the patches make

the final patch.

In addition to the above approaches, there are C2-consistent boundary curve

schemes such as Loop [Loo94] and Peters [Pet91], variational method using the theory

of manifolds by Sarraga [Sar00] and B-patches by Seidel [GS93, PS95]. The surveys

by Du and Schmitt [DS90] and Mann et al [MLM+92] provide more detailed descrip-

tion of the above methods. It is pointed out in [MLM+92] that most of these methods
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suffer from shape defects.

In the next sections we present the foundation of an extension of our incremental

algorithm to handle G1 and possibly G2 surfaces based on triangulated polyhedra

of arbitrary topology. We differ from the standard approaches in that we do not

require presetting information (normals or partial derivatives) at vertex regions for

interpolation purposes first, and thus end up with extra degrees of freedom. In

fact this freedom around the vertices should allow easier future extensions to handle

interpolation.

We also completely bypass the vertex consistency problem since we do not fit

boundary curves first 1. Constructing boundary curves is a common aspect of most

of the G1 schemes proposed so far. Usually, boundary curves are first computed to fit

the cross-boundary tangent field. Once the boundary curves are fixed, the interiors of

the patches are then filled with Bézier points computed from these boundary curves.

This leads to the well-known vertex consistency problem. In our approach, vertex

regions are fitted FIRST, and boundaries are considered thereafter. Therefore the

vertex consistency problem does not exist.

We believe that our approach has a number of other advantages:

• Parametric patches. Our approach fits Bézier patches, whose parametric nature

enables well known algorithms like subdivision and intersection.

• Single patch per domain triangle. We construct one patch only at all times,

without intermediate splitting or degree raising.

1We thank Stephen Mann for pointing out this fact.
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• Acceptably low degree. We use quintic Bézier patches, one degree lower than for

example Loop [Loo94]. While there exist schemes that produce lower degree

patches, most of those schemes do not offer complete local control.

• Local Control. This is one of the most important advantages of this approach.

The complete local control present in our C1 algorithm generalizes to the more

general method.

• Interpolation. While approximation was the first goal, there is plenty of freedom

left in the vertex region for an extension to interpolation.

• Extension to G2. Again, as discussed in our C1 algorithm, G2 extension is most

likely achieved with degree 8 patches, degree 9 if local control is desired.

5.2 A definition of a triangulated polyhedron

Since our domain is a triangulated polyhedron, we first give a formal definition of

what we mean by a triangulated polyhedron. Arbitrary spaces are not generally

triangulatable. However, it can be shown that any compact space can be expressed

as a limit of triangulatable spaces in a reasonable sense, thus, triangulatable spaces

are dense in the family of compact spaces. Furthermore, any compact surface is

triangulatable. According to Massey [Mas87] the proof was first given by Radó in

1925.

Note that most of the definitions and concepts in this section are taken out of

[Xu99], inspired by [Gal97]. We will give formal definitions of simplices and com-
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plexes, the geometric realization of a simplicial complex and general triangulation.

This is done in standard affine geometry. Readers may also assume standard alge-

braic topology definitions for open and closed sets, compactness and connectedness.

For further readings on this topic, please refer to Bredon [Bre93], Fulton [Ful95] and

Massey [Mas91].

5.2.1 Simplices and Complexes

Definition 5.2.1 Let E be any affine space with the standard affine basis e0, . . . , en

in E . An n-simplex (or simplex) ∆n is defined by:

∆n =

{
n∑

i=0

λiei |
n∑

i=0

λi = 1, 0 ≤ λi ≤ 1

}
.

The families of coefficients λi are called barycentric coordinates . The dimension of

an n-simplex ∆n is n.

The n-simplex is quite simply just the convex hull of the points e0, . . . , en, that

is, the set of all convex combinations λ0e0 + · · ·+ λnen, where λ0 + · · ·+ λn = 1, and

λi ≥ 0, for all i, with 0 ≤ i ≤ n.

Definition 5.2.2 Given an n-simplex ∆n, the points e0, . . . , en are called the vertices

of ∆n. A k-simplex generated by any k-subset of the vertices {e0, . . . , en} is called a

k-face or simply face of ∆n. A face T of ∆n is a proper face iff T 6= ∆n (∅ is a face

of any simplex). Every face which is an (n − 1)-simplex is called a boundary face.
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The union of the boundary faces is the boundary of ∆n, denoted as ∂∆n, and the

complement of ∂∆n in ∆n is the interior ,
◦

∆n, of ∆n.
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Figure 5.2: Examples of simplices

Clearly, a point x belongs to the boundary of ∆n iff at least one of its barycentric

coordinates (λ0, . . . , λn) is zero, and a point x belongs to the interior of ∆n iff all of

its barycentric coordinates are positive.

A simplex ∆ is convex, connected, compact, and closed. The interior of a complex

is convex, connected, open, and ∆ is the closure of
◦

∆n. A simplex ∆n is the smallest

convex set in Rn+1 containing all its vertices, thus, it is said to span its vertices.

We now need to put simplices together to form more complex shapes. Ahlfors

92



and Sario [AS60], define abstract complexes and their geometric realizations rather

formally. The idea is to construct a combinatorial object called an abstract simplicial

complex K by taking a (finite) set of simplices as vertices, and a collection of subsets

from this set, with the property that every subset of a simplex is a simplex. However,

to understand its geometric realization, one would need to interpret the simplicial

complex in terms of a vector space. An alternative definition called a geometric

simplicial complex was given by Bredon [Bre93], which seems a bit more intuitive,

and we will present it here:

Definition 5.2.3 A (geometric) simplicial complex in An (for short complex ), K, is

a finite family of simplices in An satisfying the following conditions:

(A1) Given a simplex ∆ ∈ K, any face of ∆ is also in K.

(A2) Given two simplices, ∆1 and ∆2, either ∆1 and ∆2 are disjoint, or ∆1 ∩∆2

is a face.

The highest dimension of the simplices in K is the dimension of K. A 0-simplex

in K is a vertex of K.

Example: Sato [Sat99] shows a simplex ∆ (in fact a tetrahedron) whose boundary

is a simplicial complex. Given four points in R3 as follows:

p0 = (0, 0, 0), p1 = (1, 0, 0), p2 = (1, 2, 0), p3 = (2, 3, 4),

from these four points, there are
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(
4
3

)
= 4 2-simplices:

∆2
0 = (p0, p1, p2), ∆2

1 = (p1, p2, p3), ∆2
2 = (p0, p2, p3), ∆2

3 = (p0, p1, p3),

(
4
2

)
= 6 1-simplices:

∆1
0 = (p0, p1), ∆1

1 = (p0, p2), ∆1
2 = (p0, p3), ∆1

3 = (p1, p2), ∆1
4 = (p1, p3), ∆1

5 = (p2, p3)

and
(

4
1

)
= 4 0-simplices:

∆0
0 = (p0), ∆0

1 = (p1), ∆0
2 = (p2), ∆0

3 = (p3).
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Figure 5.3: Example of a simplicial complex

It is clear that the 2-simplices are the faces, the 1-simplices the edges, and the

0-simplices the vertices, and the union of all 14 simplices is a set K which satisfies

the conditions given in Definition 5.2.3, and therefore is a simplicial complex. It is

also the boundary of the 3-simplex ∆.
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Definition 5.2.4 Given a simplicial complex, K, its geometric realization (also called

the polyhedron of K) is the subspace |K|, defined as |K| = ⋃∆∈K ∆.

We define a topology on |K| by defining a subset U of |K| to be closed iff U∩|∆| is

closed in |∆| for all ∆ ∈ K. It is immediately verified that the axioms of a topological

space are indeed verified. The space |K| has the subspace topology as a subset of Rn.

We also note that for any two simplices ∆1,∆2 of K, we have

|(∆1 ∩∆2)| = |(∆1)| ∩ |(∆2).

5.2.2 Triangulation

We now return to surfaces and define the notion of triangulation. The name “triangu-

lation” is a bit misleading in the way that it implies “triangles”, which we automati-

cally assume are 2-dimensional. We have already seen that a triangle is a 2-simplex,

therefore triangulation of higher-dimension spaces cuts the spaces up into higher di-

mension triangles, i.e., n-simplices. Triangulation can be thought as a method of

cutting a topological space into a finite number of warped simplices, which are home-

omorphic to n-simplices, and since the space is a finite collection of such simplices,

the space is thus identified to a simplicial complex using homeomorphisms. Applying

this to compact surfaces means that we divide the surface into a finite number of

faces, each of which is homeomorphic to a planar triangle.

Definition 5.2.5 Given a topological spaceX, we sayX is triangulatable, if there is a

homeomorphism identifying X with a simplicial complex K. Such a homeomorphism

g: |K| → X, is called a triangulation of X.
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Definition 5.2.6 Given a surface M , a triangulation of M is a pair (K,h), where K

is a 2-simplex and h is map h:K → 2M from the 2-dimensional simplicial complex K

into the set of subsets of the surface M , assigning a closed subset h(s) of M to every

simplex s ∈ K, and satisfying the following conditions:

(C1) h(s1 ∩ s2) = h(s1) ∩ h(s2), ∀s1, s2 ∈ K.

(C2) For every s ∈ K, there is a homeomorphism ϕs from the geometric realization

|s| of s to h(s), such that ϕs(|s′|) = h(s′), for every s′ ⊆ s.

(C3)
⋃
s∈K h(s) = M , that is, the sets h(s) cover M .

(C4) For every point x ∈ M , there is some neighborhood of x which meets only

finitely many of the h(s).

Condition C2 basically guarantees that every 2-simplex (triangle) in K is homeo-

morphic to a closed subset in M , and also every face of every 2-simplex, that is, every

edge, is homeomorphic to a closed interval, and every vertex is homeomorphic to a

point.

PSfrag replacements

a

b c

A

B C

0 1

(1− t)B + tC, t ∈ [0, 1]
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We have already seen an example of the triangulation of a sphere in Figure 5.1.

The following diagram shows a triangulation of a surface called a torus :
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a

e

d

a

b

i

f

b

c

j

g

c

a

e

d

a

Figure 5.5: A triangulation of the torus

The geometric realization of the above triangulation is obtained by pasting to-

gether the pairs of edges labeled (a, d), (d, e), (e, a), and the pairs of edges labeled

(a, b), (b, c), (c, a).

We are now going to state a lemma characterizing the complexes K that cor-

respond to triangulations of surfaces. It gives a more combinatorial notion of a 2-

complex corresponding to a triangulation. The following notational conventions will

be used: vertices (or nodes, i.e., 0-simplices) will be denoted by α, edges (1-simplices)

will be denoted by a, and triangles (2-simplices) will be denoted by A. We will also

denote an edge by a = (α1α2), and a triangle by A = (a1a2a3), or by A = (α1α2α3),

when we are interested in its vertices.
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Lemma 5.2.7 A 2-complex K corresponds to a triangulation h:K → 2M of a surface

M iff the following properties hold:

(D1) Every edge a is contained in exactly two triangles A.

(D2) For every vertex α, the edges a and triangles A containing α can be arranged

as a cyclic sequence a1, A1, a2, A2, . . . , Am−1, am, Am, in the sense that ai = Ai−1 ∩Ai

for all i, 2 ≤ i ≤ m, and a1 = Am ∩ A1, with m ≥ 3.

(D3) K is connected, in the sense that it cannot be written as the union of two

disjoint nonempty complexes.

Proof . A proof can be found in Ahlfors and Sario [AS60]. The proof is non-trivial

and requires the notion of the winding number of a closed curve in the plane with

respect to a point, and the concept of homotopy.

A 2-complex K that satisfies the conditions of Lemma 5.2.7 will be called a tri-

angulated complex , and its geometric realization is called a triangulated polyhedron.

5.3 AGk continuity on triangulated polyhedra

We present a mathematically rigorous definition for a triangular spline surface based

on a triangulated polyhedron. Although there are various efforts to fit Gk surfaces in

the literature we surveyed, there have not been any attempt to formulate the problem

formally. From our definition of a (triangulated) polyhedron-based spline surface, we

also introduce a new kind of geometric continuity for such surfaces.
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A triangulation of a compact surface X has a finite number of faces, each of which

is a subset of X homeomorphic to an ordinary closed triangle in the plane. There are

many homeomorphisms between a face of a triangulated compact surface and a planar

triangle. To simplify matters, we can think of the mapping between a triangulated

compact surface and planar triangles as a two-step process. First, the triangulated

compact surface is mapped to a triangulated polyhedron, through a polynomial map.

Then, the triangulated polyhedron is in turn mapped to ordinary (closed) planar

triangles (with identifications). When we identify sides of triangles with edges of a

triangulated polyhedron, the homeomorphisms must be affine. Figure 5.6 shows this

process, where the triangulated polyhedron is cut along the red edges.
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Figure 5.6: From surface to triangulated polyhedron, then to planar triangles
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Thus we call our version of geometric continuity affine geometric continuity , or

AGk-continuity.

Definition 5.3.1 A piecewise polynomial surface S of degree m based on a triangu-

lated polyhedron is a triple (P, {φT}T∈T , {FT}T∈T ) where,

1. P = (V , E , T ) is a triangulated polyhedron, with V denoting the subset of 0-

simplices, i.e., vertices, E denoting the subset of 1-simplices, i.e., edges and T

denoting the subset of 2-simplices, i.e., face triangles.

2. Each φT :T → A2 is an affine bijection mapping the face triangle T ∈ T to the

affine plane.

3. Letting T ′ = φT (T ), each FT :T ′ → A3 is a polynomial surface patch of degree

m.

4. For every edge e ∈ E adjacent to two faces Ti and Tj, we require the restrictions

of Fi and Fj to this edge to agree. That is,

FTi ◦ φTi|e = FTj ◦ φTj |e.

In short, we call such a surface a polyhedron-based surface. See Figure 5.7.

Remark : The family of bijective affine maps {φT}T∈T is indexed by the face

triangles in T . When dealing with distinct faces Ti and Tj, for simplification of

notation, we allow ourselves to abbreviate expressions such as φTi and φTj as simply

φi and φj respectively. From now on, Ti will be consistently replaced by i when used
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Figure 5.7: The maps φT send faces on a polyhedron to triangles in A2

to index maps. The maps {φT}T∈T send the faces of the polyhedron P to the affine

plane A2. We also index points with maps when convenient, that is, we denote φi(p)

as pφi , as shown in Figure 5.7.

Notice that two faces adjacent on the polyhedron are not necessarily mapped to

adjacent triangles in A2. Since P is closed, it is not possible to send all adjacent poly-

hedral faces to adjacent faces in the plane without identifications. Because we require

C0 continuity in condition 4 in the previous definition, we need reparameterization

maps to define AGk-continuity.

Definition 5.3.2 Given a polyhedron-based surface S = (P, {φT}T∈T , {FT}T∈T ) of

degree m, for every edge e ∈ E adjacent to two faces Ti and Tj ∈ T , let p, r, s ∈ V

denote the vertices of Ti and q, r, s ∈ V denote the vertices of Tj, with e = (r, s). An

affine reparametrization map is a bijective affine map ρj :A2 → A2, mapping Tj
′ to
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A2, (Tj
′ = φj(Tj)), such that

1. φi(e) = ρj(φj(e)).

2. The line segment (φi(p), ρj(φj(q)) (or (pφi, ρj(qφj))) has an intersection with

the line segment φi(e) or its extension. In other words, pφi and ρj(qφj) lie on

opposite sides of φi(e).
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Figure 5.8: The map ρj reparameterizes so that the two triangles Ti
′ and ρj(Tj

′) are

adjacent in A2, where Tj
′ = φj(Tj).

Remark: Let Tj
′′ denote ρj(Tj

′). Notice that the reparameterization maps send

potentially non-adjacent triangles (triangles that are scattered into the affine plane

via maps φT ) in the plane to adjacent triangles.

Now we show that the control points attached to any reparameterized triangular

face Tj
′′ are in fact the same control points attached to the original face Tj

′.
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Given the polynomial map Fj:Tj
′ → A3, let Fj

′:Tj
′′ → A3 be the polynomial map

so that Fj
′ = Fj ◦ρj−1. Let fj :Tj

′ → A3 and fj
′:Tj

′′ → A3 be the corresponding polar

forms of Fj and Fj
′, respectively. Also, let bαβγ and b′αβγ be the control points of Fj

and Fj
′, with respect to Tj

′ and Tj
′′, respectively.

Lemma 5.3.3 With the notations above, we have

bαβγ = b′αβγ

, i.e. the control points attached to any reparameterized triangular face Tj
′ are not

affected by the reparameterization map ρj:Tj
′ → Tj

′′.

Proof: Now the control point bαβγ of fj
′ with respect to Tj

′′ must be

fj
′(ρj(rφj), . . . , ρj(rφj)︸ ︷︷ ︸

α

, ρj(sφj), . . . , ρj(sφj)︸ ︷︷ ︸
β

, ρj(qφj), . . . , ρj(qφj)︸ ︷︷ ︸
γ

),

that is,

fj
′((ρj(rφj))

α(ρj(sφj))
β(ρj(qφj))

γ). (5.1)

We also know that fj
′ = fj ◦ ρj−1. That is,

fj
′(a1, . . . , am) = fj(ρj

−1(a1), . . . , ρj
−1(am)).

Substituting in (5.1) for the arguments a1, . . . , am, we have

fj
′((ρj(rφj))

α(ρj(sφj))
β(ρj(qφj))

γ) = fj((ρjρj
−1(rφj))

α
(ρjρj

−1(sφj))
β
(ρjρj

−1(qφj))
γ
).
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The term ρjρj
−1 cancels and the above equation becomes:

b′αβγ = fj
′((ρj(rφj))

α(ρj(sφj))
β(ρj(qφj))

γ) = fj((rφj)
α(sφj)

beta(qφj)
γ) = bαβγ ,

where b′αβγ is the control point with respect to Tj
′.

This proves that control points with respect to Tj
′′ are exactly the same as those

with respect to Tj
′.

Definition 5.3.4 Using Definition 5.3.1, if we let Tj
′′ = ρj(Tj

′), we say that S is

affine Gk-continuous or AGk if for every edge e adjacent to two faces Ti and Tj, the

patches Fi and Fj
′ = Fj ◦ρj−1 meet with Ck continuity along the common edge curve

φi(e).
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5.4 Approaches to fit AG1 surfaces

Now we proceed to the construction of an actual algorithm that will fit such AG1

surfaces over a triangulated polyhedron.

We have looked at the problem from two angles. The first is an obvious, but some-

what more global and brute-force approach. We propose to open up the triangulated

polyhedron along selected edges and lay it flat on the plane with proper identifica-

tions among pairs of edges that were cut. This is what we have seen in Section 5.2 as

a 2-complex corresponding to a triangulation. What we have done is to go from its

geometric realization back to the complex. Since now all domain triangles are planar,

we can proceed to write out the necessary conditions on polar forms for C1 continuity

as shown in Section 3.2. Solving this system of equations will give us an idea of at

least the existence of the reparameterization maps ρi.

The next idea is to leave the triangulated tetrahedron in three dimensional space,

and find local parameterizations around each corner point region and across each edge

boundary so that the immediate neighborhood is mapped to the affine plane A2. We

know that such local parameterization exists because the standard algebraic topology

definition of a 2-manifold states:

Definition 5.4.1 A (topological) 2-manifold is a second-countable Hausdorff space

M , together with an open cover (Ui)i∈I and a family (ϕi)i∈I of homeomorphisms

ϕi:Ui → Ωi, such that each Ωi is some open subset of R2. Each pair (Ui, ϕi) is called

a coordinate system, or chart (or local chart) of M , each homeomorphism ϕi:Ui → Ωi
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is called a coordinate map, and its inverse ϕ−1
i : Ωi → Ui is called a parameterization

of Ui. For any point p ∈ M , for any coordinate system (U,ϕ) with ϕ:U → Ω, if

p ∈ U , we say that (Ω, ϕ−1) is a parameterization of M at p. The family (Ui, ϕi)i∈I

is often called an atlas for M .

Remark : Intuitively, the family (ϕi)i∈I of homeomorphisms map each point and

its neighborhood in M to the open 2-dimensional disc.

This approach is much more attractive from an algorithmic point of view, because

it proposes the idea of “walking” on the surface of the polyhedron, along the edges

from corner point to corner point. This is basically the three dimensional version of

our C1 algorithm. However, the additional element of these local parameterizations do

complicate matters, as it is clear that the choice of these parameterizations is critical,

and will greatly affect the outcome of the final surface shape quality. As there is

ample freedom in how to map these local regions to the affine plane, a method that

will ideally incorporate as much known surface geometry as possible and losing as

little information as possible is nontrivial.

We have done some preliminary implementations to get a feeling of these local

parameterizations. The local parameterizations are chosen to be as simple as possible,

and in this cases, they even violate AG1 constraints across the edges, that is, they

have edge consistency problems. However, as we shall see in the examples below, the

quality of the approximations are surprisingly good.
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5.4.1 Tetrahedron

As show in Figures 5.10 and 5.11 below, the tetrahedron given in green wireframe is

the input triangulated polyhedron, and the smaller, smooth tetrahedron in blue (also

given in wireframe in the fourth figure) is the output AG1 surface approximation of

the input tetrahedron.

The AG1 surface, although entirely contained within the original input tetrahe-

dron, is nevertheless a fairly good smooth surface approximation of the original shape.

The shrinkage is largely due to the fact that since interpolation is not required, low-

ering the surface into the interior allows the reduction of certain shape defects, which

we will discuss in detail in Chapter 6, when actual algorithms for fitting AG1 surfaces

are presented.

Figure 5.10: A smooth tetrahedron.
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Figure 5.11: A smooth tetrahedron, ctd.

5.4.2 Icosahedron

Figure 5.12: A smooth icosahedron
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As stated before, the simplest possible reparametrizations maps were chosen for both

the tetrahedron and the icosahedron. The corner region is flattened to a regular n-

gon consisting of the n triangles that come together at the corner point. Because the

tetrahedron and icosahedron are both regular polyhedra, the same number of triangles

meet at all corner-point regions. That is, three triangles for each corner-point region

for the tetrahedron and five for the icosahedron. The reparameterization maps will

be the same for all corner-point regions, and each will be flattened to a equilateral

triangle (for the tetrahedron), or a pentagon (for the icosahedron). The corner-point

regions look as follows after reparameterization:

Figure 5.13: Corner-point region of tetrahedron Corner-point region of icosahedron

Across the edges, we choose maps to form simple parallelograms, so that the

propagations can take advantage of the fact that the midpoints of the diagonals

agree. This is probably not the best choice of maps, and it causes clear violation of

G1 continuity constraints across the edges, because the three diamonds are not in any
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way similar to the two on either end of the edge, who are specified by the corner-point

region maps. For example, an edge on the tetrahedron will look like this:

Figure 5.14: Edge maps of a tetrahedron.

Now we move on to develop an actual algorithm for fitting AG1 surfaces for

triangulated polyhedrons, and at the same time, keeping to our goal to retain as

much incrementality and local control as possible.
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Chapter 6

Designing AG1 Triangular Spline

Surfaces

The results of the preliminary experimentations in Chapter 5 show that even with

simple-minded (and in this case, probably poor) choices of the reparameterization

maps, the results are still quite good. Of course, the polyhedra we chose to fit our

surfaces on are mathematical and regular, which definitely contributed towards the

final surface quality.

6.1 Listing AG1 equations

We would like to look more closely at the equations that dictate the AG1 conditions

around the corner region and across the edges. We believe that opening up the trian-

gulated polyhedra, writing out systems of equations and attempting to solve/reduce

them will bring crucial insights. While doing so does not contribute to the construc-

tion of an actual algorithm, as the approach is quite global, it nevertheless offers
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the important proof of existence for the reparameterization maps. We hope that the

system of constraints might even give us some information on how these reparame-

terization maps might look like.

6.1.1 AG1 equations on a tetrahedron

We choose to start with the tetrahedron because it is the smallest triangulated poly-

hedron, and therefore has the fewest number of total equations around the corners

and across the edges.

Let (V , E , T ) be a tetrahedron, where V = {a, b, c, d}, E = {ab, bc, cd, ac, bc, bd}

and T = {abc, adb, bdc, cda}. Let the corner control points be indexed by the vertices

of the tetrahedron they are associated with. That is, za → a, zb → b and so on.

Figure 6.1 shows such a tetrahedron and after it has been opened and laid flat

in the plane, with proper identifications. The closed tetrahedron drawing does not

accurately reflect the placements of the control points associated with the vertices,

i.e. za, zb, zc and zd, under AG1 constraints, as za should be coplanar with z1, z2

and z3, and zb coplanar with z7, z8 and z9 and so on. However, we do not yet know

the corner point’s affine relation with respect to its star. For the purpose of listing

equations, we find it easier to imagine the control points when drawn this way.

Recall Lemma 5.3.3 from Chapter 5, which states that control points attached

to any reparameterized triangular face Tj
′ are not affected by the reparameteriza-

tion maps. Thus, although not drawn in Figure 6.1, we can list the equations after

reparameterization with the same control points. This greatly simplifies things.
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Figure 6.1: An opened-up tetrahedron

AG1 constraints state that all diamonds across any edge must observe the same

affine relations (because they are given by the same domain diamond). More precisely,

given the domain diamond 〈p, q, r, s〉 consisting of two adjacent triangles ∆prs and

∆qrs sharing the edge (r, s), if p, q, r, s has the relation λp+µr+ νs = q with respect

to frame ∆prs, then any four control points forming a diamond across the edge (r, s)

must respect the same affine relations given by λ, µ and ν. This condition is in fact

Condition 3.5 given in Section 3.2 as the necessary and sufficient polar form condition

for C1 continuity.

Thus, we can index such relations with each edge, as (λei , µei , νei). Now we proceed

to list all the AG1 equations for the corner regions. For each corner point, there is

one equation for each edge that is adjacent to that corner point. For example, for

vertex a, and its corresponding corner control point za, there are three equations:
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za = λacz3 + µacz1 + νacz2, (6.1)

za = λabz1 + µabz2 + νabz3, (6.2)

za = λadz1 + µadz3 + νadz2. (6.3)

Similarly, the equations for the other three corner-point regions are:

zb





zb = λbcz4 + µbcz5 + νbcz6,

zb = λbdz4 + µbdz6 + νbdz5,

z4 = λabz5 + µabzb + νabz6,

zc





zc = λcdz8 + µcdz9 + νcdz7,

z4 = λacz9 + µaczc + νacz8,

z5 = λbcz7 + µbczc + νbcz9,

zd





z10 = λadz11 + µadzd + νadz12,

z11 = λcdz12 + µcdzd + νcdz10,

z12 = λbdz10 + µbdzd + νbdz11.

In addition, there are also the six equations (one per edge) stating the affine

relations of the λs, µs and νs:

λab + µab + νab = 1,

λac + µac + νac = 1,
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λad + µad + νad = 1,

λbc + µbc + νbc = 1,

λbd + µbd + νbd = 1,

λcd + µcd + νcd = 1.

Thus, once the zi are fixed, there are 18 equations and 18 variables, and as we

will prove, the above system has a unique solution. However, the solution turns out

to be highly unsatisfactory.

Because we have a tetrahedron, there are only three control points in the star of

each corner point, which forces the same three points to be the affine frame for every

equation written for that corner point region. See Equations 6.1, 6.2 and 6.3. This

forces

λab = µac = λad,

νac = µab = νad,

λac = νab = µad.

Together with

λab + µab + νab = 1,

λac + µac + νac = 1,

λad + µad + νad = 1,

it is clear that λab = µab = νab = λac = µac = νac = λad = µad = νad =
1

3
.
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Substituting into any of the Equations 6.1, 6.2 or 6.3, we get

za =
1

3
z1 +

1

3
z2 +

1

3
z3. (6.4)

That is, za is the center of gravity of z1, z2 and z3.

Now we look at the equations of the other corner regions. Recall the equations

for corner point zb:

zb = λbcz4 + µbcz5 + νbcz6, (6.5)

zb = λbdz4 + µbdz6 + νbdz5, (6.6)

z4 = λabz5 + µabzb + νabz6. (6.7)

Notice that since all diamonds across the same edge must respect the same affine

relations given by the domain diamond, we are not able to pick only the star points as

affine frames for the other three corner region. For example, around zb, edge ab’s frame

has already been locked in by za’s Equation za = λabz1+µabz2+νabz3 6.2, therefore the

zb Equation corresponding to edge ab has to be written as z4 = λabz5 + µabzb + νabz6

6.7. Substituting in λab, µab and νab, we get the following affine relations associated

with edge bc, z4 =
1

3
z5 +

1

3
zb +

1

3
z6, that is

zb = 3z4 − z5 − z6. (6.8)

Similar to what happens around za, this also locks in the affine relations associated

with edges bc and bd through Equations 6.5 and 6.6 as

λbd = λbc = 3
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µbc = νbd = −1

νbc = µbd = −1.

These computations can also be conducted around corner-point regions zc and zd,

leading to similar results. Clearly, zb’s position with respect to its star points z4, z5

and z6 as given by Equation 6.8 is unreasonable. Corner point zb lies way out of the

triangle formed by z4, z5 and z6, which will lead to severe surface defect. In fact, once

corner point za is forced to be
1

3
of z1, z2 and z3 (Equation 6.4), the corner point

region is then flattened to an equilateral triangle (incidentally, it coincides with the

guess we took in our preliminary experiments, see Figure 5.13):

PSfrag replacements

z1

z2

z3

za

Figure 6.2: Corner-point region of za

This forces highly undesirable affine shapes to be propagated along all incident

edges ab, ac and ad, that is, instead of the general diamond-shaped quadrilateral

consisting of two acute triangles, we have an arrow-shaped quadrilateral consisting of
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two obtuse triangles. The resulting edge maps are indeed strangely shaped, as shown

in Figure 6.3.

Figure 6.3: Edge maps for edges ab, ac and ad.

The edge maps then in turn force undesirable maps in the corner-point regions on

the other end of these edges, namely, those of zb, zc and zd.

In conclusion, we can obtain an AG1 surface based on a tetrahedron, but only

with a highly undesirable surface shape, and the resulting surfaces will not represent

a tetrahedron in any reasonable way.

6.1.2 AG1 in general

The results we obtained in Section 6.1.1 were highly unsatisfactory. However, being

the smallest and simplest triangulated polyhedron, the tetrahedron is also the most

restrictive. The main problem is that on a tetrahedron each vertex only has three

adjacent edges, and as we have seen in the last section, because there are only three

star points in a corner-point region, AG1 constraints then force a unique and very
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unfortunate corner-point region map, which in turn propagates along the adjacent

edges to affect other corner-point regions.

Now the question is what will happen if we have a more general triangulated

polyhedron with more adjacent edges to each vertex. In general, given a triangulated

polyhedron (V , E , T ), letting |E| denote the number of edges, we write two equations

per edge, one for each corner-point region at each end of the edge, and an extra

equation per edge for the affine constraints of the λs, µs and νs.

We chose to write equations this way because this system gives privileges to the

corner control points over the rest. This allows for freedom around the corner point

region, and in turn local control and an incremental algorithm, we hope.

The above system has a total of 2|E| + |E| = 3|E| equations. There are three

unknowns per edge, one each of λ, µ and ν, and therefore also 3|E| total unknowns.

This means that the system has a unique solution in the generic case. In all cases

there is at least some solution, although not necessarily satisfactory, as we noticed

from the case of the tetrahedron.

Now, if we assume there are more than three adjacent edges, there are then more

than three star points around the corner-point region. We can write the equations in

the same fashion as we have done for the tetrahedron in Section 6.1.1.

zvi = λei(i+1)
z1 + µei(i+1)

z2 + νei(i+1)
z3

zvi = λei(i+2)
z2 + µei(i+2)

z3 + νei(i+2)
z4

. . .

zvi = λei(i+n)
zn + µei(i+n)

zn+1 + νei(i+n)
zn+2
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Because there are more than three star points, there is no unique solution to

this system. However, recall Lemma 3.3.2 from Chapter 3, which states that any

three affinely independent points form an affine basis, and any other point in the

corner point region is completely determined by a unique affine combination of these

three points. That is, once we determine zvi with respect to any three of its star

points, this locks down the entire corner-point region, which in turn locks down the

affine relations for all adjacent edges, which then propagates through to the other

corner-point regions of the adjacent edges and so on.

What this means is that we in fact only have some freedom in the first corner-point

region we chance upon. Once that is determined, it locks down everything. This is

not very good news either. We would need more flexibility than that if we were to

have local control. In particular, we need to be able to determine each corner-point

region map independently and the propagate the edge.

As we have seen so far, because the three edge diamonds need to respect the the

same affine relations as the two one each end of the edge which are part of the corner-

point regions, we have excessive propagation and resulting in all corner-point regions

being locked in. The only alternative then is to relax AG1 even further, so that the

three edge diamonds do not have to respect the same affine relations as the two end

diamonds.

We have now in fact gone back to the kind of maps we tried in our preliminary

tests (see Figure 5.14). We had hoped for better maps, but AG1 constraints are too

restrictive to allow maps with more freedom.
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6.2 Pseudo-AG1 with local methods

We now relax AG1 constraints to allow the three edge diamonds no longer have to

agree with the two end diamonds that are part of the corner-point region on each

end of an edge. We do, however, still require the three edge diamonds to respect the

same ratios. We call this continuity pseudo-AG1.

This allows enough freedom to have individual reparameterization maps applied to

each corner-point region, as well as individual edge reparameterization maps applied

to each edge.

In contrast to the C1 work we have done, in the AG1 case, we have much more

freedom in the local reparameterizations. In C1, because we start from a template

triangulation, we have more information, and locally, much is dictated by the layout

of the triangulation. However, in the case of a triangulated polyhedron, when we

reparameterize, in essence we have to come up with a local “flattening” of the corner-

point regions first. It is clear that the choice of how this “flattening” is done is

of crucial importance. It will greatly affect the shape of final the surface. Also,

unfortunate choices might make the across-the-edge reparameterizations much more

difficult.

6.2.1 Reparameterization maps: corner-point regions

In a corner-point region, the corner point and all of its star points are necessarily

coplanar. The plane onto which we send the corner point and its start points is
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called the corner plane. The first choice to make is where to fit the corner plane.

For now, we assume that all the star points already have assigned coordinates that

give a reasonable first approximation of their final locations. We will see how these

coordinates are assigned in Subsection 6.2.4.

The corner plane

Take any corner point region, let va be the vertex, za its corresponding corner point

and z1 . . . zn be za’s star points.

• Approach 1

We begin by taking the center of gravity C of all star points, that is,

C =

∑n
i=0 zi

n
.

Draw a line from va to C, we take any plane P perpendicular to this line as our

corner plane. There is freedom to slide this plane along zaC according to some

shape parameter. Project za onto P gives us za and projections of z1 . . . zn onto

P are also taken to obtain final values of all star points, as shown in Figure 6.4.

However, this approach turns out to unsatisfactory, because unfortunate loca-

tions of the center of gravity with respect to the vertex can lead to undesired

tilting of the corner plane, which will result in surface defect.

• Approach 2

Next we take the average of the normals of all faces adjacent to the vertex, and

use a plane P perpendicular to this average of face normals as the corner plane.
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Figure 6.4: Corner plane by taking centroid of star points

This method gives better position of the corner plane. However, if some of

the adjacent faces happen to be on the same plane, the average of the normals

tend to favor these faces, because there is more weight. This effect is especially

prominent when there are a lot of consecutive small (thin) coplanar faces in a

row.

• Approach 3

We go on to take the weighted average of the normals N of all faces adjacent

to the vertex. The weight is assigned according to the area of the face. That

is, if f1, . . . , fn are the adjacent faces and N(fi) denotes the normals of fi and
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A(fi) the area of fi, then

N =
n∑

i=0

A(fi)∑n
i=0 A(fi)

∗N(fi).

Again, we use a plane perpendicular to N as our corner plane.

The position of the corner plane

Now that we have chosen our corner plane, there are two questions remaining. First,

because there is an infinite number of planes perpendicular to a given vector (weighted

normal average), there is a choice of where to “hang” this plane along the vector. A

reasonable position seems to be somewhere between the vertex and the centroid of

the star points.

It is clear that the closer the corner plane is placed towards the vertex, the sharper

the final surface will be around the vertex. Conversely, the further away the corner

plane is placed from the vertex, the more “rounded” the final surface will be around

that vertex. Therefore the decision of the corner plane position with respect to the

vertex seems to call for a shape parameter, which indicates, for the lack of a better

word, the “spikiness” of the final surface.

Currently we start out by positioning the corner plane half way between the

vertex and the centroid of its star points. However, in the event of a very sharp

vertex, placement closer to or even beyond the centroid might be considered as well.

Also, the vertical position of the plane is greatly influenced by the existence of edge

undulations, which will be discussed in Subsection 6.2.3.
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Projecting onto the corner plane

The second decision we need to make is how to send the vertex and the star points

onto the corner plane. A simple projection is of course the first thing that comes

to mind and was also the first thing we tried. However, projections do not preserve

lengths and unfortunate positions of the corner plane with respect to the control

points can lead to bizarre final placements.

The position of za in the corner plane from va in space is of great importance.

Instead of projecting va, we need to send va to a centered position on the corner plane

with respect to the final placements of its star in the corner plane. Control point za

also needs to be placed inside of the polygon consisting of the final placements of zi

in the corner plane.

Normally, sending va to the intersection point of
−→
vaC and the corner plane is a

good choice. However, if the projection of C onto the corner plane falls outside of the

polygon P consisting of the projections of all zi onto the corner plane, then we need

to pick another point that is inside P and is also relatively centered. The method we

use to find this point is described below and illustrated in Figure 6.5.

If the aforementioned happens, then P must be non-convex. We find the first

non-convex vertex v (by walking along the boundary of P counter-clock wise and

finding the first right-turn). Extend both edges that are adjacent to v until they each

intersect with P at v1 and v2. These two extended edges cut P into three separate

parts. Let P equal the the portion of P that contains both −→v1v and −→vv2. Recurse on

P until P is convex. Now we can send va to the centroid C ′ of this new convex P ,
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which is contained in the original P .
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Figure 6.5: C lies outside of P , C ′ is the new choice.

fThen we recover the lengths after projecting zi onto the corner plane. We first

calculate the lengths of all star points to the vertex. Then we lengthen or shorten the

vector
−−−−→
zap(zi) according to the corresponding length |−−→vazi|. Depending on the actual

input mesh, this can be also done to maintain lengths proportionally.

We also try to recover part of the affine relations. It is not possible to recover all of

the original affine relations, as we are losing a dimension. However, the angles between

the adjacent edges around the vertex can at least be proportionally maintained. That

is, we position the p(zi) around za so that the angle Ap(zi)zap(zi+1) between
−−−−→
zap(zi) and

−−−−−→
zap(zi+1) is given by

Ap(zi)zap(zi+1) =
Azivazi+1∑n
i=0Azivazi+1

∗ 360.
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In fact, if we do the angle adjustments before the length adjustments, there is

no need to do any projections for the star points zi. The angle adjustments will

place the p(zi) in the plane in proper directions around za. The length of the vectors

can then be determined. Instead of simply flattening out the corner-point region via

projections, what we achieve through the angle and length adjustments is analogous

to an umbrella opening, that is, keeping the lengths rigid and the angles proportional.

va
z1

z2z5

z4

z3

C

za

p(z1)

p(z2)

p(z3)

p(z4)

p(z5)

P

Figure 6.6: Corner plane adjustments, lengths are adjusted proportionally

6.2.2 Reparameterization maps: edges

Now we move on to edge reparameterization maps. The three edge diamonds no

longer need to agree with the two that are part of the corner-point regions, but they

do need to agree with each other. From the point of view of the final surface shape,

any map we use across the edge needs to at least keep the diamonds convex. The
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arrow-shaped diamonds we have seen in the case of the tetrahedron will clearly destroy

any hope of a reasonable shape approximation.

The easiest convex map is the one we used in our experiments with the tetrahedron

and the icosahedron, that is, to have the diamonds form parallelograms. This leads

to easy propagation computation.

We have also experimented with applying the average of the ratios of the two

diamonds at each end of the edge. We did not see significant improvement over the

parallelogram map, and in fact, in the cases where one or both of the diamonds have

unreasonable ratios, the averaging only made things worse.

We believe that in the event of two clearly conflicting and unreasonable ratios like

the corner-point regions of the tetrahedron, sticking to the parallelogram map on the

edges is as good a solution as any. However, if both diamonds are at least convex,

then a middle shape between the two might be the best ratio to keep. However, the

problem of finding the best middle shape of two convex quadrilaterals does not seem to

offer easy immediate solutions. For the time being, we have chosen the parallelogram

map as edge maps.

6.2.3 Undulations

The edge diamonds must be coplanar. For any diamond, if the plane formed by the

three prescribed control points (the affine frame) is not parallel to the edge it sits

across, there is unavoidable “dipping” or “raising” of the fourth point, see Figure 6.7.

In general, dipping happens more often, as the star points at the end of the edge tend

128



to go higher out of the surface of the polyhedral mesh then the two inner points at

each side of the edge. The sharper the original vertex, the more so.

zp

Figure 6.7: Control point zp is dipping.

One solution is to raise the inner points higher out of the triangulated polyhedron

or lower the star points/corner plane into the interior of the polyhedron. Recall that

we do have the freedom to slide the corner plane higher or lower. See Subsection

6.2.1. Inner points need to be raised substantially to counteract the dipping, and at

that point, they will cause the ballooning of the inner surface of the triangular patch.

Therefore, lowering the star points are necessary.

How much to lower or raise the corner plane depends on the sharpness of the

vertex in the original mesh. For each vertex, we calculate the angles formed by two

adjacent faces across each edge adjacent to that vertex. Then we take the average of

these angles over all edges adjacent to the vertex. This average angle is a fair indicator

of the sharpness of the vertex. In case of many crowded edges with flat angles and a

few edges with sharp angles, the average will not indicate the sharpness correctly. In
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that case we also measure the distance between the vertex and the center of gravity of

the star points to make sure. Clearly, the longer the distance, the sharper the corner.

Currently we raise the plane if the average angle is greater than
4

5
π, and lower

otherwise. We also raise and lower proportional to the angle.

If lowering the corner plane is not enough to eliminate the undulations along the

edges, we can also shrink the star region proportionally. This also brings the star

points towards the interior of the triangulated polyhedron.

Aside of the global raising or lowering, one can make more local changes to fine-

tune the surface shape. Once the star points are determined, we have the freedom to

prescribe two inner points for each of the two edge diamonds containing a star point

as the third prescribed point. We can calculate the average of the normals of the two

faces adjacent to this edge, thereby obtaining the cross-edge normal, and then assign

the two inner points so that together with the star point, they form an affine frame

that is perpendicular to the cross-edge normal.

6.2.4 First approximation of control points

Because the final surface is to approximate the given triangulated polyhedron, we

first calculate a rough approximation of the locations of certain control points based

on the input polyhedral mesh. We assign a simple weighted average of the vertices of

the polyhedral mesh to these control points, according to each control point’s polar

value.
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Recall that every control point has a corresponding polar value which is a triple

(i, j, k), i+ j+ k = m, where m is the degree of the patches. For each triangular face

of the input triangulated polyhedron, given the coordinates of the three vertices, we

simply obtained the coordinates of any control point by blending the coordinates of

these three vertices using that control point’s polar values as weights.

z500

z401 z410

z302 z320z311

z203 z230z212 z221

z104 z140z113 z131z122

z005 z050z014 z041z023 z032

Figure 6.8: The polar value labeling of quintic Bézier control points

Specifically, given v1(v1x, v1y, v1z), v2(v2x, v2y, v2z), v3(v3x, v3y, v3z), as the three

vertices and their corresponding coordinates and assume that v1 corresponds to the

control point with polar values (m, 0, 0), v2 corresponds to the control point with

corner values (0,m, 0) and v3 the polar values (0, 0,m), the coordinates of any control
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point zijk in the patch with the polar value (i, j, k), i+j+k = m are given as follows:

zijkx =
i

m
v1x +

j

m
v2x +

k

m
v3x,

zijky =
i

m
v1y +

j

m
v2y +

k

m
v3y,

zijkz =
i

m
v1z +

j

m
v2z +

k

m
v3z,

As we mentioned before, only a certain set of control points need to be assigned by

these formulae. The purpose of this first approximation is so that we have something

to start with when working on our reparameterization maps. Thus, only control

points who need to have prescribed values as called for by the reparameterization

maps should be assigned. This includes all the star points, inner points, and half of

the flip points.

All control points generated this way lie directly on the surface of the triangulated

polyhedron. To improve surface shape and prevent undulations, the control points

need to be moved off the surface of the triangulated polyhedron. The star points are

moved against the direction of the average of the normals of the two faces adjacent to

the edge it sits on. This makes the final plane-placed star smaller, and thereby causes

less dipping. Inner points are moved in the direction of the average of the normals of

the two faces adjacent to its residing face. Flip points are moved in the direction of

the normal of its residing face.

We move the star points proportional to the length of their residing edges, the
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inner and flip points proportional to the area of their residing faces.

6.2.5 Pseudo-AG1 surfaces

Using the approaches explaining in the last few subsections, we fitted pseudo-AG1 sur-

faces on triangulated polyhedra. The polyhedra used in implementation and testing

are built from scratch by hand, and are completely arbitrary.

An arbitrary polyhedron

Figure 6.9: A smooth polyhedron with its control net

In the above figure, an arbitrary polyhedron is fitted with a pseudo-AG1 surface. we

can see the control net with all the control points whose placements determine the

final surface shape. The corner points are shown red, the star points shown magenta,

the control points that we have freedom to prescribe are green and the propagated

ones yellow.
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We will show a few more figures of the same surface.

Figure 6.10: A smooth polyhedron with its corner planes

Figure 6.11: A smooth polyhedron, ctd.

In Figure 6.10, the same surface is shown with the corner planes and corner plane
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positions the program picked according to our algorithm. To keep the picture from

being too busy, we did not show the control net again. However, if the net were

shown, all the corner points and its star points will lie on their common corner plane,

respectively.

A bigger example

Figure 6.12: Another smooth polyhedron

This example fits a pseudo-AG1 surface onto a polyhedron, which has 43 vertices and

87 faces. The next figure shows the same surface with its control net.
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Figure 6.13: Another smooth polyhedron, with control net
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Chapter 7

Implementation

An implementation of this algorithm has been carried out using C, OpenGL and

the xforms library on an O2 SGI. The xforms library is used mainly to bring up a

GUI that displays the template triangulation, and allows the user to prescribe the

control points according to the algorithm. The propagation of the control points and

subdivision evaluation of the surface thereafter are carried out by C routines. The

final display of the resulting surface is done in OpenGL.

Some work has gone into implementing the algorithm and the display controls,

therefore we will also discuss the implementation in some detail. The implementa-

tion itself is algorithmically straight-forward, but somewhat of a challenge in data

structure and book-keeping. The main problem is that although the algorithm is

easily understood while drawn on paper, where the relative positions of all control

points in different control nets are in clear view and are geometrically intuitive, we

do not have the advantage of the automatic knowledge (at the glance of an eye) of

such geometric positional information regarding the control points when it comes to

137



actual programming. We only have a set of scattered points with given coordinates

or polar values. Thus, the necessary geometric information must be preprocessed and

encoded into the data structure ahead of time.

7.1 Program outline

All of the work is done on triangulations. The input to the program is the tem-

plate triangulation, given in the form of a list of two dimensional vertices in its x,

y coordinates, and a list of faces (triangles), each consisting of three vertices in the

vertex-list. The program then reads in the input, creates the data structures to store

the vertex, edge and face information given in the input triangulation. Then the

program proceeds to generate control points (polar values) associated with each tri-

angular face, and store the control points and their geometric information necessary

for the algorithm in another data structure. The xforms library is then used to pro-

vide a canvas with the input triangulation and its associated control points drawn.

At the next step, either the user directs the prescription of the set of control points

specified according the algorithm, or, in the case where the template triangulation

is too large, the control points are prescribed automatically. We will look at this

automatic method of prescribing control points in a bit more detail later. Notice that

although some control points need not be prescribed in the sense that they do not af-

fect continuity constraints, e.g. the ear points, in the reality of generating a surface,

those control points need to have values. Therefore they need to be prescribed as

well. Propagation is then carried out to compute all remaining control points. Once

all control points have values, the program proceeds to subdivide to an appropriate
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“smooth” level. Then the resulting surface is displayed in OpenGL.

7.2 Data structures

There are five main components of the data structure:

1. the vertex list

2. the edge list

3. the face list

4. the control points (polar values) list

5. the control nets tree

The first three are set up when the input template triangulation is read. The

control points list is built up a bit later, and the control nets tree is built up for the

purpose of recursive subdivision.

7.2.1 The vertex list

This is a doubly-linked list that is used to store all information about the vertices of

the template triangulation. Each struct in the link list contains a double array of

size 2, in which the two-dimensional coordinates of that particular vertex are stored

as they are read in by the program. Also, a double array of size 3, in which the three-

dimensional coordinates of the control point associated with that particular vertex
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is also present, as well as many flags for debugging and other purposes. A wealth

of other geometric information regarding that particular control point is also stored,

as its adjacent edges, its star, if a corner point, its two incidental edges, if an inner

point, the number of adjacent edges, and the number of adjacent faces. ID vnum is

also asigned to each vertex, for debugging identification.

struct tVertexStructure {

double v[2]; /* 2d coords of template vertex */

double v3d[3]; /* 3d coords of corresponding

control point in space */

int vnum; /* vertex ID */

bool mark; /* T iff point processed. */

int degfree; /* color index for drawing */

bool onboundary;

bool onborder;

bool isstar;

bool isinner;

bool isflip;

tEdge edges[2]; /* incident edges if inner */

tEdge staredges[6];/* star edges if corner */

tVertex star[6]; /* star vertices if corner */

tVertex starv; /* corner vertex if star vertex */

double angle;

int adjenum; /* number of adjacent edges */
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int adjfnum; /* number of adjacent faces */

tVertex next, prev;

};

7.2.2 The edge list

The edge list stores information about the edges in much the same way as the vertex

list does, with a doubly-linked list. Each edge is pointed to by its two end points,

which are both pointers to vertex structs. Adjacent faces are computed and stored

with pointers to face structs in the face list, which we will talk about later. Edges

are stored only one time, and are single directional, which means,
−→
ab is considered the

same as
−→
ba, and an edge is consider to go from endpts[0] to endpts[1]. 0 is used to

reference the left adjacent face and 1 for the right. The 0 left/1 right convention is

used throughout the program. The edge list is reorganized so that the 0th adjacent

face will always be on the left side of the edge. The edge points associated with that

particular edge are also stored.

endpts[0] endpts[1]

adjface[0]

adjface[1]

apex[1]

apex[0]

edgev[0] edgev[1] edgev[2] edgev[3]

Figure 7.1: Structure of an edge
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struct tEdgeStructure {

tFace adjface[2]; /* two adjacent faces*/

tVertex endpts[2]; /* two end points */

bool onborder;

bool falseonb; /* flag no longer used */

double length; /* length of the edge. */

tVertex apex[2]; /* the opposite vertices

of adjacent faces */

tVertex edgev[DEG-1]; /* the edge points associated

with this edge */

int id; /* edge ID */

bool dir;

int adjfacenum; /* number of adjacent faces */

tEdge next, prev;

};

7.2.3 The face list

The face list is also a doubly-linked list. As all faces are triangles, each face is

described by three pointers to its three vertices, and three pointers to its three edges.

The datastructure is so organized that all vertices are stored in counterclockwise

order, and the 0th edge is the edge that goes from the 0th vertex to the 1st. The

three angles of the face are also computed and stored. angle[i] is the angle on the ith

vertex (Figure 7.2). Each face is again assigned an unique ID id. The inner points
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associated with that particular face are stored, so are all control points associated

with the patch.

vertex[0]

vertex[1] vertex[2]

edge[0]

edge[1]

edge[2]

facev[0]

facev[1] facev[2]

facev[3] facev[4] facev[5]

vs[0][0][5]

vs[0][5][0] vs[5][0][0]angle[1]

Figure 7.2: Structure of a Face.

struct tFaceStructure {

tEdge edge[3]; /* adjacent edges */

tVertex vertex[3]; /* adjacent vertices */

tVertex facev[(DEG-2)*(DEG-1)/2]; /* inner points */

tVertex vs[DEG][DEG][DEG]; /* all control

points on the face */

double angle[3]; /* angles formed by the

edges of the face */

int id; /* face ID */

tFace next, prev;

};
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7.2.4 The control point list

The structure of this list is identical to that of a vertex list, using the same struct,

except that this keeps track of all the control points the program generates based on

the given degrees of the patches. Since the corner points are already stored in the

vertex list, they are not stored in the control points list again. Therefore the control

points list stores all edge points and inner points.

7.2.5 The control net tree

This is the data structure used to facilitate the recursive subdivision version of the

de Casteljau algorithm for evaluation of a polynomial surface. It is basically a tree

of doubly linked lists. Each linked list represents a control net. A typical struct in

this tree is as follows:

struct tPointStructure{

double coords[3]; /* 3D coords of the control point */

double weight; /* weight for rational */

int id;

tPoint net; /* pointer to a linked list of

a sub control net */

tPoint next, prev;

};
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The subdivision method is the de Casteljau algorithm used to recursively subdive

a triangular surface patch into subpatches, to obtain a triangulation of a surface

with is a good approximation of the actual surface. Four calls to the standard de

Casteljau are used on each patch at each level. It is basically a translation from the

Mathematica implementation given by Gallier in [Gal00b]. For more information on

the subdivision routines, please refer to Chapter 8 of [Gal00b].

7.3 Automatic prescription method

On large surfaces with many patches, it gets rather tedious to manually prescribe

all control points required for proper propagation and subdivision. Given a template

triangulation, it is often the case that there exists a three-dimensional mesh based

on that triangulation. The mesh can come from scanned data or sampling, etc. In

the case that no such mesh exists, it is also easy to simply “raise” the template

triangulation by providing a z coordinate for each vertex in the template. Such a

mesh then provides us with the necessary coordinates for all of the corner points.

What remains is a way to set the rest of the control points via software.

We have developed an automatic method to prescribe control points for each patch

based on the values (coordinates) of the three corner points. We employ the same

scheme that assigns a first approximation of control points based on vertices of each

triangular face on a triangulated mesh, see Subsection 6.2.4. We blend using the

three given corner-point coordinates. This method generates surfaces that are fair

approximations to the original mesh given. The prescribed non-corner control points
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are a weighted average of the corner points, and therefore the resulting surface after

propagation is an approximation of the original mesh given. Any desired changes to

the shape can then be carried out through local modifications and repropagation in

the local vicinity.

7.4 Mouse control

To facilitate easy shape modification, we have also implemented mouse-controlled

picking/dragging of a control point. Mouse picking is implemented via standard

OpenGL built-in selection. Once the new location of the control point being modified

is determined, necessary propagations will be carried out based on the changes, and

the resulting surface will be displayed.

7.5 Linux platform

The entire implementation has been ported from SGI O2s running IRIX 6.5 to PCs

running Redhat Linux. The SGI openGL library has been replaced with the open-

source MESA GL library. The xforms library has support for the Linux platform.

Since the original implementation was written in C, portability is of no issue there.

No major change is made during porting, only those necessary to accommodate the

minor differences between the operating systems and their respective implementation

of the libraries.
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7.6 Test results

The largest test case so far is a Delaunay triangulation with one hole and consists

of 1000 triangles. All algorithmic computations have no visible delay. They are

done in real time with no preprocessing. The bulk of the processing time is spent

on subdivision (varies depending on depth) and final display of the surface (varies

depending on hardware).
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Chapter 8

Conclusions and Future Work

We have developed new incremental algorithms with local control for the design of

triangular spline surfaces. Continuity of C1 (possibly C2) can be guaranteed for

open surfaces, and our adaptation to G1/AG1 handles closed surfaces based on a

triangulated polyhedron.

8.1 C1 on open triangular mesh with parameteri-

zation

We have given a detailed summary on our C1 method in Section 4.4, therefore we

will only give a brief review here.

We have investigated the problem of polarizing triangular spline surfaces with

built-in continuity constraints and proposed a new way of approaching the problem.

Our algorithm’s strength lies in its simplicity and local control ability. Possible di-

rections for extending this method is C2 continuity and interpolation. Preliminary
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work on both have been carried out.

8.2 AGk on closed triangulated polyhedra

We have formally defined (triangulated) polyhedron-based spline surfaces. From

there, we have also defined Gk continuity for spline surfaces on a polyhedron, which

we call AGk-continuous. Based on these definitions and our previous work, we have

proposed a new way of fitting G1 closed surfaces of arbitrary topology. It is an ex-

tension of our work on C1 open surfaces over planar domain. A majority of the C1

characteristics will carry over, for example, local control and ease of adaptation to

interpolation.

8.2.1 Pseudo-AG1 surfaces

In our attempt to adapt our C1 algorithm to generate an AG1 surface, we discovered

that the constraints of AG1 do not allow enough freedom to guarantee a local method.

In favor of local control, we relax the continuity constraints further to pseudo-AG1

surfaces. Pseudo-AG1 surfaces are AG1 surfaces that are not edge-consistent. That

is, we have allowed the edges to differ from the vertex regions in terms of continuity

conditions.

This way, we were able to achieve a local algorithm very much like our C1 algo-

rithm, even with the same propagation directions. The high local flexibility of our C1

algorithm also carries over, as well as the fast and easy computations of control-point

propagations.
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Due to the freedom in the choice of the reparameterization maps both for the

corner-point regions and across the edge diamonds, we have problems with undula-

tions, which result in creases and folds in the final surface. Local and global fairing

methods are still being researched.

8.2.2 Interpolation

Similar to what we have seen in the C1 case, our method also leaves ample freedom

for adaptation to interpolation. However, again, undulations caused by the possible

“tilting” of affine frames are also valid worries here. In this case there might be more

severe “tilting” as we start from non-planar domain, i.e., a polyhedron in space. It

has become clear in the course of our research that a good fairing method is needed,

and future efforts should be well spent there.

8.3 Fairing methods

The problem of unwanted “undulations” has appeared in both our C1 and AG1 work,

with it being much more noticeable in the latter case. Faring methods, global, local or

most likely both, needed to be introduced. However, it is not clearly which approach

will be most effective, or if any would bring notable improvement in the final surface

shape quality. Further research into areas such as surface optimization and discrete

geometry might bring insights.
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[Ber90] Marcel Berger. Géométrie 1. Nathan, 1990. English edition: Geometry

1, Universitext, Springer Verlag.

[BLZ00] H. Biermann, A. Levin, and D. Zorin. Piecewise smooth subdivision

surfaces with normal control. In SIGGRAPH ’00 Conference Proceedings,

Annual Conference Series, pages 113–119. ACM SIGGRAPH, 2000.

[Bre93] Glen E Bredon. Topology and Geometry. GTM No. 139. Springer Verlag,

first edition, 1993.

151



[CDM91] A.S. Cavaretta, W. Dahmen, and C.A. Micchelli. Stationary subdivision.

Memoirs American Mathematical Society, 93:1–186, 1991.

[CJ78] E. Catmull and Clark J. Recursively generated B-spline surfaces on arbi-

trary topological meshes. Computer Aided Design, 10(6):350–355, 1978.

[dC86] Paul de Faget de Casteljau. Shape Mathematics and CAD. Hermes, first

edition, 1986.

[DeR85] T. DeRose. Geometric Continuity: A Parametrization Independent Mea-

sure of Continuity for CAGD. PhD thesis, University of California at

Berkeley, Berkeley, CA, 1985. Dissertation.

[Doo78] D. Doo. A subdivision algorithm for smoothing down irregularly shaped

polyhedrons. In Proceedings on Interactive Techniques in Computer Aided

Design, pages 157–165, 1978.

[DRKT98] T. De Rose, M. Kass, and T. Truong. Subdivision surfaces in character

animation. In SIGGRAPH ’98 Conference Proceedings, Annual Confer-

ence Series, pages 85–94. ACM SIGGRAPH, 1998.

[DS78] D. Doo and M. Sabin. Analysis of the behavior of recursive division

surfaces near extraordinary points. Computer Aided Design, 10(6):356–

360, 1978.

[DS90] W.H. Du and F. Schmitt. On the G1 continuity of piecewise Bézier sur-
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