Semantic Structural Evaluation for Text Simplification

Elior Sulem, Omri Abend and Ari Rappoport

The Hebrew University of Jerusalem

4th Usage-Based Linguistics Conference - July 2018

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Semantic Structural Evaluation for Text Simplification

Elior Sulem

Omri Abend

Ari Rappoport

Based on a paper published in NAACL 2018.

Semantic Structural Evaluation for Text Simplification

Elior Sulem, Omri Abend and Ari Rappoport

Proc. of NAACL 2018

Last year I read the book John authored — John wrote a book. I read the book.

Original sentence

One or several simpler sentences

Reduces the complexity of the sentence while retaining its meaning.

Simplified Texts and Comprehension

Evidence that simplified texts can improve reading comprehension.

e.g., Mason & Kendall (1979); L'Allier (1980); Beck et al. (1991); Anderson & Davison (1988)

- Word substitutions
- Sentence splitting
- Making discourse relations explicit
- Information in cause-effect order

Various Target Populations:

- Non-native speakers (e.g., Siddharthan et al., 2002)
- **Deafness** (e.g., Robbins and Hatcher, 1981)
- Aphasia (e.g., Caroll et al., 1999)
- **Dyslexia** (e.g., Rello et al., 2013)

- Natural Language Processing Applications:
 - Machine translation (e.g., Mishra et al., 2014)
 - **Parsing** (e.g., Chandrasekar et al., 1996)
 - Relation extraction (e.g., Niklaus et al., 2016)

Two types of Simplification

Automatic text simplification (rule-based or corpus-based):

word substitution, sentence splitting and deletion.

Two types of Simplification

All the previous evaluation approaches targeted lexical simplification.

Here: the first automatic evaluation measure for structural simplification.

Overview

- 1. Current Text Simplification Evaluation
- 2. A New Measure for Structural Simplification

SAMSA (Simplification Automatic Measure through Semantic Annotation)

- 2.1. SAMSA properties
- 2.2 The semantic structures
- 2.3 SAMSA computation
- 3. Human Evaluation Benchmark
- 4. Correlation Analysis with Human Evaluation
- 5. Conclusion

Main automatic metrics

BLEU, Panineni et al., 2002

SARI, Xu et al., 2016

Reference-based

The output is compared to one or multiple references

Focus on lexical aspects
 Based on n-gram overlapping

N-gram overlapping

Candidate: Mary went to school. 1-gram matches: 1

Reference: John went home.

2-gram matches: 0

N-gram overlapping

Candidate: John went to school. 1-gram matches: 2

Reference: John went home.

2-gram matches: 1

Main automatic metrics

BLEU, Panineni et al., 2002

SARI, Xu et al., 2016

Reference-based

Many possible simplifications for a given sentence

➡ Focus on lexical aspects

Do not take into account structural aspects

A New Measure for Structural Simplification

SAMSA

Simplification Automatic evaluation Measure

through Semantic Annotation

SAMSA Properties

- Measures the preservation of the sentence-level semantics
- Measures structural simplicity
- No reference simplifications
- Fully automatic
- Semantic parsing only on the source side

SAMSA Properties

Example:

John arrived home and gave Mary a call. (input)

John arrived home. John called Mary. (output)

Assumption:

In an ideal simplification each event is placed in a different sentence.

Fits with existing practices in Text Simplification.

(Glavaš and Štajner, 2013; Narayan and Gardent, 2014)

score

SAMSA Properties

Example:

John arrived home and gave Mary a call. (input)

John arrived home. John called Mary. (output)

→ score

SAMSA focuses on the core semantic components of the sentence, and is tolerant to the deletion of other units.

Semantic Annotation: UCCA (Abend and Rappoport, 2013)

- Based on typological and cognitive theories

(Dixon, 2010, 2012; Langacker, 2008)

Semantic Annotation: UCCA (Abend and Rappoport, 2013)

- Stable across translations (Sulem, Abend and Rappoport, 2015)
- Used for the evaluation of MT and GEC (Birch et al., 2016; Choshen and Abend, 2018)

Semantic Annotation: UCCA (Abend and Rappoport, 2013)

- Explicitly annotates semantic distinctions, abstracting away from syntax (like AMR; Banarescu et al., 2013)
- Unlike AMR, semantic units are directly anchored in the text.

Semantic Annotation: UCCA (Abend and Rappoport, 2013)

- UCCA parsing (Hershcovich et al., 2017, 2018)

TUPA parser – learning on a manually-annotated corpus

Semantic Annotation: UCCA (Abend and Rappoport, 2013)

- Scenes evoked by a Main Relation (Process or State).

Semantic Annotation: UCCA (Abend and Rappoport, 2013)

- A Scene may contain one or several Participants.

Semantic Annotation: UCCA (Abend and Rappoport, 2013)

- A Scene can provide additional information on an established entity: it is then an **Elaborator Scene**.

Parallel Scene (H)

Participant (A) Process (P) State (S)

Center (C) Elaborator (E) Relator (R)

Semantic Annotation: UCCA (Abend and Rappoport, 2013)

- A Scene may also be a Participant in another Scene:

It is then a **Participant Scene**.

Parallel Scene (H) Linker (L)

Participant (A) Process (P)

Semantic Annotation: UCCA (Abend and Rappoport, 2013)

- In the other cases, Scenes are annotated as Parallel Scenes.

A Linker may be included.

Example:

John arrived home John gave Mary a call (input Scenes) John arrived home. John called Mary. (output sentences)

- 1. Match each Scene to a sentence.
- 2. Give a score to each Scene assessing its meaning preservation in the aligned sentence.
 - Evaluated through the preservation of its main semantic components.
- 3. Average the scores and penalize non-splitting.

Scene to Sentence Matching:

- A word alignment tool is used (Sultan et al., 2014) for aligning a Scene to the candidate sentences.
 - \rightarrow Each word is aligned to 1 or 0 words in the candidate sentence.
- To each Scene we match the sentence for which the highest number of word alignments is obtained.
- If there are more sentences than Scenes, a score of zero is assigned.

Suppose the Scene Sc is matched to the sentence Sen:

$$Score_{Sen}(Sc) = \frac{1}{2}(Score_{Sen}(MR) + \frac{1}{K}\sum_{i=1}^{K}Score_{Sen}(Par_{k}))$$

MR - **Minimal center** of the Main Relation (Process / State) Par_{k} - **Minimal center** of the kth Participant

$$Score_{Sen}(u) = \begin{cases} 1 & u \text{ is aligned to a word in } Sen \\ 0 & \text{otherwise} \end{cases}$$

- Average over the input Scenes
- Non-splitting penalty: $\frac{n_{out}}{n_{inp}}$ Number of output sentences Number of input Scenes

We also experiment with SAMSA_{abl}, without non-splitting penalty.

Example:

John arrived home and gave Mary a call. (input)

John arrived home. John called Mary. (output)

Example:

(Sc1) John arrived home. (Sc2) John gave Mary a call. (Scene input)

(S1) John arrived home. (S2) John called Mary. (output sentences)

Example:

(Sc1) John arrived home. (Sc2) John gave Mary a call. (input Scenes)

(S1) John arrived home. (S2) John called Mary. (output sentences)

Sc1 is matched to S1.

Sc2 is matched to S2.

Scene-to-Sentence Matching

Example:

 $(Sc1) [John]_{A} [arrived]_{P} [home]_{A}$. (Sc2) John gave Mary a call.

(S1) John arrived home. (S2) John called Mary.

$$Score_{S1}(Sc 1) = \frac{1}{2}(Score_{S1}(MR) + \frac{1}{K}\sum_{i=1}^{K}Score_{S1}(Par_k))$$
$$Score_{S1}(Sc 1) = \frac{1}{2}(1 + \frac{1}{2}(1 + 1)) = 1$$

Scene scoring

Example:

(Sc1) John arrived home. (Sc2) $[John]_A [gave_F]_P - [Mary]_A [a_E call_C]_P$.

(S1) John arrived home. (S2) John called Mary.

$$Score_{S2}(Sc\,2) = \frac{1}{2}(Score_{S2}(MR) + \frac{1}{K}\sum_{i=1}^{K}Score_{S2}(Par_{k}))$$
$$Score_{S2}(Sc\,2) = \frac{1}{2}(1 + \frac{1}{2}(1 + 1)) = 1$$

Scene scoring

Example:

John arrived home and gave Mary a call. (input)

John arrived home. John called Mary. (output)

 $SAMSA(input, output) = (\frac{2}{2}) \times (\frac{1}{2}) \times (Score_{S1}(Sc1) + Score_{S2}(Sc2))$ SAMSA(input, output) = 1

→ Average and Non-Splitting Penalty

SAMSA(input, output) = 1

Human Evaluation Benchmark

- 5 annotators

- 100 source sentences (PWKP test set)
- 6 Simplification systems + Simple corpus
- 4 Questions for each input-output pair (1 to 3 scale):
 - Qa Is the output grammatical?
 - Qb Does the output add information, compared to the input?
 - Qc Does the output remove important information, compared to the input?
 - Qd Is the output simpler than the input, ignoring the complexity of the words?
- Parameters: -Grammaticality (G)
 -Meaning Preservation (P)
 -Structural Simplicity (S)

Human Evaluation Benchmark

- 5 annotators

- 100 source sentences (PWKP test set)
- 6 Simplification systems + Simple corpus
- 4 Questions for each input-output pair (1 to 3 scale):
 - Qa Is the output grammatical?
 - Qb Does the output add information, compared to the input?
 - Qc Does the output remove important information, compared to the input?
 - Qd Is the output simpler than the input, ignoring the complexity of the words?

AvgHuman =
$$\frac{1}{3}$$
 (G+P+S)

Human scores available at: https://github.com/eliorsulem/SAMSA

	Reference-less				Reference- based		
	SAMSA Semi-Aut.	SAMSA Aut.	SAMSA _{abl} Semi-Aut.	SAMSA _{abl} Aut.	BLEU	SARI	Sent. with Splits
G	0.54	0.37	0.14	0.14	0.09	-0.77	0.09
Р	-0.09	-0.37	0.54	0.54	0.37	-0.14	-0.49
S	0.54	0.71	-0.71	-0.71	-0.60	-0.43	0.83
AvgHuman	0.58	0.35	0.09	0.09	0.06	-0.81	0.14

Spearman's correlation **at the system level** of the metric scores with the human evaluation scores, considering the output of the **6 simplification systems**

- G Grammaticality, P Meaning Preservation, S Strucutral Simplicity
- → **SAMSA** obtained the **best correlation for AvgHuman**.
- **SAMSA**_{abl} obtained the **best correlation for Meaning Preservation**.

	Reference-less				Reference- based		
	SAMSA Semi-Aut.	SAMSA Aut.	SAMSA _{abl} Semi-Aut.	SAMSA _{abl} Aut.	BLEU	SARI	Sent. with Splits
G	0.54	0.37	0.14	0.14	0.09	-0.77	0.09
Р	-0.09	-0.37	0.54	0.54	0.37	-0.14	-0.49
S	0.54	0.71	-0.71	-0.71	-0.60	-0.43	0.83
AvgHuman	0.58	0.35	0.09	0.09	0.06	-0.81	0.14

Spearman's correlation **at the system level** of the metric scores with the human evaluation scores, considering the output of the **6 simplification systems**

- G Grammaticality, P Meaning Preservation, S Strucutral Simplicity
- → **SAMSA** is ranked second and third for **Simplicity**.
- When resctricted to multi-Scene sentences, SAMSA Semi-Aut. has a correlation of 0.89 (p=0.009). For Sent. with Splits, it is 0.77 (p=0.04).

	Reference-less				Reference- based		
	SAMSA Semi-Aut.	SAMSA Aut.	SAMSA _{abl} Semi-Aut.	SAMSA _{abl} Aut.	BLEU	SARI	Sent. with Splits
G	0.54	0.37	0.14	0.14	0.09	-0.77	0.09
Р	-0.09	-0.37	0.54	0.54	0.37	-0.14	-0.49
S	0.54	0.71	-0.71	-0.71	-0.60	-0.43	0.83
AvgHuman	0.58	0.35	0.09	0.09	0.06	-0.81	0.14

Spearman's correlation **at the system level** of the metric scores with the human evaluation scores, considering the output of the **6 simplification systems**

G – Grammaticality, P – Meaning Preservation, S – Strucutral Simplicity

High similarity between the Semi-Automatic and the Automatic implementations.
 For SAMSA_{abl}, the ranking is the same.

	Reference-less				Reference- based		
	SAMSA Semi-Aut.	SAMSA Aut.	SAMSA _{abl} Semi-Aut.	SAMSA _{abl} Aut.	BLEU	SARI	Sent. with Splits
G	0.54	0.37	0.14	0.14	0.09	-0.77	0.09
Р	-0.09	-0.37	0.54	0.54	0.37	-0.14	-0.49
S	0.54	0.71	-0.71	-0.71	-0.60	-0.43	0.83
AvgHuman	0.58	0.35	0.09	0.09	0.06	-0.81	0.14

Spearman's correlation **at the system level** of the metric scores with the human evaluation scores, considering the output of the **6 simplification systems**

- G Grammaticality, P Meaning Preservation, S Strucutral Simplicity
- → Low and negative correlations for BLEU and SARI.

Correlation with Existing Benchmark

QATS task (Štajner et al., 2016)

Pearson Correlation with the Overall Human Score:

- Semi-automatic and automatic SAMSA rank 3rd and 4th (0.32 and 0.28), out of 15 measures.
- Surpassed by the best performing systems by a small margin (0.33 and 0.34).

Although: - We did **not use training data** (human scores)

- SAMSA focuses on structural simplicity.

Conclusion

- We proposed SAMSA, the first structure-aware measure for Text Simplification.
- SAMSA explicitly targets the **structural component** of Text Simplification.
- SAMSA gets substantial correlations with human evaluation.
- Existing measures fail to correlate with human judgments when structural simplification is performed.

Future Work

- SAMSA can be used for **tuning** Text Simplification systems.
- Semantic decomposition with UCCA can be used for improving Text Simplification (Sulem, Abend and Rappoport, ACL 2018).
- SAMSA can be extended to **other Text-to-Text generation tasks** as paraphrasing, sentence compression, or fusion.
- SAMSA could be also useful in a more targeted Text Simplification.

Elior Sulem

Code and Data: https://github.com/eliorsulem/SAMSA

Second Benchmark: https://github.com/eliorsulem/simplification-acl2018

eliors@cs.huji.ac.il

www.cs.huji.ac.il/~eliors

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

