

Lifelong Learning for Disturbance Rejection on Mobile Robots

David Isele, José Marcio Luna, Eric Eaton, Gabriel V. de la Cruz, James Irwin, Brandon Kallaher, Matthew E. Taylor

Isele, Luna, Eaton, Cruz, Irwin, Kallaher, Taylor

Motivation

Problem 1: Without prior knowledge, RL in a new task is slow

Idea: Reuse knowledge from previously learned tasks

Motivation

Problem 1: Without prior knowledge, RL in a new task is slow

Idea: Reuse knowledge from previously learned tasks

We focus on the lifelong learning case: Agent learns multiple tasks consecutively Want stability guarantees as the number of tasks grows large

Background

Background: Policy Gradient Methods for Control

- •Agent interacts with environment, taking consecutive actions
- •PG methods support continuous state and action spaces
 - -Have shown recent success in applications to robotic control [Kober & Peters 2011;

Peters & Schaal 2008; Sutton et al. 2000]

•Formalized as a Markov Decision Process (MDP)

Background: Policy Gradient Methods for Control

Agent interacts with environment, taking consecutive actionsPG methods support continuous state and action spaces

-Have shown recent success in applications to robotic control

-[Kober & Peters 2011; Peters & Schaal 2008; Sutton et al. 2000]

Background: Policy Gradient Methods for Control

Agent interacts with environment, taking consecutive actionsPG methods support continuous state and action spaces

-Have shown recent success in applications to robotic control

-[Kober & Peters 2011; Peters & Schaal 2008; Sutton et al. 2000]

Isele, Luna, Eaton, Cruz, Irwin, Kallaher, Taylor

Background: Finite Difference Policy Gradients

Approximate the change in reward with sampled disturbances

Background: Finite Difference Policy Gradients

Approximate the change in reward with sampled disturbances

Background: Finite Difference Policy Gradients

Approximate the change in reward with sampled disturbances

Lifelong PG Learning

PG-ELLA Objective

Issue: the objective is dependent on <u>all</u> trajectories

$$e_T \left(\mathbf{L} \right) = \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{s}^{(t)}} \left[-\mathcal{J} \left(\boldsymbol{\theta}^{(t)} \right) + \mu \left| \left| \mathbf{s}^{(t)} \right| \right|_1 \right] + \lambda ||\mathbf{L}||_{\mathsf{F}}^2$$

PG-ELLA Objective

Issue: the objective is dependent on <u>all</u> trajectories

$$e_{T} \left(\mathbf{L} \right) = \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{s}^{(t)}} \left[-\mathcal{J} \left(\boldsymbol{\theta}^{(t)} \right) + \mu \left\| \left| \mathbf{s}^{(t)} \right\|_{1} \right] + \lambda \left\| \mathbf{L} \right\|_{\mathsf{F}}^{2}$$
$$\hat{e}_{T} \left(\mathbf{L} \right) = \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{s}^{(t)}} \left[\left\| \boldsymbol{\alpha}^{(t)} - \mathbf{L} \mathbf{s}^{(t)} \right\|_{\Gamma^{(t)}}^{2} + \mu \left\| \left| \mathbf{s}^{(t)} \right\|_{1} \right] + \lambda \left\| \mathbf{L} \right\|_{\mathsf{F}}^{2}$$

Experiments

Verification on Robots

Results for Robot Go-to-Goal Task

- Run RL on a new robot (goal and disturbance) for a small number of iterations
- Use PG-ELLA to adjust policy according to known solutions
- Continue training

PG-ELLA improves Learning

Better Results Incorporating Prior

• Initialization with average policy of other robots improves benefit

PG-ELLA improves Learning

Lifelong Learning for Disturbance Rejection on Mobile Robots

David Isele, José Marcio Luna, Eric Eaton, Gabriel V. de la Cruz, James Irwin, Brandon Kallaher, Matthew E. Taylor

Thank you! Questions?

This research was supported by ONR N00014-11-1-0139, AFRL FA8750-14-1-0069, AFRL FA8750-14-1-0070, NSF IIS-1149917, NSF IIS-1319412, USDA 2014-67021-22174, and a Google Research Award.