

Unsupervised Cross-Domain Transfer in Policy Gradient Reinforcement Learning via Manifold Alignment Haitham Bou Ammar

Introduction

We developed an autonomous framework that uses unsupervised manifold alignment to learn inter-task mappings and effectively transfer samples between different task domains. Our results demonstrate the success of our approach for transfer between highly dissimilar control tasks (e.g., from cart-poles to quadrotors), and show that transfer quality is positively correlated with manifold alignment quality.

Motivation:

- Transfer learning enables rapid training of a control policy for a new target task by reusing knowledge from other source tasks.
- In the case of multiple task domain, an **inter-task mapping** χ is needed to map knowledge between tasks.

 $-\chi$ maps state-action-next-state triplets from the source task to the target task, which can be used for policy initialization.

Background: Reinforcement Learning

Reinforcement Learning (RL) problems are formalized as Markov Decision Processes (MDPs): $\langle S, A, \mathcal{P}_0, \mathcal{P}, r \rangle$, where

- $\mathcal{S} \in \mathbb{R}^d$ is the state space
- $\mathcal{A} \in \mathbb{R}^m$ is the action space
- \mathcal{P}_0 is the initial state distribution
- \mathcal{P} : $\mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0,1]$ is the transition probability function

• $r: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$ is the reward function.

Goal: Learn an optimal policy $\pi^* : \mathcal{S} \to \mathcal{A}$ that maximizes the total discounted reward.

Background: Policy Gradient RL

In Policy Gradient (PG) methods, the policy is parameterized by $\boldsymbol{\theta} \in \mathbb{R}^d$ and a vector of state features $\boldsymbol{\Phi}$. The goal is to maximize

$$\mathcal{J}(\boldsymbol{\theta}) = \int_{\mathbb{T}} p_{\boldsymbol{\theta}}(\boldsymbol{\tau}) \mathcal{R}(\boldsymbol{\tau}) d\boldsymbol{\tau}$$
, where

$$p_{\boldsymbol{\theta}}(\boldsymbol{\tau}) = \mathcal{P}_0(\boldsymbol{s}_1) \prod_{t=1}^{H} \mathcal{P}(\boldsymbol{s}_{t+1} | \boldsymbol{s}_t, \boldsymbol{a}_t) \pi(\boldsymbol{a}_t | \boldsymbol{s}_t) \quad \leftarrow \text{Probability}$$

$$\mathcal{R}(\boldsymbol{\tau}) = \frac{1}{H} \sum_{t=1}^{H} r(\boldsymbol{s}_{t+1}, \boldsymbol{a}_t, \boldsymbol{s}_t) \qquad \leftarrow \text{Reward of}$$

Problem: PG suffers from high computational and sample complexities.

Univ. Pennsylvania

Eric Eaton

ty of trajectory

of trajectory

- trajectories $\tilde{\boldsymbol{\tau}}_{(S)}$.
- yielding target trajectories $\tilde{\tau}_{(T)}$.

Unsupervised manifold alignment enables robust cross-domain transfer between highly dissimilar tasks

Acknowledgements: This research was supported in part by ONR grant #N00014-11-1-0139, AFOSR grant #FA8750-14-1-0069, and NSF grant IIS-1149917.

$$(S_{j\star} - \boldsymbol{\alpha}_{(T)}^{\mathsf{T}} \boldsymbol{s}_{j}^{(T)})^2 \boldsymbol{W}_{i,j} + 0.5 \sum_{i,j} \left(\boldsymbol{\alpha}_{(S)}^{\mathsf{T}} \boldsymbol{s}_{i}^{(S)_{\star}} - \boldsymbol{\alpha}_{(S)}^{\mathsf{T}} \boldsymbol{s}_{j}^{(S)} \right)^2 \boldsymbol{W}_{\mathcal{S}}^{i,j}$$