
Using Multiresolution Learning for Transfer in Image Classification
Eric Eaton,  Marie desJardins, and John Stevenson

University of Maryland Baltimore County, CSEE Dept.

{ericeaton, mariedj, johns3}@umbc.edu

Abstract
Our work explores the transfer of knowledge at multiple levels of 

abstraction to improve learning. By exploiting the similarities 

between objects at various levels of detail, multiresolution 

learning can facilitate transfer between image classification 

tasks.

We extract features from images at multiple levels of resolution, 

then use these features to create models at different resolutions. 

Upon receiving a new task, the closest-matching stored model 

can be generalized (adapted to the appropriate resolution) and 

transferred to the new task.
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Each classifier in the 

ensemble focuses on 

one resolution of data.

Predictions y0 ,…, yr-1

are combined using a 

linear discriminant or 

SVM

The Multiresolution Ensemble

Multiple resolutions are 

extracted by the Multi-scale 

or Multi-band method.
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The standard machine learning classifier is equivalent to c0.
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Transfer with the MR Ensemble
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Determine 

optimal transfer 

point via cross-

validation.

Transfer only the 

lower-resolution 

portion.

The higher-

resolution 

portion is 

trained 

only on 

new data.

The lower-resolution 

portion is trained using 

the transferred knowledge 

and the new data.

Results on the Caltech Image Datasets:
Transfer from Motorbikes to Car-side using Multi-band

Multiresolution Classifier

0.4

0.5

0.6

0.7

0.8

1 10 100

Number of Training Instances

P
re

d
ic

ti
v
e 

A
cc

u
ra

cy

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100

N u mb e r  o f  t r a in in g  in s t a n c e s

Multiresolution - no transfer Multiresolution - with transfer

Baseline - no transfer Baseline - with transfer
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Multiresolution 

without transfer.

The multiresolution 

ensemble appears to 

do better overall.

Multiresolution 

with transfer.

Single-Resolution Classifier
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Baseline (highest resolution only) 

with transfer does poorly.

A priori shows how 

the system does on 

Car-side having seen 

only Motorbikes.

Transfer appears most effective when 

there is a dearth of training data.
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Multi-scale Feature Extraction

There are r resolutions.  

We use r = 8.
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The scale-space pyramid represents 

the image at multiple resolutions.

Source Image
Per-Band Feature 

Extraction MR Data

. . .
. . .

Each band corresponds to 

features of a different size.
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Multi-band Feature Extraction
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The per-band feature data is 

computed as part of Serre et al.’s 

(2005) feature extraction algorithm.

Main Idea

• Related objects have features that appear similar at lower resolutions.

• Low-resolution knowledge can transfer to related objects.

• High-resolution knowledge helps to differentiate between objects.
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