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ABSTRACT
Lifelong machine learning methods acquire knowledge over a series

of consecutive tasks, continually building upon their experience.

Current lifelong learning algorithms rely upon a single learning

agent that has centralized access to all data. In this paper, we extend

the idea of lifelong learning from a single agent to a network of

multiple agents that collectively learn a series of tasks. Each agent

faces some (potentially unique) set of tasks; the key idea is that

knowledge learned from these tasks may benefit other agents try-

ing to learn different (but related) tasks. Our Collective Lifelong

Learning Algorithm (CoLLA) provides an efficient way for a net-

work of agents to share their learned knowledge in a distributed

and decentralized manner, while eliminating the need to share lo-

cally observed data. We provide theoretical guarantees for robust

performance of the algorithm and empirically demonstrate that

CoLLA outperforms existing approaches for distributed multi-task

learning on a variety of datasets.
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1 INTRODUCTION
Collective knowledge acquisition is common throughout different

societies, from the collaborative advancement of human knowledge

to the emergent behavior of ant colonies [15]. It is the product of

individual agents, each with their own interests and constraints,

sharing and accumulating learned knowledge over time in uncer-

tain environments. Our work explores this scenario within machine

learning and in particular, considers learning in a network of life-

long machine learning agents.
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Recent work in lifelong machine learning [9, 27, 29] has explored

the notion of a single agent accumulating knowledge over its life-

time. Such an individual lifelong learning agent reuses knowledge

from previous tasks to improve its learning on new tasks, accumu-

lating an internal repository of knowledge over time. This lifelong

learning process improves performance over all tasks, and permits

the design of adaptive agents that are capable of learning in dy-

namic environments. Although current work in lifelong learning

focuses on a single learning agent that incrementally perceives all

task data, many real-world applications involve scenarios in which

multiple agents must collectively learn a series of tasks that are

distributed among them. Consider the following cases:

• Multi-modal task data could only be partially accessible by

each learning agent. For example, financial decision support

agents may have access only to a single data view of tasks

or a portion of the non-stationary data distribution [12].

• Local data processing can be inevitable in some applications,

such as when health care regulations prevent personal med-

ical data from being shared between learning systems [39].

• Data communication may be costly or time consuming. For

instance, home service robots must process perceptions lo-

cally due to the volume of perceptual data, or wearable de-

vices may have limited communication bandwidth [14].

• As a result of data size or the geographical distribution of

data centers, parallel processing can be essential. Modern

big data systems often necessitates parallel processing in the

cloud across multiple virtual agents, i.e., CPUs or GPUs [40].

Inspired by the above scenarios, this paper explores the idea of

multi-agent lifelong learning. We consider multiple collaborating

lifelong learning agents, each facing their own series of tasks, that

transfer knowledge to collectively improve task performance and

increase learning speed. Existing methods in the literature have

mostly investigated special cases of this setting for distributed

multi-task learning (MTL) [7, 14, 26].

To develop multi-agent distributed lifelong learning, we follow

a parametric approach and formulate the learning problem as an

onlineMTL optimization over a network of agents. Each agent seeks

to learn parametric models for its own series of (potentially unique)

tasks. The network topology imposes communication constraints

among the agents. For each agent, the corresponding task model

parameters are represented as a task-specific sparse combination of



atoms of its local knowledge base [16, 23, 27]. The local knowledge

bases allow for knowledge transfer to the future tasks for each

individual agent. The agents share their knowledge bases with

their neighbors, update them to incorporate the learned knowledge

representations of their neighboring agents, and come to a local

consensus. We use the Alternating Direction Method of Multipliers

(ADMM) algorithm [4] to solve this global optimization problem in

an online distributed setting; our approach decouples this problem

into local optimization problems that are individually solved by the

agents. ADMM allows for transferring the learned local knowledge

bases without sharing the specific learned model parameters among

neighboring agents. Although our approach eliminates the need

for the agents to share local models and data, note that this paper

does not address the privacy considerations that may arise from

transferring knowledge between agents. Also, despite potential

extensions to parallel processing systems, our focus here is on

collaborative agents that receive consecutive tasks.

We call our approach the Collective Lifelong Learning Algorithm
(CoLLA). We provide a theoretical analysis of CoLLA’s convergence

and empirically validate the algorithm on variety of datasets.

2 RELATEDWORK
This paper considers scenarios where multiple lifelong learning

agents learn a series of tasks distributed among them. Each agent

shares high-level information with its neighboring agents, while

processing data privately. Our approach draws upon various sub-

fields of machine learning, which we briefly survey below.

Multi-Task andLifelong Learning: Multi-task learning (MTL)

[5] seeks to share knowledge among multiple related tasks. Com-

pared to single-task learning (STL), MTL increases generalization

performance and reduces the data requirements for learning. One

major challenge in MTL is modeling task similarities to selectively

transfer information between tasks [5]. If this process identifies

incorrect task relationships, sharing knowledge can degrade per-

formance through negative transfer. Various techniques have been

developed to model task relations, including modeling a task dis-

tance metric [3], using correlations to determine when transfer is

appropriate [34], and regularizing task parameters [1]. An effective

parametric approach is to group similar tasks by assuming that

task parameters can be represented sparsely in a shared dictionary

that forms a latent basis over the model parameter space. Then,

by imposing sparsity on the task-specific parameters, similar tasks

can be grouped together for knowledge transfer, with the learned

dictionary modeling the task relations [16]. Upon learning the dic-

tionary, similar tasks would share a subset of dictionary columns,

which helps to avoid negative transfer.

Lifelong learning is closely related to online MTL, in which an

agent learns tasks consecutively. To improve learning performance

on each new task, the agent transfers knowledge obtained from

the previous tasks [25], and then stores new or revised knowledge

for future use. Ruvolo and Eaton [27] extended the MTL method

proposed by Kumar and Daume III [16] to a lifelong learning setting,

creating an efficient algorithm for lifelong learning. Our approach

is partially based upon their formulation, which serves as the foun-

dation to develop our novel collective lifelong learning framework.

Note that unlike our work, most prior MTL and lifelong learning

work consider the case where all tasks are accessible by a single

agent in a centralized scheme.

DistributedMachine Learning: There has been a growing in-

terest in developing scalable learning algorithms using distributed

optimization [41], motivated by the emergence of big data [6], se-

curity and privacy constraints [38], and the notion of cooperative

and collaborative learning agents [8]. Distributed machine learning

allows multiple agents to collaboratively mine information from

large-scale data. The majority of these settings are graph-based,

where each node in the graph represents a portion of data or an

agent. Communication channels between the agents then can be

modeled via edges in the graph. Some approaches assume there is a

central server (or a group of server nodes) in the network, and the

worker agents transmit locally learned information to the server(s),

which then perform knowledge fusion [36]. Other approaches as-

sume that processing power is distributed among the agents, which

exchange information with their neighbors during the learning

process [7]. We formulate our problem in the latter setting, as it

is less restrictive. Following the dominant paradigm of distributed

optimization, we also assume that the agents are synchronized.

These methods formulate learning as an optimization problem

over the network and use distributed optimization techniques to

acquire the global solution. Various techniques have been explored,

including stochastic gradient descent [36], proximal gradients [18],

and ADMM [36]. Within the ADMM framework, it is assumed that

the objective function over the network can be decoupled into a sum

of independent local functions for each node (usually risk functions)

[21], constrained by the network topology. Through a number of

iterations on primal and dual variables of the Lagrangian function,

each node solves a local optimization, and then through informa-

tion exchange, constraints imposed by the network are realized by

updating the dual variable. In scenarios where maximizing a cost

for some agents translates to minimizing the cost for others (e.g.,

adversarial games), game-theoretical notions are used to define a

global optimal state for the agents [19].

Distributed Multi-task Learning: Although it seems natural

to consider MTL agents that collaborate on related tasks, most prior

distributed learning work focuses on the setting where all agents

try to learn a single task. Only recently have MTL scenarios been

investigated where the tasks are distributed [2, 14, 20, 22, 33, 35].

In such a setting, data must not be transferred to a central node

because of communication and privacy/security constraints. Only

the learned models or high-level information can be exchanged

by neighboring agents. Distributed MTL has also been explored in

reinforcement learning settings [10], where the focus is on develop-

ing a scalable multi-task policy search algorithm. These distributed

MTL methods are mostly limited to off-line (batch) settings where

each agent handles only one task [22, 33]. Jin et al. [14] consider

an online setting, but require the existence of a central server node,

which is restrictive. In contrast, our work considers decentralized

and distributed multi-agent MTL in a lifelong learning setting, with-

out the need for a central server. Moreover, our approach employs

homogeneous agents that collaborate to improve their collective

performance over consecutive distributed tasks. This can be con-

sidered as a special case of concurrent learning, where learning a

task concurrently by multiple agents can accelerate learning [13].



Similar to prior works [10, 22, 33], we use distributed optimiza-

tion to tackle the collective lifelong learning problem. These exist-

ing approaches can only handle an off-line setting where all the

task data is available in batch for each agent. In contrast, we pro-

pose an online learning procedure which can address consecutive

tasks. In each iteration, the agents receive and learn their local

task models. Since the agents are synchronous, once the tasks are

learned, a message-passing scheme is then used to transfer and up-

date knowledge between the neighboring agents in each iteration.

In this manner, knowledge will disseminate among all agents over

time, improving collective performance. Similar to most distributed

learning settings, we assume there is a latent knowledge base that

underlies all tasks, and that each agent is trying to learn a local ver-

sion of that knowledge base based on its own (local) observations

and knowledge exchange with neighboring agents.

3 LIFELONG MACHINE LEARNING
We consider a set of T related (but different) supervised regres-

sion or classification tasks, each with labeled training data, i.e.{
Z(t ) =

(
X (t ),y(t )

)}T
t=1

, where X (t ) = [x1, . . . ,xM ] ∈ Rd×M rep-

resents M data instances characterized by d features, with cor-

responding targets given by y(t ) = [y1, . . . ,ym ]⊤ ∈ YM
. Typi-

cally, Y = {±1} for binary classification tasks and Y = R for

regression tasks. We assume that for each task t , the mapping

f : Rd → Y from each data point xm to its target ym can be mod-

eled as ym = f (xm ;θ (t )), where θ (t ) ∈ Rd . In this work, we con-

sider a linear mapping f (xm ;θ (t )) = ⟨θ (t ),xm⟩ where θ (t ) ∈ Rd ,
but our framework is readily generalizable to nonlinear paramet-

ric mappings (e.g., via generalized dictionaries [32]). An agent

can learn the task models by solving for the optimal parameters

Θ∗ = [θ (1), . . . ,θ (T )] in the following problem:

min

Θ

1

T

T∑
t=1
EX (t )∼D(t )

(
L

(
X (t ),y(t );θ (t )

))
+ Ω(Θ) , (1)

where L(·) is a loss function for measuring data fidelity, E(·) de-
notes the expectation on the task’s data distribution D(t ), and Ω(·)
is a regularization function that models task relations by coupling

model parameters to transfer knowledge among the tasks. Almost

all parametric MTL, online, and lifelong learning algorithms solve

instances of Eq. (1) given a particular form of Ω(·) and an optimiza-

tion mode, i.e. online or batch offline.

To model task relations, the GO-MTL algorithm [16] uses classic

empirical risk minimization (ERM) to estimate the expected loss

and solve the objective (1). It assumes that the task parameters can

be decomposed into a shared dictionary knowledge base L ∈ Rd×u
to facilitate knowledge transfer and task-specific sparse coefficients

s(t ) ∈ Ru , such that θ (t ) = Ls(t ). In this factorization, the hidden

structure of the tasks is represented in the dictionary knowledge

base and similar tasks are grouped by imposing sparsity on the s(t )’s.
Tasks that use the same columns of the dictionary are clustered

to be similar, while tasks that do not share any column can be

considered as belonging to different groups. In other words, more

overlap in the sparsity patterns of two tasks implies more similarity

between those two task models. This factorization has been shown

to enable knowledge transfer when dealing with related tasks by

grouping the similar tasks [16, 23]. Following this assumption and

employing ERM, the objective (1) can be expressed as:

min

L,S

1

T

T∑
t=1

[
ˆL
(
X (t ),y(t ),Ls(t )

)
+ µ∥s(t )∥1

]
+ λ∥L∥2F , (2)

where S = [s(1) · · · s(T )] is the matrix of sparse vectors,
ˆL(·) is the

empirical loss function on task training data, ∥ · ∥F is the Frobenius
norm to regularize complexity, ∥ · ∥1 denotes the L1 norm to impose

sparsity on each s(t ), and µ and λ are regularization parameters.

Eq. (2) is not a convex problem in its general form, but with a convex

loss function, it is convex in each individual optimization variable L
and S . Given all tasks’ data in batch, Eq. (2) can be solved offline by

an alternating optimization scheme [16]. In each alternation step,

Eq. (2) is solved to update a single variable by treating the other

variable to be constant. This scheme leads to an MTL algorithm

that shares information selectively among the task models.

Solving Eq. (2) offline is not suitable for lifelong learning. A life-

long learning agent [27, 29] faces tasks sequentially, where each

task should be learned using knowledge transfered from past ex-

perience. In other words, for each task Z(t ), the corresponding

parameter θ (t ) is learned using knowledge obtained from tasks

{Z(1), . . . ,Z(t−1)}. Upon learning Z(t ), the learned or updated

knowledge is stored to benefit future learning. The agent does not

know the total number of tasks, nor the task order a priori. To solve
Eq. (2) in an online setting, Ruvolo and Eaton [27] first approximate

the loss function L(X (t ),y(t ),Ls(t )) using a second-order Taylor

expansion of the loss function around the single-task ridge-optimal

parameters. This technique reduces the objective (2) to the problem

of online dictionary learning [21]:

min

L

1

T

T∑
t=1

F (t )(L) + λ∥L∥2F , (3)

F (t )(L) = min

s (t )

[α (t ) − Ls(t )2
Γ(t )
+ µ

s(t )
1

]
, (4)

where ∥x ∥2
A
= x⊤Ax , α (t ) ∈ Rd is the ridge estimator for taskZ(t ):

α (t ) = argmin

θ (t )

[
ˆL
(
θ (t )

)
+ γ

θ (t )2
2

]
(5)

with ridge regularization parameter γ ∈ Rd , and Γ(t ) is the Hessian
of the loss

ˆL(·) at α (t ), which is assumed to be strictly positive defi-

nite. When a new task arrives, only the corresponding sparse vector

s(t ) is computed using L to update

∑
t F (L). In this setting, Eq. (4) is

a task-specific online operation that leverages knowledge transfer.

Finally the shared basis L is updated via Eq. (3) to store the learned

knowledge from Z(t ) for future use. Despite using Eq. (4) as an

approximation to solve for s(t ), Ruvolo and Eaton [27] proved that

the learned knowledge base L stabilizes as more tasks are learned

and would eventually converge to the offline solution of Kumar and

Daume III [16]. Moreover, the solution of Eq. (1) converges almost

surely to the solution of Eq. (2) as T → ∞. While this technique

leads to an efficient algorithm for lifelong learning, it requires cen-

tralized access to all tasks’ data by a single agent. The approach we

explore, CoLLA, benefits from the idea of the second-order Taylor

approximation and online optimization scheme proposed by Ru-

volo and Eaton [27], but eliminates the need for centralized data



access. CoLLA achieves a distributed and decentralized knowledge

update by formulating a multi-agent lifelong learning optimization

problem over a network of collaborating agents. The resulting opti-

mization can be solved in a distributed setting, enabling collective

learning, as we describe next.

4 MULTI-AGENT LIFELONG LEARNING
Consider a network of N collaborating lifelong learning agents.

Each agent receives a (potentially unique) task at each time step.

We assume there is some true underlying hidden knowledge base

for all tasks; each agent learns a local view of this knowledge base

based on its own task distribution. To accomplish this, each agent i
solves a local version of the objective (3) to estimate its own local

knowledge base Li . We also assume that the agents are synchro-

nous (at each time step, they simultaneously receive and learn one

task), and there is an arbitrary order over the agents. We represent

the communication among these agents by an undirected graph

G = (V, E), where the set of static nodesV = {1, . . . ,N } denotes
the agents and the set of edges E ⊂ V ×V , with |E | = e , specifies
possibility of communication between pairs of agents. For each

edge (i, j) ∈ E, the nodes i and j are connected and so can commu-

nicate information, with j > i for uniqueness and set orderability.

The neighborhood N(i) of node i is the set of all nodes that are
connected to it. To allow knowledge to flow between all agents,

we further assume that the network graph is connected. Note that

there is no central server to guide collaboration among the agents.

We use the graph structure to formulate a lifelong machine learn-

ing problem on this network. Although each agent learns its own

individual dictionary, we encourage local dictionaries of neigh-

boring nodes (agents) to be similar by adding a set of soft equal-

ity constraints on neighboring dictionaries: Li = Lj ,∀(i, j) ∈ E.
We can represent all these constraints as a single linear operation

on the local dictionaries. It is easy to show these e equality con-

straints can be written compactly as (H ⊗ Id×d ) ˜L = 0ed×u , where
H ∈ Re×N is the node arc-incident matrix

1
of G, Id×d is the iden-

tity matrix, 0 is the zero matrix,
˜L = [L⊤

1
, . . . ,L⊤N ]

⊤
, and ⊗ denotes

the Kronecker product. Let Ei ∈ Red×d be a column partition of

E = (H ⊗ Id ) = [E1, ...,EN ]. We can compactly write the e equality
constraints as

∑
i EiLi = 0ed×u .

Each of the Ei ∈ Rde×d matrices is a tall block matrix consisting

ofd×d blocks, {[Ei ]j }ej=1, that are either the zeromatrix (∀j < N(i)),
Id (∀j ∈ N(i), j > i), or −Id (∀j ∈ N(i), j < i). Note that E⊤i Ej = 0d
if j < N(i), where 0d is thed×d zeromatrix. Following this notation,

we can reformulate the MTL objective (3) for multiple agents as

the following linearly constrained optimization problem over the

network graph G:

min

L1, ...LN

1

T

T∑
t=1

N∑
i=1

F
(t )
i (Li ) + λ∥Li ∥

2

F

s.t.

N∑
i=1

EiLi = 0ed×u .

(6)

1
For a given row 1 ≤ l ≤ e , corresponding to the l th edge (i, j), Hlq = 0 except for

Hl i = 1 and Hl j = −1.

Note that in Eq. (6), the optimization variables are not coupled

by a global variable and hence in addition to being a distributed

problem, Eq. (6) is also a decentralized problem. In order to deal

with the dynamic nature and time-dependency of the objective (6),

we assume that at each time step t , each agent receives a task

and computes F
(t )
i (Li ) locally via Eq. (4) based on this local task.

Then, through K information exchanges during that time step, the

local dictionaries are updated such that the agents reach a local

consensus, sharing knowledge between tasks.

To split the constrained objective (6) into a sequence of local

unconstrained agent-level problems, we use the extended ADMM

algorithm [21, 24]. This algorithm generalizes ADMM [4] to account

for linearly constrained convex problems with a sum of N separable

objective functions. Similar to ADMM, we first need to form the

augmented Lagrangian JT (L1, . . . ,LN ,Z ) for problem (6) at time

t in order to replace the constrained problem by an unconstrained

objective function which has an added penalty term:

JT (L1, . . . ,LN ,Z ) =
1

T

T∑
t=1

N∑
i=1

F
(t )
i (Li ) +

λ∥Li ∥2F +
〈
Z ,

∑N
i=1 EiLi

〉
+
ρ

2

 N∑
i=1

EiLi

2
F

,

(7)

where ⟨Z ,∑N
i=1 EiLi ⟩ = tr

(
Z⊤

∑N
i=1 EiLi

)
denotes thematrix trace

inner product, ρ ∈ R+ is a regularization penalty term param-

eter for violation of the constraint, and the block matrix Z =
[Z⊤

1
, . . . ,Z⊤e ]⊤ ∈ Red×u is the ADMM dual variable. The extended

ADMM algorithm solves Eq. (6) by iteratively updating the dual

and primal variables using the following local split iterations:

Lk+1
1
= argminL1

JT
(
L1,L

k
2
. . . ,LkN ,Z

k
)
,

Lk+1
2
= argminL2

JT
(
Lk+1
1
,L2, . . . ,L

k
N ,Z

k
)
,

... (8)

Lk+1N = argminLN JT
(
Lk+1
1
,Lk+1

2
, . . . ,LN ,Z

k
)
,

Zk+1 = Zk + ρ

( N∑
i=1

EiL
k+1
i

)
. (9)

The first N problems (8) are primal agent-specific problems to up-

date each local dictionary, and the last problem (9) updates the dual

variable. These iterations split the objective (7) into local primal

optimization problems to update each of the Li ’s, and then syn-

chronize the agents to share information through updating the dual

variable. Note that the j’th column of Ei is only non-zero when

j ∈ N(i) [Ei ]j = 0d ,∀j < N(i), hence the update rule for the dual
variable is indeed e local block updates by adjacent agents:

Zk+1
l = Zk

l + ρ
(
Lk+1i − Lk+1j

)
, (10)

for the l th edge (i,j). This means that to update the dual variable,

agent i solely needs to keep track of copies of those blocks Zl that
are shared with neighboring agents, reducing (9) to a set of dis-

tributed local operations. Note that iterations in (8) and (10) are

performed K times at each time step t for each agent to allow for



Algorithm 1 CoLLA (k,d, λ, µ, ρ)
1: T ← 0, A← zeroskd,kd ,
2: b ← zerosk,1, Li ← zerosd,k
3: while MoreTrainingDataAvailable() do
4: T ← T + 1
5: while i ≤ N do
6:

(
X(t )i , y

(t )
i , t

)
← getTrainingData()

7:

(
α (t )i , Γ

(t )
i

)
← singleTaskLearner(X (t ),y(t ))

8: s(t )i ← Equation 4

9: while k ≤ K do
10: Ai ← Ai +

(
s(t )i s(t )⊤i

)
⊗ Γ(t )i

11: bi ← bi + vec
(
s(t )⊤i ⊗

(
α (t )⊤i Γ(t )i

))
12: Li ← reinitializeAllZero(Li )

13:

bi ←
1

T
bi + vec

©«−
1

2

∑
j ∈N(i)

E⊤i Z j

− ρ

2

( ∑
j<i, j ∈N(i)

E⊤i EjL
k+1
j

+
∑

j>i, j ∈N(i)
E⊤i EjL

k
j

)ª®®¬
14: Lki ← mat

((
1

T Ai +
(
ρ
2
|N(i)| + λ

)
Ikd

)−1
bi

)
15: Zk+1 = Zk + ρ

(∑
i EiL

k+1
i

)
//distributed

16: end while
17: end while
18: end while

agents to converge to a stable solution. At each time step t , the
stable solution from the previous time step t − 1 is used to initial-

ize dictionaries and the dual variable in (8). Due to convergence

guarantees of extended ADMM [21], this simply means that at each

iteration all tasks that are received by the agents are considered to

update the knowledge bases.

4.1 Dictionary Update Rule
Splitting an optimization using ADMM is particularly helpful if the

optimization on primal variables can be solved efficiently, e.g., it

has a closed form solution. We show that the local primal updates

in (8) can be solved in closed form. We simply compute and then

null the gradients of the primal problems, which leads to systems

of linear problems for each local dictionary Li :

0 =
∂JT
∂Li

=
2

T

T∑
t=1

Γ(t )i

(
Lis
(t )
i − α

(t )
i

)
s (t )⊤i +

E⊤i

(
EiLi +

∑
j, j>i

EjL
k
j +

∑
j, j<i

EjL
k+1
j +

1

ρ
Z

)
+ 2λLi .

(11)

Note that despite our compact representation, primal iterations in

(8) involve only dictionaries from neighboring agents (∀j < N(i)
because EiEj = 0 and [Ei ]j = 0d ,∀j < N(i)). Moreover, only blocks

of the dual variable Z that correspond to neighboring agents are

needed to update each knowledge base. This means that iterations

in (11) are also fully distributed and decentralized local operations.

To solve for Li , we vectorize both sides of Eq. (11) and then after

applying a property of Kronecker ((B⊤ ⊗ A)vec(X ) = vec(AXB)),
Eq. (11) simplifies to the following linear update rules for the local

knowledge base dictionaries:

Ai =
( ρ
2

|N(i)| + λ
)
Idk +

1

T

T∑
t=1

(
s(t )i s(t )⊤i

)
⊗ Γ(t )i ,

bi = vec

©«
1

T

T∑
t=1

s(t )⊤i ⊗
(
α (t )⊤i Γ(t )i

)
− 1

2

∑
j ∈N(i)

E⊤i Z j

− ρ

2

©«
∑

j<i, j ∈N(i)
E⊤i EjL

k+1
j +

∑
j>i, j ∈N(i)

E⊤i EjL
k
j
ª®¬
ª®®®¬ ,

L← matd,k
(
A−1i bi

)
, (12)

where vec(·) denotes the matrix to vector (via column stacking)

and mat(·) denotes the vector to matrix operations. To avoid the

sums over all tasks 1 ≤ t ≤ T and the need to store all previous

tasks’ data, we construct both Ai and bi incrementally as tasks are

learned. Our method, the Collective Lifelong Learning Algorithm

(CoLLA), is summarized in Algorithm 1.

5 THEORETICAL GUARANTEES
In this section, we provide a proof of convergence for Algorithm 1.

We use techniques from Ruvolo and Eaton [27], adapted originally

from Mairal et al. [21] to demonstrate that Algorithm 1 converges

to a stationary point of the risk function. We make the following

assumptions:

(A) The data distribution has a compact support. This assump-

tion enforces boundedness onα (t ) and Γ(t ), and subsequently
on Li and s(t ) (see [21] for details).

(B) The LASSO problem in Eq. (4) admits a unique solution

according to one of uniqueness conditions for LASSO [30].

As a result, the functions F
(t )
i are well-defined.

(C) The matrices L⊤i Γ
(t )Li are strictly positive definite. As a

result, the functions F
(t )
i are all strongly convex.

Our proof involves two steps. First, we show that the inner loop

with variable k in Algorithm 1 converges to a consensus solution

for all i and all t . Next, we prove that the outer loop on t is also
convergent, showing that the collectively learned dictionary sta-

bilizes as more tasks are learned. For the first step, we outline the

following theorem on the convergence of the extended ADMM

algorithm:

Theorem 5.1. (Theorem 4.1 of Han and Yuan [11])
Suppose we have an optimization problem in the form of Eq. (6),

where the functions дi (Li ) B
∑
i F
(t )
i (Li ) are strongly convex with

modulus ηi . Then, for any 0 < ρ < mini
{

2ηi
3(N−1) ∥Ei ∥2

}
, iterations

in Eq. (8) and Eq. (9) converge to a solution of Eq. (6).



Note that in Algorithm 1, F
(t )
i (Li ) is a quadratic function of Li

with a symmetric positive definite Hessian and thus дi (Li ), as an
average of strongly convex functions, is also strongly convex. So the

required condition for Theorem 5.1 is satisfied, and at each time step,

the inner loop on k would converge. We represent the consensus

dictionary of the agents after ADMM convergence at time t = T
with LT = Li |t=T ,∀i (the solution obtained via Eq. (9) and Eq. (6)

at t = T ) and demonstrate that this matrix becomes stable as t
grows (the outer loop converges), proving overall convergence of

the algorithm.More precisely,LT is theminimizer of the augmented

Lagrangian JT (L1, . . . ,LN ,Z ) at t = T and L1 = . . . = LN . Also

note that upon convergence of ADMM,

∑
i EiLi = O . Hence LT is

the minimizer of the following risk function, derived from Eq. (7):

ˆRT (L) =
1

T

T∑
t=1

N∑
i=1

F
(t )
i (L) + λ∥L∥

2

F . (13)

We also use the following lemma in our proof [27]:

Lemma 5.2. The function ˆQT (L) = ˆRT (L)− ˆRT+1(L) is a Lipschitz
function: ∀ L,L′,

��� ˆQT (L′) − ˆQT (L)
��� ≤ O

(
1

T+1

)
∥L′ − L∥.

Proof. After algebraic simplifications, we can conclude that

ˆQT (L) =
(

1

T (T+1)
∑T
t=1

∑N
i=1 F

(t )
i (L)

)
− 1

T+1F
(T+1)
i . The functions

F
(t )
i (L) are quadratic forms with positive definite Hessian matrices

and hence are Lipschitz functions, all with Lipschitz parameters

upper-bounded by the largest eigenvalue of all Hessian matrices.

Using the definition for a Lipschitz function, it is easy to demon-

strate that
ˆRT (·) is also Lipschitz with Lipschitz parameterO

(
1

T+1

)
,

because of averaged quadratic terms in Eq. (13). ■

Now we can prove the convergence of Algorithm 1:

Lemma 5.3. LT+1 − LT = O
(

1

T+1

)
, showing that Algorithm 1

converges to a stable dictionary as T grows large.

Proof. First note that
ˆRT (·) is a strongly convex function for

all T . Let ηT be the strong convexity modulus. From the definition,

for two points LT+1 and LT , we have:
ˆRT (LT+1) ≥ ˆRT (LT ) +

∇ ˆR⊤T (LT )(LT − LT+1) +
ηT
2
∥LT+1 − LT ∥2F . Since LT is minimizer

of
ˆRT (·):

ˆRT (LT+1) − ˆRT (LT ) ≥
ηT
2

∥LT+1 − LT ∥2F . (14)

On the other hand, from Lemma 5.2:

ˆRT (LT+1) − ˆRT (LT ) = ˆRT (LT+1) − ˆRT+1(LT+1) +
ˆRT+1(LT+1) − ˆRT+1(LT ) + ˆRT+1(LT ) − ˆRT (LT )

≤ ˆQT (LT+1) − ˆQT (LT ) ≤ O
(

1

T+1

)
∥LT+1 − LT ∥ .

(15)

Note that the first two terms on the second line in the above as

a whole is negative, since LT+1 is the minimizer of
ˆRT+1. Now

combining (14) and (15), it is easy to show that :

∥LT+1 − LT ∥2F ≤ O
(

1

T+1

)
, (16)

thereby proving the lemma. ■

Thus, Algorithm 1 converges as the number of tasksT increases.

We also show that the distance between LT and the set of stationary

points of the agents’ true expected costs RT = EX (t )∼D(t )
(
ˆRT

)
converges almost surely to 0 asT →∞. We use two theorems from

Mairal et al. [21] for this purpose:

Theorem 5.4. (From [21]) Consider the empirical risk function
q̂T (L) = 1

T
∑T
t=1 F

(t )(L) + λ∥L∥2F with F (t ) as defined in Eq. (4) and
the true risk function qT (L) = EX (t )∼D(t ) (д̂(L)), and make assump-
tions (A)–(C). Then both risk functions converge almost surely as
limT→∞ q̂T (L) − qT (L) = 0.

Note that we can apply this theorem on RT and
ˆRT , because

the inner sum in Eq. (13) does not violate the assumptions of The-

orem 5.4. This is because the functions дi (·) are all well-defined
and are strongly convex with strictly positive definite Hessians

(the sum of positive definite matrices is positive definite). Thus,

limT→∞ ˆRT − RT = 0 almost surely.

Theorem 5.5. (From [21]) Under assumptions (A)–(C), the dis-
tance between the minimizer of q̂T (L) and the stationary points of
qT (L) converges almost surely to zero.

Again, this theorem is applicable on RT and
ˆRT and thus Algo-

rithm 1 converges to a stationary point of the true risk.

6 EXPERIMENTAL RESULTS
To assess the performance of CoLLA from different perspectives,

we compare it against: a) single-task learning (STL), a lower-bound

to measure the effect of positive transfer among the tasks, b) ELLA
[27], to demonstrate that collaboration between the agents improves

overall performance in comparison, c) offline CoLLA, as an upper-

bound to our online distributed algorithm, and finally d) GO-MTL

[16], as an absolute upper-bound (since GO-MTL is a batch MTL

method). Throughout all experiments, we present and compare the

average performance of all agents.

6.1 Datasets
We used four benchmark MTL datasets in our experiments, includ-

ing two classification and two regression datasets:

Land Mine Detection: This dataset consists of binary classifi-

cation tasks to detect whether an area contains land mines from

radar images [37]. There are 29 tasks, each corresponding to a dif-

ferent geographical region, with a total 14,820 data points. Each

data point consists of nine features, including four moment-based

features, three correlation-based, one energy-ratio, and one spa-

tial variance feature, all extracted from radar images. We added a

bias term as a 10
th

feature. The dataset has a natural dichotomy

between foliated and dessert regions. We assumed there are two

collaborating agents, each dealing solely with one region type.

Facial Expression Recognition: This dataset consists of bi-
nary facial expression recognition tasks [31]. We followed Ruvolo

and Eaton [27] and chose tasks detecting three facial action units

(upper lid raiser, upper lip raiser, and lip corner pull) for seven dif-

ferent subjects, resulting in 21 total tasks, each with 450–999 data

points. A Gabor pyramid scheme is used to extract a total of 2,880

Gabor features from images of a each subject’s face (see [27] for



2 4 6 8 10 12 14

Number of tasks

0.72

0.74

0.76

A
U

C CoLLA

ELLA

Dist. CoLLA

GO-MTL

STL

(a) Land Mine

2 4 6

Number of tasks

0.7

0.8

0.9

A
U

C CoLLA

ELLA

Dist. CoLLA

GO-MTL

STL

(b) Facial Expression

2 4 6 8 10

Number of tasks

2

3

4

5

R
M

S
E

CoLLA

ELLA

Dis. CoLLA

GO-MTL

STL

(c) Computer Survey

5 10 15 20

Number of tasks

10

10.5

11

R
M

S
E

CoLLA

ELLA

Dist. CoLLA

GO-MTL

data3

(d) London Schools

Figure 1: Performance of distributed (dotted lines), centralized (solid), and single-task learning (dashed) algorithms on bench-
mark datasets. The shaded region shows standard error. (Best viewed in color.)
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Figure 2: Performance of CoLLA given various graph structures (a) for three datasets (b–d).

details). Each data point consists of the first 100 PCA components

of these Gabor features. We used three agents, each of which learns

seven randomly selected tasks.

London Schools: This dataset [1] was provided by the Inner

London Education Authority. It consists of examination scores of

15,362 students (each assumed to be a data point) in 139 secondary

schools (each assumed to be a single task) during three academic

years. The goal is to predict the score of students of each school

using provided features as a regression problem. We used the same

27 categorical features as described by Kumar and Daume III [16],

consisting of eight school-specific features and 19 student-specific

features, all encoded as binary features. We also added a feature to

account for the bias term. For this dataset, we considered six agents

and allocated 23 tasks randomly to each agent.

Computer Survey: The goal in this dataset [17] is to predict

the likelihood of purchasing one of 20 different computers by 190

subjects; each subject is assumed to be a different task. Each data

point consists of 13 binary features, e.g., guarantee, telephone hot

line, etc. (see [17] for details). We added a feature to account for

the bias term. The output is a rating on a scale 0–10 collected in a

survey from the subjects. We considered 19 agents and randomly

allocated ten tasks to each.

6.2 Evaluation Methodology
For each dataset, we assume that the tasks are distributed equally

among the agents. We used different numbers of agents across the

datasets, as described in the previous section, to explore various

sizes of the multi-agent system.

For each experiment, we randomly split the data for each task

evenly into training and testing sets. We performed 100 learning

trials on the training sets and reported the average performance on

the testing sets for these trials as well as the performance variance.

For the online settings (CoLLA and ELLA), we randomized the task

order in each trial. For the offline settings (GO-MTL, Dist. CoLLA,

STL), we reported the average asymptotic performance on all task

because all tasks are presented and learned simultaneously. We

used brute force search to cross-validate the parameters u, λ, µ, and
ρ for each dataset; these parameters were selected to maximize the

performance on a validation set for each algorithm independently.

Parameters λ, µ, and ρ are selected from the set {10n | −6 ≤ n ≤ 6}
and u from

{
1, . . . ,max

(
10, T

4

)}
(note that u ≪ T ).

For the two regression problems, we used root-mean-squared

error (RMSE) on the testing set to measure performance of the

algorithms. For the two classification problems, we used the area

under the ROC curve (AUC) to measure performance, since both

datasets have skewed class distributions, making RMSE and other

error measures less informative. Unlike AUC, RMSE is agnostic to

the trade-off between false-positives and false-negatives, which can

vary in terms of importance in different applications.

Quality of Agreement Among the Agents: The inner loop
in Algorithm 1 implements information exchange between the

agents. For effective collective learning, agents need to come to an

agreement at each time step which is guaranteed by ADMM if K



is chosen large enough. During our experiments, we noticed that

initially K needs to be fairly large but as more tasks are learned, it

can be decreased over time K ∝ K1 + K2/t without considerable
change in performance (K1 ∈ N is generally small and K2 ∈ N is

large). This is expected because the tasks learned by all agents are

related and hence as more tasks are learned, knowledge transfer

from previous tasks makes local dictionaries closer.

6.3 Results
For the first experiment on CoLLA, we assumed a minimal linearly

connected (path graph) tree which allows for information flow

among the agents E = {(i, i + 1) | 1 ≤ i ≤ N }. Figure 1 compares

CoLLA against ELLA (which does not use collective learning), GO-

MTL, and single-task learning. The number of learned tasks is equal

for both COLLA and ELLA. ELLA can be considered as a special case

of COLLA with an edgeless graph topology (no communication).

Moreover, we also performed an offline distributed batch MTL

optimization of Eq. (6), i.e. offline CoLLA, and plot the learning

curves for the online settings and the average performance on all

tasks for offline settings.

At each time step t , the vertical axis shows the average perfor-
mance of the online algorithms on all tasks learned so far (up to

that time step). The horizontal axis denotes the number of tasks

learned by each individual agent. The shaded plot regions denote

the standard error.

Figure 1 shows that collaboration among agents improves life-

long learning, both in terms of learning speed and asymptotic

performance, to a level that is not feasible for a single lifelong learn-

ing agent. The performance of offline CoLLA is comparable with

GO-MTL, demonstrating that our algorithm can also be used effec-

tively as a distributed MTL algorithm. As expected, both CoLLA

and ELLA lead to the same asymptotic performance because they

solve the same optimization problem as the number of tasks grows

large. These results demonstrate the effectiveness of our algorithm

for both offline and online optimization settings. We also measured

the improvement in the initial performance on a new task due to

transfer (the “jumpstart” [28]) in Table 1, highlighting COLLA’s

effectiveness in collaboratively learning knowledge bases suitable

for transfer.

We conducted a second set of experiments to study the effect of

the communication mode (i.e., the graph structure) on distributed

lifelong learning. We performed experiments on four graph struc-

tures visualized in Figure 2a: tree, server (star graph), complete,

and random. The server graph structure connects all client agents

through a central server (a master agent, depicted in black in the

figure), and the random graph was formed by randomly selected

half of the edges of a complete graph while still ensuring that the

resulting graph was connected. Note that some of these structures

coincide when the network is small (for this reason, results on the

landmine dataset, which only uses two agents, are not presented for

this second experiment). Performance results for these structures

on the London schools, computer survey, and facial expression

recognition datasets are presented in Figures 2b–2d. Note that for

the facial recognition dataset, results for the only two possible struc-

tures are presented. From these figures, we can roughly conclude

aaaaaaa
Method

Dataset

LM LS CS FE

CoLLA 6.87 29.62 51.44 40.87

ELLA 6.21 29.30 37.99 38.69

Dist. CoLLA 32.21 37.30 61.71 59.89

GO-MTL 8.63 32.40 61.81 60.17

Table 1: Jumpstart comparison (improvement in percentage)
on the Land Mine (LM), London Schools (LS), Computer Sur-
vey (CS), and Facial Expression (FE) datasets.

that for network structures with more edges, learning is faster. In-

tuitively, this empirical result suggests that more communication

and collaboration between the agents can accelerate learning.

7 CONCLUSION
We proposed a distributed optimization algorithm for enabling

collective multi-agent lifelong learning. Collaboration among the

agents not only improves the asymptotic performance on the learned

tasks, but enables the agent to learn faster (i.e., using less data to

reach a specific performance threshold). Our experiments demon-

strated that the proposed algorithm outperforms other alternatives

on a variety of MTL regression and classification problems. Extend-

ing the proposed framework to a network of asynchronous agents

with dynamic links is a potential future direction to improve the

applicability of the algorithm on real-world problems.
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