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Introduction

We developed an autonomous framework that uses unsupervised
manifold alignment to learn inter-task mappings and effectively transfer
samples between different task domains. Our results demonstrate the
success of our approach for transfer between highly dissimilar control
tasks (e.g., from cart-poles to quadrotors), and show that transfer
quality is positively correlated with manifold alignment quality.

Motivation:

• Transfer learning enables rapid training of a control policy for a
new target task by reusing knowledge from other source tasks.

• In the case of multiple task domain, an inter-task mapping � is
needed to map knowledge between tasks.

– � maps state-action-next-state triplets from the source task
to the target task, which can be used for policy initialization.

Background: Reinforcement Learning

Reinforcement Learning (RL) problems are formalized as Markov Deci-
sion Processes (MDPs): hS, A, P0, P, ri, where

• S 2 Rd is the state space
• A 2 Rm is the action space
• P0 is the initial state distribution
• P : S ⇥ A ⇥ S ! [0, 1] is the

transition probability function
• r : S ⇥A⇥ S ! R is the reward

function.
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Goal: Learn an optimal policy ⇡? : S ! A that maximizes the total
discounted reward.

Background: Policy Gradient RL

In Policy Gradient (PG) methods, the policy is parameterized by ✓ 2 Rd

and a vector of state features �. The goal is to maximize
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Z
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P(st+1|st, at)⇡(at|st)  Probability of trajectory

R(⌧ ) =
1

H
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r(st+1, at, st)  Reward of trajectory

Problem: PG suffers from high computational and sample complexities.

Unsupervised Manifold Alignment for Learning the Inter-Task Mapping �S
Phase I: Learning the inter-task mapping �S via unsupervised manifold alignment

1. Sample a.) optimal trajectories from the source task using ⇡?
(S) and b.) random trajectories from the target task.

2. Flatten all trajectories and construct a k-NN graph to capture the local geometry of the states in both the source and target tasks.

3. Identify a shared representation between the source and target tasks that captures local state transition dynamics by optimizing
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where the W ’s are the weighted adjacency matrices, s are the states, the ↵’s are the projections into the shared latent space, and the
superscripts or subscripts of (S) and (T ) denote whether these variables correspond to the source or target task, respectively.

4. The inter-task mapping �S = ↵T+
(T )↵

T
(S)[·].

Phase II: Initialize the target task’s policy via transfer

1. Sample initial target states s(T )
0 ⇠ P(T )

0 .

2. Project initial target states s(T )
0 to the source task via �S .

3. Execute ⇡?
(S) from these projected states, yielding optimal

trajectories ⌧̃(S).

4. Transfer optimal source trajectories ⌧̃(S) to the target task via �+
S ,

yielding target trajectories ⌧̃(T ).

5. Initialize target task policy ⇡(T ) from ⌧̃(T ), yielding ✓(0)
(T ).

Improve ⇡(T ) using standard policy gradient methods.

Phase I:  Learn cross-domain mapping 
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Phase II:  Cross-domain transfer via  �S
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Selected Results of Transfer Between Different Dynamical Systems

Cart-Pole to 3-link Cart-Pole
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Cart-Pole to Quadrotor
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Predicting Success of Cross-Domain Transfer

• Transfer quality (k✓tr�✓?k2) is positive correlated with
manifold alignment quality (Procrustes measure).

• Manifold alignment quality may indicate when our
approach to cross-domain transfer is likely to succeed.
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Unsupervised manifold alignment enables robust cross-domain transfer between highly dissimilar tasks
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