Rational Synthesis

Dana Fisman
Orna Kupferman and Yoad Lustig
Introduction to Formal Verification of Reactive Systems

Rational Synthesis

Dana Fisman
Orna Kupferman
Yoad Lustig

Some Concepts from Game Theory
What are reactive systems?

- Let's start with what they are **not**...

Processing...

Input

- **Arithmetic problems:**
 - **Input:** x, y.
 - **Output:** x+y.

- **Decision problems:**
 - **Input:** Graph G, two vertices s and t.
 - **Output:** Is vertex t reachable from s?.

Output

- **Compilers:**
 - **Input:** source code.
 - **Output:** machine code.
What are reactive systems?

Transformational Systems

Processing ...

Input → Output

Elevator

Reactive Systems

Processing ...

Input → Output

System → Outer world/Environment
A Simple Reactive System: An Elevator

- The **elevator** moves among the floors, stops at certain floors and open/closes doors
- in **response** to the buttons pressed within the elevator and at the different floors
What are reactive systems?

Reactive Systems

Input → Processing → Output

Operating system
Web browser
Mail client
Elevator
ATM machine
Cellular phone

Outer world/Environment
A Simple Reactive System: An Elevator

- The *elevator* moves among the floors, stops at certain floors and open/closes doors
- in *response* to the buttons pressed within the elevator and at the different floors
A Simple Reactive System: An Elevator

- The elevator moves among the floors, stops at certain floors and open/closes doors in response to the buttons pressed within the elevator and at the different floors.

How do we reason about such systems?

There is no point in time where we can stop and ask whether the system behaved correctly.
Specification:

- If the button i was pressed then the elevator eventually stops at the i^{th} floor.

$\text{always } (\text{pressed}_j \rightarrow \text{eventually } (\text{at}_j \land \text{door_open})))$
A Simple Reactive System: An Elevator

- Specification:

 1. If the button \(i \) was pressed then the elevator eventually stops at the \(i \)th floor.

 2. If button \(j \) was pressed before button \(k \) and the elevator is now at floor \(i \) and \(i < j < k \) then the elevator will stop at the \(j \)th floor before it stops at the \(k \)th floor.

Such specifications are conveniently phrased using Temporal Logic.
Verification

Finite state machine (transducer) \(\equiv \) Temporal logic

Both are defined over the corresponding inputs and outputs.
A computation of S defines an infinite word

$\begin{align*}
i_0 & \circ o_0 \\
i_1 & \circ o_1 \\
i_2 & \circ o_2 \\
i_3 & \circ o_3 \\
\vdots &
\end{align*}$

The system S defines a set of infinite words $L(S)$

A formula φ holds/does not hold on such an infinite word

$\begin{align*}
i_0 & \circ o_0 \\
i_1 & \circ o_1 \\
i_2 & \circ o_2 \\
i_3 & \circ o_3 \\
\vdots &
\end{align*}$

The formula φ defines the set of infinite words $L(\varphi)$
Model Checking

\[S \models \varphi \]

The computations of \(S \) \(\subseteq \) The models of \(\varphi \)
Model Checking

The automata theoretic approach \cite{WVS83,VW94}:

- Complexity (LTL): time polynomial in the size of the system, exponential in the size of the formula.

\[
S \cap A_S \cap A_{\neg \varphi} = \emptyset
\]
Model Checking

The automata theoretic approach

- **Complexity (LTL):** time polynomial in the size of the system, exponential in the size of the formula.

A word (computation) witnessing the non-emptiness provides a counter example.

\[S \cap A_{\neg \varphi} = \emptyset \]
The automata theoretic approach \cite{WVS83,VW94}:

Use automata over \textit{infinite} words
Synthesis

- The automatic construction of a system out of its specification.
- The system should produce correct outputs in response to every possible sequence of inputs!!!
- If such a system exists we say that it realizes the specification.
- If no such system exists the specification is unrealizable.
Synthesis

- The automatic construction of a system out of its specification.

- The system should produce correct outputs in response to every possible sequence of inputs.

Why bother to build a system and only then verify it?

Can't one automatically build a system that is correct by construction?

If such a system exists we say that it realizes the specification.

If no such system exists the specification is unrealizable.
Representing the realizing system

- We can represent a system by full tree whose
 - directions are the inputs
 - nodes are labeled by outputs

- Each path of the tree corresponds to a possible sequence of inputs, and the respective output responses

- If there exists such a tree where the formula holds on all paths then the formula is realizable.
Synthesis

- Suppose we have an infinite tree satisfying the specification
- Who says there is a finite transducer implementing this tree?
Synthesis can also be seen as a game between the system and the environment:

- The system makes a move then the environment and so on.
- The system's objective is to satisfy the specification. The environment's objective is the opposite.
The specification is **realizable** if there is a **winning strategy** for the system.

- As it means the system can cope with **any input sequence**

Results in the theory of ω-regular games guarantee that if there is a **winning strategy** - there is one with **finite memory**.

- A strategy with **finite memory** is a **transducer**
Synthesis

The automata theoretic approach:

- Complexity (LTL): doubly-exponential time in the size of the formula.

\[A_{\forall \varphi} \text{ accepts all trees all of whose (infinite) paths satisfy } \varphi \]

\[\phi \]

A tree \(T \) witnessing the non-emptiness of \(A_{\forall \varphi} \) defines a transducer implementing \(\varphi \).

\[A_{\forall \varphi} = \emptyset \]
Synthesis Limitations

- What do you do when the specification is unrealizable?
 - Either refine the specification.
 - Or pose limitations/requirements on the environment.
Rational Synthesis

Dana Fisman
Orna Kupferman
Yoad Lustig
Synthesis - weakness of standard approach

- Modern systems often interact with other systems

- The standard approach abstracts the way in which the environment is composed of its underlying agents.

- The actions of the agents fall into the universally quantified input signals, and there is an implicit assumption that the system should satisfy its specification no matter how the agents behave.

- As if the agents conspire to fail the system - (hostile env.)
Synthesis - weakness of standard approach

Our question is: Can system synthesizers capitalize on the rationality and goals of other agents interacting with the system?

- In real life, however, many times agents have goals of their own, other than to fail the system.
- The approach taken in the field of algorithmic game theory is to assume that agents interacting with a computational system are rational, i.e., agents act to achieve their own goals.
In real life, however, many times agents have goals of their own, other than to fail the system.

The approach taken in the field of algorithmic game theory is to assume that agents interacting with a computational system are rational, i.e., agents act to achieve their own goals.
Peer-to-peer network (2 agents)

- Each agent is interested in downloading, but has no incentive to upload.
- An agent can download only if the other agent uploads.
Peer-to-peer network (2 agents)

- Formally, for each $i \in \{Alice, Bob\}$, Agent i controls the bits
 - u_i - Agent i tries to upload
 - d_i - Agent i tries to download.
- The objective of Alice is always eventually $(d_{Alice} \land u_{Bob})$.

Property is not realizable since it poses requirements on the inputs.
 peer-to-peer example

- Assume Alice declares and follows the following strategy (known as tit-for-tat)
 - I will upload at the first time step
 $$u_{Alice}(0) := True$$
 - And from that point onward I will reciprocate the actions of Bob.
 $$u_{Alice}(k) := u_{Bob}(k-1)$$
- Against this strategy, Bob can only ensure his objective by satisfying Alice’s objective as well.
- Thus, assuming Bob acts rationally, Alice can ensure her objective.
Assume Alice declares and follows the following strategy (known as tit-for-tat):

- I will upload at the first time step: $u_A(0) := \text{True}$
- And from that point onward I will reciprocate the actions of Bob: $u_A(k) := u_B(k-1)$

Against this strategy, Bob can only ensure his objective by satisfying Alice's objective as well.

Thus, a synthesizer can capitalize on the rationality of agents involved!
We would like to *generate a protocol for the system* and each of the *agents* such that

- If all follow the protocol, the *system’s speciation is met*.

and

- The *agents have no incentive to deviate from the protocol* (assuming they are rational)
Rationality

- How can one formally define rationality?
- What does it mean that an agent has no incentive to deviate from the protocol?
- Such questions are studied in game theory, and algorithmic mechanism design.
Overview

- Introduction to formal verification
 - Reactive systems
 - Verification
 - Synthesis

- Rational Synthesis
 - What we want (roughly)
 - Some concepts from game theory
 - Rational Synthesis formal definition
 - How to solve the rational synthesis problem
Games

- A game arena is a tuple

\[G = \langle V, v_0, I, (\Sigma_i)_{i \in I}, (\Gamma_i)_{i \in I}, \delta \rangle \]
Games

- A game arena is a tuple

\[G = \langle V, v_0, I, (\Sigma_i)_{i \in I}, (\Gamma_i)_{i \in I}, \delta \rangle \]
A game arena is a tuple

\[G = \langle V, v_0, I, (\Sigma_i)_{i \in I}, (\Gamma_i)_{i \in I}, \delta \rangle \]
A game arena is a tuple

\[G = \langle V, v_0, I, (\Sigma_i)_{i \in I}, (\Gamma_i)_{i \in I}, \delta \rangle \]
A game arena is a tuple

\[G = \langle V, v_0, I, (\Sigma_i)_{i \in I}, (\Gamma_i)_{i \in I}, \delta \rangle \]

Let \(I = \{1, \ldots, n\} \).

Transition Relation \(\delta: V \times \Sigma_1 \times \cdots \Sigma_n \rightarrow V \)

c2 Pawn: 2 steps
A game arena is a tuple

\[G = \langle V, v_0, I, (\Sigma_i)_{i \in I}, (\Gamma_i)_{i \in I}, \delta \rangle \]

\[\Gamma_i : V \rightarrow 2^{\Sigma_i} \text{ specifies the allowed actions for Player } i \text{ at each node} \]

 Pawn a can move
 Pawn b can move
 ...
 Knight b can move
 Knight g can move
A game arena is a tuple

\[G = \langle V, v_0, I, (\Sigma_i)_{i \in I}, (\Gamma_i)_{i \in I}, \delta \rangle \]

\(\Gamma_i : V \rightarrow 2^{\Sigma_i} \) specifies the allowed actions for Player i at each node

Pawn a can move

Pawn b can move

\ldots

Knight b can move

Knight g can move
Strategies and related notions

- A strategy of agent i: a rule determining which action to take in each possible situation
 \[\pi_i: \{\text{situations}\} \rightarrow \{\text{actions}\}. \]

- A set of strategies, one per each agent is termed a strategy profile $\pi = (\pi_1, \ldots, \pi_n)$

- A strategy profile determines the outcome of the game (when all players follow their assigned strategy)
Strategies and related notions

- With each outcome there is an associated **payoff** for each of the agents. The **payoff** is usually a real number which the player aims to maximize.

- In our setting the **goals** are **temporal specifications**, so the **payoff** is **1** if the specification is met and **0** otherwise.

- A strategy profile $\pi = (\pi_1, \ldots, \pi_n)$ is termed a **solution concept**, if the players have **no incentive** to deviate from π.

- Roughly speaking, they will not deviate if a **deviating does not increase** their payoff. Let see some specifics....
Objectives of each player is to visit infinitely often a node label by his initial.
Solution Concepts - DS

- A **dominant strategy** π_i^* is a strategy that a player can never lose by adhering to, regardless of the strategies of the other players.

- A strategy profile $\pi = (\pi_1, \ldots, \pi_n)$ is in **dominant strategies equilibrium** if each strategy π_i is a dominant strategy.
Indeed, in many games not all agents have a dominant strategy, and so a dominant strategy equilibrium may not exists.
Profile \(\pi = (\pi_1, \ldots, \pi_n) \) is a **Nash equilibrium** if for every player \(i \) strategy \(\pi_i \) is the best response of player \(i \) to the strategies \((\pi_j)_{j \neq i} \) of the other player.

In other words, \(\pi = (\pi_1, \ldots, \pi_n) \) is a **Nash equilibrium** if a player gains nothings by unilaterally deviating from \(\pi \).
Nash equilibrium exists in almost every game.
Nash equilibrium - Another Example

- It is **irrational** for Bob to stick to his strategy if Alice has deviated from hers!

- Nash **propels nothing** on the case where agents deviate from their strategy!
Solution Concepts - SPE

- $\pi=(\pi_1,\ldots,\pi_n)$ is in **subgame-perfect equilibrium (SPE)** if it forms a **Nash equilibrium** from every possible history (including those non-reachable by π).
SPE equilibrium - Example

<table>
<thead>
<tr>
<th>Player</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>a_2</td>
</tr>
<tr>
<td>Bob</td>
<td>b_2</td>
</tr>
<tr>
<td>Charlie</td>
<td>c_2</td>
</tr>
</tbody>
</table>

Strategy Profile

Diagram:
- Alice: a_2 → c_1, a_2 → c_2
- Bob: b_2 → a_1, b_2 → a_2
- Charlie: c_2 → b_1, c_2 → b_2
Overview

- Introduction to formal verification
 - Reactive systems
 - Verification
 - Synthesis

- Rational Synthesis
 - What we want (roughly)
 - Some concepts from game theory
 - Rational Synthesis formal definition
 - How to solve the rational synthesis problem
Rational Synthesis Problem

- Given LTL formulas $\psi, \varphi_1, \varphi_2, \ldots, \varphi_n$ (specifying the objectives of the system and the other agents) and a solution concept γ (DS, Nash, SPE, or other)

- Return a strategy profile $\pi = (\pi_0, \pi_1, \ldots, \pi_n)$ in the induced game G such that both
 - $\text{outcome}(\pi) \models \psi$
 - the strategy profile (π_1, \ldots, π_n) is a solution with respect to the solution concept γ, in the game G_{π_0} induced by the system adhering to π_0.

If such exists...
Rational Synthesis Problem

- If exists such a profile we say that the specification
 \[\psi, \varphi_1, \varphi_2, \ldots, \varphi_n \]
 is **rationally-realizable** with respect to solution concept \(\gamma \)

- Otherwise we say it is
 rationally-irrealizable

(with respect to solution concept \(\gamma \))
Solution Idea

- We can represent a profile of strategies by strategy-profile trees (next slides)
- We can check that the profile of strategies meets the requirements imposed by rational synthesis using tree automata

\[\psi, \phi_1, \phi_2, ..., \phi_n, \gamma \]

\[\emptyset = \emptyset \]
Strategy Tree - Standard Approach
Strategy-Profile Tree

For Alice: and Bob:

- **Labeling:** Strategies' advice
- **Branching:** Actions taken

Player Actions

<table>
<thead>
<tr>
<th>Player</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>a, A</td>
</tr>
<tr>
<td>Bob</td>
<td>b, B</td>
</tr>
</tbody>
</table>

A single obedient path
Starting to Solve

- **Using tree automata** we can check for example that
 - φ holds on the single obedient path.
 - ψ_i holds on every path in which only player i deviated from his strategy and all other players adhere to this strategy.
 - and so on

- **Given a tree automaton (TA) A_1 and TA A_2** we can build the TA $A_1 \cap A_2$ accepting $L(A_1) \cap L(A_2)$
 - and so on

- In this way we can obtain a **tree automaton** accepting only the strategy profiles we seek for

- **An emptiness check** will provide us with a desired strategy profile
Towards a generic solution

- **Strategy Logic** [CHP07] is a logic that treats strategies in games as explicit first-order objects.

- Can express: DS and Nash
 Cannot express: SPE.

- In order to express SPE we enhance it with first order variables that range over arbitrary histories of the game.
Extended Strategy Logic (ESL)

ESL Syntax:

\[\Phi ::= \psi(z) \mid \psi(z; h) \mid \Phi \lor \Phi \mid \neg \Phi \mid \exists z_i. \Phi \mid \exists h. \Phi \]

- \(\psi(z) \) – the LTL formula \(\psi \) holds on the single path where all players follow their strategy in \(z=(z_1,\ldots,z_n) \).
- \(\psi(z,h) \) – the LTL formula \(\psi \) holds on the single path where starting when history \(h \) ends all players follow their strategies in \(z=(z_1,\ldots,z_n) \).
- \(\exists z_i. \Phi \) – there exists a strategy \(z_i \) such that \(\Phi(\ldots,z_i,\ldots) \) holds.
- \(\exists h. \Phi \) – there exists a history \(h \) such that \(\Phi(\ldots,h,\ldots) \) holds.
Expressing Solution Concepts

- Expressing that \(y=(y_1,...,y_n) \) is a DS, Nash or SPE with respect to \(I \) and \(\varphi_1, \varphi_2, ..., \varphi_n \)

- We express the solution to the rational synthesis problem given \(\gamma_2 \) \{DS, Nash, SPE\}

\[
\psi^{ds} := \bigwedge_{i \in I} \forall z. (\varphi_i(z) \rightarrow \varphi_i(z_{-i}, y_i))
\]

\[
\psi^{nash} := \bigwedge_{i \in I} \forall z_i. (\varphi_i(y_{-i}, z_i) \rightarrow \varphi_i(y))
\]

\[
\psi^{spe} := \bigwedge_{i \in I} \forall h. (\varphi_i(h) \rightarrow \varphi_i(y_i, h))
\]

All players adhere to \(y_i \) except for player \(i \) which adheres to \(z_i \)
Expressing the solution to the rational synthesis problem given $\gamma \in \{DS, Nash, SPE\}$

$$\Phi^\gamma := \exists (y_i)_{i \in I} . (\varphi_0((y_i)_{i \in I}) \land \psi^\gamma((y_i)_{i \in I}))$$
Generic Solution = Reduction to ESL

- We have phrased the problem of rational synthesis in ESL.

- If we can determine ESL – that is, given a formula in ESL,
 - answer whether it is satisfiable,
 - and if it is, find a satisfying assignment.

- Then, given a rational synthesis problem \(\psi \phi_1 \phi_2 \ldots \phi_n \gamma \)
 we can in this manner answer
 - whether it is rationally-realizable,
 - and if it is, provide a desired strategy profile \(\pi_0 \pi_1 \pi_2 \ldots \pi_n \)
 as an answer.
How do we extend Strategy Logic to deal with arbitrary histories?

A formula $\psi(z,h)$ stipulates that ψ should hold along the path that starts at the root of the tree, goes through h and then follows the profile z.

Thus, adding history variables to strategy logic results in a memoryful logic [KV06].

- The construction there involves a satellite implementing the subset construction of this automaton.

Here we use instead strategy-history trees, defined next.
A single path whose **prefix** follows the **history** and whose **suffix** follows the **strategy**.
The tree automaton A_Ψ for $[\Psi]$ is defined by induction on the structure of Ψ.

\[\Psi ::= \psi(z) \mid \psi(z; h) \mid \Psi \lor \Psi \mid \neg \Psi \mid \exists z_i. \Psi \mid \exists h. \Psi \]

We can build a tree automaton that checks that φ holds on the respective path.
The tree automaton A_Ψ for $[\Psi]$ is defined by induction on the structure of Ψ.

$\Psi ::= \psi(z) \mid \psi(z; h) \mid \Psi \lor \Psi \mid \neg \Psi \mid \exists z_i \cdot \Psi \mid \exists h \cdot \Psi$

A_1 and A_2

A s.t.

$L(A) = L(A_1) \cup L(A_2)$

$|A| = |A_1| + |A_2|$
ESL Decidability

- The tree automaton A_{Ψ} for $[\Psi]$ is defined by induction on the structure of Ψ.

$$\Psi ::= \psi(z) \mid \psi(z; h) \mid \Psi \lor \Psi \mid \neg \Psi \mid \exists z_i. \Psi \mid \exists h. \Psi$$

We can build a tree automaton A' over an alphabet $\Gamma \times \Gamma'$ that checks that φ holds on the respective path A over an alphabet $\Gamma \times \Gamma'$.

$L(A') = L(A)|_{\Gamma'}$

$|A'| = 2^{|A| \cdot k}$
The tree automaton A_Ψ for $[\Psi]$ is defined by induction on the structure of Ψ.

$\Psi ::= \psi(z) \mid \psi(z; h) \mid \Psi \lor \Psi \mid \neg \Psi \mid \exists z_i. \Psi \mid \exists h. \Psi$

We can build a tree automaton A' such that checks the formula Ψ holds on the respective path.
ESL Decidability

- The tree automaton A_Ψ for $[\Psi]$ is defined by induction on the structure of Ψ.

$$\Psi ::= \psi(z) \mid \psi(z; h) \mid \Psi \lor \Psi \mid \neg \Psi \mid \exists z. \Psi \mid \forall h. \Psi$$

We can build a tree automaton that checks that φ holds on the respective path A over an alphabet $\Gamma \times \Gamma'$.

A' over alphabet Γ such that

$$L(A') = L(A)|_{\Gamma'}$$

$$|A'| = 2^{|A| \cdot k}$$
Theorem

Let Ψ be an ESL formula over a game G. Let d be the alternation depth of Ψ.

We can construct an APT A_Ψ accepting $[\Psi]_G$ whose emptiness can be checked in time $(d+1)$-EXPTIME in $|\Psi|$.
Rational Synthesis

Theorem

The LTL rational-synthesis problem is 2EXPTIME-complete for the solution concepts of

- dominant strategies,
- Nash equilibrium, and
- subgame-perfect equilibrium.

Same complexity as traditional LTL synthesis.
Conclusion

- Defined & solved synthesis that considers an environment composed of rational agents.

- Can salvage non realizable specifications. We do NOT limit the environment. Instead, we capitalize on the environment goals and rationality!

- Complexity: 2EXPTIME-complete (as standard synthesis).

- We didn’t see: an extension for multi-valued setting.
Discussion

- A limitation of our work is that it assumes a fixed number of players, the specification for each of them is known.

- It is desirable to extend it to a parameterized setting, where the number of players can vary and the specification is parameterized.
Questions?

Thank you for your attention!

Dana Fisman
Orna Kupferman and Yoad Lustig
The End

Thank you!