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Key	Idea:		Use	a	high-level	task	descrip;on	to	iden;fy	
relevant	knowledge	for	transfer	in	lifelong	learning	

Ø  Improve	task	performance	
Ø  Zero-shot	transfer	

•  Task	descriptors	used	for	pairwise	transfer	by	Sinapov	et	al.	(2015)	
Isele,	Rostami,	&	Eaton	

Need	to	transfer	from	prior	experience	

“Bookshelf	with	5	shelves”	



Lifelong	Machine	Learning		
[Bou	Ammar,	Eaton,	et	al.	ICML14]	
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Lifelong	Machine	Learning		
[Bou	Ammar,	Eaton,	et	al.	ICML14]	
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Background:	Policy	Gradient	Methods	for	Control	

Agent	interacts	with	environment,	taking	consecu;ve	ac;ons	
–  Con;nuous	state	and	ac;on	spaces	
–  Demonstrated	in	robo;c	control	[Kober	&	Peters	‘11;	Peters	&	Schaal	‘08;	Sucon	’00]	
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Online	Op;miza;on	
(tasks	arrive	consecu;vely)	

Batch	Op;miza;on	
(all	tasks	are	given)	

Sharing	Knowledge	Between	Tasks	
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Mul>-Task	Learning	
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Lifelong	Learning	(PG-ELLA)		
[Bou	Ammar,	Eaton,	et	al.,	ICML	‘14]	

	
	

⇡✓(t) : X ⇥A 7! [0, 1]
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Incorpora>ng	Task	Descriptors	

Coupled	dic;onaries	relate	policy	parameters	and	task	descriptors	
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Incorpora>ng	Task	Descriptors	

Coupled	dic;onaries	relate	policy	parameters	and	task	descriptors	

Mul>-Task	Learning:	TaDeMTL		 	 	Lifelong	Learning:	TaDeLL					
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Zero-Shot	Transfer	
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2.	Use	recovered	coefficients	
and	policy	dic;onary	to	
predict	policy	parameters	

	

Given:	descriptor	for	new	task	

1.		Use	descriptor	and	descriptor	
dic;onary	to	recover	sparse	
coefficients	via	LASSO:	
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•  Train	on	40	tasks,	predict	the	policy	on	a	new	task	
•  Warm	Start:	Zero-shot	predicted	policy	used	as	an	ini;aliza;on			
	
	
	
	
	
	
	
	
	
	

TaDeLL	predicts	effec>ve	policies	for	unseen	tasks	

Lifelong	Learning	on	Dynamical	Systems 
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Applica>on	to	Quadroter	Control 
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Effec>ve	zero-shot	transfer	to	controlling	new	quadrotor	systems		



Run>me	Comparison 
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•  TaDeLL	scales	effec;vely	to	numerous	tasks	
•  Sinapov	et	al.	has	quadra;c	complexity	in	the	number	of	tasks	
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