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Summary	  
We	  developed	  a	  lifelong	  policy	  gradient	  learner	  that	  operates	  in	  an	  
adversarial	  se>ng	  to	  learn	  mul?ple	  tasks	  online	  while	  enforcing	  safety	  
constraints	  on	  the	  learned	  policies.	  	  
	  

•  Fully	  online	  learning	  of	  mul?ple,	  consecu?ve	  RL	  tasks	  
•  Ensures	  “safe”	  policies	  by	  respec?ng	  safety	  constraints	  
•  Exhibits	  sublinear	  regret	  for	  lifelong	  policy	  search	  
•  Validated	  on	  benchmark	  dynamical	  systems	  and	  quadrotor	  control	  

Mo8va8ons	  
1.	  	  Reuse	  knowledge	  from	  previously	  learned	  tasks	  to	  accelerate	  the	  

learning	  of	  new	  control	  policies	  
	  à	  Lifelong	  RL	  to	  learn	  mul?ple,	  consecu?ve	  tasks	  online	  
	  à	  Exhibit	  vanishing	  regrets	  

2.	  	  Robo?c	  control	  policies	  must	  obey	  safety	  constraints	  	  
	  (e.g.,	  prevent	  damage	  to	  the	  robot	  and	  	  
	  	  environment,	  avoid	  catastrophic	  failure)	  
	  à	  Incorporate	  constraints	  directly	  	  
	  	  	  	  	  	  into	  the	  op?miza?on	  

Background:	  	  Policy	  Gradient	  (PG)	  Methods	  
•  Agent	  interacts	  with	  environment,	  taking	  consecu?ve	  ac?ons	  
•  PG	  methods	  support	  con?nuous	  state	  and	  ac?on	  spaces	  
-  Have	  shown	  recent	  success	  in	  applica?ons	  to	  robo?c	  control	  

	  

	  

Goal:	  find	  policy	  	  	  	  	  	  	  	  that	  minimizes	  	  

probability	  of	  trajectory	  	   cost	  of	  trajectory	  
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Background:	  Online	  Learning	  &	  Regret	  Analysis	  
Regret	  Minimiza8on	  Game:	  	  Each	  round	  j = 1 ... R,	  	  

a.)	  agent	  chooses	  a	  predic?on	  	  	  	  	  	  ,	  and	  	  	  	  	  	  
b.)	  environment	  (i.e.,	  the	  adversary)	  chooses	  a	  loss	  func?on	  	  

	  

Goal:	  minimize	  cumula?ve	  regret	  (modified	  for	  mul?-‐task	  case)	  
	  
	  
	  

Solve	  via	  “Follow	  the	  Regularized	  Leader”:	  
1.)	  Find	  	  	  	  	  	  	  via	  unconstrained	  op?miza?on	  over	  accumulated	  losses	  
2.)	  Project	  	  	  	  	  	  onto	  the	  constraint	  set	  via	  Bregman	  projec?ons	  	  
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Lifelong	  Learning	  Framework	  
	  

Lifelong	  Learning	  System	  

1.)	  Tasks	  are	  received	  	  
consecu?vely	  

learned	  tasks	  from	  previous	  rounds	   future	  learning	  rounds	  

...	   ...	  tj tj-‐1	  tj-‐2	  tj-‐3	   tj+1	   tj+2	   tj+3	  

trajectories	  
for	  task	  tj!

previously	  learned	  
knowledge	  L 

learned	  policy	  	  

2.)	  Knowledge	  is	  	  
transferred	  from	  	  
previously	  	  
learned	  tasks	  

3.)	  New	  
knowledge	  	  
is	  stored	  for	  
future	  use	  

4.)	  Exis?ng	  
knowledge	  	  
is	  refined	  

current	  round	  j!
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Each	  task	  has	  associated	  
safety	  constraints	  
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Safe	  Lifelong	  Policy	  Search	  
Mul8-‐task	  Op8miza8on	  Problem	  a]er	  observing	  r	  rounds:	  
	  
	  
	  
	  
	  
Online	  Formula8on	  
•  Let	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  be	  the	  vector	  of	  all	  parameters	  
•  The	  MTL	  objec?ve	  can	  be	  wri_en	  online	  as	  

	  	  	  	  	  	  where	  the	  loss	  for	  task	  tj	  is	  the	  following	  bilinear	  product	  in	  	  	  	  :	  
	  
	  
	  
	  
	  
	  
	  

Online	  Solu8on	  	  
Step	  1:	  	  Unconstrained	  policy	  op?miza?on	  via	  alterna?ng	  op?miza?on	  

over	  L	  and	  S	  to	  yield	  unconstrained	  solu?on	  
Step	  2:	  	  Project	  	  	  	  	  	  	  	  	  	  	  to	  the	  constraint	  set	  via	  the	  Bregman	  divergence	  

over	  	  	  	  	  	  	  	  —	  involves	  solving	  2nd	  order	  cone	  and	  semi-‐definite	  programs	  
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Main	  Theore8cal	  Result	  
We	  prove	  that	  the	  safe	  lifelong	  policy	  search	  algorithm	  has	  sublinear	  
regret	  of	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  in	  the	  total	  number	  of	  rounds	  R.	  O(

p
R)
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Algorithm 1 Safe Online Lifelong Policy Search
1: Inputs: Total number of rounds R, weighting factor

⌘ =

1/
p
R, regularization parameters µ

1

and µ
2

, con-
straints p and q, number of latent basis vectors k.

2: S = zeros(k, |T |), L = diagk(⇣) with p  ⇣2  q
3: for j = 1 to R do
4: tj  sampleTask(), and update Ij
5: Compute unconstrained solution ˜

✓j+1

(Sect. 4.1)
6: Fix S and C, and update L (Sect. 4.2.1)
7: Use updated L to derive S and C (Sect. 4.2.2)
8: end for
9: Output: Safety-constrained L and S
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4.2.2. SECOND-ORDER CONE PROGRAM FOR
LEARNING TASK PROJECTIONS

Having determined L, we can acquire S and update C

by solving a second-order cone program (Boyd & Vanden-
berghe, 2004) of the following form:
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5. Theoretical Guarantees
This section quantifies the performance of our approach by
providing formal analysis of the regret after R rounds. We
show that the safe lifelong reinforcement learner exhibits
sublinear regret in the total number of rounds. Formally,
we prove the following theorem:
Theorem 1 (Sublinear Regret). After R rounds and choos-
ing 8tj 2 IR ⌘tj = ⌘ =

1p
R

, L
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diagk(·) being a diagonal matrix among the k columns of

L, p  ⇣2  q, and S
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= 0k⇥|T |, the safe lifelong rein-

forcement learner exhibits sublinear regret of the form:
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Proof Roadmap: The remainder of this section completes
our proof of Theorem 1; further details are given in Ap-
pendix B. We assume linear losses for all tasks in the con-
strained case in accordance with Sect. 4.2. Although linear

losses for policy search RL are too restrictive given a single
operating point, as discussed previously, we remedy this
problem by generalizing to the case of piece-wise linear
losses, where the linearization operating point is a resultant
of the optimization problem. To bound the regret, we need
to bound the dual Euclidean norm (which is the same as the
Euclidean norm) of the gradient of the loss function, then
prove Theorem 1 by bounding: (1) task tj’s gradient loss
(Sect. 5.1), and (2) linearized losses with respect to L and
S (Sect. 5.2).

5.1. Bounding tj’s Gradient Loss

We start by stating essential lemmas for Theorem 1; due to
space constraints, proofs for all lemmas are available in the
supplementary material. Here, we bound the gradient of a
loss function ltj (✓) at round r under Gaussian policies3.
Assumption 1. We assume that the policy for a task tj is
Gaussian, the action set U is bounded by u
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, and the
feature set is upper-bounded by �
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5.2. Bounding Linearized Losses

As discussed previously, we linearize the loss of task tr
around the constraint solution of the previous round ˆ

✓r. To
acquire the regret bounds in Theorem 1, the next step is to

bound the dual norm,
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3Please note that derivations for other forms of log-concave
policy distributions could be derived in similar manner. In this
work, we focus on Gaussian policies since they cover a broad
spectrum of real-world applications.
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Experimental	  Results	  
	  

Learn	  policies	  for	  consecu?ve	  control	  tasks	  on	  three	  types	  of	  systems	  
	  
	  
	  
	  
	  
Superior	  Performance	  over	  standard	  PG	  and	  the	  lifelong	  learner	  PG-‐ELLA	  
	  
	  
	  
	  
	  
	  
	  
Enforces	  the	  Given	  Safety	  Constraints,	  unlike	  alterna?ve	  methods	  
	  
	  
	  
	  
	  
	  
	  

•  Note	  that	  our	  approach	  immediately	  projects	  policies	  to	  safe	  regions	  
even	  during	  the	  policy	  search	  process,	  unlike	  other	  methods	  
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6. Experimental Validation
To validate the empirical performance of our method, we
applied our safe online PG algorithm to learn multiple con-
secutive control tasks on three dynamical systems (Fig-
ure 1). To generate multiple tasks, we varied the parameter-
ization of each system, yielding a set of control tasks from
each domain with varying dynamics. The optimal control
policies for these systems vary widely with only minor
changes in the system parameters, providing substantial di-
versity among the tasks within a single domain.

Figure 1. Dynamical systems used in the experiments: a) simple
mass system (left), b) cart-pole (middle), and c) quadrotor un-
manned aerial vehicle (right).

Simple Mass Spring Damper: The simple mass (SM)
system is characterized by three parameters: the spring con-
stant k in N/m, the damping constant d in Ns/m and the
mass m in kg. The system’s state is given by the position x

and ˙

x of the mass, which varies according to a linear force
F . The goal is to train a policy for controlling the mass in
a specific state gref = hxref, ˙xrefi.
Cart Pole: The cart-pole (CP) has been used extensively
as a benchmark for evaluating RL methods (Busoniu et al.,
2010). CP dynamics are characterized by the cart’s mass
mc in kg, the pole’s mass mp in kg, the pole’s length in
meters, and a damping parameter d in Ns/m. The state is
given by the cart’s position x and velocity ˙

x, as well as the
pole’s angle ✓ and angular velocity ˙

✓. The goal is to train a
policy that controls the pole in an upright position.

6.1. Experimental Protocol
We generated 10 tasks for each domain by varying the sys-
tem parameters to ensure a variety of tasks with diverse op-

timal policies, including those with highly chaotic dynam-
ics that are difficult to control. We ran each experiment for
a total of R rounds, varying from 150 for the simple mass
to 10, 000 for the quadrotor to train L and S, as well as
for updating the PG-ELLA and PG models. At each round
j, the learner observed a task tj through 50 trajectories of
150 steps and updated L and stj . The dimensionality k of
the latent space was chosen independently for each domain
via cross-validation over 3 tasks, and the learning step size
for each task domain was determined by a line search after
gathering 10 trajectories of length 150. We used eNAC, a
standard PG algorithm, as the base learner.

We compared our approach to both standard PG (i.e.,
eNAC) and PG-ELLA (Bou Ammar et al., 2014), examin-
ing both the constrained and unconstrained variants of our
algorithm. We also varied the number of iterations in our al-
ternating optimization from 10 to 100 to evaluate the effect
of these inner iterations on the performance, as shown in
Figures 2 and 3. For the two MTL algorithms (our approach
and PG-ELLA), the policy parameters for each task tj were
initialized using the learned basis (i.e., ↵tj = Lstj ). We
configured PG-ELLA as described by Bou Ammar et al.
(2014), ensuring a fair comparison. For the standard PG
learner, we provided additional trajectories in order to en-
sure a fair comparison, as described below.

For the experiments with policy constraints, we generated
a set of constraints (At, bt) for each task that restricted the
policy parameters to pre-specified “safe” regions, as shown
in Figures 2(c) and 2(d). We also tested different values for
the constraints on L, varying p and q between 0.1 to 10;
our approach showed robustness against this broad range,
yielding similar average cost performance.

6.2. Results on Benchmark Systems
Figure 2 reports our results on the benchmark simple mass
and cart-pole systems. Figures 2(a) and 2(b) depicts the
performance of the learned policy in a lifelong learning set-
ting over consecutive unconstrained tasks, averaged over
all 10 systems over 100 different initial conditions. These
results demonstrate that our approach is capable of outper-
forming both standard PG (which was provided with 50
additional trajectories each iteration to ensure a more fair
comparison) and PG-ELLA, both in terms of initial perfor-
mance and learning speed. These figures also show that the
performance of our method increases as it is given more
alternating iterations per-round for fitting L and S.

We evaluated the ability of these methods to respect safety
constraints, as shown in Figures 2(c) and 2(d). The thicker
black lines in each figure depict the allowable “safe” region
of the policy space. To enable online learning per-task, the
same task tj was observed on each round and the shared
basis L and coefficients stj were updated using alternating
optimization. We then plotted the change in the policy pa-

Cart	  Pole	  Simple	  Mass	   Quadrotor	  
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 3. Performance on quadrotor control.
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 3. Performance on quadrotor control.
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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